gdb: remove TYPE_CODE macro
[deliverable/binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2020 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/offset-type.h"
50 #include "gdbsupport/enum-flags.h"
51 #include "gdbsupport/underlying.h"
52 #include "gdbsupport/print-utils.h"
53 #include "dwarf2.h"
54 #include "gdb_obstack.h"
55
56 /* Forward declarations for prototypes. */
57 struct field;
58 struct block;
59 struct value_print_options;
60 struct language_defn;
61
62 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
63 are already DWARF-specific. */
64
65 /* * Offset relative to the start of its containing CU (compilation
66 unit). */
67 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
68
69 /* * Offset relative to the start of its .debug_info or .debug_types
70 section. */
71 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
72
73 static inline char *
74 sect_offset_str (sect_offset offset)
75 {
76 return hex_string (to_underlying (offset));
77 }
78
79 /* Some macros for char-based bitfields. */
80
81 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
82 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
83 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
84 #define B_TYPE unsigned char
85 #define B_BYTES(x) ( 1 + ((x)>>3) )
86 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
87
88 /* * Different kinds of data types are distinguished by the `code'
89 field. */
90
91 enum type_code
92 {
93 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
94 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
95 TYPE_CODE_PTR, /**< Pointer type */
96
97 /* * Array type with lower & upper bounds.
98
99 Regardless of the language, GDB represents multidimensional
100 array types the way C does: as arrays of arrays. So an
101 instance of a GDB array type T can always be seen as a series
102 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
103 memory.
104
105 Row-major languages like C lay out multi-dimensional arrays so
106 that incrementing the rightmost index in a subscripting
107 expression results in the smallest change in the address of the
108 element referred to. Column-major languages like Fortran lay
109 them out so that incrementing the leftmost index results in the
110 smallest change.
111
112 This means that, in column-major languages, working our way
113 from type to target type corresponds to working through indices
114 from right to left, not left to right. */
115 TYPE_CODE_ARRAY,
116
117 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
118 TYPE_CODE_UNION, /**< C union or Pascal variant part */
119 TYPE_CODE_ENUM, /**< Enumeration type */
120 TYPE_CODE_FLAGS, /**< Bit flags type */
121 TYPE_CODE_FUNC, /**< Function type */
122 TYPE_CODE_INT, /**< Integer type */
123
124 /* * Floating type. This is *NOT* a complex type. */
125 TYPE_CODE_FLT,
126
127 /* * Void type. The length field specifies the length (probably
128 always one) which is used in pointer arithmetic involving
129 pointers to this type, but actually dereferencing such a
130 pointer is invalid; a void type has no length and no actual
131 representation in memory or registers. A pointer to a void
132 type is a generic pointer. */
133 TYPE_CODE_VOID,
134
135 TYPE_CODE_SET, /**< Pascal sets */
136 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
137
138 /* * A string type which is like an array of character but prints
139 differently. It does not contain a length field as Pascal
140 strings (for many Pascals, anyway) do; if we want to deal with
141 such strings, we should use a new type code. */
142 TYPE_CODE_STRING,
143
144 /* * Unknown type. The length field is valid if we were able to
145 deduce that much about the type, or 0 if we don't even know
146 that. */
147 TYPE_CODE_ERROR,
148
149 /* C++ */
150 TYPE_CODE_METHOD, /**< Method type */
151
152 /* * Pointer-to-member-function type. This describes how to access a
153 particular member function of a class (possibly a virtual
154 member function). The representation may vary between different
155 C++ ABIs. */
156 TYPE_CODE_METHODPTR,
157
158 /* * Pointer-to-member type. This is the offset within a class to
159 some particular data member. The only currently supported
160 representation uses an unbiased offset, with -1 representing
161 NULL; this is used by the Itanium C++ ABI (used by GCC on all
162 platforms). */
163 TYPE_CODE_MEMBERPTR,
164
165 TYPE_CODE_REF, /**< C++ Reference types */
166
167 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
168
169 TYPE_CODE_CHAR, /**< *real* character type */
170
171 /* * Boolean type. 0 is false, 1 is true, and other values are
172 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
173 TYPE_CODE_BOOL,
174
175 /* Fortran */
176 TYPE_CODE_COMPLEX, /**< Complex float */
177
178 TYPE_CODE_TYPEDEF,
179
180 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
181
182 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
183
184 TYPE_CODE_MODULE, /**< Fortran module. */
185
186 /* * Internal function type. */
187 TYPE_CODE_INTERNAL_FUNCTION,
188
189 /* * Methods implemented in extension languages. */
190 TYPE_CODE_XMETHOD
191 };
192
193 /* * Some bits for the type's instance_flags word. See the macros
194 below for documentation on each bit. */
195
196 enum type_instance_flag_value : unsigned
197 {
198 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
199 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
200 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
201 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
202 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
203 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
204 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
205 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
206 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
207 };
208
209 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
210
211 /* * Unsigned integer type. If this is not set for a TYPE_CODE_INT,
212 the type is signed (unless TYPE_NOSIGN (below) is set). */
213
214 #define TYPE_UNSIGNED(t) (TYPE_MAIN_TYPE (t)->flag_unsigned)
215
216 /* * No sign for this type. In C++, "char", "signed char", and
217 "unsigned char" are distinct types; so we need an extra flag to
218 indicate the absence of a sign! */
219
220 #define TYPE_NOSIGN(t) (TYPE_MAIN_TYPE (t)->flag_nosign)
221
222 /* * A compiler may supply dwarf instrumentation
223 that indicates the desired endian interpretation of the variable
224 differs from the native endian representation. */
225
226 #define TYPE_ENDIANITY_NOT_DEFAULT(t) (TYPE_MAIN_TYPE (t)->flag_endianity_not_default)
227
228 /* * This appears in a type's flags word if it is a stub type (e.g.,
229 if someone referenced a type that wasn't defined in a source file
230 via (struct sir_not_appearing_in_this_film *)). */
231
232 #define TYPE_STUB(t) (TYPE_MAIN_TYPE (t)->flag_stub)
233
234 /* * The target type of this type is a stub type, and this type needs
235 to be updated if it gets un-stubbed in check_typedef. Used for
236 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
237 based on the TYPE_LENGTH of the target type. Also, set for
238 TYPE_CODE_TYPEDEF. */
239
240 #define TYPE_TARGET_STUB(t) (TYPE_MAIN_TYPE (t)->flag_target_stub)
241
242 /* * This is a function type which appears to have a prototype. We
243 need this for function calls in order to tell us if it's necessary
244 to coerce the args, or to just do the standard conversions. This
245 is used with a short field. */
246
247 #define TYPE_PROTOTYPED(t) (TYPE_MAIN_TYPE (t)->flag_prototyped)
248
249 /* * FIXME drow/2002-06-03: Only used for methods, but applies as well
250 to functions. */
251
252 #define TYPE_VARARGS(t) (TYPE_MAIN_TYPE (t)->flag_varargs)
253
254 /* * Identify a vector type. Gcc is handling this by adding an extra
255 attribute to the array type. We slurp that in as a new flag of a
256 type. This is used only in dwarf2read.c. */
257 #define TYPE_VECTOR(t) (TYPE_MAIN_TYPE (t)->flag_vector)
258
259 /* * The debugging formats (especially STABS) do not contain enough
260 information to represent all Ada types---especially those whose
261 size depends on dynamic quantities. Therefore, the GNAT Ada
262 compiler includes extra information in the form of additional type
263 definitions connected by naming conventions. This flag indicates
264 that the type is an ordinary (unencoded) GDB type that has been
265 created from the necessary run-time information, and does not need
266 further interpretation. Optionally marks ordinary, fixed-size GDB
267 type. */
268
269 #define TYPE_FIXED_INSTANCE(t) (TYPE_MAIN_TYPE (t)->flag_fixed_instance)
270
271 /* * This debug target supports TYPE_STUB(t). In the unsupported case
272 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
273 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
274 guessed the TYPE_STUB(t) value (see dwarfread.c). */
275
276 #define TYPE_STUB_SUPPORTED(t) (TYPE_MAIN_TYPE (t)->flag_stub_supported)
277
278 /* * Not textual. By default, GDB treats all single byte integers as
279 characters (or elements of strings) unless this flag is set. */
280
281 #define TYPE_NOTTEXT(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
282
283 /* * Used only for TYPE_CODE_FUNC where it specifies the real function
284 address is returned by this function call. TYPE_TARGET_TYPE
285 determines the final returned function type to be presented to
286 user. */
287
288 #define TYPE_GNU_IFUNC(t) (TYPE_MAIN_TYPE (t)->flag_gnu_ifunc)
289
290 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
291 the objfile retrieved as TYPE_OBJFILE. Otherwise, the type is
292 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
293
294 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
295 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
296 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
297
298 /* * True if this type was declared using the "class" keyword. This is
299 only valid for C++ structure and enum types. If false, a structure
300 was declared as a "struct"; if true it was declared "class". For
301 enum types, this is true when "enum class" or "enum struct" was
302 used to declare the type.. */
303
304 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
305
306 /* * True if this type is a "flag" enum. A flag enum is one where all
307 the values are pairwise disjoint when "and"ed together. This
308 affects how enum values are printed. */
309
310 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
311
312 /* * Constant type. If this is set, the corresponding type has a
313 const modifier. */
314
315 #define TYPE_CONST(t) ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST) != 0)
316
317 /* * Volatile type. If this is set, the corresponding type has a
318 volatile modifier. */
319
320 #define TYPE_VOLATILE(t) \
321 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
322
323 /* * Restrict type. If this is set, the corresponding type has a
324 restrict modifier. */
325
326 #define TYPE_RESTRICT(t) \
327 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
328
329 /* * Atomic type. If this is set, the corresponding type has an
330 _Atomic modifier. */
331
332 #define TYPE_ATOMIC(t) \
333 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
334
335 /* * True if this type represents either an lvalue or lvalue reference type. */
336
337 #define TYPE_IS_REFERENCE(t) \
338 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
339
340 /* * True if this type is allocatable. */
341 #define TYPE_IS_ALLOCATABLE(t) \
342 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
343
344 /* * True if this type has variant parts. */
345 #define TYPE_HAS_VARIANT_PARTS(t) \
346 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
347
348 /* * True if this type has a dynamic length. */
349 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
350 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
351
352 /* * Instruction-space delimited type. This is for Harvard architectures
353 which have separate instruction and data address spaces (and perhaps
354 others).
355
356 GDB usually defines a flat address space that is a superset of the
357 architecture's two (or more) address spaces, but this is an extension
358 of the architecture's model.
359
360 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
361 resides in instruction memory, even if its address (in the extended
362 flat address space) does not reflect this.
363
364 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
365 corresponding type resides in the data memory space, even if
366 this is not indicated by its (flat address space) address.
367
368 If neither flag is set, the default space for functions / methods
369 is instruction space, and for data objects is data memory. */
370
371 #define TYPE_CODE_SPACE(t) \
372 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
373
374 #define TYPE_DATA_SPACE(t) \
375 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
376
377 /* * Address class flags. Some environments provide for pointers
378 whose size is different from that of a normal pointer or address
379 types where the bits are interpreted differently than normal
380 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
381 target specific ways to represent these different types of address
382 classes. */
383
384 #define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
385 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
386 #define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
387 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
388 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
389 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
390 #define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
391 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
392
393 /* * Information about a single discriminant. */
394
395 struct discriminant_range
396 {
397 /* * The range of values for the variant. This is an inclusive
398 range. */
399 ULONGEST low, high;
400
401 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
402 is true if this should be an unsigned comparison; false for
403 signed. */
404 bool contains (ULONGEST value, bool is_unsigned) const
405 {
406 if (is_unsigned)
407 return value >= low && value <= high;
408 LONGEST valuel = (LONGEST) value;
409 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
410 }
411 };
412
413 struct variant_part;
414
415 /* * A single variant. A variant has a list of discriminant values.
416 When the discriminator matches one of these, the variant is
417 enabled. Each variant controls zero or more fields; and may also
418 control other variant parts as well. This struct corresponds to
419 DW_TAG_variant in DWARF. */
420
421 struct variant : allocate_on_obstack
422 {
423 /* * The discriminant ranges for this variant. */
424 gdb::array_view<discriminant_range> discriminants;
425
426 /* * The fields controlled by this variant. This is inclusive on
427 the low end and exclusive on the high end. A variant may not
428 control any fields, in which case the two values will be equal.
429 These are indexes into the type's array of fields. */
430 int first_field;
431 int last_field;
432
433 /* * Variant parts controlled by this variant. */
434 gdb::array_view<variant_part> parts;
435
436 /* * Return true if this is the default variant. The default
437 variant can be recognized because it has no associated
438 discriminants. */
439 bool is_default () const
440 {
441 return discriminants.empty ();
442 }
443
444 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
445 if this should be an unsigned comparison; false for signed. */
446 bool matches (ULONGEST value, bool is_unsigned) const;
447 };
448
449 /* * A variant part. Each variant part has an optional discriminant
450 and holds an array of variants. This struct corresponds to
451 DW_TAG_variant_part in DWARF. */
452
453 struct variant_part : allocate_on_obstack
454 {
455 /* * The index of the discriminant field in the outer type. This is
456 an index into the type's array of fields. If this is -1, there
457 is no discriminant, and only the default variant can be
458 considered to be selected. */
459 int discriminant_index;
460
461 /* * True if this discriminant is unsigned; false if signed. This
462 comes from the type of the discriminant. */
463 bool is_unsigned;
464
465 /* * The variants that are controlled by this variant part. Note
466 that these will always be sorted by field number. */
467 gdb::array_view<variant> variants;
468 };
469
470
471 enum dynamic_prop_kind
472 {
473 PROP_UNDEFINED, /* Not defined. */
474 PROP_CONST, /* Constant. */
475 PROP_ADDR_OFFSET, /* Address offset. */
476 PROP_LOCEXPR, /* Location expression. */
477 PROP_LOCLIST, /* Location list. */
478 PROP_VARIANT_PARTS, /* Variant parts. */
479 PROP_TYPE, /* Type. */
480 };
481
482 union dynamic_prop_data
483 {
484 /* Storage for constant property. */
485
486 LONGEST const_val;
487
488 /* Storage for dynamic property. */
489
490 void *baton;
491
492 /* Storage of variant parts for a type. A type with variant parts
493 has all its fields "linearized" -- stored in a single field
494 array, just as if they had all been declared that way. The
495 variant parts are attached via a dynamic property, and then are
496 used to control which fields end up in the final type during
497 dynamic type resolution. */
498
499 const gdb::array_view<variant_part> *variant_parts;
500
501 /* Once a variant type is resolved, we may want to be able to go
502 from the resolved type to the original type. In this case we
503 rewrite the property's kind and set this field. */
504
505 struct type *original_type;
506 };
507
508 /* * Used to store a dynamic property. */
509
510 struct dynamic_prop
511 {
512 /* Determine which field of the union dynamic_prop.data is used. */
513 enum dynamic_prop_kind kind;
514
515 /* Storage for dynamic or static value. */
516 union dynamic_prop_data data;
517 };
518
519 /* Compare two dynamic_prop objects for equality. dynamic_prop
520 instances are equal iff they have the same type and storage. */
521 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
522
523 /* Compare two dynamic_prop objects for inequality. */
524 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
525 {
526 return !(l == r);
527 }
528
529 /* * Define a type's dynamic property node kind. */
530 enum dynamic_prop_node_kind
531 {
532 /* A property providing a type's data location.
533 Evaluating this field yields to the location of an object's data. */
534 DYN_PROP_DATA_LOCATION,
535
536 /* A property representing DW_AT_allocated. The presence of this attribute
537 indicates that the object of the type can be allocated/deallocated. */
538 DYN_PROP_ALLOCATED,
539
540 /* A property representing DW_AT_associated. The presence of this attribute
541 indicated that the object of the type can be associated. */
542 DYN_PROP_ASSOCIATED,
543
544 /* A property providing an array's byte stride. */
545 DYN_PROP_BYTE_STRIDE,
546
547 /* A property holding variant parts. */
548 DYN_PROP_VARIANT_PARTS,
549
550 /* A property holding the size of the type. */
551 DYN_PROP_BYTE_SIZE,
552 };
553
554 /* * List for dynamic type attributes. */
555 struct dynamic_prop_list
556 {
557 /* The kind of dynamic prop in this node. */
558 enum dynamic_prop_node_kind prop_kind;
559
560 /* The dynamic property itself. */
561 struct dynamic_prop prop;
562
563 /* A pointer to the next dynamic property. */
564 struct dynamic_prop_list *next;
565 };
566
567 /* * Determine which field of the union main_type.fields[x].loc is
568 used. */
569
570 enum field_loc_kind
571 {
572 FIELD_LOC_KIND_BITPOS, /**< bitpos */
573 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
574 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
575 FIELD_LOC_KIND_PHYSNAME, /**< physname */
576 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
577 };
578
579 /* * A discriminant to determine which field in the
580 main_type.type_specific union is being used, if any.
581
582 For types such as TYPE_CODE_FLT, the use of this
583 discriminant is really redundant, as we know from the type code
584 which field is going to be used. As such, it would be possible to
585 reduce the size of this enum in order to save a bit or two for
586 other fields of struct main_type. But, since we still have extra
587 room , and for the sake of clarity and consistency, we treat all fields
588 of the union the same way. */
589
590 enum type_specific_kind
591 {
592 TYPE_SPECIFIC_NONE,
593 TYPE_SPECIFIC_CPLUS_STUFF,
594 TYPE_SPECIFIC_GNAT_STUFF,
595 TYPE_SPECIFIC_FLOATFORMAT,
596 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
597 TYPE_SPECIFIC_FUNC,
598 TYPE_SPECIFIC_SELF_TYPE
599 };
600
601 union type_owner
602 {
603 struct objfile *objfile;
604 struct gdbarch *gdbarch;
605 };
606
607 union field_location
608 {
609 /* * Position of this field, counting in bits from start of
610 containing structure. For big-endian targets, it is the bit
611 offset to the MSB. For little-endian targets, it is the bit
612 offset to the LSB. */
613
614 LONGEST bitpos;
615
616 /* * Enum value. */
617 LONGEST enumval;
618
619 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
620 physaddr is the location (in the target) of the static
621 field. Otherwise, physname is the mangled label of the
622 static field. */
623
624 CORE_ADDR physaddr;
625 const char *physname;
626
627 /* * The field location can be computed by evaluating the
628 following DWARF block. Its DATA is allocated on
629 objfile_obstack - no CU load is needed to access it. */
630
631 struct dwarf2_locexpr_baton *dwarf_block;
632 };
633
634 struct field
635 {
636 union field_location loc;
637
638 /* * For a function or member type, this is 1 if the argument is
639 marked artificial. Artificial arguments should not be shown
640 to the user. For TYPE_CODE_RANGE it is set if the specific
641 bound is not defined. */
642
643 unsigned int artificial : 1;
644
645 /* * Discriminant for union field_location. */
646
647 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
648
649 /* * Size of this field, in bits, or zero if not packed.
650 If non-zero in an array type, indicates the element size in
651 bits (used only in Ada at the moment).
652 For an unpacked field, the field's type's length
653 says how many bytes the field occupies. */
654
655 unsigned int bitsize : 28;
656
657 /* * In a struct or union type, type of this field.
658 - In a function or member type, type of this argument.
659 - In an array type, the domain-type of the array. */
660
661 struct type *type;
662
663 /* * Name of field, value or argument.
664 NULL for range bounds, array domains, and member function
665 arguments. */
666
667 const char *name;
668 };
669
670 struct range_bounds
671 {
672 /* * Low bound of range. */
673
674 struct dynamic_prop low;
675
676 /* * High bound of range. */
677
678 struct dynamic_prop high;
679
680 /* The stride value for this range. This can be stored in bits or bytes
681 based on the value of BYTE_STRIDE_P. It is optional to have a stride
682 value, if this range has no stride value defined then this will be set
683 to the constant zero. */
684
685 struct dynamic_prop stride;
686
687 /* * The bias. Sometimes a range value is biased before storage.
688 The bias is added to the stored bits to form the true value. */
689
690 LONGEST bias;
691
692 /* True if HIGH range bound contains the number of elements in the
693 subrange. This affects how the final high bound is computed. */
694
695 unsigned int flag_upper_bound_is_count : 1;
696
697 /* True if LOW or/and HIGH are resolved into a static bound from
698 a dynamic one. */
699
700 unsigned int flag_bound_evaluated : 1;
701
702 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
703
704 unsigned int flag_is_byte_stride : 1;
705 };
706
707 /* Compare two range_bounds objects for equality. Simply does
708 memberwise comparison. */
709 extern bool operator== (const range_bounds &l, const range_bounds &r);
710
711 /* Compare two range_bounds objects for inequality. */
712 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
713 {
714 return !(l == r);
715 }
716
717 union type_specific
718 {
719 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
720 point to cplus_struct_default, a default static instance of a
721 struct cplus_struct_type. */
722
723 struct cplus_struct_type *cplus_stuff;
724
725 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
726 provides additional information. */
727
728 struct gnat_aux_type *gnat_stuff;
729
730 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
731 floatformat object that describes the floating-point value
732 that resides within the type. */
733
734 const struct floatformat *floatformat;
735
736 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
737
738 struct func_type *func_stuff;
739
740 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
741 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
742 is a member of. */
743
744 struct type *self_type;
745 };
746
747 /* * Main structure representing a type in GDB.
748
749 This structure is space-critical. Its layout has been tweaked to
750 reduce the space used. */
751
752 struct main_type
753 {
754 /* * Code for kind of type. */
755
756 ENUM_BITFIELD(type_code) code : 8;
757
758 /* * Flags about this type. These fields appear at this location
759 because they packs nicely here. See the TYPE_* macros for
760 documentation about these fields. */
761
762 unsigned int flag_unsigned : 1;
763 unsigned int flag_nosign : 1;
764 unsigned int flag_stub : 1;
765 unsigned int flag_target_stub : 1;
766 unsigned int flag_prototyped : 1;
767 unsigned int flag_varargs : 1;
768 unsigned int flag_vector : 1;
769 unsigned int flag_stub_supported : 1;
770 unsigned int flag_gnu_ifunc : 1;
771 unsigned int flag_fixed_instance : 1;
772 unsigned int flag_objfile_owned : 1;
773 unsigned int flag_endianity_not_default : 1;
774
775 /* * True if this type was declared with "class" rather than
776 "struct". */
777
778 unsigned int flag_declared_class : 1;
779
780 /* * True if this is an enum type with disjoint values. This
781 affects how the enum is printed. */
782
783 unsigned int flag_flag_enum : 1;
784
785 /* * A discriminant telling us which field of the type_specific
786 union is being used for this type, if any. */
787
788 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
789
790 /* * Number of fields described for this type. This field appears
791 at this location because it packs nicely here. */
792
793 short nfields;
794
795 /* * Name of this type, or NULL if none.
796
797 This is used for printing only. For looking up a name, look for
798 a symbol in the VAR_DOMAIN. This is generally allocated in the
799 objfile's obstack. However coffread.c uses malloc. */
800
801 const char *name;
802
803 /* * Every type is now associated with a particular objfile, and the
804 type is allocated on the objfile_obstack for that objfile. One
805 problem however, is that there are times when gdb allocates new
806 types while it is not in the process of reading symbols from a
807 particular objfile. Fortunately, these happen when the type
808 being created is a derived type of an existing type, such as in
809 lookup_pointer_type(). So we can just allocate the new type
810 using the same objfile as the existing type, but to do this we
811 need a backpointer to the objfile from the existing type. Yes
812 this is somewhat ugly, but without major overhaul of the internal
813 type system, it can't be avoided for now. */
814
815 union type_owner owner;
816
817 /* * For a pointer type, describes the type of object pointed to.
818 - For an array type, describes the type of the elements.
819 - For a function or method type, describes the type of the return value.
820 - For a range type, describes the type of the full range.
821 - For a complex type, describes the type of each coordinate.
822 - For a special record or union type encoding a dynamic-sized type
823 in GNAT, a memoized pointer to a corresponding static version of
824 the type.
825 - Unused otherwise. */
826
827 struct type *target_type;
828
829 /* * For structure and union types, a description of each field.
830 For set and pascal array types, there is one "field",
831 whose type is the domain type of the set or array.
832 For range types, there are two "fields",
833 the minimum and maximum values (both inclusive).
834 For enum types, each possible value is described by one "field".
835 For a function or method type, a "field" for each parameter.
836 For C++ classes, there is one field for each base class (if it is
837 a derived class) plus one field for each class data member. Member
838 functions are recorded elsewhere.
839
840 Using a pointer to a separate array of fields
841 allows all types to have the same size, which is useful
842 because we can allocate the space for a type before
843 we know what to put in it. */
844
845 union
846 {
847 struct field *fields;
848
849 /* * Union member used for range types. */
850
851 struct range_bounds *bounds;
852
853 /* If this is a scalar type, then this is its corresponding
854 complex type. */
855 struct type *complex_type;
856
857 } flds_bnds;
858
859 /* * Slot to point to additional language-specific fields of this
860 type. */
861
862 union type_specific type_specific;
863
864 /* * Contains all dynamic type properties. */
865 struct dynamic_prop_list *dyn_prop_list;
866 };
867
868 /* * Number of bits allocated for alignment. */
869
870 #define TYPE_ALIGN_BITS 8
871
872 /* * A ``struct type'' describes a particular instance of a type, with
873 some particular qualification. */
874
875 struct type
876 {
877 /* Get the type code of this type.
878
879 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
880 type, you need to do `check_typedef (type)->code ()`. */
881 type_code code () const
882 {
883 return this->main_type->code;
884 }
885
886 /* Set the type code of this type. */
887 void set_code (type_code code)
888 {
889 this->main_type->code = code;
890 }
891
892 /* * Return the dynamic property of the requested KIND from this type's
893 list of dynamic properties. */
894 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
895
896 /* * Given a dynamic property PROP of a given KIND, add this dynamic
897 property to this type.
898
899 This function assumes that this type is objfile-owned. */
900 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
901
902 /* * Remove dynamic property of kind KIND from this type, if it exists. */
903 void remove_dyn_prop (dynamic_prop_node_kind kind);
904
905 /* * Type that is a pointer to this type.
906 NULL if no such pointer-to type is known yet.
907 The debugger may add the address of such a type
908 if it has to construct one later. */
909
910 struct type *pointer_type;
911
912 /* * C++: also need a reference type. */
913
914 struct type *reference_type;
915
916 /* * A C++ rvalue reference type added in C++11. */
917
918 struct type *rvalue_reference_type;
919
920 /* * Variant chain. This points to a type that differs from this
921 one only in qualifiers and length. Currently, the possible
922 qualifiers are const, volatile, code-space, data-space, and
923 address class. The length may differ only when one of the
924 address class flags are set. The variants are linked in a
925 circular ring and share MAIN_TYPE. */
926
927 struct type *chain;
928
929 /* * The alignment for this type. Zero means that the alignment was
930 not specified in the debug info. Note that this is stored in a
931 funny way: as the log base 2 (plus 1) of the alignment; so a
932 value of 1 means the alignment is 1, and a value of 9 means the
933 alignment is 256. */
934
935 unsigned align_log2 : TYPE_ALIGN_BITS;
936
937 /* * Flags specific to this instance of the type, indicating where
938 on the ring we are.
939
940 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
941 binary or-ed with the target type, with a special case for
942 address class and space class. For example if this typedef does
943 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
944 instance flags are completely inherited from the target type. No
945 qualifiers can be cleared by the typedef. See also
946 check_typedef. */
947 unsigned instance_flags : 9;
948
949 /* * Length of storage for a value of this type. The value is the
950 expression in host bytes of what sizeof(type) would return. This
951 size includes padding. For example, an i386 extended-precision
952 floating point value really only occupies ten bytes, but most
953 ABI's declare its size to be 12 bytes, to preserve alignment.
954 A `struct type' representing such a floating-point type would
955 have a `length' value of 12, even though the last two bytes are
956 unused.
957
958 Since this field is expressed in host bytes, its value is appropriate
959 to pass to memcpy and such (it is assumed that GDB itself always runs
960 on an 8-bits addressable architecture). However, when using it for
961 target address arithmetic (e.g. adding it to a target address), the
962 type_length_units function should be used in order to get the length
963 expressed in target addressable memory units. */
964
965 ULONGEST length;
966
967 /* * Core type, shared by a group of qualified types. */
968
969 struct main_type *main_type;
970 };
971
972 #define NULL_TYPE ((struct type *) 0)
973
974 struct fn_fieldlist
975 {
976
977 /* * The overloaded name.
978 This is generally allocated in the objfile's obstack.
979 However stabsread.c sometimes uses malloc. */
980
981 const char *name;
982
983 /* * The number of methods with this name. */
984
985 int length;
986
987 /* * The list of methods. */
988
989 struct fn_field *fn_fields;
990 };
991
992
993
994 struct fn_field
995 {
996 /* * If is_stub is clear, this is the mangled name which we can look
997 up to find the address of the method (FIXME: it would be cleaner
998 to have a pointer to the struct symbol here instead).
999
1000 If is_stub is set, this is the portion of the mangled name which
1001 specifies the arguments. For example, "ii", if there are two int
1002 arguments, or "" if there are no arguments. See gdb_mangle_name
1003 for the conversion from this format to the one used if is_stub is
1004 clear. */
1005
1006 const char *physname;
1007
1008 /* * The function type for the method.
1009
1010 (This comment used to say "The return value of the method", but
1011 that's wrong. The function type is expected here, i.e. something
1012 with TYPE_CODE_METHOD, and *not* the return-value type). */
1013
1014 struct type *type;
1015
1016 /* * For virtual functions. First baseclass that defines this
1017 virtual function. */
1018
1019 struct type *fcontext;
1020
1021 /* Attributes. */
1022
1023 unsigned int is_const:1;
1024 unsigned int is_volatile:1;
1025 unsigned int is_private:1;
1026 unsigned int is_protected:1;
1027 unsigned int is_artificial:1;
1028
1029 /* * A stub method only has some fields valid (but they are enough
1030 to reconstruct the rest of the fields). */
1031
1032 unsigned int is_stub:1;
1033
1034 /* * True if this function is a constructor, false otherwise. */
1035
1036 unsigned int is_constructor : 1;
1037
1038 /* * True if this function is deleted, false otherwise. */
1039
1040 unsigned int is_deleted : 1;
1041
1042 /* * DW_AT_defaulted attribute for this function. The value is one
1043 of the DW_DEFAULTED constants. */
1044
1045 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1046
1047 /* * Unused. */
1048
1049 unsigned int dummy:6;
1050
1051 /* * Index into that baseclass's virtual function table, minus 2;
1052 else if static: VOFFSET_STATIC; else: 0. */
1053
1054 unsigned int voffset:16;
1055
1056 #define VOFFSET_STATIC 1
1057
1058 };
1059
1060 struct decl_field
1061 {
1062 /* * Unqualified name to be prefixed by owning class qualified
1063 name. */
1064
1065 const char *name;
1066
1067 /* * Type this typedef named NAME represents. */
1068
1069 struct type *type;
1070
1071 /* * True if this field was declared protected, false otherwise. */
1072 unsigned int is_protected : 1;
1073
1074 /* * True if this field was declared private, false otherwise. */
1075 unsigned int is_private : 1;
1076 };
1077
1078 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1079 TYPE_CODE_UNION nodes. */
1080
1081 struct cplus_struct_type
1082 {
1083 /* * Number of base classes this type derives from. The
1084 baseclasses are stored in the first N_BASECLASSES fields
1085 (i.e. the `fields' field of the struct type). The only fields
1086 of struct field that are used are: type, name, loc.bitpos. */
1087
1088 short n_baseclasses;
1089
1090 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1091 All access to this field must be through TYPE_VPTR_FIELDNO as one
1092 thing it does is check whether the field has been initialized.
1093 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1094 which for portability reasons doesn't initialize this field.
1095 TYPE_VPTR_FIELDNO returns -1 for this case.
1096
1097 If -1, we were unable to find the virtual function table pointer in
1098 initial symbol reading, and get_vptr_fieldno should be called to find
1099 it if possible. get_vptr_fieldno will update this field if possible.
1100 Otherwise the value is left at -1.
1101
1102 Unused if this type does not have virtual functions. */
1103
1104 short vptr_fieldno;
1105
1106 /* * Number of methods with unique names. All overloaded methods
1107 with the same name count only once. */
1108
1109 short nfn_fields;
1110
1111 /* * Number of template arguments. */
1112
1113 unsigned short n_template_arguments;
1114
1115 /* * One if this struct is a dynamic class, as defined by the
1116 Itanium C++ ABI: if it requires a virtual table pointer,
1117 because it or any of its base classes have one or more virtual
1118 member functions or virtual base classes. Minus one if not
1119 dynamic. Zero if not yet computed. */
1120
1121 int is_dynamic : 2;
1122
1123 /* * The calling convention for this type, fetched from the
1124 DW_AT_calling_convention attribute. The value is one of the
1125 DW_CC constants. */
1126
1127 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1128
1129 /* * The base class which defined the virtual function table pointer. */
1130
1131 struct type *vptr_basetype;
1132
1133 /* * For derived classes, the number of base classes is given by
1134 n_baseclasses and virtual_field_bits is a bit vector containing
1135 one bit per base class. If the base class is virtual, the
1136 corresponding bit will be set.
1137 I.E, given:
1138
1139 class A{};
1140 class B{};
1141 class C : public B, public virtual A {};
1142
1143 B is a baseclass of C; A is a virtual baseclass for C.
1144 This is a C++ 2.0 language feature. */
1145
1146 B_TYPE *virtual_field_bits;
1147
1148 /* * For classes with private fields, the number of fields is
1149 given by nfields and private_field_bits is a bit vector
1150 containing one bit per field.
1151
1152 If the field is private, the corresponding bit will be set. */
1153
1154 B_TYPE *private_field_bits;
1155
1156 /* * For classes with protected fields, the number of fields is
1157 given by nfields and protected_field_bits is a bit vector
1158 containing one bit per field.
1159
1160 If the field is private, the corresponding bit will be set. */
1161
1162 B_TYPE *protected_field_bits;
1163
1164 /* * For classes with fields to be ignored, either this is
1165 optimized out or this field has length 0. */
1166
1167 B_TYPE *ignore_field_bits;
1168
1169 /* * For classes, structures, and unions, a description of each
1170 field, which consists of an overloaded name, followed by the
1171 types of arguments that the method expects, and then the name
1172 after it has been renamed to make it distinct.
1173
1174 fn_fieldlists points to an array of nfn_fields of these. */
1175
1176 struct fn_fieldlist *fn_fieldlists;
1177
1178 /* * typedefs defined inside this class. typedef_field points to
1179 an array of typedef_field_count elements. */
1180
1181 struct decl_field *typedef_field;
1182
1183 unsigned typedef_field_count;
1184
1185 /* * The nested types defined by this type. nested_types points to
1186 an array of nested_types_count elements. */
1187
1188 struct decl_field *nested_types;
1189
1190 unsigned nested_types_count;
1191
1192 /* * The template arguments. This is an array with
1193 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1194 classes. */
1195
1196 struct symbol **template_arguments;
1197 };
1198
1199 /* * Struct used to store conversion rankings. */
1200
1201 struct rank
1202 {
1203 short rank;
1204
1205 /* * When two conversions are of the same type and therefore have
1206 the same rank, subrank is used to differentiate the two.
1207
1208 Eg: Two derived-class-pointer to base-class-pointer conversions
1209 would both have base pointer conversion rank, but the
1210 conversion with the shorter distance to the ancestor is
1211 preferable. 'subrank' would be used to reflect that. */
1212
1213 short subrank;
1214 };
1215
1216 /* * Used for ranking a function for overload resolution. */
1217
1218 typedef std::vector<rank> badness_vector;
1219
1220 /* * GNAT Ada-specific information for various Ada types. */
1221
1222 struct gnat_aux_type
1223 {
1224 /* * Parallel type used to encode information about dynamic types
1225 used in Ada (such as variant records, variable-size array,
1226 etc). */
1227 struct type* descriptive_type;
1228 };
1229
1230 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1231
1232 struct func_type
1233 {
1234 /* * The calling convention for targets supporting multiple ABIs.
1235 Right now this is only fetched from the Dwarf-2
1236 DW_AT_calling_convention attribute. The value is one of the
1237 DW_CC constants. */
1238
1239 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1240
1241 /* * Whether this function normally returns to its caller. It is
1242 set from the DW_AT_noreturn attribute if set on the
1243 DW_TAG_subprogram. */
1244
1245 unsigned int is_noreturn : 1;
1246
1247 /* * Only those DW_TAG_call_site's in this function that have
1248 DW_AT_call_tail_call set are linked in this list. Function
1249 without its tail call list complete
1250 (DW_AT_call_all_tail_calls or its superset
1251 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1252 DW_TAG_call_site's exist in such function. */
1253
1254 struct call_site *tail_call_list;
1255
1256 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1257 contains the method. */
1258
1259 struct type *self_type;
1260 };
1261
1262 /* struct call_site_parameter can be referenced in callees by several ways. */
1263
1264 enum call_site_parameter_kind
1265 {
1266 /* * Use field call_site_parameter.u.dwarf_reg. */
1267 CALL_SITE_PARAMETER_DWARF_REG,
1268
1269 /* * Use field call_site_parameter.u.fb_offset. */
1270 CALL_SITE_PARAMETER_FB_OFFSET,
1271
1272 /* * Use field call_site_parameter.u.param_offset. */
1273 CALL_SITE_PARAMETER_PARAM_OFFSET
1274 };
1275
1276 struct call_site_target
1277 {
1278 union field_location loc;
1279
1280 /* * Discriminant for union field_location. */
1281
1282 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1283 };
1284
1285 union call_site_parameter_u
1286 {
1287 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1288 as DWARF register number, for register passed
1289 parameters. */
1290
1291 int dwarf_reg;
1292
1293 /* * Offset from the callee's frame base, for stack passed
1294 parameters. This equals offset from the caller's stack
1295 pointer. */
1296
1297 CORE_ADDR fb_offset;
1298
1299 /* * Offset relative to the start of this PER_CU to
1300 DW_TAG_formal_parameter which is referenced by both
1301 caller and the callee. */
1302
1303 cu_offset param_cu_off;
1304 };
1305
1306 struct call_site_parameter
1307 {
1308 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1309
1310 union call_site_parameter_u u;
1311
1312 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1313
1314 const gdb_byte *value;
1315 size_t value_size;
1316
1317 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1318 It may be NULL if not provided by DWARF. */
1319
1320 const gdb_byte *data_value;
1321 size_t data_value_size;
1322 };
1323
1324 /* * A place where a function gets called from, represented by
1325 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1326
1327 struct call_site
1328 {
1329 /* * Address of the first instruction after this call. It must be
1330 the first field as we overload core_addr_hash and core_addr_eq
1331 for it. */
1332
1333 CORE_ADDR pc;
1334
1335 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1336
1337 struct call_site *tail_call_next;
1338
1339 /* * Describe DW_AT_call_target. Missing attribute uses
1340 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1341
1342 struct call_site_target target;
1343
1344 /* * Size of the PARAMETER array. */
1345
1346 unsigned parameter_count;
1347
1348 /* * CU of the function where the call is located. It gets used
1349 for DWARF blocks execution in the parameter array below. */
1350
1351 struct dwarf2_per_cu_data *per_cu;
1352
1353 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1354
1355 struct call_site_parameter parameter[1];
1356 };
1357
1358 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1359 static structure. */
1360
1361 extern const struct cplus_struct_type cplus_struct_default;
1362
1363 extern void allocate_cplus_struct_type (struct type *);
1364
1365 #define INIT_CPLUS_SPECIFIC(type) \
1366 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1367 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1368 &cplus_struct_default)
1369
1370 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1371
1372 #define HAVE_CPLUS_STRUCT(type) \
1373 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1374 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1375
1376 #define INIT_NONE_SPECIFIC(type) \
1377 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1378 TYPE_MAIN_TYPE (type)->type_specific = {})
1379
1380 extern const struct gnat_aux_type gnat_aux_default;
1381
1382 extern void allocate_gnat_aux_type (struct type *);
1383
1384 #define INIT_GNAT_SPECIFIC(type) \
1385 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1386 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1387 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1388 /* * A macro that returns non-zero if the type-specific data should be
1389 read as "gnat-stuff". */
1390 #define HAVE_GNAT_AUX_INFO(type) \
1391 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1392
1393 /* * True if TYPE is known to be an Ada type of some kind. */
1394 #define ADA_TYPE_P(type) \
1395 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1396 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1397 && TYPE_FIXED_INSTANCE (type)))
1398
1399 #define INIT_FUNC_SPECIFIC(type) \
1400 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1401 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1402 TYPE_ZALLOC (type, \
1403 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1404
1405 #define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1406 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1407 #define TYPE_NAME(thistype) TYPE_MAIN_TYPE(thistype)->name
1408 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1409 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1410 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1411 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1412 #define TYPE_CHAIN(thistype) (thistype)->chain
1413 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1414 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1415 so you only have to call check_typedef once. Since allocate_value
1416 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1417 #define TYPE_LENGTH(thistype) (thistype)->length
1418
1419 /* * Return the alignment of the type in target addressable memory
1420 units, or 0 if no alignment was specified. */
1421 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1422
1423 /* * Return the alignment of the type in target addressable memory
1424 units, or 0 if no alignment was specified. */
1425 extern unsigned type_raw_align (struct type *);
1426
1427 /* * Return the alignment of the type in target addressable memory
1428 units. Return 0 if the alignment cannot be determined; but note
1429 that this makes an effort to compute the alignment even it it was
1430 not specified in the debug info. */
1431 extern unsigned type_align (struct type *);
1432
1433 /* * Set the alignment of the type. The alignment must be a power of
1434 2. Returns false if the given value does not fit in the available
1435 space in struct type. */
1436 extern bool set_type_align (struct type *, ULONGEST);
1437
1438 #define TYPE_NFIELDS(thistype) TYPE_MAIN_TYPE(thistype)->nfields
1439 #define TYPE_FIELDS(thistype) TYPE_MAIN_TYPE(thistype)->flds_bnds.fields
1440
1441 #define TYPE_INDEX_TYPE(type) TYPE_FIELD_TYPE (type, 0)
1442 #define TYPE_RANGE_DATA(thistype) TYPE_MAIN_TYPE(thistype)->flds_bnds.bounds
1443 #define TYPE_LOW_BOUND(range_type) \
1444 TYPE_RANGE_DATA(range_type)->low.data.const_val
1445 #define TYPE_HIGH_BOUND(range_type) \
1446 TYPE_RANGE_DATA(range_type)->high.data.const_val
1447 #define TYPE_LOW_BOUND_UNDEFINED(range_type) \
1448 (TYPE_RANGE_DATA(range_type)->low.kind == PROP_UNDEFINED)
1449 #define TYPE_HIGH_BOUND_UNDEFINED(range_type) \
1450 (TYPE_RANGE_DATA(range_type)->high.kind == PROP_UNDEFINED)
1451 #define TYPE_HIGH_BOUND_KIND(range_type) \
1452 TYPE_RANGE_DATA(range_type)->high.kind
1453 #define TYPE_LOW_BOUND_KIND(range_type) \
1454 TYPE_RANGE_DATA(range_type)->low.kind
1455 #define TYPE_BIT_STRIDE(range_type) \
1456 (TYPE_RANGE_DATA(range_type)->stride.data.const_val \
1457 * (TYPE_RANGE_DATA(range_type)->flag_is_byte_stride ? 8 : 1))
1458
1459 /* Property accessors for the type data location. */
1460 #define TYPE_DATA_LOCATION(thistype) \
1461 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1462 #define TYPE_DATA_LOCATION_BATON(thistype) \
1463 TYPE_DATA_LOCATION (thistype)->data.baton
1464 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1465 TYPE_DATA_LOCATION (thistype)->data.const_val
1466 #define TYPE_DATA_LOCATION_KIND(thistype) \
1467 TYPE_DATA_LOCATION (thistype)->kind
1468 #define TYPE_DYNAMIC_LENGTH(thistype) \
1469 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1470
1471 /* Property accessors for the type allocated/associated. */
1472 #define TYPE_ALLOCATED_PROP(thistype) \
1473 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1474 #define TYPE_ASSOCIATED_PROP(thistype) \
1475 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1476
1477 /* Attribute accessors for dynamic properties. */
1478 #define TYPE_DYN_PROP_BATON(dynprop) \
1479 dynprop->data.baton
1480 #define TYPE_DYN_PROP_ADDR(dynprop) \
1481 dynprop->data.const_val
1482 #define TYPE_DYN_PROP_KIND(dynprop) \
1483 dynprop->kind
1484
1485
1486 /* Accessors for struct range_bounds data attached to an array type's
1487 index type. */
1488
1489 #define TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED(arraytype) \
1490 TYPE_HIGH_BOUND_UNDEFINED(TYPE_INDEX_TYPE(arraytype))
1491 #define TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED(arraytype) \
1492 TYPE_LOW_BOUND_UNDEFINED(TYPE_INDEX_TYPE(arraytype))
1493
1494 #define TYPE_ARRAY_UPPER_BOUND_VALUE(arraytype) \
1495 (TYPE_HIGH_BOUND(TYPE_INDEX_TYPE((arraytype))))
1496
1497 #define TYPE_ARRAY_LOWER_BOUND_VALUE(arraytype) \
1498 (TYPE_LOW_BOUND(TYPE_INDEX_TYPE((arraytype))))
1499
1500 #define TYPE_ARRAY_BIT_STRIDE(arraytype) \
1501 (TYPE_BIT_STRIDE(TYPE_INDEX_TYPE((arraytype))))
1502
1503 /* C++ */
1504
1505 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1506 /* Do not call this, use TYPE_SELF_TYPE. */
1507 extern struct type *internal_type_self_type (struct type *);
1508 extern void set_type_self_type (struct type *, struct type *);
1509
1510 extern int internal_type_vptr_fieldno (struct type *);
1511 extern void set_type_vptr_fieldno (struct type *, int);
1512 extern struct type *internal_type_vptr_basetype (struct type *);
1513 extern void set_type_vptr_basetype (struct type *, struct type *);
1514 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1515 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1516
1517 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1518 #define TYPE_SPECIFIC_FIELD(thistype) \
1519 TYPE_MAIN_TYPE(thistype)->type_specific_field
1520 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1521 where we're trying to print an Ada array using the C language.
1522 In that case, there is no "cplus_stuff", but the C language assumes
1523 that there is. What we do, in that case, is pretend that there is
1524 an implicit one which is the default cplus stuff. */
1525 #define TYPE_CPLUS_SPECIFIC(thistype) \
1526 (!HAVE_CPLUS_STRUCT(thistype) \
1527 ? (struct cplus_struct_type*)&cplus_struct_default \
1528 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1529 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1530 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1531 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1532 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1533 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1534 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1535 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1536 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1537 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1538 #define TYPE_BASECLASS(thistype,index) TYPE_FIELD_TYPE(thistype, index)
1539 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1540 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1541 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1542 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1543 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1544 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1545
1546 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1547 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1548 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1549
1550 #define FIELD_TYPE(thisfld) ((thisfld).type)
1551 #define FIELD_NAME(thisfld) ((thisfld).name)
1552 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1553 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1554 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1555 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1556 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1557 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1558 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1559 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1560 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1561 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1562 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1563 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1564 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1565 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1566 #define SET_FIELD_PHYSNAME(thisfld, name) \
1567 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1568 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1569 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1570 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1571 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1572 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1573 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1574 FIELD_DWARF_BLOCK (thisfld) = (addr))
1575 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1576 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1577
1578 #define TYPE_FIELD(thistype, n) TYPE_MAIN_TYPE(thistype)->flds_bnds.fields[n]
1579 #define TYPE_FIELD_TYPE(thistype, n) FIELD_TYPE(TYPE_FIELD(thistype, n))
1580 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME(TYPE_FIELD(thistype, n))
1581 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND (TYPE_FIELD (thistype, n))
1582 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS (TYPE_FIELD (thistype, n))
1583 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL (TYPE_FIELD (thistype, n))
1584 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME (TYPE_FIELD (thistype, n))
1585 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR (TYPE_FIELD (thistype, n))
1586 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK (TYPE_FIELD (thistype, n))
1587 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL(TYPE_FIELD(thistype,n))
1588 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE(TYPE_FIELD(thistype,n))
1589 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE(TYPE_FIELD(thistype,n))!=0)
1590
1591 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1592 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1593 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1594 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1595 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1596 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1597 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1598 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1599 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1600 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1601 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1602 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1603 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1604 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1605 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1606 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1607 #define TYPE_FIELD_PRIVATE(thistype, n) \
1608 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1609 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1610 #define TYPE_FIELD_PROTECTED(thistype, n) \
1611 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1612 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1613 #define TYPE_FIELD_IGNORE(thistype, n) \
1614 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1615 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1616 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1617 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1618 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1619
1620 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1621 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1622 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1623 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1624 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1625
1626 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1627 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1628 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1629 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1630 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1631 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1632
1633 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1634 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1635 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1636 #define TYPE_FN_FIELD_ARGS(thisfn, n) TYPE_FIELDS ((thisfn)[n].type)
1637 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1638 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1639 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1640 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1641 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1642 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1643 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1644 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1645 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1646 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1647 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1648 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
1649 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
1650
1651 /* Accessors for typedefs defined by a class. */
1652 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1653 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1654 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1655 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1656 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1657 TYPE_TYPEDEF_FIELD (thistype, n).name
1658 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1659 TYPE_TYPEDEF_FIELD (thistype, n).type
1660 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1661 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1662 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1663 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1664 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1665 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1666
1667 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1668 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1669 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
1670 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
1671 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
1672 TYPE_NESTED_TYPES_FIELD (thistype, n).name
1673 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
1674 TYPE_NESTED_TYPES_FIELD (thistype, n).type
1675 #define TYPE_NESTED_TYPES_COUNT(thistype) \
1676 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
1677 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
1678 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
1679 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
1680 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
1681
1682 #define TYPE_IS_OPAQUE(thistype) \
1683 ((((thistype)->code () == TYPE_CODE_STRUCT) \
1684 || ((thistype)->code () == TYPE_CODE_UNION)) \
1685 && (TYPE_NFIELDS (thistype) == 0) \
1686 && (!HAVE_CPLUS_STRUCT (thistype) \
1687 || TYPE_NFN_FIELDS (thistype) == 0) \
1688 && (TYPE_STUB (thistype) || !TYPE_STUB_SUPPORTED (thistype)))
1689
1690 /* * A helper macro that returns the name of a type or "unnamed type"
1691 if the type has no name. */
1692
1693 #define TYPE_SAFE_NAME(type) \
1694 (TYPE_NAME (type) ? TYPE_NAME (type) : _("<unnamed type>"))
1695
1696 /* * A helper macro that returns the name of an error type. If the
1697 type has a name, it is used; otherwise, a default is used. */
1698
1699 #define TYPE_ERROR_NAME(type) \
1700 (TYPE_NAME (type) ? TYPE_NAME (type) : _("<error type>"))
1701
1702 /* Given TYPE, return its floatformat. */
1703 const struct floatformat *floatformat_from_type (const struct type *type);
1704
1705 struct builtin_type
1706 {
1707 /* Integral types. */
1708
1709 /* Implicit size/sign (based on the architecture's ABI). */
1710 struct type *builtin_void;
1711 struct type *builtin_char;
1712 struct type *builtin_short;
1713 struct type *builtin_int;
1714 struct type *builtin_long;
1715 struct type *builtin_signed_char;
1716 struct type *builtin_unsigned_char;
1717 struct type *builtin_unsigned_short;
1718 struct type *builtin_unsigned_int;
1719 struct type *builtin_unsigned_long;
1720 struct type *builtin_half;
1721 struct type *builtin_float;
1722 struct type *builtin_double;
1723 struct type *builtin_long_double;
1724 struct type *builtin_complex;
1725 struct type *builtin_double_complex;
1726 struct type *builtin_string;
1727 struct type *builtin_bool;
1728 struct type *builtin_long_long;
1729 struct type *builtin_unsigned_long_long;
1730 struct type *builtin_decfloat;
1731 struct type *builtin_decdouble;
1732 struct type *builtin_declong;
1733
1734 /* "True" character types.
1735 We use these for the '/c' print format, because c_char is just a
1736 one-byte integral type, which languages less laid back than C
1737 will print as ... well, a one-byte integral type. */
1738 struct type *builtin_true_char;
1739 struct type *builtin_true_unsigned_char;
1740
1741 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1742 is for when an architecture needs to describe a register that has
1743 no size. */
1744 struct type *builtin_int0;
1745 struct type *builtin_int8;
1746 struct type *builtin_uint8;
1747 struct type *builtin_int16;
1748 struct type *builtin_uint16;
1749 struct type *builtin_int24;
1750 struct type *builtin_uint24;
1751 struct type *builtin_int32;
1752 struct type *builtin_uint32;
1753 struct type *builtin_int64;
1754 struct type *builtin_uint64;
1755 struct type *builtin_int128;
1756 struct type *builtin_uint128;
1757
1758 /* Wide character types. */
1759 struct type *builtin_char16;
1760 struct type *builtin_char32;
1761 struct type *builtin_wchar;
1762
1763 /* Pointer types. */
1764
1765 /* * `pointer to data' type. Some target platforms use an implicitly
1766 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1767 struct type *builtin_data_ptr;
1768
1769 /* * `pointer to function (returning void)' type. Harvard
1770 architectures mean that ABI function and code pointers are not
1771 interconvertible. Similarly, since ANSI, C standards have
1772 explicitly said that pointers to functions and pointers to data
1773 are not interconvertible --- that is, you can't cast a function
1774 pointer to void * and back, and expect to get the same value.
1775 However, all function pointer types are interconvertible, so void
1776 (*) () can server as a generic function pointer. */
1777
1778 struct type *builtin_func_ptr;
1779
1780 /* * `function returning pointer to function (returning void)' type.
1781 The final void return type is not significant for it. */
1782
1783 struct type *builtin_func_func;
1784
1785 /* Special-purpose types. */
1786
1787 /* * This type is used to represent a GDB internal function. */
1788
1789 struct type *internal_fn;
1790
1791 /* * This type is used to represent an xmethod. */
1792 struct type *xmethod;
1793 };
1794
1795 /* * Return the type table for the specified architecture. */
1796
1797 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
1798
1799 /* * Per-objfile types used by symbol readers. */
1800
1801 struct objfile_type
1802 {
1803 /* Basic types based on the objfile architecture. */
1804 struct type *builtin_void;
1805 struct type *builtin_char;
1806 struct type *builtin_short;
1807 struct type *builtin_int;
1808 struct type *builtin_long;
1809 struct type *builtin_long_long;
1810 struct type *builtin_signed_char;
1811 struct type *builtin_unsigned_char;
1812 struct type *builtin_unsigned_short;
1813 struct type *builtin_unsigned_int;
1814 struct type *builtin_unsigned_long;
1815 struct type *builtin_unsigned_long_long;
1816 struct type *builtin_half;
1817 struct type *builtin_float;
1818 struct type *builtin_double;
1819 struct type *builtin_long_double;
1820
1821 /* * This type is used to represent symbol addresses. */
1822 struct type *builtin_core_addr;
1823
1824 /* * This type represents a type that was unrecognized in symbol
1825 read-in. */
1826 struct type *builtin_error;
1827
1828 /* * Types used for symbols with no debug information. */
1829 struct type *nodebug_text_symbol;
1830 struct type *nodebug_text_gnu_ifunc_symbol;
1831 struct type *nodebug_got_plt_symbol;
1832 struct type *nodebug_data_symbol;
1833 struct type *nodebug_unknown_symbol;
1834 struct type *nodebug_tls_symbol;
1835 };
1836
1837 /* * Return the type table for the specified objfile. */
1838
1839 extern const struct objfile_type *objfile_type (struct objfile *objfile);
1840
1841 /* Explicit floating-point formats. See "floatformat.h". */
1842 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
1843 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
1844 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
1845 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
1846 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
1847 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
1848 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
1849 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
1850 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
1851 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
1852 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
1853 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
1854
1855
1856 /* Allocate space for storing data associated with a particular
1857 type. We ensure that the space is allocated using the same
1858 mechanism that was used to allocate the space for the type
1859 structure itself. I.e. if the type is on an objfile's
1860 objfile_obstack, then the space for data associated with that type
1861 will also be allocated on the objfile_obstack. If the type is
1862 associated with a gdbarch, then the space for data associated with that
1863 type will also be allocated on the gdbarch_obstack.
1864
1865 If a type is not associated with neither an objfile or a gdbarch then
1866 you should not use this macro to allocate space for data, instead you
1867 should call xmalloc directly, and ensure the memory is correctly freed
1868 when it is no longer needed. */
1869
1870 #define TYPE_ALLOC(t,size) \
1871 (obstack_alloc ((TYPE_OBJFILE_OWNED (t) \
1872 ? &TYPE_OBJFILE (t)->objfile_obstack \
1873 : gdbarch_obstack (TYPE_OWNER (t).gdbarch)), \
1874 size))
1875
1876
1877 /* See comment on TYPE_ALLOC. */
1878
1879 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
1880
1881 /* Use alloc_type to allocate a type owned by an objfile. Use
1882 alloc_type_arch to allocate a type owned by an architecture. Use
1883 alloc_type_copy to allocate a type with the same owner as a
1884 pre-existing template type, no matter whether objfile or
1885 gdbarch. */
1886 extern struct type *alloc_type (struct objfile *);
1887 extern struct type *alloc_type_arch (struct gdbarch *);
1888 extern struct type *alloc_type_copy (const struct type *);
1889
1890 /* * Return the type's architecture. For types owned by an
1891 architecture, that architecture is returned. For types owned by an
1892 objfile, that objfile's architecture is returned. */
1893
1894 extern struct gdbarch *get_type_arch (const struct type *);
1895
1896 /* * This returns the target type (or NULL) of TYPE, also skipping
1897 past typedefs. */
1898
1899 extern struct type *get_target_type (struct type *type);
1900
1901 /* Return the equivalent of TYPE_LENGTH, but in number of target
1902 addressable memory units of the associated gdbarch instead of bytes. */
1903
1904 extern unsigned int type_length_units (struct type *type);
1905
1906 /* * Helper function to construct objfile-owned types. */
1907
1908 extern struct type *init_type (struct objfile *, enum type_code, int,
1909 const char *);
1910 extern struct type *init_integer_type (struct objfile *, int, int,
1911 const char *);
1912 extern struct type *init_character_type (struct objfile *, int, int,
1913 const char *);
1914 extern struct type *init_boolean_type (struct objfile *, int, int,
1915 const char *);
1916 extern struct type *init_float_type (struct objfile *, int, const char *,
1917 const struct floatformat **,
1918 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
1919 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
1920 extern struct type *init_complex_type (const char *, struct type *);
1921 extern struct type *init_pointer_type (struct objfile *, int, const char *,
1922 struct type *);
1923
1924 /* Helper functions to construct architecture-owned types. */
1925 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
1926 const char *);
1927 extern struct type *arch_integer_type (struct gdbarch *, int, int,
1928 const char *);
1929 extern struct type *arch_character_type (struct gdbarch *, int, int,
1930 const char *);
1931 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
1932 const char *);
1933 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
1934 const struct floatformat **);
1935 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
1936 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
1937 struct type *);
1938
1939 /* Helper functions to construct a struct or record type. An
1940 initially empty type is created using arch_composite_type().
1941 Fields are then added using append_composite_type_field*(). A union
1942 type has its size set to the largest field. A struct type has each
1943 field packed against the previous. */
1944
1945 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
1946 const char *name, enum type_code code);
1947 extern void append_composite_type_field (struct type *t, const char *name,
1948 struct type *field);
1949 extern void append_composite_type_field_aligned (struct type *t,
1950 const char *name,
1951 struct type *field,
1952 int alignment);
1953 struct field *append_composite_type_field_raw (struct type *t, const char *name,
1954 struct type *field);
1955
1956 /* Helper functions to construct a bit flags type. An initially empty
1957 type is created using arch_flag_type(). Flags are then added using
1958 append_flag_type_field() and append_flag_type_flag(). */
1959 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
1960 const char *name, int bit);
1961 extern void append_flags_type_field (struct type *type,
1962 int start_bitpos, int nr_bits,
1963 struct type *field_type, const char *name);
1964 extern void append_flags_type_flag (struct type *type, int bitpos,
1965 const char *name);
1966
1967 extern void make_vector_type (struct type *array_type);
1968 extern struct type *init_vector_type (struct type *elt_type, int n);
1969
1970 extern struct type *lookup_reference_type (struct type *, enum type_code);
1971 extern struct type *lookup_lvalue_reference_type (struct type *);
1972 extern struct type *lookup_rvalue_reference_type (struct type *);
1973
1974
1975 extern struct type *make_reference_type (struct type *, struct type **,
1976 enum type_code);
1977
1978 extern struct type *make_cv_type (int, int, struct type *, struct type **);
1979
1980 extern struct type *make_restrict_type (struct type *);
1981
1982 extern struct type *make_unqualified_type (struct type *);
1983
1984 extern struct type *make_atomic_type (struct type *);
1985
1986 extern void replace_type (struct type *, struct type *);
1987
1988 extern int address_space_name_to_int (struct gdbarch *, const char *);
1989
1990 extern const char *address_space_int_to_name (struct gdbarch *, int);
1991
1992 extern struct type *make_type_with_address_space (struct type *type,
1993 int space_identifier);
1994
1995 extern struct type *lookup_memberptr_type (struct type *, struct type *);
1996
1997 extern struct type *lookup_methodptr_type (struct type *);
1998
1999 extern void smash_to_method_type (struct type *type, struct type *self_type,
2000 struct type *to_type, struct field *args,
2001 int nargs, int varargs);
2002
2003 extern void smash_to_memberptr_type (struct type *, struct type *,
2004 struct type *);
2005
2006 extern void smash_to_methodptr_type (struct type *, struct type *);
2007
2008 extern struct type *allocate_stub_method (struct type *);
2009
2010 extern const char *type_name_or_error (struct type *type);
2011
2012 struct struct_elt
2013 {
2014 /* The field of the element, or NULL if no element was found. */
2015 struct field *field;
2016
2017 /* The bit offset of the element in the parent structure. */
2018 LONGEST offset;
2019 };
2020
2021 /* Given a type TYPE, lookup the field and offset of the component named
2022 NAME.
2023
2024 TYPE can be either a struct or union, or a pointer or reference to
2025 a struct or union. If it is a pointer or reference, its target
2026 type is automatically used. Thus '.' and '->' are interchangable,
2027 as specified for the definitions of the expression element types
2028 STRUCTOP_STRUCT and STRUCTOP_PTR.
2029
2030 If NOERR is nonzero, the returned structure will have field set to
2031 NULL if there is no component named NAME.
2032
2033 If the component NAME is a field in an anonymous substructure of
2034 TYPE, the returned offset is a "global" offset relative to TYPE
2035 rather than an offset within the substructure. */
2036
2037 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2038
2039 /* Given a type TYPE, lookup the type of the component named NAME.
2040
2041 TYPE can be either a struct or union, or a pointer or reference to
2042 a struct or union. If it is a pointer or reference, its target
2043 type is automatically used. Thus '.' and '->' are interchangable,
2044 as specified for the definitions of the expression element types
2045 STRUCTOP_STRUCT and STRUCTOP_PTR.
2046
2047 If NOERR is nonzero, return NULL if there is no component named
2048 NAME. */
2049
2050 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2051
2052 extern struct type *make_pointer_type (struct type *, struct type **);
2053
2054 extern struct type *lookup_pointer_type (struct type *);
2055
2056 extern struct type *make_function_type (struct type *, struct type **);
2057
2058 extern struct type *lookup_function_type (struct type *);
2059
2060 extern struct type *lookup_function_type_with_arguments (struct type *,
2061 int,
2062 struct type **);
2063
2064 extern struct type *create_static_range_type (struct type *, struct type *,
2065 LONGEST, LONGEST);
2066
2067
2068 extern struct type *create_array_type_with_stride
2069 (struct type *, struct type *, struct type *,
2070 struct dynamic_prop *, unsigned int);
2071
2072 extern struct type *create_range_type (struct type *, struct type *,
2073 const struct dynamic_prop *,
2074 const struct dynamic_prop *,
2075 LONGEST);
2076
2077 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2078 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2079 stride. */
2080
2081 extern struct type * create_range_type_with_stride
2082 (struct type *result_type, struct type *index_type,
2083 const struct dynamic_prop *low_bound,
2084 const struct dynamic_prop *high_bound, LONGEST bias,
2085 const struct dynamic_prop *stride, bool byte_stride_p);
2086
2087 extern struct type *create_array_type (struct type *, struct type *,
2088 struct type *);
2089
2090 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2091
2092 extern struct type *create_string_type (struct type *, struct type *,
2093 struct type *);
2094 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2095
2096 extern struct type *create_set_type (struct type *, struct type *);
2097
2098 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2099 const char *);
2100
2101 extern struct type *lookup_signed_typename (const struct language_defn *,
2102 const char *);
2103
2104 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2105
2106 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2107
2108 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2109 ADDR specifies the location of the variable the type is bound to.
2110 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2111 static properties is returned. */
2112 extern struct type *resolve_dynamic_type
2113 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2114 CORE_ADDR addr);
2115
2116 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2117 extern int is_dynamic_type (struct type *type);
2118
2119 extern struct type *check_typedef (struct type *);
2120
2121 extern void check_stub_method_group (struct type *, int);
2122
2123 extern char *gdb_mangle_name (struct type *, int, int);
2124
2125 extern struct type *lookup_typename (const struct language_defn *,
2126 const char *, const struct block *, int);
2127
2128 extern struct type *lookup_template_type (const char *, struct type *,
2129 const struct block *);
2130
2131 extern int get_vptr_fieldno (struct type *, struct type **);
2132
2133 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
2134
2135 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
2136 LONGEST *high_bound);
2137
2138 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
2139
2140 extern int class_types_same_p (const struct type *, const struct type *);
2141
2142 extern int is_ancestor (struct type *, struct type *);
2143
2144 extern int is_public_ancestor (struct type *, struct type *);
2145
2146 extern int is_unique_ancestor (struct type *, struct value *);
2147
2148 /* Overload resolution */
2149
2150 /* * Badness if parameter list length doesn't match arg list length. */
2151 extern const struct rank LENGTH_MISMATCH_BADNESS;
2152
2153 /* * Dummy badness value for nonexistent parameter positions. */
2154 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2155 /* * Badness if no conversion among types. */
2156 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2157
2158 /* * Badness of an exact match. */
2159 extern const struct rank EXACT_MATCH_BADNESS;
2160
2161 /* * Badness of integral promotion. */
2162 extern const struct rank INTEGER_PROMOTION_BADNESS;
2163 /* * Badness of floating promotion. */
2164 extern const struct rank FLOAT_PROMOTION_BADNESS;
2165 /* * Badness of converting a derived class pointer
2166 to a base class pointer. */
2167 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2168 /* * Badness of integral conversion. */
2169 extern const struct rank INTEGER_CONVERSION_BADNESS;
2170 /* * Badness of floating conversion. */
2171 extern const struct rank FLOAT_CONVERSION_BADNESS;
2172 /* * Badness of integer<->floating conversions. */
2173 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2174 /* * Badness of conversion of pointer to void pointer. */
2175 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2176 /* * Badness of conversion to boolean. */
2177 extern const struct rank BOOL_CONVERSION_BADNESS;
2178 /* * Badness of converting derived to base class. */
2179 extern const struct rank BASE_CONVERSION_BADNESS;
2180 /* * Badness of converting from non-reference to reference. Subrank
2181 is the type of reference conversion being done. */
2182 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2183 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2184 /* * Conversion to rvalue reference. */
2185 #define REFERENCE_CONVERSION_RVALUE 1
2186 /* * Conversion to const lvalue reference. */
2187 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2188
2189 /* * Badness of converting integer 0 to NULL pointer. */
2190 extern const struct rank NULL_POINTER_CONVERSION;
2191 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2192 being done. */
2193 extern const struct rank CV_CONVERSION_BADNESS;
2194 #define CV_CONVERSION_CONST 1
2195 #define CV_CONVERSION_VOLATILE 2
2196
2197 /* Non-standard conversions allowed by the debugger */
2198
2199 /* * Converting a pointer to an int is usually OK. */
2200 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2201
2202 /* * Badness of converting a (non-zero) integer constant
2203 to a pointer. */
2204 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2205
2206 extern struct rank sum_ranks (struct rank a, struct rank b);
2207 extern int compare_ranks (struct rank a, struct rank b);
2208
2209 extern int compare_badness (const badness_vector &,
2210 const badness_vector &);
2211
2212 extern badness_vector rank_function (gdb::array_view<type *> parms,
2213 gdb::array_view<value *> args);
2214
2215 extern struct rank rank_one_type (struct type *, struct type *,
2216 struct value *);
2217
2218 extern void recursive_dump_type (struct type *, int);
2219
2220 extern int field_is_static (struct field *);
2221
2222 /* printcmd.c */
2223
2224 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2225 const struct value_print_options *,
2226 int, struct ui_file *);
2227
2228 extern int can_dereference (struct type *);
2229
2230 extern int is_integral_type (struct type *);
2231
2232 extern int is_floating_type (struct type *);
2233
2234 extern int is_scalar_type (struct type *type);
2235
2236 extern int is_scalar_type_recursive (struct type *);
2237
2238 extern int class_or_union_p (const struct type *);
2239
2240 extern void maintenance_print_type (const char *, int);
2241
2242 extern htab_t create_copied_types_hash (struct objfile *objfile);
2243
2244 extern struct type *copy_type_recursive (struct objfile *objfile,
2245 struct type *type,
2246 htab_t copied_types);
2247
2248 extern struct type *copy_type (const struct type *type);
2249
2250 extern bool types_equal (struct type *, struct type *);
2251
2252 extern bool types_deeply_equal (struct type *, struct type *);
2253
2254 extern int type_not_allocated (const struct type *type);
2255
2256 extern int type_not_associated (const struct type *type);
2257
2258 /* * When the type includes explicit byte ordering, return that.
2259 Otherwise, the byte ordering from gdbarch_byte_order for
2260 get_type_arch is returned. */
2261
2262 extern enum bfd_endian type_byte_order (const struct type *type);
2263
2264 /* A flag to enable printing of debugging information of C++
2265 overloading. */
2266
2267 extern unsigned int overload_debug;
2268
2269 #endif /* GDBTYPES_H */
This page took 0.075615 seconds and 5 git commands to generate.