Add scalar_storage_order support for floating point
[deliverable/binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2019 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/offset-type.h"
50 #include "gdbsupport/enum-flags.h"
51 #include "gdbsupport/underlying.h"
52 #include "gdbsupport/print-utils.h"
53
54 /* Forward declarations for prototypes. */
55 struct field;
56 struct block;
57 struct value_print_options;
58 struct language_defn;
59
60 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
61 are already DWARF-specific. */
62
63 /* * Offset relative to the start of its containing CU (compilation
64 unit). */
65 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
66
67 /* * Offset relative to the start of its .debug_info or .debug_types
68 section. */
69 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
70
71 static inline char *
72 sect_offset_str (sect_offset offset)
73 {
74 return hex_string (to_underlying (offset));
75 }
76
77 /* Some macros for char-based bitfields. */
78
79 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
80 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
81 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
82 #define B_TYPE unsigned char
83 #define B_BYTES(x) ( 1 + ((x)>>3) )
84 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
85
86 /* * Different kinds of data types are distinguished by the `code'
87 field. */
88
89 enum type_code
90 {
91 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
92 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
93 TYPE_CODE_PTR, /**< Pointer type */
94
95 /* * Array type with lower & upper bounds.
96
97 Regardless of the language, GDB represents multidimensional
98 array types the way C does: as arrays of arrays. So an
99 instance of a GDB array type T can always be seen as a series
100 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
101 memory.
102
103 Row-major languages like C lay out multi-dimensional arrays so
104 that incrementing the rightmost index in a subscripting
105 expression results in the smallest change in the address of the
106 element referred to. Column-major languages like Fortran lay
107 them out so that incrementing the leftmost index results in the
108 smallest change.
109
110 This means that, in column-major languages, working our way
111 from type to target type corresponds to working through indices
112 from right to left, not left to right. */
113 TYPE_CODE_ARRAY,
114
115 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
116 TYPE_CODE_UNION, /**< C union or Pascal variant part */
117 TYPE_CODE_ENUM, /**< Enumeration type */
118 TYPE_CODE_FLAGS, /**< Bit flags type */
119 TYPE_CODE_FUNC, /**< Function type */
120 TYPE_CODE_INT, /**< Integer type */
121
122 /* * Floating type. This is *NOT* a complex type. Beware, there
123 are parts of GDB which bogusly assume that TYPE_CODE_FLT can
124 mean complex. */
125 TYPE_CODE_FLT,
126
127 /* * Void type. The length field specifies the length (probably
128 always one) which is used in pointer arithmetic involving
129 pointers to this type, but actually dereferencing such a
130 pointer is invalid; a void type has no length and no actual
131 representation in memory or registers. A pointer to a void
132 type is a generic pointer. */
133 TYPE_CODE_VOID,
134
135 TYPE_CODE_SET, /**< Pascal sets */
136 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
137
138 /* * A string type which is like an array of character but prints
139 differently. It does not contain a length field as Pascal
140 strings (for many Pascals, anyway) do; if we want to deal with
141 such strings, we should use a new type code. */
142 TYPE_CODE_STRING,
143
144 /* * Unknown type. The length field is valid if we were able to
145 deduce that much about the type, or 0 if we don't even know
146 that. */
147 TYPE_CODE_ERROR,
148
149 /* C++ */
150 TYPE_CODE_METHOD, /**< Method type */
151
152 /* * Pointer-to-member-function type. This describes how to access a
153 particular member function of a class (possibly a virtual
154 member function). The representation may vary between different
155 C++ ABIs. */
156 TYPE_CODE_METHODPTR,
157
158 /* * Pointer-to-member type. This is the offset within a class to
159 some particular data member. The only currently supported
160 representation uses an unbiased offset, with -1 representing
161 NULL; this is used by the Itanium C++ ABI (used by GCC on all
162 platforms). */
163 TYPE_CODE_MEMBERPTR,
164
165 TYPE_CODE_REF, /**< C++ Reference types */
166
167 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
168
169 TYPE_CODE_CHAR, /**< *real* character type */
170
171 /* * Boolean type. 0 is false, 1 is true, and other values are
172 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
173 TYPE_CODE_BOOL,
174
175 /* Fortran */
176 TYPE_CODE_COMPLEX, /**< Complex float */
177
178 TYPE_CODE_TYPEDEF,
179
180 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
181
182 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
183
184 TYPE_CODE_MODULE, /**< Fortran module. */
185
186 /* * Internal function type. */
187 TYPE_CODE_INTERNAL_FUNCTION,
188
189 /* * Methods implemented in extension languages. */
190 TYPE_CODE_XMETHOD
191 };
192
193 /* * Some bits for the type's instance_flags word. See the macros
194 below for documentation on each bit. */
195
196 enum type_instance_flag_value : unsigned
197 {
198 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
199 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
200 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
201 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
202 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
203 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
204 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
205 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
206 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
207 };
208
209 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
210
211 /* * Unsigned integer type. If this is not set for a TYPE_CODE_INT,
212 the type is signed (unless TYPE_NOSIGN (below) is set). */
213
214 #define TYPE_UNSIGNED(t) (TYPE_MAIN_TYPE (t)->flag_unsigned)
215
216 /* * No sign for this type. In C++, "char", "signed char", and
217 "unsigned char" are distinct types; so we need an extra flag to
218 indicate the absence of a sign! */
219
220 #define TYPE_NOSIGN(t) (TYPE_MAIN_TYPE (t)->flag_nosign)
221
222 /* * A compiler may supply dwarf instrumentation
223 that indicates the desired endian interpretation of the variable
224 differs from the native endian representation. */
225
226 #define TYPE_ENDIANITY_NOT_DEFAULT(t) (TYPE_MAIN_TYPE (t)->flag_endianity_not_default)
227
228 /* * This appears in a type's flags word if it is a stub type (e.g.,
229 if someone referenced a type that wasn't defined in a source file
230 via (struct sir_not_appearing_in_this_film *)). */
231
232 #define TYPE_STUB(t) (TYPE_MAIN_TYPE (t)->flag_stub)
233
234 /* * The target type of this type is a stub type, and this type needs
235 to be updated if it gets un-stubbed in check_typedef. Used for
236 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
237 based on the TYPE_LENGTH of the target type. Also, set for
238 TYPE_CODE_TYPEDEF. */
239
240 #define TYPE_TARGET_STUB(t) (TYPE_MAIN_TYPE (t)->flag_target_stub)
241
242 /* * This is a function type which appears to have a prototype. We
243 need this for function calls in order to tell us if it's necessary
244 to coerce the args, or to just do the standard conversions. This
245 is used with a short field. */
246
247 #define TYPE_PROTOTYPED(t) (TYPE_MAIN_TYPE (t)->flag_prototyped)
248
249 /* * This flag is used to indicate that processing for this type
250 is incomplete.
251
252 (Mostly intended for HP platforms, where class methods, for
253 instance, can be encountered before their classes in the debug
254 info; the incomplete type has to be marked so that the class and
255 the method can be assigned correct types.) */
256
257 #define TYPE_INCOMPLETE(t) (TYPE_MAIN_TYPE (t)->flag_incomplete)
258
259 /* * FIXME drow/2002-06-03: Only used for methods, but applies as well
260 to functions. */
261
262 #define TYPE_VARARGS(t) (TYPE_MAIN_TYPE (t)->flag_varargs)
263
264 /* * Identify a vector type. Gcc is handling this by adding an extra
265 attribute to the array type. We slurp that in as a new flag of a
266 type. This is used only in dwarf2read.c. */
267 #define TYPE_VECTOR(t) (TYPE_MAIN_TYPE (t)->flag_vector)
268
269 /* * The debugging formats (especially STABS) do not contain enough
270 information to represent all Ada types---especially those whose
271 size depends on dynamic quantities. Therefore, the GNAT Ada
272 compiler includes extra information in the form of additional type
273 definitions connected by naming conventions. This flag indicates
274 that the type is an ordinary (unencoded) GDB type that has been
275 created from the necessary run-time information, and does not need
276 further interpretation. Optionally marks ordinary, fixed-size GDB
277 type. */
278
279 #define TYPE_FIXED_INSTANCE(t) (TYPE_MAIN_TYPE (t)->flag_fixed_instance)
280
281 /* * This debug target supports TYPE_STUB(t). In the unsupported case
282 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
283 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
284 guessed the TYPE_STUB(t) value (see dwarfread.c). */
285
286 #define TYPE_STUB_SUPPORTED(t) (TYPE_MAIN_TYPE (t)->flag_stub_supported)
287
288 /* * Not textual. By default, GDB treats all single byte integers as
289 characters (or elements of strings) unless this flag is set. */
290
291 #define TYPE_NOTTEXT(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
292
293 /* * Used only for TYPE_CODE_FUNC where it specifies the real function
294 address is returned by this function call. TYPE_TARGET_TYPE
295 determines the final returned function type to be presented to
296 user. */
297
298 #define TYPE_GNU_IFUNC(t) (TYPE_MAIN_TYPE (t)->flag_gnu_ifunc)
299
300 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
301 the objfile retrieved as TYPE_OBJFILE. Otherwise, the type is
302 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
303
304 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
305 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
306 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
307
308 /* * True if this type was declared using the "class" keyword. This is
309 only valid for C++ structure and enum types. If false, a structure
310 was declared as a "struct"; if true it was declared "class". For
311 enum types, this is true when "enum class" or "enum struct" was
312 used to declare the type.. */
313
314 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
315
316 /* * True if this type is a "flag" enum. A flag enum is one where all
317 the values are pairwise disjoint when "and"ed together. This
318 affects how enum values are printed. */
319
320 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
321
322 /* * True if this type is a discriminated union type. Only valid for
323 TYPE_CODE_UNION. A discriminated union stores a reference to the
324 discriminant field along with the discriminator values in a dynamic
325 property. */
326
327 #define TYPE_FLAG_DISCRIMINATED_UNION(t) \
328 (TYPE_MAIN_TYPE (t)->flag_discriminated_union)
329
330 /* * Constant type. If this is set, the corresponding type has a
331 const modifier. */
332
333 #define TYPE_CONST(t) ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST) != 0)
334
335 /* * Volatile type. If this is set, the corresponding type has a
336 volatile modifier. */
337
338 #define TYPE_VOLATILE(t) \
339 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
340
341 /* * Restrict type. If this is set, the corresponding type has a
342 restrict modifier. */
343
344 #define TYPE_RESTRICT(t) \
345 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
346
347 /* * Atomic type. If this is set, the corresponding type has an
348 _Atomic modifier. */
349
350 #define TYPE_ATOMIC(t) \
351 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
352
353 /* * True if this type represents either an lvalue or lvalue reference type. */
354
355 #define TYPE_IS_REFERENCE(t) \
356 (TYPE_CODE (t) == TYPE_CODE_REF || TYPE_CODE (t) == TYPE_CODE_RVALUE_REF)
357
358 /* * True if this type is allocatable. */
359 #define TYPE_IS_ALLOCATABLE(t) \
360 (get_dyn_prop (DYN_PROP_ALLOCATED, t) != NULL)
361
362 /* * Instruction-space delimited type. This is for Harvard architectures
363 which have separate instruction and data address spaces (and perhaps
364 others).
365
366 GDB usually defines a flat address space that is a superset of the
367 architecture's two (or more) address spaces, but this is an extension
368 of the architecture's model.
369
370 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
371 resides in instruction memory, even if its address (in the extended
372 flat address space) does not reflect this.
373
374 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
375 corresponding type resides in the data memory space, even if
376 this is not indicated by its (flat address space) address.
377
378 If neither flag is set, the default space for functions / methods
379 is instruction space, and for data objects is data memory. */
380
381 #define TYPE_CODE_SPACE(t) \
382 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
383
384 #define TYPE_DATA_SPACE(t) \
385 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
386
387 /* * Address class flags. Some environments provide for pointers
388 whose size is different from that of a normal pointer or address
389 types where the bits are interpreted differently than normal
390 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
391 target specific ways to represent these different types of address
392 classes. */
393
394 #define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
395 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
396 #define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
397 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
398 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
399 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
400 #define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
401 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
402
403 /* * Information needed for a discriminated union. A discriminated
404 union is handled somewhat differently from an ordinary union.
405
406 One field is designated as the discriminant. Only one other field
407 is active at a time; which one depends on the value of the
408 discriminant and the data in this structure.
409
410 Additionally, it is possible to have a univariant discriminated
411 union. In this case, the union has just a single field, which is
412 assumed to be the only active variant -- in this case no
413 discriminant is provided. */
414
415 struct discriminant_info
416 {
417 /* * The index of the discriminant field. If -1, then this union
418 must have just a single field. */
419
420 int discriminant_index;
421
422 /* * The index of the default branch of the union. If -1, then
423 there is no default branch. */
424
425 int default_index;
426
427 /* * The discriminant values corresponding to each branch. This has
428 a number of entries equal to the number of fields in this union.
429 If discriminant_index is not -1, then that entry in this array is
430 not used. If default_index is not -1, then that entry in this
431 array is not used. */
432
433 ULONGEST discriminants[1];
434 };
435
436 enum dynamic_prop_kind
437 {
438 PROP_UNDEFINED, /* Not defined. */
439 PROP_CONST, /* Constant. */
440 PROP_ADDR_OFFSET, /* Address offset. */
441 PROP_LOCEXPR, /* Location expression. */
442 PROP_LOCLIST /* Location list. */
443 };
444
445 union dynamic_prop_data
446 {
447 /* Storage for constant property. */
448
449 LONGEST const_val;
450
451 /* Storage for dynamic property. */
452
453 void *baton;
454 };
455
456 /* * Used to store a dynamic property. */
457
458 struct dynamic_prop
459 {
460 /* Determine which field of the union dynamic_prop.data is used. */
461 enum dynamic_prop_kind kind;
462
463 /* Storage for dynamic or static value. */
464 union dynamic_prop_data data;
465 };
466
467 /* Compare two dynamic_prop objects for equality. dynamic_prop
468 instances are equal iff they have the same type and storage. */
469 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
470
471 /* Compare two dynamic_prop objects for inequality. */
472 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
473 {
474 return !(l == r);
475 }
476
477 /* * Define a type's dynamic property node kind. */
478 enum dynamic_prop_node_kind
479 {
480 /* A property providing a type's data location.
481 Evaluating this field yields to the location of an object's data. */
482 DYN_PROP_DATA_LOCATION,
483
484 /* A property representing DW_AT_allocated. The presence of this attribute
485 indicates that the object of the type can be allocated/deallocated. */
486 DYN_PROP_ALLOCATED,
487
488 /* A property representing DW_AT_allocated. The presence of this attribute
489 indicated that the object of the type can be associated. */
490 DYN_PROP_ASSOCIATED,
491
492 /* A property providing an array's byte stride. */
493 DYN_PROP_BYTE_STRIDE,
494
495 /* A property holding information about a discriminated union. */
496 DYN_PROP_DISCRIMINATED,
497 };
498
499 /* * List for dynamic type attributes. */
500 struct dynamic_prop_list
501 {
502 /* The kind of dynamic prop in this node. */
503 enum dynamic_prop_node_kind prop_kind;
504
505 /* The dynamic property itself. */
506 struct dynamic_prop prop;
507
508 /* A pointer to the next dynamic property. */
509 struct dynamic_prop_list *next;
510 };
511
512 /* * Determine which field of the union main_type.fields[x].loc is
513 used. */
514
515 enum field_loc_kind
516 {
517 FIELD_LOC_KIND_BITPOS, /**< bitpos */
518 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
519 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
520 FIELD_LOC_KIND_PHYSNAME, /**< physname */
521 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
522 };
523
524 /* * A discriminant to determine which field in the
525 main_type.type_specific union is being used, if any.
526
527 For types such as TYPE_CODE_FLT, the use of this
528 discriminant is really redundant, as we know from the type code
529 which field is going to be used. As such, it would be possible to
530 reduce the size of this enum in order to save a bit or two for
531 other fields of struct main_type. But, since we still have extra
532 room , and for the sake of clarity and consistency, we treat all fields
533 of the union the same way. */
534
535 enum type_specific_kind
536 {
537 TYPE_SPECIFIC_NONE,
538 TYPE_SPECIFIC_CPLUS_STUFF,
539 TYPE_SPECIFIC_GNAT_STUFF,
540 TYPE_SPECIFIC_FLOATFORMAT,
541 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
542 TYPE_SPECIFIC_FUNC,
543 TYPE_SPECIFIC_SELF_TYPE
544 };
545
546 union type_owner
547 {
548 struct objfile *objfile;
549 struct gdbarch *gdbarch;
550 };
551
552 union field_location
553 {
554 /* * Position of this field, counting in bits from start of
555 containing structure. For gdbarch_bits_big_endian=1
556 targets, it is the bit offset to the MSB. For
557 gdbarch_bits_big_endian=0 targets, it is the bit offset to
558 the LSB. */
559
560 LONGEST bitpos;
561
562 /* * Enum value. */
563 LONGEST enumval;
564
565 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
566 physaddr is the location (in the target) of the static
567 field. Otherwise, physname is the mangled label of the
568 static field. */
569
570 CORE_ADDR physaddr;
571 const char *physname;
572
573 /* * The field location can be computed by evaluating the
574 following DWARF block. Its DATA is allocated on
575 objfile_obstack - no CU load is needed to access it. */
576
577 struct dwarf2_locexpr_baton *dwarf_block;
578 };
579
580 struct field
581 {
582 union field_location loc;
583
584 /* * For a function or member type, this is 1 if the argument is
585 marked artificial. Artificial arguments should not be shown
586 to the user. For TYPE_CODE_RANGE it is set if the specific
587 bound is not defined. */
588
589 unsigned int artificial : 1;
590
591 /* * Discriminant for union field_location. */
592
593 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
594
595 /* * Size of this field, in bits, or zero if not packed.
596 If non-zero in an array type, indicates the element size in
597 bits (used only in Ada at the moment).
598 For an unpacked field, the field's type's length
599 says how many bytes the field occupies. */
600
601 unsigned int bitsize : 28;
602
603 /* * In a struct or union type, type of this field.
604 - In a function or member type, type of this argument.
605 - In an array type, the domain-type of the array. */
606
607 struct type *type;
608
609 /* * Name of field, value or argument.
610 NULL for range bounds, array domains, and member function
611 arguments. */
612
613 const char *name;
614 };
615
616 struct range_bounds
617 {
618 /* * Low bound of range. */
619
620 struct dynamic_prop low;
621
622 /* * High bound of range. */
623
624 struct dynamic_prop high;
625
626 /* The stride value for this range. This can be stored in bits or bytes
627 based on the value of BYTE_STRIDE_P. It is optional to have a stride
628 value, if this range has no stride value defined then this will be set
629 to the constant zero. */
630
631 struct dynamic_prop stride;
632
633 /* * The bias. Sometimes a range value is biased before storage.
634 The bias is added to the stored bits to form the true value. */
635
636 LONGEST bias;
637
638 /* True if HIGH range bound contains the number of elements in the
639 subrange. This affects how the final high bound is computed. */
640
641 unsigned int flag_upper_bound_is_count : 1;
642
643 /* True if LOW or/and HIGH are resolved into a static bound from
644 a dynamic one. */
645
646 unsigned int flag_bound_evaluated : 1;
647
648 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
649
650 unsigned int flag_is_byte_stride : 1;
651 };
652
653 /* Compare two range_bounds objects for equality. Simply does
654 memberwise comparison. */
655 extern bool operator== (const range_bounds &l, const range_bounds &r);
656
657 /* Compare two range_bounds objects for inequality. */
658 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
659 {
660 return !(l == r);
661 }
662
663 union type_specific
664 {
665 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
666 point to cplus_struct_default, a default static instance of a
667 struct cplus_struct_type. */
668
669 struct cplus_struct_type *cplus_stuff;
670
671 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
672 provides additional information. */
673
674 struct gnat_aux_type *gnat_stuff;
675
676 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
677 floatformat object that describes the floating-point value
678 that resides within the type. */
679
680 const struct floatformat *floatformat;
681
682 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
683
684 struct func_type *func_stuff;
685
686 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
687 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
688 is a member of. */
689
690 struct type *self_type;
691 };
692
693 /* * Main structure representing a type in GDB.
694
695 This structure is space-critical. Its layout has been tweaked to
696 reduce the space used. */
697
698 struct main_type
699 {
700 /* * Code for kind of type. */
701
702 ENUM_BITFIELD(type_code) code : 8;
703
704 /* * Flags about this type. These fields appear at this location
705 because they packs nicely here. See the TYPE_* macros for
706 documentation about these fields. */
707
708 unsigned int flag_unsigned : 1;
709 unsigned int flag_nosign : 1;
710 unsigned int flag_stub : 1;
711 unsigned int flag_target_stub : 1;
712 unsigned int flag_static : 1;
713 unsigned int flag_prototyped : 1;
714 unsigned int flag_incomplete : 1;
715 unsigned int flag_varargs : 1;
716 unsigned int flag_vector : 1;
717 unsigned int flag_stub_supported : 1;
718 unsigned int flag_gnu_ifunc : 1;
719 unsigned int flag_fixed_instance : 1;
720 unsigned int flag_objfile_owned : 1;
721 unsigned int flag_endianity_not_default : 1;
722
723 /* * True if this type was declared with "class" rather than
724 "struct". */
725
726 unsigned int flag_declared_class : 1;
727
728 /* * True if this is an enum type with disjoint values. This
729 affects how the enum is printed. */
730
731 unsigned int flag_flag_enum : 1;
732
733 /* * True if this type is a discriminated union type. Only valid
734 for TYPE_CODE_UNION. A discriminated union stores a reference to
735 the discriminant field along with the discriminator values in a
736 dynamic property. */
737
738 unsigned int flag_discriminated_union : 1;
739
740 /* * A discriminant telling us which field of the type_specific
741 union is being used for this type, if any. */
742
743 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
744
745 /* * Number of fields described for this type. This field appears
746 at this location because it packs nicely here. */
747
748 short nfields;
749
750 /* * Name of this type, or NULL if none.
751
752 This is used for printing only. For looking up a name, look for
753 a symbol in the VAR_DOMAIN. This is generally allocated in the
754 objfile's obstack. However coffread.c uses malloc. */
755
756 const char *name;
757
758 /* * Every type is now associated with a particular objfile, and the
759 type is allocated on the objfile_obstack for that objfile. One
760 problem however, is that there are times when gdb allocates new
761 types while it is not in the process of reading symbols from a
762 particular objfile. Fortunately, these happen when the type
763 being created is a derived type of an existing type, such as in
764 lookup_pointer_type(). So we can just allocate the new type
765 using the same objfile as the existing type, but to do this we
766 need a backpointer to the objfile from the existing type. Yes
767 this is somewhat ugly, but without major overhaul of the internal
768 type system, it can't be avoided for now. */
769
770 union type_owner owner;
771
772 /* * For a pointer type, describes the type of object pointed to.
773 - For an array type, describes the type of the elements.
774 - For a function or method type, describes the type of the return value.
775 - For a range type, describes the type of the full range.
776 - For a complex type, describes the type of each coordinate.
777 - For a special record or union type encoding a dynamic-sized type
778 in GNAT, a memoized pointer to a corresponding static version of
779 the type.
780 - Unused otherwise. */
781
782 struct type *target_type;
783
784 /* * For structure and union types, a description of each field.
785 For set and pascal array types, there is one "field",
786 whose type is the domain type of the set or array.
787 For range types, there are two "fields",
788 the minimum and maximum values (both inclusive).
789 For enum types, each possible value is described by one "field".
790 For a function or method type, a "field" for each parameter.
791 For C++ classes, there is one field for each base class (if it is
792 a derived class) plus one field for each class data member. Member
793 functions are recorded elsewhere.
794
795 Using a pointer to a separate array of fields
796 allows all types to have the same size, which is useful
797 because we can allocate the space for a type before
798 we know what to put in it. */
799
800 union
801 {
802 struct field *fields;
803
804 /* * Union member used for range types. */
805
806 struct range_bounds *bounds;
807
808 } flds_bnds;
809
810 /* * Slot to point to additional language-specific fields of this
811 type. */
812
813 union type_specific type_specific;
814
815 /* * Contains all dynamic type properties. */
816 struct dynamic_prop_list *dyn_prop_list;
817 };
818
819 /* * Number of bits allocated for alignment. */
820
821 #define TYPE_ALIGN_BITS 8
822
823 /* * A ``struct type'' describes a particular instance of a type, with
824 some particular qualification. */
825
826 struct type
827 {
828 /* * Type that is a pointer to this type.
829 NULL if no such pointer-to type is known yet.
830 The debugger may add the address of such a type
831 if it has to construct one later. */
832
833 struct type *pointer_type;
834
835 /* * C++: also need a reference type. */
836
837 struct type *reference_type;
838
839 /* * A C++ rvalue reference type added in C++11. */
840
841 struct type *rvalue_reference_type;
842
843 /* * Variant chain. This points to a type that differs from this
844 one only in qualifiers and length. Currently, the possible
845 qualifiers are const, volatile, code-space, data-space, and
846 address class. The length may differ only when one of the
847 address class flags are set. The variants are linked in a
848 circular ring and share MAIN_TYPE. */
849
850 struct type *chain;
851
852 /* * The alignment for this type. Zero means that the alignment was
853 not specified in the debug info. Note that this is stored in a
854 funny way: as the log base 2 (plus 1) of the alignment; so a
855 value of 1 means the alignment is 1, and a value of 9 means the
856 alignment is 256. */
857
858 unsigned align_log2 : TYPE_ALIGN_BITS;
859
860 /* * Flags specific to this instance of the type, indicating where
861 on the ring we are.
862
863 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
864 binary or-ed with the target type, with a special case for
865 address class and space class. For example if this typedef does
866 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
867 instance flags are completely inherited from the target type. No
868 qualifiers can be cleared by the typedef. See also
869 check_typedef. */
870 unsigned instance_flags : 9;
871
872 /* * Length of storage for a value of this type. The value is the
873 expression in host bytes of what sizeof(type) would return. This
874 size includes padding. For example, an i386 extended-precision
875 floating point value really only occupies ten bytes, but most
876 ABI's declare its size to be 12 bytes, to preserve alignment.
877 A `struct type' representing such a floating-point type would
878 have a `length' value of 12, even though the last two bytes are
879 unused.
880
881 Since this field is expressed in host bytes, its value is appropriate
882 to pass to memcpy and such (it is assumed that GDB itself always runs
883 on an 8-bits addressable architecture). However, when using it for
884 target address arithmetic (e.g. adding it to a target address), the
885 type_length_units function should be used in order to get the length
886 expressed in target addressable memory units. */
887
888 ULONGEST length;
889
890 /* * Core type, shared by a group of qualified types. */
891
892 struct main_type *main_type;
893 };
894
895 #define NULL_TYPE ((struct type *) 0)
896
897 struct fn_fieldlist
898 {
899
900 /* * The overloaded name.
901 This is generally allocated in the objfile's obstack.
902 However stabsread.c sometimes uses malloc. */
903
904 const char *name;
905
906 /* * The number of methods with this name. */
907
908 int length;
909
910 /* * The list of methods. */
911
912 struct fn_field *fn_fields;
913 };
914
915
916
917 struct fn_field
918 {
919 /* * If is_stub is clear, this is the mangled name which we can look
920 up to find the address of the method (FIXME: it would be cleaner
921 to have a pointer to the struct symbol here instead).
922
923 If is_stub is set, this is the portion of the mangled name which
924 specifies the arguments. For example, "ii", if there are two int
925 arguments, or "" if there are no arguments. See gdb_mangle_name
926 for the conversion from this format to the one used if is_stub is
927 clear. */
928
929 const char *physname;
930
931 /* * The function type for the method.
932
933 (This comment used to say "The return value of the method", but
934 that's wrong. The function type is expected here, i.e. something
935 with TYPE_CODE_METHOD, and *not* the return-value type). */
936
937 struct type *type;
938
939 /* * For virtual functions. First baseclass that defines this
940 virtual function. */
941
942 struct type *fcontext;
943
944 /* Attributes. */
945
946 unsigned int is_const:1;
947 unsigned int is_volatile:1;
948 unsigned int is_private:1;
949 unsigned int is_protected:1;
950 unsigned int is_artificial:1;
951
952 /* * A stub method only has some fields valid (but they are enough
953 to reconstruct the rest of the fields). */
954
955 unsigned int is_stub:1;
956
957 /* * True if this function is a constructor, false otherwise. */
958
959 unsigned int is_constructor : 1;
960
961 /* * Unused. */
962
963 unsigned int dummy:9;
964
965 /* * Index into that baseclass's virtual function table, minus 2;
966 else if static: VOFFSET_STATIC; else: 0. */
967
968 unsigned int voffset:16;
969
970 #define VOFFSET_STATIC 1
971
972 };
973
974 struct decl_field
975 {
976 /* * Unqualified name to be prefixed by owning class qualified
977 name. */
978
979 const char *name;
980
981 /* * Type this typedef named NAME represents. */
982
983 struct type *type;
984
985 /* * True if this field was declared protected, false otherwise. */
986 unsigned int is_protected : 1;
987
988 /* * True if this field was declared private, false otherwise. */
989 unsigned int is_private : 1;
990 };
991
992 /* * C++ language-specific information for TYPE_CODE_STRUCT and
993 TYPE_CODE_UNION nodes. */
994
995 struct cplus_struct_type
996 {
997 /* * Number of base classes this type derives from. The
998 baseclasses are stored in the first N_BASECLASSES fields
999 (i.e. the `fields' field of the struct type). The only fields
1000 of struct field that are used are: type, name, loc.bitpos. */
1001
1002 short n_baseclasses;
1003
1004 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1005 All access to this field must be through TYPE_VPTR_FIELDNO as one
1006 thing it does is check whether the field has been initialized.
1007 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1008 which for portability reasons doesn't initialize this field.
1009 TYPE_VPTR_FIELDNO returns -1 for this case.
1010
1011 If -1, we were unable to find the virtual function table pointer in
1012 initial symbol reading, and get_vptr_fieldno should be called to find
1013 it if possible. get_vptr_fieldno will update this field if possible.
1014 Otherwise the value is left at -1.
1015
1016 Unused if this type does not have virtual functions. */
1017
1018 short vptr_fieldno;
1019
1020 /* * Number of methods with unique names. All overloaded methods
1021 with the same name count only once. */
1022
1023 short nfn_fields;
1024
1025 /* * Number of template arguments. */
1026
1027 unsigned short n_template_arguments;
1028
1029 /* * One if this struct is a dynamic class, as defined by the
1030 Itanium C++ ABI: if it requires a virtual table pointer,
1031 because it or any of its base classes have one or more virtual
1032 member functions or virtual base classes. Minus one if not
1033 dynamic. Zero if not yet computed. */
1034
1035 int is_dynamic : 2;
1036
1037 /* * The base class which defined the virtual function table pointer. */
1038
1039 struct type *vptr_basetype;
1040
1041 /* * For derived classes, the number of base classes is given by
1042 n_baseclasses and virtual_field_bits is a bit vector containing
1043 one bit per base class. If the base class is virtual, the
1044 corresponding bit will be set.
1045 I.E, given:
1046
1047 class A{};
1048 class B{};
1049 class C : public B, public virtual A {};
1050
1051 B is a baseclass of C; A is a virtual baseclass for C.
1052 This is a C++ 2.0 language feature. */
1053
1054 B_TYPE *virtual_field_bits;
1055
1056 /* * For classes with private fields, the number of fields is
1057 given by nfields and private_field_bits is a bit vector
1058 containing one bit per field.
1059
1060 If the field is private, the corresponding bit will be set. */
1061
1062 B_TYPE *private_field_bits;
1063
1064 /* * For classes with protected fields, the number of fields is
1065 given by nfields and protected_field_bits is a bit vector
1066 containing one bit per field.
1067
1068 If the field is private, the corresponding bit will be set. */
1069
1070 B_TYPE *protected_field_bits;
1071
1072 /* * For classes with fields to be ignored, either this is
1073 optimized out or this field has length 0. */
1074
1075 B_TYPE *ignore_field_bits;
1076
1077 /* * For classes, structures, and unions, a description of each
1078 field, which consists of an overloaded name, followed by the
1079 types of arguments that the method expects, and then the name
1080 after it has been renamed to make it distinct.
1081
1082 fn_fieldlists points to an array of nfn_fields of these. */
1083
1084 struct fn_fieldlist *fn_fieldlists;
1085
1086 /* * typedefs defined inside this class. typedef_field points to
1087 an array of typedef_field_count elements. */
1088
1089 struct decl_field *typedef_field;
1090
1091 unsigned typedef_field_count;
1092
1093 /* * The nested types defined by this type. nested_types points to
1094 an array of nested_types_count elements. */
1095
1096 struct decl_field *nested_types;
1097
1098 unsigned nested_types_count;
1099
1100 /* * The template arguments. This is an array with
1101 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1102 classes. */
1103
1104 struct symbol **template_arguments;
1105 };
1106
1107 /* * Struct used to store conversion rankings. */
1108
1109 struct rank
1110 {
1111 short rank;
1112
1113 /* * When two conversions are of the same type and therefore have
1114 the same rank, subrank is used to differentiate the two.
1115
1116 Eg: Two derived-class-pointer to base-class-pointer conversions
1117 would both have base pointer conversion rank, but the
1118 conversion with the shorter distance to the ancestor is
1119 preferable. 'subrank' would be used to reflect that. */
1120
1121 short subrank;
1122 };
1123
1124 /* * Used for ranking a function for overload resolution. */
1125
1126 typedef std::vector<rank> badness_vector;
1127
1128 /* * GNAT Ada-specific information for various Ada types. */
1129
1130 struct gnat_aux_type
1131 {
1132 /* * Parallel type used to encode information about dynamic types
1133 used in Ada (such as variant records, variable-size array,
1134 etc). */
1135 struct type* descriptive_type;
1136 };
1137
1138 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1139
1140 struct func_type
1141 {
1142 /* * The calling convention for targets supporting multiple ABIs.
1143 Right now this is only fetched from the Dwarf-2
1144 DW_AT_calling_convention attribute. The value is one of the
1145 DW_CC enum dwarf_calling_convention constants. */
1146
1147 unsigned calling_convention : 8;
1148
1149 /* * Whether this function normally returns to its caller. It is
1150 set from the DW_AT_noreturn attribute if set on the
1151 DW_TAG_subprogram. */
1152
1153 unsigned int is_noreturn : 1;
1154
1155 /* * Only those DW_TAG_call_site's in this function that have
1156 DW_AT_call_tail_call set are linked in this list. Function
1157 without its tail call list complete
1158 (DW_AT_call_all_tail_calls or its superset
1159 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1160 DW_TAG_call_site's exist in such function. */
1161
1162 struct call_site *tail_call_list;
1163
1164 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1165 contains the method. */
1166
1167 struct type *self_type;
1168 };
1169
1170 /* struct call_site_parameter can be referenced in callees by several ways. */
1171
1172 enum call_site_parameter_kind
1173 {
1174 /* * Use field call_site_parameter.u.dwarf_reg. */
1175 CALL_SITE_PARAMETER_DWARF_REG,
1176
1177 /* * Use field call_site_parameter.u.fb_offset. */
1178 CALL_SITE_PARAMETER_FB_OFFSET,
1179
1180 /* * Use field call_site_parameter.u.param_offset. */
1181 CALL_SITE_PARAMETER_PARAM_OFFSET
1182 };
1183
1184 struct call_site_target
1185 {
1186 union field_location loc;
1187
1188 /* * Discriminant for union field_location. */
1189
1190 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1191 };
1192
1193 union call_site_parameter_u
1194 {
1195 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1196 as DWARF register number, for register passed
1197 parameters. */
1198
1199 int dwarf_reg;
1200
1201 /* * Offset from the callee's frame base, for stack passed
1202 parameters. This equals offset from the caller's stack
1203 pointer. */
1204
1205 CORE_ADDR fb_offset;
1206
1207 /* * Offset relative to the start of this PER_CU to
1208 DW_TAG_formal_parameter which is referenced by both
1209 caller and the callee. */
1210
1211 cu_offset param_cu_off;
1212 };
1213
1214 struct call_site_parameter
1215 {
1216 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1217
1218 union call_site_parameter_u u;
1219
1220 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1221
1222 const gdb_byte *value;
1223 size_t value_size;
1224
1225 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1226 It may be NULL if not provided by DWARF. */
1227
1228 const gdb_byte *data_value;
1229 size_t data_value_size;
1230 };
1231
1232 /* * A place where a function gets called from, represented by
1233 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1234
1235 struct call_site
1236 {
1237 /* * Address of the first instruction after this call. It must be
1238 the first field as we overload core_addr_hash and core_addr_eq
1239 for it. */
1240
1241 CORE_ADDR pc;
1242
1243 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1244
1245 struct call_site *tail_call_next;
1246
1247 /* * Describe DW_AT_call_target. Missing attribute uses
1248 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1249
1250 struct call_site_target target;
1251
1252 /* * Size of the PARAMETER array. */
1253
1254 unsigned parameter_count;
1255
1256 /* * CU of the function where the call is located. It gets used
1257 for DWARF blocks execution in the parameter array below. */
1258
1259 struct dwarf2_per_cu_data *per_cu;
1260
1261 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1262
1263 struct call_site_parameter parameter[1];
1264 };
1265
1266 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1267 static structure. */
1268
1269 extern const struct cplus_struct_type cplus_struct_default;
1270
1271 extern void allocate_cplus_struct_type (struct type *);
1272
1273 #define INIT_CPLUS_SPECIFIC(type) \
1274 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1275 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1276 &cplus_struct_default)
1277
1278 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1279
1280 #define HAVE_CPLUS_STRUCT(type) \
1281 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1282 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1283
1284 #define INIT_NONE_SPECIFIC(type) \
1285 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1286 TYPE_MAIN_TYPE (type)->type_specific = {})
1287
1288 extern const struct gnat_aux_type gnat_aux_default;
1289
1290 extern void allocate_gnat_aux_type (struct type *);
1291
1292 #define INIT_GNAT_SPECIFIC(type) \
1293 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1294 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1295 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1296 /* * A macro that returns non-zero if the type-specific data should be
1297 read as "gnat-stuff". */
1298 #define HAVE_GNAT_AUX_INFO(type) \
1299 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1300
1301 /* * True if TYPE is known to be an Ada type of some kind. */
1302 #define ADA_TYPE_P(type) \
1303 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1304 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1305 && TYPE_FIXED_INSTANCE (type)))
1306
1307 #define INIT_FUNC_SPECIFIC(type) \
1308 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1309 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1310 TYPE_ZALLOC (type, \
1311 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1312
1313 #define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1314 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1315 #define TYPE_NAME(thistype) TYPE_MAIN_TYPE(thistype)->name
1316 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1317 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1318 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1319 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1320 #define TYPE_CHAIN(thistype) (thistype)->chain
1321 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1322 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1323 so you only have to call check_typedef once. Since allocate_value
1324 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1325 #define TYPE_LENGTH(thistype) (thistype)->length
1326
1327 /* * Return the alignment of the type in target addressable memory
1328 units, or 0 if no alignment was specified. */
1329 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1330
1331 /* * Return the alignment of the type in target addressable memory
1332 units, or 0 if no alignment was specified. */
1333 extern unsigned type_raw_align (struct type *);
1334
1335 /* * Return the alignment of the type in target addressable memory
1336 units. Return 0 if the alignment cannot be determined; but note
1337 that this makes an effort to compute the alignment even it it was
1338 not specified in the debug info. */
1339 extern unsigned type_align (struct type *);
1340
1341 /* * Set the alignment of the type. The alignment must be a power of
1342 2. Returns false if the given value does not fit in the available
1343 space in struct type. */
1344 extern bool set_type_align (struct type *, ULONGEST);
1345
1346 /* * Note that TYPE_CODE can be TYPE_CODE_TYPEDEF, so if you want the real
1347 type, you need to do TYPE_CODE (check_type (this_type)). */
1348 #define TYPE_CODE(thistype) TYPE_MAIN_TYPE(thistype)->code
1349 #define TYPE_NFIELDS(thistype) TYPE_MAIN_TYPE(thistype)->nfields
1350 #define TYPE_FIELDS(thistype) TYPE_MAIN_TYPE(thistype)->flds_bnds.fields
1351
1352 #define TYPE_INDEX_TYPE(type) TYPE_FIELD_TYPE (type, 0)
1353 #define TYPE_RANGE_DATA(thistype) TYPE_MAIN_TYPE(thistype)->flds_bnds.bounds
1354 #define TYPE_LOW_BOUND(range_type) \
1355 TYPE_RANGE_DATA(range_type)->low.data.const_val
1356 #define TYPE_HIGH_BOUND(range_type) \
1357 TYPE_RANGE_DATA(range_type)->high.data.const_val
1358 #define TYPE_LOW_BOUND_UNDEFINED(range_type) \
1359 (TYPE_RANGE_DATA(range_type)->low.kind == PROP_UNDEFINED)
1360 #define TYPE_HIGH_BOUND_UNDEFINED(range_type) \
1361 (TYPE_RANGE_DATA(range_type)->high.kind == PROP_UNDEFINED)
1362 #define TYPE_HIGH_BOUND_KIND(range_type) \
1363 TYPE_RANGE_DATA(range_type)->high.kind
1364 #define TYPE_LOW_BOUND_KIND(range_type) \
1365 TYPE_RANGE_DATA(range_type)->low.kind
1366 #define TYPE_BIT_STRIDE(range_type) \
1367 (TYPE_RANGE_DATA(range_type)->stride.data.const_val \
1368 * (TYPE_RANGE_DATA(range_type)->flag_is_byte_stride ? 8 : 1))
1369
1370 /* Property accessors for the type data location. */
1371 #define TYPE_DATA_LOCATION(thistype) \
1372 get_dyn_prop (DYN_PROP_DATA_LOCATION, thistype)
1373 #define TYPE_DATA_LOCATION_BATON(thistype) \
1374 TYPE_DATA_LOCATION (thistype)->data.baton
1375 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1376 TYPE_DATA_LOCATION (thistype)->data.const_val
1377 #define TYPE_DATA_LOCATION_KIND(thistype) \
1378 TYPE_DATA_LOCATION (thistype)->kind
1379
1380 /* Property accessors for the type allocated/associated. */
1381 #define TYPE_ALLOCATED_PROP(thistype) \
1382 get_dyn_prop (DYN_PROP_ALLOCATED, thistype)
1383 #define TYPE_ASSOCIATED_PROP(thistype) \
1384 get_dyn_prop (DYN_PROP_ASSOCIATED, thistype)
1385
1386 /* Attribute accessors for dynamic properties. */
1387 #define TYPE_DYN_PROP_LIST(thistype) \
1388 TYPE_MAIN_TYPE(thistype)->dyn_prop_list
1389 #define TYPE_DYN_PROP_BATON(dynprop) \
1390 dynprop->data.baton
1391 #define TYPE_DYN_PROP_ADDR(dynprop) \
1392 dynprop->data.const_val
1393 #define TYPE_DYN_PROP_KIND(dynprop) \
1394 dynprop->kind
1395
1396
1397 /* Accessors for struct range_bounds data attached to an array type's
1398 index type. */
1399
1400 #define TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED(arraytype) \
1401 TYPE_HIGH_BOUND_UNDEFINED(TYPE_INDEX_TYPE(arraytype))
1402 #define TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED(arraytype) \
1403 TYPE_LOW_BOUND_UNDEFINED(TYPE_INDEX_TYPE(arraytype))
1404
1405 #define TYPE_ARRAY_UPPER_BOUND_VALUE(arraytype) \
1406 (TYPE_HIGH_BOUND(TYPE_INDEX_TYPE((arraytype))))
1407
1408 #define TYPE_ARRAY_LOWER_BOUND_VALUE(arraytype) \
1409 (TYPE_LOW_BOUND(TYPE_INDEX_TYPE((arraytype))))
1410
1411 #define TYPE_ARRAY_BIT_STRIDE(arraytype) \
1412 (TYPE_BIT_STRIDE(TYPE_INDEX_TYPE((arraytype))))
1413
1414 /* C++ */
1415
1416 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1417 /* Do not call this, use TYPE_SELF_TYPE. */
1418 extern struct type *internal_type_self_type (struct type *);
1419 extern void set_type_self_type (struct type *, struct type *);
1420
1421 extern int internal_type_vptr_fieldno (struct type *);
1422 extern void set_type_vptr_fieldno (struct type *, int);
1423 extern struct type *internal_type_vptr_basetype (struct type *);
1424 extern void set_type_vptr_basetype (struct type *, struct type *);
1425 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1426 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1427
1428 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1429 #define TYPE_SPECIFIC_FIELD(thistype) \
1430 TYPE_MAIN_TYPE(thistype)->type_specific_field
1431 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1432 where we're trying to print an Ada array using the C language.
1433 In that case, there is no "cplus_stuff", but the C language assumes
1434 that there is. What we do, in that case, is pretend that there is
1435 an implicit one which is the default cplus stuff. */
1436 #define TYPE_CPLUS_SPECIFIC(thistype) \
1437 (!HAVE_CPLUS_STRUCT(thistype) \
1438 ? (struct cplus_struct_type*)&cplus_struct_default \
1439 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1440 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1441 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1442 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1443 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1444 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1445 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1446 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1447 #define TYPE_BASECLASS(thistype,index) TYPE_FIELD_TYPE(thistype, index)
1448 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1449 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1450 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1451 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1452 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1453 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1454
1455 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1456 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1457 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1458
1459 #define FIELD_TYPE(thisfld) ((thisfld).type)
1460 #define FIELD_NAME(thisfld) ((thisfld).name)
1461 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1462 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1463 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1464 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1465 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1466 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1467 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1468 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1469 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1470 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1471 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1472 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1473 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1474 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1475 #define SET_FIELD_PHYSNAME(thisfld, name) \
1476 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1477 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1478 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1479 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1480 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1481 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1482 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1483 FIELD_DWARF_BLOCK (thisfld) = (addr))
1484 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1485 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1486
1487 #define TYPE_FIELD(thistype, n) TYPE_MAIN_TYPE(thistype)->flds_bnds.fields[n]
1488 #define TYPE_FIELD_TYPE(thistype, n) FIELD_TYPE(TYPE_FIELD(thistype, n))
1489 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME(TYPE_FIELD(thistype, n))
1490 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND (TYPE_FIELD (thistype, n))
1491 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS (TYPE_FIELD (thistype, n))
1492 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL (TYPE_FIELD (thistype, n))
1493 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME (TYPE_FIELD (thistype, n))
1494 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR (TYPE_FIELD (thistype, n))
1495 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK (TYPE_FIELD (thistype, n))
1496 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL(TYPE_FIELD(thistype,n))
1497 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE(TYPE_FIELD(thistype,n))
1498 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE(TYPE_FIELD(thistype,n))!=0)
1499
1500 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1501 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1502 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1503 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1504 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1505 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1506 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1507 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1508 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1509 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1510 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1511 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1512 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1513 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1514 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1515 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1516 #define TYPE_FIELD_PRIVATE(thistype, n) \
1517 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1518 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1519 #define TYPE_FIELD_PROTECTED(thistype, n) \
1520 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1521 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1522 #define TYPE_FIELD_IGNORE(thistype, n) \
1523 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1524 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1525 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1526 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1527 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1528
1529 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1530 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1531 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1532 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1533 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1534
1535 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1536 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1537 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1538 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1539 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1540 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1541
1542 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1543 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1544 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1545 #define TYPE_FN_FIELD_ARGS(thisfn, n) TYPE_FIELDS ((thisfn)[n].type)
1546 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1547 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1548 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1549 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1550 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1551 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1552 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1553 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1554 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1555 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1556 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1557
1558 /* Accessors for typedefs defined by a class. */
1559 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1560 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1561 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1562 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1563 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1564 TYPE_TYPEDEF_FIELD (thistype, n).name
1565 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1566 TYPE_TYPEDEF_FIELD (thistype, n).type
1567 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1568 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1569 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1570 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1571 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1572 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1573
1574 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1575 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1576 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
1577 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
1578 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
1579 TYPE_NESTED_TYPES_FIELD (thistype, n).name
1580 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
1581 TYPE_NESTED_TYPES_FIELD (thistype, n).type
1582 #define TYPE_NESTED_TYPES_COUNT(thistype) \
1583 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
1584 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
1585 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
1586 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
1587 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
1588
1589 #define TYPE_IS_OPAQUE(thistype) \
1590 (((TYPE_CODE (thistype) == TYPE_CODE_STRUCT) \
1591 || (TYPE_CODE (thistype) == TYPE_CODE_UNION)) \
1592 && (TYPE_NFIELDS (thistype) == 0) \
1593 && (!HAVE_CPLUS_STRUCT (thistype) \
1594 || TYPE_NFN_FIELDS (thistype) == 0) \
1595 && (TYPE_STUB (thistype) || !TYPE_STUB_SUPPORTED (thistype)))
1596
1597 /* * A helper macro that returns the name of a type or "unnamed type"
1598 if the type has no name. */
1599
1600 #define TYPE_SAFE_NAME(type) \
1601 (TYPE_NAME (type) ? TYPE_NAME (type) : _("<unnamed type>"))
1602
1603 /* * A helper macro that returns the name of an error type. If the
1604 type has a name, it is used; otherwise, a default is used. */
1605
1606 #define TYPE_ERROR_NAME(type) \
1607 (TYPE_NAME (type) ? TYPE_NAME (type) : _("<error type>"))
1608
1609 /* Given TYPE, return its floatformat. */
1610 const struct floatformat *floatformat_from_type (const struct type *type);
1611
1612 struct builtin_type
1613 {
1614 /* Integral types. */
1615
1616 /* Implicit size/sign (based on the architecture's ABI). */
1617 struct type *builtin_void;
1618 struct type *builtin_char;
1619 struct type *builtin_short;
1620 struct type *builtin_int;
1621 struct type *builtin_long;
1622 struct type *builtin_signed_char;
1623 struct type *builtin_unsigned_char;
1624 struct type *builtin_unsigned_short;
1625 struct type *builtin_unsigned_int;
1626 struct type *builtin_unsigned_long;
1627 struct type *builtin_half;
1628 struct type *builtin_float;
1629 struct type *builtin_double;
1630 struct type *builtin_long_double;
1631 struct type *builtin_complex;
1632 struct type *builtin_double_complex;
1633 struct type *builtin_string;
1634 struct type *builtin_bool;
1635 struct type *builtin_long_long;
1636 struct type *builtin_unsigned_long_long;
1637 struct type *builtin_decfloat;
1638 struct type *builtin_decdouble;
1639 struct type *builtin_declong;
1640
1641 /* "True" character types.
1642 We use these for the '/c' print format, because c_char is just a
1643 one-byte integral type, which languages less laid back than C
1644 will print as ... well, a one-byte integral type. */
1645 struct type *builtin_true_char;
1646 struct type *builtin_true_unsigned_char;
1647
1648 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1649 is for when an architecture needs to describe a register that has
1650 no size. */
1651 struct type *builtin_int0;
1652 struct type *builtin_int8;
1653 struct type *builtin_uint8;
1654 struct type *builtin_int16;
1655 struct type *builtin_uint16;
1656 struct type *builtin_int24;
1657 struct type *builtin_uint24;
1658 struct type *builtin_int32;
1659 struct type *builtin_uint32;
1660 struct type *builtin_int64;
1661 struct type *builtin_uint64;
1662 struct type *builtin_int128;
1663 struct type *builtin_uint128;
1664
1665 /* Wide character types. */
1666 struct type *builtin_char16;
1667 struct type *builtin_char32;
1668 struct type *builtin_wchar;
1669
1670 /* Pointer types. */
1671
1672 /* * `pointer to data' type. Some target platforms use an implicitly
1673 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1674 struct type *builtin_data_ptr;
1675
1676 /* * `pointer to function (returning void)' type. Harvard
1677 architectures mean that ABI function and code pointers are not
1678 interconvertible. Similarly, since ANSI, C standards have
1679 explicitly said that pointers to functions and pointers to data
1680 are not interconvertible --- that is, you can't cast a function
1681 pointer to void * and back, and expect to get the same value.
1682 However, all function pointer types are interconvertible, so void
1683 (*) () can server as a generic function pointer. */
1684
1685 struct type *builtin_func_ptr;
1686
1687 /* * `function returning pointer to function (returning void)' type.
1688 The final void return type is not significant for it. */
1689
1690 struct type *builtin_func_func;
1691
1692 /* Special-purpose types. */
1693
1694 /* * This type is used to represent a GDB internal function. */
1695
1696 struct type *internal_fn;
1697
1698 /* * This type is used to represent an xmethod. */
1699 struct type *xmethod;
1700 };
1701
1702 /* * Return the type table for the specified architecture. */
1703
1704 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
1705
1706 /* * Per-objfile types used by symbol readers. */
1707
1708 struct objfile_type
1709 {
1710 /* Basic types based on the objfile architecture. */
1711 struct type *builtin_void;
1712 struct type *builtin_char;
1713 struct type *builtin_short;
1714 struct type *builtin_int;
1715 struct type *builtin_long;
1716 struct type *builtin_long_long;
1717 struct type *builtin_signed_char;
1718 struct type *builtin_unsigned_char;
1719 struct type *builtin_unsigned_short;
1720 struct type *builtin_unsigned_int;
1721 struct type *builtin_unsigned_long;
1722 struct type *builtin_unsigned_long_long;
1723 struct type *builtin_half;
1724 struct type *builtin_float;
1725 struct type *builtin_double;
1726 struct type *builtin_long_double;
1727
1728 /* * This type is used to represent symbol addresses. */
1729 struct type *builtin_core_addr;
1730
1731 /* * This type represents a type that was unrecognized in symbol
1732 read-in. */
1733 struct type *builtin_error;
1734
1735 /* * Types used for symbols with no debug information. */
1736 struct type *nodebug_text_symbol;
1737 struct type *nodebug_text_gnu_ifunc_symbol;
1738 struct type *nodebug_got_plt_symbol;
1739 struct type *nodebug_data_symbol;
1740 struct type *nodebug_unknown_symbol;
1741 struct type *nodebug_tls_symbol;
1742 };
1743
1744 /* * Return the type table for the specified objfile. */
1745
1746 extern const struct objfile_type *objfile_type (struct objfile *objfile);
1747
1748 /* Explicit floating-point formats. See "floatformat.h". */
1749 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
1750 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
1751 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
1752 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
1753 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
1754 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
1755 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
1756 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
1757 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
1758 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
1759 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
1760 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
1761
1762
1763 /* Allocate space for storing data associated with a particular
1764 type. We ensure that the space is allocated using the same
1765 mechanism that was used to allocate the space for the type
1766 structure itself. I.e. if the type is on an objfile's
1767 objfile_obstack, then the space for data associated with that type
1768 will also be allocated on the objfile_obstack. If the type is
1769 associated with a gdbarch, then the space for data associated with that
1770 type will also be allocated on the gdbarch_obstack.
1771
1772 If a type is not associated with neither an objfile or a gdbarch then
1773 you should not use this macro to allocate space for data, instead you
1774 should call xmalloc directly, and ensure the memory is correctly freed
1775 when it is no longer needed. */
1776
1777 #define TYPE_ALLOC(t,size) \
1778 (obstack_alloc ((TYPE_OBJFILE_OWNED (t) \
1779 ? &TYPE_OBJFILE (t)->objfile_obstack \
1780 : gdbarch_obstack (TYPE_OWNER (t).gdbarch)), \
1781 size))
1782
1783
1784 /* See comment on TYPE_ALLOC. */
1785
1786 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
1787
1788 /* Use alloc_type to allocate a type owned by an objfile. Use
1789 alloc_type_arch to allocate a type owned by an architecture. Use
1790 alloc_type_copy to allocate a type with the same owner as a
1791 pre-existing template type, no matter whether objfile or
1792 gdbarch. */
1793 extern struct type *alloc_type (struct objfile *);
1794 extern struct type *alloc_type_arch (struct gdbarch *);
1795 extern struct type *alloc_type_copy (const struct type *);
1796
1797 /* * Return the type's architecture. For types owned by an
1798 architecture, that architecture is returned. For types owned by an
1799 objfile, that objfile's architecture is returned. */
1800
1801 extern struct gdbarch *get_type_arch (const struct type *);
1802
1803 /* * This returns the target type (or NULL) of TYPE, also skipping
1804 past typedefs. */
1805
1806 extern struct type *get_target_type (struct type *type);
1807
1808 /* Return the equivalent of TYPE_LENGTH, but in number of target
1809 addressable memory units of the associated gdbarch instead of bytes. */
1810
1811 extern unsigned int type_length_units (struct type *type);
1812
1813 /* * Helper function to construct objfile-owned types. */
1814
1815 extern struct type *init_type (struct objfile *, enum type_code, int,
1816 const char *);
1817 extern struct type *init_integer_type (struct objfile *, int, int,
1818 const char *);
1819 extern struct type *init_character_type (struct objfile *, int, int,
1820 const char *);
1821 extern struct type *init_boolean_type (struct objfile *, int, int,
1822 const char *);
1823 extern struct type *init_float_type (struct objfile *, int, const char *,
1824 const struct floatformat **,
1825 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
1826 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
1827 extern struct type *init_complex_type (struct objfile *, const char *,
1828 struct type *);
1829 extern struct type *init_pointer_type (struct objfile *, int, const char *,
1830 struct type *);
1831
1832 /* Helper functions to construct architecture-owned types. */
1833 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
1834 const char *);
1835 extern struct type *arch_integer_type (struct gdbarch *, int, int,
1836 const char *);
1837 extern struct type *arch_character_type (struct gdbarch *, int, int,
1838 const char *);
1839 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
1840 const char *);
1841 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
1842 const struct floatformat **);
1843 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
1844 extern struct type *arch_complex_type (struct gdbarch *, const char *,
1845 struct type *);
1846 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
1847 struct type *);
1848
1849 /* Helper functions to construct a struct or record type. An
1850 initially empty type is created using arch_composite_type().
1851 Fields are then added using append_composite_type_field*(). A union
1852 type has its size set to the largest field. A struct type has each
1853 field packed against the previous. */
1854
1855 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
1856 const char *name, enum type_code code);
1857 extern void append_composite_type_field (struct type *t, const char *name,
1858 struct type *field);
1859 extern void append_composite_type_field_aligned (struct type *t,
1860 const char *name,
1861 struct type *field,
1862 int alignment);
1863 struct field *append_composite_type_field_raw (struct type *t, const char *name,
1864 struct type *field);
1865
1866 /* Helper functions to construct a bit flags type. An initially empty
1867 type is created using arch_flag_type(). Flags are then added using
1868 append_flag_type_field() and append_flag_type_flag(). */
1869 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
1870 const char *name, int bit);
1871 extern void append_flags_type_field (struct type *type,
1872 int start_bitpos, int nr_bits,
1873 struct type *field_type, const char *name);
1874 extern void append_flags_type_flag (struct type *type, int bitpos,
1875 const char *name);
1876
1877 extern void make_vector_type (struct type *array_type);
1878 extern struct type *init_vector_type (struct type *elt_type, int n);
1879
1880 extern struct type *lookup_reference_type (struct type *, enum type_code);
1881 extern struct type *lookup_lvalue_reference_type (struct type *);
1882 extern struct type *lookup_rvalue_reference_type (struct type *);
1883
1884
1885 extern struct type *make_reference_type (struct type *, struct type **,
1886 enum type_code);
1887
1888 extern struct type *make_cv_type (int, int, struct type *, struct type **);
1889
1890 extern struct type *make_restrict_type (struct type *);
1891
1892 extern struct type *make_unqualified_type (struct type *);
1893
1894 extern struct type *make_atomic_type (struct type *);
1895
1896 extern void replace_type (struct type *, struct type *);
1897
1898 extern int address_space_name_to_int (struct gdbarch *, const char *);
1899
1900 extern const char *address_space_int_to_name (struct gdbarch *, int);
1901
1902 extern struct type *make_type_with_address_space (struct type *type,
1903 int space_identifier);
1904
1905 extern struct type *lookup_memberptr_type (struct type *, struct type *);
1906
1907 extern struct type *lookup_methodptr_type (struct type *);
1908
1909 extern void smash_to_method_type (struct type *type, struct type *self_type,
1910 struct type *to_type, struct field *args,
1911 int nargs, int varargs);
1912
1913 extern void smash_to_memberptr_type (struct type *, struct type *,
1914 struct type *);
1915
1916 extern void smash_to_methodptr_type (struct type *, struct type *);
1917
1918 extern struct type *allocate_stub_method (struct type *);
1919
1920 extern const char *type_name_or_error (struct type *type);
1921
1922 struct struct_elt
1923 {
1924 /* The field of the element, or NULL if no element was found. */
1925 struct field *field;
1926
1927 /* The bit offset of the element in the parent structure. */
1928 LONGEST offset;
1929 };
1930
1931 /* Given a type TYPE, lookup the field and offset of the component named
1932 NAME.
1933
1934 TYPE can be either a struct or union, or a pointer or reference to
1935 a struct or union. If it is a pointer or reference, its target
1936 type is automatically used. Thus '.' and '->' are interchangable,
1937 as specified for the definitions of the expression element types
1938 STRUCTOP_STRUCT and STRUCTOP_PTR.
1939
1940 If NOERR is nonzero, the returned structure will have field set to
1941 NULL if there is no component named NAME.
1942
1943 If the component NAME is a field in an anonymous substructure of
1944 TYPE, the returned offset is a "global" offset relative to TYPE
1945 rather than an offset within the substructure. */
1946
1947 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
1948
1949 /* Given a type TYPE, lookup the type of the component named NAME.
1950
1951 TYPE can be either a struct or union, or a pointer or reference to
1952 a struct or union. If it is a pointer or reference, its target
1953 type is automatically used. Thus '.' and '->' are interchangable,
1954 as specified for the definitions of the expression element types
1955 STRUCTOP_STRUCT and STRUCTOP_PTR.
1956
1957 If NOERR is nonzero, return NULL if there is no component named
1958 NAME. */
1959
1960 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
1961
1962 extern struct type *make_pointer_type (struct type *, struct type **);
1963
1964 extern struct type *lookup_pointer_type (struct type *);
1965
1966 extern struct type *make_function_type (struct type *, struct type **);
1967
1968 extern struct type *lookup_function_type (struct type *);
1969
1970 extern struct type *lookup_function_type_with_arguments (struct type *,
1971 int,
1972 struct type **);
1973
1974 extern struct type *create_static_range_type (struct type *, struct type *,
1975 LONGEST, LONGEST);
1976
1977
1978 extern struct type *create_array_type_with_stride
1979 (struct type *, struct type *, struct type *,
1980 struct dynamic_prop *, unsigned int);
1981
1982 extern struct type *create_range_type (struct type *, struct type *,
1983 const struct dynamic_prop *,
1984 const struct dynamic_prop *,
1985 LONGEST);
1986
1987 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
1988 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
1989 stride. */
1990
1991 extern struct type * create_range_type_with_stride
1992 (struct type *result_type, struct type *index_type,
1993 const struct dynamic_prop *low_bound,
1994 const struct dynamic_prop *high_bound, LONGEST bias,
1995 const struct dynamic_prop *stride, bool byte_stride_p);
1996
1997 extern struct type *create_array_type (struct type *, struct type *,
1998 struct type *);
1999
2000 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2001
2002 extern struct type *create_string_type (struct type *, struct type *,
2003 struct type *);
2004 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2005
2006 extern struct type *create_set_type (struct type *, struct type *);
2007
2008 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2009 struct gdbarch *, const char *);
2010
2011 extern struct type *lookup_signed_typename (const struct language_defn *,
2012 struct gdbarch *, const char *);
2013
2014 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2015
2016 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2017
2018 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2019 ADDR specifies the location of the variable the type is bound to.
2020 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2021 static properties is returned. */
2022 extern struct type *resolve_dynamic_type (struct type *type,
2023 const gdb_byte *valaddr,
2024 CORE_ADDR addr);
2025
2026 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2027 extern int is_dynamic_type (struct type *type);
2028
2029 /* * Return the dynamic property of the requested KIND from TYPE's
2030 list of dynamic properties. */
2031 extern struct dynamic_prop *get_dyn_prop
2032 (enum dynamic_prop_node_kind kind, const struct type *type);
2033
2034 /* * Given a dynamic property PROP of a given KIND, add this dynamic
2035 property to the given TYPE.
2036
2037 This function assumes that TYPE is objfile-owned. */
2038 extern void add_dyn_prop
2039 (enum dynamic_prop_node_kind kind, struct dynamic_prop prop,
2040 struct type *type);
2041
2042 extern void remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2043 struct type *type);
2044
2045 extern struct type *check_typedef (struct type *);
2046
2047 extern void check_stub_method_group (struct type *, int);
2048
2049 extern char *gdb_mangle_name (struct type *, int, int);
2050
2051 extern struct type *lookup_typename (const struct language_defn *,
2052 struct gdbarch *, const char *,
2053 const struct block *, int);
2054
2055 extern struct type *lookup_template_type (const char *, struct type *,
2056 const struct block *);
2057
2058 extern int get_vptr_fieldno (struct type *, struct type **);
2059
2060 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
2061
2062 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
2063 LONGEST *high_bound);
2064
2065 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
2066
2067 extern int class_types_same_p (const struct type *, const struct type *);
2068
2069 extern int is_ancestor (struct type *, struct type *);
2070
2071 extern int is_public_ancestor (struct type *, struct type *);
2072
2073 extern int is_unique_ancestor (struct type *, struct value *);
2074
2075 /* Overload resolution */
2076
2077 /* * Badness if parameter list length doesn't match arg list length. */
2078 extern const struct rank LENGTH_MISMATCH_BADNESS;
2079
2080 /* * Dummy badness value for nonexistent parameter positions. */
2081 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2082 /* * Badness if no conversion among types. */
2083 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2084
2085 /* * Badness of an exact match. */
2086 extern const struct rank EXACT_MATCH_BADNESS;
2087
2088 /* * Badness of integral promotion. */
2089 extern const struct rank INTEGER_PROMOTION_BADNESS;
2090 /* * Badness of floating promotion. */
2091 extern const struct rank FLOAT_PROMOTION_BADNESS;
2092 /* * Badness of converting a derived class pointer
2093 to a base class pointer. */
2094 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2095 /* * Badness of integral conversion. */
2096 extern const struct rank INTEGER_CONVERSION_BADNESS;
2097 /* * Badness of floating conversion. */
2098 extern const struct rank FLOAT_CONVERSION_BADNESS;
2099 /* * Badness of integer<->floating conversions. */
2100 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2101 /* * Badness of conversion of pointer to void pointer. */
2102 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2103 /* * Badness of conversion to boolean. */
2104 extern const struct rank BOOL_CONVERSION_BADNESS;
2105 /* * Badness of converting derived to base class. */
2106 extern const struct rank BASE_CONVERSION_BADNESS;
2107 /* * Badness of converting from non-reference to reference. Subrank
2108 is the type of reference conversion being done. */
2109 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2110 /* * Conversion to rvalue reference. */
2111 #define REFERENCE_CONVERSION_RVALUE 1
2112 /* * Conversion to const lvalue reference. */
2113 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2114
2115 /* * Badness of converting integer 0 to NULL pointer. */
2116 extern const struct rank NULL_POINTER_CONVERSION;
2117 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2118 being done. */
2119 extern const struct rank CV_CONVERSION_BADNESS;
2120 #define CV_CONVERSION_CONST 1
2121 #define CV_CONVERSION_VOLATILE 2
2122
2123 /* Non-standard conversions allowed by the debugger */
2124
2125 /* * Converting a pointer to an int is usually OK. */
2126 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2127
2128 /* * Badness of converting a (non-zero) integer constant
2129 to a pointer. */
2130 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2131
2132 extern struct rank sum_ranks (struct rank a, struct rank b);
2133 extern int compare_ranks (struct rank a, struct rank b);
2134
2135 extern int compare_badness (const badness_vector &,
2136 const badness_vector &);
2137
2138 extern badness_vector rank_function (gdb::array_view<type *> parms,
2139 gdb::array_view<value *> args);
2140
2141 extern struct rank rank_one_type (struct type *, struct type *,
2142 struct value *);
2143
2144 extern void recursive_dump_type (struct type *, int);
2145
2146 extern int field_is_static (struct field *);
2147
2148 /* printcmd.c */
2149
2150 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2151 const struct value_print_options *,
2152 int, struct ui_file *);
2153
2154 extern int can_dereference (struct type *);
2155
2156 extern int is_integral_type (struct type *);
2157
2158 extern int is_floating_type (struct type *);
2159
2160 extern int is_scalar_type (struct type *type);
2161
2162 extern int is_scalar_type_recursive (struct type *);
2163
2164 extern int class_or_union_p (const struct type *);
2165
2166 extern void maintenance_print_type (const char *, int);
2167
2168 extern htab_t create_copied_types_hash (struct objfile *objfile);
2169
2170 extern struct type *copy_type_recursive (struct objfile *objfile,
2171 struct type *type,
2172 htab_t copied_types);
2173
2174 extern struct type *copy_type (const struct type *type);
2175
2176 extern bool types_equal (struct type *, struct type *);
2177
2178 extern bool types_deeply_equal (struct type *, struct type *);
2179
2180 extern int type_not_allocated (const struct type *type);
2181
2182 extern int type_not_associated (const struct type *type);
2183
2184 /* * When the type includes explicit byte ordering, return that.
2185 Otherwise, the byte ordering from gdbarch_byte_order for
2186 get_type_arch is returned. */
2187
2188 extern enum bfd_endian type_byte_order (const struct type *type);
2189
2190 /* A flag to enable printing of debugging information of C++
2191 overloading. */
2192
2193 extern unsigned int overload_debug;
2194
2195 #endif /* GDBTYPES_H */
This page took 0.0955 seconds and 5 git commands to generate.