gdb: add type::num_fields / type::set_num_fields
[deliverable/binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2020 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/offset-type.h"
50 #include "gdbsupport/enum-flags.h"
51 #include "gdbsupport/underlying.h"
52 #include "gdbsupport/print-utils.h"
53 #include "dwarf2.h"
54 #include "gdb_obstack.h"
55
56 /* Forward declarations for prototypes. */
57 struct field;
58 struct block;
59 struct value_print_options;
60 struct language_defn;
61
62 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
63 are already DWARF-specific. */
64
65 /* * Offset relative to the start of its containing CU (compilation
66 unit). */
67 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
68
69 /* * Offset relative to the start of its .debug_info or .debug_types
70 section. */
71 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
72
73 static inline char *
74 sect_offset_str (sect_offset offset)
75 {
76 return hex_string (to_underlying (offset));
77 }
78
79 /* Some macros for char-based bitfields. */
80
81 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
82 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
83 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
84 #define B_TYPE unsigned char
85 #define B_BYTES(x) ( 1 + ((x)>>3) )
86 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
87
88 /* * Different kinds of data types are distinguished by the `code'
89 field. */
90
91 enum type_code
92 {
93 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
94 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
95 TYPE_CODE_PTR, /**< Pointer type */
96
97 /* * Array type with lower & upper bounds.
98
99 Regardless of the language, GDB represents multidimensional
100 array types the way C does: as arrays of arrays. So an
101 instance of a GDB array type T can always be seen as a series
102 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
103 memory.
104
105 Row-major languages like C lay out multi-dimensional arrays so
106 that incrementing the rightmost index in a subscripting
107 expression results in the smallest change in the address of the
108 element referred to. Column-major languages like Fortran lay
109 them out so that incrementing the leftmost index results in the
110 smallest change.
111
112 This means that, in column-major languages, working our way
113 from type to target type corresponds to working through indices
114 from right to left, not left to right. */
115 TYPE_CODE_ARRAY,
116
117 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
118 TYPE_CODE_UNION, /**< C union or Pascal variant part */
119 TYPE_CODE_ENUM, /**< Enumeration type */
120 TYPE_CODE_FLAGS, /**< Bit flags type */
121 TYPE_CODE_FUNC, /**< Function type */
122 TYPE_CODE_INT, /**< Integer type */
123
124 /* * Floating type. This is *NOT* a complex type. */
125 TYPE_CODE_FLT,
126
127 /* * Void type. The length field specifies the length (probably
128 always one) which is used in pointer arithmetic involving
129 pointers to this type, but actually dereferencing such a
130 pointer is invalid; a void type has no length and no actual
131 representation in memory or registers. A pointer to a void
132 type is a generic pointer. */
133 TYPE_CODE_VOID,
134
135 TYPE_CODE_SET, /**< Pascal sets */
136 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
137
138 /* * A string type which is like an array of character but prints
139 differently. It does not contain a length field as Pascal
140 strings (for many Pascals, anyway) do; if we want to deal with
141 such strings, we should use a new type code. */
142 TYPE_CODE_STRING,
143
144 /* * Unknown type. The length field is valid if we were able to
145 deduce that much about the type, or 0 if we don't even know
146 that. */
147 TYPE_CODE_ERROR,
148
149 /* C++ */
150 TYPE_CODE_METHOD, /**< Method type */
151
152 /* * Pointer-to-member-function type. This describes how to access a
153 particular member function of a class (possibly a virtual
154 member function). The representation may vary between different
155 C++ ABIs. */
156 TYPE_CODE_METHODPTR,
157
158 /* * Pointer-to-member type. This is the offset within a class to
159 some particular data member. The only currently supported
160 representation uses an unbiased offset, with -1 representing
161 NULL; this is used by the Itanium C++ ABI (used by GCC on all
162 platforms). */
163 TYPE_CODE_MEMBERPTR,
164
165 TYPE_CODE_REF, /**< C++ Reference types */
166
167 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
168
169 TYPE_CODE_CHAR, /**< *real* character type */
170
171 /* * Boolean type. 0 is false, 1 is true, and other values are
172 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
173 TYPE_CODE_BOOL,
174
175 /* Fortran */
176 TYPE_CODE_COMPLEX, /**< Complex float */
177
178 TYPE_CODE_TYPEDEF,
179
180 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
181
182 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
183
184 TYPE_CODE_MODULE, /**< Fortran module. */
185
186 /* * Internal function type. */
187 TYPE_CODE_INTERNAL_FUNCTION,
188
189 /* * Methods implemented in extension languages. */
190 TYPE_CODE_XMETHOD
191 };
192
193 /* * Some bits for the type's instance_flags word. See the macros
194 below for documentation on each bit. */
195
196 enum type_instance_flag_value : unsigned
197 {
198 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
199 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
200 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
201 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
202 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
203 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
204 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
205 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
206 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
207 };
208
209 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
210
211 /* * Unsigned integer type. If this is not set for a TYPE_CODE_INT,
212 the type is signed (unless TYPE_NOSIGN (below) is set). */
213
214 #define TYPE_UNSIGNED(t) (TYPE_MAIN_TYPE (t)->flag_unsigned)
215
216 /* * No sign for this type. In C++, "char", "signed char", and
217 "unsigned char" are distinct types; so we need an extra flag to
218 indicate the absence of a sign! */
219
220 #define TYPE_NOSIGN(t) (TYPE_MAIN_TYPE (t)->flag_nosign)
221
222 /* * A compiler may supply dwarf instrumentation
223 that indicates the desired endian interpretation of the variable
224 differs from the native endian representation. */
225
226 #define TYPE_ENDIANITY_NOT_DEFAULT(t) (TYPE_MAIN_TYPE (t)->flag_endianity_not_default)
227
228 /* * This appears in a type's flags word if it is a stub type (e.g.,
229 if someone referenced a type that wasn't defined in a source file
230 via (struct sir_not_appearing_in_this_film *)). */
231
232 #define TYPE_STUB(t) (TYPE_MAIN_TYPE (t)->flag_stub)
233
234 /* * The target type of this type is a stub type, and this type needs
235 to be updated if it gets un-stubbed in check_typedef. Used for
236 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
237 based on the TYPE_LENGTH of the target type. Also, set for
238 TYPE_CODE_TYPEDEF. */
239
240 #define TYPE_TARGET_STUB(t) (TYPE_MAIN_TYPE (t)->flag_target_stub)
241
242 /* * This is a function type which appears to have a prototype. We
243 need this for function calls in order to tell us if it's necessary
244 to coerce the args, or to just do the standard conversions. This
245 is used with a short field. */
246
247 #define TYPE_PROTOTYPED(t) (TYPE_MAIN_TYPE (t)->flag_prototyped)
248
249 /* * FIXME drow/2002-06-03: Only used for methods, but applies as well
250 to functions. */
251
252 #define TYPE_VARARGS(t) (TYPE_MAIN_TYPE (t)->flag_varargs)
253
254 /* * Identify a vector type. Gcc is handling this by adding an extra
255 attribute to the array type. We slurp that in as a new flag of a
256 type. This is used only in dwarf2read.c. */
257 #define TYPE_VECTOR(t) (TYPE_MAIN_TYPE (t)->flag_vector)
258
259 /* * The debugging formats (especially STABS) do not contain enough
260 information to represent all Ada types---especially those whose
261 size depends on dynamic quantities. Therefore, the GNAT Ada
262 compiler includes extra information in the form of additional type
263 definitions connected by naming conventions. This flag indicates
264 that the type is an ordinary (unencoded) GDB type that has been
265 created from the necessary run-time information, and does not need
266 further interpretation. Optionally marks ordinary, fixed-size GDB
267 type. */
268
269 #define TYPE_FIXED_INSTANCE(t) (TYPE_MAIN_TYPE (t)->flag_fixed_instance)
270
271 /* * This debug target supports TYPE_STUB(t). In the unsupported case
272 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
273 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
274 guessed the TYPE_STUB(t) value (see dwarfread.c). */
275
276 #define TYPE_STUB_SUPPORTED(t) (TYPE_MAIN_TYPE (t)->flag_stub_supported)
277
278 /* * Not textual. By default, GDB treats all single byte integers as
279 characters (or elements of strings) unless this flag is set. */
280
281 #define TYPE_NOTTEXT(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
282
283 /* * Used only for TYPE_CODE_FUNC where it specifies the real function
284 address is returned by this function call. TYPE_TARGET_TYPE
285 determines the final returned function type to be presented to
286 user. */
287
288 #define TYPE_GNU_IFUNC(t) (TYPE_MAIN_TYPE (t)->flag_gnu_ifunc)
289
290 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
291 the objfile retrieved as TYPE_OBJFILE. Otherwise, the type is
292 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
293
294 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
295 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
296 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
297
298 /* * True if this type was declared using the "class" keyword. This is
299 only valid for C++ structure and enum types. If false, a structure
300 was declared as a "struct"; if true it was declared "class". For
301 enum types, this is true when "enum class" or "enum struct" was
302 used to declare the type.. */
303
304 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
305
306 /* * True if this type is a "flag" enum. A flag enum is one where all
307 the values are pairwise disjoint when "and"ed together. This
308 affects how enum values are printed. */
309
310 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
311
312 /* * Constant type. If this is set, the corresponding type has a
313 const modifier. */
314
315 #define TYPE_CONST(t) ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST) != 0)
316
317 /* * Volatile type. If this is set, the corresponding type has a
318 volatile modifier. */
319
320 #define TYPE_VOLATILE(t) \
321 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
322
323 /* * Restrict type. If this is set, the corresponding type has a
324 restrict modifier. */
325
326 #define TYPE_RESTRICT(t) \
327 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
328
329 /* * Atomic type. If this is set, the corresponding type has an
330 _Atomic modifier. */
331
332 #define TYPE_ATOMIC(t) \
333 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
334
335 /* * True if this type represents either an lvalue or lvalue reference type. */
336
337 #define TYPE_IS_REFERENCE(t) \
338 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
339
340 /* * True if this type is allocatable. */
341 #define TYPE_IS_ALLOCATABLE(t) \
342 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
343
344 /* * True if this type has variant parts. */
345 #define TYPE_HAS_VARIANT_PARTS(t) \
346 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
347
348 /* * True if this type has a dynamic length. */
349 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
350 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
351
352 /* * Instruction-space delimited type. This is for Harvard architectures
353 which have separate instruction and data address spaces (and perhaps
354 others).
355
356 GDB usually defines a flat address space that is a superset of the
357 architecture's two (or more) address spaces, but this is an extension
358 of the architecture's model.
359
360 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
361 resides in instruction memory, even if its address (in the extended
362 flat address space) does not reflect this.
363
364 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
365 corresponding type resides in the data memory space, even if
366 this is not indicated by its (flat address space) address.
367
368 If neither flag is set, the default space for functions / methods
369 is instruction space, and for data objects is data memory. */
370
371 #define TYPE_CODE_SPACE(t) \
372 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
373
374 #define TYPE_DATA_SPACE(t) \
375 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
376
377 /* * Address class flags. Some environments provide for pointers
378 whose size is different from that of a normal pointer or address
379 types where the bits are interpreted differently than normal
380 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
381 target specific ways to represent these different types of address
382 classes. */
383
384 #define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
385 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
386 #define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
387 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
388 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
389 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
390 #define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
391 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
392
393 /* * Information about a single discriminant. */
394
395 struct discriminant_range
396 {
397 /* * The range of values for the variant. This is an inclusive
398 range. */
399 ULONGEST low, high;
400
401 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
402 is true if this should be an unsigned comparison; false for
403 signed. */
404 bool contains (ULONGEST value, bool is_unsigned) const
405 {
406 if (is_unsigned)
407 return value >= low && value <= high;
408 LONGEST valuel = (LONGEST) value;
409 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
410 }
411 };
412
413 struct variant_part;
414
415 /* * A single variant. A variant has a list of discriminant values.
416 When the discriminator matches one of these, the variant is
417 enabled. Each variant controls zero or more fields; and may also
418 control other variant parts as well. This struct corresponds to
419 DW_TAG_variant in DWARF. */
420
421 struct variant : allocate_on_obstack
422 {
423 /* * The discriminant ranges for this variant. */
424 gdb::array_view<discriminant_range> discriminants;
425
426 /* * The fields controlled by this variant. This is inclusive on
427 the low end and exclusive on the high end. A variant may not
428 control any fields, in which case the two values will be equal.
429 These are indexes into the type's array of fields. */
430 int first_field;
431 int last_field;
432
433 /* * Variant parts controlled by this variant. */
434 gdb::array_view<variant_part> parts;
435
436 /* * Return true if this is the default variant. The default
437 variant can be recognized because it has no associated
438 discriminants. */
439 bool is_default () const
440 {
441 return discriminants.empty ();
442 }
443
444 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
445 if this should be an unsigned comparison; false for signed. */
446 bool matches (ULONGEST value, bool is_unsigned) const;
447 };
448
449 /* * A variant part. Each variant part has an optional discriminant
450 and holds an array of variants. This struct corresponds to
451 DW_TAG_variant_part in DWARF. */
452
453 struct variant_part : allocate_on_obstack
454 {
455 /* * The index of the discriminant field in the outer type. This is
456 an index into the type's array of fields. If this is -1, there
457 is no discriminant, and only the default variant can be
458 considered to be selected. */
459 int discriminant_index;
460
461 /* * True if this discriminant is unsigned; false if signed. This
462 comes from the type of the discriminant. */
463 bool is_unsigned;
464
465 /* * The variants that are controlled by this variant part. Note
466 that these will always be sorted by field number. */
467 gdb::array_view<variant> variants;
468 };
469
470
471 enum dynamic_prop_kind
472 {
473 PROP_UNDEFINED, /* Not defined. */
474 PROP_CONST, /* Constant. */
475 PROP_ADDR_OFFSET, /* Address offset. */
476 PROP_LOCEXPR, /* Location expression. */
477 PROP_LOCLIST, /* Location list. */
478 PROP_VARIANT_PARTS, /* Variant parts. */
479 PROP_TYPE, /* Type. */
480 };
481
482 union dynamic_prop_data
483 {
484 /* Storage for constant property. */
485
486 LONGEST const_val;
487
488 /* Storage for dynamic property. */
489
490 void *baton;
491
492 /* Storage of variant parts for a type. A type with variant parts
493 has all its fields "linearized" -- stored in a single field
494 array, just as if they had all been declared that way. The
495 variant parts are attached via a dynamic property, and then are
496 used to control which fields end up in the final type during
497 dynamic type resolution. */
498
499 const gdb::array_view<variant_part> *variant_parts;
500
501 /* Once a variant type is resolved, we may want to be able to go
502 from the resolved type to the original type. In this case we
503 rewrite the property's kind and set this field. */
504
505 struct type *original_type;
506 };
507
508 /* * Used to store a dynamic property. */
509
510 struct dynamic_prop
511 {
512 /* Determine which field of the union dynamic_prop.data is used. */
513 enum dynamic_prop_kind kind;
514
515 /* Storage for dynamic or static value. */
516 union dynamic_prop_data data;
517 };
518
519 /* Compare two dynamic_prop objects for equality. dynamic_prop
520 instances are equal iff they have the same type and storage. */
521 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
522
523 /* Compare two dynamic_prop objects for inequality. */
524 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
525 {
526 return !(l == r);
527 }
528
529 /* * Define a type's dynamic property node kind. */
530 enum dynamic_prop_node_kind
531 {
532 /* A property providing a type's data location.
533 Evaluating this field yields to the location of an object's data. */
534 DYN_PROP_DATA_LOCATION,
535
536 /* A property representing DW_AT_allocated. The presence of this attribute
537 indicates that the object of the type can be allocated/deallocated. */
538 DYN_PROP_ALLOCATED,
539
540 /* A property representing DW_AT_associated. The presence of this attribute
541 indicated that the object of the type can be associated. */
542 DYN_PROP_ASSOCIATED,
543
544 /* A property providing an array's byte stride. */
545 DYN_PROP_BYTE_STRIDE,
546
547 /* A property holding variant parts. */
548 DYN_PROP_VARIANT_PARTS,
549
550 /* A property holding the size of the type. */
551 DYN_PROP_BYTE_SIZE,
552 };
553
554 /* * List for dynamic type attributes. */
555 struct dynamic_prop_list
556 {
557 /* The kind of dynamic prop in this node. */
558 enum dynamic_prop_node_kind prop_kind;
559
560 /* The dynamic property itself. */
561 struct dynamic_prop prop;
562
563 /* A pointer to the next dynamic property. */
564 struct dynamic_prop_list *next;
565 };
566
567 /* * Determine which field of the union main_type.fields[x].loc is
568 used. */
569
570 enum field_loc_kind
571 {
572 FIELD_LOC_KIND_BITPOS, /**< bitpos */
573 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
574 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
575 FIELD_LOC_KIND_PHYSNAME, /**< physname */
576 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
577 };
578
579 /* * A discriminant to determine which field in the
580 main_type.type_specific union is being used, if any.
581
582 For types such as TYPE_CODE_FLT, the use of this
583 discriminant is really redundant, as we know from the type code
584 which field is going to be used. As such, it would be possible to
585 reduce the size of this enum in order to save a bit or two for
586 other fields of struct main_type. But, since we still have extra
587 room , and for the sake of clarity and consistency, we treat all fields
588 of the union the same way. */
589
590 enum type_specific_kind
591 {
592 TYPE_SPECIFIC_NONE,
593 TYPE_SPECIFIC_CPLUS_STUFF,
594 TYPE_SPECIFIC_GNAT_STUFF,
595 TYPE_SPECIFIC_FLOATFORMAT,
596 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
597 TYPE_SPECIFIC_FUNC,
598 TYPE_SPECIFIC_SELF_TYPE
599 };
600
601 union type_owner
602 {
603 struct objfile *objfile;
604 struct gdbarch *gdbarch;
605 };
606
607 union field_location
608 {
609 /* * Position of this field, counting in bits from start of
610 containing structure. For big-endian targets, it is the bit
611 offset to the MSB. For little-endian targets, it is the bit
612 offset to the LSB. */
613
614 LONGEST bitpos;
615
616 /* * Enum value. */
617 LONGEST enumval;
618
619 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
620 physaddr is the location (in the target) of the static
621 field. Otherwise, physname is the mangled label of the
622 static field. */
623
624 CORE_ADDR physaddr;
625 const char *physname;
626
627 /* * The field location can be computed by evaluating the
628 following DWARF block. Its DATA is allocated on
629 objfile_obstack - no CU load is needed to access it. */
630
631 struct dwarf2_locexpr_baton *dwarf_block;
632 };
633
634 struct field
635 {
636 union field_location loc;
637
638 /* * For a function or member type, this is 1 if the argument is
639 marked artificial. Artificial arguments should not be shown
640 to the user. For TYPE_CODE_RANGE it is set if the specific
641 bound is not defined. */
642
643 unsigned int artificial : 1;
644
645 /* * Discriminant for union field_location. */
646
647 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
648
649 /* * Size of this field, in bits, or zero if not packed.
650 If non-zero in an array type, indicates the element size in
651 bits (used only in Ada at the moment).
652 For an unpacked field, the field's type's length
653 says how many bytes the field occupies. */
654
655 unsigned int bitsize : 28;
656
657 /* * In a struct or union type, type of this field.
658 - In a function or member type, type of this argument.
659 - In an array type, the domain-type of the array. */
660
661 struct type *type;
662
663 /* * Name of field, value or argument.
664 NULL for range bounds, array domains, and member function
665 arguments. */
666
667 const char *name;
668 };
669
670 struct range_bounds
671 {
672 /* * Low bound of range. */
673
674 struct dynamic_prop low;
675
676 /* * High bound of range. */
677
678 struct dynamic_prop high;
679
680 /* The stride value for this range. This can be stored in bits or bytes
681 based on the value of BYTE_STRIDE_P. It is optional to have a stride
682 value, if this range has no stride value defined then this will be set
683 to the constant zero. */
684
685 struct dynamic_prop stride;
686
687 /* * The bias. Sometimes a range value is biased before storage.
688 The bias is added to the stored bits to form the true value. */
689
690 LONGEST bias;
691
692 /* True if HIGH range bound contains the number of elements in the
693 subrange. This affects how the final high bound is computed. */
694
695 unsigned int flag_upper_bound_is_count : 1;
696
697 /* True if LOW or/and HIGH are resolved into a static bound from
698 a dynamic one. */
699
700 unsigned int flag_bound_evaluated : 1;
701
702 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
703
704 unsigned int flag_is_byte_stride : 1;
705 };
706
707 /* Compare two range_bounds objects for equality. Simply does
708 memberwise comparison. */
709 extern bool operator== (const range_bounds &l, const range_bounds &r);
710
711 /* Compare two range_bounds objects for inequality. */
712 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
713 {
714 return !(l == r);
715 }
716
717 union type_specific
718 {
719 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
720 point to cplus_struct_default, a default static instance of a
721 struct cplus_struct_type. */
722
723 struct cplus_struct_type *cplus_stuff;
724
725 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
726 provides additional information. */
727
728 struct gnat_aux_type *gnat_stuff;
729
730 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
731 floatformat object that describes the floating-point value
732 that resides within the type. */
733
734 const struct floatformat *floatformat;
735
736 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
737
738 struct func_type *func_stuff;
739
740 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
741 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
742 is a member of. */
743
744 struct type *self_type;
745 };
746
747 /* * Main structure representing a type in GDB.
748
749 This structure is space-critical. Its layout has been tweaked to
750 reduce the space used. */
751
752 struct main_type
753 {
754 /* * Code for kind of type. */
755
756 ENUM_BITFIELD(type_code) code : 8;
757
758 /* * Flags about this type. These fields appear at this location
759 because they packs nicely here. See the TYPE_* macros for
760 documentation about these fields. */
761
762 unsigned int flag_unsigned : 1;
763 unsigned int flag_nosign : 1;
764 unsigned int flag_stub : 1;
765 unsigned int flag_target_stub : 1;
766 unsigned int flag_prototyped : 1;
767 unsigned int flag_varargs : 1;
768 unsigned int flag_vector : 1;
769 unsigned int flag_stub_supported : 1;
770 unsigned int flag_gnu_ifunc : 1;
771 unsigned int flag_fixed_instance : 1;
772 unsigned int flag_objfile_owned : 1;
773 unsigned int flag_endianity_not_default : 1;
774
775 /* * True if this type was declared with "class" rather than
776 "struct". */
777
778 unsigned int flag_declared_class : 1;
779
780 /* * True if this is an enum type with disjoint values. This
781 affects how the enum is printed. */
782
783 unsigned int flag_flag_enum : 1;
784
785 /* * A discriminant telling us which field of the type_specific
786 union is being used for this type, if any. */
787
788 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
789
790 /* * Number of fields described for this type. This field appears
791 at this location because it packs nicely here. */
792
793 short nfields;
794
795 /* * Name of this type, or NULL if none.
796
797 This is used for printing only. For looking up a name, look for
798 a symbol in the VAR_DOMAIN. This is generally allocated in the
799 objfile's obstack. However coffread.c uses malloc. */
800
801 const char *name;
802
803 /* * Every type is now associated with a particular objfile, and the
804 type is allocated on the objfile_obstack for that objfile. One
805 problem however, is that there are times when gdb allocates new
806 types while it is not in the process of reading symbols from a
807 particular objfile. Fortunately, these happen when the type
808 being created is a derived type of an existing type, such as in
809 lookup_pointer_type(). So we can just allocate the new type
810 using the same objfile as the existing type, but to do this we
811 need a backpointer to the objfile from the existing type. Yes
812 this is somewhat ugly, but without major overhaul of the internal
813 type system, it can't be avoided for now. */
814
815 union type_owner owner;
816
817 /* * For a pointer type, describes the type of object pointed to.
818 - For an array type, describes the type of the elements.
819 - For a function or method type, describes the type of the return value.
820 - For a range type, describes the type of the full range.
821 - For a complex type, describes the type of each coordinate.
822 - For a special record or union type encoding a dynamic-sized type
823 in GNAT, a memoized pointer to a corresponding static version of
824 the type.
825 - Unused otherwise. */
826
827 struct type *target_type;
828
829 /* * For structure and union types, a description of each field.
830 For set and pascal array types, there is one "field",
831 whose type is the domain type of the set or array.
832 For range types, there are two "fields",
833 the minimum and maximum values (both inclusive).
834 For enum types, each possible value is described by one "field".
835 For a function or method type, a "field" for each parameter.
836 For C++ classes, there is one field for each base class (if it is
837 a derived class) plus one field for each class data member. Member
838 functions are recorded elsewhere.
839
840 Using a pointer to a separate array of fields
841 allows all types to have the same size, which is useful
842 because we can allocate the space for a type before
843 we know what to put in it. */
844
845 union
846 {
847 struct field *fields;
848
849 /* * Union member used for range types. */
850
851 struct range_bounds *bounds;
852
853 /* If this is a scalar type, then this is its corresponding
854 complex type. */
855 struct type *complex_type;
856
857 } flds_bnds;
858
859 /* * Slot to point to additional language-specific fields of this
860 type. */
861
862 union type_specific type_specific;
863
864 /* * Contains all dynamic type properties. */
865 struct dynamic_prop_list *dyn_prop_list;
866 };
867
868 /* * Number of bits allocated for alignment. */
869
870 #define TYPE_ALIGN_BITS 8
871
872 /* * A ``struct type'' describes a particular instance of a type, with
873 some particular qualification. */
874
875 struct type
876 {
877 /* Get the type code of this type.
878
879 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
880 type, you need to do `check_typedef (type)->code ()`. */
881 type_code code () const
882 {
883 return this->main_type->code;
884 }
885
886 /* Set the type code of this type. */
887 void set_code (type_code code)
888 {
889 this->main_type->code = code;
890 }
891
892 /* Get the name of this type. */
893 const char *name () const
894 {
895 return this->main_type->name;
896 }
897
898 /* Set the name of this type. */
899 void set_name (const char *name)
900 {
901 this->main_type->name = name;
902 }
903
904 /* Get the number of fields of this type. */
905 int num_fields () const
906 {
907 return this->main_type->nfields;
908 }
909
910 /* Set the number of fields of this type. */
911 void set_num_fields (int num_fields)
912 {
913 this->main_type->nfields = num_fields;
914 }
915
916 /* * Return the dynamic property of the requested KIND from this type's
917 list of dynamic properties. */
918 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
919
920 /* * Given a dynamic property PROP of a given KIND, add this dynamic
921 property to this type.
922
923 This function assumes that this type is objfile-owned. */
924 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
925
926 /* * Remove dynamic property of kind KIND from this type, if it exists. */
927 void remove_dyn_prop (dynamic_prop_node_kind kind);
928
929 /* * Type that is a pointer to this type.
930 NULL if no such pointer-to type is known yet.
931 The debugger may add the address of such a type
932 if it has to construct one later. */
933
934 struct type *pointer_type;
935
936 /* * C++: also need a reference type. */
937
938 struct type *reference_type;
939
940 /* * A C++ rvalue reference type added in C++11. */
941
942 struct type *rvalue_reference_type;
943
944 /* * Variant chain. This points to a type that differs from this
945 one only in qualifiers and length. Currently, the possible
946 qualifiers are const, volatile, code-space, data-space, and
947 address class. The length may differ only when one of the
948 address class flags are set. The variants are linked in a
949 circular ring and share MAIN_TYPE. */
950
951 struct type *chain;
952
953 /* * The alignment for this type. Zero means that the alignment was
954 not specified in the debug info. Note that this is stored in a
955 funny way: as the log base 2 (plus 1) of the alignment; so a
956 value of 1 means the alignment is 1, and a value of 9 means the
957 alignment is 256. */
958
959 unsigned align_log2 : TYPE_ALIGN_BITS;
960
961 /* * Flags specific to this instance of the type, indicating where
962 on the ring we are.
963
964 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
965 binary or-ed with the target type, with a special case for
966 address class and space class. For example if this typedef does
967 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
968 instance flags are completely inherited from the target type. No
969 qualifiers can be cleared by the typedef. See also
970 check_typedef. */
971 unsigned instance_flags : 9;
972
973 /* * Length of storage for a value of this type. The value is the
974 expression in host bytes of what sizeof(type) would return. This
975 size includes padding. For example, an i386 extended-precision
976 floating point value really only occupies ten bytes, but most
977 ABI's declare its size to be 12 bytes, to preserve alignment.
978 A `struct type' representing such a floating-point type would
979 have a `length' value of 12, even though the last two bytes are
980 unused.
981
982 Since this field is expressed in host bytes, its value is appropriate
983 to pass to memcpy and such (it is assumed that GDB itself always runs
984 on an 8-bits addressable architecture). However, when using it for
985 target address arithmetic (e.g. adding it to a target address), the
986 type_length_units function should be used in order to get the length
987 expressed in target addressable memory units. */
988
989 ULONGEST length;
990
991 /* * Core type, shared by a group of qualified types. */
992
993 struct main_type *main_type;
994 };
995
996 #define NULL_TYPE ((struct type *) 0)
997
998 struct fn_fieldlist
999 {
1000
1001 /* * The overloaded name.
1002 This is generally allocated in the objfile's obstack.
1003 However stabsread.c sometimes uses malloc. */
1004
1005 const char *name;
1006
1007 /* * The number of methods with this name. */
1008
1009 int length;
1010
1011 /* * The list of methods. */
1012
1013 struct fn_field *fn_fields;
1014 };
1015
1016
1017
1018 struct fn_field
1019 {
1020 /* * If is_stub is clear, this is the mangled name which we can look
1021 up to find the address of the method (FIXME: it would be cleaner
1022 to have a pointer to the struct symbol here instead).
1023
1024 If is_stub is set, this is the portion of the mangled name which
1025 specifies the arguments. For example, "ii", if there are two int
1026 arguments, or "" if there are no arguments. See gdb_mangle_name
1027 for the conversion from this format to the one used if is_stub is
1028 clear. */
1029
1030 const char *physname;
1031
1032 /* * The function type for the method.
1033
1034 (This comment used to say "The return value of the method", but
1035 that's wrong. The function type is expected here, i.e. something
1036 with TYPE_CODE_METHOD, and *not* the return-value type). */
1037
1038 struct type *type;
1039
1040 /* * For virtual functions. First baseclass that defines this
1041 virtual function. */
1042
1043 struct type *fcontext;
1044
1045 /* Attributes. */
1046
1047 unsigned int is_const:1;
1048 unsigned int is_volatile:1;
1049 unsigned int is_private:1;
1050 unsigned int is_protected:1;
1051 unsigned int is_artificial:1;
1052
1053 /* * A stub method only has some fields valid (but they are enough
1054 to reconstruct the rest of the fields). */
1055
1056 unsigned int is_stub:1;
1057
1058 /* * True if this function is a constructor, false otherwise. */
1059
1060 unsigned int is_constructor : 1;
1061
1062 /* * True if this function is deleted, false otherwise. */
1063
1064 unsigned int is_deleted : 1;
1065
1066 /* * DW_AT_defaulted attribute for this function. The value is one
1067 of the DW_DEFAULTED constants. */
1068
1069 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1070
1071 /* * Unused. */
1072
1073 unsigned int dummy:6;
1074
1075 /* * Index into that baseclass's virtual function table, minus 2;
1076 else if static: VOFFSET_STATIC; else: 0. */
1077
1078 unsigned int voffset:16;
1079
1080 #define VOFFSET_STATIC 1
1081
1082 };
1083
1084 struct decl_field
1085 {
1086 /* * Unqualified name to be prefixed by owning class qualified
1087 name. */
1088
1089 const char *name;
1090
1091 /* * Type this typedef named NAME represents. */
1092
1093 struct type *type;
1094
1095 /* * True if this field was declared protected, false otherwise. */
1096 unsigned int is_protected : 1;
1097
1098 /* * True if this field was declared private, false otherwise. */
1099 unsigned int is_private : 1;
1100 };
1101
1102 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1103 TYPE_CODE_UNION nodes. */
1104
1105 struct cplus_struct_type
1106 {
1107 /* * Number of base classes this type derives from. The
1108 baseclasses are stored in the first N_BASECLASSES fields
1109 (i.e. the `fields' field of the struct type). The only fields
1110 of struct field that are used are: type, name, loc.bitpos. */
1111
1112 short n_baseclasses;
1113
1114 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1115 All access to this field must be through TYPE_VPTR_FIELDNO as one
1116 thing it does is check whether the field has been initialized.
1117 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1118 which for portability reasons doesn't initialize this field.
1119 TYPE_VPTR_FIELDNO returns -1 for this case.
1120
1121 If -1, we were unable to find the virtual function table pointer in
1122 initial symbol reading, and get_vptr_fieldno should be called to find
1123 it if possible. get_vptr_fieldno will update this field if possible.
1124 Otherwise the value is left at -1.
1125
1126 Unused if this type does not have virtual functions. */
1127
1128 short vptr_fieldno;
1129
1130 /* * Number of methods with unique names. All overloaded methods
1131 with the same name count only once. */
1132
1133 short nfn_fields;
1134
1135 /* * Number of template arguments. */
1136
1137 unsigned short n_template_arguments;
1138
1139 /* * One if this struct is a dynamic class, as defined by the
1140 Itanium C++ ABI: if it requires a virtual table pointer,
1141 because it or any of its base classes have one or more virtual
1142 member functions or virtual base classes. Minus one if not
1143 dynamic. Zero if not yet computed. */
1144
1145 int is_dynamic : 2;
1146
1147 /* * The calling convention for this type, fetched from the
1148 DW_AT_calling_convention attribute. The value is one of the
1149 DW_CC constants. */
1150
1151 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1152
1153 /* * The base class which defined the virtual function table pointer. */
1154
1155 struct type *vptr_basetype;
1156
1157 /* * For derived classes, the number of base classes is given by
1158 n_baseclasses and virtual_field_bits is a bit vector containing
1159 one bit per base class. If the base class is virtual, the
1160 corresponding bit will be set.
1161 I.E, given:
1162
1163 class A{};
1164 class B{};
1165 class C : public B, public virtual A {};
1166
1167 B is a baseclass of C; A is a virtual baseclass for C.
1168 This is a C++ 2.0 language feature. */
1169
1170 B_TYPE *virtual_field_bits;
1171
1172 /* * For classes with private fields, the number of fields is
1173 given by nfields and private_field_bits is a bit vector
1174 containing one bit per field.
1175
1176 If the field is private, the corresponding bit will be set. */
1177
1178 B_TYPE *private_field_bits;
1179
1180 /* * For classes with protected fields, the number of fields is
1181 given by nfields and protected_field_bits is a bit vector
1182 containing one bit per field.
1183
1184 If the field is private, the corresponding bit will be set. */
1185
1186 B_TYPE *protected_field_bits;
1187
1188 /* * For classes with fields to be ignored, either this is
1189 optimized out or this field has length 0. */
1190
1191 B_TYPE *ignore_field_bits;
1192
1193 /* * For classes, structures, and unions, a description of each
1194 field, which consists of an overloaded name, followed by the
1195 types of arguments that the method expects, and then the name
1196 after it has been renamed to make it distinct.
1197
1198 fn_fieldlists points to an array of nfn_fields of these. */
1199
1200 struct fn_fieldlist *fn_fieldlists;
1201
1202 /* * typedefs defined inside this class. typedef_field points to
1203 an array of typedef_field_count elements. */
1204
1205 struct decl_field *typedef_field;
1206
1207 unsigned typedef_field_count;
1208
1209 /* * The nested types defined by this type. nested_types points to
1210 an array of nested_types_count elements. */
1211
1212 struct decl_field *nested_types;
1213
1214 unsigned nested_types_count;
1215
1216 /* * The template arguments. This is an array with
1217 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1218 classes. */
1219
1220 struct symbol **template_arguments;
1221 };
1222
1223 /* * Struct used to store conversion rankings. */
1224
1225 struct rank
1226 {
1227 short rank;
1228
1229 /* * When two conversions are of the same type and therefore have
1230 the same rank, subrank is used to differentiate the two.
1231
1232 Eg: Two derived-class-pointer to base-class-pointer conversions
1233 would both have base pointer conversion rank, but the
1234 conversion with the shorter distance to the ancestor is
1235 preferable. 'subrank' would be used to reflect that. */
1236
1237 short subrank;
1238 };
1239
1240 /* * Used for ranking a function for overload resolution. */
1241
1242 typedef std::vector<rank> badness_vector;
1243
1244 /* * GNAT Ada-specific information for various Ada types. */
1245
1246 struct gnat_aux_type
1247 {
1248 /* * Parallel type used to encode information about dynamic types
1249 used in Ada (such as variant records, variable-size array,
1250 etc). */
1251 struct type* descriptive_type;
1252 };
1253
1254 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1255
1256 struct func_type
1257 {
1258 /* * The calling convention for targets supporting multiple ABIs.
1259 Right now this is only fetched from the Dwarf-2
1260 DW_AT_calling_convention attribute. The value is one of the
1261 DW_CC constants. */
1262
1263 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1264
1265 /* * Whether this function normally returns to its caller. It is
1266 set from the DW_AT_noreturn attribute if set on the
1267 DW_TAG_subprogram. */
1268
1269 unsigned int is_noreturn : 1;
1270
1271 /* * Only those DW_TAG_call_site's in this function that have
1272 DW_AT_call_tail_call set are linked in this list. Function
1273 without its tail call list complete
1274 (DW_AT_call_all_tail_calls or its superset
1275 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1276 DW_TAG_call_site's exist in such function. */
1277
1278 struct call_site *tail_call_list;
1279
1280 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1281 contains the method. */
1282
1283 struct type *self_type;
1284 };
1285
1286 /* struct call_site_parameter can be referenced in callees by several ways. */
1287
1288 enum call_site_parameter_kind
1289 {
1290 /* * Use field call_site_parameter.u.dwarf_reg. */
1291 CALL_SITE_PARAMETER_DWARF_REG,
1292
1293 /* * Use field call_site_parameter.u.fb_offset. */
1294 CALL_SITE_PARAMETER_FB_OFFSET,
1295
1296 /* * Use field call_site_parameter.u.param_offset. */
1297 CALL_SITE_PARAMETER_PARAM_OFFSET
1298 };
1299
1300 struct call_site_target
1301 {
1302 union field_location loc;
1303
1304 /* * Discriminant for union field_location. */
1305
1306 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1307 };
1308
1309 union call_site_parameter_u
1310 {
1311 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1312 as DWARF register number, for register passed
1313 parameters. */
1314
1315 int dwarf_reg;
1316
1317 /* * Offset from the callee's frame base, for stack passed
1318 parameters. This equals offset from the caller's stack
1319 pointer. */
1320
1321 CORE_ADDR fb_offset;
1322
1323 /* * Offset relative to the start of this PER_CU to
1324 DW_TAG_formal_parameter which is referenced by both
1325 caller and the callee. */
1326
1327 cu_offset param_cu_off;
1328 };
1329
1330 struct call_site_parameter
1331 {
1332 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1333
1334 union call_site_parameter_u u;
1335
1336 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1337
1338 const gdb_byte *value;
1339 size_t value_size;
1340
1341 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1342 It may be NULL if not provided by DWARF. */
1343
1344 const gdb_byte *data_value;
1345 size_t data_value_size;
1346 };
1347
1348 /* * A place where a function gets called from, represented by
1349 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1350
1351 struct call_site
1352 {
1353 /* * Address of the first instruction after this call. It must be
1354 the first field as we overload core_addr_hash and core_addr_eq
1355 for it. */
1356
1357 CORE_ADDR pc;
1358
1359 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1360
1361 struct call_site *tail_call_next;
1362
1363 /* * Describe DW_AT_call_target. Missing attribute uses
1364 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1365
1366 struct call_site_target target;
1367
1368 /* * Size of the PARAMETER array. */
1369
1370 unsigned parameter_count;
1371
1372 /* * CU of the function where the call is located. It gets used
1373 for DWARF blocks execution in the parameter array below. */
1374
1375 struct dwarf2_per_cu_data *per_cu;
1376
1377 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1378
1379 struct call_site_parameter parameter[1];
1380 };
1381
1382 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1383 static structure. */
1384
1385 extern const struct cplus_struct_type cplus_struct_default;
1386
1387 extern void allocate_cplus_struct_type (struct type *);
1388
1389 #define INIT_CPLUS_SPECIFIC(type) \
1390 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1391 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1392 &cplus_struct_default)
1393
1394 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1395
1396 #define HAVE_CPLUS_STRUCT(type) \
1397 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1398 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1399
1400 #define INIT_NONE_SPECIFIC(type) \
1401 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1402 TYPE_MAIN_TYPE (type)->type_specific = {})
1403
1404 extern const struct gnat_aux_type gnat_aux_default;
1405
1406 extern void allocate_gnat_aux_type (struct type *);
1407
1408 #define INIT_GNAT_SPECIFIC(type) \
1409 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1410 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1411 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1412 /* * A macro that returns non-zero if the type-specific data should be
1413 read as "gnat-stuff". */
1414 #define HAVE_GNAT_AUX_INFO(type) \
1415 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1416
1417 /* * True if TYPE is known to be an Ada type of some kind. */
1418 #define ADA_TYPE_P(type) \
1419 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1420 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1421 && TYPE_FIXED_INSTANCE (type)))
1422
1423 #define INIT_FUNC_SPECIFIC(type) \
1424 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1425 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1426 TYPE_ZALLOC (type, \
1427 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1428
1429 #define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1430 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1431 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1432 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1433 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1434 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1435 #define TYPE_CHAIN(thistype) (thistype)->chain
1436 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1437 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1438 so you only have to call check_typedef once. Since allocate_value
1439 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1440 #define TYPE_LENGTH(thistype) (thistype)->length
1441
1442 /* * Return the alignment of the type in target addressable memory
1443 units, or 0 if no alignment was specified. */
1444 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1445
1446 /* * Return the alignment of the type in target addressable memory
1447 units, or 0 if no alignment was specified. */
1448 extern unsigned type_raw_align (struct type *);
1449
1450 /* * Return the alignment of the type in target addressable memory
1451 units. Return 0 if the alignment cannot be determined; but note
1452 that this makes an effort to compute the alignment even it it was
1453 not specified in the debug info. */
1454 extern unsigned type_align (struct type *);
1455
1456 /* * Set the alignment of the type. The alignment must be a power of
1457 2. Returns false if the given value does not fit in the available
1458 space in struct type. */
1459 extern bool set_type_align (struct type *, ULONGEST);
1460
1461 #define TYPE_NFIELDS(thistype) ((thistype)->num_fields ())
1462 #define TYPE_FIELDS(thistype) TYPE_MAIN_TYPE(thistype)->flds_bnds.fields
1463
1464 #define TYPE_INDEX_TYPE(type) TYPE_FIELD_TYPE (type, 0)
1465 #define TYPE_RANGE_DATA(thistype) TYPE_MAIN_TYPE(thistype)->flds_bnds.bounds
1466 #define TYPE_LOW_BOUND(range_type) \
1467 TYPE_RANGE_DATA(range_type)->low.data.const_val
1468 #define TYPE_HIGH_BOUND(range_type) \
1469 TYPE_RANGE_DATA(range_type)->high.data.const_val
1470 #define TYPE_LOW_BOUND_UNDEFINED(range_type) \
1471 (TYPE_RANGE_DATA(range_type)->low.kind == PROP_UNDEFINED)
1472 #define TYPE_HIGH_BOUND_UNDEFINED(range_type) \
1473 (TYPE_RANGE_DATA(range_type)->high.kind == PROP_UNDEFINED)
1474 #define TYPE_HIGH_BOUND_KIND(range_type) \
1475 TYPE_RANGE_DATA(range_type)->high.kind
1476 #define TYPE_LOW_BOUND_KIND(range_type) \
1477 TYPE_RANGE_DATA(range_type)->low.kind
1478 #define TYPE_BIT_STRIDE(range_type) \
1479 (TYPE_RANGE_DATA(range_type)->stride.data.const_val \
1480 * (TYPE_RANGE_DATA(range_type)->flag_is_byte_stride ? 8 : 1))
1481
1482 /* Property accessors for the type data location. */
1483 #define TYPE_DATA_LOCATION(thistype) \
1484 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1485 #define TYPE_DATA_LOCATION_BATON(thistype) \
1486 TYPE_DATA_LOCATION (thistype)->data.baton
1487 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1488 TYPE_DATA_LOCATION (thistype)->data.const_val
1489 #define TYPE_DATA_LOCATION_KIND(thistype) \
1490 TYPE_DATA_LOCATION (thistype)->kind
1491 #define TYPE_DYNAMIC_LENGTH(thistype) \
1492 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1493
1494 /* Property accessors for the type allocated/associated. */
1495 #define TYPE_ALLOCATED_PROP(thistype) \
1496 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1497 #define TYPE_ASSOCIATED_PROP(thistype) \
1498 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1499
1500 /* Attribute accessors for dynamic properties. */
1501 #define TYPE_DYN_PROP_BATON(dynprop) \
1502 dynprop->data.baton
1503 #define TYPE_DYN_PROP_ADDR(dynprop) \
1504 dynprop->data.const_val
1505 #define TYPE_DYN_PROP_KIND(dynprop) \
1506 dynprop->kind
1507
1508
1509 /* Accessors for struct range_bounds data attached to an array type's
1510 index type. */
1511
1512 #define TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED(arraytype) \
1513 TYPE_HIGH_BOUND_UNDEFINED(TYPE_INDEX_TYPE(arraytype))
1514 #define TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED(arraytype) \
1515 TYPE_LOW_BOUND_UNDEFINED(TYPE_INDEX_TYPE(arraytype))
1516
1517 #define TYPE_ARRAY_UPPER_BOUND_VALUE(arraytype) \
1518 (TYPE_HIGH_BOUND(TYPE_INDEX_TYPE((arraytype))))
1519
1520 #define TYPE_ARRAY_LOWER_BOUND_VALUE(arraytype) \
1521 (TYPE_LOW_BOUND(TYPE_INDEX_TYPE((arraytype))))
1522
1523 #define TYPE_ARRAY_BIT_STRIDE(arraytype) \
1524 (TYPE_BIT_STRIDE(TYPE_INDEX_TYPE((arraytype))))
1525
1526 /* C++ */
1527
1528 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1529 /* Do not call this, use TYPE_SELF_TYPE. */
1530 extern struct type *internal_type_self_type (struct type *);
1531 extern void set_type_self_type (struct type *, struct type *);
1532
1533 extern int internal_type_vptr_fieldno (struct type *);
1534 extern void set_type_vptr_fieldno (struct type *, int);
1535 extern struct type *internal_type_vptr_basetype (struct type *);
1536 extern void set_type_vptr_basetype (struct type *, struct type *);
1537 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1538 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1539
1540 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1541 #define TYPE_SPECIFIC_FIELD(thistype) \
1542 TYPE_MAIN_TYPE(thistype)->type_specific_field
1543 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1544 where we're trying to print an Ada array using the C language.
1545 In that case, there is no "cplus_stuff", but the C language assumes
1546 that there is. What we do, in that case, is pretend that there is
1547 an implicit one which is the default cplus stuff. */
1548 #define TYPE_CPLUS_SPECIFIC(thistype) \
1549 (!HAVE_CPLUS_STRUCT(thistype) \
1550 ? (struct cplus_struct_type*)&cplus_struct_default \
1551 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1552 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1553 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1554 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1555 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1556 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1557 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1558 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1559 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1560 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1561 #define TYPE_BASECLASS(thistype,index) TYPE_FIELD_TYPE(thistype, index)
1562 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1563 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1564 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1565 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1566 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1567 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1568
1569 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1570 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1571 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1572
1573 #define FIELD_TYPE(thisfld) ((thisfld).type)
1574 #define FIELD_NAME(thisfld) ((thisfld).name)
1575 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1576 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1577 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1578 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1579 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1580 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1581 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1582 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1583 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1584 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1585 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1586 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1587 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1588 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1589 #define SET_FIELD_PHYSNAME(thisfld, name) \
1590 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1591 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1592 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1593 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1594 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1595 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1596 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1597 FIELD_DWARF_BLOCK (thisfld) = (addr))
1598 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1599 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1600
1601 #define TYPE_FIELD(thistype, n) TYPE_MAIN_TYPE(thistype)->flds_bnds.fields[n]
1602 #define TYPE_FIELD_TYPE(thistype, n) FIELD_TYPE(TYPE_FIELD(thistype, n))
1603 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME(TYPE_FIELD(thistype, n))
1604 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND (TYPE_FIELD (thistype, n))
1605 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS (TYPE_FIELD (thistype, n))
1606 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL (TYPE_FIELD (thistype, n))
1607 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME (TYPE_FIELD (thistype, n))
1608 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR (TYPE_FIELD (thistype, n))
1609 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK (TYPE_FIELD (thistype, n))
1610 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL(TYPE_FIELD(thistype,n))
1611 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE(TYPE_FIELD(thistype,n))
1612 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE(TYPE_FIELD(thistype,n))!=0)
1613
1614 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1615 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1616 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1617 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1618 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1619 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1620 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1621 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1622 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1623 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1624 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1625 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1626 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1627 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1628 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1629 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1630 #define TYPE_FIELD_PRIVATE(thistype, n) \
1631 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1632 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1633 #define TYPE_FIELD_PROTECTED(thistype, n) \
1634 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1635 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1636 #define TYPE_FIELD_IGNORE(thistype, n) \
1637 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1638 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1639 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1640 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1641 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1642
1643 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1644 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1645 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1646 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1647 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1648
1649 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1650 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1651 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1652 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1653 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1654 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1655
1656 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1657 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1658 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1659 #define TYPE_FN_FIELD_ARGS(thisfn, n) TYPE_FIELDS ((thisfn)[n].type)
1660 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1661 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1662 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1663 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1664 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1665 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1666 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1667 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1668 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1669 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1670 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1671 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
1672 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
1673
1674 /* Accessors for typedefs defined by a class. */
1675 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1676 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1677 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1678 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1679 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1680 TYPE_TYPEDEF_FIELD (thistype, n).name
1681 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1682 TYPE_TYPEDEF_FIELD (thistype, n).type
1683 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1684 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1685 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1686 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1687 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1688 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1689
1690 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1691 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1692 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
1693 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
1694 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
1695 TYPE_NESTED_TYPES_FIELD (thistype, n).name
1696 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
1697 TYPE_NESTED_TYPES_FIELD (thistype, n).type
1698 #define TYPE_NESTED_TYPES_COUNT(thistype) \
1699 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
1700 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
1701 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
1702 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
1703 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
1704
1705 #define TYPE_IS_OPAQUE(thistype) \
1706 ((((thistype)->code () == TYPE_CODE_STRUCT) \
1707 || ((thistype)->code () == TYPE_CODE_UNION)) \
1708 && (TYPE_NFIELDS (thistype) == 0) \
1709 && (!HAVE_CPLUS_STRUCT (thistype) \
1710 || TYPE_NFN_FIELDS (thistype) == 0) \
1711 && (TYPE_STUB (thistype) || !TYPE_STUB_SUPPORTED (thistype)))
1712
1713 /* * A helper macro that returns the name of a type or "unnamed type"
1714 if the type has no name. */
1715
1716 #define TYPE_SAFE_NAME(type) \
1717 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
1718
1719 /* * A helper macro that returns the name of an error type. If the
1720 type has a name, it is used; otherwise, a default is used. */
1721
1722 #define TYPE_ERROR_NAME(type) \
1723 (type->name () ? type->name () : _("<error type>"))
1724
1725 /* Given TYPE, return its floatformat. */
1726 const struct floatformat *floatformat_from_type (const struct type *type);
1727
1728 struct builtin_type
1729 {
1730 /* Integral types. */
1731
1732 /* Implicit size/sign (based on the architecture's ABI). */
1733 struct type *builtin_void;
1734 struct type *builtin_char;
1735 struct type *builtin_short;
1736 struct type *builtin_int;
1737 struct type *builtin_long;
1738 struct type *builtin_signed_char;
1739 struct type *builtin_unsigned_char;
1740 struct type *builtin_unsigned_short;
1741 struct type *builtin_unsigned_int;
1742 struct type *builtin_unsigned_long;
1743 struct type *builtin_half;
1744 struct type *builtin_float;
1745 struct type *builtin_double;
1746 struct type *builtin_long_double;
1747 struct type *builtin_complex;
1748 struct type *builtin_double_complex;
1749 struct type *builtin_string;
1750 struct type *builtin_bool;
1751 struct type *builtin_long_long;
1752 struct type *builtin_unsigned_long_long;
1753 struct type *builtin_decfloat;
1754 struct type *builtin_decdouble;
1755 struct type *builtin_declong;
1756
1757 /* "True" character types.
1758 We use these for the '/c' print format, because c_char is just a
1759 one-byte integral type, which languages less laid back than C
1760 will print as ... well, a one-byte integral type. */
1761 struct type *builtin_true_char;
1762 struct type *builtin_true_unsigned_char;
1763
1764 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1765 is for when an architecture needs to describe a register that has
1766 no size. */
1767 struct type *builtin_int0;
1768 struct type *builtin_int8;
1769 struct type *builtin_uint8;
1770 struct type *builtin_int16;
1771 struct type *builtin_uint16;
1772 struct type *builtin_int24;
1773 struct type *builtin_uint24;
1774 struct type *builtin_int32;
1775 struct type *builtin_uint32;
1776 struct type *builtin_int64;
1777 struct type *builtin_uint64;
1778 struct type *builtin_int128;
1779 struct type *builtin_uint128;
1780
1781 /* Wide character types. */
1782 struct type *builtin_char16;
1783 struct type *builtin_char32;
1784 struct type *builtin_wchar;
1785
1786 /* Pointer types. */
1787
1788 /* * `pointer to data' type. Some target platforms use an implicitly
1789 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1790 struct type *builtin_data_ptr;
1791
1792 /* * `pointer to function (returning void)' type. Harvard
1793 architectures mean that ABI function and code pointers are not
1794 interconvertible. Similarly, since ANSI, C standards have
1795 explicitly said that pointers to functions and pointers to data
1796 are not interconvertible --- that is, you can't cast a function
1797 pointer to void * and back, and expect to get the same value.
1798 However, all function pointer types are interconvertible, so void
1799 (*) () can server as a generic function pointer. */
1800
1801 struct type *builtin_func_ptr;
1802
1803 /* * `function returning pointer to function (returning void)' type.
1804 The final void return type is not significant for it. */
1805
1806 struct type *builtin_func_func;
1807
1808 /* Special-purpose types. */
1809
1810 /* * This type is used to represent a GDB internal function. */
1811
1812 struct type *internal_fn;
1813
1814 /* * This type is used to represent an xmethod. */
1815 struct type *xmethod;
1816 };
1817
1818 /* * Return the type table for the specified architecture. */
1819
1820 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
1821
1822 /* * Per-objfile types used by symbol readers. */
1823
1824 struct objfile_type
1825 {
1826 /* Basic types based on the objfile architecture. */
1827 struct type *builtin_void;
1828 struct type *builtin_char;
1829 struct type *builtin_short;
1830 struct type *builtin_int;
1831 struct type *builtin_long;
1832 struct type *builtin_long_long;
1833 struct type *builtin_signed_char;
1834 struct type *builtin_unsigned_char;
1835 struct type *builtin_unsigned_short;
1836 struct type *builtin_unsigned_int;
1837 struct type *builtin_unsigned_long;
1838 struct type *builtin_unsigned_long_long;
1839 struct type *builtin_half;
1840 struct type *builtin_float;
1841 struct type *builtin_double;
1842 struct type *builtin_long_double;
1843
1844 /* * This type is used to represent symbol addresses. */
1845 struct type *builtin_core_addr;
1846
1847 /* * This type represents a type that was unrecognized in symbol
1848 read-in. */
1849 struct type *builtin_error;
1850
1851 /* * Types used for symbols with no debug information. */
1852 struct type *nodebug_text_symbol;
1853 struct type *nodebug_text_gnu_ifunc_symbol;
1854 struct type *nodebug_got_plt_symbol;
1855 struct type *nodebug_data_symbol;
1856 struct type *nodebug_unknown_symbol;
1857 struct type *nodebug_tls_symbol;
1858 };
1859
1860 /* * Return the type table for the specified objfile. */
1861
1862 extern const struct objfile_type *objfile_type (struct objfile *objfile);
1863
1864 /* Explicit floating-point formats. See "floatformat.h". */
1865 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
1866 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
1867 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
1868 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
1869 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
1870 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
1871 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
1872 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
1873 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
1874 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
1875 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
1876 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
1877
1878
1879 /* Allocate space for storing data associated with a particular
1880 type. We ensure that the space is allocated using the same
1881 mechanism that was used to allocate the space for the type
1882 structure itself. I.e. if the type is on an objfile's
1883 objfile_obstack, then the space for data associated with that type
1884 will also be allocated on the objfile_obstack. If the type is
1885 associated with a gdbarch, then the space for data associated with that
1886 type will also be allocated on the gdbarch_obstack.
1887
1888 If a type is not associated with neither an objfile or a gdbarch then
1889 you should not use this macro to allocate space for data, instead you
1890 should call xmalloc directly, and ensure the memory is correctly freed
1891 when it is no longer needed. */
1892
1893 #define TYPE_ALLOC(t,size) \
1894 (obstack_alloc ((TYPE_OBJFILE_OWNED (t) \
1895 ? &TYPE_OBJFILE (t)->objfile_obstack \
1896 : gdbarch_obstack (TYPE_OWNER (t).gdbarch)), \
1897 size))
1898
1899
1900 /* See comment on TYPE_ALLOC. */
1901
1902 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
1903
1904 /* Use alloc_type to allocate a type owned by an objfile. Use
1905 alloc_type_arch to allocate a type owned by an architecture. Use
1906 alloc_type_copy to allocate a type with the same owner as a
1907 pre-existing template type, no matter whether objfile or
1908 gdbarch. */
1909 extern struct type *alloc_type (struct objfile *);
1910 extern struct type *alloc_type_arch (struct gdbarch *);
1911 extern struct type *alloc_type_copy (const struct type *);
1912
1913 /* * Return the type's architecture. For types owned by an
1914 architecture, that architecture is returned. For types owned by an
1915 objfile, that objfile's architecture is returned. */
1916
1917 extern struct gdbarch *get_type_arch (const struct type *);
1918
1919 /* * This returns the target type (or NULL) of TYPE, also skipping
1920 past typedefs. */
1921
1922 extern struct type *get_target_type (struct type *type);
1923
1924 /* Return the equivalent of TYPE_LENGTH, but in number of target
1925 addressable memory units of the associated gdbarch instead of bytes. */
1926
1927 extern unsigned int type_length_units (struct type *type);
1928
1929 /* * Helper function to construct objfile-owned types. */
1930
1931 extern struct type *init_type (struct objfile *, enum type_code, int,
1932 const char *);
1933 extern struct type *init_integer_type (struct objfile *, int, int,
1934 const char *);
1935 extern struct type *init_character_type (struct objfile *, int, int,
1936 const char *);
1937 extern struct type *init_boolean_type (struct objfile *, int, int,
1938 const char *);
1939 extern struct type *init_float_type (struct objfile *, int, const char *,
1940 const struct floatformat **,
1941 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
1942 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
1943 extern struct type *init_complex_type (const char *, struct type *);
1944 extern struct type *init_pointer_type (struct objfile *, int, const char *,
1945 struct type *);
1946
1947 /* Helper functions to construct architecture-owned types. */
1948 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
1949 const char *);
1950 extern struct type *arch_integer_type (struct gdbarch *, int, int,
1951 const char *);
1952 extern struct type *arch_character_type (struct gdbarch *, int, int,
1953 const char *);
1954 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
1955 const char *);
1956 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
1957 const struct floatformat **);
1958 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
1959 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
1960 struct type *);
1961
1962 /* Helper functions to construct a struct or record type. An
1963 initially empty type is created using arch_composite_type().
1964 Fields are then added using append_composite_type_field*(). A union
1965 type has its size set to the largest field. A struct type has each
1966 field packed against the previous. */
1967
1968 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
1969 const char *name, enum type_code code);
1970 extern void append_composite_type_field (struct type *t, const char *name,
1971 struct type *field);
1972 extern void append_composite_type_field_aligned (struct type *t,
1973 const char *name,
1974 struct type *field,
1975 int alignment);
1976 struct field *append_composite_type_field_raw (struct type *t, const char *name,
1977 struct type *field);
1978
1979 /* Helper functions to construct a bit flags type. An initially empty
1980 type is created using arch_flag_type(). Flags are then added using
1981 append_flag_type_field() and append_flag_type_flag(). */
1982 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
1983 const char *name, int bit);
1984 extern void append_flags_type_field (struct type *type,
1985 int start_bitpos, int nr_bits,
1986 struct type *field_type, const char *name);
1987 extern void append_flags_type_flag (struct type *type, int bitpos,
1988 const char *name);
1989
1990 extern void make_vector_type (struct type *array_type);
1991 extern struct type *init_vector_type (struct type *elt_type, int n);
1992
1993 extern struct type *lookup_reference_type (struct type *, enum type_code);
1994 extern struct type *lookup_lvalue_reference_type (struct type *);
1995 extern struct type *lookup_rvalue_reference_type (struct type *);
1996
1997
1998 extern struct type *make_reference_type (struct type *, struct type **,
1999 enum type_code);
2000
2001 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2002
2003 extern struct type *make_restrict_type (struct type *);
2004
2005 extern struct type *make_unqualified_type (struct type *);
2006
2007 extern struct type *make_atomic_type (struct type *);
2008
2009 extern void replace_type (struct type *, struct type *);
2010
2011 extern int address_space_name_to_int (struct gdbarch *, const char *);
2012
2013 extern const char *address_space_int_to_name (struct gdbarch *, int);
2014
2015 extern struct type *make_type_with_address_space (struct type *type,
2016 int space_identifier);
2017
2018 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2019
2020 extern struct type *lookup_methodptr_type (struct type *);
2021
2022 extern void smash_to_method_type (struct type *type, struct type *self_type,
2023 struct type *to_type, struct field *args,
2024 int nargs, int varargs);
2025
2026 extern void smash_to_memberptr_type (struct type *, struct type *,
2027 struct type *);
2028
2029 extern void smash_to_methodptr_type (struct type *, struct type *);
2030
2031 extern struct type *allocate_stub_method (struct type *);
2032
2033 extern const char *type_name_or_error (struct type *type);
2034
2035 struct struct_elt
2036 {
2037 /* The field of the element, or NULL if no element was found. */
2038 struct field *field;
2039
2040 /* The bit offset of the element in the parent structure. */
2041 LONGEST offset;
2042 };
2043
2044 /* Given a type TYPE, lookup the field and offset of the component named
2045 NAME.
2046
2047 TYPE can be either a struct or union, or a pointer or reference to
2048 a struct or union. If it is a pointer or reference, its target
2049 type is automatically used. Thus '.' and '->' are interchangable,
2050 as specified for the definitions of the expression element types
2051 STRUCTOP_STRUCT and STRUCTOP_PTR.
2052
2053 If NOERR is nonzero, the returned structure will have field set to
2054 NULL if there is no component named NAME.
2055
2056 If the component NAME is a field in an anonymous substructure of
2057 TYPE, the returned offset is a "global" offset relative to TYPE
2058 rather than an offset within the substructure. */
2059
2060 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2061
2062 /* Given a type TYPE, lookup the type of the component named NAME.
2063
2064 TYPE can be either a struct or union, or a pointer or reference to
2065 a struct or union. If it is a pointer or reference, its target
2066 type is automatically used. Thus '.' and '->' are interchangable,
2067 as specified for the definitions of the expression element types
2068 STRUCTOP_STRUCT and STRUCTOP_PTR.
2069
2070 If NOERR is nonzero, return NULL if there is no component named
2071 NAME. */
2072
2073 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2074
2075 extern struct type *make_pointer_type (struct type *, struct type **);
2076
2077 extern struct type *lookup_pointer_type (struct type *);
2078
2079 extern struct type *make_function_type (struct type *, struct type **);
2080
2081 extern struct type *lookup_function_type (struct type *);
2082
2083 extern struct type *lookup_function_type_with_arguments (struct type *,
2084 int,
2085 struct type **);
2086
2087 extern struct type *create_static_range_type (struct type *, struct type *,
2088 LONGEST, LONGEST);
2089
2090
2091 extern struct type *create_array_type_with_stride
2092 (struct type *, struct type *, struct type *,
2093 struct dynamic_prop *, unsigned int);
2094
2095 extern struct type *create_range_type (struct type *, struct type *,
2096 const struct dynamic_prop *,
2097 const struct dynamic_prop *,
2098 LONGEST);
2099
2100 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2101 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2102 stride. */
2103
2104 extern struct type * create_range_type_with_stride
2105 (struct type *result_type, struct type *index_type,
2106 const struct dynamic_prop *low_bound,
2107 const struct dynamic_prop *high_bound, LONGEST bias,
2108 const struct dynamic_prop *stride, bool byte_stride_p);
2109
2110 extern struct type *create_array_type (struct type *, struct type *,
2111 struct type *);
2112
2113 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2114
2115 extern struct type *create_string_type (struct type *, struct type *,
2116 struct type *);
2117 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2118
2119 extern struct type *create_set_type (struct type *, struct type *);
2120
2121 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2122 const char *);
2123
2124 extern struct type *lookup_signed_typename (const struct language_defn *,
2125 const char *);
2126
2127 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2128
2129 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2130
2131 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2132 ADDR specifies the location of the variable the type is bound to.
2133 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2134 static properties is returned. */
2135 extern struct type *resolve_dynamic_type
2136 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2137 CORE_ADDR addr);
2138
2139 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2140 extern int is_dynamic_type (struct type *type);
2141
2142 extern struct type *check_typedef (struct type *);
2143
2144 extern void check_stub_method_group (struct type *, int);
2145
2146 extern char *gdb_mangle_name (struct type *, int, int);
2147
2148 extern struct type *lookup_typename (const struct language_defn *,
2149 const char *, const struct block *, int);
2150
2151 extern struct type *lookup_template_type (const char *, struct type *,
2152 const struct block *);
2153
2154 extern int get_vptr_fieldno (struct type *, struct type **);
2155
2156 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
2157
2158 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
2159 LONGEST *high_bound);
2160
2161 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
2162
2163 extern int class_types_same_p (const struct type *, const struct type *);
2164
2165 extern int is_ancestor (struct type *, struct type *);
2166
2167 extern int is_public_ancestor (struct type *, struct type *);
2168
2169 extern int is_unique_ancestor (struct type *, struct value *);
2170
2171 /* Overload resolution */
2172
2173 /* * Badness if parameter list length doesn't match arg list length. */
2174 extern const struct rank LENGTH_MISMATCH_BADNESS;
2175
2176 /* * Dummy badness value for nonexistent parameter positions. */
2177 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2178 /* * Badness if no conversion among types. */
2179 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2180
2181 /* * Badness of an exact match. */
2182 extern const struct rank EXACT_MATCH_BADNESS;
2183
2184 /* * Badness of integral promotion. */
2185 extern const struct rank INTEGER_PROMOTION_BADNESS;
2186 /* * Badness of floating promotion. */
2187 extern const struct rank FLOAT_PROMOTION_BADNESS;
2188 /* * Badness of converting a derived class pointer
2189 to a base class pointer. */
2190 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2191 /* * Badness of integral conversion. */
2192 extern const struct rank INTEGER_CONVERSION_BADNESS;
2193 /* * Badness of floating conversion. */
2194 extern const struct rank FLOAT_CONVERSION_BADNESS;
2195 /* * Badness of integer<->floating conversions. */
2196 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2197 /* * Badness of conversion of pointer to void pointer. */
2198 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2199 /* * Badness of conversion to boolean. */
2200 extern const struct rank BOOL_CONVERSION_BADNESS;
2201 /* * Badness of converting derived to base class. */
2202 extern const struct rank BASE_CONVERSION_BADNESS;
2203 /* * Badness of converting from non-reference to reference. Subrank
2204 is the type of reference conversion being done. */
2205 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2206 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2207 /* * Conversion to rvalue reference. */
2208 #define REFERENCE_CONVERSION_RVALUE 1
2209 /* * Conversion to const lvalue reference. */
2210 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2211
2212 /* * Badness of converting integer 0 to NULL pointer. */
2213 extern const struct rank NULL_POINTER_CONVERSION;
2214 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2215 being done. */
2216 extern const struct rank CV_CONVERSION_BADNESS;
2217 #define CV_CONVERSION_CONST 1
2218 #define CV_CONVERSION_VOLATILE 2
2219
2220 /* Non-standard conversions allowed by the debugger */
2221
2222 /* * Converting a pointer to an int is usually OK. */
2223 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2224
2225 /* * Badness of converting a (non-zero) integer constant
2226 to a pointer. */
2227 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2228
2229 extern struct rank sum_ranks (struct rank a, struct rank b);
2230 extern int compare_ranks (struct rank a, struct rank b);
2231
2232 extern int compare_badness (const badness_vector &,
2233 const badness_vector &);
2234
2235 extern badness_vector rank_function (gdb::array_view<type *> parms,
2236 gdb::array_view<value *> args);
2237
2238 extern struct rank rank_one_type (struct type *, struct type *,
2239 struct value *);
2240
2241 extern void recursive_dump_type (struct type *, int);
2242
2243 extern int field_is_static (struct field *);
2244
2245 /* printcmd.c */
2246
2247 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2248 const struct value_print_options *,
2249 int, struct ui_file *);
2250
2251 extern int can_dereference (struct type *);
2252
2253 extern int is_integral_type (struct type *);
2254
2255 extern int is_floating_type (struct type *);
2256
2257 extern int is_scalar_type (struct type *type);
2258
2259 extern int is_scalar_type_recursive (struct type *);
2260
2261 extern int class_or_union_p (const struct type *);
2262
2263 extern void maintenance_print_type (const char *, int);
2264
2265 extern htab_t create_copied_types_hash (struct objfile *objfile);
2266
2267 extern struct type *copy_type_recursive (struct objfile *objfile,
2268 struct type *type,
2269 htab_t copied_types);
2270
2271 extern struct type *copy_type (const struct type *type);
2272
2273 extern bool types_equal (struct type *, struct type *);
2274
2275 extern bool types_deeply_equal (struct type *, struct type *);
2276
2277 extern int type_not_allocated (const struct type *type);
2278
2279 extern int type_not_associated (const struct type *type);
2280
2281 /* * When the type includes explicit byte ordering, return that.
2282 Otherwise, the byte ordering from gdbarch_byte_order for
2283 get_type_arch is returned. */
2284
2285 extern enum bfd_endian type_byte_order (const struct type *type);
2286
2287 /* A flag to enable printing of debugging information of C++
2288 overloading. */
2289
2290 extern unsigned int overload_debug;
2291
2292 #endif /* GDBTYPES_H */
This page took 0.07678 seconds and 5 git commands to generate.