0cc00e74a207ee6db56a6752e7f41fc2cc139d0c
[deliverable/binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2021 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/gdb_optional.h"
50 #include "gdbsupport/offset-type.h"
51 #include "gdbsupport/enum-flags.h"
52 #include "gdbsupport/underlying.h"
53 #include "gdbsupport/print-utils.h"
54 #include "dwarf2.h"
55 #include "gdb_obstack.h"
56 #include "gmp-utils.h"
57
58 /* Forward declarations for prototypes. */
59 struct field;
60 struct block;
61 struct value_print_options;
62 struct language_defn;
63 struct dwarf2_per_cu_data;
64 struct dwarf2_per_objfile;
65
66 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
67 are already DWARF-specific. */
68
69 /* * Offset relative to the start of its containing CU (compilation
70 unit). */
71 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
72
73 /* * Offset relative to the start of its .debug_info or .debug_types
74 section. */
75 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
76
77 static inline char *
78 sect_offset_str (sect_offset offset)
79 {
80 return hex_string (to_underlying (offset));
81 }
82
83 /* Some macros for char-based bitfields. */
84
85 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
86 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
87 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
88 #define B_TYPE unsigned char
89 #define B_BYTES(x) ( 1 + ((x)>>3) )
90 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
91
92 /* * Different kinds of data types are distinguished by the `code'
93 field. */
94
95 enum type_code
96 {
97 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
98 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
99 TYPE_CODE_PTR, /**< Pointer type */
100
101 /* * Array type with lower & upper bounds.
102
103 Regardless of the language, GDB represents multidimensional
104 array types the way C does: as arrays of arrays. So an
105 instance of a GDB array type T can always be seen as a series
106 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
107 memory.
108
109 Row-major languages like C lay out multi-dimensional arrays so
110 that incrementing the rightmost index in a subscripting
111 expression results in the smallest change in the address of the
112 element referred to. Column-major languages like Fortran lay
113 them out so that incrementing the leftmost index results in the
114 smallest change.
115
116 This means that, in column-major languages, working our way
117 from type to target type corresponds to working through indices
118 from right to left, not left to right. */
119 TYPE_CODE_ARRAY,
120
121 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
122 TYPE_CODE_UNION, /**< C union or Pascal variant part */
123 TYPE_CODE_ENUM, /**< Enumeration type */
124 TYPE_CODE_FLAGS, /**< Bit flags type */
125 TYPE_CODE_FUNC, /**< Function type */
126 TYPE_CODE_INT, /**< Integer type */
127
128 /* * Floating type. This is *NOT* a complex type. */
129 TYPE_CODE_FLT,
130
131 /* * Void type. The length field specifies the length (probably
132 always one) which is used in pointer arithmetic involving
133 pointers to this type, but actually dereferencing such a
134 pointer is invalid; a void type has no length and no actual
135 representation in memory or registers. A pointer to a void
136 type is a generic pointer. */
137 TYPE_CODE_VOID,
138
139 TYPE_CODE_SET, /**< Pascal sets */
140 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
141
142 /* * A string type which is like an array of character but prints
143 differently. It does not contain a length field as Pascal
144 strings (for many Pascals, anyway) do; if we want to deal with
145 such strings, we should use a new type code. */
146 TYPE_CODE_STRING,
147
148 /* * Unknown type. The length field is valid if we were able to
149 deduce that much about the type, or 0 if we don't even know
150 that. */
151 TYPE_CODE_ERROR,
152
153 /* C++ */
154 TYPE_CODE_METHOD, /**< Method type */
155
156 /* * Pointer-to-member-function type. This describes how to access a
157 particular member function of a class (possibly a virtual
158 member function). The representation may vary between different
159 C++ ABIs. */
160 TYPE_CODE_METHODPTR,
161
162 /* * Pointer-to-member type. This is the offset within a class to
163 some particular data member. The only currently supported
164 representation uses an unbiased offset, with -1 representing
165 NULL; this is used by the Itanium C++ ABI (used by GCC on all
166 platforms). */
167 TYPE_CODE_MEMBERPTR,
168
169 TYPE_CODE_REF, /**< C++ Reference types */
170
171 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
172
173 TYPE_CODE_CHAR, /**< *real* character type */
174
175 /* * Boolean type. 0 is false, 1 is true, and other values are
176 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
177 TYPE_CODE_BOOL,
178
179 /* Fortran */
180 TYPE_CODE_COMPLEX, /**< Complex float */
181
182 TYPE_CODE_TYPEDEF,
183
184 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
185
186 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
187
188 TYPE_CODE_MODULE, /**< Fortran module. */
189
190 /* * Internal function type. */
191 TYPE_CODE_INTERNAL_FUNCTION,
192
193 /* * Methods implemented in extension languages. */
194 TYPE_CODE_XMETHOD,
195
196 /* * Fixed Point type. */
197 TYPE_CODE_FIXED_POINT,
198 };
199
200 /* * Some bits for the type's instance_flags word. See the macros
201 below for documentation on each bit. */
202
203 enum type_instance_flag_value : unsigned
204 {
205 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
206 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
207 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
208 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
209 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
210 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
211 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
212 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
213 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
214 };
215
216 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
217
218 /* * Not textual. By default, GDB treats all single byte integers as
219 characters (or elements of strings) unless this flag is set. */
220
221 #define TYPE_NOTTEXT(t) (((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_NOTTEXT)
222
223 /* * Constant type. If this is set, the corresponding type has a
224 const modifier. */
225
226 #define TYPE_CONST(t) ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CONST) != 0)
227
228 /* * Volatile type. If this is set, the corresponding type has a
229 volatile modifier. */
230
231 #define TYPE_VOLATILE(t) \
232 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
233
234 /* * Restrict type. If this is set, the corresponding type has a
235 restrict modifier. */
236
237 #define TYPE_RESTRICT(t) \
238 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
239
240 /* * Atomic type. If this is set, the corresponding type has an
241 _Atomic modifier. */
242
243 #define TYPE_ATOMIC(t) \
244 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
245
246 /* * True if this type represents either an lvalue or lvalue reference type. */
247
248 #define TYPE_IS_REFERENCE(t) \
249 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
250
251 /* * True if this type is allocatable. */
252 #define TYPE_IS_ALLOCATABLE(t) \
253 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
254
255 /* * True if this type has variant parts. */
256 #define TYPE_HAS_VARIANT_PARTS(t) \
257 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
258
259 /* * True if this type has a dynamic length. */
260 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
261 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
262
263 /* * Instruction-space delimited type. This is for Harvard architectures
264 which have separate instruction and data address spaces (and perhaps
265 others).
266
267 GDB usually defines a flat address space that is a superset of the
268 architecture's two (or more) address spaces, but this is an extension
269 of the architecture's model.
270
271 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
272 resides in instruction memory, even if its address (in the extended
273 flat address space) does not reflect this.
274
275 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
276 corresponding type resides in the data memory space, even if
277 this is not indicated by its (flat address space) address.
278
279 If neither flag is set, the default space for functions / methods
280 is instruction space, and for data objects is data memory. */
281
282 #define TYPE_CODE_SPACE(t) \
283 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
284
285 #define TYPE_DATA_SPACE(t) \
286 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
287
288 /* * Address class flags. Some environments provide for pointers
289 whose size is different from that of a normal pointer or address
290 types where the bits are interpreted differently than normal
291 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
292 target specific ways to represent these different types of address
293 classes. */
294
295 #define TYPE_ADDRESS_CLASS_1(t) (((t)->instance_flags ()) \
296 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
297 #define TYPE_ADDRESS_CLASS_2(t) (((t)->instance_flags ()) \
298 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
299 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
300 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
301 #define TYPE_ADDRESS_CLASS_ALL(t) (((t)->instance_flags ()) \
302 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
303
304 /* * Information about a single discriminant. */
305
306 struct discriminant_range
307 {
308 /* * The range of values for the variant. This is an inclusive
309 range. */
310 ULONGEST low, high;
311
312 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
313 is true if this should be an unsigned comparison; false for
314 signed. */
315 bool contains (ULONGEST value, bool is_unsigned) const
316 {
317 if (is_unsigned)
318 return value >= low && value <= high;
319 LONGEST valuel = (LONGEST) value;
320 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
321 }
322 };
323
324 struct variant_part;
325
326 /* * A single variant. A variant has a list of discriminant values.
327 When the discriminator matches one of these, the variant is
328 enabled. Each variant controls zero or more fields; and may also
329 control other variant parts as well. This struct corresponds to
330 DW_TAG_variant in DWARF. */
331
332 struct variant : allocate_on_obstack
333 {
334 /* * The discriminant ranges for this variant. */
335 gdb::array_view<discriminant_range> discriminants;
336
337 /* * The fields controlled by this variant. This is inclusive on
338 the low end and exclusive on the high end. A variant may not
339 control any fields, in which case the two values will be equal.
340 These are indexes into the type's array of fields. */
341 int first_field;
342 int last_field;
343
344 /* * Variant parts controlled by this variant. */
345 gdb::array_view<variant_part> parts;
346
347 /* * Return true if this is the default variant. The default
348 variant can be recognized because it has no associated
349 discriminants. */
350 bool is_default () const
351 {
352 return discriminants.empty ();
353 }
354
355 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
356 if this should be an unsigned comparison; false for signed. */
357 bool matches (ULONGEST value, bool is_unsigned) const;
358 };
359
360 /* * A variant part. Each variant part has an optional discriminant
361 and holds an array of variants. This struct corresponds to
362 DW_TAG_variant_part in DWARF. */
363
364 struct variant_part : allocate_on_obstack
365 {
366 /* * The index of the discriminant field in the outer type. This is
367 an index into the type's array of fields. If this is -1, there
368 is no discriminant, and only the default variant can be
369 considered to be selected. */
370 int discriminant_index;
371
372 /* * True if this discriminant is unsigned; false if signed. This
373 comes from the type of the discriminant. */
374 bool is_unsigned;
375
376 /* * The variants that are controlled by this variant part. Note
377 that these will always be sorted by field number. */
378 gdb::array_view<variant> variants;
379 };
380
381
382 enum dynamic_prop_kind
383 {
384 PROP_UNDEFINED, /* Not defined. */
385 PROP_CONST, /* Constant. */
386 PROP_ADDR_OFFSET, /* Address offset. */
387 PROP_LOCEXPR, /* Location expression. */
388 PROP_LOCLIST, /* Location list. */
389 PROP_VARIANT_PARTS, /* Variant parts. */
390 PROP_TYPE, /* Type. */
391 PROP_VARIABLE_NAME, /* Variable name. */
392 };
393
394 union dynamic_prop_data
395 {
396 /* Storage for constant property. */
397
398 LONGEST const_val;
399
400 /* Storage for dynamic property. */
401
402 void *baton;
403
404 /* Storage of variant parts for a type. A type with variant parts
405 has all its fields "linearized" -- stored in a single field
406 array, just as if they had all been declared that way. The
407 variant parts are attached via a dynamic property, and then are
408 used to control which fields end up in the final type during
409 dynamic type resolution. */
410
411 const gdb::array_view<variant_part> *variant_parts;
412
413 /* Once a variant type is resolved, we may want to be able to go
414 from the resolved type to the original type. In this case we
415 rewrite the property's kind and set this field. */
416
417 struct type *original_type;
418
419 /* Name of a variable to look up; the variable holds the value of
420 this property. */
421
422 const char *variable_name;
423 };
424
425 /* * Used to store a dynamic property. */
426
427 struct dynamic_prop
428 {
429 dynamic_prop_kind kind () const
430 {
431 return m_kind;
432 }
433
434 void set_undefined ()
435 {
436 m_kind = PROP_UNDEFINED;
437 }
438
439 LONGEST const_val () const
440 {
441 gdb_assert (m_kind == PROP_CONST);
442
443 return m_data.const_val;
444 }
445
446 void set_const_val (LONGEST const_val)
447 {
448 m_kind = PROP_CONST;
449 m_data.const_val = const_val;
450 }
451
452 void *baton () const
453 {
454 gdb_assert (m_kind == PROP_LOCEXPR
455 || m_kind == PROP_LOCLIST
456 || m_kind == PROP_ADDR_OFFSET);
457
458 return m_data.baton;
459 }
460
461 void set_locexpr (void *baton)
462 {
463 m_kind = PROP_LOCEXPR;
464 m_data.baton = baton;
465 }
466
467 void set_loclist (void *baton)
468 {
469 m_kind = PROP_LOCLIST;
470 m_data.baton = baton;
471 }
472
473 void set_addr_offset (void *baton)
474 {
475 m_kind = PROP_ADDR_OFFSET;
476 m_data.baton = baton;
477 }
478
479 const gdb::array_view<variant_part> *variant_parts () const
480 {
481 gdb_assert (m_kind == PROP_VARIANT_PARTS);
482
483 return m_data.variant_parts;
484 }
485
486 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
487 {
488 m_kind = PROP_VARIANT_PARTS;
489 m_data.variant_parts = variant_parts;
490 }
491
492 struct type *original_type () const
493 {
494 gdb_assert (m_kind == PROP_TYPE);
495
496 return m_data.original_type;
497 }
498
499 void set_original_type (struct type *original_type)
500 {
501 m_kind = PROP_TYPE;
502 m_data.original_type = original_type;
503 }
504
505 /* Return the name of the variable that holds this property's value.
506 Only valid for PROP_VARIABLE_NAME. */
507 const char *variable_name () const
508 {
509 gdb_assert (m_kind == PROP_VARIABLE_NAME);
510 return m_data.variable_name;
511 }
512
513 /* Set the name of the variable that holds this property's value,
514 and set this property to be of kind PROP_VARIABLE_NAME. */
515 void set_variable_name (const char *name)
516 {
517 m_kind = PROP_VARIABLE_NAME;
518 m_data.variable_name = name;
519 }
520
521 /* Determine which field of the union dynamic_prop.data is used. */
522 enum dynamic_prop_kind m_kind;
523
524 /* Storage for dynamic or static value. */
525 union dynamic_prop_data m_data;
526 };
527
528 /* Compare two dynamic_prop objects for equality. dynamic_prop
529 instances are equal iff they have the same type and storage. */
530 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
531
532 /* Compare two dynamic_prop objects for inequality. */
533 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
534 {
535 return !(l == r);
536 }
537
538 /* * Define a type's dynamic property node kind. */
539 enum dynamic_prop_node_kind
540 {
541 /* A property providing a type's data location.
542 Evaluating this field yields to the location of an object's data. */
543 DYN_PROP_DATA_LOCATION,
544
545 /* A property representing DW_AT_allocated. The presence of this attribute
546 indicates that the object of the type can be allocated/deallocated. */
547 DYN_PROP_ALLOCATED,
548
549 /* A property representing DW_AT_associated. The presence of this attribute
550 indicated that the object of the type can be associated. */
551 DYN_PROP_ASSOCIATED,
552
553 /* A property providing an array's byte stride. */
554 DYN_PROP_BYTE_STRIDE,
555
556 /* A property holding variant parts. */
557 DYN_PROP_VARIANT_PARTS,
558
559 /* A property holding the size of the type. */
560 DYN_PROP_BYTE_SIZE,
561 };
562
563 /* * List for dynamic type attributes. */
564 struct dynamic_prop_list
565 {
566 /* The kind of dynamic prop in this node. */
567 enum dynamic_prop_node_kind prop_kind;
568
569 /* The dynamic property itself. */
570 struct dynamic_prop prop;
571
572 /* A pointer to the next dynamic property. */
573 struct dynamic_prop_list *next;
574 };
575
576 /* * Determine which field of the union main_type.fields[x].loc is
577 used. */
578
579 enum field_loc_kind
580 {
581 FIELD_LOC_KIND_BITPOS, /**< bitpos */
582 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
583 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
584 FIELD_LOC_KIND_PHYSNAME, /**< physname */
585 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
586 };
587
588 /* * A discriminant to determine which field in the
589 main_type.type_specific union is being used, if any.
590
591 For types such as TYPE_CODE_FLT, the use of this
592 discriminant is really redundant, as we know from the type code
593 which field is going to be used. As such, it would be possible to
594 reduce the size of this enum in order to save a bit or two for
595 other fields of struct main_type. But, since we still have extra
596 room , and for the sake of clarity and consistency, we treat all fields
597 of the union the same way. */
598
599 enum type_specific_kind
600 {
601 TYPE_SPECIFIC_NONE,
602 TYPE_SPECIFIC_CPLUS_STUFF,
603 TYPE_SPECIFIC_GNAT_STUFF,
604 TYPE_SPECIFIC_FLOATFORMAT,
605 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
606 TYPE_SPECIFIC_FUNC,
607 TYPE_SPECIFIC_SELF_TYPE,
608 TYPE_SPECIFIC_INT,
609 TYPE_SPECIFIC_FIXED_POINT,
610 };
611
612 union type_owner
613 {
614 struct objfile *objfile;
615 struct gdbarch *gdbarch;
616 };
617
618 union field_location
619 {
620 /* * Position of this field, counting in bits from start of
621 containing structure. For big-endian targets, it is the bit
622 offset to the MSB. For little-endian targets, it is the bit
623 offset to the LSB. */
624
625 LONGEST bitpos;
626
627 /* * Enum value. */
628 LONGEST enumval;
629
630 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
631 physaddr is the location (in the target) of the static
632 field. Otherwise, physname is the mangled label of the
633 static field. */
634
635 CORE_ADDR physaddr;
636 const char *physname;
637
638 /* * The field location can be computed by evaluating the
639 following DWARF block. Its DATA is allocated on
640 objfile_obstack - no CU load is needed to access it. */
641
642 struct dwarf2_locexpr_baton *dwarf_block;
643 };
644
645 struct field
646 {
647 struct type *type () const
648 {
649 return this->m_type;
650 }
651
652 void set_type (struct type *type)
653 {
654 this->m_type = type;
655 }
656
657 union field_location loc;
658
659 /* * For a function or member type, this is 1 if the argument is
660 marked artificial. Artificial arguments should not be shown
661 to the user. For TYPE_CODE_RANGE it is set if the specific
662 bound is not defined. */
663
664 unsigned int artificial : 1;
665
666 /* * Discriminant for union field_location. */
667
668 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
669
670 /* * Size of this field, in bits, or zero if not packed.
671 If non-zero in an array type, indicates the element size in
672 bits (used only in Ada at the moment).
673 For an unpacked field, the field's type's length
674 says how many bytes the field occupies. */
675
676 unsigned int bitsize : 28;
677
678 /* * In a struct or union type, type of this field.
679 - In a function or member type, type of this argument.
680 - In an array type, the domain-type of the array. */
681
682 struct type *m_type;
683
684 /* * Name of field, value or argument.
685 NULL for range bounds, array domains, and member function
686 arguments. */
687
688 const char *name;
689 };
690
691 struct range_bounds
692 {
693 ULONGEST bit_stride () const
694 {
695 if (this->flag_is_byte_stride)
696 return this->stride.const_val () * 8;
697 else
698 return this->stride.const_val ();
699 }
700
701 /* * Low bound of range. */
702
703 struct dynamic_prop low;
704
705 /* * High bound of range. */
706
707 struct dynamic_prop high;
708
709 /* The stride value for this range. This can be stored in bits or bytes
710 based on the value of BYTE_STRIDE_P. It is optional to have a stride
711 value, if this range has no stride value defined then this will be set
712 to the constant zero. */
713
714 struct dynamic_prop stride;
715
716 /* * The bias. Sometimes a range value is biased before storage.
717 The bias is added to the stored bits to form the true value. */
718
719 LONGEST bias;
720
721 /* True if HIGH range bound contains the number of elements in the
722 subrange. This affects how the final high bound is computed. */
723
724 unsigned int flag_upper_bound_is_count : 1;
725
726 /* True if LOW or/and HIGH are resolved into a static bound from
727 a dynamic one. */
728
729 unsigned int flag_bound_evaluated : 1;
730
731 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
732
733 unsigned int flag_is_byte_stride : 1;
734 };
735
736 /* Compare two range_bounds objects for equality. Simply does
737 memberwise comparison. */
738 extern bool operator== (const range_bounds &l, const range_bounds &r);
739
740 /* Compare two range_bounds objects for inequality. */
741 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
742 {
743 return !(l == r);
744 }
745
746 union type_specific
747 {
748 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
749 point to cplus_struct_default, a default static instance of a
750 struct cplus_struct_type. */
751
752 struct cplus_struct_type *cplus_stuff;
753
754 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
755 provides additional information. */
756
757 struct gnat_aux_type *gnat_stuff;
758
759 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
760 floatformat object that describes the floating-point value
761 that resides within the type. */
762
763 const struct floatformat *floatformat;
764
765 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
766
767 struct func_type *func_stuff;
768
769 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
770 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
771 is a member of. */
772
773 struct type *self_type;
774
775 /* * For TYPE_CODE_FIXED_POINT types, the info necessary to decode
776 values of that type. */
777 struct fixed_point_type_info *fixed_point_info;
778
779 /* * An integer-like scalar type may be stored in just part of its
780 enclosing storage bytes. This structure describes this
781 situation. */
782 struct
783 {
784 /* * The bit size of the integer. This can be 0. For integers
785 that fill their storage (the ordinary case), this field holds
786 the byte size times 8. */
787 unsigned short bit_size;
788 /* * The bit offset of the integer. This is ordinarily 0, and can
789 only be non-zero if the bit size is less than the storage
790 size. */
791 unsigned short bit_offset;
792 } int_stuff;
793 };
794
795 /* * Main structure representing a type in GDB.
796
797 This structure is space-critical. Its layout has been tweaked to
798 reduce the space used. */
799
800 struct main_type
801 {
802 /* * Code for kind of type. */
803
804 ENUM_BITFIELD(type_code) code : 8;
805
806 /* * Flags about this type. These fields appear at this location
807 because they packs nicely here. See the TYPE_* macros for
808 documentation about these fields. */
809
810 unsigned int m_flag_unsigned : 1;
811 unsigned int m_flag_nosign : 1;
812 unsigned int m_flag_stub : 1;
813 unsigned int m_flag_target_stub : 1;
814 unsigned int m_flag_prototyped : 1;
815 unsigned int m_flag_varargs : 1;
816 unsigned int m_flag_vector : 1;
817 unsigned int m_flag_stub_supported : 1;
818 unsigned int m_flag_gnu_ifunc : 1;
819 unsigned int m_flag_fixed_instance : 1;
820 unsigned int m_flag_objfile_owned : 1;
821 unsigned int m_flag_endianity_not_default : 1;
822
823 /* * True if this type was declared with "class" rather than
824 "struct". */
825
826 unsigned int m_flag_declared_class : 1;
827
828 /* * True if this is an enum type with disjoint values. This
829 affects how the enum is printed. */
830
831 unsigned int m_flag_flag_enum : 1;
832
833 /* * A discriminant telling us which field of the type_specific
834 union is being used for this type, if any. */
835
836 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
837
838 /* * Number of fields described for this type. This field appears
839 at this location because it packs nicely here. */
840
841 short nfields;
842
843 /* * Name of this type, or NULL if none.
844
845 This is used for printing only. For looking up a name, look for
846 a symbol in the VAR_DOMAIN. This is generally allocated in the
847 objfile's obstack. However coffread.c uses malloc. */
848
849 const char *name;
850
851 /* * Every type is now associated with a particular objfile, and the
852 type is allocated on the objfile_obstack for that objfile. One
853 problem however, is that there are times when gdb allocates new
854 types while it is not in the process of reading symbols from a
855 particular objfile. Fortunately, these happen when the type
856 being created is a derived type of an existing type, such as in
857 lookup_pointer_type(). So we can just allocate the new type
858 using the same objfile as the existing type, but to do this we
859 need a backpointer to the objfile from the existing type. Yes
860 this is somewhat ugly, but without major overhaul of the internal
861 type system, it can't be avoided for now. */
862
863 union type_owner m_owner;
864
865 /* * For a pointer type, describes the type of object pointed to.
866 - For an array type, describes the type of the elements.
867 - For a function or method type, describes the type of the return value.
868 - For a range type, describes the type of the full range.
869 - For a complex type, describes the type of each coordinate.
870 - For a special record or union type encoding a dynamic-sized type
871 in GNAT, a memoized pointer to a corresponding static version of
872 the type.
873 - Unused otherwise. */
874
875 struct type *target_type;
876
877 /* * For structure and union types, a description of each field.
878 For set and pascal array types, there is one "field",
879 whose type is the domain type of the set or array.
880 For range types, there are two "fields",
881 the minimum and maximum values (both inclusive).
882 For enum types, each possible value is described by one "field".
883 For a function or method type, a "field" for each parameter.
884 For C++ classes, there is one field for each base class (if it is
885 a derived class) plus one field for each class data member. Member
886 functions are recorded elsewhere.
887
888 Using a pointer to a separate array of fields
889 allows all types to have the same size, which is useful
890 because we can allocate the space for a type before
891 we know what to put in it. */
892
893 union
894 {
895 struct field *fields;
896
897 /* * Union member used for range types. */
898
899 struct range_bounds *bounds;
900
901 /* If this is a scalar type, then this is its corresponding
902 complex type. */
903 struct type *complex_type;
904
905 } flds_bnds;
906
907 /* * Slot to point to additional language-specific fields of this
908 type. */
909
910 union type_specific type_specific;
911
912 /* * Contains all dynamic type properties. */
913 struct dynamic_prop_list *dyn_prop_list;
914 };
915
916 /* * Number of bits allocated for alignment. */
917
918 #define TYPE_ALIGN_BITS 8
919
920 /* * A ``struct type'' describes a particular instance of a type, with
921 some particular qualification. */
922
923 struct type
924 {
925 /* Get the type code of this type.
926
927 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
928 type, you need to do `check_typedef (type)->code ()`. */
929 type_code code () const
930 {
931 return this->main_type->code;
932 }
933
934 /* Set the type code of this type. */
935 void set_code (type_code code)
936 {
937 this->main_type->code = code;
938 }
939
940 /* Get the name of this type. */
941 const char *name () const
942 {
943 return this->main_type->name;
944 }
945
946 /* Set the name of this type. */
947 void set_name (const char *name)
948 {
949 this->main_type->name = name;
950 }
951
952 /* Get the number of fields of this type. */
953 int num_fields () const
954 {
955 return this->main_type->nfields;
956 }
957
958 /* Set the number of fields of this type. */
959 void set_num_fields (int num_fields)
960 {
961 this->main_type->nfields = num_fields;
962 }
963
964 /* Get the fields array of this type. */
965 struct field *fields () const
966 {
967 return this->main_type->flds_bnds.fields;
968 }
969
970 /* Get the field at index IDX. */
971 struct field &field (int idx) const
972 {
973 return this->fields ()[idx];
974 }
975
976 /* Set the fields array of this type. */
977 void set_fields (struct field *fields)
978 {
979 this->main_type->flds_bnds.fields = fields;
980 }
981
982 type *index_type () const
983 {
984 return this->field (0).type ();
985 }
986
987 void set_index_type (type *index_type)
988 {
989 this->field (0).set_type (index_type);
990 }
991
992 /* Return the instance flags converted to the correct type. */
993 const type_instance_flags instance_flags () const
994 {
995 return (enum type_instance_flag_value) this->m_instance_flags;
996 }
997
998 /* Set the instance flags. */
999 void set_instance_flags (type_instance_flags flags)
1000 {
1001 this->m_instance_flags = flags;
1002 }
1003
1004 /* Get the bounds bounds of this type. The type must be a range type. */
1005 range_bounds *bounds () const
1006 {
1007 switch (this->code ())
1008 {
1009 case TYPE_CODE_RANGE:
1010 return this->main_type->flds_bnds.bounds;
1011
1012 case TYPE_CODE_ARRAY:
1013 case TYPE_CODE_STRING:
1014 return this->index_type ()->bounds ();
1015
1016 default:
1017 gdb_assert_not_reached
1018 ("type::bounds called on type with invalid code");
1019 }
1020 }
1021
1022 /* Set the bounds of this type. The type must be a range type. */
1023 void set_bounds (range_bounds *bounds)
1024 {
1025 gdb_assert (this->code () == TYPE_CODE_RANGE);
1026
1027 this->main_type->flds_bnds.bounds = bounds;
1028 }
1029
1030 ULONGEST bit_stride () const
1031 {
1032 return this->bounds ()->bit_stride ();
1033 }
1034
1035 /* Unsigned integer type. If this is not set for a TYPE_CODE_INT,
1036 the type is signed (unless TYPE_NOSIGN is set). */
1037
1038 bool is_unsigned () const
1039 {
1040 return this->main_type->m_flag_unsigned;
1041 }
1042
1043 void set_is_unsigned (bool is_unsigned)
1044 {
1045 this->main_type->m_flag_unsigned = is_unsigned;
1046 }
1047
1048 /* No sign for this type. In C++, "char", "signed char", and
1049 "unsigned char" are distinct types; so we need an extra flag to
1050 indicate the absence of a sign! */
1051
1052 bool has_no_signedness () const
1053 {
1054 return this->main_type->m_flag_nosign;
1055 }
1056
1057 void set_has_no_signedness (bool has_no_signedness)
1058 {
1059 this->main_type->m_flag_nosign = has_no_signedness;
1060 }
1061
1062 /* This appears in a type's flags word if it is a stub type (e.g.,
1063 if someone referenced a type that wasn't defined in a source file
1064 via (struct sir_not_appearing_in_this_film *)). */
1065
1066 bool is_stub () const
1067 {
1068 return this->main_type->m_flag_stub;
1069 }
1070
1071 void set_is_stub (bool is_stub)
1072 {
1073 this->main_type->m_flag_stub = is_stub;
1074 }
1075
1076 /* The target type of this type is a stub type, and this type needs
1077 to be updated if it gets un-stubbed in check_typedef. Used for
1078 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
1079 based on the TYPE_LENGTH of the target type. Also, set for
1080 TYPE_CODE_TYPEDEF. */
1081
1082 bool target_is_stub () const
1083 {
1084 return this->main_type->m_flag_target_stub;
1085 }
1086
1087 void set_target_is_stub (bool target_is_stub)
1088 {
1089 this->main_type->m_flag_target_stub = target_is_stub;
1090 }
1091
1092 /* This is a function type which appears to have a prototype. We
1093 need this for function calls in order to tell us if it's necessary
1094 to coerce the args, or to just do the standard conversions. This
1095 is used with a short field. */
1096
1097 bool is_prototyped () const
1098 {
1099 return this->main_type->m_flag_prototyped;
1100 }
1101
1102 void set_is_prototyped (bool is_prototyped)
1103 {
1104 this->main_type->m_flag_prototyped = is_prototyped;
1105 }
1106
1107 /* FIXME drow/2002-06-03: Only used for methods, but applies as well
1108 to functions. */
1109
1110 bool has_varargs () const
1111 {
1112 return this->main_type->m_flag_varargs;
1113 }
1114
1115 void set_has_varargs (bool has_varargs)
1116 {
1117 this->main_type->m_flag_varargs = has_varargs;
1118 }
1119
1120 /* Identify a vector type. Gcc is handling this by adding an extra
1121 attribute to the array type. We slurp that in as a new flag of a
1122 type. This is used only in dwarf2read.c. */
1123
1124 bool is_vector () const
1125 {
1126 return this->main_type->m_flag_vector;
1127 }
1128
1129 void set_is_vector (bool is_vector)
1130 {
1131 this->main_type->m_flag_vector = is_vector;
1132 }
1133
1134 /* This debug target supports TYPE_STUB(t). In the unsupported case
1135 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
1136 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
1137 guessed the TYPE_STUB(t) value (see dwarfread.c). */
1138
1139 bool stub_is_supported () const
1140 {
1141 return this->main_type->m_flag_stub_supported;
1142 }
1143
1144 void set_stub_is_supported (bool stub_is_supported)
1145 {
1146 this->main_type->m_flag_stub_supported = stub_is_supported;
1147 }
1148
1149 /* Used only for TYPE_CODE_FUNC where it specifies the real function
1150 address is returned by this function call. TYPE_TARGET_TYPE
1151 determines the final returned function type to be presented to
1152 user. */
1153
1154 bool is_gnu_ifunc () const
1155 {
1156 return this->main_type->m_flag_gnu_ifunc;
1157 }
1158
1159 void set_is_gnu_ifunc (bool is_gnu_ifunc)
1160 {
1161 this->main_type->m_flag_gnu_ifunc = is_gnu_ifunc;
1162 }
1163
1164 /* The debugging formats (especially STABS) do not contain enough
1165 information to represent all Ada types---especially those whose
1166 size depends on dynamic quantities. Therefore, the GNAT Ada
1167 compiler includes extra information in the form of additional type
1168 definitions connected by naming conventions. This flag indicates
1169 that the type is an ordinary (unencoded) GDB type that has been
1170 created from the necessary run-time information, and does not need
1171 further interpretation. Optionally marks ordinary, fixed-size GDB
1172 type. */
1173
1174 bool is_fixed_instance () const
1175 {
1176 return this->main_type->m_flag_fixed_instance;
1177 }
1178
1179 void set_is_fixed_instance (bool is_fixed_instance)
1180 {
1181 this->main_type->m_flag_fixed_instance = is_fixed_instance;
1182 }
1183
1184 /* A compiler may supply dwarf instrumentation that indicates the desired
1185 endian interpretation of the variable differs from the native endian
1186 representation. */
1187
1188 bool endianity_is_not_default () const
1189 {
1190 return this->main_type->m_flag_endianity_not_default;
1191 }
1192
1193 void set_endianity_is_not_default (bool endianity_is_not_default)
1194 {
1195 this->main_type->m_flag_endianity_not_default = endianity_is_not_default;
1196 }
1197
1198
1199 /* True if this type was declared using the "class" keyword. This is
1200 only valid for C++ structure and enum types. If false, a structure
1201 was declared as a "struct"; if true it was declared "class". For
1202 enum types, this is true when "enum class" or "enum struct" was
1203 used to declare the type. */
1204
1205 bool is_declared_class () const
1206 {
1207 return this->main_type->m_flag_declared_class;
1208 }
1209
1210 void set_is_declared_class (bool is_declared_class) const
1211 {
1212 this->main_type->m_flag_declared_class = is_declared_class;
1213 }
1214
1215 /* True if this type is a "flag" enum. A flag enum is one where all
1216 the values are pairwise disjoint when "and"ed together. This
1217 affects how enum values are printed. */
1218
1219 bool is_flag_enum () const
1220 {
1221 return this->main_type->m_flag_flag_enum;
1222 }
1223
1224 void set_is_flag_enum (bool is_flag_enum)
1225 {
1226 this->main_type->m_flag_flag_enum = is_flag_enum;
1227 }
1228
1229 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return a reference
1230 to this type's fixed_point_info. */
1231
1232 struct fixed_point_type_info &fixed_point_info () const
1233 {
1234 gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1235 gdb_assert (this->main_type->type_specific.fixed_point_info != nullptr);
1236
1237 return *this->main_type->type_specific.fixed_point_info;
1238 }
1239
1240 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, set this type's
1241 fixed_point_info to INFO. */
1242
1243 void set_fixed_point_info (struct fixed_point_type_info *info) const
1244 {
1245 gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1246
1247 this->main_type->type_specific.fixed_point_info = info;
1248 }
1249
1250 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its base type.
1251
1252 In other words, this returns the type after having peeled all
1253 intermediate type layers (such as TYPE_CODE_RANGE, for instance).
1254 The TYPE_CODE of the type returned is guaranteed to be
1255 a TYPE_CODE_FIXED_POINT. */
1256
1257 struct type *fixed_point_type_base_type ();
1258
1259 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its scaling
1260 factor. */
1261
1262 const gdb_mpq &fixed_point_scaling_factor ();
1263
1264 /* * Return the dynamic property of the requested KIND from this type's
1265 list of dynamic properties. */
1266 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1267
1268 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1269 property to this type.
1270
1271 This function assumes that this type is objfile-owned. */
1272 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1273
1274 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1275 void remove_dyn_prop (dynamic_prop_node_kind kind);
1276
1277 /* Return true if this type is owned by an objfile. Return false if it is
1278 owned by an architecture. */
1279 bool is_objfile_owned () const
1280 {
1281 return this->main_type->m_flag_objfile_owned;
1282 }
1283
1284 /* Set the owner of the type to be OBJFILE. */
1285 void set_owner (objfile *objfile)
1286 {
1287 gdb_assert (objfile != nullptr);
1288
1289 this->main_type->m_owner.objfile = objfile;
1290 this->main_type->m_flag_objfile_owned = true;
1291 }
1292
1293 /* Set the owner of the type to be ARCH. */
1294 void set_owner (gdbarch *arch)
1295 {
1296 gdb_assert (arch != nullptr);
1297
1298 this->main_type->m_owner.gdbarch = arch;
1299 this->main_type->m_flag_objfile_owned = false;
1300 }
1301
1302 /* Return the objfile owner of this type.
1303
1304 Return nullptr if this type is not objfile-owned. */
1305 struct objfile *objfile_owner () const
1306 {
1307 if (!this->is_objfile_owned ())
1308 return nullptr;
1309
1310 return this->main_type->m_owner.objfile;
1311 }
1312
1313 /* Return the gdbarch owner of this type.
1314
1315 Return nullptr if this type is not gdbarch-owned. */
1316 gdbarch *arch_owner () const
1317 {
1318 if (this->is_objfile_owned ())
1319 return nullptr;
1320
1321 return this->main_type->m_owner.gdbarch;
1322 }
1323
1324 /* Return the type's architecture. For types owned by an
1325 architecture, that architecture is returned. For types owned by an
1326 objfile, that objfile's architecture is returned.
1327
1328 The return value is always non-nullptr. */
1329 gdbarch *arch () const;
1330
1331 /* * Return true if this is an integer type whose logical (bit) size
1332 differs from its storage size; false otherwise. Always return
1333 false for non-integer (i.e., non-TYPE_SPECIFIC_INT) types. */
1334 bool bit_size_differs_p () const
1335 {
1336 return (main_type->type_specific_field == TYPE_SPECIFIC_INT
1337 && main_type->type_specific.int_stuff.bit_size != 8 * length);
1338 }
1339
1340 /* * Return the logical (bit) size for this integer type. Only
1341 valid for integer (TYPE_SPECIFIC_INT) types. */
1342 unsigned short bit_size () const
1343 {
1344 gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1345 return main_type->type_specific.int_stuff.bit_size;
1346 }
1347
1348 /* * Return the bit offset for this integer type. Only valid for
1349 integer (TYPE_SPECIFIC_INT) types. */
1350 unsigned short bit_offset () const
1351 {
1352 gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1353 return main_type->type_specific.int_stuff.bit_offset;
1354 }
1355
1356 /* * Type that is a pointer to this type.
1357 NULL if no such pointer-to type is known yet.
1358 The debugger may add the address of such a type
1359 if it has to construct one later. */
1360
1361 struct type *pointer_type;
1362
1363 /* * C++: also need a reference type. */
1364
1365 struct type *reference_type;
1366
1367 /* * A C++ rvalue reference type added in C++11. */
1368
1369 struct type *rvalue_reference_type;
1370
1371 /* * Variant chain. This points to a type that differs from this
1372 one only in qualifiers and length. Currently, the possible
1373 qualifiers are const, volatile, code-space, data-space, and
1374 address class. The length may differ only when one of the
1375 address class flags are set. The variants are linked in a
1376 circular ring and share MAIN_TYPE. */
1377
1378 struct type *chain;
1379
1380 /* * The alignment for this type. Zero means that the alignment was
1381 not specified in the debug info. Note that this is stored in a
1382 funny way: as the log base 2 (plus 1) of the alignment; so a
1383 value of 1 means the alignment is 1, and a value of 9 means the
1384 alignment is 256. */
1385
1386 unsigned align_log2 : TYPE_ALIGN_BITS;
1387
1388 /* * Flags specific to this instance of the type, indicating where
1389 on the ring we are.
1390
1391 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1392 binary or-ed with the target type, with a special case for
1393 address class and space class. For example if this typedef does
1394 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1395 instance flags are completely inherited from the target type. No
1396 qualifiers can be cleared by the typedef. See also
1397 check_typedef. */
1398 unsigned m_instance_flags : 9;
1399
1400 /* * Length of storage for a value of this type. The value is the
1401 expression in host bytes of what sizeof(type) would return. This
1402 size includes padding. For example, an i386 extended-precision
1403 floating point value really only occupies ten bytes, but most
1404 ABI's declare its size to be 12 bytes, to preserve alignment.
1405 A `struct type' representing such a floating-point type would
1406 have a `length' value of 12, even though the last two bytes are
1407 unused.
1408
1409 Since this field is expressed in host bytes, its value is appropriate
1410 to pass to memcpy and such (it is assumed that GDB itself always runs
1411 on an 8-bits addressable architecture). However, when using it for
1412 target address arithmetic (e.g. adding it to a target address), the
1413 type_length_units function should be used in order to get the length
1414 expressed in target addressable memory units. */
1415
1416 ULONGEST length;
1417
1418 /* * Core type, shared by a group of qualified types. */
1419
1420 struct main_type *main_type;
1421 };
1422
1423 struct fn_fieldlist
1424 {
1425
1426 /* * The overloaded name.
1427 This is generally allocated in the objfile's obstack.
1428 However stabsread.c sometimes uses malloc. */
1429
1430 const char *name;
1431
1432 /* * The number of methods with this name. */
1433
1434 int length;
1435
1436 /* * The list of methods. */
1437
1438 struct fn_field *fn_fields;
1439 };
1440
1441
1442
1443 struct fn_field
1444 {
1445 /* * If is_stub is clear, this is the mangled name which we can look
1446 up to find the address of the method (FIXME: it would be cleaner
1447 to have a pointer to the struct symbol here instead).
1448
1449 If is_stub is set, this is the portion of the mangled name which
1450 specifies the arguments. For example, "ii", if there are two int
1451 arguments, or "" if there are no arguments. See gdb_mangle_name
1452 for the conversion from this format to the one used if is_stub is
1453 clear. */
1454
1455 const char *physname;
1456
1457 /* * The function type for the method.
1458
1459 (This comment used to say "The return value of the method", but
1460 that's wrong. The function type is expected here, i.e. something
1461 with TYPE_CODE_METHOD, and *not* the return-value type). */
1462
1463 struct type *type;
1464
1465 /* * For virtual functions. First baseclass that defines this
1466 virtual function. */
1467
1468 struct type *fcontext;
1469
1470 /* Attributes. */
1471
1472 unsigned int is_const:1;
1473 unsigned int is_volatile:1;
1474 unsigned int is_private:1;
1475 unsigned int is_protected:1;
1476 unsigned int is_artificial:1;
1477
1478 /* * A stub method only has some fields valid (but they are enough
1479 to reconstruct the rest of the fields). */
1480
1481 unsigned int is_stub:1;
1482
1483 /* * True if this function is a constructor, false otherwise. */
1484
1485 unsigned int is_constructor : 1;
1486
1487 /* * True if this function is deleted, false otherwise. */
1488
1489 unsigned int is_deleted : 1;
1490
1491 /* * DW_AT_defaulted attribute for this function. The value is one
1492 of the DW_DEFAULTED constants. */
1493
1494 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1495
1496 /* * Unused. */
1497
1498 unsigned int dummy:6;
1499
1500 /* * Index into that baseclass's virtual function table, minus 2;
1501 else if static: VOFFSET_STATIC; else: 0. */
1502
1503 unsigned int voffset:16;
1504
1505 #define VOFFSET_STATIC 1
1506
1507 };
1508
1509 struct decl_field
1510 {
1511 /* * Unqualified name to be prefixed by owning class qualified
1512 name. */
1513
1514 const char *name;
1515
1516 /* * Type this typedef named NAME represents. */
1517
1518 struct type *type;
1519
1520 /* * True if this field was declared protected, false otherwise. */
1521 unsigned int is_protected : 1;
1522
1523 /* * True if this field was declared private, false otherwise. */
1524 unsigned int is_private : 1;
1525 };
1526
1527 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1528 TYPE_CODE_UNION nodes. */
1529
1530 struct cplus_struct_type
1531 {
1532 /* * Number of base classes this type derives from. The
1533 baseclasses are stored in the first N_BASECLASSES fields
1534 (i.e. the `fields' field of the struct type). The only fields
1535 of struct field that are used are: type, name, loc.bitpos. */
1536
1537 short n_baseclasses;
1538
1539 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1540 All access to this field must be through TYPE_VPTR_FIELDNO as one
1541 thing it does is check whether the field has been initialized.
1542 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1543 which for portability reasons doesn't initialize this field.
1544 TYPE_VPTR_FIELDNO returns -1 for this case.
1545
1546 If -1, we were unable to find the virtual function table pointer in
1547 initial symbol reading, and get_vptr_fieldno should be called to find
1548 it if possible. get_vptr_fieldno will update this field if possible.
1549 Otherwise the value is left at -1.
1550
1551 Unused if this type does not have virtual functions. */
1552
1553 short vptr_fieldno;
1554
1555 /* * Number of methods with unique names. All overloaded methods
1556 with the same name count only once. */
1557
1558 short nfn_fields;
1559
1560 /* * Number of template arguments. */
1561
1562 unsigned short n_template_arguments;
1563
1564 /* * One if this struct is a dynamic class, as defined by the
1565 Itanium C++ ABI: if it requires a virtual table pointer,
1566 because it or any of its base classes have one or more virtual
1567 member functions or virtual base classes. Minus one if not
1568 dynamic. Zero if not yet computed. */
1569
1570 int is_dynamic : 2;
1571
1572 /* * The calling convention for this type, fetched from the
1573 DW_AT_calling_convention attribute. The value is one of the
1574 DW_CC constants. */
1575
1576 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1577
1578 /* * The base class which defined the virtual function table pointer. */
1579
1580 struct type *vptr_basetype;
1581
1582 /* * For derived classes, the number of base classes is given by
1583 n_baseclasses and virtual_field_bits is a bit vector containing
1584 one bit per base class. If the base class is virtual, the
1585 corresponding bit will be set.
1586 I.E, given:
1587
1588 class A{};
1589 class B{};
1590 class C : public B, public virtual A {};
1591
1592 B is a baseclass of C; A is a virtual baseclass for C.
1593 This is a C++ 2.0 language feature. */
1594
1595 B_TYPE *virtual_field_bits;
1596
1597 /* * For classes with private fields, the number of fields is
1598 given by nfields and private_field_bits is a bit vector
1599 containing one bit per field.
1600
1601 If the field is private, the corresponding bit will be set. */
1602
1603 B_TYPE *private_field_bits;
1604
1605 /* * For classes with protected fields, the number of fields is
1606 given by nfields and protected_field_bits is a bit vector
1607 containing one bit per field.
1608
1609 If the field is private, the corresponding bit will be set. */
1610
1611 B_TYPE *protected_field_bits;
1612
1613 /* * For classes with fields to be ignored, either this is
1614 optimized out or this field has length 0. */
1615
1616 B_TYPE *ignore_field_bits;
1617
1618 /* * For classes, structures, and unions, a description of each
1619 field, which consists of an overloaded name, followed by the
1620 types of arguments that the method expects, and then the name
1621 after it has been renamed to make it distinct.
1622
1623 fn_fieldlists points to an array of nfn_fields of these. */
1624
1625 struct fn_fieldlist *fn_fieldlists;
1626
1627 /* * typedefs defined inside this class. typedef_field points to
1628 an array of typedef_field_count elements. */
1629
1630 struct decl_field *typedef_field;
1631
1632 unsigned typedef_field_count;
1633
1634 /* * The nested types defined by this type. nested_types points to
1635 an array of nested_types_count elements. */
1636
1637 struct decl_field *nested_types;
1638
1639 unsigned nested_types_count;
1640
1641 /* * The template arguments. This is an array with
1642 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1643 classes. */
1644
1645 struct symbol **template_arguments;
1646 };
1647
1648 /* * Struct used to store conversion rankings. */
1649
1650 struct rank
1651 {
1652 short rank;
1653
1654 /* * When two conversions are of the same type and therefore have
1655 the same rank, subrank is used to differentiate the two.
1656
1657 Eg: Two derived-class-pointer to base-class-pointer conversions
1658 would both have base pointer conversion rank, but the
1659 conversion with the shorter distance to the ancestor is
1660 preferable. 'subrank' would be used to reflect that. */
1661
1662 short subrank;
1663 };
1664
1665 /* * Used for ranking a function for overload resolution. */
1666
1667 typedef std::vector<rank> badness_vector;
1668
1669 /* * GNAT Ada-specific information for various Ada types. */
1670
1671 struct gnat_aux_type
1672 {
1673 /* * Parallel type used to encode information about dynamic types
1674 used in Ada (such as variant records, variable-size array,
1675 etc). */
1676 struct type* descriptive_type;
1677 };
1678
1679 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1680
1681 struct func_type
1682 {
1683 /* * The calling convention for targets supporting multiple ABIs.
1684 Right now this is only fetched from the Dwarf-2
1685 DW_AT_calling_convention attribute. The value is one of the
1686 DW_CC constants. */
1687
1688 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1689
1690 /* * Whether this function normally returns to its caller. It is
1691 set from the DW_AT_noreturn attribute if set on the
1692 DW_TAG_subprogram. */
1693
1694 unsigned int is_noreturn : 1;
1695
1696 /* * Only those DW_TAG_call_site's in this function that have
1697 DW_AT_call_tail_call set are linked in this list. Function
1698 without its tail call list complete
1699 (DW_AT_call_all_tail_calls or its superset
1700 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1701 DW_TAG_call_site's exist in such function. */
1702
1703 struct call_site *tail_call_list;
1704
1705 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1706 contains the method. */
1707
1708 struct type *self_type;
1709 };
1710
1711 /* struct call_site_parameter can be referenced in callees by several ways. */
1712
1713 enum call_site_parameter_kind
1714 {
1715 /* * Use field call_site_parameter.u.dwarf_reg. */
1716 CALL_SITE_PARAMETER_DWARF_REG,
1717
1718 /* * Use field call_site_parameter.u.fb_offset. */
1719 CALL_SITE_PARAMETER_FB_OFFSET,
1720
1721 /* * Use field call_site_parameter.u.param_offset. */
1722 CALL_SITE_PARAMETER_PARAM_OFFSET
1723 };
1724
1725 struct call_site_target
1726 {
1727 union field_location loc;
1728
1729 /* * Discriminant for union field_location. */
1730
1731 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1732 };
1733
1734 union call_site_parameter_u
1735 {
1736 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1737 as DWARF register number, for register passed
1738 parameters. */
1739
1740 int dwarf_reg;
1741
1742 /* * Offset from the callee's frame base, for stack passed
1743 parameters. This equals offset from the caller's stack
1744 pointer. */
1745
1746 CORE_ADDR fb_offset;
1747
1748 /* * Offset relative to the start of this PER_CU to
1749 DW_TAG_formal_parameter which is referenced by both
1750 caller and the callee. */
1751
1752 cu_offset param_cu_off;
1753 };
1754
1755 struct call_site_parameter
1756 {
1757 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1758
1759 union call_site_parameter_u u;
1760
1761 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1762
1763 const gdb_byte *value;
1764 size_t value_size;
1765
1766 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1767 It may be NULL if not provided by DWARF. */
1768
1769 const gdb_byte *data_value;
1770 size_t data_value_size;
1771 };
1772
1773 /* * A place where a function gets called from, represented by
1774 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1775
1776 struct call_site
1777 {
1778 /* * Address of the first instruction after this call. It must be
1779 the first field as we overload core_addr_hash and core_addr_eq
1780 for it. */
1781
1782 CORE_ADDR pc;
1783
1784 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1785
1786 struct call_site *tail_call_next;
1787
1788 /* * Describe DW_AT_call_target. Missing attribute uses
1789 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1790
1791 struct call_site_target target;
1792
1793 /* * Size of the PARAMETER array. */
1794
1795 unsigned parameter_count;
1796
1797 /* * CU of the function where the call is located. It gets used
1798 for DWARF blocks execution in the parameter array below. */
1799
1800 dwarf2_per_cu_data *per_cu;
1801
1802 /* objfile of the function where the call is located. */
1803
1804 dwarf2_per_objfile *per_objfile;
1805
1806 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1807
1808 struct call_site_parameter parameter[1];
1809 };
1810
1811 /* The type-specific info for TYPE_CODE_FIXED_POINT types. */
1812
1813 struct fixed_point_type_info
1814 {
1815 /* The fixed point type's scaling factor. */
1816 gdb_mpq scaling_factor;
1817 };
1818
1819 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1820 static structure. */
1821
1822 extern const struct cplus_struct_type cplus_struct_default;
1823
1824 extern void allocate_cplus_struct_type (struct type *);
1825
1826 #define INIT_CPLUS_SPECIFIC(type) \
1827 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1828 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1829 &cplus_struct_default)
1830
1831 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1832
1833 #define HAVE_CPLUS_STRUCT(type) \
1834 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1835 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1836
1837 #define INIT_NONE_SPECIFIC(type) \
1838 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1839 TYPE_MAIN_TYPE (type)->type_specific = {})
1840
1841 extern const struct gnat_aux_type gnat_aux_default;
1842
1843 extern void allocate_gnat_aux_type (struct type *);
1844
1845 #define INIT_GNAT_SPECIFIC(type) \
1846 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1847 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1848 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1849 /* * A macro that returns non-zero if the type-specific data should be
1850 read as "gnat-stuff". */
1851 #define HAVE_GNAT_AUX_INFO(type) \
1852 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1853
1854 /* * True if TYPE is known to be an Ada type of some kind. */
1855 #define ADA_TYPE_P(type) \
1856 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1857 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1858 && (type)->is_fixed_instance ()))
1859
1860 #define INIT_FUNC_SPECIFIC(type) \
1861 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1862 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1863 TYPE_ZALLOC (type, \
1864 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1865
1866 /* "struct fixed_point_type_info" has a field that has a destructor.
1867 See allocate_fixed_point_type_info to understand how this is
1868 handled. */
1869 #define INIT_FIXED_POINT_SPECIFIC(type) \
1870 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FIXED_POINT, \
1871 allocate_fixed_point_type_info (type))
1872
1873 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1874 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1875 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1876 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1877 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1878 #define TYPE_CHAIN(thistype) (thistype)->chain
1879 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1880 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1881 so you only have to call check_typedef once. Since allocate_value
1882 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1883 #define TYPE_LENGTH(thistype) (thistype)->length
1884
1885 /* * Return the alignment of the type in target addressable memory
1886 units, or 0 if no alignment was specified. */
1887 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1888
1889 /* * Return the alignment of the type in target addressable memory
1890 units, or 0 if no alignment was specified. */
1891 extern unsigned type_raw_align (struct type *);
1892
1893 /* * Return the alignment of the type in target addressable memory
1894 units. Return 0 if the alignment cannot be determined; but note
1895 that this makes an effort to compute the alignment even it it was
1896 not specified in the debug info. */
1897 extern unsigned type_align (struct type *);
1898
1899 /* * Set the alignment of the type. The alignment must be a power of
1900 2. Returns false if the given value does not fit in the available
1901 space in struct type. */
1902 extern bool set_type_align (struct type *, ULONGEST);
1903
1904 /* Property accessors for the type data location. */
1905 #define TYPE_DATA_LOCATION(thistype) \
1906 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1907 #define TYPE_DATA_LOCATION_BATON(thistype) \
1908 TYPE_DATA_LOCATION (thistype)->data.baton
1909 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1910 (TYPE_DATA_LOCATION (thistype)->const_val ())
1911 #define TYPE_DATA_LOCATION_KIND(thistype) \
1912 (TYPE_DATA_LOCATION (thistype)->kind ())
1913 #define TYPE_DYNAMIC_LENGTH(thistype) \
1914 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1915
1916 /* Property accessors for the type allocated/associated. */
1917 #define TYPE_ALLOCATED_PROP(thistype) \
1918 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1919 #define TYPE_ASSOCIATED_PROP(thistype) \
1920 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1921
1922 /* C++ */
1923
1924 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1925 /* Do not call this, use TYPE_SELF_TYPE. */
1926 extern struct type *internal_type_self_type (struct type *);
1927 extern void set_type_self_type (struct type *, struct type *);
1928
1929 extern int internal_type_vptr_fieldno (struct type *);
1930 extern void set_type_vptr_fieldno (struct type *, int);
1931 extern struct type *internal_type_vptr_basetype (struct type *);
1932 extern void set_type_vptr_basetype (struct type *, struct type *);
1933 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1934 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1935
1936 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1937 #define TYPE_SPECIFIC_FIELD(thistype) \
1938 TYPE_MAIN_TYPE(thistype)->type_specific_field
1939 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1940 where we're trying to print an Ada array using the C language.
1941 In that case, there is no "cplus_stuff", but the C language assumes
1942 that there is. What we do, in that case, is pretend that there is
1943 an implicit one which is the default cplus stuff. */
1944 #define TYPE_CPLUS_SPECIFIC(thistype) \
1945 (!HAVE_CPLUS_STRUCT(thistype) \
1946 ? (struct cplus_struct_type*)&cplus_struct_default \
1947 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1948 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1949 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1950 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1951 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1952 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1953 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1954 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1955 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1956 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1957 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
1958 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1959 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1960 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1961 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1962 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1963 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1964
1965 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1966 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1967 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1968
1969 #define FIELD_NAME(thisfld) ((thisfld).name)
1970 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1971 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1972 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1973 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1974 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1975 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1976 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1977 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1978 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1979 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1980 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1981 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1982 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1983 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1984 #define SET_FIELD_PHYSNAME(thisfld, name) \
1985 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1986 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1987 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1988 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1989 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1990 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1991 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1992 FIELD_DWARF_BLOCK (thisfld) = (addr))
1993 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1994 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1995
1996 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME((thistype)->field (n))
1997 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
1998 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
1999 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
2000 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
2001 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
2002 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
2003 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
2004 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
2005 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
2006
2007 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
2008 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
2009 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
2010 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
2011 #define TYPE_FIELD_IGNORE_BITS(thistype) \
2012 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
2013 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
2014 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
2015 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
2016 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
2017 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
2018 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
2019 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
2020 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
2021 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
2022 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
2023 #define TYPE_FIELD_PRIVATE(thistype, n) \
2024 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
2025 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
2026 #define TYPE_FIELD_PROTECTED(thistype, n) \
2027 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
2028 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
2029 #define TYPE_FIELD_IGNORE(thistype, n) \
2030 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
2031 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
2032 #define TYPE_FIELD_VIRTUAL(thistype, n) \
2033 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
2034 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
2035
2036 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
2037 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
2038 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
2039 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
2040 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
2041
2042 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
2043 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
2044 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
2045 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
2046 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
2047 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
2048
2049 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
2050 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
2051 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
2052 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
2053 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
2054 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
2055 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
2056 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
2057 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
2058 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
2059 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
2060 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
2061 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
2062 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
2063 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
2064 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
2065 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
2066
2067 /* Accessors for typedefs defined by a class. */
2068 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
2069 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
2070 #define TYPE_TYPEDEF_FIELD(thistype, n) \
2071 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
2072 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
2073 TYPE_TYPEDEF_FIELD (thistype, n).name
2074 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
2075 TYPE_TYPEDEF_FIELD (thistype, n).type
2076 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
2077 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
2078 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
2079 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
2080 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
2081 TYPE_TYPEDEF_FIELD (thistype, n).is_private
2082
2083 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
2084 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
2085 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
2086 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
2087 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
2088 TYPE_NESTED_TYPES_FIELD (thistype, n).name
2089 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
2090 TYPE_NESTED_TYPES_FIELD (thistype, n).type
2091 #define TYPE_NESTED_TYPES_COUNT(thistype) \
2092 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
2093 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
2094 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
2095 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
2096 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
2097
2098 #define TYPE_IS_OPAQUE(thistype) \
2099 ((((thistype)->code () == TYPE_CODE_STRUCT) \
2100 || ((thistype)->code () == TYPE_CODE_UNION)) \
2101 && ((thistype)->num_fields () == 0) \
2102 && (!HAVE_CPLUS_STRUCT (thistype) \
2103 || TYPE_NFN_FIELDS (thistype) == 0) \
2104 && ((thistype)->is_stub () || !(thistype)->stub_is_supported ()))
2105
2106 /* * A helper macro that returns the name of a type or "unnamed type"
2107 if the type has no name. */
2108
2109 #define TYPE_SAFE_NAME(type) \
2110 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
2111
2112 /* * A helper macro that returns the name of an error type. If the
2113 type has a name, it is used; otherwise, a default is used. */
2114
2115 #define TYPE_ERROR_NAME(type) \
2116 (type->name () ? type->name () : _("<error type>"))
2117
2118 /* Given TYPE, return its floatformat. */
2119 const struct floatformat *floatformat_from_type (const struct type *type);
2120
2121 struct builtin_type
2122 {
2123 /* Integral types. */
2124
2125 /* Implicit size/sign (based on the architecture's ABI). */
2126 struct type *builtin_void;
2127 struct type *builtin_char;
2128 struct type *builtin_short;
2129 struct type *builtin_int;
2130 struct type *builtin_long;
2131 struct type *builtin_signed_char;
2132 struct type *builtin_unsigned_char;
2133 struct type *builtin_unsigned_short;
2134 struct type *builtin_unsigned_int;
2135 struct type *builtin_unsigned_long;
2136 struct type *builtin_bfloat16;
2137 struct type *builtin_half;
2138 struct type *builtin_float;
2139 struct type *builtin_double;
2140 struct type *builtin_long_double;
2141 struct type *builtin_complex;
2142 struct type *builtin_double_complex;
2143 struct type *builtin_string;
2144 struct type *builtin_bool;
2145 struct type *builtin_long_long;
2146 struct type *builtin_unsigned_long_long;
2147 struct type *builtin_decfloat;
2148 struct type *builtin_decdouble;
2149 struct type *builtin_declong;
2150
2151 /* "True" character types.
2152 We use these for the '/c' print format, because c_char is just a
2153 one-byte integral type, which languages less laid back than C
2154 will print as ... well, a one-byte integral type. */
2155 struct type *builtin_true_char;
2156 struct type *builtin_true_unsigned_char;
2157
2158 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
2159 is for when an architecture needs to describe a register that has
2160 no size. */
2161 struct type *builtin_int0;
2162 struct type *builtin_int8;
2163 struct type *builtin_uint8;
2164 struct type *builtin_int16;
2165 struct type *builtin_uint16;
2166 struct type *builtin_int24;
2167 struct type *builtin_uint24;
2168 struct type *builtin_int32;
2169 struct type *builtin_uint32;
2170 struct type *builtin_int64;
2171 struct type *builtin_uint64;
2172 struct type *builtin_int128;
2173 struct type *builtin_uint128;
2174
2175 /* Wide character types. */
2176 struct type *builtin_char16;
2177 struct type *builtin_char32;
2178 struct type *builtin_wchar;
2179
2180 /* Pointer types. */
2181
2182 /* * `pointer to data' type. Some target platforms use an implicitly
2183 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
2184 struct type *builtin_data_ptr;
2185
2186 /* * `pointer to function (returning void)' type. Harvard
2187 architectures mean that ABI function and code pointers are not
2188 interconvertible. Similarly, since ANSI, C standards have
2189 explicitly said that pointers to functions and pointers to data
2190 are not interconvertible --- that is, you can't cast a function
2191 pointer to void * and back, and expect to get the same value.
2192 However, all function pointer types are interconvertible, so void
2193 (*) () can server as a generic function pointer. */
2194
2195 struct type *builtin_func_ptr;
2196
2197 /* * `function returning pointer to function (returning void)' type.
2198 The final void return type is not significant for it. */
2199
2200 struct type *builtin_func_func;
2201
2202 /* Special-purpose types. */
2203
2204 /* * This type is used to represent a GDB internal function. */
2205
2206 struct type *internal_fn;
2207
2208 /* * This type is used to represent an xmethod. */
2209 struct type *xmethod;
2210 };
2211
2212 /* * Return the type table for the specified architecture. */
2213
2214 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
2215
2216 /* * Per-objfile types used by symbol readers. */
2217
2218 struct objfile_type
2219 {
2220 /* Basic types based on the objfile architecture. */
2221 struct type *builtin_void;
2222 struct type *builtin_char;
2223 struct type *builtin_short;
2224 struct type *builtin_int;
2225 struct type *builtin_long;
2226 struct type *builtin_long_long;
2227 struct type *builtin_signed_char;
2228 struct type *builtin_unsigned_char;
2229 struct type *builtin_unsigned_short;
2230 struct type *builtin_unsigned_int;
2231 struct type *builtin_unsigned_long;
2232 struct type *builtin_unsigned_long_long;
2233 struct type *builtin_half;
2234 struct type *builtin_float;
2235 struct type *builtin_double;
2236 struct type *builtin_long_double;
2237
2238 /* * This type is used to represent symbol addresses. */
2239 struct type *builtin_core_addr;
2240
2241 /* * This type represents a type that was unrecognized in symbol
2242 read-in. */
2243 struct type *builtin_error;
2244
2245 /* * Types used for symbols with no debug information. */
2246 struct type *nodebug_text_symbol;
2247 struct type *nodebug_text_gnu_ifunc_symbol;
2248 struct type *nodebug_got_plt_symbol;
2249 struct type *nodebug_data_symbol;
2250 struct type *nodebug_unknown_symbol;
2251 struct type *nodebug_tls_symbol;
2252 };
2253
2254 /* * Return the type table for the specified objfile. */
2255
2256 extern const struct objfile_type *objfile_type (struct objfile *objfile);
2257
2258 /* Explicit floating-point formats. See "floatformat.h". */
2259 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
2260 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
2261 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
2262 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
2263 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
2264 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
2265 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
2266 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
2267 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
2268 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
2269 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
2270 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
2271 extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
2272
2273 /* Allocate space for storing data associated with a particular
2274 type. We ensure that the space is allocated using the same
2275 mechanism that was used to allocate the space for the type
2276 structure itself. I.e. if the type is on an objfile's
2277 objfile_obstack, then the space for data associated with that type
2278 will also be allocated on the objfile_obstack. If the type is
2279 associated with a gdbarch, then the space for data associated with that
2280 type will also be allocated on the gdbarch_obstack.
2281
2282 If a type is not associated with neither an objfile or a gdbarch then
2283 you should not use this macro to allocate space for data, instead you
2284 should call xmalloc directly, and ensure the memory is correctly freed
2285 when it is no longer needed. */
2286
2287 #define TYPE_ALLOC(t,size) \
2288 (obstack_alloc (((t)->is_objfile_owned () \
2289 ? &((t)->objfile_owner ()->objfile_obstack) \
2290 : gdbarch_obstack ((t)->arch_owner ())), \
2291 size))
2292
2293
2294 /* See comment on TYPE_ALLOC. */
2295
2296 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2297
2298 /* Use alloc_type to allocate a type owned by an objfile. Use
2299 alloc_type_arch to allocate a type owned by an architecture. Use
2300 alloc_type_copy to allocate a type with the same owner as a
2301 pre-existing template type, no matter whether objfile or
2302 gdbarch. */
2303 extern struct type *alloc_type (struct objfile *);
2304 extern struct type *alloc_type_arch (struct gdbarch *);
2305 extern struct type *alloc_type_copy (const struct type *);
2306
2307 /* * This returns the target type (or NULL) of TYPE, also skipping
2308 past typedefs. */
2309
2310 extern struct type *get_target_type (struct type *type);
2311
2312 /* Return the equivalent of TYPE_LENGTH, but in number of target
2313 addressable memory units of the associated gdbarch instead of bytes. */
2314
2315 extern unsigned int type_length_units (struct type *type);
2316
2317 /* * Helper function to construct objfile-owned types. */
2318
2319 extern struct type *init_type (struct objfile *, enum type_code, int,
2320 const char *);
2321 extern struct type *init_integer_type (struct objfile *, int, int,
2322 const char *);
2323 extern struct type *init_character_type (struct objfile *, int, int,
2324 const char *);
2325 extern struct type *init_boolean_type (struct objfile *, int, int,
2326 const char *);
2327 extern struct type *init_float_type (struct objfile *, int, const char *,
2328 const struct floatformat **,
2329 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2330 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2331 extern bool can_create_complex_type (struct type *);
2332 extern struct type *init_complex_type (const char *, struct type *);
2333 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2334 struct type *);
2335 extern struct type *init_fixed_point_type (struct objfile *, int, int,
2336 const char *);
2337
2338 /* Helper functions to construct architecture-owned types. */
2339 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2340 const char *);
2341 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2342 const char *);
2343 extern struct type *arch_character_type (struct gdbarch *, int, int,
2344 const char *);
2345 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2346 const char *);
2347 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2348 const struct floatformat **);
2349 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2350 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2351 struct type *);
2352
2353 /* Helper functions to construct a struct or record type. An
2354 initially empty type is created using arch_composite_type().
2355 Fields are then added using append_composite_type_field*(). A union
2356 type has its size set to the largest field. A struct type has each
2357 field packed against the previous. */
2358
2359 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2360 const char *name, enum type_code code);
2361 extern void append_composite_type_field (struct type *t, const char *name,
2362 struct type *field);
2363 extern void append_composite_type_field_aligned (struct type *t,
2364 const char *name,
2365 struct type *field,
2366 int alignment);
2367 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2368 struct type *field);
2369
2370 /* Helper functions to construct a bit flags type. An initially empty
2371 type is created using arch_flag_type(). Flags are then added using
2372 append_flag_type_field() and append_flag_type_flag(). */
2373 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2374 const char *name, int bit);
2375 extern void append_flags_type_field (struct type *type,
2376 int start_bitpos, int nr_bits,
2377 struct type *field_type, const char *name);
2378 extern void append_flags_type_flag (struct type *type, int bitpos,
2379 const char *name);
2380
2381 extern void make_vector_type (struct type *array_type);
2382 extern struct type *init_vector_type (struct type *elt_type, int n);
2383
2384 extern struct type *lookup_reference_type (struct type *, enum type_code);
2385 extern struct type *lookup_lvalue_reference_type (struct type *);
2386 extern struct type *lookup_rvalue_reference_type (struct type *);
2387
2388
2389 extern struct type *make_reference_type (struct type *, struct type **,
2390 enum type_code);
2391
2392 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2393
2394 extern struct type *make_restrict_type (struct type *);
2395
2396 extern struct type *make_unqualified_type (struct type *);
2397
2398 extern struct type *make_atomic_type (struct type *);
2399
2400 extern void replace_type (struct type *, struct type *);
2401
2402 extern type_instance_flags address_space_name_to_type_instance_flags
2403 (struct gdbarch *, const char *);
2404
2405 extern const char *address_space_type_instance_flags_to_name
2406 (struct gdbarch *, type_instance_flags);
2407
2408 extern struct type *make_type_with_address_space
2409 (struct type *type, type_instance_flags space_identifier);
2410
2411 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2412
2413 extern struct type *lookup_methodptr_type (struct type *);
2414
2415 extern void smash_to_method_type (struct type *type, struct type *self_type,
2416 struct type *to_type, struct field *args,
2417 int nargs, int varargs);
2418
2419 extern void smash_to_memberptr_type (struct type *, struct type *,
2420 struct type *);
2421
2422 extern void smash_to_methodptr_type (struct type *, struct type *);
2423
2424 extern struct type *allocate_stub_method (struct type *);
2425
2426 extern const char *type_name_or_error (struct type *type);
2427
2428 struct struct_elt
2429 {
2430 /* The field of the element, or NULL if no element was found. */
2431 struct field *field;
2432
2433 /* The bit offset of the element in the parent structure. */
2434 LONGEST offset;
2435 };
2436
2437 /* Given a type TYPE, lookup the field and offset of the component named
2438 NAME.
2439
2440 TYPE can be either a struct or union, or a pointer or reference to
2441 a struct or union. If it is a pointer or reference, its target
2442 type is automatically used. Thus '.' and '->' are interchangable,
2443 as specified for the definitions of the expression element types
2444 STRUCTOP_STRUCT and STRUCTOP_PTR.
2445
2446 If NOERR is nonzero, the returned structure will have field set to
2447 NULL if there is no component named NAME.
2448
2449 If the component NAME is a field in an anonymous substructure of
2450 TYPE, the returned offset is a "global" offset relative to TYPE
2451 rather than an offset within the substructure. */
2452
2453 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2454
2455 /* Given a type TYPE, lookup the type of the component named NAME.
2456
2457 TYPE can be either a struct or union, or a pointer or reference to
2458 a struct or union. If it is a pointer or reference, its target
2459 type is automatically used. Thus '.' and '->' are interchangable,
2460 as specified for the definitions of the expression element types
2461 STRUCTOP_STRUCT and STRUCTOP_PTR.
2462
2463 If NOERR is nonzero, return NULL if there is no component named
2464 NAME. */
2465
2466 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2467
2468 extern struct type *make_pointer_type (struct type *, struct type **);
2469
2470 extern struct type *lookup_pointer_type (struct type *);
2471
2472 extern struct type *make_function_type (struct type *, struct type **);
2473
2474 extern struct type *lookup_function_type (struct type *);
2475
2476 extern struct type *lookup_function_type_with_arguments (struct type *,
2477 int,
2478 struct type **);
2479
2480 extern struct type *create_static_range_type (struct type *, struct type *,
2481 LONGEST, LONGEST);
2482
2483
2484 extern struct type *create_array_type_with_stride
2485 (struct type *, struct type *, struct type *,
2486 struct dynamic_prop *, unsigned int);
2487
2488 extern struct type *create_range_type (struct type *, struct type *,
2489 const struct dynamic_prop *,
2490 const struct dynamic_prop *,
2491 LONGEST);
2492
2493 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2494 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2495 stride. */
2496
2497 extern struct type * create_range_type_with_stride
2498 (struct type *result_type, struct type *index_type,
2499 const struct dynamic_prop *low_bound,
2500 const struct dynamic_prop *high_bound, LONGEST bias,
2501 const struct dynamic_prop *stride, bool byte_stride_p);
2502
2503 extern struct type *create_array_type (struct type *, struct type *,
2504 struct type *);
2505
2506 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2507
2508 extern struct type *create_string_type (struct type *, struct type *,
2509 struct type *);
2510 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2511
2512 extern struct type *create_set_type (struct type *, struct type *);
2513
2514 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2515 const char *);
2516
2517 extern struct type *lookup_signed_typename (const struct language_defn *,
2518 const char *);
2519
2520 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2521
2522 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2523
2524 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2525 ADDR specifies the location of the variable the type is bound to.
2526 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2527 static properties is returned. */
2528 extern struct type *resolve_dynamic_type
2529 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2530 CORE_ADDR addr);
2531
2532 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2533 extern int is_dynamic_type (struct type *type);
2534
2535 extern struct type *check_typedef (struct type *);
2536
2537 extern void check_stub_method_group (struct type *, int);
2538
2539 extern char *gdb_mangle_name (struct type *, int, int);
2540
2541 extern struct type *lookup_typename (const struct language_defn *,
2542 const char *, const struct block *, int);
2543
2544 extern struct type *lookup_template_type (const char *, struct type *,
2545 const struct block *);
2546
2547 extern int get_vptr_fieldno (struct type *, struct type **);
2548
2549 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
2550 TYPE.
2551
2552 Return true if the two bounds are available, false otherwise. */
2553
2554 extern bool get_discrete_bounds (struct type *type, LONGEST *lowp,
2555 LONGEST *highp);
2556
2557 /* If TYPE's low bound is a known constant, return it, else return nullopt. */
2558
2559 extern gdb::optional<LONGEST> get_discrete_low_bound (struct type *type);
2560
2561 /* If TYPE's high bound is a known constant, return it, else return nullopt. */
2562
2563 extern gdb::optional<LONGEST> get_discrete_high_bound (struct type *type);
2564
2565 /* Assuming TYPE is a simple, non-empty array type, compute its upper
2566 and lower bound. Save the low bound into LOW_BOUND if not NULL.
2567 Save the high bound into HIGH_BOUND if not NULL.
2568
2569 Return true if the operation was successful. Return false otherwise,
2570 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified. */
2571
2572 extern bool get_array_bounds (struct type *type, LONGEST *low_bound,
2573 LONGEST *high_bound);
2574
2575 extern gdb::optional<LONGEST> discrete_position (struct type *type,
2576 LONGEST val);
2577
2578 extern int class_types_same_p (const struct type *, const struct type *);
2579
2580 extern int is_ancestor (struct type *, struct type *);
2581
2582 extern int is_public_ancestor (struct type *, struct type *);
2583
2584 extern int is_unique_ancestor (struct type *, struct value *);
2585
2586 /* Overload resolution */
2587
2588 /* * Badness if parameter list length doesn't match arg list length. */
2589 extern const struct rank LENGTH_MISMATCH_BADNESS;
2590
2591 /* * Dummy badness value for nonexistent parameter positions. */
2592 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2593 /* * Badness if no conversion among types. */
2594 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2595
2596 /* * Badness of an exact match. */
2597 extern const struct rank EXACT_MATCH_BADNESS;
2598
2599 /* * Badness of integral promotion. */
2600 extern const struct rank INTEGER_PROMOTION_BADNESS;
2601 /* * Badness of floating promotion. */
2602 extern const struct rank FLOAT_PROMOTION_BADNESS;
2603 /* * Badness of converting a derived class pointer
2604 to a base class pointer. */
2605 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2606 /* * Badness of integral conversion. */
2607 extern const struct rank INTEGER_CONVERSION_BADNESS;
2608 /* * Badness of floating conversion. */
2609 extern const struct rank FLOAT_CONVERSION_BADNESS;
2610 /* * Badness of integer<->floating conversions. */
2611 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2612 /* * Badness of conversion of pointer to void pointer. */
2613 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2614 /* * Badness of conversion to boolean. */
2615 extern const struct rank BOOL_CONVERSION_BADNESS;
2616 /* * Badness of converting derived to base class. */
2617 extern const struct rank BASE_CONVERSION_BADNESS;
2618 /* * Badness of converting from non-reference to reference. Subrank
2619 is the type of reference conversion being done. */
2620 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2621 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2622 /* * Conversion to rvalue reference. */
2623 #define REFERENCE_CONVERSION_RVALUE 1
2624 /* * Conversion to const lvalue reference. */
2625 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2626
2627 /* * Badness of converting integer 0 to NULL pointer. */
2628 extern const struct rank NULL_POINTER_CONVERSION;
2629 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2630 being done. */
2631 extern const struct rank CV_CONVERSION_BADNESS;
2632 #define CV_CONVERSION_CONST 1
2633 #define CV_CONVERSION_VOLATILE 2
2634
2635 /* Non-standard conversions allowed by the debugger */
2636
2637 /* * Converting a pointer to an int is usually OK. */
2638 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2639
2640 /* * Badness of converting a (non-zero) integer constant
2641 to a pointer. */
2642 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2643
2644 extern struct rank sum_ranks (struct rank a, struct rank b);
2645 extern int compare_ranks (struct rank a, struct rank b);
2646
2647 extern int compare_badness (const badness_vector &,
2648 const badness_vector &);
2649
2650 extern badness_vector rank_function (gdb::array_view<type *> parms,
2651 gdb::array_view<value *> args);
2652
2653 extern struct rank rank_one_type (struct type *, struct type *,
2654 struct value *);
2655
2656 extern void recursive_dump_type (struct type *, int);
2657
2658 extern int field_is_static (struct field *);
2659
2660 /* printcmd.c */
2661
2662 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2663 const struct value_print_options *,
2664 int, struct ui_file *);
2665
2666 extern int can_dereference (struct type *);
2667
2668 extern int is_integral_type (struct type *);
2669
2670 extern int is_floating_type (struct type *);
2671
2672 extern int is_scalar_type (struct type *type);
2673
2674 extern int is_scalar_type_recursive (struct type *);
2675
2676 extern int class_or_union_p (const struct type *);
2677
2678 extern void maintenance_print_type (const char *, int);
2679
2680 extern htab_up create_copied_types_hash (struct objfile *objfile);
2681
2682 extern struct type *copy_type_recursive (struct objfile *objfile,
2683 struct type *type,
2684 htab_t copied_types);
2685
2686 extern struct type *copy_type (const struct type *type);
2687
2688 extern bool types_equal (struct type *, struct type *);
2689
2690 extern bool types_deeply_equal (struct type *, struct type *);
2691
2692 extern int type_not_allocated (const struct type *type);
2693
2694 extern int type_not_associated (const struct type *type);
2695
2696 /* Return True if TYPE is a TYPE_CODE_FIXED_POINT or if TYPE is
2697 a range type whose base type is a TYPE_CODE_FIXED_POINT. */
2698 extern bool is_fixed_point_type (struct type *type);
2699
2700 /* Allocate a fixed-point type info for TYPE. This should only be
2701 called by INIT_FIXED_POINT_SPECIFIC. */
2702 extern void allocate_fixed_point_type_info (struct type *type);
2703
2704 /* * When the type includes explicit byte ordering, return that.
2705 Otherwise, the byte ordering from gdbarch_byte_order for
2706 the type's arch is returned. */
2707
2708 extern enum bfd_endian type_byte_order (const struct type *type);
2709
2710 /* A flag to enable printing of debugging information of C++
2711 overloading. */
2712
2713 extern unsigned int overload_debug;
2714
2715 #endif /* GDBTYPES_H */
This page took 0.080451 seconds and 3 git commands to generate.