make is_scalar_type non-static and use it in ada-lang.c
[deliverable/binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2015 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48
49 /* Forward declarations for prototypes. */
50 struct field;
51 struct block;
52 struct value_print_options;
53 struct language_defn;
54
55 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
56 are already DWARF-specific. */
57
58 /* * Offset relative to the start of its containing CU (compilation
59 unit). */
60 typedef struct
61 {
62 unsigned int cu_off;
63 } cu_offset;
64
65 /* * Offset relative to the start of its .debug_info or .debug_types
66 section. */
67
68 typedef struct
69 {
70 unsigned int sect_off;
71 } sect_offset;
72
73 /* Some macros for char-based bitfields. */
74
75 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
76 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
77 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
78 #define B_TYPE unsigned char
79 #define B_BYTES(x) ( 1 + ((x)>>3) )
80 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
81
82 /* * Different kinds of data types are distinguished by the `code'
83 field. */
84
85 enum type_code
86 {
87 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
88 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
89 TYPE_CODE_PTR, /**< Pointer type */
90
91 /* * Array type with lower & upper bounds.
92
93 Regardless of the language, GDB represents multidimensional
94 array types the way C does: as arrays of arrays. So an
95 instance of a GDB array type T can always be seen as a series
96 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
97 memory.
98
99 Row-major languages like C lay out multi-dimensional arrays so
100 that incrementing the rightmost index in a subscripting
101 expression results in the smallest change in the address of the
102 element referred to. Column-major languages like Fortran lay
103 them out so that incrementing the leftmost index results in the
104 smallest change.
105
106 This means that, in column-major languages, working our way
107 from type to target type corresponds to working through indices
108 from right to left, not left to right. */
109 TYPE_CODE_ARRAY,
110
111 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
112 TYPE_CODE_UNION, /**< C union or Pascal variant part */
113 TYPE_CODE_ENUM, /**< Enumeration type */
114 TYPE_CODE_FLAGS, /**< Bit flags type */
115 TYPE_CODE_FUNC, /**< Function type */
116 TYPE_CODE_INT, /**< Integer type */
117
118 /* * Floating type. This is *NOT* a complex type. Beware, there
119 are parts of GDB which bogusly assume that TYPE_CODE_FLT can
120 mean complex. */
121 TYPE_CODE_FLT,
122
123 /* * Void type. The length field specifies the length (probably
124 always one) which is used in pointer arithmetic involving
125 pointers to this type, but actually dereferencing such a
126 pointer is invalid; a void type has no length and no actual
127 representation in memory or registers. A pointer to a void
128 type is a generic pointer. */
129 TYPE_CODE_VOID,
130
131 TYPE_CODE_SET, /**< Pascal sets */
132 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
133
134 /* * A string type which is like an array of character but prints
135 differently. It does not contain a length field as Pascal
136 strings (for many Pascals, anyway) do; if we want to deal with
137 such strings, we should use a new type code. */
138 TYPE_CODE_STRING,
139
140 /* * Unknown type. The length field is valid if we were able to
141 deduce that much about the type, or 0 if we don't even know
142 that. */
143 TYPE_CODE_ERROR,
144
145 /* C++ */
146 TYPE_CODE_METHOD, /**< Method type */
147
148 /* * Pointer-to-member-function type. This describes how to access a
149 particular member function of a class (possibly a virtual
150 member function). The representation may vary between different
151 C++ ABIs. */
152 TYPE_CODE_METHODPTR,
153
154 /* * Pointer-to-member type. This is the offset within a class to
155 some particular data member. The only currently supported
156 representation uses an unbiased offset, with -1 representing
157 NULL; this is used by the Itanium C++ ABI (used by GCC on all
158 platforms). */
159 TYPE_CODE_MEMBERPTR,
160
161 TYPE_CODE_REF, /**< C++ Reference types */
162
163 TYPE_CODE_CHAR, /**< *real* character type */
164
165 /* * Boolean type. 0 is false, 1 is true, and other values are
166 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
167 TYPE_CODE_BOOL,
168
169 /* Fortran */
170 TYPE_CODE_COMPLEX, /**< Complex float */
171
172 TYPE_CODE_TYPEDEF,
173
174 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
175
176 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
177
178 TYPE_CODE_MODULE, /**< Fortran module. */
179
180 /* * Internal function type. */
181 TYPE_CODE_INTERNAL_FUNCTION,
182
183 /* * Methods implemented in extension languages. */
184 TYPE_CODE_XMETHOD
185 };
186
187 /* * Some constants representing each bit field in the main_type. See
188 the bit-field-specific macros, below, for documentation of each
189 constant in this enum. These enum values are only used with
190 init_type. Note that the values are chosen not to conflict with
191 type_instance_flag_value; this lets init_type error-check its
192 input. */
193
194 enum type_flag_value
195 {
196 TYPE_FLAG_UNSIGNED = (1 << 9),
197 TYPE_FLAG_NOSIGN = (1 << 10),
198 TYPE_FLAG_STUB = (1 << 11),
199 TYPE_FLAG_TARGET_STUB = (1 << 12),
200 TYPE_FLAG_STATIC = (1 << 13),
201 TYPE_FLAG_PROTOTYPED = (1 << 14),
202 TYPE_FLAG_INCOMPLETE = (1 << 15),
203 TYPE_FLAG_VARARGS = (1 << 16),
204 TYPE_FLAG_VECTOR = (1 << 17),
205 TYPE_FLAG_FIXED_INSTANCE = (1 << 18),
206 TYPE_FLAG_STUB_SUPPORTED = (1 << 19),
207 TYPE_FLAG_GNU_IFUNC = (1 << 20),
208
209 /* * Used for error-checking. */
210 TYPE_FLAG_MIN = TYPE_FLAG_UNSIGNED
211 };
212
213 /* * Some bits for the type's instance_flags word. See the macros
214 below for documentation on each bit. Note that if you add a value
215 here, you must update the enum type_flag_value as well. */
216
217 enum type_instance_flag_value
218 {
219 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
220 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
221 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
222 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
223 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
224 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
225 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
226 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
227 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
228 };
229
230 /* * Unsigned integer type. If this is not set for a TYPE_CODE_INT,
231 the type is signed (unless TYPE_FLAG_NOSIGN (below) is set). */
232
233 #define TYPE_UNSIGNED(t) (TYPE_MAIN_TYPE (t)->flag_unsigned)
234
235 /* * No sign for this type. In C++, "char", "signed char", and
236 "unsigned char" are distinct types; so we need an extra flag to
237 indicate the absence of a sign! */
238
239 #define TYPE_NOSIGN(t) (TYPE_MAIN_TYPE (t)->flag_nosign)
240
241 /* * This appears in a type's flags word if it is a stub type (e.g.,
242 if someone referenced a type that wasn't defined in a source file
243 via (struct sir_not_appearing_in_this_film *)). */
244
245 #define TYPE_STUB(t) (TYPE_MAIN_TYPE (t)->flag_stub)
246
247 /* * The target type of this type is a stub type, and this type needs
248 to be updated if it gets un-stubbed in check_typedef. Used for
249 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
250 based on the TYPE_LENGTH of the target type. Also, set for
251 TYPE_CODE_TYPEDEF. */
252
253 #define TYPE_TARGET_STUB(t) (TYPE_MAIN_TYPE (t)->flag_target_stub)
254
255 /* * Static type. If this is set, the corresponding type had
256 a static modifier.
257 Note: This may be unnecessary, since static data members
258 are indicated by other means (bitpos == -1). */
259
260 #define TYPE_STATIC(t) (TYPE_MAIN_TYPE (t)->flag_static)
261
262 /* * This is a function type which appears to have a prototype. We
263 need this for function calls in order to tell us if it's necessary
264 to coerce the args, or to just do the standard conversions. This
265 is used with a short field. */
266
267 #define TYPE_PROTOTYPED(t) (TYPE_MAIN_TYPE (t)->flag_prototyped)
268
269 /* * This flag is used to indicate that processing for this type
270 is incomplete.
271
272 (Mostly intended for HP platforms, where class methods, for
273 instance, can be encountered before their classes in the debug
274 info; the incomplete type has to be marked so that the class and
275 the method can be assigned correct types.) */
276
277 #define TYPE_INCOMPLETE(t) (TYPE_MAIN_TYPE (t)->flag_incomplete)
278
279 /* * FIXME drow/2002-06-03: Only used for methods, but applies as well
280 to functions. */
281
282 #define TYPE_VARARGS(t) (TYPE_MAIN_TYPE (t)->flag_varargs)
283
284 /* * Identify a vector type. Gcc is handling this by adding an extra
285 attribute to the array type. We slurp that in as a new flag of a
286 type. This is used only in dwarf2read.c. */
287 #define TYPE_VECTOR(t) (TYPE_MAIN_TYPE (t)->flag_vector)
288
289 /* * The debugging formats (especially STABS) do not contain enough
290 information to represent all Ada types---especially those whose
291 size depends on dynamic quantities. Therefore, the GNAT Ada
292 compiler includes extra information in the form of additional type
293 definitions connected by naming conventions. This flag indicates
294 that the type is an ordinary (unencoded) GDB type that has been
295 created from the necessary run-time information, and does not need
296 further interpretation. Optionally marks ordinary, fixed-size GDB
297 type. */
298
299 #define TYPE_FIXED_INSTANCE(t) (TYPE_MAIN_TYPE (t)->flag_fixed_instance)
300
301 /* * This debug target supports TYPE_STUB(t). In the unsupported case
302 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
303 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
304 guessed the TYPE_STUB(t) value (see dwarfread.c). */
305
306 #define TYPE_STUB_SUPPORTED(t) (TYPE_MAIN_TYPE (t)->flag_stub_supported)
307
308 /* * Not textual. By default, GDB treats all single byte integers as
309 characters (or elements of strings) unless this flag is set. */
310
311 #define TYPE_NOTTEXT(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
312
313 /* * Used only for TYPE_CODE_FUNC where it specifies the real function
314 address is returned by this function call. TYPE_TARGET_TYPE
315 determines the final returned function type to be presented to
316 user. */
317
318 #define TYPE_GNU_IFUNC(t) (TYPE_MAIN_TYPE (t)->flag_gnu_ifunc)
319
320 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
321 the objfile retrieved as TYPE_OBJFILE. Otherweise, the type is
322 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
323
324 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
325 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
326 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
327
328 /* * True if this type was declared using the "class" keyword. This is
329 only valid for C++ structure and enum types. If false, a structure
330 was declared as a "struct"; if true it was declared "class". For
331 enum types, this is true when "enum class" or "enum struct" was
332 used to declare the type.. */
333
334 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
335
336 /* * True if this type is a "flag" enum. A flag enum is one where all
337 the values are pairwise disjoint when "and"ed together. This
338 affects how enum values are printed. */
339
340 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
341
342 /* * Constant type. If this is set, the corresponding type has a
343 const modifier. */
344
345 #define TYPE_CONST(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST)
346
347 /* * Volatile type. If this is set, the corresponding type has a
348 volatile modifier. */
349
350 #define TYPE_VOLATILE(t) \
351 (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE)
352
353 /* * Restrict type. If this is set, the corresponding type has a
354 restrict modifier. */
355
356 #define TYPE_RESTRICT(t) \
357 (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT)
358
359 /* * Atomic type. If this is set, the corresponding type has an
360 _Atomic modifier. */
361
362 #define TYPE_ATOMIC(t) \
363 (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC)
364
365 /* * Instruction-space delimited type. This is for Harvard architectures
366 which have separate instruction and data address spaces (and perhaps
367 others).
368
369 GDB usually defines a flat address space that is a superset of the
370 architecture's two (or more) address spaces, but this is an extension
371 of the architecture's model.
372
373 If TYPE_FLAG_INST is set, an object of the corresponding type
374 resides in instruction memory, even if its address (in the extended
375 flat address space) does not reflect this.
376
377 Similarly, if TYPE_FLAG_DATA is set, then an object of the
378 corresponding type resides in the data memory space, even if
379 this is not indicated by its (flat address space) address.
380
381 If neither flag is set, the default space for functions / methods
382 is instruction space, and for data objects is data memory. */
383
384 #define TYPE_CODE_SPACE(t) \
385 (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE)
386
387 #define TYPE_DATA_SPACE(t) \
388 (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE)
389
390 /* * Address class flags. Some environments provide for pointers
391 whose size is different from that of a normal pointer or address
392 types where the bits are interpreted differently than normal
393 addresses. The TYPE_FLAG_ADDRESS_CLASS_n flags may be used in
394 target specific ways to represent these different types of address
395 classes. */
396
397 #define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
398 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
399 #define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
400 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
401 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
402 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
403 #define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
404 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
405
406 enum dynamic_prop_kind
407 {
408 PROP_UNDEFINED, /* Not defined. */
409 PROP_CONST, /* Constant. */
410 PROP_ADDR_OFFSET, /* Address offset. */
411 PROP_LOCEXPR, /* Location expression. */
412 PROP_LOCLIST /* Location list. */
413 };
414
415 union dynamic_prop_data
416 {
417 /* Storage for constant property. */
418
419 LONGEST const_val;
420
421 /* Storage for dynamic property. */
422
423 void *baton;
424 };
425
426 /* * Used to store a dynamic property. */
427
428 struct dynamic_prop
429 {
430 /* Determine which field of the union dynamic_prop.data is used. */
431 enum dynamic_prop_kind kind;
432
433 /* Storage for dynamic or static value. */
434 union dynamic_prop_data data;
435 };
436
437 /* * Define a type's dynamic property node kind. */
438 enum dynamic_prop_node_kind
439 {
440 /* A property providing a type's data location.
441 Evaluating this field yields to the location of an object's data. */
442 DYN_PROP_DATA_LOCATION,
443 };
444
445 /* * List for dynamic type attributes. */
446 struct dynamic_prop_list
447 {
448 /* The kind of dynamic prop in this node. */
449 enum dynamic_prop_node_kind prop_kind;
450
451 /* The dynamic property itself. */
452 struct dynamic_prop prop;
453
454 /* A pointer to the next dynamic property. */
455 struct dynamic_prop_list *next;
456 };
457
458 /* * Determine which field of the union main_type.fields[x].loc is
459 used. */
460
461 enum field_loc_kind
462 {
463 FIELD_LOC_KIND_BITPOS, /**< bitpos */
464 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
465 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
466 FIELD_LOC_KIND_PHYSNAME, /**< physname */
467 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
468 };
469
470 /* * A discriminant to determine which field in the
471 main_type.type_specific union is being used, if any.
472
473 For types such as TYPE_CODE_FLT, the use of this
474 discriminant is really redundant, as we know from the type code
475 which field is going to be used. As such, it would be possible to
476 reduce the size of this enum in order to save a bit or two for
477 other fields of struct main_type. But, since we still have extra
478 room , and for the sake of clarity and consistency, we treat all fields
479 of the union the same way. */
480
481 enum type_specific_kind
482 {
483 TYPE_SPECIFIC_NONE,
484 TYPE_SPECIFIC_CPLUS_STUFF,
485 TYPE_SPECIFIC_GNAT_STUFF,
486 TYPE_SPECIFIC_FLOATFORMAT,
487 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
488 TYPE_SPECIFIC_FUNC,
489 TYPE_SPECIFIC_SELF_TYPE
490 };
491
492 union type_owner
493 {
494 struct objfile *objfile;
495 struct gdbarch *gdbarch;
496 };
497
498 union field_location
499 {
500 /* * Position of this field, counting in bits from start of
501 containing structure. For gdbarch_bits_big_endian=1
502 targets, it is the bit offset to the MSB. For
503 gdbarch_bits_big_endian=0 targets, it is the bit offset to
504 the LSB. */
505
506 int bitpos;
507
508 /* * Enum value. */
509 LONGEST enumval;
510
511 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
512 physaddr is the location (in the target) of the static
513 field. Otherwise, physname is the mangled label of the
514 static field. */
515
516 CORE_ADDR physaddr;
517 const char *physname;
518
519 /* * The field location can be computed by evaluating the
520 following DWARF block. Its DATA is allocated on
521 objfile_obstack - no CU load is needed to access it. */
522
523 struct dwarf2_locexpr_baton *dwarf_block;
524 };
525
526 struct field
527 {
528 union field_location loc;
529
530 /* * For a function or member type, this is 1 if the argument is
531 marked artificial. Artificial arguments should not be shown
532 to the user. For TYPE_CODE_RANGE it is set if the specific
533 bound is not defined. */
534
535 unsigned int artificial : 1;
536
537 /* * Discriminant for union field_location. */
538
539 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
540
541 /* * Size of this field, in bits, or zero if not packed.
542 If non-zero in an array type, indicates the element size in
543 bits (used only in Ada at the moment).
544 For an unpacked field, the field's type's length
545 says how many bytes the field occupies. */
546
547 unsigned int bitsize : 28;
548
549 /* * In a struct or union type, type of this field.
550 - In a function or member type, type of this argument.
551 - In an array type, the domain-type of the array. */
552
553 struct type *type;
554
555 /* * Name of field, value or argument.
556 NULL for range bounds, array domains, and member function
557 arguments. */
558
559 const char *name;
560 };
561
562 struct range_bounds
563 {
564 /* * Low bound of range. */
565
566 struct dynamic_prop low;
567
568 /* * High bound of range. */
569
570 struct dynamic_prop high;
571
572 /* True if HIGH range bound contains the number of elements in the
573 subrange. This affects how the final hight bound is computed. */
574
575 int flag_upper_bound_is_count : 1;
576
577 /* True if LOW or/and HIGH are resolved into a static bound from
578 a dynamic one. */
579
580 int flag_bound_evaluated : 1;
581 };
582
583 union type_specific
584 {
585 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
586 point to cplus_struct_default, a default static instance of a
587 struct cplus_struct_type. */
588
589 struct cplus_struct_type *cplus_stuff;
590
591 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
592 provides additional information. */
593
594 struct gnat_aux_type *gnat_stuff;
595
596 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to two
597 floatformat objects that describe the floating-point value
598 that resides within the type. The first is for big endian
599 targets and the second is for little endian targets. */
600
601 const struct floatformat **floatformat;
602
603 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
604
605 struct func_type *func_stuff;
606
607 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
608 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
609 is a member of. */
610
611 struct type *self_type;
612 };
613
614 /* * Main structure representing a type in GDB.
615
616 This structure is space-critical. Its layout has been tweaked to
617 reduce the space used. */
618
619 struct main_type
620 {
621 /* * Code for kind of type. */
622
623 ENUM_BITFIELD(type_code) code : 8;
624
625 /* * Flags about this type. These fields appear at this location
626 because they packs nicely here. See the TYPE_* macros for
627 documentation about these fields. */
628
629 unsigned int flag_unsigned : 1;
630 unsigned int flag_nosign : 1;
631 unsigned int flag_stub : 1;
632 unsigned int flag_target_stub : 1;
633 unsigned int flag_static : 1;
634 unsigned int flag_prototyped : 1;
635 unsigned int flag_incomplete : 1;
636 unsigned int flag_varargs : 1;
637 unsigned int flag_vector : 1;
638 unsigned int flag_stub_supported : 1;
639 unsigned int flag_gnu_ifunc : 1;
640 unsigned int flag_fixed_instance : 1;
641 unsigned int flag_objfile_owned : 1;
642
643 /* * True if this type was declared with "class" rather than
644 "struct". */
645
646 unsigned int flag_declared_class : 1;
647
648 /* * True if this is an enum type with disjoint values. This
649 affects how the enum is printed. */
650
651 unsigned int flag_flag_enum : 1;
652
653 /* * A discriminant telling us which field of the type_specific
654 union is being used for this type, if any. */
655
656 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
657
658 /* * Number of fields described for this type. This field appears
659 at this location because it packs nicely here. */
660
661 short nfields;
662
663 /* * Name of this type, or NULL if none.
664
665 This is used for printing only, except by poorly designed C++
666 code. For looking up a name, look for a symbol in the
667 VAR_DOMAIN. This is generally allocated in the objfile's
668 obstack. However coffread.c uses malloc. */
669
670 const char *name;
671
672 /* * Tag name for this type, or NULL if none. This means that the
673 name of the type consists of a keyword followed by the tag name.
674 Which keyword is determined by the type code ("struct" for
675 TYPE_CODE_STRUCT, etc.). As far as I know C/C++ are the only
676 languages with this feature.
677
678 This is used for printing only, except by poorly designed C++ code.
679 For looking up a name, look for a symbol in the STRUCT_DOMAIN.
680 One more legitimate use is that if TYPE_FLAG_STUB is set, this is
681 the name to use to look for definitions in other files. */
682
683 const char *tag_name;
684
685 /* * Every type is now associated with a particular objfile, and the
686 type is allocated on the objfile_obstack for that objfile. One
687 problem however, is that there are times when gdb allocates new
688 types while it is not in the process of reading symbols from a
689 particular objfile. Fortunately, these happen when the type
690 being created is a derived type of an existing type, such as in
691 lookup_pointer_type(). So we can just allocate the new type
692 using the same objfile as the existing type, but to do this we
693 need a backpointer to the objfile from the existing type. Yes
694 this is somewhat ugly, but without major overhaul of the internal
695 type system, it can't be avoided for now. */
696
697 union type_owner owner;
698
699 /* * For a pointer type, describes the type of object pointed to.
700 - For an array type, describes the type of the elements.
701 - For a function or method type, describes the type of the return value.
702 - For a range type, describes the type of the full range.
703 - For a complex type, describes the type of each coordinate.
704 - For a special record or union type encoding a dynamic-sized type
705 in GNAT, a memoized pointer to a corresponding static version of
706 the type.
707 - Unused otherwise. */
708
709 struct type *target_type;
710
711 /* * For structure and union types, a description of each field.
712 For set and pascal array types, there is one "field",
713 whose type is the domain type of the set or array.
714 For range types, there are two "fields",
715 the minimum and maximum values (both inclusive).
716 For enum types, each possible value is described by one "field".
717 For a function or method type, a "field" for each parameter.
718 For C++ classes, there is one field for each base class (if it is
719 a derived class) plus one field for each class data member. Member
720 functions are recorded elsewhere.
721
722 Using a pointer to a separate array of fields
723 allows all types to have the same size, which is useful
724 because we can allocate the space for a type before
725 we know what to put in it. */
726
727 union
728 {
729 struct field *fields;
730
731 /* * Union member used for range types. */
732
733 struct range_bounds *bounds;
734
735 } flds_bnds;
736
737 /* * Slot to point to additional language-specific fields of this
738 type. */
739
740 union type_specific type_specific;
741
742 /* * Contains all dynamic type properties. */
743 struct dynamic_prop_list *dyn_prop_list;
744 };
745
746 /* * A ``struct type'' describes a particular instance of a type, with
747 some particular qualification. */
748
749 struct type
750 {
751 /* * Type that is a pointer to this type.
752 NULL if no such pointer-to type is known yet.
753 The debugger may add the address of such a type
754 if it has to construct one later. */
755
756 struct type *pointer_type;
757
758 /* * C++: also need a reference type. */
759
760 struct type *reference_type;
761
762 /* * Variant chain. This points to a type that differs from this
763 one only in qualifiers and length. Currently, the possible
764 qualifiers are const, volatile, code-space, data-space, and
765 address class. The length may differ only when one of the
766 address class flags are set. The variants are linked in a
767 circular ring and share MAIN_TYPE. */
768
769 struct type *chain;
770
771 /* * Flags specific to this instance of the type, indicating where
772 on the ring we are.
773
774 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
775 binary or-ed with the target type, with a special case for
776 address class and space class. For example if this typedef does
777 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
778 instance flags are completely inherited from the target type. No
779 qualifiers can be cleared by the typedef. See also
780 check_typedef. */
781 int instance_flags;
782
783 /* * Length of storage for a value of this type. The value is the
784 expression in host bytes of what sizeof(type) would return. This
785 size includes padding. For example, an i386 extended-precision
786 floating point value really only occupies ten bytes, but most
787 ABI's declare its size to be 12 bytes, to preserve alignment.
788 A `struct type' representing such a floating-point type would
789 have a `length' value of 12, even though the last two bytes are
790 unused.
791
792 Since this field is expressed in host bytes, its value is appropriate
793 to pass to memcpy and such (it is assumed that GDB itself always runs
794 on an 8-bits addressable architecture). However, when using it for
795 target address arithmetic (e.g. adding it to a target address), the
796 type_length_units function should be used in order to get the length
797 expressed in target addressable memory units. */
798
799 unsigned int length;
800
801 /* * Core type, shared by a group of qualified types. */
802
803 struct main_type *main_type;
804 };
805
806 #define NULL_TYPE ((struct type *) 0)
807
808 struct fn_fieldlist
809 {
810
811 /* * The overloaded name.
812 This is generally allocated in the objfile's obstack.
813 However stabsread.c sometimes uses malloc. */
814
815 const char *name;
816
817 /* * The number of methods with this name. */
818
819 int length;
820
821 /* * The list of methods. */
822
823 struct fn_field *fn_fields;
824 };
825
826
827
828 struct fn_field
829 {
830 /* * If is_stub is clear, this is the mangled name which we can look
831 up to find the address of the method (FIXME: it would be cleaner
832 to have a pointer to the struct symbol here instead).
833
834 If is_stub is set, this is the portion of the mangled name which
835 specifies the arguments. For example, "ii", if there are two int
836 arguments, or "" if there are no arguments. See gdb_mangle_name
837 for the conversion from this format to the one used if is_stub is
838 clear. */
839
840 const char *physname;
841
842 /* * The function type for the method.
843
844 (This comment used to say "The return value of the method", but
845 that's wrong. The function type is expected here, i.e. something
846 with TYPE_CODE_METHOD, and *not* the return-value type). */
847
848 struct type *type;
849
850 /* * For virtual functions. First baseclass that defines this
851 virtual function. */
852
853 struct type *fcontext;
854
855 /* Attributes. */
856
857 unsigned int is_const:1;
858 unsigned int is_volatile:1;
859 unsigned int is_private:1;
860 unsigned int is_protected:1;
861 unsigned int is_public:1;
862 unsigned int is_abstract:1;
863 unsigned int is_static:1;
864 unsigned int is_final:1;
865 unsigned int is_synchronized:1;
866 unsigned int is_native:1;
867 unsigned int is_artificial:1;
868
869 /* * A stub method only has some fields valid (but they are enough
870 to reconstruct the rest of the fields). */
871
872 unsigned int is_stub:1;
873
874 /* * True if this function is a constructor, false otherwise. */
875
876 unsigned int is_constructor : 1;
877
878 /* * Unused. */
879
880 unsigned int dummy:3;
881
882 /* * Index into that baseclass's virtual function table, minus 2;
883 else if static: VOFFSET_STATIC; else: 0. */
884
885 unsigned int voffset:16;
886
887 #define VOFFSET_STATIC 1
888
889 };
890
891 struct typedef_field
892 {
893 /* * Unqualified name to be prefixed by owning class qualified
894 name. */
895
896 const char *name;
897
898 /* * Type this typedef named NAME represents. */
899
900 struct type *type;
901 };
902
903 /* * C++ language-specific information for TYPE_CODE_STRUCT and
904 TYPE_CODE_UNION nodes. */
905
906 struct cplus_struct_type
907 {
908 /* * Number of base classes this type derives from. The
909 baseclasses are stored in the first N_BASECLASSES fields
910 (i.e. the `fields' field of the struct type). The only fields
911 of struct field that are used are: type, name, loc.bitpos. */
912
913 short n_baseclasses;
914
915 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
916 All access to this field must be through TYPE_VPTR_FIELDNO as one
917 thing it does is check whether the field has been initialized.
918 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
919 which for portability reasons doesn't initialize this field.
920 TYPE_VPTR_FIELDNO returns -1 for this case.
921
922 If -1, we were unable to find the virtual function table pointer in
923 initial symbol reading, and get_vptr_fieldno should be called to find
924 it if possible. get_vptr_fieldno will update this field if possible.
925 Otherwise the value is left at -1.
926
927 Unused if this type does not have virtual functions. */
928
929 short vptr_fieldno;
930
931 /* * Number of methods with unique names. All overloaded methods
932 with the same name count only once. */
933
934 short nfn_fields;
935
936 /* * Number of template arguments. */
937
938 unsigned short n_template_arguments;
939
940 /* * One if this struct is a dynamic class, as defined by the
941 Itanium C++ ABI: if it requires a virtual table pointer,
942 because it or any of its base classes have one or more virtual
943 member functions or virtual base classes. Minus one if not
944 dynamic. Zero if not yet computed. */
945
946 int is_dynamic : 2;
947
948 /* * Non-zero if this type came from a Java CU. */
949
950 unsigned int is_java : 1;
951
952 /* * The base class which defined the virtual function table pointer. */
953
954 struct type *vptr_basetype;
955
956 /* * For derived classes, the number of base classes is given by
957 n_baseclasses and virtual_field_bits is a bit vector containing
958 one bit per base class. If the base class is virtual, the
959 corresponding bit will be set.
960 I.E, given:
961
962 class A{};
963 class B{};
964 class C : public B, public virtual A {};
965
966 B is a baseclass of C; A is a virtual baseclass for C.
967 This is a C++ 2.0 language feature. */
968
969 B_TYPE *virtual_field_bits;
970
971 /* * For classes with private fields, the number of fields is
972 given by nfields and private_field_bits is a bit vector
973 containing one bit per field.
974
975 If the field is private, the corresponding bit will be set. */
976
977 B_TYPE *private_field_bits;
978
979 /* * For classes with protected fields, the number of fields is
980 given by nfields and protected_field_bits is a bit vector
981 containing one bit per field.
982
983 If the field is private, the corresponding bit will be set. */
984
985 B_TYPE *protected_field_bits;
986
987 /* * For classes with fields to be ignored, either this is
988 optimized out or this field has length 0. */
989
990 B_TYPE *ignore_field_bits;
991
992 /* * For classes, structures, and unions, a description of each
993 field, which consists of an overloaded name, followed by the
994 types of arguments that the method expects, and then the name
995 after it has been renamed to make it distinct.
996
997 fn_fieldlists points to an array of nfn_fields of these. */
998
999 struct fn_fieldlist *fn_fieldlists;
1000
1001 /* * typedefs defined inside this class. typedef_field points to
1002 an array of typedef_field_count elements. */
1003
1004 struct typedef_field *typedef_field;
1005
1006 unsigned typedef_field_count;
1007
1008 /* * The template arguments. This is an array with
1009 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1010 classes. */
1011
1012 struct symbol **template_arguments;
1013 };
1014
1015 /* * Struct used to store conversion rankings. */
1016
1017 struct rank
1018 {
1019 short rank;
1020
1021 /* * When two conversions are of the same type and therefore have
1022 the same rank, subrank is used to differentiate the two.
1023
1024 Eg: Two derived-class-pointer to base-class-pointer conversions
1025 would both have base pointer conversion rank, but the
1026 conversion with the shorter distance to the ancestor is
1027 preferable. 'subrank' would be used to reflect that. */
1028
1029 short subrank;
1030 };
1031
1032 /* * Struct used for ranking a function for overload resolution. */
1033
1034 struct badness_vector
1035 {
1036 int length;
1037 struct rank *rank;
1038 };
1039
1040 /* * GNAT Ada-specific information for various Ada types. */
1041
1042 struct gnat_aux_type
1043 {
1044 /* * Parallel type used to encode information about dynamic types
1045 used in Ada (such as variant records, variable-size array,
1046 etc). */
1047 struct type* descriptive_type;
1048 };
1049
1050 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1051
1052 struct func_type
1053 {
1054 /* * The calling convention for targets supporting multiple ABIs.
1055 Right now this is only fetched from the Dwarf-2
1056 DW_AT_calling_convention attribute. The value is one of the
1057 DW_CC enum dwarf_calling_convention constants. */
1058
1059 unsigned calling_convention : 8;
1060
1061 /* * Whether this function normally returns to its caller. It is
1062 set from the DW_AT_noreturn attribute if set on the
1063 DW_TAG_subprogram. */
1064
1065 unsigned int is_noreturn : 1;
1066
1067 /* * Only those DW_TAG_GNU_call_site's in this function that have
1068 DW_AT_GNU_tail_call set are linked in this list. Function
1069 without its tail call list complete
1070 (DW_AT_GNU_all_tail_call_sites or its superset
1071 DW_AT_GNU_all_call_sites) has TAIL_CALL_LIST NULL, even if some
1072 DW_TAG_GNU_call_site's exist in such function. */
1073
1074 struct call_site *tail_call_list;
1075
1076 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1077 contains the method. */
1078
1079 struct type *self_type;
1080 };
1081
1082 /* struct call_site_parameter can be referenced in callees by several ways. */
1083
1084 enum call_site_parameter_kind
1085 {
1086 /* * Use field call_site_parameter.u.dwarf_reg. */
1087 CALL_SITE_PARAMETER_DWARF_REG,
1088
1089 /* * Use field call_site_parameter.u.fb_offset. */
1090 CALL_SITE_PARAMETER_FB_OFFSET,
1091
1092 /* * Use field call_site_parameter.u.param_offset. */
1093 CALL_SITE_PARAMETER_PARAM_OFFSET
1094 };
1095
1096 struct call_site_target
1097 {
1098 union field_location loc;
1099
1100 /* * Discriminant for union field_location. */
1101
1102 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1103 };
1104
1105 union call_site_parameter_u
1106 {
1107 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1108 as DWARF register number, for register passed
1109 parameters. */
1110
1111 int dwarf_reg;
1112
1113 /* * Offset from the callee's frame base, for stack passed
1114 parameters. This equals offset from the caller's stack
1115 pointer. */
1116
1117 CORE_ADDR fb_offset;
1118
1119 /* * Offset relative to the start of this PER_CU to
1120 DW_TAG_formal_parameter which is referenced by both
1121 caller and the callee. */
1122
1123 cu_offset param_offset;
1124 };
1125
1126 struct call_site_parameter
1127 {
1128 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1129
1130 union call_site_parameter_u u;
1131
1132 /* * DW_TAG_formal_parameter's DW_AT_GNU_call_site_value. It
1133 is never NULL. */
1134
1135 const gdb_byte *value;
1136 size_t value_size;
1137
1138 /* * DW_TAG_formal_parameter's DW_AT_GNU_call_site_data_value.
1139 It may be NULL if not provided by DWARF. */
1140
1141 const gdb_byte *data_value;
1142 size_t data_value_size;
1143 };
1144
1145 /* * A place where a function gets called from, represented by
1146 DW_TAG_GNU_call_site. It can be looked up from
1147 symtab->call_site_htab. */
1148
1149 struct call_site
1150 {
1151 /* * Address of the first instruction after this call. It must be
1152 the first field as we overload core_addr_hash and core_addr_eq
1153 for it. */
1154
1155 CORE_ADDR pc;
1156
1157 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1158
1159 struct call_site *tail_call_next;
1160
1161 /* * Describe DW_AT_GNU_call_site_target. Missing attribute uses
1162 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1163
1164 struct call_site_target target;
1165
1166 /* * Size of the PARAMETER array. */
1167
1168 unsigned parameter_count;
1169
1170 /* * CU of the function where the call is located. It gets used
1171 for DWARF blocks execution in the parameter array below. */
1172
1173 struct dwarf2_per_cu_data *per_cu;
1174
1175 /* * Describe DW_TAG_GNU_call_site's DW_TAG_formal_parameter. */
1176
1177 struct call_site_parameter parameter[1];
1178 };
1179
1180 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1181 static structure. */
1182
1183 extern const struct cplus_struct_type cplus_struct_default;
1184
1185 extern void allocate_cplus_struct_type (struct type *);
1186
1187 #define INIT_CPLUS_SPECIFIC(type) \
1188 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1189 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1190 &cplus_struct_default)
1191
1192 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1193
1194 #define HAVE_CPLUS_STRUCT(type) \
1195 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1196 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1197
1198 extern const struct gnat_aux_type gnat_aux_default;
1199
1200 extern void allocate_gnat_aux_type (struct type *);
1201
1202 #define INIT_GNAT_SPECIFIC(type) \
1203 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1204 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1205 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1206 /* * A macro that returns non-zero if the type-specific data should be
1207 read as "gnat-stuff". */
1208 #define HAVE_GNAT_AUX_INFO(type) \
1209 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1210
1211 #define INIT_FUNC_SPECIFIC(type) \
1212 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1213 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1214 TYPE_ZALLOC (type, \
1215 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1216
1217 #define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1218 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1219 #define TYPE_NAME(thistype) TYPE_MAIN_TYPE(thistype)->name
1220 #define TYPE_TAG_NAME(type) TYPE_MAIN_TYPE(type)->tag_name
1221 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1222 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1223 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1224 #define TYPE_CHAIN(thistype) (thistype)->chain
1225 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1226 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1227 so you only have to call check_typedef once. Since allocate_value
1228 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1229 #define TYPE_LENGTH(thistype) (thistype)->length
1230 /* * Note that TYPE_CODE can be TYPE_CODE_TYPEDEF, so if you want the real
1231 type, you need to do TYPE_CODE (check_type (this_type)). */
1232 #define TYPE_CODE(thistype) TYPE_MAIN_TYPE(thistype)->code
1233 #define TYPE_NFIELDS(thistype) TYPE_MAIN_TYPE(thistype)->nfields
1234 #define TYPE_FIELDS(thistype) TYPE_MAIN_TYPE(thistype)->flds_bnds.fields
1235
1236 #define TYPE_INDEX_TYPE(type) TYPE_FIELD_TYPE (type, 0)
1237 #define TYPE_RANGE_DATA(thistype) TYPE_MAIN_TYPE(thistype)->flds_bnds.bounds
1238 #define TYPE_LOW_BOUND(range_type) \
1239 TYPE_RANGE_DATA(range_type)->low.data.const_val
1240 #define TYPE_HIGH_BOUND(range_type) \
1241 TYPE_RANGE_DATA(range_type)->high.data.const_val
1242 #define TYPE_LOW_BOUND_UNDEFINED(range_type) \
1243 (TYPE_RANGE_DATA(range_type)->low.kind == PROP_UNDEFINED)
1244 #define TYPE_HIGH_BOUND_UNDEFINED(range_type) \
1245 (TYPE_RANGE_DATA(range_type)->high.kind == PROP_UNDEFINED)
1246 #define TYPE_HIGH_BOUND_KIND(range_type) \
1247 TYPE_RANGE_DATA(range_type)->high.kind
1248 #define TYPE_LOW_BOUND_KIND(range_type) \
1249 TYPE_RANGE_DATA(range_type)->low.kind
1250
1251 /* Property accessors for the type data location. */
1252 #define TYPE_DATA_LOCATION(thistype) \
1253 get_dyn_prop (DYN_PROP_DATA_LOCATION, thistype)
1254 #define TYPE_DATA_LOCATION_BATON(thistype) \
1255 TYPE_DATA_LOCATION (thistype)->data.baton
1256 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1257 TYPE_DATA_LOCATION (thistype)->data.const_val
1258 #define TYPE_DATA_LOCATION_KIND(thistype) \
1259 TYPE_DATA_LOCATION (thistype)->kind
1260
1261 /* Attribute accessors for dynamic properties. */
1262 #define TYPE_DYN_PROP_LIST(thistype) \
1263 TYPE_MAIN_TYPE(thistype)->dyn_prop_list
1264 #define TYPE_DYN_PROP_BATON(dynprop) \
1265 dynprop->data.baton
1266 #define TYPE_DYN_PROP_ADDR(dynprop) \
1267 dynprop->data.const_val
1268 #define TYPE_DYN_PROP_KIND(dynprop) \
1269 dynprop->kind
1270
1271
1272 /* Moto-specific stuff for FORTRAN arrays. */
1273
1274 #define TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED(arraytype) \
1275 TYPE_HIGH_BOUND_UNDEFINED(TYPE_INDEX_TYPE(arraytype))
1276 #define TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED(arraytype) \
1277 TYPE_LOW_BOUND_UNDEFINED(TYPE_INDEX_TYPE(arraytype))
1278
1279 #define TYPE_ARRAY_UPPER_BOUND_VALUE(arraytype) \
1280 (TYPE_HIGH_BOUND(TYPE_INDEX_TYPE((arraytype))))
1281
1282 #define TYPE_ARRAY_LOWER_BOUND_VALUE(arraytype) \
1283 (TYPE_LOW_BOUND(TYPE_INDEX_TYPE((arraytype))))
1284
1285 /* C++ */
1286
1287 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1288 /* Do not call this, use TYPE_SELF_TYPE. */
1289 extern struct type *internal_type_self_type (struct type *);
1290 extern void set_type_self_type (struct type *, struct type *);
1291
1292 extern int internal_type_vptr_fieldno (struct type *);
1293 extern void set_type_vptr_fieldno (struct type *, int);
1294 extern struct type *internal_type_vptr_basetype (struct type *);
1295 extern void set_type_vptr_basetype (struct type *, struct type *);
1296 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1297 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1298
1299 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1300 #define TYPE_SPECIFIC_FIELD(thistype) \
1301 TYPE_MAIN_TYPE(thistype)->type_specific_field
1302 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1303 where we're trying to print an Ada array using the C language.
1304 In that case, there is no "cplus_stuff", but the C language assumes
1305 that there is. What we do, in that case, is pretend that there is
1306 an implicit one which is the default cplus stuff. */
1307 #define TYPE_CPLUS_SPECIFIC(thistype) \
1308 (!HAVE_CPLUS_STRUCT(thistype) \
1309 ? (struct cplus_struct_type*)&cplus_struct_default \
1310 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1311 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1312 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1313 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1314 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1315 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1316 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1317 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1318 #define TYPE_BASECLASS(thistype,index) TYPE_FIELD_TYPE(thistype, index)
1319 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1320 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1321 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1322 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1323 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1324 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1325 #define TYPE_CPLUS_REALLY_JAVA(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_java
1326
1327 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1328 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1329 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1330
1331 #define FIELD_TYPE(thisfld) ((thisfld).type)
1332 #define FIELD_NAME(thisfld) ((thisfld).name)
1333 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1334 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1335 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1336 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1337 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1338 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1339 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1340 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1341 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1342 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1343 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1344 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1345 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1346 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1347 #define SET_FIELD_PHYSNAME(thisfld, name) \
1348 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1349 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1350 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1351 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1352 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1353 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1354 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1355 FIELD_DWARF_BLOCK (thisfld) = (addr))
1356 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1357 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1358
1359 #define TYPE_FIELD(thistype, n) TYPE_MAIN_TYPE(thistype)->flds_bnds.fields[n]
1360 #define TYPE_FIELD_TYPE(thistype, n) FIELD_TYPE(TYPE_FIELD(thistype, n))
1361 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME(TYPE_FIELD(thistype, n))
1362 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND (TYPE_FIELD (thistype, n))
1363 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS (TYPE_FIELD (thistype, n))
1364 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL (TYPE_FIELD (thistype, n))
1365 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME (TYPE_FIELD (thistype, n))
1366 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR (TYPE_FIELD (thistype, n))
1367 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK (TYPE_FIELD (thistype, n))
1368 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL(TYPE_FIELD(thistype,n))
1369 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE(TYPE_FIELD(thistype,n))
1370 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE(TYPE_FIELD(thistype,n))!=0)
1371
1372 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1373 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1374 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1375 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1376 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1377 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1378 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1379 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1380 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1381 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1382 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1383 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1384 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1385 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1386 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1387 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1388 #define TYPE_FIELD_PRIVATE(thistype, n) \
1389 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1390 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1391 #define TYPE_FIELD_PROTECTED(thistype, n) \
1392 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1393 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1394 #define TYPE_FIELD_IGNORE(thistype, n) \
1395 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1396 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1397 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1398 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1399 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1400
1401 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1402 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1403 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1404 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1405 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1406
1407 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1408 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1409 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1410 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1411 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1412 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1413
1414 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1415 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1416 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1417 #define TYPE_FN_FIELD_ARGS(thisfn, n) TYPE_FIELDS ((thisfn)[n].type)
1418 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1419 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1420 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1421 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1422 #define TYPE_FN_FIELD_PUBLIC(thisfn, n) ((thisfn)[n].is_public)
1423 #define TYPE_FN_FIELD_STATIC(thisfn, n) ((thisfn)[n].is_static)
1424 #define TYPE_FN_FIELD_FINAL(thisfn, n) ((thisfn)[n].is_final)
1425 #define TYPE_FN_FIELD_SYNCHRONIZED(thisfn, n) ((thisfn)[n].is_synchronized)
1426 #define TYPE_FN_FIELD_NATIVE(thisfn, n) ((thisfn)[n].is_native)
1427 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1428 #define TYPE_FN_FIELD_ABSTRACT(thisfn, n) ((thisfn)[n].is_abstract)
1429 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1430 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1431 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1432 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1433 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1434 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1435
1436 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1437 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1438 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1439 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1440 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1441 TYPE_TYPEDEF_FIELD (thistype, n).name
1442 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1443 TYPE_TYPEDEF_FIELD (thistype, n).type
1444 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1445 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1446
1447 #define TYPE_IS_OPAQUE(thistype) \
1448 (((TYPE_CODE (thistype) == TYPE_CODE_STRUCT) \
1449 || (TYPE_CODE (thistype) == TYPE_CODE_UNION)) \
1450 && (TYPE_NFIELDS (thistype) == 0) \
1451 && (!HAVE_CPLUS_STRUCT (thistype) \
1452 || TYPE_NFN_FIELDS (thistype) == 0) \
1453 && (TYPE_STUB (thistype) || !TYPE_STUB_SUPPORTED (thistype)))
1454
1455 /* * A helper macro that returns the name of a type or "unnamed type"
1456 if the type has no name. */
1457
1458 #define TYPE_SAFE_NAME(type) \
1459 (TYPE_NAME (type) ? TYPE_NAME (type) : _("<unnamed type>"))
1460
1461 /* * A helper macro that returns the name of an error type. If the
1462 type has a name, it is used; otherwise, a default is used. */
1463
1464 #define TYPE_ERROR_NAME(type) \
1465 (TYPE_NAME (type) ? TYPE_NAME (type) : _("<error type>"))
1466
1467 struct builtin_type
1468 {
1469 /* Integral types. */
1470
1471 /* Implicit size/sign (based on the architecture's ABI). */
1472 struct type *builtin_void;
1473 struct type *builtin_char;
1474 struct type *builtin_short;
1475 struct type *builtin_int;
1476 struct type *builtin_long;
1477 struct type *builtin_signed_char;
1478 struct type *builtin_unsigned_char;
1479 struct type *builtin_unsigned_short;
1480 struct type *builtin_unsigned_int;
1481 struct type *builtin_unsigned_long;
1482 struct type *builtin_float;
1483 struct type *builtin_double;
1484 struct type *builtin_long_double;
1485 struct type *builtin_complex;
1486 struct type *builtin_double_complex;
1487 struct type *builtin_string;
1488 struct type *builtin_bool;
1489 struct type *builtin_long_long;
1490 struct type *builtin_unsigned_long_long;
1491 struct type *builtin_decfloat;
1492 struct type *builtin_decdouble;
1493 struct type *builtin_declong;
1494
1495 /* "True" character types.
1496 We use these for the '/c' print format, because c_char is just a
1497 one-byte integral type, which languages less laid back than C
1498 will print as ... well, a one-byte integral type. */
1499 struct type *builtin_true_char;
1500 struct type *builtin_true_unsigned_char;
1501
1502 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1503 is for when an architecture needs to describe a register that has
1504 no size. */
1505 struct type *builtin_int0;
1506 struct type *builtin_int8;
1507 struct type *builtin_uint8;
1508 struct type *builtin_int16;
1509 struct type *builtin_uint16;
1510 struct type *builtin_int32;
1511 struct type *builtin_uint32;
1512 struct type *builtin_int64;
1513 struct type *builtin_uint64;
1514 struct type *builtin_int128;
1515 struct type *builtin_uint128;
1516
1517 /* Wide character types. */
1518 struct type *builtin_char16;
1519 struct type *builtin_char32;
1520
1521 /* Pointer types. */
1522
1523 /* * `pointer to data' type. Some target platforms use an implicitly
1524 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1525 struct type *builtin_data_ptr;
1526
1527 /* * `pointer to function (returning void)' type. Harvard
1528 architectures mean that ABI function and code pointers are not
1529 interconvertible. Similarly, since ANSI, C standards have
1530 explicitly said that pointers to functions and pointers to data
1531 are not interconvertible --- that is, you can't cast a function
1532 pointer to void * and back, and expect to get the same value.
1533 However, all function pointer types are interconvertible, so void
1534 (*) () can server as a generic function pointer. */
1535
1536 struct type *builtin_func_ptr;
1537
1538 /* * `function returning pointer to function (returning void)' type.
1539 The final void return type is not significant for it. */
1540
1541 struct type *builtin_func_func;
1542
1543 /* Special-purpose types. */
1544
1545 /* * This type is used to represent a GDB internal function. */
1546
1547 struct type *internal_fn;
1548
1549 /* * This type is used to represent an xmethod. */
1550 struct type *xmethod;
1551 };
1552
1553 /* * Return the type table for the specified architecture. */
1554
1555 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
1556
1557 /* * Per-objfile types used by symbol readers. */
1558
1559 struct objfile_type
1560 {
1561 /* Basic types based on the objfile architecture. */
1562 struct type *builtin_void;
1563 struct type *builtin_char;
1564 struct type *builtin_short;
1565 struct type *builtin_int;
1566 struct type *builtin_long;
1567 struct type *builtin_long_long;
1568 struct type *builtin_signed_char;
1569 struct type *builtin_unsigned_char;
1570 struct type *builtin_unsigned_short;
1571 struct type *builtin_unsigned_int;
1572 struct type *builtin_unsigned_long;
1573 struct type *builtin_unsigned_long_long;
1574 struct type *builtin_float;
1575 struct type *builtin_double;
1576 struct type *builtin_long_double;
1577
1578 /* * This type is used to represent symbol addresses. */
1579 struct type *builtin_core_addr;
1580
1581 /* * This type represents a type that was unrecognized in symbol
1582 read-in. */
1583 struct type *builtin_error;
1584
1585 /* * Types used for symbols with no debug information. */
1586 struct type *nodebug_text_symbol;
1587 struct type *nodebug_text_gnu_ifunc_symbol;
1588 struct type *nodebug_got_plt_symbol;
1589 struct type *nodebug_data_symbol;
1590 struct type *nodebug_unknown_symbol;
1591 struct type *nodebug_tls_symbol;
1592 };
1593
1594 /* * Return the type table for the specified objfile. */
1595
1596 extern const struct objfile_type *objfile_type (struct objfile *objfile);
1597
1598 /* Explicit floating-point formats. See "floatformat.h". */
1599 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
1600 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
1601 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
1602 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
1603 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
1604 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
1605 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
1606 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
1607 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
1608 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
1609 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
1610 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
1611
1612
1613 /* * Allocate space for storing data associated with a particular
1614 type. We ensure that the space is allocated using the same
1615 mechanism that was used to allocate the space for the type
1616 structure itself. I.e. if the type is on an objfile's
1617 objfile_obstack, then the space for data associated with that type
1618 will also be allocated on the objfile_obstack. If the type is not
1619 associated with any particular objfile (such as builtin types),
1620 then the data space will be allocated with xmalloc, the same as for
1621 the type structure. */
1622
1623 #define TYPE_ALLOC(t,size) \
1624 (TYPE_OBJFILE_OWNED (t) \
1625 ? obstack_alloc (&TYPE_OBJFILE (t) -> objfile_obstack, size) \
1626 : xmalloc (size))
1627
1628 #define TYPE_ZALLOC(t,size) \
1629 (TYPE_OBJFILE_OWNED (t) \
1630 ? memset (obstack_alloc (&TYPE_OBJFILE (t)->objfile_obstack, size), \
1631 0, size) \
1632 : xzalloc (size))
1633
1634 /* Use alloc_type to allocate a type owned by an objfile. Use
1635 alloc_type_arch to allocate a type owned by an architecture. Use
1636 alloc_type_copy to allocate a type with the same owner as a
1637 pre-existing template type, no matter whether objfile or
1638 gdbarch. */
1639 extern struct type *alloc_type (struct objfile *);
1640 extern struct type *alloc_type_arch (struct gdbarch *);
1641 extern struct type *alloc_type_copy (const struct type *);
1642
1643 /* * Return the type's architecture. For types owned by an
1644 architecture, that architecture is returned. For types owned by an
1645 objfile, that objfile's architecture is returned. */
1646
1647 extern struct gdbarch *get_type_arch (const struct type *);
1648
1649 /* * This returns the target type (or NULL) of TYPE, also skipping
1650 past typedefs. */
1651
1652 extern struct type *get_target_type (struct type *type);
1653
1654 /* Return the equivalent of TYPE_LENGTH, but in number of target
1655 addressable memory units of the associated gdbarch instead of bytes. */
1656
1657 extern unsigned int type_length_units (struct type *type);
1658
1659 /* * Helper function to construct objfile-owned types. */
1660
1661 extern struct type *init_type (enum type_code, int, int, const char *,
1662 struct objfile *);
1663
1664 /* Helper functions to construct architecture-owned types. */
1665 extern struct type *arch_type (struct gdbarch *, enum type_code, int, char *);
1666 extern struct type *arch_integer_type (struct gdbarch *, int, int, char *);
1667 extern struct type *arch_character_type (struct gdbarch *, int, int, char *);
1668 extern struct type *arch_boolean_type (struct gdbarch *, int, int, char *);
1669 extern struct type *arch_float_type (struct gdbarch *, int, char *,
1670 const struct floatformat **);
1671 extern struct type *arch_complex_type (struct gdbarch *, char *,
1672 struct type *);
1673
1674 /* Helper functions to construct a struct or record type. An
1675 initially empty type is created using arch_composite_type().
1676 Fields are then added using append_composite_type_field*(). A union
1677 type has its size set to the largest field. A struct type has each
1678 field packed against the previous. */
1679
1680 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
1681 char *name, enum type_code code);
1682 extern void append_composite_type_field (struct type *t, char *name,
1683 struct type *field);
1684 extern void append_composite_type_field_aligned (struct type *t,
1685 char *name,
1686 struct type *field,
1687 int alignment);
1688 struct field *append_composite_type_field_raw (struct type *t, char *name,
1689 struct type *field);
1690
1691 /* Helper functions to construct a bit flags type. An initially empty
1692 type is created using arch_flag_type(). Flags are then added using
1693 append_flag_type_flag(). */
1694 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
1695 char *name, int length);
1696 extern void append_flags_type_flag (struct type *type, int bitpos, char *name);
1697
1698 extern void make_vector_type (struct type *array_type);
1699 extern struct type *init_vector_type (struct type *elt_type, int n);
1700
1701 extern struct type *lookup_reference_type (struct type *);
1702
1703 extern struct type *make_reference_type (struct type *, struct type **);
1704
1705 extern struct type *make_cv_type (int, int, struct type *, struct type **);
1706
1707 extern struct type *make_restrict_type (struct type *);
1708
1709 extern struct type *make_unqualified_type (struct type *);
1710
1711 extern struct type *make_atomic_type (struct type *);
1712
1713 extern void replace_type (struct type *, struct type *);
1714
1715 extern int address_space_name_to_int (struct gdbarch *, char *);
1716
1717 extern const char *address_space_int_to_name (struct gdbarch *, int);
1718
1719 extern struct type *make_type_with_address_space (struct type *type,
1720 int space_identifier);
1721
1722 extern struct type *lookup_memberptr_type (struct type *, struct type *);
1723
1724 extern struct type *lookup_methodptr_type (struct type *);
1725
1726 extern void smash_to_method_type (struct type *type, struct type *self_type,
1727 struct type *to_type, struct field *args,
1728 int nargs, int varargs);
1729
1730 extern void smash_to_memberptr_type (struct type *, struct type *,
1731 struct type *);
1732
1733 extern void smash_to_methodptr_type (struct type *, struct type *);
1734
1735 extern struct type *allocate_stub_method (struct type *);
1736
1737 extern const char *type_name_no_tag (const struct type *);
1738
1739 extern const char *type_name_no_tag_or_error (struct type *type);
1740
1741 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
1742
1743 extern struct type *make_pointer_type (struct type *, struct type **);
1744
1745 extern struct type *lookup_pointer_type (struct type *);
1746
1747 extern struct type *make_function_type (struct type *, struct type **);
1748
1749 extern struct type *lookup_function_type (struct type *);
1750
1751 extern struct type *lookup_function_type_with_arguments (struct type *,
1752 int,
1753 struct type **);
1754
1755 extern struct type *create_static_range_type (struct type *, struct type *,
1756 LONGEST, LONGEST);
1757
1758
1759 extern struct type *create_array_type_with_stride
1760 (struct type *, struct type *, struct type *, unsigned int);
1761
1762 extern struct type *create_range_type (struct type *, struct type *,
1763 const struct dynamic_prop *,
1764 const struct dynamic_prop *);
1765
1766 extern struct type *create_array_type (struct type *, struct type *,
1767 struct type *);
1768
1769 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
1770
1771 extern struct type *create_string_type (struct type *, struct type *,
1772 struct type *);
1773 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
1774
1775 extern struct type *create_set_type (struct type *, struct type *);
1776
1777 extern struct type *lookup_unsigned_typename (const struct language_defn *,
1778 struct gdbarch *, const char *);
1779
1780 extern struct type *lookup_signed_typename (const struct language_defn *,
1781 struct gdbarch *, const char *);
1782
1783 extern void get_unsigned_type_max (struct type *, ULONGEST *);
1784
1785 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
1786
1787 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
1788 ADDR specifies the location of the variable the type is bound to.
1789 If TYPE has no dynamic properties return TYPE; otherwise a new type with
1790 static properties is returned. */
1791 extern struct type *resolve_dynamic_type (struct type *type,
1792 const gdb_byte *valaddr,
1793 CORE_ADDR addr);
1794
1795 /* * Predicate if the type has dynamic values, which are not resolved yet. */
1796 extern int is_dynamic_type (struct type *type);
1797
1798 /* * Return the dynamic property of the requested KIND from TYPE's
1799 list of dynamic properties. */
1800 extern struct dynamic_prop *get_dyn_prop
1801 (enum dynamic_prop_node_kind kind, const struct type *type);
1802
1803 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1804 property to the given TYPE.
1805
1806 This function assumes that TYPE is objfile-owned, and that OBJFILE
1807 is the TYPE's objfile. */
1808 extern void add_dyn_prop
1809 (enum dynamic_prop_node_kind kind, struct dynamic_prop prop,
1810 struct type *type, struct objfile *objfile);
1811
1812 extern struct type *check_typedef (struct type *);
1813
1814 extern void check_stub_method_group (struct type *, int);
1815
1816 extern char *gdb_mangle_name (struct type *, int, int);
1817
1818 extern struct type *lookup_typename (const struct language_defn *,
1819 struct gdbarch *, const char *,
1820 const struct block *, int);
1821
1822 extern struct type *lookup_template_type (char *, struct type *,
1823 const struct block *);
1824
1825 extern int get_vptr_fieldno (struct type *, struct type **);
1826
1827 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
1828
1829 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
1830 LONGEST *high_bound);
1831
1832 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
1833
1834 extern int class_types_same_p (const struct type *, const struct type *);
1835
1836 extern int is_ancestor (struct type *, struct type *);
1837
1838 extern int is_public_ancestor (struct type *, struct type *);
1839
1840 extern int is_unique_ancestor (struct type *, struct value *);
1841
1842 /* Overload resolution */
1843
1844 #define LENGTH_MATCH(bv) ((bv)->rank[0])
1845
1846 /* * Badness if parameter list length doesn't match arg list length. */
1847 extern const struct rank LENGTH_MISMATCH_BADNESS;
1848
1849 /* * Dummy badness value for nonexistent parameter positions. */
1850 extern const struct rank TOO_FEW_PARAMS_BADNESS;
1851 /* * Badness if no conversion among types. */
1852 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
1853
1854 /* * Badness of an exact match. */
1855 extern const struct rank EXACT_MATCH_BADNESS;
1856
1857 /* * Badness of integral promotion. */
1858 extern const struct rank INTEGER_PROMOTION_BADNESS;
1859 /* * Badness of floating promotion. */
1860 extern const struct rank FLOAT_PROMOTION_BADNESS;
1861 /* * Badness of converting a derived class pointer
1862 to a base class pointer. */
1863 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
1864 /* * Badness of integral conversion. */
1865 extern const struct rank INTEGER_CONVERSION_BADNESS;
1866 /* * Badness of floating conversion. */
1867 extern const struct rank FLOAT_CONVERSION_BADNESS;
1868 /* * Badness of integer<->floating conversions. */
1869 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
1870 /* * Badness of conversion of pointer to void pointer. */
1871 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
1872 /* * Badness of conversion to boolean. */
1873 extern const struct rank BOOL_CONVERSION_BADNESS;
1874 /* * Badness of converting derived to base class. */
1875 extern const struct rank BASE_CONVERSION_BADNESS;
1876 /* * Badness of converting from non-reference to reference. */
1877 extern const struct rank REFERENCE_CONVERSION_BADNESS;
1878 /* * Badness of converting integer 0 to NULL pointer. */
1879 extern const struct rank NULL_POINTER_CONVERSION;
1880
1881 /* Non-standard conversions allowed by the debugger */
1882
1883 /* * Converting a pointer to an int is usually OK. */
1884 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
1885
1886 /* * Badness of converting a (non-zero) integer constant
1887 to a pointer. */
1888 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
1889
1890 extern struct rank sum_ranks (struct rank a, struct rank b);
1891 extern int compare_ranks (struct rank a, struct rank b);
1892
1893 extern int compare_badness (struct badness_vector *, struct badness_vector *);
1894
1895 extern struct badness_vector *rank_function (struct type **, int,
1896 struct value **, int);
1897
1898 extern struct rank rank_one_type (struct type *, struct type *,
1899 struct value *);
1900
1901 extern void recursive_dump_type (struct type *, int);
1902
1903 extern int field_is_static (struct field *);
1904
1905 /* printcmd.c */
1906
1907 extern void print_scalar_formatted (const gdb_byte *, struct type *,
1908 const struct value_print_options *,
1909 int, struct ui_file *);
1910
1911 extern int can_dereference (struct type *);
1912
1913 extern int is_integral_type (struct type *);
1914
1915 extern int is_scalar_type (struct type *type);
1916
1917 extern int is_scalar_type_recursive (struct type *);
1918
1919 extern int class_or_union_p (const struct type *);
1920
1921 extern void maintenance_print_type (char *, int);
1922
1923 extern htab_t create_copied_types_hash (struct objfile *objfile);
1924
1925 extern struct type *copy_type_recursive (struct objfile *objfile,
1926 struct type *type,
1927 htab_t copied_types);
1928
1929 extern struct type *copy_type (const struct type *type);
1930
1931 extern int types_equal (struct type *, struct type *);
1932
1933 extern int types_deeply_equal (struct type *, struct type *);
1934
1935 #endif /* GDBTYPES_H */
This page took 0.094193 seconds and 5 git commands to generate.