Allow really large fortran array bounds: TYPE_LENGTH to ULONGEST
[deliverable/binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2019 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "common/array-view.h"
49 #include "common/offset-type.h"
50 #include "common/enum-flags.h"
51 #include "common/underlying.h"
52 #include "common/print-utils.h"
53 #include "gdbarch.h"
54
55 /* Forward declarations for prototypes. */
56 struct field;
57 struct block;
58 struct value_print_options;
59 struct language_defn;
60
61 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
62 are already DWARF-specific. */
63
64 /* * Offset relative to the start of its containing CU (compilation
65 unit). */
66 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
67
68 /* * Offset relative to the start of its .debug_info or .debug_types
69 section. */
70 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
71
72 static inline char *
73 sect_offset_str (sect_offset offset)
74 {
75 return hex_string (to_underlying (offset));
76 }
77
78 /* Some macros for char-based bitfields. */
79
80 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
81 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
82 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
83 #define B_TYPE unsigned char
84 #define B_BYTES(x) ( 1 + ((x)>>3) )
85 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
86
87 /* * Different kinds of data types are distinguished by the `code'
88 field. */
89
90 enum type_code
91 {
92 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
93 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
94 TYPE_CODE_PTR, /**< Pointer type */
95
96 /* * Array type with lower & upper bounds.
97
98 Regardless of the language, GDB represents multidimensional
99 array types the way C does: as arrays of arrays. So an
100 instance of a GDB array type T can always be seen as a series
101 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
102 memory.
103
104 Row-major languages like C lay out multi-dimensional arrays so
105 that incrementing the rightmost index in a subscripting
106 expression results in the smallest change in the address of the
107 element referred to. Column-major languages like Fortran lay
108 them out so that incrementing the leftmost index results in the
109 smallest change.
110
111 This means that, in column-major languages, working our way
112 from type to target type corresponds to working through indices
113 from right to left, not left to right. */
114 TYPE_CODE_ARRAY,
115
116 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
117 TYPE_CODE_UNION, /**< C union or Pascal variant part */
118 TYPE_CODE_ENUM, /**< Enumeration type */
119 TYPE_CODE_FLAGS, /**< Bit flags type */
120 TYPE_CODE_FUNC, /**< Function type */
121 TYPE_CODE_INT, /**< Integer type */
122
123 /* * Floating type. This is *NOT* a complex type. Beware, there
124 are parts of GDB which bogusly assume that TYPE_CODE_FLT can
125 mean complex. */
126 TYPE_CODE_FLT,
127
128 /* * Void type. The length field specifies the length (probably
129 always one) which is used in pointer arithmetic involving
130 pointers to this type, but actually dereferencing such a
131 pointer is invalid; a void type has no length and no actual
132 representation in memory or registers. A pointer to a void
133 type is a generic pointer. */
134 TYPE_CODE_VOID,
135
136 TYPE_CODE_SET, /**< Pascal sets */
137 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
138
139 /* * A string type which is like an array of character but prints
140 differently. It does not contain a length field as Pascal
141 strings (for many Pascals, anyway) do; if we want to deal with
142 such strings, we should use a new type code. */
143 TYPE_CODE_STRING,
144
145 /* * Unknown type. The length field is valid if we were able to
146 deduce that much about the type, or 0 if we don't even know
147 that. */
148 TYPE_CODE_ERROR,
149
150 /* C++ */
151 TYPE_CODE_METHOD, /**< Method type */
152
153 /* * Pointer-to-member-function type. This describes how to access a
154 particular member function of a class (possibly a virtual
155 member function). The representation may vary between different
156 C++ ABIs. */
157 TYPE_CODE_METHODPTR,
158
159 /* * Pointer-to-member type. This is the offset within a class to
160 some particular data member. The only currently supported
161 representation uses an unbiased offset, with -1 representing
162 NULL; this is used by the Itanium C++ ABI (used by GCC on all
163 platforms). */
164 TYPE_CODE_MEMBERPTR,
165
166 TYPE_CODE_REF, /**< C++ Reference types */
167
168 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
169
170 TYPE_CODE_CHAR, /**< *real* character type */
171
172 /* * Boolean type. 0 is false, 1 is true, and other values are
173 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
174 TYPE_CODE_BOOL,
175
176 /* Fortran */
177 TYPE_CODE_COMPLEX, /**< Complex float */
178
179 TYPE_CODE_TYPEDEF,
180
181 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
182
183 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
184
185 TYPE_CODE_MODULE, /**< Fortran module. */
186
187 /* * Internal function type. */
188 TYPE_CODE_INTERNAL_FUNCTION,
189
190 /* * Methods implemented in extension languages. */
191 TYPE_CODE_XMETHOD
192 };
193
194 /* * Some bits for the type's instance_flags word. See the macros
195 below for documentation on each bit. */
196
197 enum type_instance_flag_value : unsigned
198 {
199 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
200 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
201 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
202 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
203 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
204 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
205 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
206 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
207 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
208 };
209
210 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
211
212 /* * Unsigned integer type. If this is not set for a TYPE_CODE_INT,
213 the type is signed (unless TYPE_NOSIGN (below) is set). */
214
215 #define TYPE_UNSIGNED(t) (TYPE_MAIN_TYPE (t)->flag_unsigned)
216
217 /* * No sign for this type. In C++, "char", "signed char", and
218 "unsigned char" are distinct types; so we need an extra flag to
219 indicate the absence of a sign! */
220
221 #define TYPE_NOSIGN(t) (TYPE_MAIN_TYPE (t)->flag_nosign)
222
223 /* * This appears in a type's flags word if it is a stub type (e.g.,
224 if someone referenced a type that wasn't defined in a source file
225 via (struct sir_not_appearing_in_this_film *)). */
226
227 #define TYPE_STUB(t) (TYPE_MAIN_TYPE (t)->flag_stub)
228
229 /* * The target type of this type is a stub type, and this type needs
230 to be updated if it gets un-stubbed in check_typedef. Used for
231 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
232 based on the TYPE_LENGTH of the target type. Also, set for
233 TYPE_CODE_TYPEDEF. */
234
235 #define TYPE_TARGET_STUB(t) (TYPE_MAIN_TYPE (t)->flag_target_stub)
236
237 /* * This is a function type which appears to have a prototype. We
238 need this for function calls in order to tell us if it's necessary
239 to coerce the args, or to just do the standard conversions. This
240 is used with a short field. */
241
242 #define TYPE_PROTOTYPED(t) (TYPE_MAIN_TYPE (t)->flag_prototyped)
243
244 /* * This flag is used to indicate that processing for this type
245 is incomplete.
246
247 (Mostly intended for HP platforms, where class methods, for
248 instance, can be encountered before their classes in the debug
249 info; the incomplete type has to be marked so that the class and
250 the method can be assigned correct types.) */
251
252 #define TYPE_INCOMPLETE(t) (TYPE_MAIN_TYPE (t)->flag_incomplete)
253
254 /* * FIXME drow/2002-06-03: Only used for methods, but applies as well
255 to functions. */
256
257 #define TYPE_VARARGS(t) (TYPE_MAIN_TYPE (t)->flag_varargs)
258
259 /* * Identify a vector type. Gcc is handling this by adding an extra
260 attribute to the array type. We slurp that in as a new flag of a
261 type. This is used only in dwarf2read.c. */
262 #define TYPE_VECTOR(t) (TYPE_MAIN_TYPE (t)->flag_vector)
263
264 /* * The debugging formats (especially STABS) do not contain enough
265 information to represent all Ada types---especially those whose
266 size depends on dynamic quantities. Therefore, the GNAT Ada
267 compiler includes extra information in the form of additional type
268 definitions connected by naming conventions. This flag indicates
269 that the type is an ordinary (unencoded) GDB type that has been
270 created from the necessary run-time information, and does not need
271 further interpretation. Optionally marks ordinary, fixed-size GDB
272 type. */
273
274 #define TYPE_FIXED_INSTANCE(t) (TYPE_MAIN_TYPE (t)->flag_fixed_instance)
275
276 /* * This debug target supports TYPE_STUB(t). In the unsupported case
277 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
278 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
279 guessed the TYPE_STUB(t) value (see dwarfread.c). */
280
281 #define TYPE_STUB_SUPPORTED(t) (TYPE_MAIN_TYPE (t)->flag_stub_supported)
282
283 /* * Not textual. By default, GDB treats all single byte integers as
284 characters (or elements of strings) unless this flag is set. */
285
286 #define TYPE_NOTTEXT(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
287
288 /* * Used only for TYPE_CODE_FUNC where it specifies the real function
289 address is returned by this function call. TYPE_TARGET_TYPE
290 determines the final returned function type to be presented to
291 user. */
292
293 #define TYPE_GNU_IFUNC(t) (TYPE_MAIN_TYPE (t)->flag_gnu_ifunc)
294
295 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
296 the objfile retrieved as TYPE_OBJFILE. Otherweise, the type is
297 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
298
299 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
300 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
301 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
302
303 /* * True if this type was declared using the "class" keyword. This is
304 only valid for C++ structure and enum types. If false, a structure
305 was declared as a "struct"; if true it was declared "class". For
306 enum types, this is true when "enum class" or "enum struct" was
307 used to declare the type.. */
308
309 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
310
311 /* * True if this type is a "flag" enum. A flag enum is one where all
312 the values are pairwise disjoint when "and"ed together. This
313 affects how enum values are printed. */
314
315 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
316
317 /* * True if this type is a discriminated union type. Only valid for
318 TYPE_CODE_UNION. A discriminated union stores a reference to the
319 discriminant field along with the discriminator values in a dynamic
320 property. */
321
322 #define TYPE_FLAG_DISCRIMINATED_UNION(t) \
323 (TYPE_MAIN_TYPE (t)->flag_discriminated_union)
324
325 /* * Constant type. If this is set, the corresponding type has a
326 const modifier. */
327
328 #define TYPE_CONST(t) ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST) != 0)
329
330 /* * Volatile type. If this is set, the corresponding type has a
331 volatile modifier. */
332
333 #define TYPE_VOLATILE(t) \
334 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
335
336 /* * Restrict type. If this is set, the corresponding type has a
337 restrict modifier. */
338
339 #define TYPE_RESTRICT(t) \
340 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
341
342 /* * Atomic type. If this is set, the corresponding type has an
343 _Atomic modifier. */
344
345 #define TYPE_ATOMIC(t) \
346 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
347
348 /* * True if this type represents either an lvalue or lvalue reference type. */
349
350 #define TYPE_IS_REFERENCE(t) \
351 (TYPE_CODE (t) == TYPE_CODE_REF || TYPE_CODE (t) == TYPE_CODE_RVALUE_REF)
352
353 /* * Instruction-space delimited type. This is for Harvard architectures
354 which have separate instruction and data address spaces (and perhaps
355 others).
356
357 GDB usually defines a flat address space that is a superset of the
358 architecture's two (or more) address spaces, but this is an extension
359 of the architecture's model.
360
361 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
362 resides in instruction memory, even if its address (in the extended
363 flat address space) does not reflect this.
364
365 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
366 corresponding type resides in the data memory space, even if
367 this is not indicated by its (flat address space) address.
368
369 If neither flag is set, the default space for functions / methods
370 is instruction space, and for data objects is data memory. */
371
372 #define TYPE_CODE_SPACE(t) \
373 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
374
375 #define TYPE_DATA_SPACE(t) \
376 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
377
378 /* * Address class flags. Some environments provide for pointers
379 whose size is different from that of a normal pointer or address
380 types where the bits are interpreted differently than normal
381 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
382 target specific ways to represent these different types of address
383 classes. */
384
385 #define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
386 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
387 #define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
388 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
389 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
390 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
391 #define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
392 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
393
394 /* * Information needed for a discriminated union. A discriminated
395 union is handled somewhat differently from an ordinary union.
396
397 One field is designated as the discriminant. Only one other field
398 is active at a time; which one depends on the value of the
399 discriminant and the data in this structure.
400
401 Additionally, it is possible to have a univariant discriminated
402 union. In this case, the union has just a single field, which is
403 assumed to be the only active variant -- in this case no
404 discriminant is provided. */
405
406 struct discriminant_info
407 {
408 /* * The index of the discriminant field. If -1, then this union
409 must have just a single field. */
410
411 int discriminant_index;
412
413 /* * The index of the default branch of the union. If -1, then
414 there is no default branch. */
415
416 int default_index;
417
418 /* * The discriminant values corresponding to each branch. This has
419 a number of entries equal to the number of fields in this union.
420 If discriminant_index is not -1, then that entry in this array is
421 not used. If default_index is not -1, then that entry in this
422 array is not used. */
423
424 ULONGEST discriminants[1];
425 };
426
427 enum dynamic_prop_kind
428 {
429 PROP_UNDEFINED, /* Not defined. */
430 PROP_CONST, /* Constant. */
431 PROP_ADDR_OFFSET, /* Address offset. */
432 PROP_LOCEXPR, /* Location expression. */
433 PROP_LOCLIST /* Location list. */
434 };
435
436 union dynamic_prop_data
437 {
438 /* Storage for constant property. */
439
440 LONGEST const_val;
441
442 /* Storage for dynamic property. */
443
444 void *baton;
445 };
446
447 /* * Used to store a dynamic property. */
448
449 struct dynamic_prop
450 {
451 /* Determine which field of the union dynamic_prop.data is used. */
452 enum dynamic_prop_kind kind;
453
454 /* Storage for dynamic or static value. */
455 union dynamic_prop_data data;
456 };
457
458 /* Compare two dynamic_prop objects for equality. dynamic_prop
459 instances are equal iff they have the same type and storage. */
460 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
461
462 /* Compare two dynamic_prop objects for inequality. */
463 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
464 {
465 return !(l == r);
466 }
467
468 /* * Define a type's dynamic property node kind. */
469 enum dynamic_prop_node_kind
470 {
471 /* A property providing a type's data location.
472 Evaluating this field yields to the location of an object's data. */
473 DYN_PROP_DATA_LOCATION,
474
475 /* A property representing DW_AT_allocated. The presence of this attribute
476 indicates that the object of the type can be allocated/deallocated. */
477 DYN_PROP_ALLOCATED,
478
479 /* A property representing DW_AT_allocated. The presence of this attribute
480 indicated that the object of the type can be associated. */
481 DYN_PROP_ASSOCIATED,
482
483 /* A property providing an array's byte stride. */
484 DYN_PROP_BYTE_STRIDE,
485
486 /* A property holding information about a discriminated union. */
487 DYN_PROP_DISCRIMINATED,
488 };
489
490 /* * List for dynamic type attributes. */
491 struct dynamic_prop_list
492 {
493 /* The kind of dynamic prop in this node. */
494 enum dynamic_prop_node_kind prop_kind;
495
496 /* The dynamic property itself. */
497 struct dynamic_prop prop;
498
499 /* A pointer to the next dynamic property. */
500 struct dynamic_prop_list *next;
501 };
502
503 /* * Determine which field of the union main_type.fields[x].loc is
504 used. */
505
506 enum field_loc_kind
507 {
508 FIELD_LOC_KIND_BITPOS, /**< bitpos */
509 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
510 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
511 FIELD_LOC_KIND_PHYSNAME, /**< physname */
512 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
513 };
514
515 /* * A discriminant to determine which field in the
516 main_type.type_specific union is being used, if any.
517
518 For types such as TYPE_CODE_FLT, the use of this
519 discriminant is really redundant, as we know from the type code
520 which field is going to be used. As such, it would be possible to
521 reduce the size of this enum in order to save a bit or two for
522 other fields of struct main_type. But, since we still have extra
523 room , and for the sake of clarity and consistency, we treat all fields
524 of the union the same way. */
525
526 enum type_specific_kind
527 {
528 TYPE_SPECIFIC_NONE,
529 TYPE_SPECIFIC_CPLUS_STUFF,
530 TYPE_SPECIFIC_GNAT_STUFF,
531 TYPE_SPECIFIC_FLOATFORMAT,
532 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
533 TYPE_SPECIFIC_FUNC,
534 TYPE_SPECIFIC_SELF_TYPE
535 };
536
537 union type_owner
538 {
539 struct objfile *objfile;
540 struct gdbarch *gdbarch;
541 };
542
543 union field_location
544 {
545 /* * Position of this field, counting in bits from start of
546 containing structure. For gdbarch_bits_big_endian=1
547 targets, it is the bit offset to the MSB. For
548 gdbarch_bits_big_endian=0 targets, it is the bit offset to
549 the LSB. */
550
551 LONGEST bitpos;
552
553 /* * Enum value. */
554 LONGEST enumval;
555
556 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
557 physaddr is the location (in the target) of the static
558 field. Otherwise, physname is the mangled label of the
559 static field. */
560
561 CORE_ADDR physaddr;
562 const char *physname;
563
564 /* * The field location can be computed by evaluating the
565 following DWARF block. Its DATA is allocated on
566 objfile_obstack - no CU load is needed to access it. */
567
568 struct dwarf2_locexpr_baton *dwarf_block;
569 };
570
571 struct field
572 {
573 union field_location loc;
574
575 /* * For a function or member type, this is 1 if the argument is
576 marked artificial. Artificial arguments should not be shown
577 to the user. For TYPE_CODE_RANGE it is set if the specific
578 bound is not defined. */
579
580 unsigned int artificial : 1;
581
582 /* * Discriminant for union field_location. */
583
584 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
585
586 /* * Size of this field, in bits, or zero if not packed.
587 If non-zero in an array type, indicates the element size in
588 bits (used only in Ada at the moment).
589 For an unpacked field, the field's type's length
590 says how many bytes the field occupies. */
591
592 unsigned int bitsize : 28;
593
594 /* * In a struct or union type, type of this field.
595 - In a function or member type, type of this argument.
596 - In an array type, the domain-type of the array. */
597
598 struct type *type;
599
600 /* * Name of field, value or argument.
601 NULL for range bounds, array domains, and member function
602 arguments. */
603
604 const char *name;
605 };
606
607 struct range_bounds
608 {
609 /* * Low bound of range. */
610
611 struct dynamic_prop low;
612
613 /* * High bound of range. */
614
615 struct dynamic_prop high;
616
617 /* True if HIGH range bound contains the number of elements in the
618 subrange. This affects how the final hight bound is computed. */
619
620 int flag_upper_bound_is_count : 1;
621
622 /* True if LOW or/and HIGH are resolved into a static bound from
623 a dynamic one. */
624
625 int flag_bound_evaluated : 1;
626 };
627
628 /* Compare two range_bounds objects for equality. Simply does
629 memberwise comparison. */
630 extern bool operator== (const range_bounds &l, const range_bounds &r);
631
632 /* Compare two range_bounds objects for inequality. */
633 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
634 {
635 return !(l == r);
636 }
637
638 union type_specific
639 {
640 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
641 point to cplus_struct_default, a default static instance of a
642 struct cplus_struct_type. */
643
644 struct cplus_struct_type *cplus_stuff;
645
646 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
647 provides additional information. */
648
649 struct gnat_aux_type *gnat_stuff;
650
651 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
652 floatformat object that describes the floating-point value
653 that resides within the type. */
654
655 const struct floatformat *floatformat;
656
657 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
658
659 struct func_type *func_stuff;
660
661 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
662 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
663 is a member of. */
664
665 struct type *self_type;
666 };
667
668 /* * Main structure representing a type in GDB.
669
670 This structure is space-critical. Its layout has been tweaked to
671 reduce the space used. */
672
673 struct main_type
674 {
675 /* * Code for kind of type. */
676
677 ENUM_BITFIELD(type_code) code : 8;
678
679 /* * Flags about this type. These fields appear at this location
680 because they packs nicely here. See the TYPE_* macros for
681 documentation about these fields. */
682
683 unsigned int flag_unsigned : 1;
684 unsigned int flag_nosign : 1;
685 unsigned int flag_stub : 1;
686 unsigned int flag_target_stub : 1;
687 unsigned int flag_static : 1;
688 unsigned int flag_prototyped : 1;
689 unsigned int flag_incomplete : 1;
690 unsigned int flag_varargs : 1;
691 unsigned int flag_vector : 1;
692 unsigned int flag_stub_supported : 1;
693 unsigned int flag_gnu_ifunc : 1;
694 unsigned int flag_fixed_instance : 1;
695 unsigned int flag_objfile_owned : 1;
696
697 /* * True if this type was declared with "class" rather than
698 "struct". */
699
700 unsigned int flag_declared_class : 1;
701
702 /* * True if this is an enum type with disjoint values. This
703 affects how the enum is printed. */
704
705 unsigned int flag_flag_enum : 1;
706
707 /* * True if this type is a discriminated union type. Only valid
708 for TYPE_CODE_UNION. A discriminated union stores a reference to
709 the discriminant field along with the discriminator values in a
710 dynamic property. */
711
712 unsigned int flag_discriminated_union : 1;
713
714 /* * A discriminant telling us which field of the type_specific
715 union is being used for this type, if any. */
716
717 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
718
719 /* * Number of fields described for this type. This field appears
720 at this location because it packs nicely here. */
721
722 short nfields;
723
724 /* * Name of this type, or NULL if none.
725
726 This is used for printing only. For looking up a name, look for
727 a symbol in the VAR_DOMAIN. This is generally allocated in the
728 objfile's obstack. However coffread.c uses malloc. */
729
730 const char *name;
731
732 /* * Every type is now associated with a particular objfile, and the
733 type is allocated on the objfile_obstack for that objfile. One
734 problem however, is that there are times when gdb allocates new
735 types while it is not in the process of reading symbols from a
736 particular objfile. Fortunately, these happen when the type
737 being created is a derived type of an existing type, such as in
738 lookup_pointer_type(). So we can just allocate the new type
739 using the same objfile as the existing type, but to do this we
740 need a backpointer to the objfile from the existing type. Yes
741 this is somewhat ugly, but without major overhaul of the internal
742 type system, it can't be avoided for now. */
743
744 union type_owner owner;
745
746 /* * For a pointer type, describes the type of object pointed to.
747 - For an array type, describes the type of the elements.
748 - For a function or method type, describes the type of the return value.
749 - For a range type, describes the type of the full range.
750 - For a complex type, describes the type of each coordinate.
751 - For a special record or union type encoding a dynamic-sized type
752 in GNAT, a memoized pointer to a corresponding static version of
753 the type.
754 - Unused otherwise. */
755
756 struct type *target_type;
757
758 /* * For structure and union types, a description of each field.
759 For set and pascal array types, there is one "field",
760 whose type is the domain type of the set or array.
761 For range types, there are two "fields",
762 the minimum and maximum values (both inclusive).
763 For enum types, each possible value is described by one "field".
764 For a function or method type, a "field" for each parameter.
765 For C++ classes, there is one field for each base class (if it is
766 a derived class) plus one field for each class data member. Member
767 functions are recorded elsewhere.
768
769 Using a pointer to a separate array of fields
770 allows all types to have the same size, which is useful
771 because we can allocate the space for a type before
772 we know what to put in it. */
773
774 union
775 {
776 struct field *fields;
777
778 /* * Union member used for range types. */
779
780 struct range_bounds *bounds;
781
782 } flds_bnds;
783
784 /* * Slot to point to additional language-specific fields of this
785 type. */
786
787 union type_specific type_specific;
788
789 /* * Contains all dynamic type properties. */
790 struct dynamic_prop_list *dyn_prop_list;
791 };
792
793 /* * Number of bits allocated for alignment. */
794
795 #define TYPE_ALIGN_BITS 8
796
797 /* * A ``struct type'' describes a particular instance of a type, with
798 some particular qualification. */
799
800 struct type
801 {
802 /* * Type that is a pointer to this type.
803 NULL if no such pointer-to type is known yet.
804 The debugger may add the address of such a type
805 if it has to construct one later. */
806
807 struct type *pointer_type;
808
809 /* * C++: also need a reference type. */
810
811 struct type *reference_type;
812
813 /* * A C++ rvalue reference type added in C++11. */
814
815 struct type *rvalue_reference_type;
816
817 /* * Variant chain. This points to a type that differs from this
818 one only in qualifiers and length. Currently, the possible
819 qualifiers are const, volatile, code-space, data-space, and
820 address class. The length may differ only when one of the
821 address class flags are set. The variants are linked in a
822 circular ring and share MAIN_TYPE. */
823
824 struct type *chain;
825
826 /* * The alignment for this type. Zero means that the alignment was
827 not specified in the debug info. Note that this is stored in a
828 funny way: as the log base 2 (plus 1) of the alignment; so a
829 value of 1 means the alignment is 1, and a value of 9 means the
830 alignment is 256. */
831
832 unsigned align_log2 : TYPE_ALIGN_BITS;
833
834 /* * Flags specific to this instance of the type, indicating where
835 on the ring we are.
836
837 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
838 binary or-ed with the target type, with a special case for
839 address class and space class. For example if this typedef does
840 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
841 instance flags are completely inherited from the target type. No
842 qualifiers can be cleared by the typedef. See also
843 check_typedef. */
844 unsigned instance_flags : 9;
845
846 /* * Length of storage for a value of this type. The value is the
847 expression in host bytes of what sizeof(type) would return. This
848 size includes padding. For example, an i386 extended-precision
849 floating point value really only occupies ten bytes, but most
850 ABI's declare its size to be 12 bytes, to preserve alignment.
851 A `struct type' representing such a floating-point type would
852 have a `length' value of 12, even though the last two bytes are
853 unused.
854
855 Since this field is expressed in host bytes, its value is appropriate
856 to pass to memcpy and such (it is assumed that GDB itself always runs
857 on an 8-bits addressable architecture). However, when using it for
858 target address arithmetic (e.g. adding it to a target address), the
859 type_length_units function should be used in order to get the length
860 expressed in target addressable memory units. */
861
862 ULONGEST length;
863
864 /* * Core type, shared by a group of qualified types. */
865
866 struct main_type *main_type;
867 };
868
869 #define NULL_TYPE ((struct type *) 0)
870
871 struct fn_fieldlist
872 {
873
874 /* * The overloaded name.
875 This is generally allocated in the objfile's obstack.
876 However stabsread.c sometimes uses malloc. */
877
878 const char *name;
879
880 /* * The number of methods with this name. */
881
882 int length;
883
884 /* * The list of methods. */
885
886 struct fn_field *fn_fields;
887 };
888
889
890
891 struct fn_field
892 {
893 /* * If is_stub is clear, this is the mangled name which we can look
894 up to find the address of the method (FIXME: it would be cleaner
895 to have a pointer to the struct symbol here instead).
896
897 If is_stub is set, this is the portion of the mangled name which
898 specifies the arguments. For example, "ii", if there are two int
899 arguments, or "" if there are no arguments. See gdb_mangle_name
900 for the conversion from this format to the one used if is_stub is
901 clear. */
902
903 const char *physname;
904
905 /* * The function type for the method.
906
907 (This comment used to say "The return value of the method", but
908 that's wrong. The function type is expected here, i.e. something
909 with TYPE_CODE_METHOD, and *not* the return-value type). */
910
911 struct type *type;
912
913 /* * For virtual functions. First baseclass that defines this
914 virtual function. */
915
916 struct type *fcontext;
917
918 /* Attributes. */
919
920 unsigned int is_const:1;
921 unsigned int is_volatile:1;
922 unsigned int is_private:1;
923 unsigned int is_protected:1;
924 unsigned int is_artificial:1;
925
926 /* * A stub method only has some fields valid (but they are enough
927 to reconstruct the rest of the fields). */
928
929 unsigned int is_stub:1;
930
931 /* * True if this function is a constructor, false otherwise. */
932
933 unsigned int is_constructor : 1;
934
935 /* * Unused. */
936
937 unsigned int dummy:9;
938
939 /* * Index into that baseclass's virtual function table, minus 2;
940 else if static: VOFFSET_STATIC; else: 0. */
941
942 unsigned int voffset:16;
943
944 #define VOFFSET_STATIC 1
945
946 };
947
948 struct decl_field
949 {
950 /* * Unqualified name to be prefixed by owning class qualified
951 name. */
952
953 const char *name;
954
955 /* * Type this typedef named NAME represents. */
956
957 struct type *type;
958
959 /* * True if this field was declared protected, false otherwise. */
960 unsigned int is_protected : 1;
961
962 /* * True if this field was declared private, false otherwise. */
963 unsigned int is_private : 1;
964 };
965
966 /* * C++ language-specific information for TYPE_CODE_STRUCT and
967 TYPE_CODE_UNION nodes. */
968
969 struct cplus_struct_type
970 {
971 /* * Number of base classes this type derives from. The
972 baseclasses are stored in the first N_BASECLASSES fields
973 (i.e. the `fields' field of the struct type). The only fields
974 of struct field that are used are: type, name, loc.bitpos. */
975
976 short n_baseclasses;
977
978 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
979 All access to this field must be through TYPE_VPTR_FIELDNO as one
980 thing it does is check whether the field has been initialized.
981 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
982 which for portability reasons doesn't initialize this field.
983 TYPE_VPTR_FIELDNO returns -1 for this case.
984
985 If -1, we were unable to find the virtual function table pointer in
986 initial symbol reading, and get_vptr_fieldno should be called to find
987 it if possible. get_vptr_fieldno will update this field if possible.
988 Otherwise the value is left at -1.
989
990 Unused if this type does not have virtual functions. */
991
992 short vptr_fieldno;
993
994 /* * Number of methods with unique names. All overloaded methods
995 with the same name count only once. */
996
997 short nfn_fields;
998
999 /* * Number of template arguments. */
1000
1001 unsigned short n_template_arguments;
1002
1003 /* * One if this struct is a dynamic class, as defined by the
1004 Itanium C++ ABI: if it requires a virtual table pointer,
1005 because it or any of its base classes have one or more virtual
1006 member functions or virtual base classes. Minus one if not
1007 dynamic. Zero if not yet computed. */
1008
1009 int is_dynamic : 2;
1010
1011 /* * The base class which defined the virtual function table pointer. */
1012
1013 struct type *vptr_basetype;
1014
1015 /* * For derived classes, the number of base classes is given by
1016 n_baseclasses and virtual_field_bits is a bit vector containing
1017 one bit per base class. If the base class is virtual, the
1018 corresponding bit will be set.
1019 I.E, given:
1020
1021 class A{};
1022 class B{};
1023 class C : public B, public virtual A {};
1024
1025 B is a baseclass of C; A is a virtual baseclass for C.
1026 This is a C++ 2.0 language feature. */
1027
1028 B_TYPE *virtual_field_bits;
1029
1030 /* * For classes with private fields, the number of fields is
1031 given by nfields and private_field_bits is a bit vector
1032 containing one bit per field.
1033
1034 If the field is private, the corresponding bit will be set. */
1035
1036 B_TYPE *private_field_bits;
1037
1038 /* * For classes with protected fields, the number of fields is
1039 given by nfields and protected_field_bits is a bit vector
1040 containing one bit per field.
1041
1042 If the field is private, the corresponding bit will be set. */
1043
1044 B_TYPE *protected_field_bits;
1045
1046 /* * For classes with fields to be ignored, either this is
1047 optimized out or this field has length 0. */
1048
1049 B_TYPE *ignore_field_bits;
1050
1051 /* * For classes, structures, and unions, a description of each
1052 field, which consists of an overloaded name, followed by the
1053 types of arguments that the method expects, and then the name
1054 after it has been renamed to make it distinct.
1055
1056 fn_fieldlists points to an array of nfn_fields of these. */
1057
1058 struct fn_fieldlist *fn_fieldlists;
1059
1060 /* * typedefs defined inside this class. typedef_field points to
1061 an array of typedef_field_count elements. */
1062
1063 struct decl_field *typedef_field;
1064
1065 unsigned typedef_field_count;
1066
1067 /* * The nested types defined by this type. nested_types points to
1068 an array of nested_types_count elements. */
1069
1070 struct decl_field *nested_types;
1071
1072 unsigned nested_types_count;
1073
1074 /* * The template arguments. This is an array with
1075 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1076 classes. */
1077
1078 struct symbol **template_arguments;
1079 };
1080
1081 /* * Struct used to store conversion rankings. */
1082
1083 struct rank
1084 {
1085 short rank;
1086
1087 /* * When two conversions are of the same type and therefore have
1088 the same rank, subrank is used to differentiate the two.
1089
1090 Eg: Two derived-class-pointer to base-class-pointer conversions
1091 would both have base pointer conversion rank, but the
1092 conversion with the shorter distance to the ancestor is
1093 preferable. 'subrank' would be used to reflect that. */
1094
1095 short subrank;
1096 };
1097
1098 /* * Used for ranking a function for overload resolution. */
1099
1100 typedef std::vector<rank> badness_vector;
1101
1102 /* * GNAT Ada-specific information for various Ada types. */
1103
1104 struct gnat_aux_type
1105 {
1106 /* * Parallel type used to encode information about dynamic types
1107 used in Ada (such as variant records, variable-size array,
1108 etc). */
1109 struct type* descriptive_type;
1110 };
1111
1112 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1113
1114 struct func_type
1115 {
1116 /* * The calling convention for targets supporting multiple ABIs.
1117 Right now this is only fetched from the Dwarf-2
1118 DW_AT_calling_convention attribute. The value is one of the
1119 DW_CC enum dwarf_calling_convention constants. */
1120
1121 unsigned calling_convention : 8;
1122
1123 /* * Whether this function normally returns to its caller. It is
1124 set from the DW_AT_noreturn attribute if set on the
1125 DW_TAG_subprogram. */
1126
1127 unsigned int is_noreturn : 1;
1128
1129 /* * Only those DW_TAG_call_site's in this function that have
1130 DW_AT_call_tail_call set are linked in this list. Function
1131 without its tail call list complete
1132 (DW_AT_call_all_tail_calls or its superset
1133 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1134 DW_TAG_call_site's exist in such function. */
1135
1136 struct call_site *tail_call_list;
1137
1138 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1139 contains the method. */
1140
1141 struct type *self_type;
1142 };
1143
1144 /* struct call_site_parameter can be referenced in callees by several ways. */
1145
1146 enum call_site_parameter_kind
1147 {
1148 /* * Use field call_site_parameter.u.dwarf_reg. */
1149 CALL_SITE_PARAMETER_DWARF_REG,
1150
1151 /* * Use field call_site_parameter.u.fb_offset. */
1152 CALL_SITE_PARAMETER_FB_OFFSET,
1153
1154 /* * Use field call_site_parameter.u.param_offset. */
1155 CALL_SITE_PARAMETER_PARAM_OFFSET
1156 };
1157
1158 struct call_site_target
1159 {
1160 union field_location loc;
1161
1162 /* * Discriminant for union field_location. */
1163
1164 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1165 };
1166
1167 union call_site_parameter_u
1168 {
1169 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1170 as DWARF register number, for register passed
1171 parameters. */
1172
1173 int dwarf_reg;
1174
1175 /* * Offset from the callee's frame base, for stack passed
1176 parameters. This equals offset from the caller's stack
1177 pointer. */
1178
1179 CORE_ADDR fb_offset;
1180
1181 /* * Offset relative to the start of this PER_CU to
1182 DW_TAG_formal_parameter which is referenced by both
1183 caller and the callee. */
1184
1185 cu_offset param_cu_off;
1186 };
1187
1188 struct call_site_parameter
1189 {
1190 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1191
1192 union call_site_parameter_u u;
1193
1194 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1195
1196 const gdb_byte *value;
1197 size_t value_size;
1198
1199 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1200 It may be NULL if not provided by DWARF. */
1201
1202 const gdb_byte *data_value;
1203 size_t data_value_size;
1204 };
1205
1206 /* * A place where a function gets called from, represented by
1207 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1208
1209 struct call_site
1210 {
1211 /* * Address of the first instruction after this call. It must be
1212 the first field as we overload core_addr_hash and core_addr_eq
1213 for it. */
1214
1215 CORE_ADDR pc;
1216
1217 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1218
1219 struct call_site *tail_call_next;
1220
1221 /* * Describe DW_AT_call_target. Missing attribute uses
1222 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1223
1224 struct call_site_target target;
1225
1226 /* * Size of the PARAMETER array. */
1227
1228 unsigned parameter_count;
1229
1230 /* * CU of the function where the call is located. It gets used
1231 for DWARF blocks execution in the parameter array below. */
1232
1233 struct dwarf2_per_cu_data *per_cu;
1234
1235 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1236
1237 struct call_site_parameter parameter[1];
1238 };
1239
1240 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1241 static structure. */
1242
1243 extern const struct cplus_struct_type cplus_struct_default;
1244
1245 extern void allocate_cplus_struct_type (struct type *);
1246
1247 #define INIT_CPLUS_SPECIFIC(type) \
1248 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1249 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1250 &cplus_struct_default)
1251
1252 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1253
1254 #define HAVE_CPLUS_STRUCT(type) \
1255 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1256 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1257
1258 extern const struct gnat_aux_type gnat_aux_default;
1259
1260 extern void allocate_gnat_aux_type (struct type *);
1261
1262 #define INIT_GNAT_SPECIFIC(type) \
1263 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1264 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1265 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1266 /* * A macro that returns non-zero if the type-specific data should be
1267 read as "gnat-stuff". */
1268 #define HAVE_GNAT_AUX_INFO(type) \
1269 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1270
1271 #define INIT_FUNC_SPECIFIC(type) \
1272 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1273 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1274 TYPE_ZALLOC (type, \
1275 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1276
1277 #define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1278 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1279 #define TYPE_NAME(thistype) TYPE_MAIN_TYPE(thistype)->name
1280 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1281 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1282 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1283 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1284 #define TYPE_CHAIN(thistype) (thistype)->chain
1285 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1286 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1287 so you only have to call check_typedef once. Since allocate_value
1288 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1289 #define TYPE_LENGTH(thistype) (thistype)->length
1290
1291 /* * Return the alignment of the type in target addressable memory
1292 units, or 0 if no alignment was specified. */
1293 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1294
1295 /* * Return the alignment of the type in target addressable memory
1296 units, or 0 if no alignment was specified. */
1297 extern unsigned type_raw_align (struct type *);
1298
1299 /* * Return the alignment of the type in target addressable memory
1300 units. Return 0 if the alignment cannot be determined; but note
1301 that this makes an effort to compute the alignment even it it was
1302 not specified in the debug info. */
1303 extern unsigned type_align (struct type *);
1304
1305 /* * Set the alignment of the type. The alignment must be a power of
1306 2. Returns false if the given value does not fit in the available
1307 space in struct type. */
1308 extern bool set_type_align (struct type *, ULONGEST);
1309
1310 /* * Note that TYPE_CODE can be TYPE_CODE_TYPEDEF, so if you want the real
1311 type, you need to do TYPE_CODE (check_type (this_type)). */
1312 #define TYPE_CODE(thistype) TYPE_MAIN_TYPE(thistype)->code
1313 #define TYPE_NFIELDS(thistype) TYPE_MAIN_TYPE(thistype)->nfields
1314 #define TYPE_FIELDS(thistype) TYPE_MAIN_TYPE(thistype)->flds_bnds.fields
1315
1316 #define TYPE_INDEX_TYPE(type) TYPE_FIELD_TYPE (type, 0)
1317 #define TYPE_RANGE_DATA(thistype) TYPE_MAIN_TYPE(thistype)->flds_bnds.bounds
1318 #define TYPE_LOW_BOUND(range_type) \
1319 TYPE_RANGE_DATA(range_type)->low.data.const_val
1320 #define TYPE_HIGH_BOUND(range_type) \
1321 TYPE_RANGE_DATA(range_type)->high.data.const_val
1322 #define TYPE_LOW_BOUND_UNDEFINED(range_type) \
1323 (TYPE_RANGE_DATA(range_type)->low.kind == PROP_UNDEFINED)
1324 #define TYPE_HIGH_BOUND_UNDEFINED(range_type) \
1325 (TYPE_RANGE_DATA(range_type)->high.kind == PROP_UNDEFINED)
1326 #define TYPE_HIGH_BOUND_KIND(range_type) \
1327 TYPE_RANGE_DATA(range_type)->high.kind
1328 #define TYPE_LOW_BOUND_KIND(range_type) \
1329 TYPE_RANGE_DATA(range_type)->low.kind
1330
1331 /* Property accessors for the type data location. */
1332 #define TYPE_DATA_LOCATION(thistype) \
1333 get_dyn_prop (DYN_PROP_DATA_LOCATION, thistype)
1334 #define TYPE_DATA_LOCATION_BATON(thistype) \
1335 TYPE_DATA_LOCATION (thistype)->data.baton
1336 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1337 TYPE_DATA_LOCATION (thistype)->data.const_val
1338 #define TYPE_DATA_LOCATION_KIND(thistype) \
1339 TYPE_DATA_LOCATION (thistype)->kind
1340
1341 /* Property accessors for the type allocated/associated. */
1342 #define TYPE_ALLOCATED_PROP(thistype) \
1343 get_dyn_prop (DYN_PROP_ALLOCATED, thistype)
1344 #define TYPE_ASSOCIATED_PROP(thistype) \
1345 get_dyn_prop (DYN_PROP_ASSOCIATED, thistype)
1346
1347 /* Attribute accessors for dynamic properties. */
1348 #define TYPE_DYN_PROP_LIST(thistype) \
1349 TYPE_MAIN_TYPE(thistype)->dyn_prop_list
1350 #define TYPE_DYN_PROP_BATON(dynprop) \
1351 dynprop->data.baton
1352 #define TYPE_DYN_PROP_ADDR(dynprop) \
1353 dynprop->data.const_val
1354 #define TYPE_DYN_PROP_KIND(dynprop) \
1355 dynprop->kind
1356
1357
1358 /* Moto-specific stuff for FORTRAN arrays. */
1359
1360 #define TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED(arraytype) \
1361 TYPE_HIGH_BOUND_UNDEFINED(TYPE_INDEX_TYPE(arraytype))
1362 #define TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED(arraytype) \
1363 TYPE_LOW_BOUND_UNDEFINED(TYPE_INDEX_TYPE(arraytype))
1364
1365 #define TYPE_ARRAY_UPPER_BOUND_VALUE(arraytype) \
1366 (TYPE_HIGH_BOUND(TYPE_INDEX_TYPE((arraytype))))
1367
1368 #define TYPE_ARRAY_LOWER_BOUND_VALUE(arraytype) \
1369 (TYPE_LOW_BOUND(TYPE_INDEX_TYPE((arraytype))))
1370
1371 /* C++ */
1372
1373 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1374 /* Do not call this, use TYPE_SELF_TYPE. */
1375 extern struct type *internal_type_self_type (struct type *);
1376 extern void set_type_self_type (struct type *, struct type *);
1377
1378 extern int internal_type_vptr_fieldno (struct type *);
1379 extern void set_type_vptr_fieldno (struct type *, int);
1380 extern struct type *internal_type_vptr_basetype (struct type *);
1381 extern void set_type_vptr_basetype (struct type *, struct type *);
1382 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1383 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1384
1385 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1386 #define TYPE_SPECIFIC_FIELD(thistype) \
1387 TYPE_MAIN_TYPE(thistype)->type_specific_field
1388 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1389 where we're trying to print an Ada array using the C language.
1390 In that case, there is no "cplus_stuff", but the C language assumes
1391 that there is. What we do, in that case, is pretend that there is
1392 an implicit one which is the default cplus stuff. */
1393 #define TYPE_CPLUS_SPECIFIC(thistype) \
1394 (!HAVE_CPLUS_STRUCT(thistype) \
1395 ? (struct cplus_struct_type*)&cplus_struct_default \
1396 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1397 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1398 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1399 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1400 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1401 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1402 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1403 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1404 #define TYPE_BASECLASS(thistype,index) TYPE_FIELD_TYPE(thistype, index)
1405 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1406 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1407 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1408 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1409 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1410 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1411
1412 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1413 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1414 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1415
1416 #define FIELD_TYPE(thisfld) ((thisfld).type)
1417 #define FIELD_NAME(thisfld) ((thisfld).name)
1418 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1419 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1420 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1421 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1422 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1423 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1424 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1425 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1426 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1427 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1428 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1429 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1430 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1431 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1432 #define SET_FIELD_PHYSNAME(thisfld, name) \
1433 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1434 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1435 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1436 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1437 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1438 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1439 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1440 FIELD_DWARF_BLOCK (thisfld) = (addr))
1441 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1442 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1443
1444 #define TYPE_FIELD(thistype, n) TYPE_MAIN_TYPE(thistype)->flds_bnds.fields[n]
1445 #define TYPE_FIELD_TYPE(thistype, n) FIELD_TYPE(TYPE_FIELD(thistype, n))
1446 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME(TYPE_FIELD(thistype, n))
1447 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND (TYPE_FIELD (thistype, n))
1448 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS (TYPE_FIELD (thistype, n))
1449 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL (TYPE_FIELD (thistype, n))
1450 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME (TYPE_FIELD (thistype, n))
1451 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR (TYPE_FIELD (thistype, n))
1452 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK (TYPE_FIELD (thistype, n))
1453 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL(TYPE_FIELD(thistype,n))
1454 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE(TYPE_FIELD(thistype,n))
1455 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE(TYPE_FIELD(thistype,n))!=0)
1456
1457 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1458 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1459 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1460 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1461 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1462 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1463 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1464 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1465 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1466 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1467 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1468 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1469 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1470 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1471 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1472 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1473 #define TYPE_FIELD_PRIVATE(thistype, n) \
1474 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1475 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1476 #define TYPE_FIELD_PROTECTED(thistype, n) \
1477 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1478 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1479 #define TYPE_FIELD_IGNORE(thistype, n) \
1480 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1481 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1482 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1483 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1484 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1485
1486 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1487 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1488 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1489 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1490 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1491
1492 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1493 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1494 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1495 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1496 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1497 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1498
1499 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1500 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1501 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1502 #define TYPE_FN_FIELD_ARGS(thisfn, n) TYPE_FIELDS ((thisfn)[n].type)
1503 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1504 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1505 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1506 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1507 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1508 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1509 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1510 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1511 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1512 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1513 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1514
1515 /* Accessors for typedefs defined by a class. */
1516 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1517 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1518 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1519 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1520 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1521 TYPE_TYPEDEF_FIELD (thistype, n).name
1522 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1523 TYPE_TYPEDEF_FIELD (thistype, n).type
1524 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1525 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1526 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1527 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1528 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1529 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1530
1531 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1532 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1533 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
1534 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
1535 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
1536 TYPE_NESTED_TYPES_FIELD (thistype, n).name
1537 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
1538 TYPE_NESTED_TYPES_FIELD (thistype, n).type
1539 #define TYPE_NESTED_TYPES_COUNT(thistype) \
1540 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
1541 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
1542 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
1543 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
1544 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
1545
1546 #define TYPE_IS_OPAQUE(thistype) \
1547 (((TYPE_CODE (thistype) == TYPE_CODE_STRUCT) \
1548 || (TYPE_CODE (thistype) == TYPE_CODE_UNION)) \
1549 && (TYPE_NFIELDS (thistype) == 0) \
1550 && (!HAVE_CPLUS_STRUCT (thistype) \
1551 || TYPE_NFN_FIELDS (thistype) == 0) \
1552 && (TYPE_STUB (thistype) || !TYPE_STUB_SUPPORTED (thistype)))
1553
1554 /* * A helper macro that returns the name of a type or "unnamed type"
1555 if the type has no name. */
1556
1557 #define TYPE_SAFE_NAME(type) \
1558 (TYPE_NAME (type) ? TYPE_NAME (type) : _("<unnamed type>"))
1559
1560 /* * A helper macro that returns the name of an error type. If the
1561 type has a name, it is used; otherwise, a default is used. */
1562
1563 #define TYPE_ERROR_NAME(type) \
1564 (TYPE_NAME (type) ? TYPE_NAME (type) : _("<error type>"))
1565
1566 /* Given TYPE, return its floatformat. */
1567 const struct floatformat *floatformat_from_type (const struct type *type);
1568
1569 struct builtin_type
1570 {
1571 /* Integral types. */
1572
1573 /* Implicit size/sign (based on the architecture's ABI). */
1574 struct type *builtin_void;
1575 struct type *builtin_char;
1576 struct type *builtin_short;
1577 struct type *builtin_int;
1578 struct type *builtin_long;
1579 struct type *builtin_signed_char;
1580 struct type *builtin_unsigned_char;
1581 struct type *builtin_unsigned_short;
1582 struct type *builtin_unsigned_int;
1583 struct type *builtin_unsigned_long;
1584 struct type *builtin_float;
1585 struct type *builtin_double;
1586 struct type *builtin_long_double;
1587 struct type *builtin_complex;
1588 struct type *builtin_double_complex;
1589 struct type *builtin_string;
1590 struct type *builtin_bool;
1591 struct type *builtin_long_long;
1592 struct type *builtin_unsigned_long_long;
1593 struct type *builtin_decfloat;
1594 struct type *builtin_decdouble;
1595 struct type *builtin_declong;
1596
1597 /* "True" character types.
1598 We use these for the '/c' print format, because c_char is just a
1599 one-byte integral type, which languages less laid back than C
1600 will print as ... well, a one-byte integral type. */
1601 struct type *builtin_true_char;
1602 struct type *builtin_true_unsigned_char;
1603
1604 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1605 is for when an architecture needs to describe a register that has
1606 no size. */
1607 struct type *builtin_int0;
1608 struct type *builtin_int8;
1609 struct type *builtin_uint8;
1610 struct type *builtin_int16;
1611 struct type *builtin_uint16;
1612 struct type *builtin_int24;
1613 struct type *builtin_uint24;
1614 struct type *builtin_int32;
1615 struct type *builtin_uint32;
1616 struct type *builtin_int64;
1617 struct type *builtin_uint64;
1618 struct type *builtin_int128;
1619 struct type *builtin_uint128;
1620
1621 /* Wide character types. */
1622 struct type *builtin_char16;
1623 struct type *builtin_char32;
1624 struct type *builtin_wchar;
1625
1626 /* Pointer types. */
1627
1628 /* * `pointer to data' type. Some target platforms use an implicitly
1629 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1630 struct type *builtin_data_ptr;
1631
1632 /* * `pointer to function (returning void)' type. Harvard
1633 architectures mean that ABI function and code pointers are not
1634 interconvertible. Similarly, since ANSI, C standards have
1635 explicitly said that pointers to functions and pointers to data
1636 are not interconvertible --- that is, you can't cast a function
1637 pointer to void * and back, and expect to get the same value.
1638 However, all function pointer types are interconvertible, so void
1639 (*) () can server as a generic function pointer. */
1640
1641 struct type *builtin_func_ptr;
1642
1643 /* * `function returning pointer to function (returning void)' type.
1644 The final void return type is not significant for it. */
1645
1646 struct type *builtin_func_func;
1647
1648 /* Special-purpose types. */
1649
1650 /* * This type is used to represent a GDB internal function. */
1651
1652 struct type *internal_fn;
1653
1654 /* * This type is used to represent an xmethod. */
1655 struct type *xmethod;
1656 };
1657
1658 /* * Return the type table for the specified architecture. */
1659
1660 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
1661
1662 /* * Per-objfile types used by symbol readers. */
1663
1664 struct objfile_type
1665 {
1666 /* Basic types based on the objfile architecture. */
1667 struct type *builtin_void;
1668 struct type *builtin_char;
1669 struct type *builtin_short;
1670 struct type *builtin_int;
1671 struct type *builtin_long;
1672 struct type *builtin_long_long;
1673 struct type *builtin_signed_char;
1674 struct type *builtin_unsigned_char;
1675 struct type *builtin_unsigned_short;
1676 struct type *builtin_unsigned_int;
1677 struct type *builtin_unsigned_long;
1678 struct type *builtin_unsigned_long_long;
1679 struct type *builtin_float;
1680 struct type *builtin_double;
1681 struct type *builtin_long_double;
1682
1683 /* * This type is used to represent symbol addresses. */
1684 struct type *builtin_core_addr;
1685
1686 /* * This type represents a type that was unrecognized in symbol
1687 read-in. */
1688 struct type *builtin_error;
1689
1690 /* * Types used for symbols with no debug information. */
1691 struct type *nodebug_text_symbol;
1692 struct type *nodebug_text_gnu_ifunc_symbol;
1693 struct type *nodebug_got_plt_symbol;
1694 struct type *nodebug_data_symbol;
1695 struct type *nodebug_unknown_symbol;
1696 struct type *nodebug_tls_symbol;
1697 };
1698
1699 /* * Return the type table for the specified objfile. */
1700
1701 extern const struct objfile_type *objfile_type (struct objfile *objfile);
1702
1703 /* Explicit floating-point formats. See "floatformat.h". */
1704 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
1705 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
1706 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
1707 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
1708 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
1709 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
1710 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
1711 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
1712 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
1713 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
1714 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
1715 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
1716
1717
1718 /* Allocate space for storing data associated with a particular
1719 type. We ensure that the space is allocated using the same
1720 mechanism that was used to allocate the space for the type
1721 structure itself. I.e. if the type is on an objfile's
1722 objfile_obstack, then the space for data associated with that type
1723 will also be allocated on the objfile_obstack. If the type is
1724 associated with a gdbarch, then the space for data associated with that
1725 type will also be allocated on the gdbarch_obstack.
1726
1727 If a type is not associated with neither an objfile or a gdbarch then
1728 you should not use this macro to allocate space for data, instead you
1729 should call xmalloc directly, and ensure the memory is correctly freed
1730 when it is no longer needed. */
1731
1732 #define TYPE_ALLOC(t,size) \
1733 (obstack_alloc ((TYPE_OBJFILE_OWNED (t) \
1734 ? &TYPE_OBJFILE (t)->objfile_obstack \
1735 : gdbarch_obstack (TYPE_OWNER (t).gdbarch)), \
1736 size))
1737
1738
1739 /* See comment on TYPE_ALLOC. */
1740
1741 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
1742
1743 /* Use alloc_type to allocate a type owned by an objfile. Use
1744 alloc_type_arch to allocate a type owned by an architecture. Use
1745 alloc_type_copy to allocate a type with the same owner as a
1746 pre-existing template type, no matter whether objfile or
1747 gdbarch. */
1748 extern struct type *alloc_type (struct objfile *);
1749 extern struct type *alloc_type_arch (struct gdbarch *);
1750 extern struct type *alloc_type_copy (const struct type *);
1751
1752 /* * Return the type's architecture. For types owned by an
1753 architecture, that architecture is returned. For types owned by an
1754 objfile, that objfile's architecture is returned. */
1755
1756 extern struct gdbarch *get_type_arch (const struct type *);
1757
1758 /* * This returns the target type (or NULL) of TYPE, also skipping
1759 past typedefs. */
1760
1761 extern struct type *get_target_type (struct type *type);
1762
1763 /* Return the equivalent of TYPE_LENGTH, but in number of target
1764 addressable memory units of the associated gdbarch instead of bytes. */
1765
1766 extern unsigned int type_length_units (struct type *type);
1767
1768 /* * Helper function to construct objfile-owned types. */
1769
1770 extern struct type *init_type (struct objfile *, enum type_code, int,
1771 const char *);
1772 extern struct type *init_integer_type (struct objfile *, int, int,
1773 const char *);
1774 extern struct type *init_character_type (struct objfile *, int, int,
1775 const char *);
1776 extern struct type *init_boolean_type (struct objfile *, int, int,
1777 const char *);
1778 extern struct type *init_float_type (struct objfile *, int, const char *,
1779 const struct floatformat **);
1780 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
1781 extern struct type *init_complex_type (struct objfile *, const char *,
1782 struct type *);
1783 extern struct type *init_pointer_type (struct objfile *, int, const char *,
1784 struct type *);
1785
1786 /* Helper functions to construct architecture-owned types. */
1787 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
1788 const char *);
1789 extern struct type *arch_integer_type (struct gdbarch *, int, int,
1790 const char *);
1791 extern struct type *arch_character_type (struct gdbarch *, int, int,
1792 const char *);
1793 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
1794 const char *);
1795 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
1796 const struct floatformat **);
1797 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
1798 extern struct type *arch_complex_type (struct gdbarch *, const char *,
1799 struct type *);
1800 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
1801 struct type *);
1802
1803 /* Helper functions to construct a struct or record type. An
1804 initially empty type is created using arch_composite_type().
1805 Fields are then added using append_composite_type_field*(). A union
1806 type has its size set to the largest field. A struct type has each
1807 field packed against the previous. */
1808
1809 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
1810 const char *name, enum type_code code);
1811 extern void append_composite_type_field (struct type *t, const char *name,
1812 struct type *field);
1813 extern void append_composite_type_field_aligned (struct type *t,
1814 const char *name,
1815 struct type *field,
1816 int alignment);
1817 struct field *append_composite_type_field_raw (struct type *t, const char *name,
1818 struct type *field);
1819
1820 /* Helper functions to construct a bit flags type. An initially empty
1821 type is created using arch_flag_type(). Flags are then added using
1822 append_flag_type_field() and append_flag_type_flag(). */
1823 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
1824 const char *name, int bit);
1825 extern void append_flags_type_field (struct type *type,
1826 int start_bitpos, int nr_bits,
1827 struct type *field_type, const char *name);
1828 extern void append_flags_type_flag (struct type *type, int bitpos,
1829 const char *name);
1830
1831 extern void make_vector_type (struct type *array_type);
1832 extern struct type *init_vector_type (struct type *elt_type, int n);
1833
1834 extern struct type *lookup_reference_type (struct type *, enum type_code);
1835 extern struct type *lookup_lvalue_reference_type (struct type *);
1836 extern struct type *lookup_rvalue_reference_type (struct type *);
1837
1838
1839 extern struct type *make_reference_type (struct type *, struct type **,
1840 enum type_code);
1841
1842 extern struct type *make_cv_type (int, int, struct type *, struct type **);
1843
1844 extern struct type *make_restrict_type (struct type *);
1845
1846 extern struct type *make_unqualified_type (struct type *);
1847
1848 extern struct type *make_atomic_type (struct type *);
1849
1850 extern void replace_type (struct type *, struct type *);
1851
1852 extern int address_space_name_to_int (struct gdbarch *, char *);
1853
1854 extern const char *address_space_int_to_name (struct gdbarch *, int);
1855
1856 extern struct type *make_type_with_address_space (struct type *type,
1857 int space_identifier);
1858
1859 extern struct type *lookup_memberptr_type (struct type *, struct type *);
1860
1861 extern struct type *lookup_methodptr_type (struct type *);
1862
1863 extern void smash_to_method_type (struct type *type, struct type *self_type,
1864 struct type *to_type, struct field *args,
1865 int nargs, int varargs);
1866
1867 extern void smash_to_memberptr_type (struct type *, struct type *,
1868 struct type *);
1869
1870 extern void smash_to_methodptr_type (struct type *, struct type *);
1871
1872 extern struct type *allocate_stub_method (struct type *);
1873
1874 extern const char *type_name_or_error (struct type *type);
1875
1876 struct struct_elt
1877 {
1878 /* The field of the element, or NULL if no element was found. */
1879 struct field *field;
1880
1881 /* The bit offset of the element in the parent structure. */
1882 LONGEST offset;
1883 };
1884
1885 /* Given a type TYPE, lookup the field and offset of the component named
1886 NAME.
1887
1888 TYPE can be either a struct or union, or a pointer or reference to
1889 a struct or union. If it is a pointer or reference, its target
1890 type is automatically used. Thus '.' and '->' are interchangable,
1891 as specified for the definitions of the expression element types
1892 STRUCTOP_STRUCT and STRUCTOP_PTR.
1893
1894 If NOERR is nonzero, the returned structure will have field set to
1895 NULL if there is no component named NAME.
1896
1897 If the component NAME is a field in an anonymous substructure of
1898 TYPE, the returned offset is a "global" offset relative to TYPE
1899 rather than an offset within the substructure. */
1900
1901 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
1902
1903 /* Given a type TYPE, lookup the type of the component named NAME.
1904
1905 TYPE can be either a struct or union, or a pointer or reference to
1906 a struct or union. If it is a pointer or reference, its target
1907 type is automatically used. Thus '.' and '->' are interchangable,
1908 as specified for the definitions of the expression element types
1909 STRUCTOP_STRUCT and STRUCTOP_PTR.
1910
1911 If NOERR is nonzero, return NULL if there is no component named
1912 NAME. */
1913
1914 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
1915
1916 extern struct type *make_pointer_type (struct type *, struct type **);
1917
1918 extern struct type *lookup_pointer_type (struct type *);
1919
1920 extern struct type *make_function_type (struct type *, struct type **);
1921
1922 extern struct type *lookup_function_type (struct type *);
1923
1924 extern struct type *lookup_function_type_with_arguments (struct type *,
1925 int,
1926 struct type **);
1927
1928 extern struct type *create_static_range_type (struct type *, struct type *,
1929 LONGEST, LONGEST);
1930
1931
1932 extern struct type *create_array_type_with_stride
1933 (struct type *, struct type *, struct type *,
1934 struct dynamic_prop *, unsigned int);
1935
1936 extern struct type *create_range_type (struct type *, struct type *,
1937 const struct dynamic_prop *,
1938 const struct dynamic_prop *);
1939
1940 extern struct type *create_array_type (struct type *, struct type *,
1941 struct type *);
1942
1943 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
1944
1945 extern struct type *create_string_type (struct type *, struct type *,
1946 struct type *);
1947 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
1948
1949 extern struct type *create_set_type (struct type *, struct type *);
1950
1951 extern struct type *lookup_unsigned_typename (const struct language_defn *,
1952 struct gdbarch *, const char *);
1953
1954 extern struct type *lookup_signed_typename (const struct language_defn *,
1955 struct gdbarch *, const char *);
1956
1957 extern void get_unsigned_type_max (struct type *, ULONGEST *);
1958
1959 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
1960
1961 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
1962 ADDR specifies the location of the variable the type is bound to.
1963 If TYPE has no dynamic properties return TYPE; otherwise a new type with
1964 static properties is returned. */
1965 extern struct type *resolve_dynamic_type (struct type *type,
1966 const gdb_byte *valaddr,
1967 CORE_ADDR addr);
1968
1969 /* * Predicate if the type has dynamic values, which are not resolved yet. */
1970 extern int is_dynamic_type (struct type *type);
1971
1972 /* * Return the dynamic property of the requested KIND from TYPE's
1973 list of dynamic properties. */
1974 extern struct dynamic_prop *get_dyn_prop
1975 (enum dynamic_prop_node_kind kind, const struct type *type);
1976
1977 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1978 property to the given TYPE.
1979
1980 This function assumes that TYPE is objfile-owned. */
1981 extern void add_dyn_prop
1982 (enum dynamic_prop_node_kind kind, struct dynamic_prop prop,
1983 struct type *type);
1984
1985 extern void remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
1986 struct type *type);
1987
1988 extern struct type *check_typedef (struct type *);
1989
1990 extern void check_stub_method_group (struct type *, int);
1991
1992 extern char *gdb_mangle_name (struct type *, int, int);
1993
1994 extern struct type *lookup_typename (const struct language_defn *,
1995 struct gdbarch *, const char *,
1996 const struct block *, int);
1997
1998 extern struct type *lookup_template_type (char *, struct type *,
1999 const struct block *);
2000
2001 extern int get_vptr_fieldno (struct type *, struct type **);
2002
2003 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
2004
2005 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
2006 LONGEST *high_bound);
2007
2008 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
2009
2010 extern int class_types_same_p (const struct type *, const struct type *);
2011
2012 extern int is_ancestor (struct type *, struct type *);
2013
2014 extern int is_public_ancestor (struct type *, struct type *);
2015
2016 extern int is_unique_ancestor (struct type *, struct value *);
2017
2018 /* Overload resolution */
2019
2020 /* * Badness if parameter list length doesn't match arg list length. */
2021 extern const struct rank LENGTH_MISMATCH_BADNESS;
2022
2023 /* * Dummy badness value for nonexistent parameter positions. */
2024 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2025 /* * Badness if no conversion among types. */
2026 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2027
2028 /* * Badness of an exact match. */
2029 extern const struct rank EXACT_MATCH_BADNESS;
2030
2031 /* * Badness of integral promotion. */
2032 extern const struct rank INTEGER_PROMOTION_BADNESS;
2033 /* * Badness of floating promotion. */
2034 extern const struct rank FLOAT_PROMOTION_BADNESS;
2035 /* * Badness of converting a derived class pointer
2036 to a base class pointer. */
2037 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2038 /* * Badness of integral conversion. */
2039 extern const struct rank INTEGER_CONVERSION_BADNESS;
2040 /* * Badness of floating conversion. */
2041 extern const struct rank FLOAT_CONVERSION_BADNESS;
2042 /* * Badness of integer<->floating conversions. */
2043 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2044 /* * Badness of conversion of pointer to void pointer. */
2045 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2046 /* * Badness of conversion to boolean. */
2047 extern const struct rank BOOL_CONVERSION_BADNESS;
2048 /* * Badness of converting derived to base class. */
2049 extern const struct rank BASE_CONVERSION_BADNESS;
2050 /* * Badness of converting from non-reference to reference. Subrank
2051 is the type of reference conversion being done. */
2052 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2053 /* * Conversion to rvalue reference. */
2054 #define REFERENCE_CONVERSION_RVALUE 1
2055 /* * Conversion to const lvalue reference. */
2056 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2057
2058 /* * Badness of converting integer 0 to NULL pointer. */
2059 extern const struct rank NULL_POINTER_CONVERSION;
2060 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2061 being done. */
2062 extern const struct rank CV_CONVERSION_BADNESS;
2063 #define CV_CONVERSION_CONST 1
2064 #define CV_CONVERSION_VOLATILE 2
2065
2066 /* Non-standard conversions allowed by the debugger */
2067
2068 /* * Converting a pointer to an int is usually OK. */
2069 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2070
2071 /* * Badness of converting a (non-zero) integer constant
2072 to a pointer. */
2073 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2074
2075 extern struct rank sum_ranks (struct rank a, struct rank b);
2076 extern int compare_ranks (struct rank a, struct rank b);
2077
2078 extern int compare_badness (const badness_vector &,
2079 const badness_vector &);
2080
2081 extern badness_vector rank_function (gdb::array_view<type *> parms,
2082 gdb::array_view<value *> args);
2083
2084 extern struct rank rank_one_type (struct type *, struct type *,
2085 struct value *);
2086
2087 extern void recursive_dump_type (struct type *, int);
2088
2089 extern int field_is_static (struct field *);
2090
2091 /* printcmd.c */
2092
2093 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2094 const struct value_print_options *,
2095 int, struct ui_file *);
2096
2097 extern int can_dereference (struct type *);
2098
2099 extern int is_integral_type (struct type *);
2100
2101 extern int is_floating_type (struct type *);
2102
2103 extern int is_scalar_type (struct type *type);
2104
2105 extern int is_scalar_type_recursive (struct type *);
2106
2107 extern int class_or_union_p (const struct type *);
2108
2109 extern void maintenance_print_type (const char *, int);
2110
2111 extern htab_t create_copied_types_hash (struct objfile *objfile);
2112
2113 extern struct type *copy_type_recursive (struct objfile *objfile,
2114 struct type *type,
2115 htab_t copied_types);
2116
2117 extern struct type *copy_type (const struct type *type);
2118
2119 extern bool types_equal (struct type *, struct type *);
2120
2121 extern bool types_deeply_equal (struct type *, struct type *);
2122
2123 extern int type_not_allocated (const struct type *type);
2124
2125 extern int type_not_associated (const struct type *type);
2126
2127 #endif /* GDBTYPES_H */
This page took 0.09268 seconds and 4 git commands to generate.