gdb: add type::fields / type::set_fields
[deliverable/binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2020 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/offset-type.h"
50 #include "gdbsupport/enum-flags.h"
51 #include "gdbsupport/underlying.h"
52 #include "gdbsupport/print-utils.h"
53 #include "dwarf2.h"
54 #include "gdb_obstack.h"
55
56 /* Forward declarations for prototypes. */
57 struct field;
58 struct block;
59 struct value_print_options;
60 struct language_defn;
61
62 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
63 are already DWARF-specific. */
64
65 /* * Offset relative to the start of its containing CU (compilation
66 unit). */
67 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
68
69 /* * Offset relative to the start of its .debug_info or .debug_types
70 section. */
71 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
72
73 static inline char *
74 sect_offset_str (sect_offset offset)
75 {
76 return hex_string (to_underlying (offset));
77 }
78
79 /* Some macros for char-based bitfields. */
80
81 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
82 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
83 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
84 #define B_TYPE unsigned char
85 #define B_BYTES(x) ( 1 + ((x)>>3) )
86 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
87
88 /* * Different kinds of data types are distinguished by the `code'
89 field. */
90
91 enum type_code
92 {
93 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
94 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
95 TYPE_CODE_PTR, /**< Pointer type */
96
97 /* * Array type with lower & upper bounds.
98
99 Regardless of the language, GDB represents multidimensional
100 array types the way C does: as arrays of arrays. So an
101 instance of a GDB array type T can always be seen as a series
102 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
103 memory.
104
105 Row-major languages like C lay out multi-dimensional arrays so
106 that incrementing the rightmost index in a subscripting
107 expression results in the smallest change in the address of the
108 element referred to. Column-major languages like Fortran lay
109 them out so that incrementing the leftmost index results in the
110 smallest change.
111
112 This means that, in column-major languages, working our way
113 from type to target type corresponds to working through indices
114 from right to left, not left to right. */
115 TYPE_CODE_ARRAY,
116
117 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
118 TYPE_CODE_UNION, /**< C union or Pascal variant part */
119 TYPE_CODE_ENUM, /**< Enumeration type */
120 TYPE_CODE_FLAGS, /**< Bit flags type */
121 TYPE_CODE_FUNC, /**< Function type */
122 TYPE_CODE_INT, /**< Integer type */
123
124 /* * Floating type. This is *NOT* a complex type. */
125 TYPE_CODE_FLT,
126
127 /* * Void type. The length field specifies the length (probably
128 always one) which is used in pointer arithmetic involving
129 pointers to this type, but actually dereferencing such a
130 pointer is invalid; a void type has no length and no actual
131 representation in memory or registers. A pointer to a void
132 type is a generic pointer. */
133 TYPE_CODE_VOID,
134
135 TYPE_CODE_SET, /**< Pascal sets */
136 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
137
138 /* * A string type which is like an array of character but prints
139 differently. It does not contain a length field as Pascal
140 strings (for many Pascals, anyway) do; if we want to deal with
141 such strings, we should use a new type code. */
142 TYPE_CODE_STRING,
143
144 /* * Unknown type. The length field is valid if we were able to
145 deduce that much about the type, or 0 if we don't even know
146 that. */
147 TYPE_CODE_ERROR,
148
149 /* C++ */
150 TYPE_CODE_METHOD, /**< Method type */
151
152 /* * Pointer-to-member-function type. This describes how to access a
153 particular member function of a class (possibly a virtual
154 member function). The representation may vary between different
155 C++ ABIs. */
156 TYPE_CODE_METHODPTR,
157
158 /* * Pointer-to-member type. This is the offset within a class to
159 some particular data member. The only currently supported
160 representation uses an unbiased offset, with -1 representing
161 NULL; this is used by the Itanium C++ ABI (used by GCC on all
162 platforms). */
163 TYPE_CODE_MEMBERPTR,
164
165 TYPE_CODE_REF, /**< C++ Reference types */
166
167 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
168
169 TYPE_CODE_CHAR, /**< *real* character type */
170
171 /* * Boolean type. 0 is false, 1 is true, and other values are
172 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
173 TYPE_CODE_BOOL,
174
175 /* Fortran */
176 TYPE_CODE_COMPLEX, /**< Complex float */
177
178 TYPE_CODE_TYPEDEF,
179
180 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
181
182 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
183
184 TYPE_CODE_MODULE, /**< Fortran module. */
185
186 /* * Internal function type. */
187 TYPE_CODE_INTERNAL_FUNCTION,
188
189 /* * Methods implemented in extension languages. */
190 TYPE_CODE_XMETHOD
191 };
192
193 /* * Some bits for the type's instance_flags word. See the macros
194 below for documentation on each bit. */
195
196 enum type_instance_flag_value : unsigned
197 {
198 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
199 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
200 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
201 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
202 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
203 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
204 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
205 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
206 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
207 };
208
209 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
210
211 /* * Unsigned integer type. If this is not set for a TYPE_CODE_INT,
212 the type is signed (unless TYPE_NOSIGN (below) is set). */
213
214 #define TYPE_UNSIGNED(t) (TYPE_MAIN_TYPE (t)->flag_unsigned)
215
216 /* * No sign for this type. In C++, "char", "signed char", and
217 "unsigned char" are distinct types; so we need an extra flag to
218 indicate the absence of a sign! */
219
220 #define TYPE_NOSIGN(t) (TYPE_MAIN_TYPE (t)->flag_nosign)
221
222 /* * A compiler may supply dwarf instrumentation
223 that indicates the desired endian interpretation of the variable
224 differs from the native endian representation. */
225
226 #define TYPE_ENDIANITY_NOT_DEFAULT(t) (TYPE_MAIN_TYPE (t)->flag_endianity_not_default)
227
228 /* * This appears in a type's flags word if it is a stub type (e.g.,
229 if someone referenced a type that wasn't defined in a source file
230 via (struct sir_not_appearing_in_this_film *)). */
231
232 #define TYPE_STUB(t) (TYPE_MAIN_TYPE (t)->flag_stub)
233
234 /* * The target type of this type is a stub type, and this type needs
235 to be updated if it gets un-stubbed in check_typedef. Used for
236 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
237 based on the TYPE_LENGTH of the target type. Also, set for
238 TYPE_CODE_TYPEDEF. */
239
240 #define TYPE_TARGET_STUB(t) (TYPE_MAIN_TYPE (t)->flag_target_stub)
241
242 /* * This is a function type which appears to have a prototype. We
243 need this for function calls in order to tell us if it's necessary
244 to coerce the args, or to just do the standard conversions. This
245 is used with a short field. */
246
247 #define TYPE_PROTOTYPED(t) (TYPE_MAIN_TYPE (t)->flag_prototyped)
248
249 /* * FIXME drow/2002-06-03: Only used for methods, but applies as well
250 to functions. */
251
252 #define TYPE_VARARGS(t) (TYPE_MAIN_TYPE (t)->flag_varargs)
253
254 /* * Identify a vector type. Gcc is handling this by adding an extra
255 attribute to the array type. We slurp that in as a new flag of a
256 type. This is used only in dwarf2read.c. */
257 #define TYPE_VECTOR(t) (TYPE_MAIN_TYPE (t)->flag_vector)
258
259 /* * The debugging formats (especially STABS) do not contain enough
260 information to represent all Ada types---especially those whose
261 size depends on dynamic quantities. Therefore, the GNAT Ada
262 compiler includes extra information in the form of additional type
263 definitions connected by naming conventions. This flag indicates
264 that the type is an ordinary (unencoded) GDB type that has been
265 created from the necessary run-time information, and does not need
266 further interpretation. Optionally marks ordinary, fixed-size GDB
267 type. */
268
269 #define TYPE_FIXED_INSTANCE(t) (TYPE_MAIN_TYPE (t)->flag_fixed_instance)
270
271 /* * This debug target supports TYPE_STUB(t). In the unsupported case
272 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
273 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
274 guessed the TYPE_STUB(t) value (see dwarfread.c). */
275
276 #define TYPE_STUB_SUPPORTED(t) (TYPE_MAIN_TYPE (t)->flag_stub_supported)
277
278 /* * Not textual. By default, GDB treats all single byte integers as
279 characters (or elements of strings) unless this flag is set. */
280
281 #define TYPE_NOTTEXT(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
282
283 /* * Used only for TYPE_CODE_FUNC where it specifies the real function
284 address is returned by this function call. TYPE_TARGET_TYPE
285 determines the final returned function type to be presented to
286 user. */
287
288 #define TYPE_GNU_IFUNC(t) (TYPE_MAIN_TYPE (t)->flag_gnu_ifunc)
289
290 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
291 the objfile retrieved as TYPE_OBJFILE. Otherwise, the type is
292 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
293
294 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
295 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
296 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
297
298 /* * True if this type was declared using the "class" keyword. This is
299 only valid for C++ structure and enum types. If false, a structure
300 was declared as a "struct"; if true it was declared "class". For
301 enum types, this is true when "enum class" or "enum struct" was
302 used to declare the type.. */
303
304 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
305
306 /* * True if this type is a "flag" enum. A flag enum is one where all
307 the values are pairwise disjoint when "and"ed together. This
308 affects how enum values are printed. */
309
310 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
311
312 /* * Constant type. If this is set, the corresponding type has a
313 const modifier. */
314
315 #define TYPE_CONST(t) ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST) != 0)
316
317 /* * Volatile type. If this is set, the corresponding type has a
318 volatile modifier. */
319
320 #define TYPE_VOLATILE(t) \
321 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
322
323 /* * Restrict type. If this is set, the corresponding type has a
324 restrict modifier. */
325
326 #define TYPE_RESTRICT(t) \
327 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
328
329 /* * Atomic type. If this is set, the corresponding type has an
330 _Atomic modifier. */
331
332 #define TYPE_ATOMIC(t) \
333 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
334
335 /* * True if this type represents either an lvalue or lvalue reference type. */
336
337 #define TYPE_IS_REFERENCE(t) \
338 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
339
340 /* * True if this type is allocatable. */
341 #define TYPE_IS_ALLOCATABLE(t) \
342 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
343
344 /* * True if this type has variant parts. */
345 #define TYPE_HAS_VARIANT_PARTS(t) \
346 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
347
348 /* * True if this type has a dynamic length. */
349 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
350 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
351
352 /* * Instruction-space delimited type. This is for Harvard architectures
353 which have separate instruction and data address spaces (and perhaps
354 others).
355
356 GDB usually defines a flat address space that is a superset of the
357 architecture's two (or more) address spaces, but this is an extension
358 of the architecture's model.
359
360 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
361 resides in instruction memory, even if its address (in the extended
362 flat address space) does not reflect this.
363
364 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
365 corresponding type resides in the data memory space, even if
366 this is not indicated by its (flat address space) address.
367
368 If neither flag is set, the default space for functions / methods
369 is instruction space, and for data objects is data memory. */
370
371 #define TYPE_CODE_SPACE(t) \
372 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
373
374 #define TYPE_DATA_SPACE(t) \
375 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
376
377 /* * Address class flags. Some environments provide for pointers
378 whose size is different from that of a normal pointer or address
379 types where the bits are interpreted differently than normal
380 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
381 target specific ways to represent these different types of address
382 classes. */
383
384 #define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
385 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
386 #define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
387 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
388 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
389 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
390 #define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
391 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
392
393 /* * Information about a single discriminant. */
394
395 struct discriminant_range
396 {
397 /* * The range of values for the variant. This is an inclusive
398 range. */
399 ULONGEST low, high;
400
401 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
402 is true if this should be an unsigned comparison; false for
403 signed. */
404 bool contains (ULONGEST value, bool is_unsigned) const
405 {
406 if (is_unsigned)
407 return value >= low && value <= high;
408 LONGEST valuel = (LONGEST) value;
409 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
410 }
411 };
412
413 struct variant_part;
414
415 /* * A single variant. A variant has a list of discriminant values.
416 When the discriminator matches one of these, the variant is
417 enabled. Each variant controls zero or more fields; and may also
418 control other variant parts as well. This struct corresponds to
419 DW_TAG_variant in DWARF. */
420
421 struct variant : allocate_on_obstack
422 {
423 /* * The discriminant ranges for this variant. */
424 gdb::array_view<discriminant_range> discriminants;
425
426 /* * The fields controlled by this variant. This is inclusive on
427 the low end and exclusive on the high end. A variant may not
428 control any fields, in which case the two values will be equal.
429 These are indexes into the type's array of fields. */
430 int first_field;
431 int last_field;
432
433 /* * Variant parts controlled by this variant. */
434 gdb::array_view<variant_part> parts;
435
436 /* * Return true if this is the default variant. The default
437 variant can be recognized because it has no associated
438 discriminants. */
439 bool is_default () const
440 {
441 return discriminants.empty ();
442 }
443
444 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
445 if this should be an unsigned comparison; false for signed. */
446 bool matches (ULONGEST value, bool is_unsigned) const;
447 };
448
449 /* * A variant part. Each variant part has an optional discriminant
450 and holds an array of variants. This struct corresponds to
451 DW_TAG_variant_part in DWARF. */
452
453 struct variant_part : allocate_on_obstack
454 {
455 /* * The index of the discriminant field in the outer type. This is
456 an index into the type's array of fields. If this is -1, there
457 is no discriminant, and only the default variant can be
458 considered to be selected. */
459 int discriminant_index;
460
461 /* * True if this discriminant is unsigned; false if signed. This
462 comes from the type of the discriminant. */
463 bool is_unsigned;
464
465 /* * The variants that are controlled by this variant part. Note
466 that these will always be sorted by field number. */
467 gdb::array_view<variant> variants;
468 };
469
470
471 enum dynamic_prop_kind
472 {
473 PROP_UNDEFINED, /* Not defined. */
474 PROP_CONST, /* Constant. */
475 PROP_ADDR_OFFSET, /* Address offset. */
476 PROP_LOCEXPR, /* Location expression. */
477 PROP_LOCLIST, /* Location list. */
478 PROP_VARIANT_PARTS, /* Variant parts. */
479 PROP_TYPE, /* Type. */
480 };
481
482 union dynamic_prop_data
483 {
484 /* Storage for constant property. */
485
486 LONGEST const_val;
487
488 /* Storage for dynamic property. */
489
490 void *baton;
491
492 /* Storage of variant parts for a type. A type with variant parts
493 has all its fields "linearized" -- stored in a single field
494 array, just as if they had all been declared that way. The
495 variant parts are attached via a dynamic property, and then are
496 used to control which fields end up in the final type during
497 dynamic type resolution. */
498
499 const gdb::array_view<variant_part> *variant_parts;
500
501 /* Once a variant type is resolved, we may want to be able to go
502 from the resolved type to the original type. In this case we
503 rewrite the property's kind and set this field. */
504
505 struct type *original_type;
506 };
507
508 /* * Used to store a dynamic property. */
509
510 struct dynamic_prop
511 {
512 /* Determine which field of the union dynamic_prop.data is used. */
513 enum dynamic_prop_kind kind;
514
515 /* Storage for dynamic or static value. */
516 union dynamic_prop_data data;
517 };
518
519 /* Compare two dynamic_prop objects for equality. dynamic_prop
520 instances are equal iff they have the same type and storage. */
521 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
522
523 /* Compare two dynamic_prop objects for inequality. */
524 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
525 {
526 return !(l == r);
527 }
528
529 /* * Define a type's dynamic property node kind. */
530 enum dynamic_prop_node_kind
531 {
532 /* A property providing a type's data location.
533 Evaluating this field yields to the location of an object's data. */
534 DYN_PROP_DATA_LOCATION,
535
536 /* A property representing DW_AT_allocated. The presence of this attribute
537 indicates that the object of the type can be allocated/deallocated. */
538 DYN_PROP_ALLOCATED,
539
540 /* A property representing DW_AT_associated. The presence of this attribute
541 indicated that the object of the type can be associated. */
542 DYN_PROP_ASSOCIATED,
543
544 /* A property providing an array's byte stride. */
545 DYN_PROP_BYTE_STRIDE,
546
547 /* A property holding variant parts. */
548 DYN_PROP_VARIANT_PARTS,
549
550 /* A property holding the size of the type. */
551 DYN_PROP_BYTE_SIZE,
552 };
553
554 /* * List for dynamic type attributes. */
555 struct dynamic_prop_list
556 {
557 /* The kind of dynamic prop in this node. */
558 enum dynamic_prop_node_kind prop_kind;
559
560 /* The dynamic property itself. */
561 struct dynamic_prop prop;
562
563 /* A pointer to the next dynamic property. */
564 struct dynamic_prop_list *next;
565 };
566
567 /* * Determine which field of the union main_type.fields[x].loc is
568 used. */
569
570 enum field_loc_kind
571 {
572 FIELD_LOC_KIND_BITPOS, /**< bitpos */
573 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
574 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
575 FIELD_LOC_KIND_PHYSNAME, /**< physname */
576 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
577 };
578
579 /* * A discriminant to determine which field in the
580 main_type.type_specific union is being used, if any.
581
582 For types such as TYPE_CODE_FLT, the use of this
583 discriminant is really redundant, as we know from the type code
584 which field is going to be used. As such, it would be possible to
585 reduce the size of this enum in order to save a bit or two for
586 other fields of struct main_type. But, since we still have extra
587 room , and for the sake of clarity and consistency, we treat all fields
588 of the union the same way. */
589
590 enum type_specific_kind
591 {
592 TYPE_SPECIFIC_NONE,
593 TYPE_SPECIFIC_CPLUS_STUFF,
594 TYPE_SPECIFIC_GNAT_STUFF,
595 TYPE_SPECIFIC_FLOATFORMAT,
596 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
597 TYPE_SPECIFIC_FUNC,
598 TYPE_SPECIFIC_SELF_TYPE
599 };
600
601 union type_owner
602 {
603 struct objfile *objfile;
604 struct gdbarch *gdbarch;
605 };
606
607 union field_location
608 {
609 /* * Position of this field, counting in bits from start of
610 containing structure. For big-endian targets, it is the bit
611 offset to the MSB. For little-endian targets, it is the bit
612 offset to the LSB. */
613
614 LONGEST bitpos;
615
616 /* * Enum value. */
617 LONGEST enumval;
618
619 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
620 physaddr is the location (in the target) of the static
621 field. Otherwise, physname is the mangled label of the
622 static field. */
623
624 CORE_ADDR physaddr;
625 const char *physname;
626
627 /* * The field location can be computed by evaluating the
628 following DWARF block. Its DATA is allocated on
629 objfile_obstack - no CU load is needed to access it. */
630
631 struct dwarf2_locexpr_baton *dwarf_block;
632 };
633
634 struct field
635 {
636 union field_location loc;
637
638 /* * For a function or member type, this is 1 if the argument is
639 marked artificial. Artificial arguments should not be shown
640 to the user. For TYPE_CODE_RANGE it is set if the specific
641 bound is not defined. */
642
643 unsigned int artificial : 1;
644
645 /* * Discriminant for union field_location. */
646
647 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
648
649 /* * Size of this field, in bits, or zero if not packed.
650 If non-zero in an array type, indicates the element size in
651 bits (used only in Ada at the moment).
652 For an unpacked field, the field's type's length
653 says how many bytes the field occupies. */
654
655 unsigned int bitsize : 28;
656
657 /* * In a struct or union type, type of this field.
658 - In a function or member type, type of this argument.
659 - In an array type, the domain-type of the array. */
660
661 struct type *type;
662
663 /* * Name of field, value or argument.
664 NULL for range bounds, array domains, and member function
665 arguments. */
666
667 const char *name;
668 };
669
670 struct range_bounds
671 {
672 /* * Low bound of range. */
673
674 struct dynamic_prop low;
675
676 /* * High bound of range. */
677
678 struct dynamic_prop high;
679
680 /* The stride value for this range. This can be stored in bits or bytes
681 based on the value of BYTE_STRIDE_P. It is optional to have a stride
682 value, if this range has no stride value defined then this will be set
683 to the constant zero. */
684
685 struct dynamic_prop stride;
686
687 /* * The bias. Sometimes a range value is biased before storage.
688 The bias is added to the stored bits to form the true value. */
689
690 LONGEST bias;
691
692 /* True if HIGH range bound contains the number of elements in the
693 subrange. This affects how the final high bound is computed. */
694
695 unsigned int flag_upper_bound_is_count : 1;
696
697 /* True if LOW or/and HIGH are resolved into a static bound from
698 a dynamic one. */
699
700 unsigned int flag_bound_evaluated : 1;
701
702 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
703
704 unsigned int flag_is_byte_stride : 1;
705 };
706
707 /* Compare two range_bounds objects for equality. Simply does
708 memberwise comparison. */
709 extern bool operator== (const range_bounds &l, const range_bounds &r);
710
711 /* Compare two range_bounds objects for inequality. */
712 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
713 {
714 return !(l == r);
715 }
716
717 union type_specific
718 {
719 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
720 point to cplus_struct_default, a default static instance of a
721 struct cplus_struct_type. */
722
723 struct cplus_struct_type *cplus_stuff;
724
725 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
726 provides additional information. */
727
728 struct gnat_aux_type *gnat_stuff;
729
730 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
731 floatformat object that describes the floating-point value
732 that resides within the type. */
733
734 const struct floatformat *floatformat;
735
736 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
737
738 struct func_type *func_stuff;
739
740 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
741 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
742 is a member of. */
743
744 struct type *self_type;
745 };
746
747 /* * Main structure representing a type in GDB.
748
749 This structure is space-critical. Its layout has been tweaked to
750 reduce the space used. */
751
752 struct main_type
753 {
754 /* * Code for kind of type. */
755
756 ENUM_BITFIELD(type_code) code : 8;
757
758 /* * Flags about this type. These fields appear at this location
759 because they packs nicely here. See the TYPE_* macros for
760 documentation about these fields. */
761
762 unsigned int flag_unsigned : 1;
763 unsigned int flag_nosign : 1;
764 unsigned int flag_stub : 1;
765 unsigned int flag_target_stub : 1;
766 unsigned int flag_prototyped : 1;
767 unsigned int flag_varargs : 1;
768 unsigned int flag_vector : 1;
769 unsigned int flag_stub_supported : 1;
770 unsigned int flag_gnu_ifunc : 1;
771 unsigned int flag_fixed_instance : 1;
772 unsigned int flag_objfile_owned : 1;
773 unsigned int flag_endianity_not_default : 1;
774
775 /* * True if this type was declared with "class" rather than
776 "struct". */
777
778 unsigned int flag_declared_class : 1;
779
780 /* * True if this is an enum type with disjoint values. This
781 affects how the enum is printed. */
782
783 unsigned int flag_flag_enum : 1;
784
785 /* * A discriminant telling us which field of the type_specific
786 union is being used for this type, if any. */
787
788 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
789
790 /* * Number of fields described for this type. This field appears
791 at this location because it packs nicely here. */
792
793 short nfields;
794
795 /* * Name of this type, or NULL if none.
796
797 This is used for printing only. For looking up a name, look for
798 a symbol in the VAR_DOMAIN. This is generally allocated in the
799 objfile's obstack. However coffread.c uses malloc. */
800
801 const char *name;
802
803 /* * Every type is now associated with a particular objfile, and the
804 type is allocated on the objfile_obstack for that objfile. One
805 problem however, is that there are times when gdb allocates new
806 types while it is not in the process of reading symbols from a
807 particular objfile. Fortunately, these happen when the type
808 being created is a derived type of an existing type, such as in
809 lookup_pointer_type(). So we can just allocate the new type
810 using the same objfile as the existing type, but to do this we
811 need a backpointer to the objfile from the existing type. Yes
812 this is somewhat ugly, but without major overhaul of the internal
813 type system, it can't be avoided for now. */
814
815 union type_owner owner;
816
817 /* * For a pointer type, describes the type of object pointed to.
818 - For an array type, describes the type of the elements.
819 - For a function or method type, describes the type of the return value.
820 - For a range type, describes the type of the full range.
821 - For a complex type, describes the type of each coordinate.
822 - For a special record or union type encoding a dynamic-sized type
823 in GNAT, a memoized pointer to a corresponding static version of
824 the type.
825 - Unused otherwise. */
826
827 struct type *target_type;
828
829 /* * For structure and union types, a description of each field.
830 For set and pascal array types, there is one "field",
831 whose type is the domain type of the set or array.
832 For range types, there are two "fields",
833 the minimum and maximum values (both inclusive).
834 For enum types, each possible value is described by one "field".
835 For a function or method type, a "field" for each parameter.
836 For C++ classes, there is one field for each base class (if it is
837 a derived class) plus one field for each class data member. Member
838 functions are recorded elsewhere.
839
840 Using a pointer to a separate array of fields
841 allows all types to have the same size, which is useful
842 because we can allocate the space for a type before
843 we know what to put in it. */
844
845 union
846 {
847 struct field *fields;
848
849 /* * Union member used for range types. */
850
851 struct range_bounds *bounds;
852
853 /* If this is a scalar type, then this is its corresponding
854 complex type. */
855 struct type *complex_type;
856
857 } flds_bnds;
858
859 /* * Slot to point to additional language-specific fields of this
860 type. */
861
862 union type_specific type_specific;
863
864 /* * Contains all dynamic type properties. */
865 struct dynamic_prop_list *dyn_prop_list;
866 };
867
868 /* * Number of bits allocated for alignment. */
869
870 #define TYPE_ALIGN_BITS 8
871
872 /* * A ``struct type'' describes a particular instance of a type, with
873 some particular qualification. */
874
875 struct type
876 {
877 /* Get the type code of this type.
878
879 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
880 type, you need to do `check_typedef (type)->code ()`. */
881 type_code code () const
882 {
883 return this->main_type->code;
884 }
885
886 /* Set the type code of this type. */
887 void set_code (type_code code)
888 {
889 this->main_type->code = code;
890 }
891
892 /* Get the name of this type. */
893 const char *name () const
894 {
895 return this->main_type->name;
896 }
897
898 /* Set the name of this type. */
899 void set_name (const char *name)
900 {
901 this->main_type->name = name;
902 }
903
904 /* Get the number of fields of this type. */
905 int num_fields () const
906 {
907 return this->main_type->nfields;
908 }
909
910 /* Set the number of fields of this type. */
911 void set_num_fields (int num_fields)
912 {
913 this->main_type->nfields = num_fields;
914 }
915
916 /* Get the fields array of this type. */
917 field *fields () const
918 {
919 return this->main_type->flds_bnds.fields;
920 }
921
922 /* Set the fields array of this type. */
923 void set_fields (field *fields)
924 {
925 this->main_type->flds_bnds.fields = fields;
926 }
927
928 /* * Return the dynamic property of the requested KIND from this type's
929 list of dynamic properties. */
930 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
931
932 /* * Given a dynamic property PROP of a given KIND, add this dynamic
933 property to this type.
934
935 This function assumes that this type is objfile-owned. */
936 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
937
938 /* * Remove dynamic property of kind KIND from this type, if it exists. */
939 void remove_dyn_prop (dynamic_prop_node_kind kind);
940
941 /* * Type that is a pointer to this type.
942 NULL if no such pointer-to type is known yet.
943 The debugger may add the address of such a type
944 if it has to construct one later. */
945
946 struct type *pointer_type;
947
948 /* * C++: also need a reference type. */
949
950 struct type *reference_type;
951
952 /* * A C++ rvalue reference type added in C++11. */
953
954 struct type *rvalue_reference_type;
955
956 /* * Variant chain. This points to a type that differs from this
957 one only in qualifiers and length. Currently, the possible
958 qualifiers are const, volatile, code-space, data-space, and
959 address class. The length may differ only when one of the
960 address class flags are set. The variants are linked in a
961 circular ring and share MAIN_TYPE. */
962
963 struct type *chain;
964
965 /* * The alignment for this type. Zero means that the alignment was
966 not specified in the debug info. Note that this is stored in a
967 funny way: as the log base 2 (plus 1) of the alignment; so a
968 value of 1 means the alignment is 1, and a value of 9 means the
969 alignment is 256. */
970
971 unsigned align_log2 : TYPE_ALIGN_BITS;
972
973 /* * Flags specific to this instance of the type, indicating where
974 on the ring we are.
975
976 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
977 binary or-ed with the target type, with a special case for
978 address class and space class. For example if this typedef does
979 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
980 instance flags are completely inherited from the target type. No
981 qualifiers can be cleared by the typedef. See also
982 check_typedef. */
983 unsigned instance_flags : 9;
984
985 /* * Length of storage for a value of this type. The value is the
986 expression in host bytes of what sizeof(type) would return. This
987 size includes padding. For example, an i386 extended-precision
988 floating point value really only occupies ten bytes, but most
989 ABI's declare its size to be 12 bytes, to preserve alignment.
990 A `struct type' representing such a floating-point type would
991 have a `length' value of 12, even though the last two bytes are
992 unused.
993
994 Since this field is expressed in host bytes, its value is appropriate
995 to pass to memcpy and such (it is assumed that GDB itself always runs
996 on an 8-bits addressable architecture). However, when using it for
997 target address arithmetic (e.g. adding it to a target address), the
998 type_length_units function should be used in order to get the length
999 expressed in target addressable memory units. */
1000
1001 ULONGEST length;
1002
1003 /* * Core type, shared by a group of qualified types. */
1004
1005 struct main_type *main_type;
1006 };
1007
1008 #define NULL_TYPE ((struct type *) 0)
1009
1010 struct fn_fieldlist
1011 {
1012
1013 /* * The overloaded name.
1014 This is generally allocated in the objfile's obstack.
1015 However stabsread.c sometimes uses malloc. */
1016
1017 const char *name;
1018
1019 /* * The number of methods with this name. */
1020
1021 int length;
1022
1023 /* * The list of methods. */
1024
1025 struct fn_field *fn_fields;
1026 };
1027
1028
1029
1030 struct fn_field
1031 {
1032 /* * If is_stub is clear, this is the mangled name which we can look
1033 up to find the address of the method (FIXME: it would be cleaner
1034 to have a pointer to the struct symbol here instead).
1035
1036 If is_stub is set, this is the portion of the mangled name which
1037 specifies the arguments. For example, "ii", if there are two int
1038 arguments, or "" if there are no arguments. See gdb_mangle_name
1039 for the conversion from this format to the one used if is_stub is
1040 clear. */
1041
1042 const char *physname;
1043
1044 /* * The function type for the method.
1045
1046 (This comment used to say "The return value of the method", but
1047 that's wrong. The function type is expected here, i.e. something
1048 with TYPE_CODE_METHOD, and *not* the return-value type). */
1049
1050 struct type *type;
1051
1052 /* * For virtual functions. First baseclass that defines this
1053 virtual function. */
1054
1055 struct type *fcontext;
1056
1057 /* Attributes. */
1058
1059 unsigned int is_const:1;
1060 unsigned int is_volatile:1;
1061 unsigned int is_private:1;
1062 unsigned int is_protected:1;
1063 unsigned int is_artificial:1;
1064
1065 /* * A stub method only has some fields valid (but they are enough
1066 to reconstruct the rest of the fields). */
1067
1068 unsigned int is_stub:1;
1069
1070 /* * True if this function is a constructor, false otherwise. */
1071
1072 unsigned int is_constructor : 1;
1073
1074 /* * True if this function is deleted, false otherwise. */
1075
1076 unsigned int is_deleted : 1;
1077
1078 /* * DW_AT_defaulted attribute for this function. The value is one
1079 of the DW_DEFAULTED constants. */
1080
1081 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1082
1083 /* * Unused. */
1084
1085 unsigned int dummy:6;
1086
1087 /* * Index into that baseclass's virtual function table, minus 2;
1088 else if static: VOFFSET_STATIC; else: 0. */
1089
1090 unsigned int voffset:16;
1091
1092 #define VOFFSET_STATIC 1
1093
1094 };
1095
1096 struct decl_field
1097 {
1098 /* * Unqualified name to be prefixed by owning class qualified
1099 name. */
1100
1101 const char *name;
1102
1103 /* * Type this typedef named NAME represents. */
1104
1105 struct type *type;
1106
1107 /* * True if this field was declared protected, false otherwise. */
1108 unsigned int is_protected : 1;
1109
1110 /* * True if this field was declared private, false otherwise. */
1111 unsigned int is_private : 1;
1112 };
1113
1114 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1115 TYPE_CODE_UNION nodes. */
1116
1117 struct cplus_struct_type
1118 {
1119 /* * Number of base classes this type derives from. The
1120 baseclasses are stored in the first N_BASECLASSES fields
1121 (i.e. the `fields' field of the struct type). The only fields
1122 of struct field that are used are: type, name, loc.bitpos. */
1123
1124 short n_baseclasses;
1125
1126 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1127 All access to this field must be through TYPE_VPTR_FIELDNO as one
1128 thing it does is check whether the field has been initialized.
1129 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1130 which for portability reasons doesn't initialize this field.
1131 TYPE_VPTR_FIELDNO returns -1 for this case.
1132
1133 If -1, we were unable to find the virtual function table pointer in
1134 initial symbol reading, and get_vptr_fieldno should be called to find
1135 it if possible. get_vptr_fieldno will update this field if possible.
1136 Otherwise the value is left at -1.
1137
1138 Unused if this type does not have virtual functions. */
1139
1140 short vptr_fieldno;
1141
1142 /* * Number of methods with unique names. All overloaded methods
1143 with the same name count only once. */
1144
1145 short nfn_fields;
1146
1147 /* * Number of template arguments. */
1148
1149 unsigned short n_template_arguments;
1150
1151 /* * One if this struct is a dynamic class, as defined by the
1152 Itanium C++ ABI: if it requires a virtual table pointer,
1153 because it or any of its base classes have one or more virtual
1154 member functions or virtual base classes. Minus one if not
1155 dynamic. Zero if not yet computed. */
1156
1157 int is_dynamic : 2;
1158
1159 /* * The calling convention for this type, fetched from the
1160 DW_AT_calling_convention attribute. The value is one of the
1161 DW_CC constants. */
1162
1163 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1164
1165 /* * The base class which defined the virtual function table pointer. */
1166
1167 struct type *vptr_basetype;
1168
1169 /* * For derived classes, the number of base classes is given by
1170 n_baseclasses and virtual_field_bits is a bit vector containing
1171 one bit per base class. If the base class is virtual, the
1172 corresponding bit will be set.
1173 I.E, given:
1174
1175 class A{};
1176 class B{};
1177 class C : public B, public virtual A {};
1178
1179 B is a baseclass of C; A is a virtual baseclass for C.
1180 This is a C++ 2.0 language feature. */
1181
1182 B_TYPE *virtual_field_bits;
1183
1184 /* * For classes with private fields, the number of fields is
1185 given by nfields and private_field_bits is a bit vector
1186 containing one bit per field.
1187
1188 If the field is private, the corresponding bit will be set. */
1189
1190 B_TYPE *private_field_bits;
1191
1192 /* * For classes with protected fields, the number of fields is
1193 given by nfields and protected_field_bits is a bit vector
1194 containing one bit per field.
1195
1196 If the field is private, the corresponding bit will be set. */
1197
1198 B_TYPE *protected_field_bits;
1199
1200 /* * For classes with fields to be ignored, either this is
1201 optimized out or this field has length 0. */
1202
1203 B_TYPE *ignore_field_bits;
1204
1205 /* * For classes, structures, and unions, a description of each
1206 field, which consists of an overloaded name, followed by the
1207 types of arguments that the method expects, and then the name
1208 after it has been renamed to make it distinct.
1209
1210 fn_fieldlists points to an array of nfn_fields of these. */
1211
1212 struct fn_fieldlist *fn_fieldlists;
1213
1214 /* * typedefs defined inside this class. typedef_field points to
1215 an array of typedef_field_count elements. */
1216
1217 struct decl_field *typedef_field;
1218
1219 unsigned typedef_field_count;
1220
1221 /* * The nested types defined by this type. nested_types points to
1222 an array of nested_types_count elements. */
1223
1224 struct decl_field *nested_types;
1225
1226 unsigned nested_types_count;
1227
1228 /* * The template arguments. This is an array with
1229 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1230 classes. */
1231
1232 struct symbol **template_arguments;
1233 };
1234
1235 /* * Struct used to store conversion rankings. */
1236
1237 struct rank
1238 {
1239 short rank;
1240
1241 /* * When two conversions are of the same type and therefore have
1242 the same rank, subrank is used to differentiate the two.
1243
1244 Eg: Two derived-class-pointer to base-class-pointer conversions
1245 would both have base pointer conversion rank, but the
1246 conversion with the shorter distance to the ancestor is
1247 preferable. 'subrank' would be used to reflect that. */
1248
1249 short subrank;
1250 };
1251
1252 /* * Used for ranking a function for overload resolution. */
1253
1254 typedef std::vector<rank> badness_vector;
1255
1256 /* * GNAT Ada-specific information for various Ada types. */
1257
1258 struct gnat_aux_type
1259 {
1260 /* * Parallel type used to encode information about dynamic types
1261 used in Ada (such as variant records, variable-size array,
1262 etc). */
1263 struct type* descriptive_type;
1264 };
1265
1266 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1267
1268 struct func_type
1269 {
1270 /* * The calling convention for targets supporting multiple ABIs.
1271 Right now this is only fetched from the Dwarf-2
1272 DW_AT_calling_convention attribute. The value is one of the
1273 DW_CC constants. */
1274
1275 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1276
1277 /* * Whether this function normally returns to its caller. It is
1278 set from the DW_AT_noreturn attribute if set on the
1279 DW_TAG_subprogram. */
1280
1281 unsigned int is_noreturn : 1;
1282
1283 /* * Only those DW_TAG_call_site's in this function that have
1284 DW_AT_call_tail_call set are linked in this list. Function
1285 without its tail call list complete
1286 (DW_AT_call_all_tail_calls or its superset
1287 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1288 DW_TAG_call_site's exist in such function. */
1289
1290 struct call_site *tail_call_list;
1291
1292 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1293 contains the method. */
1294
1295 struct type *self_type;
1296 };
1297
1298 /* struct call_site_parameter can be referenced in callees by several ways. */
1299
1300 enum call_site_parameter_kind
1301 {
1302 /* * Use field call_site_parameter.u.dwarf_reg. */
1303 CALL_SITE_PARAMETER_DWARF_REG,
1304
1305 /* * Use field call_site_parameter.u.fb_offset. */
1306 CALL_SITE_PARAMETER_FB_OFFSET,
1307
1308 /* * Use field call_site_parameter.u.param_offset. */
1309 CALL_SITE_PARAMETER_PARAM_OFFSET
1310 };
1311
1312 struct call_site_target
1313 {
1314 union field_location loc;
1315
1316 /* * Discriminant for union field_location. */
1317
1318 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1319 };
1320
1321 union call_site_parameter_u
1322 {
1323 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1324 as DWARF register number, for register passed
1325 parameters. */
1326
1327 int dwarf_reg;
1328
1329 /* * Offset from the callee's frame base, for stack passed
1330 parameters. This equals offset from the caller's stack
1331 pointer. */
1332
1333 CORE_ADDR fb_offset;
1334
1335 /* * Offset relative to the start of this PER_CU to
1336 DW_TAG_formal_parameter which is referenced by both
1337 caller and the callee. */
1338
1339 cu_offset param_cu_off;
1340 };
1341
1342 struct call_site_parameter
1343 {
1344 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1345
1346 union call_site_parameter_u u;
1347
1348 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1349
1350 const gdb_byte *value;
1351 size_t value_size;
1352
1353 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1354 It may be NULL if not provided by DWARF. */
1355
1356 const gdb_byte *data_value;
1357 size_t data_value_size;
1358 };
1359
1360 /* * A place where a function gets called from, represented by
1361 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1362
1363 struct call_site
1364 {
1365 /* * Address of the first instruction after this call. It must be
1366 the first field as we overload core_addr_hash and core_addr_eq
1367 for it. */
1368
1369 CORE_ADDR pc;
1370
1371 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1372
1373 struct call_site *tail_call_next;
1374
1375 /* * Describe DW_AT_call_target. Missing attribute uses
1376 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1377
1378 struct call_site_target target;
1379
1380 /* * Size of the PARAMETER array. */
1381
1382 unsigned parameter_count;
1383
1384 /* * CU of the function where the call is located. It gets used
1385 for DWARF blocks execution in the parameter array below. */
1386
1387 struct dwarf2_per_cu_data *per_cu;
1388
1389 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1390
1391 struct call_site_parameter parameter[1];
1392 };
1393
1394 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1395 static structure. */
1396
1397 extern const struct cplus_struct_type cplus_struct_default;
1398
1399 extern void allocate_cplus_struct_type (struct type *);
1400
1401 #define INIT_CPLUS_SPECIFIC(type) \
1402 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1403 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1404 &cplus_struct_default)
1405
1406 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1407
1408 #define HAVE_CPLUS_STRUCT(type) \
1409 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1410 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1411
1412 #define INIT_NONE_SPECIFIC(type) \
1413 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1414 TYPE_MAIN_TYPE (type)->type_specific = {})
1415
1416 extern const struct gnat_aux_type gnat_aux_default;
1417
1418 extern void allocate_gnat_aux_type (struct type *);
1419
1420 #define INIT_GNAT_SPECIFIC(type) \
1421 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1422 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1423 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1424 /* * A macro that returns non-zero if the type-specific data should be
1425 read as "gnat-stuff". */
1426 #define HAVE_GNAT_AUX_INFO(type) \
1427 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1428
1429 /* * True if TYPE is known to be an Ada type of some kind. */
1430 #define ADA_TYPE_P(type) \
1431 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1432 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1433 && TYPE_FIXED_INSTANCE (type)))
1434
1435 #define INIT_FUNC_SPECIFIC(type) \
1436 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1437 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1438 TYPE_ZALLOC (type, \
1439 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1440
1441 #define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1442 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1443 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1444 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1445 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1446 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1447 #define TYPE_CHAIN(thistype) (thistype)->chain
1448 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1449 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1450 so you only have to call check_typedef once. Since allocate_value
1451 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1452 #define TYPE_LENGTH(thistype) (thistype)->length
1453
1454 /* * Return the alignment of the type in target addressable memory
1455 units, or 0 if no alignment was specified. */
1456 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1457
1458 /* * Return the alignment of the type in target addressable memory
1459 units, or 0 if no alignment was specified. */
1460 extern unsigned type_raw_align (struct type *);
1461
1462 /* * Return the alignment of the type in target addressable memory
1463 units. Return 0 if the alignment cannot be determined; but note
1464 that this makes an effort to compute the alignment even it it was
1465 not specified in the debug info. */
1466 extern unsigned type_align (struct type *);
1467
1468 /* * Set the alignment of the type. The alignment must be a power of
1469 2. Returns false if the given value does not fit in the available
1470 space in struct type. */
1471 extern bool set_type_align (struct type *, ULONGEST);
1472
1473 #define TYPE_FIELDS(thistype) (thistype)->fields ()
1474
1475 #define TYPE_INDEX_TYPE(type) TYPE_FIELD_TYPE (type, 0)
1476 #define TYPE_RANGE_DATA(thistype) TYPE_MAIN_TYPE(thistype)->flds_bnds.bounds
1477 #define TYPE_LOW_BOUND(range_type) \
1478 TYPE_RANGE_DATA(range_type)->low.data.const_val
1479 #define TYPE_HIGH_BOUND(range_type) \
1480 TYPE_RANGE_DATA(range_type)->high.data.const_val
1481 #define TYPE_LOW_BOUND_UNDEFINED(range_type) \
1482 (TYPE_RANGE_DATA(range_type)->low.kind == PROP_UNDEFINED)
1483 #define TYPE_HIGH_BOUND_UNDEFINED(range_type) \
1484 (TYPE_RANGE_DATA(range_type)->high.kind == PROP_UNDEFINED)
1485 #define TYPE_HIGH_BOUND_KIND(range_type) \
1486 TYPE_RANGE_DATA(range_type)->high.kind
1487 #define TYPE_LOW_BOUND_KIND(range_type) \
1488 TYPE_RANGE_DATA(range_type)->low.kind
1489 #define TYPE_BIT_STRIDE(range_type) \
1490 (TYPE_RANGE_DATA(range_type)->stride.data.const_val \
1491 * (TYPE_RANGE_DATA(range_type)->flag_is_byte_stride ? 8 : 1))
1492
1493 /* Property accessors for the type data location. */
1494 #define TYPE_DATA_LOCATION(thistype) \
1495 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1496 #define TYPE_DATA_LOCATION_BATON(thistype) \
1497 TYPE_DATA_LOCATION (thistype)->data.baton
1498 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1499 TYPE_DATA_LOCATION (thistype)->data.const_val
1500 #define TYPE_DATA_LOCATION_KIND(thistype) \
1501 TYPE_DATA_LOCATION (thistype)->kind
1502 #define TYPE_DYNAMIC_LENGTH(thistype) \
1503 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1504
1505 /* Property accessors for the type allocated/associated. */
1506 #define TYPE_ALLOCATED_PROP(thistype) \
1507 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1508 #define TYPE_ASSOCIATED_PROP(thistype) \
1509 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1510
1511 /* Attribute accessors for dynamic properties. */
1512 #define TYPE_DYN_PROP_BATON(dynprop) \
1513 dynprop->data.baton
1514 #define TYPE_DYN_PROP_ADDR(dynprop) \
1515 dynprop->data.const_val
1516 #define TYPE_DYN_PROP_KIND(dynprop) \
1517 dynprop->kind
1518
1519
1520 /* Accessors for struct range_bounds data attached to an array type's
1521 index type. */
1522
1523 #define TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED(arraytype) \
1524 TYPE_HIGH_BOUND_UNDEFINED(TYPE_INDEX_TYPE(arraytype))
1525 #define TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED(arraytype) \
1526 TYPE_LOW_BOUND_UNDEFINED(TYPE_INDEX_TYPE(arraytype))
1527
1528 #define TYPE_ARRAY_UPPER_BOUND_VALUE(arraytype) \
1529 (TYPE_HIGH_BOUND(TYPE_INDEX_TYPE((arraytype))))
1530
1531 #define TYPE_ARRAY_LOWER_BOUND_VALUE(arraytype) \
1532 (TYPE_LOW_BOUND(TYPE_INDEX_TYPE((arraytype))))
1533
1534 #define TYPE_ARRAY_BIT_STRIDE(arraytype) \
1535 (TYPE_BIT_STRIDE(TYPE_INDEX_TYPE((arraytype))))
1536
1537 /* C++ */
1538
1539 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1540 /* Do not call this, use TYPE_SELF_TYPE. */
1541 extern struct type *internal_type_self_type (struct type *);
1542 extern void set_type_self_type (struct type *, struct type *);
1543
1544 extern int internal_type_vptr_fieldno (struct type *);
1545 extern void set_type_vptr_fieldno (struct type *, int);
1546 extern struct type *internal_type_vptr_basetype (struct type *);
1547 extern void set_type_vptr_basetype (struct type *, struct type *);
1548 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1549 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1550
1551 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1552 #define TYPE_SPECIFIC_FIELD(thistype) \
1553 TYPE_MAIN_TYPE(thistype)->type_specific_field
1554 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1555 where we're trying to print an Ada array using the C language.
1556 In that case, there is no "cplus_stuff", but the C language assumes
1557 that there is. What we do, in that case, is pretend that there is
1558 an implicit one which is the default cplus stuff. */
1559 #define TYPE_CPLUS_SPECIFIC(thistype) \
1560 (!HAVE_CPLUS_STRUCT(thistype) \
1561 ? (struct cplus_struct_type*)&cplus_struct_default \
1562 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1563 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1564 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1565 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1566 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1567 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1568 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1569 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1570 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1571 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1572 #define TYPE_BASECLASS(thistype,index) TYPE_FIELD_TYPE(thistype, index)
1573 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1574 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1575 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1576 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1577 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1578 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1579
1580 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1581 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1582 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1583
1584 #define FIELD_TYPE(thisfld) ((thisfld).type)
1585 #define FIELD_NAME(thisfld) ((thisfld).name)
1586 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1587 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1588 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1589 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1590 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1591 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1592 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1593 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1594 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1595 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1596 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1597 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1598 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1599 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1600 #define SET_FIELD_PHYSNAME(thisfld, name) \
1601 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1602 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1603 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1604 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1605 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1606 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1607 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1608 FIELD_DWARF_BLOCK (thisfld) = (addr))
1609 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1610 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1611
1612 #define TYPE_FIELD(thistype, n) TYPE_MAIN_TYPE(thistype)->flds_bnds.fields[n]
1613 #define TYPE_FIELD_TYPE(thistype, n) FIELD_TYPE(TYPE_FIELD(thistype, n))
1614 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME(TYPE_FIELD(thistype, n))
1615 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND (TYPE_FIELD (thistype, n))
1616 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS (TYPE_FIELD (thistype, n))
1617 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL (TYPE_FIELD (thistype, n))
1618 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME (TYPE_FIELD (thistype, n))
1619 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR (TYPE_FIELD (thistype, n))
1620 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK (TYPE_FIELD (thistype, n))
1621 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL(TYPE_FIELD(thistype,n))
1622 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE(TYPE_FIELD(thistype,n))
1623 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE(TYPE_FIELD(thistype,n))!=0)
1624
1625 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1626 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1627 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1628 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1629 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1630 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1631 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1632 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1633 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1634 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1635 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1636 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1637 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1638 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1639 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1640 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1641 #define TYPE_FIELD_PRIVATE(thistype, n) \
1642 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1643 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1644 #define TYPE_FIELD_PROTECTED(thistype, n) \
1645 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1646 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1647 #define TYPE_FIELD_IGNORE(thistype, n) \
1648 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1649 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1650 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1651 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1652 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1653
1654 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1655 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1656 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1657 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1658 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1659
1660 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1661 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1662 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1663 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1664 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1665 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1666
1667 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1668 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1669 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1670 #define TYPE_FN_FIELD_ARGS(thisfn, n) TYPE_FIELDS ((thisfn)[n].type)
1671 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1672 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1673 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1674 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1675 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1676 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1677 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1678 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1679 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1680 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1681 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1682 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
1683 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
1684
1685 /* Accessors for typedefs defined by a class. */
1686 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1687 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1688 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1689 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1690 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1691 TYPE_TYPEDEF_FIELD (thistype, n).name
1692 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1693 TYPE_TYPEDEF_FIELD (thistype, n).type
1694 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1695 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1696 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1697 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1698 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1699 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1700
1701 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1702 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1703 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
1704 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
1705 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
1706 TYPE_NESTED_TYPES_FIELD (thistype, n).name
1707 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
1708 TYPE_NESTED_TYPES_FIELD (thistype, n).type
1709 #define TYPE_NESTED_TYPES_COUNT(thistype) \
1710 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
1711 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
1712 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
1713 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
1714 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
1715
1716 #define TYPE_IS_OPAQUE(thistype) \
1717 ((((thistype)->code () == TYPE_CODE_STRUCT) \
1718 || ((thistype)->code () == TYPE_CODE_UNION)) \
1719 && ((thistype)->num_fields () == 0) \
1720 && (!HAVE_CPLUS_STRUCT (thistype) \
1721 || TYPE_NFN_FIELDS (thistype) == 0) \
1722 && (TYPE_STUB (thistype) || !TYPE_STUB_SUPPORTED (thistype)))
1723
1724 /* * A helper macro that returns the name of a type or "unnamed type"
1725 if the type has no name. */
1726
1727 #define TYPE_SAFE_NAME(type) \
1728 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
1729
1730 /* * A helper macro that returns the name of an error type. If the
1731 type has a name, it is used; otherwise, a default is used. */
1732
1733 #define TYPE_ERROR_NAME(type) \
1734 (type->name () ? type->name () : _("<error type>"))
1735
1736 /* Given TYPE, return its floatformat. */
1737 const struct floatformat *floatformat_from_type (const struct type *type);
1738
1739 struct builtin_type
1740 {
1741 /* Integral types. */
1742
1743 /* Implicit size/sign (based on the architecture's ABI). */
1744 struct type *builtin_void;
1745 struct type *builtin_char;
1746 struct type *builtin_short;
1747 struct type *builtin_int;
1748 struct type *builtin_long;
1749 struct type *builtin_signed_char;
1750 struct type *builtin_unsigned_char;
1751 struct type *builtin_unsigned_short;
1752 struct type *builtin_unsigned_int;
1753 struct type *builtin_unsigned_long;
1754 struct type *builtin_half;
1755 struct type *builtin_float;
1756 struct type *builtin_double;
1757 struct type *builtin_long_double;
1758 struct type *builtin_complex;
1759 struct type *builtin_double_complex;
1760 struct type *builtin_string;
1761 struct type *builtin_bool;
1762 struct type *builtin_long_long;
1763 struct type *builtin_unsigned_long_long;
1764 struct type *builtin_decfloat;
1765 struct type *builtin_decdouble;
1766 struct type *builtin_declong;
1767
1768 /* "True" character types.
1769 We use these for the '/c' print format, because c_char is just a
1770 one-byte integral type, which languages less laid back than C
1771 will print as ... well, a one-byte integral type. */
1772 struct type *builtin_true_char;
1773 struct type *builtin_true_unsigned_char;
1774
1775 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1776 is for when an architecture needs to describe a register that has
1777 no size. */
1778 struct type *builtin_int0;
1779 struct type *builtin_int8;
1780 struct type *builtin_uint8;
1781 struct type *builtin_int16;
1782 struct type *builtin_uint16;
1783 struct type *builtin_int24;
1784 struct type *builtin_uint24;
1785 struct type *builtin_int32;
1786 struct type *builtin_uint32;
1787 struct type *builtin_int64;
1788 struct type *builtin_uint64;
1789 struct type *builtin_int128;
1790 struct type *builtin_uint128;
1791
1792 /* Wide character types. */
1793 struct type *builtin_char16;
1794 struct type *builtin_char32;
1795 struct type *builtin_wchar;
1796
1797 /* Pointer types. */
1798
1799 /* * `pointer to data' type. Some target platforms use an implicitly
1800 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1801 struct type *builtin_data_ptr;
1802
1803 /* * `pointer to function (returning void)' type. Harvard
1804 architectures mean that ABI function and code pointers are not
1805 interconvertible. Similarly, since ANSI, C standards have
1806 explicitly said that pointers to functions and pointers to data
1807 are not interconvertible --- that is, you can't cast a function
1808 pointer to void * and back, and expect to get the same value.
1809 However, all function pointer types are interconvertible, so void
1810 (*) () can server as a generic function pointer. */
1811
1812 struct type *builtin_func_ptr;
1813
1814 /* * `function returning pointer to function (returning void)' type.
1815 The final void return type is not significant for it. */
1816
1817 struct type *builtin_func_func;
1818
1819 /* Special-purpose types. */
1820
1821 /* * This type is used to represent a GDB internal function. */
1822
1823 struct type *internal_fn;
1824
1825 /* * This type is used to represent an xmethod. */
1826 struct type *xmethod;
1827 };
1828
1829 /* * Return the type table for the specified architecture. */
1830
1831 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
1832
1833 /* * Per-objfile types used by symbol readers. */
1834
1835 struct objfile_type
1836 {
1837 /* Basic types based on the objfile architecture. */
1838 struct type *builtin_void;
1839 struct type *builtin_char;
1840 struct type *builtin_short;
1841 struct type *builtin_int;
1842 struct type *builtin_long;
1843 struct type *builtin_long_long;
1844 struct type *builtin_signed_char;
1845 struct type *builtin_unsigned_char;
1846 struct type *builtin_unsigned_short;
1847 struct type *builtin_unsigned_int;
1848 struct type *builtin_unsigned_long;
1849 struct type *builtin_unsigned_long_long;
1850 struct type *builtin_half;
1851 struct type *builtin_float;
1852 struct type *builtin_double;
1853 struct type *builtin_long_double;
1854
1855 /* * This type is used to represent symbol addresses. */
1856 struct type *builtin_core_addr;
1857
1858 /* * This type represents a type that was unrecognized in symbol
1859 read-in. */
1860 struct type *builtin_error;
1861
1862 /* * Types used for symbols with no debug information. */
1863 struct type *nodebug_text_symbol;
1864 struct type *nodebug_text_gnu_ifunc_symbol;
1865 struct type *nodebug_got_plt_symbol;
1866 struct type *nodebug_data_symbol;
1867 struct type *nodebug_unknown_symbol;
1868 struct type *nodebug_tls_symbol;
1869 };
1870
1871 /* * Return the type table for the specified objfile. */
1872
1873 extern const struct objfile_type *objfile_type (struct objfile *objfile);
1874
1875 /* Explicit floating-point formats. See "floatformat.h". */
1876 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
1877 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
1878 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
1879 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
1880 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
1881 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
1882 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
1883 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
1884 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
1885 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
1886 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
1887 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
1888
1889
1890 /* Allocate space for storing data associated with a particular
1891 type. We ensure that the space is allocated using the same
1892 mechanism that was used to allocate the space for the type
1893 structure itself. I.e. if the type is on an objfile's
1894 objfile_obstack, then the space for data associated with that type
1895 will also be allocated on the objfile_obstack. If the type is
1896 associated with a gdbarch, then the space for data associated with that
1897 type will also be allocated on the gdbarch_obstack.
1898
1899 If a type is not associated with neither an objfile or a gdbarch then
1900 you should not use this macro to allocate space for data, instead you
1901 should call xmalloc directly, and ensure the memory is correctly freed
1902 when it is no longer needed. */
1903
1904 #define TYPE_ALLOC(t,size) \
1905 (obstack_alloc ((TYPE_OBJFILE_OWNED (t) \
1906 ? &TYPE_OBJFILE (t)->objfile_obstack \
1907 : gdbarch_obstack (TYPE_OWNER (t).gdbarch)), \
1908 size))
1909
1910
1911 /* See comment on TYPE_ALLOC. */
1912
1913 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
1914
1915 /* Use alloc_type to allocate a type owned by an objfile. Use
1916 alloc_type_arch to allocate a type owned by an architecture. Use
1917 alloc_type_copy to allocate a type with the same owner as a
1918 pre-existing template type, no matter whether objfile or
1919 gdbarch. */
1920 extern struct type *alloc_type (struct objfile *);
1921 extern struct type *alloc_type_arch (struct gdbarch *);
1922 extern struct type *alloc_type_copy (const struct type *);
1923
1924 /* * Return the type's architecture. For types owned by an
1925 architecture, that architecture is returned. For types owned by an
1926 objfile, that objfile's architecture is returned. */
1927
1928 extern struct gdbarch *get_type_arch (const struct type *);
1929
1930 /* * This returns the target type (or NULL) of TYPE, also skipping
1931 past typedefs. */
1932
1933 extern struct type *get_target_type (struct type *type);
1934
1935 /* Return the equivalent of TYPE_LENGTH, but in number of target
1936 addressable memory units of the associated gdbarch instead of bytes. */
1937
1938 extern unsigned int type_length_units (struct type *type);
1939
1940 /* * Helper function to construct objfile-owned types. */
1941
1942 extern struct type *init_type (struct objfile *, enum type_code, int,
1943 const char *);
1944 extern struct type *init_integer_type (struct objfile *, int, int,
1945 const char *);
1946 extern struct type *init_character_type (struct objfile *, int, int,
1947 const char *);
1948 extern struct type *init_boolean_type (struct objfile *, int, int,
1949 const char *);
1950 extern struct type *init_float_type (struct objfile *, int, const char *,
1951 const struct floatformat **,
1952 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
1953 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
1954 extern struct type *init_complex_type (const char *, struct type *);
1955 extern struct type *init_pointer_type (struct objfile *, int, const char *,
1956 struct type *);
1957
1958 /* Helper functions to construct architecture-owned types. */
1959 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
1960 const char *);
1961 extern struct type *arch_integer_type (struct gdbarch *, int, int,
1962 const char *);
1963 extern struct type *arch_character_type (struct gdbarch *, int, int,
1964 const char *);
1965 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
1966 const char *);
1967 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
1968 const struct floatformat **);
1969 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
1970 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
1971 struct type *);
1972
1973 /* Helper functions to construct a struct or record type. An
1974 initially empty type is created using arch_composite_type().
1975 Fields are then added using append_composite_type_field*(). A union
1976 type has its size set to the largest field. A struct type has each
1977 field packed against the previous. */
1978
1979 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
1980 const char *name, enum type_code code);
1981 extern void append_composite_type_field (struct type *t, const char *name,
1982 struct type *field);
1983 extern void append_composite_type_field_aligned (struct type *t,
1984 const char *name,
1985 struct type *field,
1986 int alignment);
1987 struct field *append_composite_type_field_raw (struct type *t, const char *name,
1988 struct type *field);
1989
1990 /* Helper functions to construct a bit flags type. An initially empty
1991 type is created using arch_flag_type(). Flags are then added using
1992 append_flag_type_field() and append_flag_type_flag(). */
1993 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
1994 const char *name, int bit);
1995 extern void append_flags_type_field (struct type *type,
1996 int start_bitpos, int nr_bits,
1997 struct type *field_type, const char *name);
1998 extern void append_flags_type_flag (struct type *type, int bitpos,
1999 const char *name);
2000
2001 extern void make_vector_type (struct type *array_type);
2002 extern struct type *init_vector_type (struct type *elt_type, int n);
2003
2004 extern struct type *lookup_reference_type (struct type *, enum type_code);
2005 extern struct type *lookup_lvalue_reference_type (struct type *);
2006 extern struct type *lookup_rvalue_reference_type (struct type *);
2007
2008
2009 extern struct type *make_reference_type (struct type *, struct type **,
2010 enum type_code);
2011
2012 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2013
2014 extern struct type *make_restrict_type (struct type *);
2015
2016 extern struct type *make_unqualified_type (struct type *);
2017
2018 extern struct type *make_atomic_type (struct type *);
2019
2020 extern void replace_type (struct type *, struct type *);
2021
2022 extern int address_space_name_to_int (struct gdbarch *, const char *);
2023
2024 extern const char *address_space_int_to_name (struct gdbarch *, int);
2025
2026 extern struct type *make_type_with_address_space (struct type *type,
2027 int space_identifier);
2028
2029 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2030
2031 extern struct type *lookup_methodptr_type (struct type *);
2032
2033 extern void smash_to_method_type (struct type *type, struct type *self_type,
2034 struct type *to_type, struct field *args,
2035 int nargs, int varargs);
2036
2037 extern void smash_to_memberptr_type (struct type *, struct type *,
2038 struct type *);
2039
2040 extern void smash_to_methodptr_type (struct type *, struct type *);
2041
2042 extern struct type *allocate_stub_method (struct type *);
2043
2044 extern const char *type_name_or_error (struct type *type);
2045
2046 struct struct_elt
2047 {
2048 /* The field of the element, or NULL if no element was found. */
2049 struct field *field;
2050
2051 /* The bit offset of the element in the parent structure. */
2052 LONGEST offset;
2053 };
2054
2055 /* Given a type TYPE, lookup the field and offset of the component named
2056 NAME.
2057
2058 TYPE can be either a struct or union, or a pointer or reference to
2059 a struct or union. If it is a pointer or reference, its target
2060 type is automatically used. Thus '.' and '->' are interchangable,
2061 as specified for the definitions of the expression element types
2062 STRUCTOP_STRUCT and STRUCTOP_PTR.
2063
2064 If NOERR is nonzero, the returned structure will have field set to
2065 NULL if there is no component named NAME.
2066
2067 If the component NAME is a field in an anonymous substructure of
2068 TYPE, the returned offset is a "global" offset relative to TYPE
2069 rather than an offset within the substructure. */
2070
2071 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2072
2073 /* Given a type TYPE, lookup the type of the component named NAME.
2074
2075 TYPE can be either a struct or union, or a pointer or reference to
2076 a struct or union. If it is a pointer or reference, its target
2077 type is automatically used. Thus '.' and '->' are interchangable,
2078 as specified for the definitions of the expression element types
2079 STRUCTOP_STRUCT and STRUCTOP_PTR.
2080
2081 If NOERR is nonzero, return NULL if there is no component named
2082 NAME. */
2083
2084 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2085
2086 extern struct type *make_pointer_type (struct type *, struct type **);
2087
2088 extern struct type *lookup_pointer_type (struct type *);
2089
2090 extern struct type *make_function_type (struct type *, struct type **);
2091
2092 extern struct type *lookup_function_type (struct type *);
2093
2094 extern struct type *lookup_function_type_with_arguments (struct type *,
2095 int,
2096 struct type **);
2097
2098 extern struct type *create_static_range_type (struct type *, struct type *,
2099 LONGEST, LONGEST);
2100
2101
2102 extern struct type *create_array_type_with_stride
2103 (struct type *, struct type *, struct type *,
2104 struct dynamic_prop *, unsigned int);
2105
2106 extern struct type *create_range_type (struct type *, struct type *,
2107 const struct dynamic_prop *,
2108 const struct dynamic_prop *,
2109 LONGEST);
2110
2111 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2112 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2113 stride. */
2114
2115 extern struct type * create_range_type_with_stride
2116 (struct type *result_type, struct type *index_type,
2117 const struct dynamic_prop *low_bound,
2118 const struct dynamic_prop *high_bound, LONGEST bias,
2119 const struct dynamic_prop *stride, bool byte_stride_p);
2120
2121 extern struct type *create_array_type (struct type *, struct type *,
2122 struct type *);
2123
2124 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2125
2126 extern struct type *create_string_type (struct type *, struct type *,
2127 struct type *);
2128 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2129
2130 extern struct type *create_set_type (struct type *, struct type *);
2131
2132 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2133 const char *);
2134
2135 extern struct type *lookup_signed_typename (const struct language_defn *,
2136 const char *);
2137
2138 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2139
2140 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2141
2142 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2143 ADDR specifies the location of the variable the type is bound to.
2144 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2145 static properties is returned. */
2146 extern struct type *resolve_dynamic_type
2147 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2148 CORE_ADDR addr);
2149
2150 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2151 extern int is_dynamic_type (struct type *type);
2152
2153 extern struct type *check_typedef (struct type *);
2154
2155 extern void check_stub_method_group (struct type *, int);
2156
2157 extern char *gdb_mangle_name (struct type *, int, int);
2158
2159 extern struct type *lookup_typename (const struct language_defn *,
2160 const char *, const struct block *, int);
2161
2162 extern struct type *lookup_template_type (const char *, struct type *,
2163 const struct block *);
2164
2165 extern int get_vptr_fieldno (struct type *, struct type **);
2166
2167 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
2168
2169 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
2170 LONGEST *high_bound);
2171
2172 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
2173
2174 extern int class_types_same_p (const struct type *, const struct type *);
2175
2176 extern int is_ancestor (struct type *, struct type *);
2177
2178 extern int is_public_ancestor (struct type *, struct type *);
2179
2180 extern int is_unique_ancestor (struct type *, struct value *);
2181
2182 /* Overload resolution */
2183
2184 /* * Badness if parameter list length doesn't match arg list length. */
2185 extern const struct rank LENGTH_MISMATCH_BADNESS;
2186
2187 /* * Dummy badness value for nonexistent parameter positions. */
2188 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2189 /* * Badness if no conversion among types. */
2190 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2191
2192 /* * Badness of an exact match. */
2193 extern const struct rank EXACT_MATCH_BADNESS;
2194
2195 /* * Badness of integral promotion. */
2196 extern const struct rank INTEGER_PROMOTION_BADNESS;
2197 /* * Badness of floating promotion. */
2198 extern const struct rank FLOAT_PROMOTION_BADNESS;
2199 /* * Badness of converting a derived class pointer
2200 to a base class pointer. */
2201 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2202 /* * Badness of integral conversion. */
2203 extern const struct rank INTEGER_CONVERSION_BADNESS;
2204 /* * Badness of floating conversion. */
2205 extern const struct rank FLOAT_CONVERSION_BADNESS;
2206 /* * Badness of integer<->floating conversions. */
2207 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2208 /* * Badness of conversion of pointer to void pointer. */
2209 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2210 /* * Badness of conversion to boolean. */
2211 extern const struct rank BOOL_CONVERSION_BADNESS;
2212 /* * Badness of converting derived to base class. */
2213 extern const struct rank BASE_CONVERSION_BADNESS;
2214 /* * Badness of converting from non-reference to reference. Subrank
2215 is the type of reference conversion being done. */
2216 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2217 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2218 /* * Conversion to rvalue reference. */
2219 #define REFERENCE_CONVERSION_RVALUE 1
2220 /* * Conversion to const lvalue reference. */
2221 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2222
2223 /* * Badness of converting integer 0 to NULL pointer. */
2224 extern const struct rank NULL_POINTER_CONVERSION;
2225 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2226 being done. */
2227 extern const struct rank CV_CONVERSION_BADNESS;
2228 #define CV_CONVERSION_CONST 1
2229 #define CV_CONVERSION_VOLATILE 2
2230
2231 /* Non-standard conversions allowed by the debugger */
2232
2233 /* * Converting a pointer to an int is usually OK. */
2234 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2235
2236 /* * Badness of converting a (non-zero) integer constant
2237 to a pointer. */
2238 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2239
2240 extern struct rank sum_ranks (struct rank a, struct rank b);
2241 extern int compare_ranks (struct rank a, struct rank b);
2242
2243 extern int compare_badness (const badness_vector &,
2244 const badness_vector &);
2245
2246 extern badness_vector rank_function (gdb::array_view<type *> parms,
2247 gdb::array_view<value *> args);
2248
2249 extern struct rank rank_one_type (struct type *, struct type *,
2250 struct value *);
2251
2252 extern void recursive_dump_type (struct type *, int);
2253
2254 extern int field_is_static (struct field *);
2255
2256 /* printcmd.c */
2257
2258 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2259 const struct value_print_options *,
2260 int, struct ui_file *);
2261
2262 extern int can_dereference (struct type *);
2263
2264 extern int is_integral_type (struct type *);
2265
2266 extern int is_floating_type (struct type *);
2267
2268 extern int is_scalar_type (struct type *type);
2269
2270 extern int is_scalar_type_recursive (struct type *);
2271
2272 extern int class_or_union_p (const struct type *);
2273
2274 extern void maintenance_print_type (const char *, int);
2275
2276 extern htab_t create_copied_types_hash (struct objfile *objfile);
2277
2278 extern struct type *copy_type_recursive (struct objfile *objfile,
2279 struct type *type,
2280 htab_t copied_types);
2281
2282 extern struct type *copy_type (const struct type *type);
2283
2284 extern bool types_equal (struct type *, struct type *);
2285
2286 extern bool types_deeply_equal (struct type *, struct type *);
2287
2288 extern int type_not_allocated (const struct type *type);
2289
2290 extern int type_not_associated (const struct type *type);
2291
2292 /* * When the type includes explicit byte ordering, return that.
2293 Otherwise, the byte ordering from gdbarch_byte_order for
2294 get_type_arch is returned. */
2295
2296 extern enum bfd_endian type_byte_order (const struct type *type);
2297
2298 /* A flag to enable printing of debugging information of C++
2299 overloading. */
2300
2301 extern unsigned int overload_debug;
2302
2303 #endif /* GDBTYPES_H */
This page took 0.139353 seconds and 5 git commands to generate.