Fix overload resolution involving rvalue references and cv qualifiers.
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41
42 /* Initialize BADNESS constants. */
43
44 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
45
46 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
48
49 const struct rank EXACT_MATCH_BADNESS = {0,0};
50
51 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54 const struct rank CV_CONVERSION_BADNESS = {1, 0};
55 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
56 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
57 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
59 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
60 const struct rank BASE_CONVERSION_BADNESS = {2,0};
61 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
62 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
63 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
64 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
65
66 /* Floatformat pairs. */
67 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
68 &floatformat_ieee_half_big,
69 &floatformat_ieee_half_little
70 };
71 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
72 &floatformat_ieee_single_big,
73 &floatformat_ieee_single_little
74 };
75 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
76 &floatformat_ieee_double_big,
77 &floatformat_ieee_double_little
78 };
79 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
80 &floatformat_ieee_double_big,
81 &floatformat_ieee_double_littlebyte_bigword
82 };
83 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
84 &floatformat_i387_ext,
85 &floatformat_i387_ext
86 };
87 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
88 &floatformat_m68881_ext,
89 &floatformat_m68881_ext
90 };
91 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
92 &floatformat_arm_ext_big,
93 &floatformat_arm_ext_littlebyte_bigword
94 };
95 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
96 &floatformat_ia64_spill_big,
97 &floatformat_ia64_spill_little
98 };
99 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
100 &floatformat_ia64_quad_big,
101 &floatformat_ia64_quad_little
102 };
103 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
104 &floatformat_vax_f,
105 &floatformat_vax_f
106 };
107 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
108 &floatformat_vax_d,
109 &floatformat_vax_d
110 };
111 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
112 &floatformat_ibm_long_double_big,
113 &floatformat_ibm_long_double_little
114 };
115
116 /* Should opaque types be resolved? */
117
118 static int opaque_type_resolution = 1;
119
120 /* A flag to enable printing of debugging information of C++
121 overloading. */
122
123 unsigned int overload_debug = 0;
124
125 /* A flag to enable strict type checking. */
126
127 static int strict_type_checking = 1;
128
129 /* A function to show whether opaque types are resolved. */
130
131 static void
132 show_opaque_type_resolution (struct ui_file *file, int from_tty,
133 struct cmd_list_element *c,
134 const char *value)
135 {
136 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
137 "(if set before loading symbols) is %s.\n"),
138 value);
139 }
140
141 /* A function to show whether C++ overload debugging is enabled. */
142
143 static void
144 show_overload_debug (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146 {
147 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
148 value);
149 }
150
151 /* A function to show the status of strict type checking. */
152
153 static void
154 show_strict_type_checking (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156 {
157 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
158 }
159
160 \f
161 /* Allocate a new OBJFILE-associated type structure and fill it
162 with some defaults. Space for the type structure is allocated
163 on the objfile's objfile_obstack. */
164
165 struct type *
166 alloc_type (struct objfile *objfile)
167 {
168 struct type *type;
169
170 gdb_assert (objfile != NULL);
171
172 /* Alloc the structure and start off with all fields zeroed. */
173 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
174 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
175 struct main_type);
176 OBJSTAT (objfile, n_types++);
177
178 TYPE_OBJFILE_OWNED (type) = 1;
179 TYPE_OWNER (type).objfile = objfile;
180
181 /* Initialize the fields that might not be zero. */
182
183 TYPE_CODE (type) = TYPE_CODE_UNDEF;
184 TYPE_CHAIN (type) = type; /* Chain back to itself. */
185
186 return type;
187 }
188
189 /* Allocate a new GDBARCH-associated type structure and fill it
190 with some defaults. Space for the type structure is allocated
191 on the obstack associated with GDBARCH. */
192
193 struct type *
194 alloc_type_arch (struct gdbarch *gdbarch)
195 {
196 struct type *type;
197
198 gdb_assert (gdbarch != NULL);
199
200 /* Alloc the structure and start off with all fields zeroed. */
201
202 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
203 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
204
205 TYPE_OBJFILE_OWNED (type) = 0;
206 TYPE_OWNER (type).gdbarch = gdbarch;
207
208 /* Initialize the fields that might not be zero. */
209
210 TYPE_CODE (type) = TYPE_CODE_UNDEF;
211 TYPE_CHAIN (type) = type; /* Chain back to itself. */
212
213 return type;
214 }
215
216 /* If TYPE is objfile-associated, allocate a new type structure
217 associated with the same objfile. If TYPE is gdbarch-associated,
218 allocate a new type structure associated with the same gdbarch. */
219
220 struct type *
221 alloc_type_copy (const struct type *type)
222 {
223 if (TYPE_OBJFILE_OWNED (type))
224 return alloc_type (TYPE_OWNER (type).objfile);
225 else
226 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
227 }
228
229 /* If TYPE is gdbarch-associated, return that architecture.
230 If TYPE is objfile-associated, return that objfile's architecture. */
231
232 struct gdbarch *
233 get_type_arch (const struct type *type)
234 {
235 if (TYPE_OBJFILE_OWNED (type))
236 return get_objfile_arch (TYPE_OWNER (type).objfile);
237 else
238 return TYPE_OWNER (type).gdbarch;
239 }
240
241 /* See gdbtypes.h. */
242
243 struct type *
244 get_target_type (struct type *type)
245 {
246 if (type != NULL)
247 {
248 type = TYPE_TARGET_TYPE (type);
249 if (type != NULL)
250 type = check_typedef (type);
251 }
252
253 return type;
254 }
255
256 /* See gdbtypes.h. */
257
258 unsigned int
259 type_length_units (struct type *type)
260 {
261 struct gdbarch *arch = get_type_arch (type);
262 int unit_size = gdbarch_addressable_memory_unit_size (arch);
263
264 return TYPE_LENGTH (type) / unit_size;
265 }
266
267 /* Alloc a new type instance structure, fill it with some defaults,
268 and point it at OLDTYPE. Allocate the new type instance from the
269 same place as OLDTYPE. */
270
271 static struct type *
272 alloc_type_instance (struct type *oldtype)
273 {
274 struct type *type;
275
276 /* Allocate the structure. */
277
278 if (! TYPE_OBJFILE_OWNED (oldtype))
279 type = XCNEW (struct type);
280 else
281 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
282 struct type);
283
284 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
285
286 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
287
288 return type;
289 }
290
291 /* Clear all remnants of the previous type at TYPE, in preparation for
292 replacing it with something else. Preserve owner information. */
293
294 static void
295 smash_type (struct type *type)
296 {
297 int objfile_owned = TYPE_OBJFILE_OWNED (type);
298 union type_owner owner = TYPE_OWNER (type);
299
300 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
301
302 /* Restore owner information. */
303 TYPE_OBJFILE_OWNED (type) = objfile_owned;
304 TYPE_OWNER (type) = owner;
305
306 /* For now, delete the rings. */
307 TYPE_CHAIN (type) = type;
308
309 /* For now, leave the pointer/reference types alone. */
310 }
311
312 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
313 to a pointer to memory where the pointer type should be stored.
314 If *TYPEPTR is zero, update it to point to the pointer type we return.
315 We allocate new memory if needed. */
316
317 struct type *
318 make_pointer_type (struct type *type, struct type **typeptr)
319 {
320 struct type *ntype; /* New type */
321 struct type *chain;
322
323 ntype = TYPE_POINTER_TYPE (type);
324
325 if (ntype)
326 {
327 if (typeptr == 0)
328 return ntype; /* Don't care about alloc,
329 and have new type. */
330 else if (*typeptr == 0)
331 {
332 *typeptr = ntype; /* Tracking alloc, and have new type. */
333 return ntype;
334 }
335 }
336
337 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
338 {
339 ntype = alloc_type_copy (type);
340 if (typeptr)
341 *typeptr = ntype;
342 }
343 else /* We have storage, but need to reset it. */
344 {
345 ntype = *typeptr;
346 chain = TYPE_CHAIN (ntype);
347 smash_type (ntype);
348 TYPE_CHAIN (ntype) = chain;
349 }
350
351 TYPE_TARGET_TYPE (ntype) = type;
352 TYPE_POINTER_TYPE (type) = ntype;
353
354 /* FIXME! Assumes the machine has only one representation for pointers! */
355
356 TYPE_LENGTH (ntype)
357 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
358 TYPE_CODE (ntype) = TYPE_CODE_PTR;
359
360 /* Mark pointers as unsigned. The target converts between pointers
361 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
362 gdbarch_address_to_pointer. */
363 TYPE_UNSIGNED (ntype) = 1;
364
365 /* Update the length of all the other variants of this type. */
366 chain = TYPE_CHAIN (ntype);
367 while (chain != ntype)
368 {
369 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
370 chain = TYPE_CHAIN (chain);
371 }
372
373 return ntype;
374 }
375
376 /* Given a type TYPE, return a type of pointers to that type.
377 May need to construct such a type if this is the first use. */
378
379 struct type *
380 lookup_pointer_type (struct type *type)
381 {
382 return make_pointer_type (type, (struct type **) 0);
383 }
384
385 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
386 points to a pointer to memory where the reference type should be
387 stored. If *TYPEPTR is zero, update it to point to the reference
388 type we return. We allocate new memory if needed. REFCODE denotes
389 the kind of reference type to lookup (lvalue or rvalue reference). */
390
391 struct type *
392 make_reference_type (struct type *type, struct type **typeptr,
393 enum type_code refcode)
394 {
395 struct type *ntype; /* New type */
396 struct type **reftype;
397 struct type *chain;
398
399 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
400
401 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
402 : TYPE_RVALUE_REFERENCE_TYPE (type));
403
404 if (ntype)
405 {
406 if (typeptr == 0)
407 return ntype; /* Don't care about alloc,
408 and have new type. */
409 else if (*typeptr == 0)
410 {
411 *typeptr = ntype; /* Tracking alloc, and have new type. */
412 return ntype;
413 }
414 }
415
416 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
417 {
418 ntype = alloc_type_copy (type);
419 if (typeptr)
420 *typeptr = ntype;
421 }
422 else /* We have storage, but need to reset it. */
423 {
424 ntype = *typeptr;
425 chain = TYPE_CHAIN (ntype);
426 smash_type (ntype);
427 TYPE_CHAIN (ntype) = chain;
428 }
429
430 TYPE_TARGET_TYPE (ntype) = type;
431 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
432 : &TYPE_RVALUE_REFERENCE_TYPE (type));
433
434 *reftype = ntype;
435
436 /* FIXME! Assume the machine has only one representation for
437 references, and that it matches the (only) representation for
438 pointers! */
439
440 TYPE_LENGTH (ntype) =
441 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
442 TYPE_CODE (ntype) = refcode;
443
444 *reftype = ntype;
445
446 /* Update the length of all the other variants of this type. */
447 chain = TYPE_CHAIN (ntype);
448 while (chain != ntype)
449 {
450 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
451 chain = TYPE_CHAIN (chain);
452 }
453
454 return ntype;
455 }
456
457 /* Same as above, but caller doesn't care about memory allocation
458 details. */
459
460 struct type *
461 lookup_reference_type (struct type *type, enum type_code refcode)
462 {
463 return make_reference_type (type, (struct type **) 0, refcode);
464 }
465
466 /* Lookup the lvalue reference type for the type TYPE. */
467
468 struct type *
469 lookup_lvalue_reference_type (struct type *type)
470 {
471 return lookup_reference_type (type, TYPE_CODE_REF);
472 }
473
474 /* Lookup the rvalue reference type for the type TYPE. */
475
476 struct type *
477 lookup_rvalue_reference_type (struct type *type)
478 {
479 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
480 }
481
482 /* Lookup a function type that returns type TYPE. TYPEPTR, if
483 nonzero, points to a pointer to memory where the function type
484 should be stored. If *TYPEPTR is zero, update it to point to the
485 function type we return. We allocate new memory if needed. */
486
487 struct type *
488 make_function_type (struct type *type, struct type **typeptr)
489 {
490 struct type *ntype; /* New type */
491
492 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
493 {
494 ntype = alloc_type_copy (type);
495 if (typeptr)
496 *typeptr = ntype;
497 }
498 else /* We have storage, but need to reset it. */
499 {
500 ntype = *typeptr;
501 smash_type (ntype);
502 }
503
504 TYPE_TARGET_TYPE (ntype) = type;
505
506 TYPE_LENGTH (ntype) = 1;
507 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
508
509 INIT_FUNC_SPECIFIC (ntype);
510
511 return ntype;
512 }
513
514 /* Given a type TYPE, return a type of functions that return that type.
515 May need to construct such a type if this is the first use. */
516
517 struct type *
518 lookup_function_type (struct type *type)
519 {
520 return make_function_type (type, (struct type **) 0);
521 }
522
523 /* Given a type TYPE and argument types, return the appropriate
524 function type. If the final type in PARAM_TYPES is NULL, make a
525 varargs function. */
526
527 struct type *
528 lookup_function_type_with_arguments (struct type *type,
529 int nparams,
530 struct type **param_types)
531 {
532 struct type *fn = make_function_type (type, (struct type **) 0);
533 int i;
534
535 if (nparams > 0)
536 {
537 if (param_types[nparams - 1] == NULL)
538 {
539 --nparams;
540 TYPE_VARARGS (fn) = 1;
541 }
542 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
543 == TYPE_CODE_VOID)
544 {
545 --nparams;
546 /* Caller should have ensured this. */
547 gdb_assert (nparams == 0);
548 TYPE_PROTOTYPED (fn) = 1;
549 }
550 }
551
552 TYPE_NFIELDS (fn) = nparams;
553 TYPE_FIELDS (fn)
554 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
555 for (i = 0; i < nparams; ++i)
556 TYPE_FIELD_TYPE (fn, i) = param_types[i];
557
558 return fn;
559 }
560
561 /* Identify address space identifier by name --
562 return the integer flag defined in gdbtypes.h. */
563
564 int
565 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
566 {
567 int type_flags;
568
569 /* Check for known address space delimiters. */
570 if (!strcmp (space_identifier, "code"))
571 return TYPE_INSTANCE_FLAG_CODE_SPACE;
572 else if (!strcmp (space_identifier, "data"))
573 return TYPE_INSTANCE_FLAG_DATA_SPACE;
574 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
575 && gdbarch_address_class_name_to_type_flags (gdbarch,
576 space_identifier,
577 &type_flags))
578 return type_flags;
579 else
580 error (_("Unknown address space specifier: \"%s\""), space_identifier);
581 }
582
583 /* Identify address space identifier by integer flag as defined in
584 gdbtypes.h -- return the string version of the adress space name. */
585
586 const char *
587 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
588 {
589 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
590 return "code";
591 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
592 return "data";
593 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
594 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
595 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
596 else
597 return NULL;
598 }
599
600 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
601
602 If STORAGE is non-NULL, create the new type instance there.
603 STORAGE must be in the same obstack as TYPE. */
604
605 static struct type *
606 make_qualified_type (struct type *type, int new_flags,
607 struct type *storage)
608 {
609 struct type *ntype;
610
611 ntype = type;
612 do
613 {
614 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
615 return ntype;
616 ntype = TYPE_CHAIN (ntype);
617 }
618 while (ntype != type);
619
620 /* Create a new type instance. */
621 if (storage == NULL)
622 ntype = alloc_type_instance (type);
623 else
624 {
625 /* If STORAGE was provided, it had better be in the same objfile
626 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
627 if one objfile is freed and the other kept, we'd have
628 dangling pointers. */
629 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
630
631 ntype = storage;
632 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
633 TYPE_CHAIN (ntype) = ntype;
634 }
635
636 /* Pointers or references to the original type are not relevant to
637 the new type. */
638 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
639 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
640
641 /* Chain the new qualified type to the old type. */
642 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
643 TYPE_CHAIN (type) = ntype;
644
645 /* Now set the instance flags and return the new type. */
646 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
647
648 /* Set length of new type to that of the original type. */
649 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
650
651 return ntype;
652 }
653
654 /* Make an address-space-delimited variant of a type -- a type that
655 is identical to the one supplied except that it has an address
656 space attribute attached to it (such as "code" or "data").
657
658 The space attributes "code" and "data" are for Harvard
659 architectures. The address space attributes are for architectures
660 which have alternately sized pointers or pointers with alternate
661 representations. */
662
663 struct type *
664 make_type_with_address_space (struct type *type, int space_flag)
665 {
666 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
667 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
668 | TYPE_INSTANCE_FLAG_DATA_SPACE
669 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
670 | space_flag);
671
672 return make_qualified_type (type, new_flags, NULL);
673 }
674
675 /* Make a "c-v" variant of a type -- a type that is identical to the
676 one supplied except that it may have const or volatile attributes
677 CNST is a flag for setting the const attribute
678 VOLTL is a flag for setting the volatile attribute
679 TYPE is the base type whose variant we are creating.
680
681 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
682 storage to hold the new qualified type; *TYPEPTR and TYPE must be
683 in the same objfile. Otherwise, allocate fresh memory for the new
684 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
685 new type we construct. */
686
687 struct type *
688 make_cv_type (int cnst, int voltl,
689 struct type *type,
690 struct type **typeptr)
691 {
692 struct type *ntype; /* New type */
693
694 int new_flags = (TYPE_INSTANCE_FLAGS (type)
695 & ~(TYPE_INSTANCE_FLAG_CONST
696 | TYPE_INSTANCE_FLAG_VOLATILE));
697
698 if (cnst)
699 new_flags |= TYPE_INSTANCE_FLAG_CONST;
700
701 if (voltl)
702 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
703
704 if (typeptr && *typeptr != NULL)
705 {
706 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
707 a C-V variant chain that threads across objfiles: if one
708 objfile gets freed, then the other has a broken C-V chain.
709
710 This code used to try to copy over the main type from TYPE to
711 *TYPEPTR if they were in different objfiles, but that's
712 wrong, too: TYPE may have a field list or member function
713 lists, which refer to types of their own, etc. etc. The
714 whole shebang would need to be copied over recursively; you
715 can't have inter-objfile pointers. The only thing to do is
716 to leave stub types as stub types, and look them up afresh by
717 name each time you encounter them. */
718 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
719 }
720
721 ntype = make_qualified_type (type, new_flags,
722 typeptr ? *typeptr : NULL);
723
724 if (typeptr != NULL)
725 *typeptr = ntype;
726
727 return ntype;
728 }
729
730 /* Make a 'restrict'-qualified version of TYPE. */
731
732 struct type *
733 make_restrict_type (struct type *type)
734 {
735 return make_qualified_type (type,
736 (TYPE_INSTANCE_FLAGS (type)
737 | TYPE_INSTANCE_FLAG_RESTRICT),
738 NULL);
739 }
740
741 /* Make a type without const, volatile, or restrict. */
742
743 struct type *
744 make_unqualified_type (struct type *type)
745 {
746 return make_qualified_type (type,
747 (TYPE_INSTANCE_FLAGS (type)
748 & ~(TYPE_INSTANCE_FLAG_CONST
749 | TYPE_INSTANCE_FLAG_VOLATILE
750 | TYPE_INSTANCE_FLAG_RESTRICT)),
751 NULL);
752 }
753
754 /* Make a '_Atomic'-qualified version of TYPE. */
755
756 struct type *
757 make_atomic_type (struct type *type)
758 {
759 return make_qualified_type (type,
760 (TYPE_INSTANCE_FLAGS (type)
761 | TYPE_INSTANCE_FLAG_ATOMIC),
762 NULL);
763 }
764
765 /* Replace the contents of ntype with the type *type. This changes the
766 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
767 the changes are propogated to all types in the TYPE_CHAIN.
768
769 In order to build recursive types, it's inevitable that we'll need
770 to update types in place --- but this sort of indiscriminate
771 smashing is ugly, and needs to be replaced with something more
772 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
773 clear if more steps are needed. */
774
775 void
776 replace_type (struct type *ntype, struct type *type)
777 {
778 struct type *chain;
779
780 /* These two types had better be in the same objfile. Otherwise,
781 the assignment of one type's main type structure to the other
782 will produce a type with references to objects (names; field
783 lists; etc.) allocated on an objfile other than its own. */
784 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
785
786 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
787
788 /* The type length is not a part of the main type. Update it for
789 each type on the variant chain. */
790 chain = ntype;
791 do
792 {
793 /* Assert that this element of the chain has no address-class bits
794 set in its flags. Such type variants might have type lengths
795 which are supposed to be different from the non-address-class
796 variants. This assertion shouldn't ever be triggered because
797 symbol readers which do construct address-class variants don't
798 call replace_type(). */
799 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
800
801 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
802 chain = TYPE_CHAIN (chain);
803 }
804 while (ntype != chain);
805
806 /* Assert that the two types have equivalent instance qualifiers.
807 This should be true for at least all of our debug readers. */
808 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
809 }
810
811 /* Implement direct support for MEMBER_TYPE in GNU C++.
812 May need to construct such a type if this is the first use.
813 The TYPE is the type of the member. The DOMAIN is the type
814 of the aggregate that the member belongs to. */
815
816 struct type *
817 lookup_memberptr_type (struct type *type, struct type *domain)
818 {
819 struct type *mtype;
820
821 mtype = alloc_type_copy (type);
822 smash_to_memberptr_type (mtype, domain, type);
823 return mtype;
824 }
825
826 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
827
828 struct type *
829 lookup_methodptr_type (struct type *to_type)
830 {
831 struct type *mtype;
832
833 mtype = alloc_type_copy (to_type);
834 smash_to_methodptr_type (mtype, to_type);
835 return mtype;
836 }
837
838 /* Allocate a stub method whose return type is TYPE. This apparently
839 happens for speed of symbol reading, since parsing out the
840 arguments to the method is cpu-intensive, the way we are doing it.
841 So, we will fill in arguments later. This always returns a fresh
842 type. */
843
844 struct type *
845 allocate_stub_method (struct type *type)
846 {
847 struct type *mtype;
848
849 mtype = alloc_type_copy (type);
850 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
851 TYPE_LENGTH (mtype) = 1;
852 TYPE_STUB (mtype) = 1;
853 TYPE_TARGET_TYPE (mtype) = type;
854 /* TYPE_SELF_TYPE (mtype) = unknown yet */
855 return mtype;
856 }
857
858 /* Create a range type with a dynamic range from LOW_BOUND to
859 HIGH_BOUND, inclusive. See create_range_type for further details. */
860
861 struct type *
862 create_range_type (struct type *result_type, struct type *index_type,
863 const struct dynamic_prop *low_bound,
864 const struct dynamic_prop *high_bound)
865 {
866 if (result_type == NULL)
867 result_type = alloc_type_copy (index_type);
868 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
869 TYPE_TARGET_TYPE (result_type) = index_type;
870 if (TYPE_STUB (index_type))
871 TYPE_TARGET_STUB (result_type) = 1;
872 else
873 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
874
875 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
876 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
877 TYPE_RANGE_DATA (result_type)->low = *low_bound;
878 TYPE_RANGE_DATA (result_type)->high = *high_bound;
879
880 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
881 TYPE_UNSIGNED (result_type) = 1;
882
883 /* Ada allows the declaration of range types whose upper bound is
884 less than the lower bound, so checking the lower bound is not
885 enough. Make sure we do not mark a range type whose upper bound
886 is negative as unsigned. */
887 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
888 TYPE_UNSIGNED (result_type) = 0;
889
890 return result_type;
891 }
892
893 /* Create a range type using either a blank type supplied in
894 RESULT_TYPE, or creating a new type, inheriting the objfile from
895 INDEX_TYPE.
896
897 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
898 to HIGH_BOUND, inclusive.
899
900 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
901 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
902
903 struct type *
904 create_static_range_type (struct type *result_type, struct type *index_type,
905 LONGEST low_bound, LONGEST high_bound)
906 {
907 struct dynamic_prop low, high;
908
909 low.kind = PROP_CONST;
910 low.data.const_val = low_bound;
911
912 high.kind = PROP_CONST;
913 high.data.const_val = high_bound;
914
915 result_type = create_range_type (result_type, index_type, &low, &high);
916
917 return result_type;
918 }
919
920 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
921 are static, otherwise returns 0. */
922
923 static int
924 has_static_range (const struct range_bounds *bounds)
925 {
926 return (bounds->low.kind == PROP_CONST
927 && bounds->high.kind == PROP_CONST);
928 }
929
930
931 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
932 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
933 bounds will fit in LONGEST), or -1 otherwise. */
934
935 int
936 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
937 {
938 type = check_typedef (type);
939 switch (TYPE_CODE (type))
940 {
941 case TYPE_CODE_RANGE:
942 *lowp = TYPE_LOW_BOUND (type);
943 *highp = TYPE_HIGH_BOUND (type);
944 return 1;
945 case TYPE_CODE_ENUM:
946 if (TYPE_NFIELDS (type) > 0)
947 {
948 /* The enums may not be sorted by value, so search all
949 entries. */
950 int i;
951
952 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
953 for (i = 0; i < TYPE_NFIELDS (type); i++)
954 {
955 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
956 *lowp = TYPE_FIELD_ENUMVAL (type, i);
957 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
958 *highp = TYPE_FIELD_ENUMVAL (type, i);
959 }
960
961 /* Set unsigned indicator if warranted. */
962 if (*lowp >= 0)
963 {
964 TYPE_UNSIGNED (type) = 1;
965 }
966 }
967 else
968 {
969 *lowp = 0;
970 *highp = -1;
971 }
972 return 0;
973 case TYPE_CODE_BOOL:
974 *lowp = 0;
975 *highp = 1;
976 return 0;
977 case TYPE_CODE_INT:
978 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
979 return -1;
980 if (!TYPE_UNSIGNED (type))
981 {
982 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
983 *highp = -*lowp - 1;
984 return 0;
985 }
986 /* ... fall through for unsigned ints ... */
987 case TYPE_CODE_CHAR:
988 *lowp = 0;
989 /* This round-about calculation is to avoid shifting by
990 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
991 if TYPE_LENGTH (type) == sizeof (LONGEST). */
992 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
993 *highp = (*highp - 1) | *highp;
994 return 0;
995 default:
996 return -1;
997 }
998 }
999
1000 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1001 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1002 Save the high bound into HIGH_BOUND if not NULL.
1003
1004 Return 1 if the operation was successful. Return zero otherwise,
1005 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1006
1007 We now simply use get_discrete_bounds call to get the values
1008 of the low and high bounds.
1009 get_discrete_bounds can return three values:
1010 1, meaning that index is a range,
1011 0, meaning that index is a discrete type,
1012 or -1 for failure. */
1013
1014 int
1015 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1016 {
1017 struct type *index = TYPE_INDEX_TYPE (type);
1018 LONGEST low = 0;
1019 LONGEST high = 0;
1020 int res;
1021
1022 if (index == NULL)
1023 return 0;
1024
1025 res = get_discrete_bounds (index, &low, &high);
1026 if (res == -1)
1027 return 0;
1028
1029 /* Check if the array bounds are undefined. */
1030 if (res == 1
1031 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1032 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1033 return 0;
1034
1035 if (low_bound)
1036 *low_bound = low;
1037
1038 if (high_bound)
1039 *high_bound = high;
1040
1041 return 1;
1042 }
1043
1044 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1045 representation of a value of this type, save the corresponding
1046 position number in POS.
1047
1048 Its differs from VAL only in the case of enumeration types. In
1049 this case, the position number of the value of the first listed
1050 enumeration literal is zero; the position number of the value of
1051 each subsequent enumeration literal is one more than that of its
1052 predecessor in the list.
1053
1054 Return 1 if the operation was successful. Return zero otherwise,
1055 in which case the value of POS is unmodified.
1056 */
1057
1058 int
1059 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1060 {
1061 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1062 {
1063 int i;
1064
1065 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1066 {
1067 if (val == TYPE_FIELD_ENUMVAL (type, i))
1068 {
1069 *pos = i;
1070 return 1;
1071 }
1072 }
1073 /* Invalid enumeration value. */
1074 return 0;
1075 }
1076 else
1077 {
1078 *pos = val;
1079 return 1;
1080 }
1081 }
1082
1083 /* Create an array type using either a blank type supplied in
1084 RESULT_TYPE, or creating a new type, inheriting the objfile from
1085 RANGE_TYPE.
1086
1087 Elements will be of type ELEMENT_TYPE, the indices will be of type
1088 RANGE_TYPE.
1089
1090 If BIT_STRIDE is not zero, build a packed array type whose element
1091 size is BIT_STRIDE. Otherwise, ignore this parameter.
1092
1093 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1094 sure it is TYPE_CODE_UNDEF before we bash it into an array
1095 type? */
1096
1097 struct type *
1098 create_array_type_with_stride (struct type *result_type,
1099 struct type *element_type,
1100 struct type *range_type,
1101 unsigned int bit_stride)
1102 {
1103 if (result_type == NULL)
1104 result_type = alloc_type_copy (range_type);
1105
1106 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1107 TYPE_TARGET_TYPE (result_type) = element_type;
1108 if (has_static_range (TYPE_RANGE_DATA (range_type))
1109 && (!type_not_associated (result_type)
1110 && !type_not_allocated (result_type)))
1111 {
1112 LONGEST low_bound, high_bound;
1113
1114 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1115 low_bound = high_bound = 0;
1116 element_type = check_typedef (element_type);
1117 /* Be careful when setting the array length. Ada arrays can be
1118 empty arrays with the high_bound being smaller than the low_bound.
1119 In such cases, the array length should be zero. */
1120 if (high_bound < low_bound)
1121 TYPE_LENGTH (result_type) = 0;
1122 else if (bit_stride > 0)
1123 TYPE_LENGTH (result_type) =
1124 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1125 else
1126 TYPE_LENGTH (result_type) =
1127 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1128 }
1129 else
1130 {
1131 /* This type is dynamic and its length needs to be computed
1132 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1133 undefined by setting it to zero. Although we are not expected
1134 to trust TYPE_LENGTH in this case, setting the size to zero
1135 allows us to avoid allocating objects of random sizes in case
1136 we accidently do. */
1137 TYPE_LENGTH (result_type) = 0;
1138 }
1139
1140 TYPE_NFIELDS (result_type) = 1;
1141 TYPE_FIELDS (result_type) =
1142 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1143 TYPE_INDEX_TYPE (result_type) = range_type;
1144 if (bit_stride > 0)
1145 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1146
1147 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1148 if (TYPE_LENGTH (result_type) == 0)
1149 TYPE_TARGET_STUB (result_type) = 1;
1150
1151 return result_type;
1152 }
1153
1154 /* Same as create_array_type_with_stride but with no bit_stride
1155 (BIT_STRIDE = 0), thus building an unpacked array. */
1156
1157 struct type *
1158 create_array_type (struct type *result_type,
1159 struct type *element_type,
1160 struct type *range_type)
1161 {
1162 return create_array_type_with_stride (result_type, element_type,
1163 range_type, 0);
1164 }
1165
1166 struct type *
1167 lookup_array_range_type (struct type *element_type,
1168 LONGEST low_bound, LONGEST high_bound)
1169 {
1170 struct gdbarch *gdbarch = get_type_arch (element_type);
1171 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1172 struct type *range_type
1173 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1174
1175 return create_array_type (NULL, element_type, range_type);
1176 }
1177
1178 /* Create a string type using either a blank type supplied in
1179 RESULT_TYPE, or creating a new type. String types are similar
1180 enough to array of char types that we can use create_array_type to
1181 build the basic type and then bash it into a string type.
1182
1183 For fixed length strings, the range type contains 0 as the lower
1184 bound and the length of the string minus one as the upper bound.
1185
1186 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1187 sure it is TYPE_CODE_UNDEF before we bash it into a string
1188 type? */
1189
1190 struct type *
1191 create_string_type (struct type *result_type,
1192 struct type *string_char_type,
1193 struct type *range_type)
1194 {
1195 result_type = create_array_type (result_type,
1196 string_char_type,
1197 range_type);
1198 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1199 return result_type;
1200 }
1201
1202 struct type *
1203 lookup_string_range_type (struct type *string_char_type,
1204 LONGEST low_bound, LONGEST high_bound)
1205 {
1206 struct type *result_type;
1207
1208 result_type = lookup_array_range_type (string_char_type,
1209 low_bound, high_bound);
1210 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1211 return result_type;
1212 }
1213
1214 struct type *
1215 create_set_type (struct type *result_type, struct type *domain_type)
1216 {
1217 if (result_type == NULL)
1218 result_type = alloc_type_copy (domain_type);
1219
1220 TYPE_CODE (result_type) = TYPE_CODE_SET;
1221 TYPE_NFIELDS (result_type) = 1;
1222 TYPE_FIELDS (result_type)
1223 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1224
1225 if (!TYPE_STUB (domain_type))
1226 {
1227 LONGEST low_bound, high_bound, bit_length;
1228
1229 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1230 low_bound = high_bound = 0;
1231 bit_length = high_bound - low_bound + 1;
1232 TYPE_LENGTH (result_type)
1233 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1234 if (low_bound >= 0)
1235 TYPE_UNSIGNED (result_type) = 1;
1236 }
1237 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1238
1239 return result_type;
1240 }
1241
1242 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1243 and any array types nested inside it. */
1244
1245 void
1246 make_vector_type (struct type *array_type)
1247 {
1248 struct type *inner_array, *elt_type;
1249 int flags;
1250
1251 /* Find the innermost array type, in case the array is
1252 multi-dimensional. */
1253 inner_array = array_type;
1254 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1255 inner_array = TYPE_TARGET_TYPE (inner_array);
1256
1257 elt_type = TYPE_TARGET_TYPE (inner_array);
1258 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1259 {
1260 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1261 elt_type = make_qualified_type (elt_type, flags, NULL);
1262 TYPE_TARGET_TYPE (inner_array) = elt_type;
1263 }
1264
1265 TYPE_VECTOR (array_type) = 1;
1266 }
1267
1268 struct type *
1269 init_vector_type (struct type *elt_type, int n)
1270 {
1271 struct type *array_type;
1272
1273 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1274 make_vector_type (array_type);
1275 return array_type;
1276 }
1277
1278 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1279 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1280 confusing. "self" is a common enough replacement for "this".
1281 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1282 TYPE_CODE_METHOD. */
1283
1284 struct type *
1285 internal_type_self_type (struct type *type)
1286 {
1287 switch (TYPE_CODE (type))
1288 {
1289 case TYPE_CODE_METHODPTR:
1290 case TYPE_CODE_MEMBERPTR:
1291 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1292 return NULL;
1293 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1294 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1295 case TYPE_CODE_METHOD:
1296 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1297 return NULL;
1298 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1299 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1300 default:
1301 gdb_assert_not_reached ("bad type");
1302 }
1303 }
1304
1305 /* Set the type of the class that TYPE belongs to.
1306 In c++ this is the class of "this".
1307 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1308 TYPE_CODE_METHOD. */
1309
1310 void
1311 set_type_self_type (struct type *type, struct type *self_type)
1312 {
1313 switch (TYPE_CODE (type))
1314 {
1315 case TYPE_CODE_METHODPTR:
1316 case TYPE_CODE_MEMBERPTR:
1317 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1318 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1319 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1320 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1321 break;
1322 case TYPE_CODE_METHOD:
1323 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1324 INIT_FUNC_SPECIFIC (type);
1325 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1326 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1327 break;
1328 default:
1329 gdb_assert_not_reached ("bad type");
1330 }
1331 }
1332
1333 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1334 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1335 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1336 TYPE doesn't include the offset (that's the value of the MEMBER
1337 itself), but does include the structure type into which it points
1338 (for some reason).
1339
1340 When "smashing" the type, we preserve the objfile that the old type
1341 pointed to, since we aren't changing where the type is actually
1342 allocated. */
1343
1344 void
1345 smash_to_memberptr_type (struct type *type, struct type *self_type,
1346 struct type *to_type)
1347 {
1348 smash_type (type);
1349 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1350 TYPE_TARGET_TYPE (type) = to_type;
1351 set_type_self_type (type, self_type);
1352 /* Assume that a data member pointer is the same size as a normal
1353 pointer. */
1354 TYPE_LENGTH (type)
1355 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1356 }
1357
1358 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1359
1360 When "smashing" the type, we preserve the objfile that the old type
1361 pointed to, since we aren't changing where the type is actually
1362 allocated. */
1363
1364 void
1365 smash_to_methodptr_type (struct type *type, struct type *to_type)
1366 {
1367 smash_type (type);
1368 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1369 TYPE_TARGET_TYPE (type) = to_type;
1370 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1371 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1372 }
1373
1374 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1375 METHOD just means `function that gets an extra "this" argument'.
1376
1377 When "smashing" the type, we preserve the objfile that the old type
1378 pointed to, since we aren't changing where the type is actually
1379 allocated. */
1380
1381 void
1382 smash_to_method_type (struct type *type, struct type *self_type,
1383 struct type *to_type, struct field *args,
1384 int nargs, int varargs)
1385 {
1386 smash_type (type);
1387 TYPE_CODE (type) = TYPE_CODE_METHOD;
1388 TYPE_TARGET_TYPE (type) = to_type;
1389 set_type_self_type (type, self_type);
1390 TYPE_FIELDS (type) = args;
1391 TYPE_NFIELDS (type) = nargs;
1392 if (varargs)
1393 TYPE_VARARGS (type) = 1;
1394 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1395 }
1396
1397 /* Return a typename for a struct/union/enum type without "struct ",
1398 "union ", or "enum ". If the type has a NULL name, return NULL. */
1399
1400 const char *
1401 type_name_no_tag (const struct type *type)
1402 {
1403 if (TYPE_TAG_NAME (type) != NULL)
1404 return TYPE_TAG_NAME (type);
1405
1406 /* Is there code which expects this to return the name if there is
1407 no tag name? My guess is that this is mainly used for C++ in
1408 cases where the two will always be the same. */
1409 return TYPE_NAME (type);
1410 }
1411
1412 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1413 Since GCC PR debug/47510 DWARF provides associated information to detect the
1414 anonymous class linkage name from its typedef.
1415
1416 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1417 apply it itself. */
1418
1419 const char *
1420 type_name_no_tag_or_error (struct type *type)
1421 {
1422 struct type *saved_type = type;
1423 const char *name;
1424 struct objfile *objfile;
1425
1426 type = check_typedef (type);
1427
1428 name = type_name_no_tag (type);
1429 if (name != NULL)
1430 return name;
1431
1432 name = type_name_no_tag (saved_type);
1433 objfile = TYPE_OBJFILE (saved_type);
1434 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1435 name ? name : "<anonymous>",
1436 objfile ? objfile_name (objfile) : "<arch>");
1437 }
1438
1439 /* Lookup a typedef or primitive type named NAME, visible in lexical
1440 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1441 suitably defined. */
1442
1443 struct type *
1444 lookup_typename (const struct language_defn *language,
1445 struct gdbarch *gdbarch, const char *name,
1446 const struct block *block, int noerr)
1447 {
1448 struct symbol *sym;
1449
1450 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1451 language->la_language, NULL).symbol;
1452 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1453 return SYMBOL_TYPE (sym);
1454
1455 if (noerr)
1456 return NULL;
1457 error (_("No type named %s."), name);
1458 }
1459
1460 struct type *
1461 lookup_unsigned_typename (const struct language_defn *language,
1462 struct gdbarch *gdbarch, const char *name)
1463 {
1464 char *uns = (char *) alloca (strlen (name) + 10);
1465
1466 strcpy (uns, "unsigned ");
1467 strcpy (uns + 9, name);
1468 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1469 }
1470
1471 struct type *
1472 lookup_signed_typename (const struct language_defn *language,
1473 struct gdbarch *gdbarch, const char *name)
1474 {
1475 struct type *t;
1476 char *uns = (char *) alloca (strlen (name) + 8);
1477
1478 strcpy (uns, "signed ");
1479 strcpy (uns + 7, name);
1480 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1481 /* If we don't find "signed FOO" just try again with plain "FOO". */
1482 if (t != NULL)
1483 return t;
1484 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1485 }
1486
1487 /* Lookup a structure type named "struct NAME",
1488 visible in lexical block BLOCK. */
1489
1490 struct type *
1491 lookup_struct (const char *name, const struct block *block)
1492 {
1493 struct symbol *sym;
1494
1495 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1496
1497 if (sym == NULL)
1498 {
1499 error (_("No struct type named %s."), name);
1500 }
1501 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1502 {
1503 error (_("This context has class, union or enum %s, not a struct."),
1504 name);
1505 }
1506 return (SYMBOL_TYPE (sym));
1507 }
1508
1509 /* Lookup a union type named "union NAME",
1510 visible in lexical block BLOCK. */
1511
1512 struct type *
1513 lookup_union (const char *name, const struct block *block)
1514 {
1515 struct symbol *sym;
1516 struct type *t;
1517
1518 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1519
1520 if (sym == NULL)
1521 error (_("No union type named %s."), name);
1522
1523 t = SYMBOL_TYPE (sym);
1524
1525 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1526 return t;
1527
1528 /* If we get here, it's not a union. */
1529 error (_("This context has class, struct or enum %s, not a union."),
1530 name);
1531 }
1532
1533 /* Lookup an enum type named "enum NAME",
1534 visible in lexical block BLOCK. */
1535
1536 struct type *
1537 lookup_enum (const char *name, const struct block *block)
1538 {
1539 struct symbol *sym;
1540
1541 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1542 if (sym == NULL)
1543 {
1544 error (_("No enum type named %s."), name);
1545 }
1546 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1547 {
1548 error (_("This context has class, struct or union %s, not an enum."),
1549 name);
1550 }
1551 return (SYMBOL_TYPE (sym));
1552 }
1553
1554 /* Lookup a template type named "template NAME<TYPE>",
1555 visible in lexical block BLOCK. */
1556
1557 struct type *
1558 lookup_template_type (char *name, struct type *type,
1559 const struct block *block)
1560 {
1561 struct symbol *sym;
1562 char *nam = (char *)
1563 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1564
1565 strcpy (nam, name);
1566 strcat (nam, "<");
1567 strcat (nam, TYPE_NAME (type));
1568 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1569
1570 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1571
1572 if (sym == NULL)
1573 {
1574 error (_("No template type named %s."), name);
1575 }
1576 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1577 {
1578 error (_("This context has class, union or enum %s, not a struct."),
1579 name);
1580 }
1581 return (SYMBOL_TYPE (sym));
1582 }
1583
1584 /* Given a type TYPE, lookup the type of the component of type named
1585 NAME.
1586
1587 TYPE can be either a struct or union, or a pointer or reference to
1588 a struct or union. If it is a pointer or reference, its target
1589 type is automatically used. Thus '.' and '->' are interchangable,
1590 as specified for the definitions of the expression element types
1591 STRUCTOP_STRUCT and STRUCTOP_PTR.
1592
1593 If NOERR is nonzero, return zero if NAME is not suitably defined.
1594 If NAME is the name of a baseclass type, return that type. */
1595
1596 struct type *
1597 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1598 {
1599 int i;
1600
1601 for (;;)
1602 {
1603 type = check_typedef (type);
1604 if (TYPE_CODE (type) != TYPE_CODE_PTR
1605 && TYPE_CODE (type) != TYPE_CODE_REF)
1606 break;
1607 type = TYPE_TARGET_TYPE (type);
1608 }
1609
1610 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1611 && TYPE_CODE (type) != TYPE_CODE_UNION)
1612 {
1613 std::string type_name = type_to_string (type);
1614 error (_("Type %s is not a structure or union type."),
1615 type_name.c_str ());
1616 }
1617
1618 #if 0
1619 /* FIXME: This change put in by Michael seems incorrect for the case
1620 where the structure tag name is the same as the member name.
1621 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1622 foo; } bell;" Disabled by fnf. */
1623 {
1624 char *type_name;
1625
1626 type_name = type_name_no_tag (type);
1627 if (type_name != NULL && strcmp (type_name, name) == 0)
1628 return type;
1629 }
1630 #endif
1631
1632 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1633 {
1634 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1635
1636 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1637 {
1638 return TYPE_FIELD_TYPE (type, i);
1639 }
1640 else if (!t_field_name || *t_field_name == '\0')
1641 {
1642 struct type *subtype
1643 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1644
1645 if (subtype != NULL)
1646 return subtype;
1647 }
1648 }
1649
1650 /* OK, it's not in this class. Recursively check the baseclasses. */
1651 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1652 {
1653 struct type *t;
1654
1655 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1656 if (t != NULL)
1657 {
1658 return t;
1659 }
1660 }
1661
1662 if (noerr)
1663 {
1664 return NULL;
1665 }
1666
1667 std::string type_name = type_to_string (type);
1668 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1669 }
1670
1671 /* Store in *MAX the largest number representable by unsigned integer type
1672 TYPE. */
1673
1674 void
1675 get_unsigned_type_max (struct type *type, ULONGEST *max)
1676 {
1677 unsigned int n;
1678
1679 type = check_typedef (type);
1680 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1681 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1682
1683 /* Written this way to avoid overflow. */
1684 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1685 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1686 }
1687
1688 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1689 signed integer type TYPE. */
1690
1691 void
1692 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1693 {
1694 unsigned int n;
1695
1696 type = check_typedef (type);
1697 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1698 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1699
1700 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1701 *min = -((ULONGEST) 1 << (n - 1));
1702 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1703 }
1704
1705 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1706 cplus_stuff.vptr_fieldno.
1707
1708 cplus_stuff is initialized to cplus_struct_default which does not
1709 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1710 designated initializers). We cope with that here. */
1711
1712 int
1713 internal_type_vptr_fieldno (struct type *type)
1714 {
1715 type = check_typedef (type);
1716 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1717 || TYPE_CODE (type) == TYPE_CODE_UNION);
1718 if (!HAVE_CPLUS_STRUCT (type))
1719 return -1;
1720 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1721 }
1722
1723 /* Set the value of cplus_stuff.vptr_fieldno. */
1724
1725 void
1726 set_type_vptr_fieldno (struct type *type, int fieldno)
1727 {
1728 type = check_typedef (type);
1729 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1730 || TYPE_CODE (type) == TYPE_CODE_UNION);
1731 if (!HAVE_CPLUS_STRUCT (type))
1732 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1733 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1734 }
1735
1736 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1737 cplus_stuff.vptr_basetype. */
1738
1739 struct type *
1740 internal_type_vptr_basetype (struct type *type)
1741 {
1742 type = check_typedef (type);
1743 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1744 || TYPE_CODE (type) == TYPE_CODE_UNION);
1745 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1746 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1747 }
1748
1749 /* Set the value of cplus_stuff.vptr_basetype. */
1750
1751 void
1752 set_type_vptr_basetype (struct type *type, struct type *basetype)
1753 {
1754 type = check_typedef (type);
1755 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1756 || TYPE_CODE (type) == TYPE_CODE_UNION);
1757 if (!HAVE_CPLUS_STRUCT (type))
1758 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1759 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1760 }
1761
1762 /* Lookup the vptr basetype/fieldno values for TYPE.
1763 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1764 vptr_fieldno. Also, if found and basetype is from the same objfile,
1765 cache the results.
1766 If not found, return -1 and ignore BASETYPEP.
1767 Callers should be aware that in some cases (for example,
1768 the type or one of its baseclasses is a stub type and we are
1769 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1770 this function will not be able to find the
1771 virtual function table pointer, and vptr_fieldno will remain -1 and
1772 vptr_basetype will remain NULL or incomplete. */
1773
1774 int
1775 get_vptr_fieldno (struct type *type, struct type **basetypep)
1776 {
1777 type = check_typedef (type);
1778
1779 if (TYPE_VPTR_FIELDNO (type) < 0)
1780 {
1781 int i;
1782
1783 /* We must start at zero in case the first (and only) baseclass
1784 is virtual (and hence we cannot share the table pointer). */
1785 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1786 {
1787 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1788 int fieldno;
1789 struct type *basetype;
1790
1791 fieldno = get_vptr_fieldno (baseclass, &basetype);
1792 if (fieldno >= 0)
1793 {
1794 /* If the type comes from a different objfile we can't cache
1795 it, it may have a different lifetime. PR 2384 */
1796 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1797 {
1798 set_type_vptr_fieldno (type, fieldno);
1799 set_type_vptr_basetype (type, basetype);
1800 }
1801 if (basetypep)
1802 *basetypep = basetype;
1803 return fieldno;
1804 }
1805 }
1806
1807 /* Not found. */
1808 return -1;
1809 }
1810 else
1811 {
1812 if (basetypep)
1813 *basetypep = TYPE_VPTR_BASETYPE (type);
1814 return TYPE_VPTR_FIELDNO (type);
1815 }
1816 }
1817
1818 static void
1819 stub_noname_complaint (void)
1820 {
1821 complaint (&symfile_complaints, _("stub type has NULL name"));
1822 }
1823
1824 /* Worker for is_dynamic_type. */
1825
1826 static int
1827 is_dynamic_type_internal (struct type *type, int top_level)
1828 {
1829 type = check_typedef (type);
1830
1831 /* We only want to recognize references at the outermost level. */
1832 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1833 type = check_typedef (TYPE_TARGET_TYPE (type));
1834
1835 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1836 dynamic, even if the type itself is statically defined.
1837 From a user's point of view, this may appear counter-intuitive;
1838 but it makes sense in this context, because the point is to determine
1839 whether any part of the type needs to be resolved before it can
1840 be exploited. */
1841 if (TYPE_DATA_LOCATION (type) != NULL
1842 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1843 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1844 return 1;
1845
1846 if (TYPE_ASSOCIATED_PROP (type))
1847 return 1;
1848
1849 if (TYPE_ALLOCATED_PROP (type))
1850 return 1;
1851
1852 switch (TYPE_CODE (type))
1853 {
1854 case TYPE_CODE_RANGE:
1855 {
1856 /* A range type is obviously dynamic if it has at least one
1857 dynamic bound. But also consider the range type to be
1858 dynamic when its subtype is dynamic, even if the bounds
1859 of the range type are static. It allows us to assume that
1860 the subtype of a static range type is also static. */
1861 return (!has_static_range (TYPE_RANGE_DATA (type))
1862 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1863 }
1864
1865 case TYPE_CODE_ARRAY:
1866 {
1867 gdb_assert (TYPE_NFIELDS (type) == 1);
1868
1869 /* The array is dynamic if either the bounds are dynamic,
1870 or the elements it contains have a dynamic contents. */
1871 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1872 return 1;
1873 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
1874 }
1875
1876 case TYPE_CODE_STRUCT:
1877 case TYPE_CODE_UNION:
1878 {
1879 int i;
1880
1881 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1882 if (!field_is_static (&TYPE_FIELD (type, i))
1883 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1884 return 1;
1885 }
1886 break;
1887 }
1888
1889 return 0;
1890 }
1891
1892 /* See gdbtypes.h. */
1893
1894 int
1895 is_dynamic_type (struct type *type)
1896 {
1897 return is_dynamic_type_internal (type, 1);
1898 }
1899
1900 static struct type *resolve_dynamic_type_internal
1901 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1902
1903 /* Given a dynamic range type (dyn_range_type) and a stack of
1904 struct property_addr_info elements, return a static version
1905 of that type. */
1906
1907 static struct type *
1908 resolve_dynamic_range (struct type *dyn_range_type,
1909 struct property_addr_info *addr_stack)
1910 {
1911 CORE_ADDR value;
1912 struct type *static_range_type, *static_target_type;
1913 const struct dynamic_prop *prop;
1914 struct dynamic_prop low_bound, high_bound;
1915
1916 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1917
1918 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1919 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1920 {
1921 low_bound.kind = PROP_CONST;
1922 low_bound.data.const_val = value;
1923 }
1924 else
1925 {
1926 low_bound.kind = PROP_UNDEFINED;
1927 low_bound.data.const_val = 0;
1928 }
1929
1930 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1931 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1932 {
1933 high_bound.kind = PROP_CONST;
1934 high_bound.data.const_val = value;
1935
1936 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1937 high_bound.data.const_val
1938 = low_bound.data.const_val + high_bound.data.const_val - 1;
1939 }
1940 else
1941 {
1942 high_bound.kind = PROP_UNDEFINED;
1943 high_bound.data.const_val = 0;
1944 }
1945
1946 static_target_type
1947 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
1948 addr_stack, 0);
1949 static_range_type = create_range_type (copy_type (dyn_range_type),
1950 static_target_type,
1951 &low_bound, &high_bound);
1952 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1953 return static_range_type;
1954 }
1955
1956 /* Resolves dynamic bound values of an array type TYPE to static ones.
1957 ADDR_STACK is a stack of struct property_addr_info to be used
1958 if needed during the dynamic resolution. */
1959
1960 static struct type *
1961 resolve_dynamic_array (struct type *type,
1962 struct property_addr_info *addr_stack)
1963 {
1964 CORE_ADDR value;
1965 struct type *elt_type;
1966 struct type *range_type;
1967 struct type *ary_dim;
1968 struct dynamic_prop *prop;
1969
1970 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1971
1972 type = copy_type (type);
1973
1974 elt_type = type;
1975 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1976 range_type = resolve_dynamic_range (range_type, addr_stack);
1977
1978 /* Resolve allocated/associated here before creating a new array type, which
1979 will update the length of the array accordingly. */
1980 prop = TYPE_ALLOCATED_PROP (type);
1981 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1982 {
1983 TYPE_DYN_PROP_ADDR (prop) = value;
1984 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1985 }
1986 prop = TYPE_ASSOCIATED_PROP (type);
1987 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1988 {
1989 TYPE_DYN_PROP_ADDR (prop) = value;
1990 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1991 }
1992
1993 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1994
1995 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1996 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
1997 else
1998 elt_type = TYPE_TARGET_TYPE (type);
1999
2000 return create_array_type_with_stride (type, elt_type, range_type,
2001 TYPE_FIELD_BITSIZE (type, 0));
2002 }
2003
2004 /* Resolve dynamic bounds of members of the union TYPE to static
2005 bounds. ADDR_STACK is a stack of struct property_addr_info
2006 to be used if needed during the dynamic resolution. */
2007
2008 static struct type *
2009 resolve_dynamic_union (struct type *type,
2010 struct property_addr_info *addr_stack)
2011 {
2012 struct type *resolved_type;
2013 int i;
2014 unsigned int max_len = 0;
2015
2016 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2017
2018 resolved_type = copy_type (type);
2019 TYPE_FIELDS (resolved_type)
2020 = (struct field *) TYPE_ALLOC (resolved_type,
2021 TYPE_NFIELDS (resolved_type)
2022 * sizeof (struct field));
2023 memcpy (TYPE_FIELDS (resolved_type),
2024 TYPE_FIELDS (type),
2025 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2026 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2027 {
2028 struct type *t;
2029
2030 if (field_is_static (&TYPE_FIELD (type, i)))
2031 continue;
2032
2033 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2034 addr_stack, 0);
2035 TYPE_FIELD_TYPE (resolved_type, i) = t;
2036 if (TYPE_LENGTH (t) > max_len)
2037 max_len = TYPE_LENGTH (t);
2038 }
2039
2040 TYPE_LENGTH (resolved_type) = max_len;
2041 return resolved_type;
2042 }
2043
2044 /* Resolve dynamic bounds of members of the struct TYPE to static
2045 bounds. ADDR_STACK is a stack of struct property_addr_info to
2046 be used if needed during the dynamic resolution. */
2047
2048 static struct type *
2049 resolve_dynamic_struct (struct type *type,
2050 struct property_addr_info *addr_stack)
2051 {
2052 struct type *resolved_type;
2053 int i;
2054 unsigned resolved_type_bit_length = 0;
2055
2056 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2057 gdb_assert (TYPE_NFIELDS (type) > 0);
2058
2059 resolved_type = copy_type (type);
2060 TYPE_FIELDS (resolved_type)
2061 = (struct field *) TYPE_ALLOC (resolved_type,
2062 TYPE_NFIELDS (resolved_type)
2063 * sizeof (struct field));
2064 memcpy (TYPE_FIELDS (resolved_type),
2065 TYPE_FIELDS (type),
2066 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2067 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2068 {
2069 unsigned new_bit_length;
2070 struct property_addr_info pinfo;
2071
2072 if (field_is_static (&TYPE_FIELD (type, i)))
2073 continue;
2074
2075 /* As we know this field is not a static field, the field's
2076 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2077 this is the case, but only trigger a simple error rather
2078 than an internal error if that fails. While failing
2079 that verification indicates a bug in our code, the error
2080 is not severe enough to suggest to the user he stops
2081 his debugging session because of it. */
2082 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2083 error (_("Cannot determine struct field location"
2084 " (invalid location kind)"));
2085
2086 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2087 pinfo.valaddr = addr_stack->valaddr;
2088 pinfo.addr
2089 = (addr_stack->addr
2090 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2091 pinfo.next = addr_stack;
2092
2093 TYPE_FIELD_TYPE (resolved_type, i)
2094 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2095 &pinfo, 0);
2096 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2097 == FIELD_LOC_KIND_BITPOS);
2098
2099 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2100 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2101 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2102 else
2103 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2104 * TARGET_CHAR_BIT);
2105
2106 /* Normally, we would use the position and size of the last field
2107 to determine the size of the enclosing structure. But GCC seems
2108 to be encoding the position of some fields incorrectly when
2109 the struct contains a dynamic field that is not placed last.
2110 So we compute the struct size based on the field that has
2111 the highest position + size - probably the best we can do. */
2112 if (new_bit_length > resolved_type_bit_length)
2113 resolved_type_bit_length = new_bit_length;
2114 }
2115
2116 /* The length of a type won't change for fortran, but it does for C and Ada.
2117 For fortran the size of dynamic fields might change over time but not the
2118 type length of the structure. If we adapt it, we run into problems
2119 when calculating the element offset for arrays of structs. */
2120 if (current_language->la_language != language_fortran)
2121 TYPE_LENGTH (resolved_type)
2122 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2123
2124 /* The Ada language uses this field as a cache for static fixed types: reset
2125 it as RESOLVED_TYPE must have its own static fixed type. */
2126 TYPE_TARGET_TYPE (resolved_type) = NULL;
2127
2128 return resolved_type;
2129 }
2130
2131 /* Worker for resolved_dynamic_type. */
2132
2133 static struct type *
2134 resolve_dynamic_type_internal (struct type *type,
2135 struct property_addr_info *addr_stack,
2136 int top_level)
2137 {
2138 struct type *real_type = check_typedef (type);
2139 struct type *resolved_type = type;
2140 struct dynamic_prop *prop;
2141 CORE_ADDR value;
2142
2143 if (!is_dynamic_type_internal (real_type, top_level))
2144 return type;
2145
2146 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2147 {
2148 resolved_type = copy_type (type);
2149 TYPE_TARGET_TYPE (resolved_type)
2150 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2151 top_level);
2152 }
2153 else
2154 {
2155 /* Before trying to resolve TYPE, make sure it is not a stub. */
2156 type = real_type;
2157
2158 switch (TYPE_CODE (type))
2159 {
2160 case TYPE_CODE_REF:
2161 {
2162 struct property_addr_info pinfo;
2163
2164 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2165 pinfo.valaddr = NULL;
2166 if (addr_stack->valaddr != NULL)
2167 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2168 else
2169 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2170 pinfo.next = addr_stack;
2171
2172 resolved_type = copy_type (type);
2173 TYPE_TARGET_TYPE (resolved_type)
2174 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2175 &pinfo, top_level);
2176 break;
2177 }
2178
2179 case TYPE_CODE_ARRAY:
2180 resolved_type = resolve_dynamic_array (type, addr_stack);
2181 break;
2182
2183 case TYPE_CODE_RANGE:
2184 resolved_type = resolve_dynamic_range (type, addr_stack);
2185 break;
2186
2187 case TYPE_CODE_UNION:
2188 resolved_type = resolve_dynamic_union (type, addr_stack);
2189 break;
2190
2191 case TYPE_CODE_STRUCT:
2192 resolved_type = resolve_dynamic_struct (type, addr_stack);
2193 break;
2194 }
2195 }
2196
2197 /* Resolve data_location attribute. */
2198 prop = TYPE_DATA_LOCATION (resolved_type);
2199 if (prop != NULL
2200 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2201 {
2202 TYPE_DYN_PROP_ADDR (prop) = value;
2203 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2204 }
2205
2206 return resolved_type;
2207 }
2208
2209 /* See gdbtypes.h */
2210
2211 struct type *
2212 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2213 CORE_ADDR addr)
2214 {
2215 struct property_addr_info pinfo
2216 = {check_typedef (type), valaddr, addr, NULL};
2217
2218 return resolve_dynamic_type_internal (type, &pinfo, 1);
2219 }
2220
2221 /* See gdbtypes.h */
2222
2223 struct dynamic_prop *
2224 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2225 {
2226 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2227
2228 while (node != NULL)
2229 {
2230 if (node->prop_kind == prop_kind)
2231 return &node->prop;
2232 node = node->next;
2233 }
2234 return NULL;
2235 }
2236
2237 /* See gdbtypes.h */
2238
2239 void
2240 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2241 struct type *type, struct objfile *objfile)
2242 {
2243 struct dynamic_prop_list *temp;
2244
2245 gdb_assert (TYPE_OBJFILE_OWNED (type));
2246
2247 temp = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop_list);
2248 temp->prop_kind = prop_kind;
2249 temp->prop = prop;
2250 temp->next = TYPE_DYN_PROP_LIST (type);
2251
2252 TYPE_DYN_PROP_LIST (type) = temp;
2253 }
2254
2255 /* Remove dynamic property from TYPE in case it exists. */
2256
2257 void
2258 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2259 struct type *type)
2260 {
2261 struct dynamic_prop_list *prev_node, *curr_node;
2262
2263 curr_node = TYPE_DYN_PROP_LIST (type);
2264 prev_node = NULL;
2265
2266 while (NULL != curr_node)
2267 {
2268 if (curr_node->prop_kind == prop_kind)
2269 {
2270 /* Update the linked list but don't free anything.
2271 The property was allocated on objstack and it is not known
2272 if we are on top of it. Nevertheless, everything is released
2273 when the complete objstack is freed. */
2274 if (NULL == prev_node)
2275 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2276 else
2277 prev_node->next = curr_node->next;
2278
2279 return;
2280 }
2281
2282 prev_node = curr_node;
2283 curr_node = curr_node->next;
2284 }
2285 }
2286
2287 /* Find the real type of TYPE. This function returns the real type,
2288 after removing all layers of typedefs, and completing opaque or stub
2289 types. Completion changes the TYPE argument, but stripping of
2290 typedefs does not.
2291
2292 Instance flags (e.g. const/volatile) are preserved as typedefs are
2293 stripped. If necessary a new qualified form of the underlying type
2294 is created.
2295
2296 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2297 not been computed and we're either in the middle of reading symbols, or
2298 there was no name for the typedef in the debug info.
2299
2300 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2301 QUITs in the symbol reading code can also throw.
2302 Thus this function can throw an exception.
2303
2304 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2305 the target type.
2306
2307 If this is a stubbed struct (i.e. declared as struct foo *), see if
2308 we can find a full definition in some other file. If so, copy this
2309 definition, so we can use it in future. There used to be a comment
2310 (but not any code) that if we don't find a full definition, we'd
2311 set a flag so we don't spend time in the future checking the same
2312 type. That would be a mistake, though--we might load in more
2313 symbols which contain a full definition for the type. */
2314
2315 struct type *
2316 check_typedef (struct type *type)
2317 {
2318 struct type *orig_type = type;
2319 /* While we're removing typedefs, we don't want to lose qualifiers.
2320 E.g., const/volatile. */
2321 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2322
2323 gdb_assert (type);
2324
2325 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2326 {
2327 if (!TYPE_TARGET_TYPE (type))
2328 {
2329 const char *name;
2330 struct symbol *sym;
2331
2332 /* It is dangerous to call lookup_symbol if we are currently
2333 reading a symtab. Infinite recursion is one danger. */
2334 if (currently_reading_symtab)
2335 return make_qualified_type (type, instance_flags, NULL);
2336
2337 name = type_name_no_tag (type);
2338 /* FIXME: shouldn't we separately check the TYPE_NAME and
2339 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2340 VAR_DOMAIN as appropriate? (this code was written before
2341 TYPE_NAME and TYPE_TAG_NAME were separate). */
2342 if (name == NULL)
2343 {
2344 stub_noname_complaint ();
2345 return make_qualified_type (type, instance_flags, NULL);
2346 }
2347 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2348 if (sym)
2349 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2350 else /* TYPE_CODE_UNDEF */
2351 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2352 }
2353 type = TYPE_TARGET_TYPE (type);
2354
2355 /* Preserve the instance flags as we traverse down the typedef chain.
2356
2357 Handling address spaces/classes is nasty, what do we do if there's a
2358 conflict?
2359 E.g., what if an outer typedef marks the type as class_1 and an inner
2360 typedef marks the type as class_2?
2361 This is the wrong place to do such error checking. We leave it to
2362 the code that created the typedef in the first place to flag the
2363 error. We just pick the outer address space (akin to letting the
2364 outer cast in a chain of casting win), instead of assuming
2365 "it can't happen". */
2366 {
2367 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2368 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2369 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2370 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2371
2372 /* Treat code vs data spaces and address classes separately. */
2373 if ((instance_flags & ALL_SPACES) != 0)
2374 new_instance_flags &= ~ALL_SPACES;
2375 if ((instance_flags & ALL_CLASSES) != 0)
2376 new_instance_flags &= ~ALL_CLASSES;
2377
2378 instance_flags |= new_instance_flags;
2379 }
2380 }
2381
2382 /* If this is a struct/class/union with no fields, then check
2383 whether a full definition exists somewhere else. This is for
2384 systems where a type definition with no fields is issued for such
2385 types, instead of identifying them as stub types in the first
2386 place. */
2387
2388 if (TYPE_IS_OPAQUE (type)
2389 && opaque_type_resolution
2390 && !currently_reading_symtab)
2391 {
2392 const char *name = type_name_no_tag (type);
2393 struct type *newtype;
2394
2395 if (name == NULL)
2396 {
2397 stub_noname_complaint ();
2398 return make_qualified_type (type, instance_flags, NULL);
2399 }
2400 newtype = lookup_transparent_type (name);
2401
2402 if (newtype)
2403 {
2404 /* If the resolved type and the stub are in the same
2405 objfile, then replace the stub type with the real deal.
2406 But if they're in separate objfiles, leave the stub
2407 alone; we'll just look up the transparent type every time
2408 we call check_typedef. We can't create pointers between
2409 types allocated to different objfiles, since they may
2410 have different lifetimes. Trying to copy NEWTYPE over to
2411 TYPE's objfile is pointless, too, since you'll have to
2412 move over any other types NEWTYPE refers to, which could
2413 be an unbounded amount of stuff. */
2414 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2415 type = make_qualified_type (newtype,
2416 TYPE_INSTANCE_FLAGS (type),
2417 type);
2418 else
2419 type = newtype;
2420 }
2421 }
2422 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2423 types. */
2424 else if (TYPE_STUB (type) && !currently_reading_symtab)
2425 {
2426 const char *name = type_name_no_tag (type);
2427 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2428 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2429 as appropriate? (this code was written before TYPE_NAME and
2430 TYPE_TAG_NAME were separate). */
2431 struct symbol *sym;
2432
2433 if (name == NULL)
2434 {
2435 stub_noname_complaint ();
2436 return make_qualified_type (type, instance_flags, NULL);
2437 }
2438 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2439 if (sym)
2440 {
2441 /* Same as above for opaque types, we can replace the stub
2442 with the complete type only if they are in the same
2443 objfile. */
2444 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2445 type = make_qualified_type (SYMBOL_TYPE (sym),
2446 TYPE_INSTANCE_FLAGS (type),
2447 type);
2448 else
2449 type = SYMBOL_TYPE (sym);
2450 }
2451 }
2452
2453 if (TYPE_TARGET_STUB (type))
2454 {
2455 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2456
2457 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2458 {
2459 /* Nothing we can do. */
2460 }
2461 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2462 {
2463 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2464 TYPE_TARGET_STUB (type) = 0;
2465 }
2466 }
2467
2468 type = make_qualified_type (type, instance_flags, NULL);
2469
2470 /* Cache TYPE_LENGTH for future use. */
2471 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2472
2473 return type;
2474 }
2475
2476 /* Parse a type expression in the string [P..P+LENGTH). If an error
2477 occurs, silently return a void type. */
2478
2479 static struct type *
2480 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2481 {
2482 struct ui_file *saved_gdb_stderr;
2483 struct type *type = NULL; /* Initialize to keep gcc happy. */
2484
2485 /* Suppress error messages. */
2486 saved_gdb_stderr = gdb_stderr;
2487 gdb_stderr = &null_stream;
2488
2489 /* Call parse_and_eval_type() without fear of longjmp()s. */
2490 TRY
2491 {
2492 type = parse_and_eval_type (p, length);
2493 }
2494 CATCH (except, RETURN_MASK_ERROR)
2495 {
2496 type = builtin_type (gdbarch)->builtin_void;
2497 }
2498 END_CATCH
2499
2500 /* Stop suppressing error messages. */
2501 gdb_stderr = saved_gdb_stderr;
2502
2503 return type;
2504 }
2505
2506 /* Ugly hack to convert method stubs into method types.
2507
2508 He ain't kiddin'. This demangles the name of the method into a
2509 string including argument types, parses out each argument type,
2510 generates a string casting a zero to that type, evaluates the
2511 string, and stuffs the resulting type into an argtype vector!!!
2512 Then it knows the type of the whole function (including argument
2513 types for overloading), which info used to be in the stab's but was
2514 removed to hack back the space required for them. */
2515
2516 static void
2517 check_stub_method (struct type *type, int method_id, int signature_id)
2518 {
2519 struct gdbarch *gdbarch = get_type_arch (type);
2520 struct fn_field *f;
2521 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2522 char *demangled_name = gdb_demangle (mangled_name,
2523 DMGL_PARAMS | DMGL_ANSI);
2524 char *argtypetext, *p;
2525 int depth = 0, argcount = 1;
2526 struct field *argtypes;
2527 struct type *mtype;
2528
2529 /* Make sure we got back a function string that we can use. */
2530 if (demangled_name)
2531 p = strchr (demangled_name, '(');
2532 else
2533 p = NULL;
2534
2535 if (demangled_name == NULL || p == NULL)
2536 error (_("Internal: Cannot demangle mangled name `%s'."),
2537 mangled_name);
2538
2539 /* Now, read in the parameters that define this type. */
2540 p += 1;
2541 argtypetext = p;
2542 while (*p)
2543 {
2544 if (*p == '(' || *p == '<')
2545 {
2546 depth += 1;
2547 }
2548 else if (*p == ')' || *p == '>')
2549 {
2550 depth -= 1;
2551 }
2552 else if (*p == ',' && depth == 0)
2553 {
2554 argcount += 1;
2555 }
2556
2557 p += 1;
2558 }
2559
2560 /* If we read one argument and it was ``void'', don't count it. */
2561 if (startswith (argtypetext, "(void)"))
2562 argcount -= 1;
2563
2564 /* We need one extra slot, for the THIS pointer. */
2565
2566 argtypes = (struct field *)
2567 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2568 p = argtypetext;
2569
2570 /* Add THIS pointer for non-static methods. */
2571 f = TYPE_FN_FIELDLIST1 (type, method_id);
2572 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2573 argcount = 0;
2574 else
2575 {
2576 argtypes[0].type = lookup_pointer_type (type);
2577 argcount = 1;
2578 }
2579
2580 if (*p != ')') /* () means no args, skip while. */
2581 {
2582 depth = 0;
2583 while (*p)
2584 {
2585 if (depth <= 0 && (*p == ',' || *p == ')'))
2586 {
2587 /* Avoid parsing of ellipsis, they will be handled below.
2588 Also avoid ``void'' as above. */
2589 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2590 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2591 {
2592 argtypes[argcount].type =
2593 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2594 argcount += 1;
2595 }
2596 argtypetext = p + 1;
2597 }
2598
2599 if (*p == '(' || *p == '<')
2600 {
2601 depth += 1;
2602 }
2603 else if (*p == ')' || *p == '>')
2604 {
2605 depth -= 1;
2606 }
2607
2608 p += 1;
2609 }
2610 }
2611
2612 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2613
2614 /* Now update the old "stub" type into a real type. */
2615 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2616 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2617 We want a method (TYPE_CODE_METHOD). */
2618 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2619 argtypes, argcount, p[-2] == '.');
2620 TYPE_STUB (mtype) = 0;
2621 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2622
2623 xfree (demangled_name);
2624 }
2625
2626 /* This is the external interface to check_stub_method, above. This
2627 function unstubs all of the signatures for TYPE's METHOD_ID method
2628 name. After calling this function TYPE_FN_FIELD_STUB will be
2629 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2630 correct.
2631
2632 This function unfortunately can not die until stabs do. */
2633
2634 void
2635 check_stub_method_group (struct type *type, int method_id)
2636 {
2637 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2638 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2639 int j, found_stub = 0;
2640
2641 for (j = 0; j < len; j++)
2642 if (TYPE_FN_FIELD_STUB (f, j))
2643 {
2644 found_stub = 1;
2645 check_stub_method (type, method_id, j);
2646 }
2647
2648 /* GNU v3 methods with incorrect names were corrected when we read
2649 in type information, because it was cheaper to do it then. The
2650 only GNU v2 methods with incorrect method names are operators and
2651 destructors; destructors were also corrected when we read in type
2652 information.
2653
2654 Therefore the only thing we need to handle here are v2 operator
2655 names. */
2656 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
2657 {
2658 int ret;
2659 char dem_opname[256];
2660
2661 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2662 method_id),
2663 dem_opname, DMGL_ANSI);
2664 if (!ret)
2665 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2666 method_id),
2667 dem_opname, 0);
2668 if (ret)
2669 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2670 }
2671 }
2672
2673 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2674 const struct cplus_struct_type cplus_struct_default = { };
2675
2676 void
2677 allocate_cplus_struct_type (struct type *type)
2678 {
2679 if (HAVE_CPLUS_STRUCT (type))
2680 /* Structure was already allocated. Nothing more to do. */
2681 return;
2682
2683 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2684 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2685 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2686 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2687 set_type_vptr_fieldno (type, -1);
2688 }
2689
2690 const struct gnat_aux_type gnat_aux_default =
2691 { NULL };
2692
2693 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2694 and allocate the associated gnat-specific data. The gnat-specific
2695 data is also initialized to gnat_aux_default. */
2696
2697 void
2698 allocate_gnat_aux_type (struct type *type)
2699 {
2700 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2701 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2702 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2703 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2704 }
2705
2706 /* Helper function to initialize a newly allocated type. Set type code
2707 to CODE and initialize the type-specific fields accordingly. */
2708
2709 static void
2710 set_type_code (struct type *type, enum type_code code)
2711 {
2712 TYPE_CODE (type) = code;
2713
2714 switch (code)
2715 {
2716 case TYPE_CODE_STRUCT:
2717 case TYPE_CODE_UNION:
2718 case TYPE_CODE_NAMESPACE:
2719 INIT_CPLUS_SPECIFIC (type);
2720 break;
2721 case TYPE_CODE_FLT:
2722 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2723 break;
2724 case TYPE_CODE_FUNC:
2725 INIT_FUNC_SPECIFIC (type);
2726 break;
2727 }
2728 }
2729
2730 /* Helper function to verify floating-point format and size.
2731 BIT is the type size in bits; if BIT equals -1, the size is
2732 determined by the floatformat. Returns size to be used. */
2733
2734 static int
2735 verify_floatformat (int bit, const struct floatformat **floatformats)
2736 {
2737 gdb_assert (floatformats != NULL);
2738 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
2739
2740 if (bit == -1)
2741 bit = floatformats[0]->totalsize;
2742 gdb_assert (bit >= 0);
2743
2744 size_t len = bit / TARGET_CHAR_BIT;
2745 gdb_assert (len >= floatformat_totalsize_bytes (floatformats[0]));
2746 gdb_assert (len >= floatformat_totalsize_bytes (floatformats[1]));
2747
2748 return bit;
2749 }
2750
2751 /* Helper function to initialize the standard scalar types.
2752
2753 If NAME is non-NULL, then it is used to initialize the type name.
2754 Note that NAME is not copied; it is required to have a lifetime at
2755 least as long as OBJFILE. */
2756
2757 struct type *
2758 init_type (struct objfile *objfile, enum type_code code, int length,
2759 const char *name)
2760 {
2761 struct type *type;
2762
2763 type = alloc_type (objfile);
2764 set_type_code (type, code);
2765 TYPE_LENGTH (type) = length;
2766 TYPE_NAME (type) = name;
2767
2768 return type;
2769 }
2770
2771 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2772 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2773 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2774
2775 struct type *
2776 init_integer_type (struct objfile *objfile,
2777 int bit, int unsigned_p, const char *name)
2778 {
2779 struct type *t;
2780
2781 t = init_type (objfile, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
2782 if (unsigned_p)
2783 TYPE_UNSIGNED (t) = 1;
2784
2785 return t;
2786 }
2787
2788 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2789 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2790 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2791
2792 struct type *
2793 init_character_type (struct objfile *objfile,
2794 int bit, int unsigned_p, const char *name)
2795 {
2796 struct type *t;
2797
2798 t = init_type (objfile, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
2799 if (unsigned_p)
2800 TYPE_UNSIGNED (t) = 1;
2801
2802 return t;
2803 }
2804
2805 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2806 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2807 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2808
2809 struct type *
2810 init_boolean_type (struct objfile *objfile,
2811 int bit, int unsigned_p, const char *name)
2812 {
2813 struct type *t;
2814
2815 t = init_type (objfile, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
2816 if (unsigned_p)
2817 TYPE_UNSIGNED (t) = 1;
2818
2819 return t;
2820 }
2821
2822 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2823 BIT is the type size in bits; if BIT equals -1, the size is
2824 determined by the floatformat. NAME is the type name. Set the
2825 TYPE_FLOATFORMAT from FLOATFORMATS. */
2826
2827 struct type *
2828 init_float_type (struct objfile *objfile,
2829 int bit, const char *name,
2830 const struct floatformat **floatformats)
2831 {
2832 struct type *t;
2833
2834 bit = verify_floatformat (bit, floatformats);
2835 t = init_type (objfile, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
2836 TYPE_FLOATFORMAT (t) = floatformats;
2837
2838 return t;
2839 }
2840
2841 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2842 BIT is the type size in bits. NAME is the type name. */
2843
2844 struct type *
2845 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2846 {
2847 struct type *t;
2848
2849 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit / TARGET_CHAR_BIT, name);
2850 return t;
2851 }
2852
2853 /* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2854 NAME is the type name. TARGET_TYPE is the component float type. */
2855
2856 struct type *
2857 init_complex_type (struct objfile *objfile,
2858 const char *name, struct type *target_type)
2859 {
2860 struct type *t;
2861
2862 t = init_type (objfile, TYPE_CODE_COMPLEX,
2863 2 * TYPE_LENGTH (target_type), name);
2864 TYPE_TARGET_TYPE (t) = target_type;
2865 return t;
2866 }
2867
2868 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2869 BIT is the pointer type size in bits. NAME is the type name.
2870 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2871 TYPE_UNSIGNED flag. */
2872
2873 struct type *
2874 init_pointer_type (struct objfile *objfile,
2875 int bit, const char *name, struct type *target_type)
2876 {
2877 struct type *t;
2878
2879 t = init_type (objfile, TYPE_CODE_PTR, bit / TARGET_CHAR_BIT, name);
2880 TYPE_TARGET_TYPE (t) = target_type;
2881 TYPE_UNSIGNED (t) = 1;
2882 return t;
2883 }
2884
2885 \f
2886 /* Queries on types. */
2887
2888 int
2889 can_dereference (struct type *t)
2890 {
2891 /* FIXME: Should we return true for references as well as
2892 pointers? */
2893 t = check_typedef (t);
2894 return
2895 (t != NULL
2896 && TYPE_CODE (t) == TYPE_CODE_PTR
2897 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2898 }
2899
2900 int
2901 is_integral_type (struct type *t)
2902 {
2903 t = check_typedef (t);
2904 return
2905 ((t != NULL)
2906 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2907 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2908 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2909 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2910 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2911 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2912 }
2913
2914 /* Return true if TYPE is scalar. */
2915
2916 int
2917 is_scalar_type (struct type *type)
2918 {
2919 type = check_typedef (type);
2920
2921 switch (TYPE_CODE (type))
2922 {
2923 case TYPE_CODE_ARRAY:
2924 case TYPE_CODE_STRUCT:
2925 case TYPE_CODE_UNION:
2926 case TYPE_CODE_SET:
2927 case TYPE_CODE_STRING:
2928 return 0;
2929 default:
2930 return 1;
2931 }
2932 }
2933
2934 /* Return true if T is scalar, or a composite type which in practice has
2935 the memory layout of a scalar type. E.g., an array or struct with only
2936 one scalar element inside it, or a union with only scalar elements. */
2937
2938 int
2939 is_scalar_type_recursive (struct type *t)
2940 {
2941 t = check_typedef (t);
2942
2943 if (is_scalar_type (t))
2944 return 1;
2945 /* Are we dealing with an array or string of known dimensions? */
2946 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2947 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2948 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2949 {
2950 LONGEST low_bound, high_bound;
2951 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2952
2953 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2954
2955 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2956 }
2957 /* Are we dealing with a struct with one element? */
2958 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2959 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2960 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2961 {
2962 int i, n = TYPE_NFIELDS (t);
2963
2964 /* If all elements of the union are scalar, then the union is scalar. */
2965 for (i = 0; i < n; i++)
2966 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2967 return 0;
2968
2969 return 1;
2970 }
2971
2972 return 0;
2973 }
2974
2975 /* Return true is T is a class or a union. False otherwise. */
2976
2977 int
2978 class_or_union_p (const struct type *t)
2979 {
2980 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2981 || TYPE_CODE (t) == TYPE_CODE_UNION);
2982 }
2983
2984 /* A helper function which returns true if types A and B represent the
2985 "same" class type. This is true if the types have the same main
2986 type, or the same name. */
2987
2988 int
2989 class_types_same_p (const struct type *a, const struct type *b)
2990 {
2991 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2992 || (TYPE_NAME (a) && TYPE_NAME (b)
2993 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2994 }
2995
2996 /* If BASE is an ancestor of DCLASS return the distance between them.
2997 otherwise return -1;
2998 eg:
2999
3000 class A {};
3001 class B: public A {};
3002 class C: public B {};
3003 class D: C {};
3004
3005 distance_to_ancestor (A, A, 0) = 0
3006 distance_to_ancestor (A, B, 0) = 1
3007 distance_to_ancestor (A, C, 0) = 2
3008 distance_to_ancestor (A, D, 0) = 3
3009
3010 If PUBLIC is 1 then only public ancestors are considered,
3011 and the function returns the distance only if BASE is a public ancestor
3012 of DCLASS.
3013 Eg:
3014
3015 distance_to_ancestor (A, D, 1) = -1. */
3016
3017 static int
3018 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3019 {
3020 int i;
3021 int d;
3022
3023 base = check_typedef (base);
3024 dclass = check_typedef (dclass);
3025
3026 if (class_types_same_p (base, dclass))
3027 return 0;
3028
3029 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3030 {
3031 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3032 continue;
3033
3034 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3035 if (d >= 0)
3036 return 1 + d;
3037 }
3038
3039 return -1;
3040 }
3041
3042 /* Check whether BASE is an ancestor or base class or DCLASS
3043 Return 1 if so, and 0 if not.
3044 Note: If BASE and DCLASS are of the same type, this function
3045 will return 1. So for some class A, is_ancestor (A, A) will
3046 return 1. */
3047
3048 int
3049 is_ancestor (struct type *base, struct type *dclass)
3050 {
3051 return distance_to_ancestor (base, dclass, 0) >= 0;
3052 }
3053
3054 /* Like is_ancestor, but only returns true when BASE is a public
3055 ancestor of DCLASS. */
3056
3057 int
3058 is_public_ancestor (struct type *base, struct type *dclass)
3059 {
3060 return distance_to_ancestor (base, dclass, 1) >= 0;
3061 }
3062
3063 /* A helper function for is_unique_ancestor. */
3064
3065 static int
3066 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3067 int *offset,
3068 const gdb_byte *valaddr, int embedded_offset,
3069 CORE_ADDR address, struct value *val)
3070 {
3071 int i, count = 0;
3072
3073 base = check_typedef (base);
3074 dclass = check_typedef (dclass);
3075
3076 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3077 {
3078 struct type *iter;
3079 int this_offset;
3080
3081 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3082
3083 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3084 address, val);
3085
3086 if (class_types_same_p (base, iter))
3087 {
3088 /* If this is the first subclass, set *OFFSET and set count
3089 to 1. Otherwise, if this is at the same offset as
3090 previous instances, do nothing. Otherwise, increment
3091 count. */
3092 if (*offset == -1)
3093 {
3094 *offset = this_offset;
3095 count = 1;
3096 }
3097 else if (this_offset == *offset)
3098 {
3099 /* Nothing. */
3100 }
3101 else
3102 ++count;
3103 }
3104 else
3105 count += is_unique_ancestor_worker (base, iter, offset,
3106 valaddr,
3107 embedded_offset + this_offset,
3108 address, val);
3109 }
3110
3111 return count;
3112 }
3113
3114 /* Like is_ancestor, but only returns true if BASE is a unique base
3115 class of the type of VAL. */
3116
3117 int
3118 is_unique_ancestor (struct type *base, struct value *val)
3119 {
3120 int offset = -1;
3121
3122 return is_unique_ancestor_worker (base, value_type (val), &offset,
3123 value_contents_for_printing (val),
3124 value_embedded_offset (val),
3125 value_address (val), val) == 1;
3126 }
3127
3128 \f
3129 /* Overload resolution. */
3130
3131 /* Return the sum of the rank of A with the rank of B. */
3132
3133 struct rank
3134 sum_ranks (struct rank a, struct rank b)
3135 {
3136 struct rank c;
3137 c.rank = a.rank + b.rank;
3138 c.subrank = a.subrank + b.subrank;
3139 return c;
3140 }
3141
3142 /* Compare rank A and B and return:
3143 0 if a = b
3144 1 if a is better than b
3145 -1 if b is better than a. */
3146
3147 int
3148 compare_ranks (struct rank a, struct rank b)
3149 {
3150 if (a.rank == b.rank)
3151 {
3152 if (a.subrank == b.subrank)
3153 return 0;
3154 if (a.subrank < b.subrank)
3155 return 1;
3156 if (a.subrank > b.subrank)
3157 return -1;
3158 }
3159
3160 if (a.rank < b.rank)
3161 return 1;
3162
3163 /* a.rank > b.rank */
3164 return -1;
3165 }
3166
3167 /* Functions for overload resolution begin here. */
3168
3169 /* Compare two badness vectors A and B and return the result.
3170 0 => A and B are identical
3171 1 => A and B are incomparable
3172 2 => A is better than B
3173 3 => A is worse than B */
3174
3175 int
3176 compare_badness (struct badness_vector *a, struct badness_vector *b)
3177 {
3178 int i;
3179 int tmp;
3180 short found_pos = 0; /* any positives in c? */
3181 short found_neg = 0; /* any negatives in c? */
3182
3183 /* differing lengths => incomparable */
3184 if (a->length != b->length)
3185 return 1;
3186
3187 /* Subtract b from a */
3188 for (i = 0; i < a->length; i++)
3189 {
3190 tmp = compare_ranks (b->rank[i], a->rank[i]);
3191 if (tmp > 0)
3192 found_pos = 1;
3193 else if (tmp < 0)
3194 found_neg = 1;
3195 }
3196
3197 if (found_pos)
3198 {
3199 if (found_neg)
3200 return 1; /* incomparable */
3201 else
3202 return 3; /* A > B */
3203 }
3204 else
3205 /* no positives */
3206 {
3207 if (found_neg)
3208 return 2; /* A < B */
3209 else
3210 return 0; /* A == B */
3211 }
3212 }
3213
3214 /* Rank a function by comparing its parameter types (PARMS, length
3215 NPARMS), to the types of an argument list (ARGS, length NARGS).
3216 Return a pointer to a badness vector. This has NARGS + 1
3217 entries. */
3218
3219 struct badness_vector *
3220 rank_function (struct type **parms, int nparms,
3221 struct value **args, int nargs)
3222 {
3223 int i;
3224 struct badness_vector *bv = XNEW (struct badness_vector);
3225 int min_len = nparms < nargs ? nparms : nargs;
3226
3227 bv->length = nargs + 1; /* add 1 for the length-match rank. */
3228 bv->rank = XNEWVEC (struct rank, nargs + 1);
3229
3230 /* First compare the lengths of the supplied lists.
3231 If there is a mismatch, set it to a high value. */
3232
3233 /* pai/1997-06-03 FIXME: when we have debug info about default
3234 arguments and ellipsis parameter lists, we should consider those
3235 and rank the length-match more finely. */
3236
3237 LENGTH_MATCH (bv) = (nargs != nparms)
3238 ? LENGTH_MISMATCH_BADNESS
3239 : EXACT_MATCH_BADNESS;
3240
3241 /* Now rank all the parameters of the candidate function. */
3242 for (i = 1; i <= min_len; i++)
3243 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
3244 args[i - 1]);
3245
3246 /* If more arguments than parameters, add dummy entries. */
3247 for (i = min_len + 1; i <= nargs; i++)
3248 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
3249
3250 return bv;
3251 }
3252
3253 /* Compare the names of two integer types, assuming that any sign
3254 qualifiers have been checked already. We do it this way because
3255 there may be an "int" in the name of one of the types. */
3256
3257 static int
3258 integer_types_same_name_p (const char *first, const char *second)
3259 {
3260 int first_p, second_p;
3261
3262 /* If both are shorts, return 1; if neither is a short, keep
3263 checking. */
3264 first_p = (strstr (first, "short") != NULL);
3265 second_p = (strstr (second, "short") != NULL);
3266 if (first_p && second_p)
3267 return 1;
3268 if (first_p || second_p)
3269 return 0;
3270
3271 /* Likewise for long. */
3272 first_p = (strstr (first, "long") != NULL);
3273 second_p = (strstr (second, "long") != NULL);
3274 if (first_p && second_p)
3275 return 1;
3276 if (first_p || second_p)
3277 return 0;
3278
3279 /* Likewise for char. */
3280 first_p = (strstr (first, "char") != NULL);
3281 second_p = (strstr (second, "char") != NULL);
3282 if (first_p && second_p)
3283 return 1;
3284 if (first_p || second_p)
3285 return 0;
3286
3287 /* They must both be ints. */
3288 return 1;
3289 }
3290
3291 /* Compares type A to type B returns 1 if the represent the same type
3292 0 otherwise. */
3293
3294 int
3295 types_equal (struct type *a, struct type *b)
3296 {
3297 /* Identical type pointers. */
3298 /* However, this still doesn't catch all cases of same type for b
3299 and a. The reason is that builtin types are different from
3300 the same ones constructed from the object. */
3301 if (a == b)
3302 return 1;
3303
3304 /* Resolve typedefs */
3305 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3306 a = check_typedef (a);
3307 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3308 b = check_typedef (b);
3309
3310 /* If after resolving typedefs a and b are not of the same type
3311 code then they are not equal. */
3312 if (TYPE_CODE (a) != TYPE_CODE (b))
3313 return 0;
3314
3315 /* If a and b are both pointers types or both reference types then
3316 they are equal of the same type iff the objects they refer to are
3317 of the same type. */
3318 if (TYPE_CODE (a) == TYPE_CODE_PTR
3319 || TYPE_CODE (a) == TYPE_CODE_REF)
3320 return types_equal (TYPE_TARGET_TYPE (a),
3321 TYPE_TARGET_TYPE (b));
3322
3323 /* Well, damnit, if the names are exactly the same, I'll say they
3324 are exactly the same. This happens when we generate method
3325 stubs. The types won't point to the same address, but they
3326 really are the same. */
3327
3328 if (TYPE_NAME (a) && TYPE_NAME (b)
3329 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3330 return 1;
3331
3332 /* Check if identical after resolving typedefs. */
3333 if (a == b)
3334 return 1;
3335
3336 /* Two function types are equal if their argument and return types
3337 are equal. */
3338 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3339 {
3340 int i;
3341
3342 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3343 return 0;
3344
3345 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3346 return 0;
3347
3348 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3349 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3350 return 0;
3351
3352 return 1;
3353 }
3354
3355 return 0;
3356 }
3357 \f
3358 /* Deep comparison of types. */
3359
3360 /* An entry in the type-equality bcache. */
3361
3362 typedef struct type_equality_entry
3363 {
3364 struct type *type1, *type2;
3365 } type_equality_entry_d;
3366
3367 DEF_VEC_O (type_equality_entry_d);
3368
3369 /* A helper function to compare two strings. Returns 1 if they are
3370 the same, 0 otherwise. Handles NULLs properly. */
3371
3372 static int
3373 compare_maybe_null_strings (const char *s, const char *t)
3374 {
3375 if (s == NULL && t != NULL)
3376 return 0;
3377 else if (s != NULL && t == NULL)
3378 return 0;
3379 else if (s == NULL && t== NULL)
3380 return 1;
3381 return strcmp (s, t) == 0;
3382 }
3383
3384 /* A helper function for check_types_worklist that checks two types for
3385 "deep" equality. Returns non-zero if the types are considered the
3386 same, zero otherwise. */
3387
3388 static int
3389 check_types_equal (struct type *type1, struct type *type2,
3390 VEC (type_equality_entry_d) **worklist)
3391 {
3392 type1 = check_typedef (type1);
3393 type2 = check_typedef (type2);
3394
3395 if (type1 == type2)
3396 return 1;
3397
3398 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3399 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3400 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3401 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3402 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3403 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3404 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3405 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3406 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3407 return 0;
3408
3409 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3410 TYPE_TAG_NAME (type2)))
3411 return 0;
3412 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3413 return 0;
3414
3415 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3416 {
3417 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3418 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3419 return 0;
3420 }
3421 else
3422 {
3423 int i;
3424
3425 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3426 {
3427 const struct field *field1 = &TYPE_FIELD (type1, i);
3428 const struct field *field2 = &TYPE_FIELD (type2, i);
3429 struct type_equality_entry entry;
3430
3431 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3432 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3433 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3434 return 0;
3435 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3436 FIELD_NAME (*field2)))
3437 return 0;
3438 switch (FIELD_LOC_KIND (*field1))
3439 {
3440 case FIELD_LOC_KIND_BITPOS:
3441 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3442 return 0;
3443 break;
3444 case FIELD_LOC_KIND_ENUMVAL:
3445 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3446 return 0;
3447 break;
3448 case FIELD_LOC_KIND_PHYSADDR:
3449 if (FIELD_STATIC_PHYSADDR (*field1)
3450 != FIELD_STATIC_PHYSADDR (*field2))
3451 return 0;
3452 break;
3453 case FIELD_LOC_KIND_PHYSNAME:
3454 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3455 FIELD_STATIC_PHYSNAME (*field2)))
3456 return 0;
3457 break;
3458 case FIELD_LOC_KIND_DWARF_BLOCK:
3459 {
3460 struct dwarf2_locexpr_baton *block1, *block2;
3461
3462 block1 = FIELD_DWARF_BLOCK (*field1);
3463 block2 = FIELD_DWARF_BLOCK (*field2);
3464 if (block1->per_cu != block2->per_cu
3465 || block1->size != block2->size
3466 || memcmp (block1->data, block2->data, block1->size) != 0)
3467 return 0;
3468 }
3469 break;
3470 default:
3471 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3472 "%d by check_types_equal"),
3473 FIELD_LOC_KIND (*field1));
3474 }
3475
3476 entry.type1 = FIELD_TYPE (*field1);
3477 entry.type2 = FIELD_TYPE (*field2);
3478 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3479 }
3480 }
3481
3482 if (TYPE_TARGET_TYPE (type1) != NULL)
3483 {
3484 struct type_equality_entry entry;
3485
3486 if (TYPE_TARGET_TYPE (type2) == NULL)
3487 return 0;
3488
3489 entry.type1 = TYPE_TARGET_TYPE (type1);
3490 entry.type2 = TYPE_TARGET_TYPE (type2);
3491 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3492 }
3493 else if (TYPE_TARGET_TYPE (type2) != NULL)
3494 return 0;
3495
3496 return 1;
3497 }
3498
3499 /* Check types on a worklist for equality. Returns zero if any pair
3500 is not equal, non-zero if they are all considered equal. */
3501
3502 static int
3503 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3504 struct bcache *cache)
3505 {
3506 while (!VEC_empty (type_equality_entry_d, *worklist))
3507 {
3508 struct type_equality_entry entry;
3509 int added;
3510
3511 entry = *VEC_last (type_equality_entry_d, *worklist);
3512 VEC_pop (type_equality_entry_d, *worklist);
3513
3514 /* If the type pair has already been visited, we know it is
3515 ok. */
3516 bcache_full (&entry, sizeof (entry), cache, &added);
3517 if (!added)
3518 continue;
3519
3520 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3521 return 0;
3522 }
3523
3524 return 1;
3525 }
3526
3527 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3528 "deep comparison". Otherwise return zero. */
3529
3530 int
3531 types_deeply_equal (struct type *type1, struct type *type2)
3532 {
3533 struct gdb_exception except = exception_none;
3534 int result = 0;
3535 struct bcache *cache;
3536 VEC (type_equality_entry_d) *worklist = NULL;
3537 struct type_equality_entry entry;
3538
3539 gdb_assert (type1 != NULL && type2 != NULL);
3540
3541 /* Early exit for the simple case. */
3542 if (type1 == type2)
3543 return 1;
3544
3545 cache = bcache_xmalloc (NULL, NULL);
3546
3547 entry.type1 = type1;
3548 entry.type2 = type2;
3549 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3550
3551 /* check_types_worklist calls several nested helper functions, some
3552 of which can raise a GDB exception, so we just check and rethrow
3553 here. If there is a GDB exception, a comparison is not capable
3554 (or trusted), so exit. */
3555 TRY
3556 {
3557 result = check_types_worklist (&worklist, cache);
3558 }
3559 CATCH (ex, RETURN_MASK_ALL)
3560 {
3561 except = ex;
3562 }
3563 END_CATCH
3564
3565 bcache_xfree (cache);
3566 VEC_free (type_equality_entry_d, worklist);
3567
3568 /* Rethrow if there was a problem. */
3569 if (except.reason < 0)
3570 throw_exception (except);
3571
3572 return result;
3573 }
3574
3575 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3576 Otherwise return one. */
3577
3578 int
3579 type_not_allocated (const struct type *type)
3580 {
3581 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3582
3583 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3584 && !TYPE_DYN_PROP_ADDR (prop));
3585 }
3586
3587 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3588 Otherwise return one. */
3589
3590 int
3591 type_not_associated (const struct type *type)
3592 {
3593 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3594
3595 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3596 && !TYPE_DYN_PROP_ADDR (prop));
3597 }
3598 \f
3599 /* Compare one type (PARM) for compatibility with another (ARG).
3600 * PARM is intended to be the parameter type of a function; and
3601 * ARG is the supplied argument's type. This function tests if
3602 * the latter can be converted to the former.
3603 * VALUE is the argument's value or NULL if none (or called recursively)
3604 *
3605 * Return 0 if they are identical types;
3606 * Otherwise, return an integer which corresponds to how compatible
3607 * PARM is to ARG. The higher the return value, the worse the match.
3608 * Generally the "bad" conversions are all uniformly assigned a 100. */
3609
3610 struct rank
3611 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3612 {
3613 struct rank rank = {0,0};
3614
3615 /* Resolve typedefs */
3616 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3617 parm = check_typedef (parm);
3618 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3619 arg = check_typedef (arg);
3620
3621 if (TYPE_IS_REFERENCE (parm) && value != NULL)
3622 {
3623 if (VALUE_LVAL (value) == not_lval)
3624 {
3625 /* Rvalues should preferably bind to rvalue references or const
3626 lvalue references. */
3627 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3628 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3629 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
3630 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
3631 else
3632 return INCOMPATIBLE_TYPE_BADNESS;
3633 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3634 }
3635 else
3636 {
3637 /* Lvalues should prefer lvalue overloads. */
3638 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3639 {
3640 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3641 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3642 }
3643 }
3644 }
3645
3646 if (types_equal (parm, arg))
3647 {
3648 struct type *t1 = parm;
3649 struct type *t2 = arg;
3650
3651 /* For pointers and references, compare target type. */
3652 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
3653 {
3654 t1 = TYPE_TARGET_TYPE (parm);
3655 t2 = TYPE_TARGET_TYPE (arg);
3656 }
3657
3658 /* Make sure they are CV equal, too. */
3659 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3660 rank.subrank |= CV_CONVERSION_CONST;
3661 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3662 rank.subrank |= CV_CONVERSION_VOLATILE;
3663 if (rank.subrank != 0)
3664 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3665 return EXACT_MATCH_BADNESS;
3666 }
3667
3668 /* See through references, since we can almost make non-references
3669 references. */
3670
3671 if (TYPE_IS_REFERENCE (arg))
3672 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3673 REFERENCE_CONVERSION_BADNESS));
3674 if (TYPE_IS_REFERENCE (parm))
3675 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3676 REFERENCE_CONVERSION_BADNESS));
3677 if (overload_debug)
3678 /* Debugging only. */
3679 fprintf_filtered (gdb_stderr,
3680 "------ Arg is %s [%d], parm is %s [%d]\n",
3681 TYPE_NAME (arg), TYPE_CODE (arg),
3682 TYPE_NAME (parm), TYPE_CODE (parm));
3683
3684 /* x -> y means arg of type x being supplied for parameter of type y. */
3685
3686 switch (TYPE_CODE (parm))
3687 {
3688 case TYPE_CODE_PTR:
3689 switch (TYPE_CODE (arg))
3690 {
3691 case TYPE_CODE_PTR:
3692
3693 /* Allowed pointer conversions are:
3694 (a) pointer to void-pointer conversion. */
3695 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3696 return VOID_PTR_CONVERSION_BADNESS;
3697
3698 /* (b) pointer to ancestor-pointer conversion. */
3699 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3700 TYPE_TARGET_TYPE (arg),
3701 0);
3702 if (rank.subrank >= 0)
3703 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3704
3705 return INCOMPATIBLE_TYPE_BADNESS;
3706 case TYPE_CODE_ARRAY:
3707 {
3708 struct type *t1 = TYPE_TARGET_TYPE (parm);
3709 struct type *t2 = TYPE_TARGET_TYPE (arg);
3710
3711 if (types_equal (t1, t2))
3712 {
3713 /* Make sure they are CV equal. */
3714 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3715 rank.subrank |= CV_CONVERSION_CONST;
3716 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3717 rank.subrank |= CV_CONVERSION_VOLATILE;
3718 if (rank.subrank != 0)
3719 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3720 return EXACT_MATCH_BADNESS;
3721 }
3722 return INCOMPATIBLE_TYPE_BADNESS;
3723 }
3724 case TYPE_CODE_FUNC:
3725 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3726 case TYPE_CODE_INT:
3727 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3728 {
3729 if (value_as_long (value) == 0)
3730 {
3731 /* Null pointer conversion: allow it to be cast to a pointer.
3732 [4.10.1 of C++ standard draft n3290] */
3733 return NULL_POINTER_CONVERSION_BADNESS;
3734 }
3735 else
3736 {
3737 /* If type checking is disabled, allow the conversion. */
3738 if (!strict_type_checking)
3739 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3740 }
3741 }
3742 /* fall through */
3743 case TYPE_CODE_ENUM:
3744 case TYPE_CODE_FLAGS:
3745 case TYPE_CODE_CHAR:
3746 case TYPE_CODE_RANGE:
3747 case TYPE_CODE_BOOL:
3748 default:
3749 return INCOMPATIBLE_TYPE_BADNESS;
3750 }
3751 case TYPE_CODE_ARRAY:
3752 switch (TYPE_CODE (arg))
3753 {
3754 case TYPE_CODE_PTR:
3755 case TYPE_CODE_ARRAY:
3756 return rank_one_type (TYPE_TARGET_TYPE (parm),
3757 TYPE_TARGET_TYPE (arg), NULL);
3758 default:
3759 return INCOMPATIBLE_TYPE_BADNESS;
3760 }
3761 case TYPE_CODE_FUNC:
3762 switch (TYPE_CODE (arg))
3763 {
3764 case TYPE_CODE_PTR: /* funcptr -> func */
3765 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3766 default:
3767 return INCOMPATIBLE_TYPE_BADNESS;
3768 }
3769 case TYPE_CODE_INT:
3770 switch (TYPE_CODE (arg))
3771 {
3772 case TYPE_CODE_INT:
3773 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3774 {
3775 /* Deal with signed, unsigned, and plain chars and
3776 signed and unsigned ints. */
3777 if (TYPE_NOSIGN (parm))
3778 {
3779 /* This case only for character types. */
3780 if (TYPE_NOSIGN (arg))
3781 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3782 else /* signed/unsigned char -> plain char */
3783 return INTEGER_CONVERSION_BADNESS;
3784 }
3785 else if (TYPE_UNSIGNED (parm))
3786 {
3787 if (TYPE_UNSIGNED (arg))
3788 {
3789 /* unsigned int -> unsigned int, or
3790 unsigned long -> unsigned long */
3791 if (integer_types_same_name_p (TYPE_NAME (parm),
3792 TYPE_NAME (arg)))
3793 return EXACT_MATCH_BADNESS;
3794 else if (integer_types_same_name_p (TYPE_NAME (arg),
3795 "int")
3796 && integer_types_same_name_p (TYPE_NAME (parm),
3797 "long"))
3798 /* unsigned int -> unsigned long */
3799 return INTEGER_PROMOTION_BADNESS;
3800 else
3801 /* unsigned long -> unsigned int */
3802 return INTEGER_CONVERSION_BADNESS;
3803 }
3804 else
3805 {
3806 if (integer_types_same_name_p (TYPE_NAME (arg),
3807 "long")
3808 && integer_types_same_name_p (TYPE_NAME (parm),
3809 "int"))
3810 /* signed long -> unsigned int */
3811 return INTEGER_CONVERSION_BADNESS;
3812 else
3813 /* signed int/long -> unsigned int/long */
3814 return INTEGER_CONVERSION_BADNESS;
3815 }
3816 }
3817 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3818 {
3819 if (integer_types_same_name_p (TYPE_NAME (parm),
3820 TYPE_NAME (arg)))
3821 return EXACT_MATCH_BADNESS;
3822 else if (integer_types_same_name_p (TYPE_NAME (arg),
3823 "int")
3824 && integer_types_same_name_p (TYPE_NAME (parm),
3825 "long"))
3826 return INTEGER_PROMOTION_BADNESS;
3827 else
3828 return INTEGER_CONVERSION_BADNESS;
3829 }
3830 else
3831 return INTEGER_CONVERSION_BADNESS;
3832 }
3833 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3834 return INTEGER_PROMOTION_BADNESS;
3835 else
3836 return INTEGER_CONVERSION_BADNESS;
3837 case TYPE_CODE_ENUM:
3838 case TYPE_CODE_FLAGS:
3839 case TYPE_CODE_CHAR:
3840 case TYPE_CODE_RANGE:
3841 case TYPE_CODE_BOOL:
3842 if (TYPE_DECLARED_CLASS (arg))
3843 return INCOMPATIBLE_TYPE_BADNESS;
3844 return INTEGER_PROMOTION_BADNESS;
3845 case TYPE_CODE_FLT:
3846 return INT_FLOAT_CONVERSION_BADNESS;
3847 case TYPE_CODE_PTR:
3848 return NS_POINTER_CONVERSION_BADNESS;
3849 default:
3850 return INCOMPATIBLE_TYPE_BADNESS;
3851 }
3852 break;
3853 case TYPE_CODE_ENUM:
3854 switch (TYPE_CODE (arg))
3855 {
3856 case TYPE_CODE_INT:
3857 case TYPE_CODE_CHAR:
3858 case TYPE_CODE_RANGE:
3859 case TYPE_CODE_BOOL:
3860 case TYPE_CODE_ENUM:
3861 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3862 return INCOMPATIBLE_TYPE_BADNESS;
3863 return INTEGER_CONVERSION_BADNESS;
3864 case TYPE_CODE_FLT:
3865 return INT_FLOAT_CONVERSION_BADNESS;
3866 default:
3867 return INCOMPATIBLE_TYPE_BADNESS;
3868 }
3869 break;
3870 case TYPE_CODE_CHAR:
3871 switch (TYPE_CODE (arg))
3872 {
3873 case TYPE_CODE_RANGE:
3874 case TYPE_CODE_BOOL:
3875 case TYPE_CODE_ENUM:
3876 if (TYPE_DECLARED_CLASS (arg))
3877 return INCOMPATIBLE_TYPE_BADNESS;
3878 return INTEGER_CONVERSION_BADNESS;
3879 case TYPE_CODE_FLT:
3880 return INT_FLOAT_CONVERSION_BADNESS;
3881 case TYPE_CODE_INT:
3882 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3883 return INTEGER_CONVERSION_BADNESS;
3884 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3885 return INTEGER_PROMOTION_BADNESS;
3886 /* >>> !! else fall through !! <<< */
3887 case TYPE_CODE_CHAR:
3888 /* Deal with signed, unsigned, and plain chars for C++ and
3889 with int cases falling through from previous case. */
3890 if (TYPE_NOSIGN (parm))
3891 {
3892 if (TYPE_NOSIGN (arg))
3893 return EXACT_MATCH_BADNESS;
3894 else
3895 return INTEGER_CONVERSION_BADNESS;
3896 }
3897 else if (TYPE_UNSIGNED (parm))
3898 {
3899 if (TYPE_UNSIGNED (arg))
3900 return EXACT_MATCH_BADNESS;
3901 else
3902 return INTEGER_PROMOTION_BADNESS;
3903 }
3904 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3905 return EXACT_MATCH_BADNESS;
3906 else
3907 return INTEGER_CONVERSION_BADNESS;
3908 default:
3909 return INCOMPATIBLE_TYPE_BADNESS;
3910 }
3911 break;
3912 case TYPE_CODE_RANGE:
3913 switch (TYPE_CODE (arg))
3914 {
3915 case TYPE_CODE_INT:
3916 case TYPE_CODE_CHAR:
3917 case TYPE_CODE_RANGE:
3918 case TYPE_CODE_BOOL:
3919 case TYPE_CODE_ENUM:
3920 return INTEGER_CONVERSION_BADNESS;
3921 case TYPE_CODE_FLT:
3922 return INT_FLOAT_CONVERSION_BADNESS;
3923 default:
3924 return INCOMPATIBLE_TYPE_BADNESS;
3925 }
3926 break;
3927 case TYPE_CODE_BOOL:
3928 switch (TYPE_CODE (arg))
3929 {
3930 /* n3290 draft, section 4.12.1 (conv.bool):
3931
3932 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3933 pointer to member type can be converted to a prvalue of type
3934 bool. A zero value, null pointer value, or null member pointer
3935 value is converted to false; any other value is converted to
3936 true. A prvalue of type std::nullptr_t can be converted to a
3937 prvalue of type bool; the resulting value is false." */
3938 case TYPE_CODE_INT:
3939 case TYPE_CODE_CHAR:
3940 case TYPE_CODE_ENUM:
3941 case TYPE_CODE_FLT:
3942 case TYPE_CODE_MEMBERPTR:
3943 case TYPE_CODE_PTR:
3944 return BOOL_CONVERSION_BADNESS;
3945 case TYPE_CODE_RANGE:
3946 return INCOMPATIBLE_TYPE_BADNESS;
3947 case TYPE_CODE_BOOL:
3948 return EXACT_MATCH_BADNESS;
3949 default:
3950 return INCOMPATIBLE_TYPE_BADNESS;
3951 }
3952 break;
3953 case TYPE_CODE_FLT:
3954 switch (TYPE_CODE (arg))
3955 {
3956 case TYPE_CODE_FLT:
3957 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3958 return FLOAT_PROMOTION_BADNESS;
3959 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3960 return EXACT_MATCH_BADNESS;
3961 else
3962 return FLOAT_CONVERSION_BADNESS;
3963 case TYPE_CODE_INT:
3964 case TYPE_CODE_BOOL:
3965 case TYPE_CODE_ENUM:
3966 case TYPE_CODE_RANGE:
3967 case TYPE_CODE_CHAR:
3968 return INT_FLOAT_CONVERSION_BADNESS;
3969 default:
3970 return INCOMPATIBLE_TYPE_BADNESS;
3971 }
3972 break;
3973 case TYPE_CODE_COMPLEX:
3974 switch (TYPE_CODE (arg))
3975 { /* Strictly not needed for C++, but... */
3976 case TYPE_CODE_FLT:
3977 return FLOAT_PROMOTION_BADNESS;
3978 case TYPE_CODE_COMPLEX:
3979 return EXACT_MATCH_BADNESS;
3980 default:
3981 return INCOMPATIBLE_TYPE_BADNESS;
3982 }
3983 break;
3984 case TYPE_CODE_STRUCT:
3985 switch (TYPE_CODE (arg))
3986 {
3987 case TYPE_CODE_STRUCT:
3988 /* Check for derivation */
3989 rank.subrank = distance_to_ancestor (parm, arg, 0);
3990 if (rank.subrank >= 0)
3991 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3992 /* else fall through */
3993 default:
3994 return INCOMPATIBLE_TYPE_BADNESS;
3995 }
3996 break;
3997 case TYPE_CODE_UNION:
3998 switch (TYPE_CODE (arg))
3999 {
4000 case TYPE_CODE_UNION:
4001 default:
4002 return INCOMPATIBLE_TYPE_BADNESS;
4003 }
4004 break;
4005 case TYPE_CODE_MEMBERPTR:
4006 switch (TYPE_CODE (arg))
4007 {
4008 default:
4009 return INCOMPATIBLE_TYPE_BADNESS;
4010 }
4011 break;
4012 case TYPE_CODE_METHOD:
4013 switch (TYPE_CODE (arg))
4014 {
4015
4016 default:
4017 return INCOMPATIBLE_TYPE_BADNESS;
4018 }
4019 break;
4020 case TYPE_CODE_REF:
4021 switch (TYPE_CODE (arg))
4022 {
4023
4024 default:
4025 return INCOMPATIBLE_TYPE_BADNESS;
4026 }
4027
4028 break;
4029 case TYPE_CODE_SET:
4030 switch (TYPE_CODE (arg))
4031 {
4032 /* Not in C++ */
4033 case TYPE_CODE_SET:
4034 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4035 TYPE_FIELD_TYPE (arg, 0), NULL);
4036 default:
4037 return INCOMPATIBLE_TYPE_BADNESS;
4038 }
4039 break;
4040 case TYPE_CODE_VOID:
4041 default:
4042 return INCOMPATIBLE_TYPE_BADNESS;
4043 } /* switch (TYPE_CODE (arg)) */
4044 }
4045
4046 /* End of functions for overload resolution. */
4047 \f
4048 /* Routines to pretty-print types. */
4049
4050 static void
4051 print_bit_vector (B_TYPE *bits, int nbits)
4052 {
4053 int bitno;
4054
4055 for (bitno = 0; bitno < nbits; bitno++)
4056 {
4057 if ((bitno % 8) == 0)
4058 {
4059 puts_filtered (" ");
4060 }
4061 if (B_TST (bits, bitno))
4062 printf_filtered (("1"));
4063 else
4064 printf_filtered (("0"));
4065 }
4066 }
4067
4068 /* Note the first arg should be the "this" pointer, we may not want to
4069 include it since we may get into a infinitely recursive
4070 situation. */
4071
4072 static void
4073 print_args (struct field *args, int nargs, int spaces)
4074 {
4075 if (args != NULL)
4076 {
4077 int i;
4078
4079 for (i = 0; i < nargs; i++)
4080 {
4081 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4082 args[i].name != NULL ? args[i].name : "<NULL>");
4083 recursive_dump_type (args[i].type, spaces + 2);
4084 }
4085 }
4086 }
4087
4088 int
4089 field_is_static (struct field *f)
4090 {
4091 /* "static" fields are the fields whose location is not relative
4092 to the address of the enclosing struct. It would be nice to
4093 have a dedicated flag that would be set for static fields when
4094 the type is being created. But in practice, checking the field
4095 loc_kind should give us an accurate answer. */
4096 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4097 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4098 }
4099
4100 static void
4101 dump_fn_fieldlists (struct type *type, int spaces)
4102 {
4103 int method_idx;
4104 int overload_idx;
4105 struct fn_field *f;
4106
4107 printfi_filtered (spaces, "fn_fieldlists ");
4108 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4109 printf_filtered ("\n");
4110 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4111 {
4112 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4113 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4114 method_idx,
4115 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4116 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4117 gdb_stdout);
4118 printf_filtered (_(") length %d\n"),
4119 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4120 for (overload_idx = 0;
4121 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4122 overload_idx++)
4123 {
4124 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4125 overload_idx,
4126 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4127 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4128 gdb_stdout);
4129 printf_filtered (")\n");
4130 printfi_filtered (spaces + 8, "type ");
4131 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4132 gdb_stdout);
4133 printf_filtered ("\n");
4134
4135 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4136 spaces + 8 + 2);
4137
4138 printfi_filtered (spaces + 8, "args ");
4139 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4140 gdb_stdout);
4141 printf_filtered ("\n");
4142 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4143 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4144 spaces + 8 + 2);
4145 printfi_filtered (spaces + 8, "fcontext ");
4146 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4147 gdb_stdout);
4148 printf_filtered ("\n");
4149
4150 printfi_filtered (spaces + 8, "is_const %d\n",
4151 TYPE_FN_FIELD_CONST (f, overload_idx));
4152 printfi_filtered (spaces + 8, "is_volatile %d\n",
4153 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4154 printfi_filtered (spaces + 8, "is_private %d\n",
4155 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4156 printfi_filtered (spaces + 8, "is_protected %d\n",
4157 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4158 printfi_filtered (spaces + 8, "is_stub %d\n",
4159 TYPE_FN_FIELD_STUB (f, overload_idx));
4160 printfi_filtered (spaces + 8, "voffset %u\n",
4161 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4162 }
4163 }
4164 }
4165
4166 static void
4167 print_cplus_stuff (struct type *type, int spaces)
4168 {
4169 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4170 printfi_filtered (spaces, "vptr_basetype ");
4171 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4172 puts_filtered ("\n");
4173 if (TYPE_VPTR_BASETYPE (type) != NULL)
4174 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4175
4176 printfi_filtered (spaces, "n_baseclasses %d\n",
4177 TYPE_N_BASECLASSES (type));
4178 printfi_filtered (spaces, "nfn_fields %d\n",
4179 TYPE_NFN_FIELDS (type));
4180 if (TYPE_N_BASECLASSES (type) > 0)
4181 {
4182 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4183 TYPE_N_BASECLASSES (type));
4184 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4185 gdb_stdout);
4186 printf_filtered (")");
4187
4188 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4189 TYPE_N_BASECLASSES (type));
4190 puts_filtered ("\n");
4191 }
4192 if (TYPE_NFIELDS (type) > 0)
4193 {
4194 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4195 {
4196 printfi_filtered (spaces,
4197 "private_field_bits (%d bits at *",
4198 TYPE_NFIELDS (type));
4199 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4200 gdb_stdout);
4201 printf_filtered (")");
4202 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4203 TYPE_NFIELDS (type));
4204 puts_filtered ("\n");
4205 }
4206 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4207 {
4208 printfi_filtered (spaces,
4209 "protected_field_bits (%d bits at *",
4210 TYPE_NFIELDS (type));
4211 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4212 gdb_stdout);
4213 printf_filtered (")");
4214 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4215 TYPE_NFIELDS (type));
4216 puts_filtered ("\n");
4217 }
4218 }
4219 if (TYPE_NFN_FIELDS (type) > 0)
4220 {
4221 dump_fn_fieldlists (type, spaces);
4222 }
4223 }
4224
4225 /* Print the contents of the TYPE's type_specific union, assuming that
4226 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4227
4228 static void
4229 print_gnat_stuff (struct type *type, int spaces)
4230 {
4231 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4232
4233 if (descriptive_type == NULL)
4234 printfi_filtered (spaces + 2, "no descriptive type\n");
4235 else
4236 {
4237 printfi_filtered (spaces + 2, "descriptive type\n");
4238 recursive_dump_type (descriptive_type, spaces + 4);
4239 }
4240 }
4241
4242 static struct obstack dont_print_type_obstack;
4243
4244 void
4245 recursive_dump_type (struct type *type, int spaces)
4246 {
4247 int idx;
4248
4249 if (spaces == 0)
4250 obstack_begin (&dont_print_type_obstack, 0);
4251
4252 if (TYPE_NFIELDS (type) > 0
4253 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4254 {
4255 struct type **first_dont_print
4256 = (struct type **) obstack_base (&dont_print_type_obstack);
4257
4258 int i = (struct type **)
4259 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4260
4261 while (--i >= 0)
4262 {
4263 if (type == first_dont_print[i])
4264 {
4265 printfi_filtered (spaces, "type node ");
4266 gdb_print_host_address (type, gdb_stdout);
4267 printf_filtered (_(" <same as already seen type>\n"));
4268 return;
4269 }
4270 }
4271
4272 obstack_ptr_grow (&dont_print_type_obstack, type);
4273 }
4274
4275 printfi_filtered (spaces, "type node ");
4276 gdb_print_host_address (type, gdb_stdout);
4277 printf_filtered ("\n");
4278 printfi_filtered (spaces, "name '%s' (",
4279 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4280 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4281 printf_filtered (")\n");
4282 printfi_filtered (spaces, "tagname '%s' (",
4283 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
4284 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
4285 printf_filtered (")\n");
4286 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4287 switch (TYPE_CODE (type))
4288 {
4289 case TYPE_CODE_UNDEF:
4290 printf_filtered ("(TYPE_CODE_UNDEF)");
4291 break;
4292 case TYPE_CODE_PTR:
4293 printf_filtered ("(TYPE_CODE_PTR)");
4294 break;
4295 case TYPE_CODE_ARRAY:
4296 printf_filtered ("(TYPE_CODE_ARRAY)");
4297 break;
4298 case TYPE_CODE_STRUCT:
4299 printf_filtered ("(TYPE_CODE_STRUCT)");
4300 break;
4301 case TYPE_CODE_UNION:
4302 printf_filtered ("(TYPE_CODE_UNION)");
4303 break;
4304 case TYPE_CODE_ENUM:
4305 printf_filtered ("(TYPE_CODE_ENUM)");
4306 break;
4307 case TYPE_CODE_FLAGS:
4308 printf_filtered ("(TYPE_CODE_FLAGS)");
4309 break;
4310 case TYPE_CODE_FUNC:
4311 printf_filtered ("(TYPE_CODE_FUNC)");
4312 break;
4313 case TYPE_CODE_INT:
4314 printf_filtered ("(TYPE_CODE_INT)");
4315 break;
4316 case TYPE_CODE_FLT:
4317 printf_filtered ("(TYPE_CODE_FLT)");
4318 break;
4319 case TYPE_CODE_VOID:
4320 printf_filtered ("(TYPE_CODE_VOID)");
4321 break;
4322 case TYPE_CODE_SET:
4323 printf_filtered ("(TYPE_CODE_SET)");
4324 break;
4325 case TYPE_CODE_RANGE:
4326 printf_filtered ("(TYPE_CODE_RANGE)");
4327 break;
4328 case TYPE_CODE_STRING:
4329 printf_filtered ("(TYPE_CODE_STRING)");
4330 break;
4331 case TYPE_CODE_ERROR:
4332 printf_filtered ("(TYPE_CODE_ERROR)");
4333 break;
4334 case TYPE_CODE_MEMBERPTR:
4335 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4336 break;
4337 case TYPE_CODE_METHODPTR:
4338 printf_filtered ("(TYPE_CODE_METHODPTR)");
4339 break;
4340 case TYPE_CODE_METHOD:
4341 printf_filtered ("(TYPE_CODE_METHOD)");
4342 break;
4343 case TYPE_CODE_REF:
4344 printf_filtered ("(TYPE_CODE_REF)");
4345 break;
4346 case TYPE_CODE_CHAR:
4347 printf_filtered ("(TYPE_CODE_CHAR)");
4348 break;
4349 case TYPE_CODE_BOOL:
4350 printf_filtered ("(TYPE_CODE_BOOL)");
4351 break;
4352 case TYPE_CODE_COMPLEX:
4353 printf_filtered ("(TYPE_CODE_COMPLEX)");
4354 break;
4355 case TYPE_CODE_TYPEDEF:
4356 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4357 break;
4358 case TYPE_CODE_NAMESPACE:
4359 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4360 break;
4361 default:
4362 printf_filtered ("(UNKNOWN TYPE CODE)");
4363 break;
4364 }
4365 puts_filtered ("\n");
4366 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
4367 if (TYPE_OBJFILE_OWNED (type))
4368 {
4369 printfi_filtered (spaces, "objfile ");
4370 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4371 }
4372 else
4373 {
4374 printfi_filtered (spaces, "gdbarch ");
4375 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4376 }
4377 printf_filtered ("\n");
4378 printfi_filtered (spaces, "target_type ");
4379 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4380 printf_filtered ("\n");
4381 if (TYPE_TARGET_TYPE (type) != NULL)
4382 {
4383 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4384 }
4385 printfi_filtered (spaces, "pointer_type ");
4386 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4387 printf_filtered ("\n");
4388 printfi_filtered (spaces, "reference_type ");
4389 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4390 printf_filtered ("\n");
4391 printfi_filtered (spaces, "type_chain ");
4392 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4393 printf_filtered ("\n");
4394 printfi_filtered (spaces, "instance_flags 0x%x",
4395 TYPE_INSTANCE_FLAGS (type));
4396 if (TYPE_CONST (type))
4397 {
4398 puts_filtered (" TYPE_CONST");
4399 }
4400 if (TYPE_VOLATILE (type))
4401 {
4402 puts_filtered (" TYPE_VOLATILE");
4403 }
4404 if (TYPE_CODE_SPACE (type))
4405 {
4406 puts_filtered (" TYPE_CODE_SPACE");
4407 }
4408 if (TYPE_DATA_SPACE (type))
4409 {
4410 puts_filtered (" TYPE_DATA_SPACE");
4411 }
4412 if (TYPE_ADDRESS_CLASS_1 (type))
4413 {
4414 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4415 }
4416 if (TYPE_ADDRESS_CLASS_2 (type))
4417 {
4418 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4419 }
4420 if (TYPE_RESTRICT (type))
4421 {
4422 puts_filtered (" TYPE_RESTRICT");
4423 }
4424 if (TYPE_ATOMIC (type))
4425 {
4426 puts_filtered (" TYPE_ATOMIC");
4427 }
4428 puts_filtered ("\n");
4429
4430 printfi_filtered (spaces, "flags");
4431 if (TYPE_UNSIGNED (type))
4432 {
4433 puts_filtered (" TYPE_UNSIGNED");
4434 }
4435 if (TYPE_NOSIGN (type))
4436 {
4437 puts_filtered (" TYPE_NOSIGN");
4438 }
4439 if (TYPE_STUB (type))
4440 {
4441 puts_filtered (" TYPE_STUB");
4442 }
4443 if (TYPE_TARGET_STUB (type))
4444 {
4445 puts_filtered (" TYPE_TARGET_STUB");
4446 }
4447 if (TYPE_STATIC (type))
4448 {
4449 puts_filtered (" TYPE_STATIC");
4450 }
4451 if (TYPE_PROTOTYPED (type))
4452 {
4453 puts_filtered (" TYPE_PROTOTYPED");
4454 }
4455 if (TYPE_INCOMPLETE (type))
4456 {
4457 puts_filtered (" TYPE_INCOMPLETE");
4458 }
4459 if (TYPE_VARARGS (type))
4460 {
4461 puts_filtered (" TYPE_VARARGS");
4462 }
4463 /* This is used for things like AltiVec registers on ppc. Gcc emits
4464 an attribute for the array type, which tells whether or not we
4465 have a vector, instead of a regular array. */
4466 if (TYPE_VECTOR (type))
4467 {
4468 puts_filtered (" TYPE_VECTOR");
4469 }
4470 if (TYPE_FIXED_INSTANCE (type))
4471 {
4472 puts_filtered (" TYPE_FIXED_INSTANCE");
4473 }
4474 if (TYPE_STUB_SUPPORTED (type))
4475 {
4476 puts_filtered (" TYPE_STUB_SUPPORTED");
4477 }
4478 if (TYPE_NOTTEXT (type))
4479 {
4480 puts_filtered (" TYPE_NOTTEXT");
4481 }
4482 puts_filtered ("\n");
4483 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4484 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4485 puts_filtered ("\n");
4486 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4487 {
4488 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4489 printfi_filtered (spaces + 2,
4490 "[%d] enumval %s type ",
4491 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4492 else
4493 printfi_filtered (spaces + 2,
4494 "[%d] bitpos %s bitsize %d type ",
4495 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4496 TYPE_FIELD_BITSIZE (type, idx));
4497 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4498 printf_filtered (" name '%s' (",
4499 TYPE_FIELD_NAME (type, idx) != NULL
4500 ? TYPE_FIELD_NAME (type, idx)
4501 : "<NULL>");
4502 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4503 printf_filtered (")\n");
4504 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4505 {
4506 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4507 }
4508 }
4509 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4510 {
4511 printfi_filtered (spaces, "low %s%s high %s%s\n",
4512 plongest (TYPE_LOW_BOUND (type)),
4513 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4514 plongest (TYPE_HIGH_BOUND (type)),
4515 TYPE_HIGH_BOUND_UNDEFINED (type)
4516 ? " (undefined)" : "");
4517 }
4518
4519 switch (TYPE_SPECIFIC_FIELD (type))
4520 {
4521 case TYPE_SPECIFIC_CPLUS_STUFF:
4522 printfi_filtered (spaces, "cplus_stuff ");
4523 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4524 gdb_stdout);
4525 puts_filtered ("\n");
4526 print_cplus_stuff (type, spaces);
4527 break;
4528
4529 case TYPE_SPECIFIC_GNAT_STUFF:
4530 printfi_filtered (spaces, "gnat_stuff ");
4531 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4532 puts_filtered ("\n");
4533 print_gnat_stuff (type, spaces);
4534 break;
4535
4536 case TYPE_SPECIFIC_FLOATFORMAT:
4537 printfi_filtered (spaces, "floatformat ");
4538 if (TYPE_FLOATFORMAT (type) == NULL)
4539 puts_filtered ("(null)");
4540 else
4541 {
4542 puts_filtered ("{ ");
4543 if (TYPE_FLOATFORMAT (type)[0] == NULL
4544 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4545 puts_filtered ("(null)");
4546 else
4547 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4548
4549 puts_filtered (", ");
4550 if (TYPE_FLOATFORMAT (type)[1] == NULL
4551 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4552 puts_filtered ("(null)");
4553 else
4554 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4555
4556 puts_filtered (" }");
4557 }
4558 puts_filtered ("\n");
4559 break;
4560
4561 case TYPE_SPECIFIC_FUNC:
4562 printfi_filtered (spaces, "calling_convention %d\n",
4563 TYPE_CALLING_CONVENTION (type));
4564 /* tail_call_list is not printed. */
4565 break;
4566
4567 case TYPE_SPECIFIC_SELF_TYPE:
4568 printfi_filtered (spaces, "self_type ");
4569 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4570 puts_filtered ("\n");
4571 break;
4572 }
4573
4574 if (spaces == 0)
4575 obstack_free (&dont_print_type_obstack, NULL);
4576 }
4577 \f
4578 /* Trivial helpers for the libiberty hash table, for mapping one
4579 type to another. */
4580
4581 struct type_pair
4582 {
4583 struct type *old, *newobj;
4584 };
4585
4586 static hashval_t
4587 type_pair_hash (const void *item)
4588 {
4589 const struct type_pair *pair = (const struct type_pair *) item;
4590
4591 return htab_hash_pointer (pair->old);
4592 }
4593
4594 static int
4595 type_pair_eq (const void *item_lhs, const void *item_rhs)
4596 {
4597 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4598 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4599
4600 return lhs->old == rhs->old;
4601 }
4602
4603 /* Allocate the hash table used by copy_type_recursive to walk
4604 types without duplicates. We use OBJFILE's obstack, because
4605 OBJFILE is about to be deleted. */
4606
4607 htab_t
4608 create_copied_types_hash (struct objfile *objfile)
4609 {
4610 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4611 NULL, &objfile->objfile_obstack,
4612 hashtab_obstack_allocate,
4613 dummy_obstack_deallocate);
4614 }
4615
4616 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4617
4618 static struct dynamic_prop_list *
4619 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4620 struct dynamic_prop_list *list)
4621 {
4622 struct dynamic_prop_list *copy = list;
4623 struct dynamic_prop_list **node_ptr = &copy;
4624
4625 while (*node_ptr != NULL)
4626 {
4627 struct dynamic_prop_list *node_copy;
4628
4629 node_copy = ((struct dynamic_prop_list *)
4630 obstack_copy (objfile_obstack, *node_ptr,
4631 sizeof (struct dynamic_prop_list)));
4632 node_copy->prop = (*node_ptr)->prop;
4633 *node_ptr = node_copy;
4634
4635 node_ptr = &node_copy->next;
4636 }
4637
4638 return copy;
4639 }
4640
4641 /* Recursively copy (deep copy) TYPE, if it is associated with
4642 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4643 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4644 it is not associated with OBJFILE. */
4645
4646 struct type *
4647 copy_type_recursive (struct objfile *objfile,
4648 struct type *type,
4649 htab_t copied_types)
4650 {
4651 struct type_pair *stored, pair;
4652 void **slot;
4653 struct type *new_type;
4654
4655 if (! TYPE_OBJFILE_OWNED (type))
4656 return type;
4657
4658 /* This type shouldn't be pointing to any types in other objfiles;
4659 if it did, the type might disappear unexpectedly. */
4660 gdb_assert (TYPE_OBJFILE (type) == objfile);
4661
4662 pair.old = type;
4663 slot = htab_find_slot (copied_types, &pair, INSERT);
4664 if (*slot != NULL)
4665 return ((struct type_pair *) *slot)->newobj;
4666
4667 new_type = alloc_type_arch (get_type_arch (type));
4668
4669 /* We must add the new type to the hash table immediately, in case
4670 we encounter this type again during a recursive call below. */
4671 stored = XOBNEW (&objfile->objfile_obstack, struct type_pair);
4672 stored->old = type;
4673 stored->newobj = new_type;
4674 *slot = stored;
4675
4676 /* Copy the common fields of types. For the main type, we simply
4677 copy the entire thing and then update specific fields as needed. */
4678 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4679 TYPE_OBJFILE_OWNED (new_type) = 0;
4680 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4681
4682 if (TYPE_NAME (type))
4683 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4684 if (TYPE_TAG_NAME (type))
4685 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4686
4687 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4688 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4689
4690 /* Copy the fields. */
4691 if (TYPE_NFIELDS (type))
4692 {
4693 int i, nfields;
4694
4695 nfields = TYPE_NFIELDS (type);
4696 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4697 for (i = 0; i < nfields; i++)
4698 {
4699 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4700 TYPE_FIELD_ARTIFICIAL (type, i);
4701 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4702 if (TYPE_FIELD_TYPE (type, i))
4703 TYPE_FIELD_TYPE (new_type, i)
4704 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4705 copied_types);
4706 if (TYPE_FIELD_NAME (type, i))
4707 TYPE_FIELD_NAME (new_type, i) =
4708 xstrdup (TYPE_FIELD_NAME (type, i));
4709 switch (TYPE_FIELD_LOC_KIND (type, i))
4710 {
4711 case FIELD_LOC_KIND_BITPOS:
4712 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4713 TYPE_FIELD_BITPOS (type, i));
4714 break;
4715 case FIELD_LOC_KIND_ENUMVAL:
4716 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4717 TYPE_FIELD_ENUMVAL (type, i));
4718 break;
4719 case FIELD_LOC_KIND_PHYSADDR:
4720 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4721 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4722 break;
4723 case FIELD_LOC_KIND_PHYSNAME:
4724 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4725 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4726 i)));
4727 break;
4728 default:
4729 internal_error (__FILE__, __LINE__,
4730 _("Unexpected type field location kind: %d"),
4731 TYPE_FIELD_LOC_KIND (type, i));
4732 }
4733 }
4734 }
4735
4736 /* For range types, copy the bounds information. */
4737 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4738 {
4739 TYPE_RANGE_DATA (new_type) = XNEW (struct range_bounds);
4740 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4741 }
4742
4743 if (TYPE_DYN_PROP_LIST (type) != NULL)
4744 TYPE_DYN_PROP_LIST (new_type)
4745 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4746 TYPE_DYN_PROP_LIST (type));
4747
4748
4749 /* Copy pointers to other types. */
4750 if (TYPE_TARGET_TYPE (type))
4751 TYPE_TARGET_TYPE (new_type) =
4752 copy_type_recursive (objfile,
4753 TYPE_TARGET_TYPE (type),
4754 copied_types);
4755
4756 /* Maybe copy the type_specific bits.
4757
4758 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4759 base classes and methods. There's no fundamental reason why we
4760 can't, but at the moment it is not needed. */
4761
4762 switch (TYPE_SPECIFIC_FIELD (type))
4763 {
4764 case TYPE_SPECIFIC_NONE:
4765 break;
4766 case TYPE_SPECIFIC_FUNC:
4767 INIT_FUNC_SPECIFIC (new_type);
4768 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4769 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4770 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4771 break;
4772 case TYPE_SPECIFIC_FLOATFORMAT:
4773 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4774 break;
4775 case TYPE_SPECIFIC_CPLUS_STUFF:
4776 INIT_CPLUS_SPECIFIC (new_type);
4777 break;
4778 case TYPE_SPECIFIC_GNAT_STUFF:
4779 INIT_GNAT_SPECIFIC (new_type);
4780 break;
4781 case TYPE_SPECIFIC_SELF_TYPE:
4782 set_type_self_type (new_type,
4783 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4784 copied_types));
4785 break;
4786 default:
4787 gdb_assert_not_reached ("bad type_specific_kind");
4788 }
4789
4790 return new_type;
4791 }
4792
4793 /* Make a copy of the given TYPE, except that the pointer & reference
4794 types are not preserved.
4795
4796 This function assumes that the given type has an associated objfile.
4797 This objfile is used to allocate the new type. */
4798
4799 struct type *
4800 copy_type (const struct type *type)
4801 {
4802 struct type *new_type;
4803
4804 gdb_assert (TYPE_OBJFILE_OWNED (type));
4805
4806 new_type = alloc_type_copy (type);
4807 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4808 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4809 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4810 sizeof (struct main_type));
4811 if (TYPE_DYN_PROP_LIST (type) != NULL)
4812 TYPE_DYN_PROP_LIST (new_type)
4813 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
4814 TYPE_DYN_PROP_LIST (type));
4815
4816 return new_type;
4817 }
4818 \f
4819 /* Helper functions to initialize architecture-specific types. */
4820
4821 /* Allocate a type structure associated with GDBARCH and set its
4822 CODE, LENGTH, and NAME fields. */
4823
4824 struct type *
4825 arch_type (struct gdbarch *gdbarch,
4826 enum type_code code, int length, const char *name)
4827 {
4828 struct type *type;
4829
4830 type = alloc_type_arch (gdbarch);
4831 set_type_code (type, code);
4832 TYPE_LENGTH (type) = length;
4833
4834 if (name)
4835 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
4836
4837 return type;
4838 }
4839
4840 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4841 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4842 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4843
4844 struct type *
4845 arch_integer_type (struct gdbarch *gdbarch,
4846 int bit, int unsigned_p, const char *name)
4847 {
4848 struct type *t;
4849
4850 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4851 if (unsigned_p)
4852 TYPE_UNSIGNED (t) = 1;
4853
4854 return t;
4855 }
4856
4857 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4858 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4859 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4860
4861 struct type *
4862 arch_character_type (struct gdbarch *gdbarch,
4863 int bit, int unsigned_p, const char *name)
4864 {
4865 struct type *t;
4866
4867 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4868 if (unsigned_p)
4869 TYPE_UNSIGNED (t) = 1;
4870
4871 return t;
4872 }
4873
4874 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4875 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4876 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4877
4878 struct type *
4879 arch_boolean_type (struct gdbarch *gdbarch,
4880 int bit, int unsigned_p, const char *name)
4881 {
4882 struct type *t;
4883
4884 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4885 if (unsigned_p)
4886 TYPE_UNSIGNED (t) = 1;
4887
4888 return t;
4889 }
4890
4891 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4892 BIT is the type size in bits; if BIT equals -1, the size is
4893 determined by the floatformat. NAME is the type name. Set the
4894 TYPE_FLOATFORMAT from FLOATFORMATS. */
4895
4896 struct type *
4897 arch_float_type (struct gdbarch *gdbarch,
4898 int bit, const char *name,
4899 const struct floatformat **floatformats)
4900 {
4901 struct type *t;
4902
4903 bit = verify_floatformat (bit, floatformats);
4904 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4905 TYPE_FLOATFORMAT (t) = floatformats;
4906
4907 return t;
4908 }
4909
4910 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
4911 BIT is the type size in bits. NAME is the type name. */
4912
4913 struct type *
4914 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
4915 {
4916 struct type *t;
4917
4918 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit / TARGET_CHAR_BIT, name);
4919 return t;
4920 }
4921
4922 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4923 NAME is the type name. TARGET_TYPE is the component float type. */
4924
4925 struct type *
4926 arch_complex_type (struct gdbarch *gdbarch,
4927 const char *name, struct type *target_type)
4928 {
4929 struct type *t;
4930
4931 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4932 2 * TYPE_LENGTH (target_type), name);
4933 TYPE_TARGET_TYPE (t) = target_type;
4934 return t;
4935 }
4936
4937 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
4938 BIT is the pointer type size in bits. NAME is the type name.
4939 TARGET_TYPE is the pointer target type. Always sets the pointer type's
4940 TYPE_UNSIGNED flag. */
4941
4942 struct type *
4943 arch_pointer_type (struct gdbarch *gdbarch,
4944 int bit, const char *name, struct type *target_type)
4945 {
4946 struct type *t;
4947
4948 t = arch_type (gdbarch, TYPE_CODE_PTR, bit / TARGET_CHAR_BIT, name);
4949 TYPE_TARGET_TYPE (t) = target_type;
4950 TYPE_UNSIGNED (t) = 1;
4951 return t;
4952 }
4953
4954 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4955 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4956
4957 struct type *
4958 arch_flags_type (struct gdbarch *gdbarch, const char *name, int length)
4959 {
4960 int max_nfields = length * TARGET_CHAR_BIT;
4961 struct type *type;
4962
4963 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4964 TYPE_UNSIGNED (type) = 1;
4965 TYPE_NFIELDS (type) = 0;
4966 /* Pre-allocate enough space assuming every field is one bit. */
4967 TYPE_FIELDS (type)
4968 = (struct field *) TYPE_ZALLOC (type, max_nfields * sizeof (struct field));
4969
4970 return type;
4971 }
4972
4973 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4974 position BITPOS is called NAME. Pass NAME as "" for fields that
4975 should not be printed. */
4976
4977 void
4978 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
4979 struct type *field_type, const char *name)
4980 {
4981 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
4982 int field_nr = TYPE_NFIELDS (type);
4983
4984 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4985 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
4986 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
4987 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
4988 gdb_assert (name != NULL);
4989
4990 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
4991 TYPE_FIELD_TYPE (type, field_nr) = field_type;
4992 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
4993 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
4994 ++TYPE_NFIELDS (type);
4995 }
4996
4997 /* Special version of append_flags_type_field to add a flag field.
4998 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4999 position BITPOS is called NAME. */
5000
5001 void
5002 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5003 {
5004 struct gdbarch *gdbarch = get_type_arch (type);
5005
5006 append_flags_type_field (type, bitpos, 1,
5007 builtin_type (gdbarch)->builtin_bool,
5008 name);
5009 }
5010
5011 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5012 specified by CODE) associated with GDBARCH. NAME is the type name. */
5013
5014 struct type *
5015 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5016 enum type_code code)
5017 {
5018 struct type *t;
5019
5020 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5021 t = arch_type (gdbarch, code, 0, NULL);
5022 TYPE_TAG_NAME (t) = name;
5023 INIT_CPLUS_SPECIFIC (t);
5024 return t;
5025 }
5026
5027 /* Add new field with name NAME and type FIELD to composite type T.
5028 Do not set the field's position or adjust the type's length;
5029 the caller should do so. Return the new field. */
5030
5031 struct field *
5032 append_composite_type_field_raw (struct type *t, const char *name,
5033 struct type *field)
5034 {
5035 struct field *f;
5036
5037 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5038 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5039 TYPE_NFIELDS (t));
5040 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5041 memset (f, 0, sizeof f[0]);
5042 FIELD_TYPE (f[0]) = field;
5043 FIELD_NAME (f[0]) = name;
5044 return f;
5045 }
5046
5047 /* Add new field with name NAME and type FIELD to composite type T.
5048 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5049
5050 void
5051 append_composite_type_field_aligned (struct type *t, const char *name,
5052 struct type *field, int alignment)
5053 {
5054 struct field *f = append_composite_type_field_raw (t, name, field);
5055
5056 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5057 {
5058 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5059 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5060 }
5061 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5062 {
5063 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5064 if (TYPE_NFIELDS (t) > 1)
5065 {
5066 SET_FIELD_BITPOS (f[0],
5067 (FIELD_BITPOS (f[-1])
5068 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5069 * TARGET_CHAR_BIT)));
5070
5071 if (alignment)
5072 {
5073 int left;
5074
5075 alignment *= TARGET_CHAR_BIT;
5076 left = FIELD_BITPOS (f[0]) % alignment;
5077
5078 if (left)
5079 {
5080 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5081 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5082 }
5083 }
5084 }
5085 }
5086 }
5087
5088 /* Add new field with name NAME and type FIELD to composite type T. */
5089
5090 void
5091 append_composite_type_field (struct type *t, const char *name,
5092 struct type *field)
5093 {
5094 append_composite_type_field_aligned (t, name, field, 0);
5095 }
5096
5097 static struct gdbarch_data *gdbtypes_data;
5098
5099 const struct builtin_type *
5100 builtin_type (struct gdbarch *gdbarch)
5101 {
5102 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5103 }
5104
5105 static void *
5106 gdbtypes_post_init (struct gdbarch *gdbarch)
5107 {
5108 struct builtin_type *builtin_type
5109 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5110
5111 /* Basic types. */
5112 builtin_type->builtin_void
5113 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
5114 builtin_type->builtin_char
5115 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5116 !gdbarch_char_signed (gdbarch), "char");
5117 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5118 builtin_type->builtin_signed_char
5119 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5120 0, "signed char");
5121 builtin_type->builtin_unsigned_char
5122 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5123 1, "unsigned char");
5124 builtin_type->builtin_short
5125 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5126 0, "short");
5127 builtin_type->builtin_unsigned_short
5128 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5129 1, "unsigned short");
5130 builtin_type->builtin_int
5131 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5132 0, "int");
5133 builtin_type->builtin_unsigned_int
5134 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5135 1, "unsigned int");
5136 builtin_type->builtin_long
5137 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5138 0, "long");
5139 builtin_type->builtin_unsigned_long
5140 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5141 1, "unsigned long");
5142 builtin_type->builtin_long_long
5143 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5144 0, "long long");
5145 builtin_type->builtin_unsigned_long_long
5146 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5147 1, "unsigned long long");
5148 builtin_type->builtin_float
5149 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5150 "float", gdbarch_float_format (gdbarch));
5151 builtin_type->builtin_double
5152 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5153 "double", gdbarch_double_format (gdbarch));
5154 builtin_type->builtin_long_double
5155 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5156 "long double", gdbarch_long_double_format (gdbarch));
5157 builtin_type->builtin_complex
5158 = arch_complex_type (gdbarch, "complex",
5159 builtin_type->builtin_float);
5160 builtin_type->builtin_double_complex
5161 = arch_complex_type (gdbarch, "double complex",
5162 builtin_type->builtin_double);
5163 builtin_type->builtin_string
5164 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
5165 builtin_type->builtin_bool
5166 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
5167
5168 /* The following three are about decimal floating point types, which
5169 are 32-bits, 64-bits and 128-bits respectively. */
5170 builtin_type->builtin_decfloat
5171 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5172 builtin_type->builtin_decdouble
5173 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5174 builtin_type->builtin_declong
5175 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5176
5177 /* "True" character types. */
5178 builtin_type->builtin_true_char
5179 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5180 builtin_type->builtin_true_unsigned_char
5181 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5182
5183 /* Fixed-size integer types. */
5184 builtin_type->builtin_int0
5185 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5186 builtin_type->builtin_int8
5187 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5188 builtin_type->builtin_uint8
5189 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5190 builtin_type->builtin_int16
5191 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5192 builtin_type->builtin_uint16
5193 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5194 builtin_type->builtin_int32
5195 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5196 builtin_type->builtin_uint32
5197 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5198 builtin_type->builtin_int64
5199 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5200 builtin_type->builtin_uint64
5201 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5202 builtin_type->builtin_int128
5203 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5204 builtin_type->builtin_uint128
5205 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5206 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5207 TYPE_INSTANCE_FLAG_NOTTEXT;
5208 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5209 TYPE_INSTANCE_FLAG_NOTTEXT;
5210
5211 /* Wide character types. */
5212 builtin_type->builtin_char16
5213 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5214 builtin_type->builtin_char32
5215 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5216 builtin_type->builtin_wchar
5217 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5218 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5219
5220 /* Default data/code pointer types. */
5221 builtin_type->builtin_data_ptr
5222 = lookup_pointer_type (builtin_type->builtin_void);
5223 builtin_type->builtin_func_ptr
5224 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5225 builtin_type->builtin_func_func
5226 = lookup_function_type (builtin_type->builtin_func_ptr);
5227
5228 /* This type represents a GDB internal function. */
5229 builtin_type->internal_fn
5230 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5231 "<internal function>");
5232
5233 /* This type represents an xmethod. */
5234 builtin_type->xmethod
5235 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5236
5237 return builtin_type;
5238 }
5239
5240 /* This set of objfile-based types is intended to be used by symbol
5241 readers as basic types. */
5242
5243 static const struct objfile_data *objfile_type_data;
5244
5245 const struct objfile_type *
5246 objfile_type (struct objfile *objfile)
5247 {
5248 struct gdbarch *gdbarch;
5249 struct objfile_type *objfile_type
5250 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
5251
5252 if (objfile_type)
5253 return objfile_type;
5254
5255 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5256 1, struct objfile_type);
5257
5258 /* Use the objfile architecture to determine basic type properties. */
5259 gdbarch = get_objfile_arch (objfile);
5260
5261 /* Basic types. */
5262 objfile_type->builtin_void
5263 = init_type (objfile, TYPE_CODE_VOID, 1, "void");
5264 objfile_type->builtin_char
5265 = init_integer_type (objfile, TARGET_CHAR_BIT,
5266 !gdbarch_char_signed (gdbarch), "char");
5267 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5268 objfile_type->builtin_signed_char
5269 = init_integer_type (objfile, TARGET_CHAR_BIT,
5270 0, "signed char");
5271 objfile_type->builtin_unsigned_char
5272 = init_integer_type (objfile, TARGET_CHAR_BIT,
5273 1, "unsigned char");
5274 objfile_type->builtin_short
5275 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5276 0, "short");
5277 objfile_type->builtin_unsigned_short
5278 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5279 1, "unsigned short");
5280 objfile_type->builtin_int
5281 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5282 0, "int");
5283 objfile_type->builtin_unsigned_int
5284 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5285 1, "unsigned int");
5286 objfile_type->builtin_long
5287 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5288 0, "long");
5289 objfile_type->builtin_unsigned_long
5290 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5291 1, "unsigned long");
5292 objfile_type->builtin_long_long
5293 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5294 0, "long long");
5295 objfile_type->builtin_unsigned_long_long
5296 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5297 1, "unsigned long long");
5298 objfile_type->builtin_float
5299 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5300 "float", gdbarch_float_format (gdbarch));
5301 objfile_type->builtin_double
5302 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5303 "double", gdbarch_double_format (gdbarch));
5304 objfile_type->builtin_long_double
5305 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5306 "long double", gdbarch_long_double_format (gdbarch));
5307
5308 /* This type represents a type that was unrecognized in symbol read-in. */
5309 objfile_type->builtin_error
5310 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5311
5312 /* The following set of types is used for symbols with no
5313 debug information. */
5314 objfile_type->nodebug_text_symbol
5315 = init_type (objfile, TYPE_CODE_FUNC, 1,
5316 "<text variable, no debug info>");
5317 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
5318 = objfile_type->builtin_int;
5319 objfile_type->nodebug_text_gnu_ifunc_symbol
5320 = init_type (objfile, TYPE_CODE_FUNC, 1,
5321 "<text gnu-indirect-function variable, no debug info>");
5322 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
5323 = objfile_type->nodebug_text_symbol;
5324 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5325 objfile_type->nodebug_got_plt_symbol
5326 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5327 "<text from jump slot in .got.plt, no debug info>",
5328 objfile_type->nodebug_text_symbol);
5329 objfile_type->nodebug_data_symbol
5330 = init_integer_type (objfile, gdbarch_int_bit (gdbarch), 0,
5331 "<data variable, no debug info>");
5332 objfile_type->nodebug_unknown_symbol
5333 = init_integer_type (objfile, TARGET_CHAR_BIT, 0,
5334 "<variable (not text or data), no debug info>");
5335 objfile_type->nodebug_tls_symbol
5336 = init_integer_type (objfile, gdbarch_int_bit (gdbarch), 0,
5337 "<thread local variable, no debug info>");
5338
5339 /* NOTE: on some targets, addresses and pointers are not necessarily
5340 the same.
5341
5342 The upshot is:
5343 - gdb's `struct type' always describes the target's
5344 representation.
5345 - gdb's `struct value' objects should always hold values in
5346 target form.
5347 - gdb's CORE_ADDR values are addresses in the unified virtual
5348 address space that the assembler and linker work with. Thus,
5349 since target_read_memory takes a CORE_ADDR as an argument, it
5350 can access any memory on the target, even if the processor has
5351 separate code and data address spaces.
5352
5353 In this context, objfile_type->builtin_core_addr is a bit odd:
5354 it's a target type for a value the target will never see. It's
5355 only used to hold the values of (typeless) linker symbols, which
5356 are indeed in the unified virtual address space. */
5357
5358 objfile_type->builtin_core_addr
5359 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5360 "__CORE_ADDR");
5361
5362 set_objfile_data (objfile, objfile_type_data, objfile_type);
5363 return objfile_type;
5364 }
5365
5366 extern initialize_file_ftype _initialize_gdbtypes;
5367
5368 void
5369 _initialize_gdbtypes (void)
5370 {
5371 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5372 objfile_type_data = register_objfile_data ();
5373
5374 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5375 _("Set debugging of C++ overloading."),
5376 _("Show debugging of C++ overloading."),
5377 _("When enabled, ranking of the "
5378 "functions is displayed."),
5379 NULL,
5380 show_overload_debug,
5381 &setdebuglist, &showdebuglist);
5382
5383 /* Add user knob for controlling resolution of opaque types. */
5384 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5385 &opaque_type_resolution,
5386 _("Set resolution of opaque struct/class/union"
5387 " types (if set before loading symbols)."),
5388 _("Show resolution of opaque struct/class/union"
5389 " types (if set before loading symbols)."),
5390 NULL, NULL,
5391 show_opaque_type_resolution,
5392 &setlist, &showlist);
5393
5394 /* Add an option to permit non-strict type checking. */
5395 add_setshow_boolean_cmd ("type", class_support,
5396 &strict_type_checking,
5397 _("Set strict type checking."),
5398 _("Show strict type checking."),
5399 NULL, NULL,
5400 show_strict_type_checking,
5401 &setchecklist, &showchecklist);
5402 }
This page took 0.188586 seconds and 5 git commands to generate.