Remove TYPE_TAG_NAME
[deliverable/binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2018 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "common/offset-type.h"
49 #include "common/enum-flags.h"
50 #include "common/underlying.h"
51 #include "common/print-utils.h"
52
53 /* Forward declarations for prototypes. */
54 struct field;
55 struct block;
56 struct value_print_options;
57 struct language_defn;
58
59 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
60 are already DWARF-specific. */
61
62 /* * Offset relative to the start of its containing CU (compilation
63 unit). */
64 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
65
66 /* * Offset relative to the start of its .debug_info or .debug_types
67 section. */
68 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
69
70 static inline char *
71 sect_offset_str (sect_offset offset)
72 {
73 return hex_string (to_underlying (offset));
74 }
75
76 /* Some macros for char-based bitfields. */
77
78 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
79 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
80 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
81 #define B_TYPE unsigned char
82 #define B_BYTES(x) ( 1 + ((x)>>3) )
83 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
84
85 /* * Different kinds of data types are distinguished by the `code'
86 field. */
87
88 enum type_code
89 {
90 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
91 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
92 TYPE_CODE_PTR, /**< Pointer type */
93
94 /* * Array type with lower & upper bounds.
95
96 Regardless of the language, GDB represents multidimensional
97 array types the way C does: as arrays of arrays. So an
98 instance of a GDB array type T can always be seen as a series
99 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
100 memory.
101
102 Row-major languages like C lay out multi-dimensional arrays so
103 that incrementing the rightmost index in a subscripting
104 expression results in the smallest change in the address of the
105 element referred to. Column-major languages like Fortran lay
106 them out so that incrementing the leftmost index results in the
107 smallest change.
108
109 This means that, in column-major languages, working our way
110 from type to target type corresponds to working through indices
111 from right to left, not left to right. */
112 TYPE_CODE_ARRAY,
113
114 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
115 TYPE_CODE_UNION, /**< C union or Pascal variant part */
116 TYPE_CODE_ENUM, /**< Enumeration type */
117 TYPE_CODE_FLAGS, /**< Bit flags type */
118 TYPE_CODE_FUNC, /**< Function type */
119 TYPE_CODE_INT, /**< Integer type */
120
121 /* * Floating type. This is *NOT* a complex type. Beware, there
122 are parts of GDB which bogusly assume that TYPE_CODE_FLT can
123 mean complex. */
124 TYPE_CODE_FLT,
125
126 /* * Void type. The length field specifies the length (probably
127 always one) which is used in pointer arithmetic involving
128 pointers to this type, but actually dereferencing such a
129 pointer is invalid; a void type has no length and no actual
130 representation in memory or registers. A pointer to a void
131 type is a generic pointer. */
132 TYPE_CODE_VOID,
133
134 TYPE_CODE_SET, /**< Pascal sets */
135 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
136
137 /* * A string type which is like an array of character but prints
138 differently. It does not contain a length field as Pascal
139 strings (for many Pascals, anyway) do; if we want to deal with
140 such strings, we should use a new type code. */
141 TYPE_CODE_STRING,
142
143 /* * Unknown type. The length field is valid if we were able to
144 deduce that much about the type, or 0 if we don't even know
145 that. */
146 TYPE_CODE_ERROR,
147
148 /* C++ */
149 TYPE_CODE_METHOD, /**< Method type */
150
151 /* * Pointer-to-member-function type. This describes how to access a
152 particular member function of a class (possibly a virtual
153 member function). The representation may vary between different
154 C++ ABIs. */
155 TYPE_CODE_METHODPTR,
156
157 /* * Pointer-to-member type. This is the offset within a class to
158 some particular data member. The only currently supported
159 representation uses an unbiased offset, with -1 representing
160 NULL; this is used by the Itanium C++ ABI (used by GCC on all
161 platforms). */
162 TYPE_CODE_MEMBERPTR,
163
164 TYPE_CODE_REF, /**< C++ Reference types */
165
166 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
167
168 TYPE_CODE_CHAR, /**< *real* character type */
169
170 /* * Boolean type. 0 is false, 1 is true, and other values are
171 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
172 TYPE_CODE_BOOL,
173
174 /* Fortran */
175 TYPE_CODE_COMPLEX, /**< Complex float */
176
177 TYPE_CODE_TYPEDEF,
178
179 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
180
181 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
182
183 TYPE_CODE_MODULE, /**< Fortran module. */
184
185 /* * Internal function type. */
186 TYPE_CODE_INTERNAL_FUNCTION,
187
188 /* * Methods implemented in extension languages. */
189 TYPE_CODE_XMETHOD
190 };
191
192 /* * Some bits for the type's instance_flags word. See the macros
193 below for documentation on each bit. */
194
195 enum type_instance_flag_value
196 {
197 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
198 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
199 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
200 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
201 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
202 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
203 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
204 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
205 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
206 };
207
208 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
209
210 /* * Unsigned integer type. If this is not set for a TYPE_CODE_INT,
211 the type is signed (unless TYPE_NOSIGN (below) is set). */
212
213 #define TYPE_UNSIGNED(t) (TYPE_MAIN_TYPE (t)->flag_unsigned)
214
215 /* * No sign for this type. In C++, "char", "signed char", and
216 "unsigned char" are distinct types; so we need an extra flag to
217 indicate the absence of a sign! */
218
219 #define TYPE_NOSIGN(t) (TYPE_MAIN_TYPE (t)->flag_nosign)
220
221 /* * This appears in a type's flags word if it is a stub type (e.g.,
222 if someone referenced a type that wasn't defined in a source file
223 via (struct sir_not_appearing_in_this_film *)). */
224
225 #define TYPE_STUB(t) (TYPE_MAIN_TYPE (t)->flag_stub)
226
227 /* * The target type of this type is a stub type, and this type needs
228 to be updated if it gets un-stubbed in check_typedef. Used for
229 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
230 based on the TYPE_LENGTH of the target type. Also, set for
231 TYPE_CODE_TYPEDEF. */
232
233 #define TYPE_TARGET_STUB(t) (TYPE_MAIN_TYPE (t)->flag_target_stub)
234
235 /* * This is a function type which appears to have a prototype. We
236 need this for function calls in order to tell us if it's necessary
237 to coerce the args, or to just do the standard conversions. This
238 is used with a short field. */
239
240 #define TYPE_PROTOTYPED(t) (TYPE_MAIN_TYPE (t)->flag_prototyped)
241
242 /* * This flag is used to indicate that processing for this type
243 is incomplete.
244
245 (Mostly intended for HP platforms, where class methods, for
246 instance, can be encountered before their classes in the debug
247 info; the incomplete type has to be marked so that the class and
248 the method can be assigned correct types.) */
249
250 #define TYPE_INCOMPLETE(t) (TYPE_MAIN_TYPE (t)->flag_incomplete)
251
252 /* * FIXME drow/2002-06-03: Only used for methods, but applies as well
253 to functions. */
254
255 #define TYPE_VARARGS(t) (TYPE_MAIN_TYPE (t)->flag_varargs)
256
257 /* * Identify a vector type. Gcc is handling this by adding an extra
258 attribute to the array type. We slurp that in as a new flag of a
259 type. This is used only in dwarf2read.c. */
260 #define TYPE_VECTOR(t) (TYPE_MAIN_TYPE (t)->flag_vector)
261
262 /* * The debugging formats (especially STABS) do not contain enough
263 information to represent all Ada types---especially those whose
264 size depends on dynamic quantities. Therefore, the GNAT Ada
265 compiler includes extra information in the form of additional type
266 definitions connected by naming conventions. This flag indicates
267 that the type is an ordinary (unencoded) GDB type that has been
268 created from the necessary run-time information, and does not need
269 further interpretation. Optionally marks ordinary, fixed-size GDB
270 type. */
271
272 #define TYPE_FIXED_INSTANCE(t) (TYPE_MAIN_TYPE (t)->flag_fixed_instance)
273
274 /* * This debug target supports TYPE_STUB(t). In the unsupported case
275 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
276 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
277 guessed the TYPE_STUB(t) value (see dwarfread.c). */
278
279 #define TYPE_STUB_SUPPORTED(t) (TYPE_MAIN_TYPE (t)->flag_stub_supported)
280
281 /* * Not textual. By default, GDB treats all single byte integers as
282 characters (or elements of strings) unless this flag is set. */
283
284 #define TYPE_NOTTEXT(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
285
286 /* * Used only for TYPE_CODE_FUNC where it specifies the real function
287 address is returned by this function call. TYPE_TARGET_TYPE
288 determines the final returned function type to be presented to
289 user. */
290
291 #define TYPE_GNU_IFUNC(t) (TYPE_MAIN_TYPE (t)->flag_gnu_ifunc)
292
293 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
294 the objfile retrieved as TYPE_OBJFILE. Otherweise, the type is
295 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
296
297 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
298 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
299 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
300
301 /* * True if this type was declared using the "class" keyword. This is
302 only valid for C++ structure and enum types. If false, a structure
303 was declared as a "struct"; if true it was declared "class". For
304 enum types, this is true when "enum class" or "enum struct" was
305 used to declare the type.. */
306
307 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
308
309 /* * True if this type is a "flag" enum. A flag enum is one where all
310 the values are pairwise disjoint when "and"ed together. This
311 affects how enum values are printed. */
312
313 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
314
315 /* * True if this type is a discriminated union type. Only valid for
316 TYPE_CODE_UNION. A discriminated union stores a reference to the
317 discriminant field along with the discriminator values in a dynamic
318 property. */
319
320 #define TYPE_FLAG_DISCRIMINATED_UNION(t) \
321 (TYPE_MAIN_TYPE (t)->flag_discriminated_union)
322
323 /* * Constant type. If this is set, the corresponding type has a
324 const modifier. */
325
326 #define TYPE_CONST(t) ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST) != 0)
327
328 /* * Volatile type. If this is set, the corresponding type has a
329 volatile modifier. */
330
331 #define TYPE_VOLATILE(t) \
332 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
333
334 /* * Restrict type. If this is set, the corresponding type has a
335 restrict modifier. */
336
337 #define TYPE_RESTRICT(t) \
338 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
339
340 /* * Atomic type. If this is set, the corresponding type has an
341 _Atomic modifier. */
342
343 #define TYPE_ATOMIC(t) \
344 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
345
346 /* * True if this type represents either an lvalue or lvalue reference type. */
347
348 #define TYPE_IS_REFERENCE(t) \
349 (TYPE_CODE (t) == TYPE_CODE_REF || TYPE_CODE (t) == TYPE_CODE_RVALUE_REF)
350
351 /* * Instruction-space delimited type. This is for Harvard architectures
352 which have separate instruction and data address spaces (and perhaps
353 others).
354
355 GDB usually defines a flat address space that is a superset of the
356 architecture's two (or more) address spaces, but this is an extension
357 of the architecture's model.
358
359 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
360 resides in instruction memory, even if its address (in the extended
361 flat address space) does not reflect this.
362
363 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
364 corresponding type resides in the data memory space, even if
365 this is not indicated by its (flat address space) address.
366
367 If neither flag is set, the default space for functions / methods
368 is instruction space, and for data objects is data memory. */
369
370 #define TYPE_CODE_SPACE(t) \
371 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
372
373 #define TYPE_DATA_SPACE(t) \
374 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
375
376 /* * Address class flags. Some environments provide for pointers
377 whose size is different from that of a normal pointer or address
378 types where the bits are interpreted differently than normal
379 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
380 target specific ways to represent these different types of address
381 classes. */
382
383 #define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
384 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
385 #define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
386 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
387 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
388 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
389 #define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
390 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
391
392 /* * Information needed for a discriminated union. A discriminated
393 union is handled somewhat differently from an ordinary union.
394
395 One field is designated as the discriminant. Only one other field
396 is active at a time; which one depends on the value of the
397 discriminant and the data in this structure.
398
399 Additionally, it is possible to have a univariant discriminated
400 union. In this case, the union has just a single field, which is
401 assumed to be the only active variant -- in this case no
402 discriminant is provided. */
403
404 struct discriminant_info
405 {
406 /* * The index of the discriminant field. If -1, then this union
407 must have just a single field. */
408
409 int discriminant_index;
410
411 /* * The index of the default branch of the union. If -1, then
412 there is no default branch. */
413
414 int default_index;
415
416 /* * The discriminant values corresponding to each branch. This has
417 a number of entries equal to the number of fields in this union.
418 If discriminant_index is not -1, then that entry in this array is
419 not used. If default_index is not -1, then that entry in this
420 array is not used. */
421
422 ULONGEST discriminants[1];
423 };
424
425 enum dynamic_prop_kind
426 {
427 PROP_UNDEFINED, /* Not defined. */
428 PROP_CONST, /* Constant. */
429 PROP_ADDR_OFFSET, /* Address offset. */
430 PROP_LOCEXPR, /* Location expression. */
431 PROP_LOCLIST /* Location list. */
432 };
433
434 union dynamic_prop_data
435 {
436 /* Storage for constant property. */
437
438 LONGEST const_val;
439
440 /* Storage for dynamic property. */
441
442 void *baton;
443 };
444
445 /* * Used to store a dynamic property. */
446
447 struct dynamic_prop
448 {
449 /* Determine which field of the union dynamic_prop.data is used. */
450 enum dynamic_prop_kind kind;
451
452 /* Storage for dynamic or static value. */
453 union dynamic_prop_data data;
454 };
455
456 /* Compare two dynamic_prop objects for equality. dynamic_prop
457 instances are equal iff they have the same type and storage. */
458 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
459
460 /* Compare two dynamic_prop objects for inequality. */
461 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
462 {
463 return !(l == r);
464 }
465
466 /* * Define a type's dynamic property node kind. */
467 enum dynamic_prop_node_kind
468 {
469 /* A property providing a type's data location.
470 Evaluating this field yields to the location of an object's data. */
471 DYN_PROP_DATA_LOCATION,
472
473 /* A property representing DW_AT_allocated. The presence of this attribute
474 indicates that the object of the type can be allocated/deallocated. */
475 DYN_PROP_ALLOCATED,
476
477 /* A property representing DW_AT_allocated. The presence of this attribute
478 indicated that the object of the type can be associated. */
479 DYN_PROP_ASSOCIATED,
480
481 /* A property providing an array's byte stride. */
482 DYN_PROP_BYTE_STRIDE,
483
484 /* A property holding information about a discriminated union. */
485 DYN_PROP_DISCRIMINATED,
486 };
487
488 /* * List for dynamic type attributes. */
489 struct dynamic_prop_list
490 {
491 /* The kind of dynamic prop in this node. */
492 enum dynamic_prop_node_kind prop_kind;
493
494 /* The dynamic property itself. */
495 struct dynamic_prop prop;
496
497 /* A pointer to the next dynamic property. */
498 struct dynamic_prop_list *next;
499 };
500
501 /* * Determine which field of the union main_type.fields[x].loc is
502 used. */
503
504 enum field_loc_kind
505 {
506 FIELD_LOC_KIND_BITPOS, /**< bitpos */
507 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
508 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
509 FIELD_LOC_KIND_PHYSNAME, /**< physname */
510 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
511 };
512
513 /* * A discriminant to determine which field in the
514 main_type.type_specific union is being used, if any.
515
516 For types such as TYPE_CODE_FLT, the use of this
517 discriminant is really redundant, as we know from the type code
518 which field is going to be used. As such, it would be possible to
519 reduce the size of this enum in order to save a bit or two for
520 other fields of struct main_type. But, since we still have extra
521 room , and for the sake of clarity and consistency, we treat all fields
522 of the union the same way. */
523
524 enum type_specific_kind
525 {
526 TYPE_SPECIFIC_NONE,
527 TYPE_SPECIFIC_CPLUS_STUFF,
528 TYPE_SPECIFIC_GNAT_STUFF,
529 TYPE_SPECIFIC_FLOATFORMAT,
530 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
531 TYPE_SPECIFIC_FUNC,
532 TYPE_SPECIFIC_SELF_TYPE
533 };
534
535 union type_owner
536 {
537 struct objfile *objfile;
538 struct gdbarch *gdbarch;
539 };
540
541 union field_location
542 {
543 /* * Position of this field, counting in bits from start of
544 containing structure. For gdbarch_bits_big_endian=1
545 targets, it is the bit offset to the MSB. For
546 gdbarch_bits_big_endian=0 targets, it is the bit offset to
547 the LSB. */
548
549 LONGEST bitpos;
550
551 /* * Enum value. */
552 LONGEST enumval;
553
554 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
555 physaddr is the location (in the target) of the static
556 field. Otherwise, physname is the mangled label of the
557 static field. */
558
559 CORE_ADDR physaddr;
560 const char *physname;
561
562 /* * The field location can be computed by evaluating the
563 following DWARF block. Its DATA is allocated on
564 objfile_obstack - no CU load is needed to access it. */
565
566 struct dwarf2_locexpr_baton *dwarf_block;
567 };
568
569 struct field
570 {
571 union field_location loc;
572
573 /* * For a function or member type, this is 1 if the argument is
574 marked artificial. Artificial arguments should not be shown
575 to the user. For TYPE_CODE_RANGE it is set if the specific
576 bound is not defined. */
577
578 unsigned int artificial : 1;
579
580 /* * Discriminant for union field_location. */
581
582 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
583
584 /* * Size of this field, in bits, or zero if not packed.
585 If non-zero in an array type, indicates the element size in
586 bits (used only in Ada at the moment).
587 For an unpacked field, the field's type's length
588 says how many bytes the field occupies. */
589
590 unsigned int bitsize : 28;
591
592 /* * In a struct or union type, type of this field.
593 - In a function or member type, type of this argument.
594 - In an array type, the domain-type of the array. */
595
596 struct type *type;
597
598 /* * Name of field, value or argument.
599 NULL for range bounds, array domains, and member function
600 arguments. */
601
602 const char *name;
603 };
604
605 struct range_bounds
606 {
607 /* * Low bound of range. */
608
609 struct dynamic_prop low;
610
611 /* * High bound of range. */
612
613 struct dynamic_prop high;
614
615 /* True if HIGH range bound contains the number of elements in the
616 subrange. This affects how the final hight bound is computed. */
617
618 int flag_upper_bound_is_count : 1;
619
620 /* True if LOW or/and HIGH are resolved into a static bound from
621 a dynamic one. */
622
623 int flag_bound_evaluated : 1;
624 };
625
626 /* Compare two range_bounds objects for equality. Simply does
627 memberwise comparison. */
628 extern bool operator== (const range_bounds &l, const range_bounds &r);
629
630 /* Compare two range_bounds objects for inequality. */
631 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
632 {
633 return !(l == r);
634 }
635
636 union type_specific
637 {
638 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
639 point to cplus_struct_default, a default static instance of a
640 struct cplus_struct_type. */
641
642 struct cplus_struct_type *cplus_stuff;
643
644 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
645 provides additional information. */
646
647 struct gnat_aux_type *gnat_stuff;
648
649 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
650 floatformat object that describes the floating-point value
651 that resides within the type. */
652
653 const struct floatformat *floatformat;
654
655 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
656
657 struct func_type *func_stuff;
658
659 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
660 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
661 is a member of. */
662
663 struct type *self_type;
664 };
665
666 /* * Main structure representing a type in GDB.
667
668 This structure is space-critical. Its layout has been tweaked to
669 reduce the space used. */
670
671 struct main_type
672 {
673 /* * Code for kind of type. */
674
675 ENUM_BITFIELD(type_code) code : 8;
676
677 /* * Flags about this type. These fields appear at this location
678 because they packs nicely here. See the TYPE_* macros for
679 documentation about these fields. */
680
681 unsigned int flag_unsigned : 1;
682 unsigned int flag_nosign : 1;
683 unsigned int flag_stub : 1;
684 unsigned int flag_target_stub : 1;
685 unsigned int flag_static : 1;
686 unsigned int flag_prototyped : 1;
687 unsigned int flag_incomplete : 1;
688 unsigned int flag_varargs : 1;
689 unsigned int flag_vector : 1;
690 unsigned int flag_stub_supported : 1;
691 unsigned int flag_gnu_ifunc : 1;
692 unsigned int flag_fixed_instance : 1;
693 unsigned int flag_objfile_owned : 1;
694
695 /* * True if this type was declared with "class" rather than
696 "struct". */
697
698 unsigned int flag_declared_class : 1;
699
700 /* * True if this is an enum type with disjoint values. This
701 affects how the enum is printed. */
702
703 unsigned int flag_flag_enum : 1;
704
705 /* * True if this type is a discriminated union type. Only valid
706 for TYPE_CODE_UNION. A discriminated union stores a reference to
707 the discriminant field along with the discriminator values in a
708 dynamic property. */
709
710 unsigned int flag_discriminated_union : 1;
711
712 /* * A discriminant telling us which field of the type_specific
713 union is being used for this type, if any. */
714
715 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
716
717 /* * Number of fields described for this type. This field appears
718 at this location because it packs nicely here. */
719
720 short nfields;
721
722 /* * Name of this type, or NULL if none.
723
724 This is used for printing only. For looking up a name, look for
725 a symbol in the VAR_DOMAIN. This is generally allocated in the
726 objfile's obstack. However coffread.c uses malloc. */
727
728 const char *name;
729
730 /* * Every type is now associated with a particular objfile, and the
731 type is allocated on the objfile_obstack for that objfile. One
732 problem however, is that there are times when gdb allocates new
733 types while it is not in the process of reading symbols from a
734 particular objfile. Fortunately, these happen when the type
735 being created is a derived type of an existing type, such as in
736 lookup_pointer_type(). So we can just allocate the new type
737 using the same objfile as the existing type, but to do this we
738 need a backpointer to the objfile from the existing type. Yes
739 this is somewhat ugly, but without major overhaul of the internal
740 type system, it can't be avoided for now. */
741
742 union type_owner owner;
743
744 /* * For a pointer type, describes the type of object pointed to.
745 - For an array type, describes the type of the elements.
746 - For a function or method type, describes the type of the return value.
747 - For a range type, describes the type of the full range.
748 - For a complex type, describes the type of each coordinate.
749 - For a special record or union type encoding a dynamic-sized type
750 in GNAT, a memoized pointer to a corresponding static version of
751 the type.
752 - Unused otherwise. */
753
754 struct type *target_type;
755
756 /* * For structure and union types, a description of each field.
757 For set and pascal array types, there is one "field",
758 whose type is the domain type of the set or array.
759 For range types, there are two "fields",
760 the minimum and maximum values (both inclusive).
761 For enum types, each possible value is described by one "field".
762 For a function or method type, a "field" for each parameter.
763 For C++ classes, there is one field for each base class (if it is
764 a derived class) plus one field for each class data member. Member
765 functions are recorded elsewhere.
766
767 Using a pointer to a separate array of fields
768 allows all types to have the same size, which is useful
769 because we can allocate the space for a type before
770 we know what to put in it. */
771
772 union
773 {
774 struct field *fields;
775
776 /* * Union member used for range types. */
777
778 struct range_bounds *bounds;
779
780 } flds_bnds;
781
782 /* * Slot to point to additional language-specific fields of this
783 type. */
784
785 union type_specific type_specific;
786
787 /* * Contains all dynamic type properties. */
788 struct dynamic_prop_list *dyn_prop_list;
789 };
790
791 /* * Number of bits allocated for alignment. */
792
793 #define TYPE_ALIGN_BITS 8
794
795 /* * A ``struct type'' describes a particular instance of a type, with
796 some particular qualification. */
797
798 struct type
799 {
800 /* * Type that is a pointer to this type.
801 NULL if no such pointer-to type is known yet.
802 The debugger may add the address of such a type
803 if it has to construct one later. */
804
805 struct type *pointer_type;
806
807 /* * C++: also need a reference type. */
808
809 struct type *reference_type;
810
811 /* * A C++ rvalue reference type added in C++11. */
812
813 struct type *rvalue_reference_type;
814
815 /* * Variant chain. This points to a type that differs from this
816 one only in qualifiers and length. Currently, the possible
817 qualifiers are const, volatile, code-space, data-space, and
818 address class. The length may differ only when one of the
819 address class flags are set. The variants are linked in a
820 circular ring and share MAIN_TYPE. */
821
822 struct type *chain;
823
824 /* * The alignment for this type. Zero means that the alignment was
825 not specified in the debug info. Note that this is stored in a
826 funny way: as the log base 2 (plus 1) of the alignment; so a
827 value of 1 means the alignment is 1, and a value of 9 means the
828 alignment is 256. */
829
830 unsigned align_log2 : TYPE_ALIGN_BITS;
831
832 /* * Flags specific to this instance of the type, indicating where
833 on the ring we are.
834
835 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
836 binary or-ed with the target type, with a special case for
837 address class and space class. For example if this typedef does
838 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
839 instance flags are completely inherited from the target type. No
840 qualifiers can be cleared by the typedef. See also
841 check_typedef. */
842 unsigned instance_flags : 9;
843
844 /* * Length of storage for a value of this type. The value is the
845 expression in host bytes of what sizeof(type) would return. This
846 size includes padding. For example, an i386 extended-precision
847 floating point value really only occupies ten bytes, but most
848 ABI's declare its size to be 12 bytes, to preserve alignment.
849 A `struct type' representing such a floating-point type would
850 have a `length' value of 12, even though the last two bytes are
851 unused.
852
853 Since this field is expressed in host bytes, its value is appropriate
854 to pass to memcpy and such (it is assumed that GDB itself always runs
855 on an 8-bits addressable architecture). However, when using it for
856 target address arithmetic (e.g. adding it to a target address), the
857 type_length_units function should be used in order to get the length
858 expressed in target addressable memory units. */
859
860 unsigned int length;
861
862 /* * Core type, shared by a group of qualified types. */
863
864 struct main_type *main_type;
865 };
866
867 #define NULL_TYPE ((struct type *) 0)
868
869 struct fn_fieldlist
870 {
871
872 /* * The overloaded name.
873 This is generally allocated in the objfile's obstack.
874 However stabsread.c sometimes uses malloc. */
875
876 const char *name;
877
878 /* * The number of methods with this name. */
879
880 int length;
881
882 /* * The list of methods. */
883
884 struct fn_field *fn_fields;
885 };
886
887
888
889 struct fn_field
890 {
891 /* * If is_stub is clear, this is the mangled name which we can look
892 up to find the address of the method (FIXME: it would be cleaner
893 to have a pointer to the struct symbol here instead).
894
895 If is_stub is set, this is the portion of the mangled name which
896 specifies the arguments. For example, "ii", if there are two int
897 arguments, or "" if there are no arguments. See gdb_mangle_name
898 for the conversion from this format to the one used if is_stub is
899 clear. */
900
901 const char *physname;
902
903 /* * The function type for the method.
904
905 (This comment used to say "The return value of the method", but
906 that's wrong. The function type is expected here, i.e. something
907 with TYPE_CODE_METHOD, and *not* the return-value type). */
908
909 struct type *type;
910
911 /* * For virtual functions. First baseclass that defines this
912 virtual function. */
913
914 struct type *fcontext;
915
916 /* Attributes. */
917
918 unsigned int is_const:1;
919 unsigned int is_volatile:1;
920 unsigned int is_private:1;
921 unsigned int is_protected:1;
922 unsigned int is_artificial:1;
923
924 /* * A stub method only has some fields valid (but they are enough
925 to reconstruct the rest of the fields). */
926
927 unsigned int is_stub:1;
928
929 /* * True if this function is a constructor, false otherwise. */
930
931 unsigned int is_constructor : 1;
932
933 /* * Unused. */
934
935 unsigned int dummy:9;
936
937 /* * Index into that baseclass's virtual function table, minus 2;
938 else if static: VOFFSET_STATIC; else: 0. */
939
940 unsigned int voffset:16;
941
942 #define VOFFSET_STATIC 1
943
944 };
945
946 struct decl_field
947 {
948 /* * Unqualified name to be prefixed by owning class qualified
949 name. */
950
951 const char *name;
952
953 /* * Type this typedef named NAME represents. */
954
955 struct type *type;
956
957 /* * True if this field was declared protected, false otherwise. */
958 unsigned int is_protected : 1;
959
960 /* * True if this field was declared private, false otherwise. */
961 unsigned int is_private : 1;
962 };
963
964 /* * C++ language-specific information for TYPE_CODE_STRUCT and
965 TYPE_CODE_UNION nodes. */
966
967 struct cplus_struct_type
968 {
969 /* * Number of base classes this type derives from. The
970 baseclasses are stored in the first N_BASECLASSES fields
971 (i.e. the `fields' field of the struct type). The only fields
972 of struct field that are used are: type, name, loc.bitpos. */
973
974 short n_baseclasses;
975
976 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
977 All access to this field must be through TYPE_VPTR_FIELDNO as one
978 thing it does is check whether the field has been initialized.
979 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
980 which for portability reasons doesn't initialize this field.
981 TYPE_VPTR_FIELDNO returns -1 for this case.
982
983 If -1, we were unable to find the virtual function table pointer in
984 initial symbol reading, and get_vptr_fieldno should be called to find
985 it if possible. get_vptr_fieldno will update this field if possible.
986 Otherwise the value is left at -1.
987
988 Unused if this type does not have virtual functions. */
989
990 short vptr_fieldno;
991
992 /* * Number of methods with unique names. All overloaded methods
993 with the same name count only once. */
994
995 short nfn_fields;
996
997 /* * Number of template arguments. */
998
999 unsigned short n_template_arguments;
1000
1001 /* * One if this struct is a dynamic class, as defined by the
1002 Itanium C++ ABI: if it requires a virtual table pointer,
1003 because it or any of its base classes have one or more virtual
1004 member functions or virtual base classes. Minus one if not
1005 dynamic. Zero if not yet computed. */
1006
1007 int is_dynamic : 2;
1008
1009 /* * The base class which defined the virtual function table pointer. */
1010
1011 struct type *vptr_basetype;
1012
1013 /* * For derived classes, the number of base classes is given by
1014 n_baseclasses and virtual_field_bits is a bit vector containing
1015 one bit per base class. If the base class is virtual, the
1016 corresponding bit will be set.
1017 I.E, given:
1018
1019 class A{};
1020 class B{};
1021 class C : public B, public virtual A {};
1022
1023 B is a baseclass of C; A is a virtual baseclass for C.
1024 This is a C++ 2.0 language feature. */
1025
1026 B_TYPE *virtual_field_bits;
1027
1028 /* * For classes with private fields, the number of fields is
1029 given by nfields and private_field_bits is a bit vector
1030 containing one bit per field.
1031
1032 If the field is private, the corresponding bit will be set. */
1033
1034 B_TYPE *private_field_bits;
1035
1036 /* * For classes with protected fields, the number of fields is
1037 given by nfields and protected_field_bits is a bit vector
1038 containing one bit per field.
1039
1040 If the field is private, the corresponding bit will be set. */
1041
1042 B_TYPE *protected_field_bits;
1043
1044 /* * For classes with fields to be ignored, either this is
1045 optimized out or this field has length 0. */
1046
1047 B_TYPE *ignore_field_bits;
1048
1049 /* * For classes, structures, and unions, a description of each
1050 field, which consists of an overloaded name, followed by the
1051 types of arguments that the method expects, and then the name
1052 after it has been renamed to make it distinct.
1053
1054 fn_fieldlists points to an array of nfn_fields of these. */
1055
1056 struct fn_fieldlist *fn_fieldlists;
1057
1058 /* * typedefs defined inside this class. typedef_field points to
1059 an array of typedef_field_count elements. */
1060
1061 struct decl_field *typedef_field;
1062
1063 unsigned typedef_field_count;
1064
1065 /* * The nested types defined by this type. nested_types points to
1066 an array of nested_types_count elements. */
1067
1068 struct decl_field *nested_types;
1069
1070 unsigned nested_types_count;
1071
1072 /* * The template arguments. This is an array with
1073 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1074 classes. */
1075
1076 struct symbol **template_arguments;
1077 };
1078
1079 /* * Struct used to store conversion rankings. */
1080
1081 struct rank
1082 {
1083 short rank;
1084
1085 /* * When two conversions are of the same type and therefore have
1086 the same rank, subrank is used to differentiate the two.
1087
1088 Eg: Two derived-class-pointer to base-class-pointer conversions
1089 would both have base pointer conversion rank, but the
1090 conversion with the shorter distance to the ancestor is
1091 preferable. 'subrank' would be used to reflect that. */
1092
1093 short subrank;
1094 };
1095
1096 /* * Struct used for ranking a function for overload resolution. */
1097
1098 struct badness_vector
1099 {
1100 int length;
1101 struct rank *rank;
1102 };
1103
1104 /* * GNAT Ada-specific information for various Ada types. */
1105
1106 struct gnat_aux_type
1107 {
1108 /* * Parallel type used to encode information about dynamic types
1109 used in Ada (such as variant records, variable-size array,
1110 etc). */
1111 struct type* descriptive_type;
1112 };
1113
1114 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1115
1116 struct func_type
1117 {
1118 /* * The calling convention for targets supporting multiple ABIs.
1119 Right now this is only fetched from the Dwarf-2
1120 DW_AT_calling_convention attribute. The value is one of the
1121 DW_CC enum dwarf_calling_convention constants. */
1122
1123 unsigned calling_convention : 8;
1124
1125 /* * Whether this function normally returns to its caller. It is
1126 set from the DW_AT_noreturn attribute if set on the
1127 DW_TAG_subprogram. */
1128
1129 unsigned int is_noreturn : 1;
1130
1131 /* * Only those DW_TAG_call_site's in this function that have
1132 DW_AT_call_tail_call set are linked in this list. Function
1133 without its tail call list complete
1134 (DW_AT_call_all_tail_calls or its superset
1135 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1136 DW_TAG_call_site's exist in such function. */
1137
1138 struct call_site *tail_call_list;
1139
1140 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1141 contains the method. */
1142
1143 struct type *self_type;
1144 };
1145
1146 /* struct call_site_parameter can be referenced in callees by several ways. */
1147
1148 enum call_site_parameter_kind
1149 {
1150 /* * Use field call_site_parameter.u.dwarf_reg. */
1151 CALL_SITE_PARAMETER_DWARF_REG,
1152
1153 /* * Use field call_site_parameter.u.fb_offset. */
1154 CALL_SITE_PARAMETER_FB_OFFSET,
1155
1156 /* * Use field call_site_parameter.u.param_offset. */
1157 CALL_SITE_PARAMETER_PARAM_OFFSET
1158 };
1159
1160 struct call_site_target
1161 {
1162 union field_location loc;
1163
1164 /* * Discriminant for union field_location. */
1165
1166 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1167 };
1168
1169 union call_site_parameter_u
1170 {
1171 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1172 as DWARF register number, for register passed
1173 parameters. */
1174
1175 int dwarf_reg;
1176
1177 /* * Offset from the callee's frame base, for stack passed
1178 parameters. This equals offset from the caller's stack
1179 pointer. */
1180
1181 CORE_ADDR fb_offset;
1182
1183 /* * Offset relative to the start of this PER_CU to
1184 DW_TAG_formal_parameter which is referenced by both
1185 caller and the callee. */
1186
1187 cu_offset param_cu_off;
1188 };
1189
1190 struct call_site_parameter
1191 {
1192 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1193
1194 union call_site_parameter_u u;
1195
1196 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1197
1198 const gdb_byte *value;
1199 size_t value_size;
1200
1201 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1202 It may be NULL if not provided by DWARF. */
1203
1204 const gdb_byte *data_value;
1205 size_t data_value_size;
1206 };
1207
1208 /* * A place where a function gets called from, represented by
1209 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1210
1211 struct call_site
1212 {
1213 /* * Address of the first instruction after this call. It must be
1214 the first field as we overload core_addr_hash and core_addr_eq
1215 for it. */
1216
1217 CORE_ADDR pc;
1218
1219 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1220
1221 struct call_site *tail_call_next;
1222
1223 /* * Describe DW_AT_call_target. Missing attribute uses
1224 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1225
1226 struct call_site_target target;
1227
1228 /* * Size of the PARAMETER array. */
1229
1230 unsigned parameter_count;
1231
1232 /* * CU of the function where the call is located. It gets used
1233 for DWARF blocks execution in the parameter array below. */
1234
1235 struct dwarf2_per_cu_data *per_cu;
1236
1237 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1238
1239 struct call_site_parameter parameter[1];
1240 };
1241
1242 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1243 static structure. */
1244
1245 extern const struct cplus_struct_type cplus_struct_default;
1246
1247 extern void allocate_cplus_struct_type (struct type *);
1248
1249 #define INIT_CPLUS_SPECIFIC(type) \
1250 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1251 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1252 &cplus_struct_default)
1253
1254 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1255
1256 #define HAVE_CPLUS_STRUCT(type) \
1257 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1258 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1259
1260 extern const struct gnat_aux_type gnat_aux_default;
1261
1262 extern void allocate_gnat_aux_type (struct type *);
1263
1264 #define INIT_GNAT_SPECIFIC(type) \
1265 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1266 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1267 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1268 /* * A macro that returns non-zero if the type-specific data should be
1269 read as "gnat-stuff". */
1270 #define HAVE_GNAT_AUX_INFO(type) \
1271 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1272
1273 #define INIT_FUNC_SPECIFIC(type) \
1274 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1275 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1276 TYPE_ZALLOC (type, \
1277 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1278
1279 #define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1280 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1281 #define TYPE_NAME(thistype) TYPE_MAIN_TYPE(thistype)->name
1282 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1283 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1284 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1285 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1286 #define TYPE_CHAIN(thistype) (thistype)->chain
1287 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1288 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1289 so you only have to call check_typedef once. Since allocate_value
1290 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1291 #define TYPE_LENGTH(thistype) (thistype)->length
1292
1293 /* * Return the alignment of the type in target addressable memory
1294 units, or 0 if no alignment was specified. */
1295 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1296
1297 /* * Return the alignment of the type in target addressable memory
1298 units, or 0 if no alignment was specified. */
1299 extern unsigned type_raw_align (struct type *);
1300
1301 /* * Return the alignment of the type in target addressable memory
1302 units. Return 0 if the alignment cannot be determined; but note
1303 that this makes an effort to compute the alignment even it it was
1304 not specified in the debug info. */
1305 extern unsigned type_align (struct type *);
1306
1307 /* * Set the alignment of the type. The alignment must be a power of
1308 2. Returns false if the given value does not fit in the available
1309 space in struct type. */
1310 extern bool set_type_align (struct type *, ULONGEST);
1311
1312 /* * Note that TYPE_CODE can be TYPE_CODE_TYPEDEF, so if you want the real
1313 type, you need to do TYPE_CODE (check_type (this_type)). */
1314 #define TYPE_CODE(thistype) TYPE_MAIN_TYPE(thistype)->code
1315 #define TYPE_NFIELDS(thistype) TYPE_MAIN_TYPE(thistype)->nfields
1316 #define TYPE_FIELDS(thistype) TYPE_MAIN_TYPE(thistype)->flds_bnds.fields
1317
1318 #define TYPE_INDEX_TYPE(type) TYPE_FIELD_TYPE (type, 0)
1319 #define TYPE_RANGE_DATA(thistype) TYPE_MAIN_TYPE(thistype)->flds_bnds.bounds
1320 #define TYPE_LOW_BOUND(range_type) \
1321 TYPE_RANGE_DATA(range_type)->low.data.const_val
1322 #define TYPE_HIGH_BOUND(range_type) \
1323 TYPE_RANGE_DATA(range_type)->high.data.const_val
1324 #define TYPE_LOW_BOUND_UNDEFINED(range_type) \
1325 (TYPE_RANGE_DATA(range_type)->low.kind == PROP_UNDEFINED)
1326 #define TYPE_HIGH_BOUND_UNDEFINED(range_type) \
1327 (TYPE_RANGE_DATA(range_type)->high.kind == PROP_UNDEFINED)
1328 #define TYPE_HIGH_BOUND_KIND(range_type) \
1329 TYPE_RANGE_DATA(range_type)->high.kind
1330 #define TYPE_LOW_BOUND_KIND(range_type) \
1331 TYPE_RANGE_DATA(range_type)->low.kind
1332
1333 /* Property accessors for the type data location. */
1334 #define TYPE_DATA_LOCATION(thistype) \
1335 get_dyn_prop (DYN_PROP_DATA_LOCATION, thistype)
1336 #define TYPE_DATA_LOCATION_BATON(thistype) \
1337 TYPE_DATA_LOCATION (thistype)->data.baton
1338 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1339 TYPE_DATA_LOCATION (thistype)->data.const_val
1340 #define TYPE_DATA_LOCATION_KIND(thistype) \
1341 TYPE_DATA_LOCATION (thistype)->kind
1342
1343 /* Property accessors for the type allocated/associated. */
1344 #define TYPE_ALLOCATED_PROP(thistype) \
1345 get_dyn_prop (DYN_PROP_ALLOCATED, thistype)
1346 #define TYPE_ASSOCIATED_PROP(thistype) \
1347 get_dyn_prop (DYN_PROP_ASSOCIATED, thistype)
1348
1349 /* Attribute accessors for dynamic properties. */
1350 #define TYPE_DYN_PROP_LIST(thistype) \
1351 TYPE_MAIN_TYPE(thistype)->dyn_prop_list
1352 #define TYPE_DYN_PROP_BATON(dynprop) \
1353 dynprop->data.baton
1354 #define TYPE_DYN_PROP_ADDR(dynprop) \
1355 dynprop->data.const_val
1356 #define TYPE_DYN_PROP_KIND(dynprop) \
1357 dynprop->kind
1358
1359
1360 /* Moto-specific stuff for FORTRAN arrays. */
1361
1362 #define TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED(arraytype) \
1363 TYPE_HIGH_BOUND_UNDEFINED(TYPE_INDEX_TYPE(arraytype))
1364 #define TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED(arraytype) \
1365 TYPE_LOW_BOUND_UNDEFINED(TYPE_INDEX_TYPE(arraytype))
1366
1367 #define TYPE_ARRAY_UPPER_BOUND_VALUE(arraytype) \
1368 (TYPE_HIGH_BOUND(TYPE_INDEX_TYPE((arraytype))))
1369
1370 #define TYPE_ARRAY_LOWER_BOUND_VALUE(arraytype) \
1371 (TYPE_LOW_BOUND(TYPE_INDEX_TYPE((arraytype))))
1372
1373 /* C++ */
1374
1375 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1376 /* Do not call this, use TYPE_SELF_TYPE. */
1377 extern struct type *internal_type_self_type (struct type *);
1378 extern void set_type_self_type (struct type *, struct type *);
1379
1380 extern int internal_type_vptr_fieldno (struct type *);
1381 extern void set_type_vptr_fieldno (struct type *, int);
1382 extern struct type *internal_type_vptr_basetype (struct type *);
1383 extern void set_type_vptr_basetype (struct type *, struct type *);
1384 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1385 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1386
1387 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1388 #define TYPE_SPECIFIC_FIELD(thistype) \
1389 TYPE_MAIN_TYPE(thistype)->type_specific_field
1390 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1391 where we're trying to print an Ada array using the C language.
1392 In that case, there is no "cplus_stuff", but the C language assumes
1393 that there is. What we do, in that case, is pretend that there is
1394 an implicit one which is the default cplus stuff. */
1395 #define TYPE_CPLUS_SPECIFIC(thistype) \
1396 (!HAVE_CPLUS_STRUCT(thistype) \
1397 ? (struct cplus_struct_type*)&cplus_struct_default \
1398 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1399 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1400 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1401 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1402 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1403 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1404 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1405 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1406 #define TYPE_BASECLASS(thistype,index) TYPE_FIELD_TYPE(thistype, index)
1407 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1408 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1409 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1410 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1411 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1412 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1413
1414 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1415 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1416 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1417
1418 #define FIELD_TYPE(thisfld) ((thisfld).type)
1419 #define FIELD_NAME(thisfld) ((thisfld).name)
1420 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1421 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1422 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1423 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1424 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1425 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1426 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1427 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1428 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1429 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1430 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1431 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1432 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1433 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1434 #define SET_FIELD_PHYSNAME(thisfld, name) \
1435 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1436 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1437 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1438 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1439 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1440 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1441 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1442 FIELD_DWARF_BLOCK (thisfld) = (addr))
1443 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1444 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1445
1446 #define TYPE_FIELD(thistype, n) TYPE_MAIN_TYPE(thistype)->flds_bnds.fields[n]
1447 #define TYPE_FIELD_TYPE(thistype, n) FIELD_TYPE(TYPE_FIELD(thistype, n))
1448 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME(TYPE_FIELD(thistype, n))
1449 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND (TYPE_FIELD (thistype, n))
1450 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS (TYPE_FIELD (thistype, n))
1451 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL (TYPE_FIELD (thistype, n))
1452 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME (TYPE_FIELD (thistype, n))
1453 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR (TYPE_FIELD (thistype, n))
1454 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK (TYPE_FIELD (thistype, n))
1455 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL(TYPE_FIELD(thistype,n))
1456 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE(TYPE_FIELD(thistype,n))
1457 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE(TYPE_FIELD(thistype,n))!=0)
1458
1459 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1460 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1461 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1462 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1463 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1464 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1465 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1466 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1467 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1468 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1469 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1470 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1471 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1472 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1473 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1474 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1475 #define TYPE_FIELD_PRIVATE(thistype, n) \
1476 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1477 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1478 #define TYPE_FIELD_PROTECTED(thistype, n) \
1479 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1480 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1481 #define TYPE_FIELD_IGNORE(thistype, n) \
1482 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1483 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1484 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1485 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1486 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1487
1488 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1489 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1490 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1491 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1492 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1493
1494 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1495 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1496 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1497 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1498 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1499 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1500
1501 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1502 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1503 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1504 #define TYPE_FN_FIELD_ARGS(thisfn, n) TYPE_FIELDS ((thisfn)[n].type)
1505 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1506 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1507 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1508 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1509 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1510 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1511 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1512 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1513 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1514 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1515 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1516
1517 /* Accessors for typedefs defined by a class. */
1518 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1519 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1520 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1521 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1522 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1523 TYPE_TYPEDEF_FIELD (thistype, n).name
1524 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1525 TYPE_TYPEDEF_FIELD (thistype, n).type
1526 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1527 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1528 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1529 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1530 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1531 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1532
1533 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1534 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1535 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
1536 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
1537 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
1538 TYPE_NESTED_TYPES_FIELD (thistype, n).name
1539 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
1540 TYPE_NESTED_TYPES_FIELD (thistype, n).type
1541 #define TYPE_NESTED_TYPES_COUNT(thistype) \
1542 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
1543 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
1544 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
1545 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
1546 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
1547
1548 #define TYPE_IS_OPAQUE(thistype) \
1549 (((TYPE_CODE (thistype) == TYPE_CODE_STRUCT) \
1550 || (TYPE_CODE (thistype) == TYPE_CODE_UNION)) \
1551 && (TYPE_NFIELDS (thistype) == 0) \
1552 && (!HAVE_CPLUS_STRUCT (thistype) \
1553 || TYPE_NFN_FIELDS (thistype) == 0) \
1554 && (TYPE_STUB (thistype) || !TYPE_STUB_SUPPORTED (thistype)))
1555
1556 /* * A helper macro that returns the name of a type or "unnamed type"
1557 if the type has no name. */
1558
1559 #define TYPE_SAFE_NAME(type) \
1560 (TYPE_NAME (type) ? TYPE_NAME (type) : _("<unnamed type>"))
1561
1562 /* * A helper macro that returns the name of an error type. If the
1563 type has a name, it is used; otherwise, a default is used. */
1564
1565 #define TYPE_ERROR_NAME(type) \
1566 (TYPE_NAME (type) ? TYPE_NAME (type) : _("<error type>"))
1567
1568 /* Given TYPE, return its floatformat. */
1569 const struct floatformat *floatformat_from_type (const struct type *type);
1570
1571 struct builtin_type
1572 {
1573 /* Integral types. */
1574
1575 /* Implicit size/sign (based on the architecture's ABI). */
1576 struct type *builtin_void;
1577 struct type *builtin_char;
1578 struct type *builtin_short;
1579 struct type *builtin_int;
1580 struct type *builtin_long;
1581 struct type *builtin_signed_char;
1582 struct type *builtin_unsigned_char;
1583 struct type *builtin_unsigned_short;
1584 struct type *builtin_unsigned_int;
1585 struct type *builtin_unsigned_long;
1586 struct type *builtin_float;
1587 struct type *builtin_double;
1588 struct type *builtin_long_double;
1589 struct type *builtin_complex;
1590 struct type *builtin_double_complex;
1591 struct type *builtin_string;
1592 struct type *builtin_bool;
1593 struct type *builtin_long_long;
1594 struct type *builtin_unsigned_long_long;
1595 struct type *builtin_decfloat;
1596 struct type *builtin_decdouble;
1597 struct type *builtin_declong;
1598
1599 /* "True" character types.
1600 We use these for the '/c' print format, because c_char is just a
1601 one-byte integral type, which languages less laid back than C
1602 will print as ... well, a one-byte integral type. */
1603 struct type *builtin_true_char;
1604 struct type *builtin_true_unsigned_char;
1605
1606 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1607 is for when an architecture needs to describe a register that has
1608 no size. */
1609 struct type *builtin_int0;
1610 struct type *builtin_int8;
1611 struct type *builtin_uint8;
1612 struct type *builtin_int16;
1613 struct type *builtin_uint16;
1614 struct type *builtin_int32;
1615 struct type *builtin_uint32;
1616 struct type *builtin_int64;
1617 struct type *builtin_uint64;
1618 struct type *builtin_int128;
1619 struct type *builtin_uint128;
1620
1621 /* Wide character types. */
1622 struct type *builtin_char16;
1623 struct type *builtin_char32;
1624 struct type *builtin_wchar;
1625
1626 /* Pointer types. */
1627
1628 /* * `pointer to data' type. Some target platforms use an implicitly
1629 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1630 struct type *builtin_data_ptr;
1631
1632 /* * `pointer to function (returning void)' type. Harvard
1633 architectures mean that ABI function and code pointers are not
1634 interconvertible. Similarly, since ANSI, C standards have
1635 explicitly said that pointers to functions and pointers to data
1636 are not interconvertible --- that is, you can't cast a function
1637 pointer to void * and back, and expect to get the same value.
1638 However, all function pointer types are interconvertible, so void
1639 (*) () can server as a generic function pointer. */
1640
1641 struct type *builtin_func_ptr;
1642
1643 /* * `function returning pointer to function (returning void)' type.
1644 The final void return type is not significant for it. */
1645
1646 struct type *builtin_func_func;
1647
1648 /* Special-purpose types. */
1649
1650 /* * This type is used to represent a GDB internal function. */
1651
1652 struct type *internal_fn;
1653
1654 /* * This type is used to represent an xmethod. */
1655 struct type *xmethod;
1656 };
1657
1658 /* * Return the type table for the specified architecture. */
1659
1660 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
1661
1662 /* * Per-objfile types used by symbol readers. */
1663
1664 struct objfile_type
1665 {
1666 /* Basic types based on the objfile architecture. */
1667 struct type *builtin_void;
1668 struct type *builtin_char;
1669 struct type *builtin_short;
1670 struct type *builtin_int;
1671 struct type *builtin_long;
1672 struct type *builtin_long_long;
1673 struct type *builtin_signed_char;
1674 struct type *builtin_unsigned_char;
1675 struct type *builtin_unsigned_short;
1676 struct type *builtin_unsigned_int;
1677 struct type *builtin_unsigned_long;
1678 struct type *builtin_unsigned_long_long;
1679 struct type *builtin_float;
1680 struct type *builtin_double;
1681 struct type *builtin_long_double;
1682
1683 /* * This type is used to represent symbol addresses. */
1684 struct type *builtin_core_addr;
1685
1686 /* * This type represents a type that was unrecognized in symbol
1687 read-in. */
1688 struct type *builtin_error;
1689
1690 /* * Types used for symbols with no debug information. */
1691 struct type *nodebug_text_symbol;
1692 struct type *nodebug_text_gnu_ifunc_symbol;
1693 struct type *nodebug_got_plt_symbol;
1694 struct type *nodebug_data_symbol;
1695 struct type *nodebug_unknown_symbol;
1696 struct type *nodebug_tls_symbol;
1697 };
1698
1699 /* * Return the type table for the specified objfile. */
1700
1701 extern const struct objfile_type *objfile_type (struct objfile *objfile);
1702
1703 /* Explicit floating-point formats. See "floatformat.h". */
1704 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
1705 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
1706 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
1707 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
1708 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
1709 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
1710 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
1711 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
1712 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
1713 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
1714 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
1715 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
1716
1717
1718 /* * Allocate space for storing data associated with a particular
1719 type. We ensure that the space is allocated using the same
1720 mechanism that was used to allocate the space for the type
1721 structure itself. I.e. if the type is on an objfile's
1722 objfile_obstack, then the space for data associated with that type
1723 will also be allocated on the objfile_obstack. If the type is not
1724 associated with any particular objfile (such as builtin types),
1725 then the data space will be allocated with xmalloc, the same as for
1726 the type structure. */
1727
1728 #define TYPE_ALLOC(t,size) \
1729 (TYPE_OBJFILE_OWNED (t) \
1730 ? obstack_alloc (&TYPE_OBJFILE (t) -> objfile_obstack, size) \
1731 : xmalloc (size))
1732
1733 #define TYPE_ZALLOC(t,size) \
1734 (TYPE_OBJFILE_OWNED (t) \
1735 ? memset (obstack_alloc (&TYPE_OBJFILE (t)->objfile_obstack, size), \
1736 0, size) \
1737 : xzalloc (size))
1738
1739 /* Use alloc_type to allocate a type owned by an objfile. Use
1740 alloc_type_arch to allocate a type owned by an architecture. Use
1741 alloc_type_copy to allocate a type with the same owner as a
1742 pre-existing template type, no matter whether objfile or
1743 gdbarch. */
1744 extern struct type *alloc_type (struct objfile *);
1745 extern struct type *alloc_type_arch (struct gdbarch *);
1746 extern struct type *alloc_type_copy (const struct type *);
1747
1748 /* * Return the type's architecture. For types owned by an
1749 architecture, that architecture is returned. For types owned by an
1750 objfile, that objfile's architecture is returned. */
1751
1752 extern struct gdbarch *get_type_arch (const struct type *);
1753
1754 /* * This returns the target type (or NULL) of TYPE, also skipping
1755 past typedefs. */
1756
1757 extern struct type *get_target_type (struct type *type);
1758
1759 /* Return the equivalent of TYPE_LENGTH, but in number of target
1760 addressable memory units of the associated gdbarch instead of bytes. */
1761
1762 extern unsigned int type_length_units (struct type *type);
1763
1764 /* * Helper function to construct objfile-owned types. */
1765
1766 extern struct type *init_type (struct objfile *, enum type_code, int,
1767 const char *);
1768 extern struct type *init_integer_type (struct objfile *, int, int,
1769 const char *);
1770 extern struct type *init_character_type (struct objfile *, int, int,
1771 const char *);
1772 extern struct type *init_boolean_type (struct objfile *, int, int,
1773 const char *);
1774 extern struct type *init_float_type (struct objfile *, int, const char *,
1775 const struct floatformat **);
1776 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
1777 extern struct type *init_complex_type (struct objfile *, const char *,
1778 struct type *);
1779 extern struct type *init_pointer_type (struct objfile *, int, const char *,
1780 struct type *);
1781
1782 /* Helper functions to construct architecture-owned types. */
1783 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
1784 const char *);
1785 extern struct type *arch_integer_type (struct gdbarch *, int, int,
1786 const char *);
1787 extern struct type *arch_character_type (struct gdbarch *, int, int,
1788 const char *);
1789 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
1790 const char *);
1791 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
1792 const struct floatformat **);
1793 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
1794 extern struct type *arch_complex_type (struct gdbarch *, const char *,
1795 struct type *);
1796 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
1797 struct type *);
1798
1799 /* Helper functions to construct a struct or record type. An
1800 initially empty type is created using arch_composite_type().
1801 Fields are then added using append_composite_type_field*(). A union
1802 type has its size set to the largest field. A struct type has each
1803 field packed against the previous. */
1804
1805 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
1806 const char *name, enum type_code code);
1807 extern void append_composite_type_field (struct type *t, const char *name,
1808 struct type *field);
1809 extern void append_composite_type_field_aligned (struct type *t,
1810 const char *name,
1811 struct type *field,
1812 int alignment);
1813 struct field *append_composite_type_field_raw (struct type *t, const char *name,
1814 struct type *field);
1815
1816 /* Helper functions to construct a bit flags type. An initially empty
1817 type is created using arch_flag_type(). Flags are then added using
1818 append_flag_type_field() and append_flag_type_flag(). */
1819 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
1820 const char *name, int bit);
1821 extern void append_flags_type_field (struct type *type,
1822 int start_bitpos, int nr_bits,
1823 struct type *field_type, const char *name);
1824 extern void append_flags_type_flag (struct type *type, int bitpos,
1825 const char *name);
1826
1827 extern void make_vector_type (struct type *array_type);
1828 extern struct type *init_vector_type (struct type *elt_type, int n);
1829
1830 extern struct type *lookup_reference_type (struct type *, enum type_code);
1831 extern struct type *lookup_lvalue_reference_type (struct type *);
1832 extern struct type *lookup_rvalue_reference_type (struct type *);
1833
1834
1835 extern struct type *make_reference_type (struct type *, struct type **,
1836 enum type_code);
1837
1838 extern struct type *make_cv_type (int, int, struct type *, struct type **);
1839
1840 extern struct type *make_restrict_type (struct type *);
1841
1842 extern struct type *make_unqualified_type (struct type *);
1843
1844 extern struct type *make_atomic_type (struct type *);
1845
1846 extern void replace_type (struct type *, struct type *);
1847
1848 extern int address_space_name_to_int (struct gdbarch *, char *);
1849
1850 extern const char *address_space_int_to_name (struct gdbarch *, int);
1851
1852 extern struct type *make_type_with_address_space (struct type *type,
1853 int space_identifier);
1854
1855 extern struct type *lookup_memberptr_type (struct type *, struct type *);
1856
1857 extern struct type *lookup_methodptr_type (struct type *);
1858
1859 extern void smash_to_method_type (struct type *type, struct type *self_type,
1860 struct type *to_type, struct field *args,
1861 int nargs, int varargs);
1862
1863 extern void smash_to_memberptr_type (struct type *, struct type *,
1864 struct type *);
1865
1866 extern void smash_to_methodptr_type (struct type *, struct type *);
1867
1868 extern struct type *allocate_stub_method (struct type *);
1869
1870 extern const char *type_name_no_tag (const struct type *);
1871
1872 extern const char *type_name_no_tag_or_error (struct type *type);
1873
1874 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
1875
1876 extern struct type *make_pointer_type (struct type *, struct type **);
1877
1878 extern struct type *lookup_pointer_type (struct type *);
1879
1880 extern struct type *make_function_type (struct type *, struct type **);
1881
1882 extern struct type *lookup_function_type (struct type *);
1883
1884 extern struct type *lookup_function_type_with_arguments (struct type *,
1885 int,
1886 struct type **);
1887
1888 extern struct type *create_static_range_type (struct type *, struct type *,
1889 LONGEST, LONGEST);
1890
1891
1892 extern struct type *create_array_type_with_stride
1893 (struct type *, struct type *, struct type *,
1894 struct dynamic_prop *, unsigned int);
1895
1896 extern struct type *create_range_type (struct type *, struct type *,
1897 const struct dynamic_prop *,
1898 const struct dynamic_prop *);
1899
1900 extern struct type *create_array_type (struct type *, struct type *,
1901 struct type *);
1902
1903 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
1904
1905 extern struct type *create_string_type (struct type *, struct type *,
1906 struct type *);
1907 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
1908
1909 extern struct type *create_set_type (struct type *, struct type *);
1910
1911 extern struct type *lookup_unsigned_typename (const struct language_defn *,
1912 struct gdbarch *, const char *);
1913
1914 extern struct type *lookup_signed_typename (const struct language_defn *,
1915 struct gdbarch *, const char *);
1916
1917 extern void get_unsigned_type_max (struct type *, ULONGEST *);
1918
1919 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
1920
1921 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
1922 ADDR specifies the location of the variable the type is bound to.
1923 If TYPE has no dynamic properties return TYPE; otherwise a new type with
1924 static properties is returned. */
1925 extern struct type *resolve_dynamic_type (struct type *type,
1926 const gdb_byte *valaddr,
1927 CORE_ADDR addr);
1928
1929 /* * Predicate if the type has dynamic values, which are not resolved yet. */
1930 extern int is_dynamic_type (struct type *type);
1931
1932 /* * Return the dynamic property of the requested KIND from TYPE's
1933 list of dynamic properties. */
1934 extern struct dynamic_prop *get_dyn_prop
1935 (enum dynamic_prop_node_kind kind, const struct type *type);
1936
1937 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1938 property to the given TYPE.
1939
1940 This function assumes that TYPE is objfile-owned. */
1941 extern void add_dyn_prop
1942 (enum dynamic_prop_node_kind kind, struct dynamic_prop prop,
1943 struct type *type);
1944
1945 extern void remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
1946 struct type *type);
1947
1948 extern struct type *check_typedef (struct type *);
1949
1950 extern void check_stub_method_group (struct type *, int);
1951
1952 extern char *gdb_mangle_name (struct type *, int, int);
1953
1954 extern struct type *lookup_typename (const struct language_defn *,
1955 struct gdbarch *, const char *,
1956 const struct block *, int);
1957
1958 extern struct type *lookup_template_type (char *, struct type *,
1959 const struct block *);
1960
1961 extern int get_vptr_fieldno (struct type *, struct type **);
1962
1963 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
1964
1965 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
1966 LONGEST *high_bound);
1967
1968 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
1969
1970 extern int class_types_same_p (const struct type *, const struct type *);
1971
1972 extern int is_ancestor (struct type *, struct type *);
1973
1974 extern int is_public_ancestor (struct type *, struct type *);
1975
1976 extern int is_unique_ancestor (struct type *, struct value *);
1977
1978 /* Overload resolution */
1979
1980 #define LENGTH_MATCH(bv) ((bv)->rank[0])
1981
1982 /* * Badness if parameter list length doesn't match arg list length. */
1983 extern const struct rank LENGTH_MISMATCH_BADNESS;
1984
1985 /* * Dummy badness value for nonexistent parameter positions. */
1986 extern const struct rank TOO_FEW_PARAMS_BADNESS;
1987 /* * Badness if no conversion among types. */
1988 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
1989
1990 /* * Badness of an exact match. */
1991 extern const struct rank EXACT_MATCH_BADNESS;
1992
1993 /* * Badness of integral promotion. */
1994 extern const struct rank INTEGER_PROMOTION_BADNESS;
1995 /* * Badness of floating promotion. */
1996 extern const struct rank FLOAT_PROMOTION_BADNESS;
1997 /* * Badness of converting a derived class pointer
1998 to a base class pointer. */
1999 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2000 /* * Badness of integral conversion. */
2001 extern const struct rank INTEGER_CONVERSION_BADNESS;
2002 /* * Badness of floating conversion. */
2003 extern const struct rank FLOAT_CONVERSION_BADNESS;
2004 /* * Badness of integer<->floating conversions. */
2005 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2006 /* * Badness of conversion of pointer to void pointer. */
2007 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2008 /* * Badness of conversion to boolean. */
2009 extern const struct rank BOOL_CONVERSION_BADNESS;
2010 /* * Badness of converting derived to base class. */
2011 extern const struct rank BASE_CONVERSION_BADNESS;
2012 /* * Badness of converting from non-reference to reference. Subrank
2013 is the type of reference conversion being done. */
2014 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2015 /* * Conversion to rvalue reference. */
2016 #define REFERENCE_CONVERSION_RVALUE 1
2017 /* * Conversion to const lvalue reference. */
2018 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2019
2020 /* * Badness of converting integer 0 to NULL pointer. */
2021 extern const struct rank NULL_POINTER_CONVERSION;
2022 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2023 being done. */
2024 extern const struct rank CV_CONVERSION_BADNESS;
2025 #define CV_CONVERSION_CONST 1
2026 #define CV_CONVERSION_VOLATILE 2
2027
2028 /* Non-standard conversions allowed by the debugger */
2029
2030 /* * Converting a pointer to an int is usually OK. */
2031 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2032
2033 /* * Badness of converting a (non-zero) integer constant
2034 to a pointer. */
2035 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2036
2037 extern struct rank sum_ranks (struct rank a, struct rank b);
2038 extern int compare_ranks (struct rank a, struct rank b);
2039
2040 extern int compare_badness (struct badness_vector *, struct badness_vector *);
2041
2042 extern struct badness_vector *rank_function (struct type **, int,
2043 struct value **, int);
2044
2045 extern struct rank rank_one_type (struct type *, struct type *,
2046 struct value *);
2047
2048 extern void recursive_dump_type (struct type *, int);
2049
2050 extern int field_is_static (struct field *);
2051
2052 /* printcmd.c */
2053
2054 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2055 const struct value_print_options *,
2056 int, struct ui_file *);
2057
2058 extern int can_dereference (struct type *);
2059
2060 extern int is_integral_type (struct type *);
2061
2062 extern int is_floating_type (struct type *);
2063
2064 extern int is_scalar_type (struct type *type);
2065
2066 extern int is_scalar_type_recursive (struct type *);
2067
2068 extern int class_or_union_p (const struct type *);
2069
2070 extern void maintenance_print_type (const char *, int);
2071
2072 extern htab_t create_copied_types_hash (struct objfile *objfile);
2073
2074 extern struct type *copy_type_recursive (struct objfile *objfile,
2075 struct type *type,
2076 htab_t copied_types);
2077
2078 extern struct type *copy_type (const struct type *type);
2079
2080 extern bool types_equal (struct type *, struct type *);
2081
2082 extern bool types_deeply_equal (struct type *, struct type *);
2083
2084 extern int type_not_allocated (const struct type *type);
2085
2086 extern int type_not_associated (const struct type *type);
2087
2088 #endif /* GDBTYPES_H */
This page took 0.084223 seconds and 4 git commands to generate.