gdb: remove TYPE_INCOMPLETE
[deliverable/binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2020 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/offset-type.h"
50 #include "gdbsupport/enum-flags.h"
51 #include "gdbsupport/underlying.h"
52 #include "gdbsupport/print-utils.h"
53 #include "dwarf2.h"
54 #include "gdb_obstack.h"
55
56 /* Forward declarations for prototypes. */
57 struct field;
58 struct block;
59 struct value_print_options;
60 struct language_defn;
61
62 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
63 are already DWARF-specific. */
64
65 /* * Offset relative to the start of its containing CU (compilation
66 unit). */
67 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
68
69 /* * Offset relative to the start of its .debug_info or .debug_types
70 section. */
71 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
72
73 static inline char *
74 sect_offset_str (sect_offset offset)
75 {
76 return hex_string (to_underlying (offset));
77 }
78
79 /* Some macros for char-based bitfields. */
80
81 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
82 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
83 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
84 #define B_TYPE unsigned char
85 #define B_BYTES(x) ( 1 + ((x)>>3) )
86 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
87
88 /* * Different kinds of data types are distinguished by the `code'
89 field. */
90
91 enum type_code
92 {
93 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
94 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
95 TYPE_CODE_PTR, /**< Pointer type */
96
97 /* * Array type with lower & upper bounds.
98
99 Regardless of the language, GDB represents multidimensional
100 array types the way C does: as arrays of arrays. So an
101 instance of a GDB array type T can always be seen as a series
102 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
103 memory.
104
105 Row-major languages like C lay out multi-dimensional arrays so
106 that incrementing the rightmost index in a subscripting
107 expression results in the smallest change in the address of the
108 element referred to. Column-major languages like Fortran lay
109 them out so that incrementing the leftmost index results in the
110 smallest change.
111
112 This means that, in column-major languages, working our way
113 from type to target type corresponds to working through indices
114 from right to left, not left to right. */
115 TYPE_CODE_ARRAY,
116
117 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
118 TYPE_CODE_UNION, /**< C union or Pascal variant part */
119 TYPE_CODE_ENUM, /**< Enumeration type */
120 TYPE_CODE_FLAGS, /**< Bit flags type */
121 TYPE_CODE_FUNC, /**< Function type */
122 TYPE_CODE_INT, /**< Integer type */
123
124 /* * Floating type. This is *NOT* a complex type. */
125 TYPE_CODE_FLT,
126
127 /* * Void type. The length field specifies the length (probably
128 always one) which is used in pointer arithmetic involving
129 pointers to this type, but actually dereferencing such a
130 pointer is invalid; a void type has no length and no actual
131 representation in memory or registers. A pointer to a void
132 type is a generic pointer. */
133 TYPE_CODE_VOID,
134
135 TYPE_CODE_SET, /**< Pascal sets */
136 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
137
138 /* * A string type which is like an array of character but prints
139 differently. It does not contain a length field as Pascal
140 strings (for many Pascals, anyway) do; if we want to deal with
141 such strings, we should use a new type code. */
142 TYPE_CODE_STRING,
143
144 /* * Unknown type. The length field is valid if we were able to
145 deduce that much about the type, or 0 if we don't even know
146 that. */
147 TYPE_CODE_ERROR,
148
149 /* C++ */
150 TYPE_CODE_METHOD, /**< Method type */
151
152 /* * Pointer-to-member-function type. This describes how to access a
153 particular member function of a class (possibly a virtual
154 member function). The representation may vary between different
155 C++ ABIs. */
156 TYPE_CODE_METHODPTR,
157
158 /* * Pointer-to-member type. This is the offset within a class to
159 some particular data member. The only currently supported
160 representation uses an unbiased offset, with -1 representing
161 NULL; this is used by the Itanium C++ ABI (used by GCC on all
162 platforms). */
163 TYPE_CODE_MEMBERPTR,
164
165 TYPE_CODE_REF, /**< C++ Reference types */
166
167 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
168
169 TYPE_CODE_CHAR, /**< *real* character type */
170
171 /* * Boolean type. 0 is false, 1 is true, and other values are
172 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
173 TYPE_CODE_BOOL,
174
175 /* Fortran */
176 TYPE_CODE_COMPLEX, /**< Complex float */
177
178 TYPE_CODE_TYPEDEF,
179
180 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
181
182 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
183
184 TYPE_CODE_MODULE, /**< Fortran module. */
185
186 /* * Internal function type. */
187 TYPE_CODE_INTERNAL_FUNCTION,
188
189 /* * Methods implemented in extension languages. */
190 TYPE_CODE_XMETHOD
191 };
192
193 /* * Some bits for the type's instance_flags word. See the macros
194 below for documentation on each bit. */
195
196 enum type_instance_flag_value : unsigned
197 {
198 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
199 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
200 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
201 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
202 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
203 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
204 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
205 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
206 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
207 };
208
209 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
210
211 /* * Unsigned integer type. If this is not set for a TYPE_CODE_INT,
212 the type is signed (unless TYPE_NOSIGN (below) is set). */
213
214 #define TYPE_UNSIGNED(t) (TYPE_MAIN_TYPE (t)->flag_unsigned)
215
216 /* * No sign for this type. In C++, "char", "signed char", and
217 "unsigned char" are distinct types; so we need an extra flag to
218 indicate the absence of a sign! */
219
220 #define TYPE_NOSIGN(t) (TYPE_MAIN_TYPE (t)->flag_nosign)
221
222 /* * A compiler may supply dwarf instrumentation
223 that indicates the desired endian interpretation of the variable
224 differs from the native endian representation. */
225
226 #define TYPE_ENDIANITY_NOT_DEFAULT(t) (TYPE_MAIN_TYPE (t)->flag_endianity_not_default)
227
228 /* * This appears in a type's flags word if it is a stub type (e.g.,
229 if someone referenced a type that wasn't defined in a source file
230 via (struct sir_not_appearing_in_this_film *)). */
231
232 #define TYPE_STUB(t) (TYPE_MAIN_TYPE (t)->flag_stub)
233
234 /* * The target type of this type is a stub type, and this type needs
235 to be updated if it gets un-stubbed in check_typedef. Used for
236 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
237 based on the TYPE_LENGTH of the target type. Also, set for
238 TYPE_CODE_TYPEDEF. */
239
240 #define TYPE_TARGET_STUB(t) (TYPE_MAIN_TYPE (t)->flag_target_stub)
241
242 /* * This is a function type which appears to have a prototype. We
243 need this for function calls in order to tell us if it's necessary
244 to coerce the args, or to just do the standard conversions. This
245 is used with a short field. */
246
247 #define TYPE_PROTOTYPED(t) (TYPE_MAIN_TYPE (t)->flag_prototyped)
248
249 /* * FIXME drow/2002-06-03: Only used for methods, but applies as well
250 to functions. */
251
252 #define TYPE_VARARGS(t) (TYPE_MAIN_TYPE (t)->flag_varargs)
253
254 /* * Identify a vector type. Gcc is handling this by adding an extra
255 attribute to the array type. We slurp that in as a new flag of a
256 type. This is used only in dwarf2read.c. */
257 #define TYPE_VECTOR(t) (TYPE_MAIN_TYPE (t)->flag_vector)
258
259 /* * The debugging formats (especially STABS) do not contain enough
260 information to represent all Ada types---especially those whose
261 size depends on dynamic quantities. Therefore, the GNAT Ada
262 compiler includes extra information in the form of additional type
263 definitions connected by naming conventions. This flag indicates
264 that the type is an ordinary (unencoded) GDB type that has been
265 created from the necessary run-time information, and does not need
266 further interpretation. Optionally marks ordinary, fixed-size GDB
267 type. */
268
269 #define TYPE_FIXED_INSTANCE(t) (TYPE_MAIN_TYPE (t)->flag_fixed_instance)
270
271 /* * This debug target supports TYPE_STUB(t). In the unsupported case
272 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
273 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
274 guessed the TYPE_STUB(t) value (see dwarfread.c). */
275
276 #define TYPE_STUB_SUPPORTED(t) (TYPE_MAIN_TYPE (t)->flag_stub_supported)
277
278 /* * Not textual. By default, GDB treats all single byte integers as
279 characters (or elements of strings) unless this flag is set. */
280
281 #define TYPE_NOTTEXT(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
282
283 /* * Used only for TYPE_CODE_FUNC where it specifies the real function
284 address is returned by this function call. TYPE_TARGET_TYPE
285 determines the final returned function type to be presented to
286 user. */
287
288 #define TYPE_GNU_IFUNC(t) (TYPE_MAIN_TYPE (t)->flag_gnu_ifunc)
289
290 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
291 the objfile retrieved as TYPE_OBJFILE. Otherwise, the type is
292 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
293
294 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
295 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
296 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
297
298 /* * True if this type was declared using the "class" keyword. This is
299 only valid for C++ structure and enum types. If false, a structure
300 was declared as a "struct"; if true it was declared "class". For
301 enum types, this is true when "enum class" or "enum struct" was
302 used to declare the type.. */
303
304 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
305
306 /* * True if this type is a "flag" enum. A flag enum is one where all
307 the values are pairwise disjoint when "and"ed together. This
308 affects how enum values are printed. */
309
310 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
311
312 /* * Constant type. If this is set, the corresponding type has a
313 const modifier. */
314
315 #define TYPE_CONST(t) ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST) != 0)
316
317 /* * Volatile type. If this is set, the corresponding type has a
318 volatile modifier. */
319
320 #define TYPE_VOLATILE(t) \
321 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
322
323 /* * Restrict type. If this is set, the corresponding type has a
324 restrict modifier. */
325
326 #define TYPE_RESTRICT(t) \
327 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
328
329 /* * Atomic type. If this is set, the corresponding type has an
330 _Atomic modifier. */
331
332 #define TYPE_ATOMIC(t) \
333 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
334
335 /* * True if this type represents either an lvalue or lvalue reference type. */
336
337 #define TYPE_IS_REFERENCE(t) \
338 (TYPE_CODE (t) == TYPE_CODE_REF || TYPE_CODE (t) == TYPE_CODE_RVALUE_REF)
339
340 /* * True if this type is allocatable. */
341 #define TYPE_IS_ALLOCATABLE(t) \
342 (get_dyn_prop (DYN_PROP_ALLOCATED, t) != NULL)
343
344 /* * True if this type has variant parts. */
345 #define TYPE_HAS_VARIANT_PARTS(t) \
346 (get_dyn_prop (DYN_PROP_VARIANT_PARTS, t) != nullptr)
347
348 /* * True if this type has a dynamic length. */
349 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
350 (get_dyn_prop (DYN_PROP_BYTE_SIZE, t) != nullptr)
351
352 /* * Instruction-space delimited type. This is for Harvard architectures
353 which have separate instruction and data address spaces (and perhaps
354 others).
355
356 GDB usually defines a flat address space that is a superset of the
357 architecture's two (or more) address spaces, but this is an extension
358 of the architecture's model.
359
360 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
361 resides in instruction memory, even if its address (in the extended
362 flat address space) does not reflect this.
363
364 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
365 corresponding type resides in the data memory space, even if
366 this is not indicated by its (flat address space) address.
367
368 If neither flag is set, the default space for functions / methods
369 is instruction space, and for data objects is data memory. */
370
371 #define TYPE_CODE_SPACE(t) \
372 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
373
374 #define TYPE_DATA_SPACE(t) \
375 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
376
377 /* * Address class flags. Some environments provide for pointers
378 whose size is different from that of a normal pointer or address
379 types where the bits are interpreted differently than normal
380 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
381 target specific ways to represent these different types of address
382 classes. */
383
384 #define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
385 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
386 #define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
387 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
388 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
389 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
390 #define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
391 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
392
393 /* * Information about a single discriminant. */
394
395 struct discriminant_range
396 {
397 /* * The range of values for the variant. This is an inclusive
398 range. */
399 ULONGEST low, high;
400
401 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
402 is true if this should be an unsigned comparison; false for
403 signed. */
404 bool contains (ULONGEST value, bool is_unsigned) const
405 {
406 if (is_unsigned)
407 return value >= low && value <= high;
408 LONGEST valuel = (LONGEST) value;
409 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
410 }
411 };
412
413 struct variant_part;
414
415 /* * A single variant. A variant has a list of discriminant values.
416 When the discriminator matches one of these, the variant is
417 enabled. Each variant controls zero or more fields; and may also
418 control other variant parts as well. This struct corresponds to
419 DW_TAG_variant in DWARF. */
420
421 struct variant : allocate_on_obstack
422 {
423 /* * The discriminant ranges for this variant. */
424 gdb::array_view<discriminant_range> discriminants;
425
426 /* * The fields controlled by this variant. This is inclusive on
427 the low end and exclusive on the high end. A variant may not
428 control any fields, in which case the two values will be equal.
429 These are indexes into the type's array of fields. */
430 int first_field;
431 int last_field;
432
433 /* * Variant parts controlled by this variant. */
434 gdb::array_view<variant_part> parts;
435
436 /* * Return true if this is the default variant. The default
437 variant can be recognized because it has no associated
438 discriminants. */
439 bool is_default () const
440 {
441 return discriminants.empty ();
442 }
443
444 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
445 if this should be an unsigned comparison; false for signed. */
446 bool matches (ULONGEST value, bool is_unsigned) const;
447 };
448
449 /* * A variant part. Each variant part has an optional discriminant
450 and holds an array of variants. This struct corresponds to
451 DW_TAG_variant_part in DWARF. */
452
453 struct variant_part : allocate_on_obstack
454 {
455 /* * The index of the discriminant field in the outer type. This is
456 an index into the type's array of fields. If this is -1, there
457 is no discriminant, and only the default variant can be
458 considered to be selected. */
459 int discriminant_index;
460
461 /* * True if this discriminant is unsigned; false if signed. This
462 comes from the type of the discriminant. */
463 bool is_unsigned;
464
465 /* * The variants that are controlled by this variant part. Note
466 that these will always be sorted by field number. */
467 gdb::array_view<variant> variants;
468 };
469
470
471 enum dynamic_prop_kind
472 {
473 PROP_UNDEFINED, /* Not defined. */
474 PROP_CONST, /* Constant. */
475 PROP_ADDR_OFFSET, /* Address offset. */
476 PROP_LOCEXPR, /* Location expression. */
477 PROP_LOCLIST, /* Location list. */
478 PROP_VARIANT_PARTS, /* Variant parts. */
479 PROP_TYPE, /* Type. */
480 };
481
482 union dynamic_prop_data
483 {
484 /* Storage for constant property. */
485
486 LONGEST const_val;
487
488 /* Storage for dynamic property. */
489
490 void *baton;
491
492 /* Storage of variant parts for a type. A type with variant parts
493 has all its fields "linearized" -- stored in a single field
494 array, just as if they had all been declared that way. The
495 variant parts are attached via a dynamic property, and then are
496 used to control which fields end up in the final type during
497 dynamic type resolution. */
498
499 const gdb::array_view<variant_part> *variant_parts;
500
501 /* Once a variant type is resolved, we may want to be able to go
502 from the resolved type to the original type. In this case we
503 rewrite the property's kind and set this field. */
504
505 struct type *original_type;
506 };
507
508 /* * Used to store a dynamic property. */
509
510 struct dynamic_prop
511 {
512 /* Determine which field of the union dynamic_prop.data is used. */
513 enum dynamic_prop_kind kind;
514
515 /* Storage for dynamic or static value. */
516 union dynamic_prop_data data;
517 };
518
519 /* Compare two dynamic_prop objects for equality. dynamic_prop
520 instances are equal iff they have the same type and storage. */
521 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
522
523 /* Compare two dynamic_prop objects for inequality. */
524 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
525 {
526 return !(l == r);
527 }
528
529 /* * Define a type's dynamic property node kind. */
530 enum dynamic_prop_node_kind
531 {
532 /* A property providing a type's data location.
533 Evaluating this field yields to the location of an object's data. */
534 DYN_PROP_DATA_LOCATION,
535
536 /* A property representing DW_AT_allocated. The presence of this attribute
537 indicates that the object of the type can be allocated/deallocated. */
538 DYN_PROP_ALLOCATED,
539
540 /* A property representing DW_AT_associated. The presence of this attribute
541 indicated that the object of the type can be associated. */
542 DYN_PROP_ASSOCIATED,
543
544 /* A property providing an array's byte stride. */
545 DYN_PROP_BYTE_STRIDE,
546
547 /* A property holding variant parts. */
548 DYN_PROP_VARIANT_PARTS,
549
550 /* A property holding the size of the type. */
551 DYN_PROP_BYTE_SIZE,
552 };
553
554 /* * List for dynamic type attributes. */
555 struct dynamic_prop_list
556 {
557 /* The kind of dynamic prop in this node. */
558 enum dynamic_prop_node_kind prop_kind;
559
560 /* The dynamic property itself. */
561 struct dynamic_prop prop;
562
563 /* A pointer to the next dynamic property. */
564 struct dynamic_prop_list *next;
565 };
566
567 /* * Determine which field of the union main_type.fields[x].loc is
568 used. */
569
570 enum field_loc_kind
571 {
572 FIELD_LOC_KIND_BITPOS, /**< bitpos */
573 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
574 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
575 FIELD_LOC_KIND_PHYSNAME, /**< physname */
576 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
577 };
578
579 /* * A discriminant to determine which field in the
580 main_type.type_specific union is being used, if any.
581
582 For types such as TYPE_CODE_FLT, the use of this
583 discriminant is really redundant, as we know from the type code
584 which field is going to be used. As such, it would be possible to
585 reduce the size of this enum in order to save a bit or two for
586 other fields of struct main_type. But, since we still have extra
587 room , and for the sake of clarity and consistency, we treat all fields
588 of the union the same way. */
589
590 enum type_specific_kind
591 {
592 TYPE_SPECIFIC_NONE,
593 TYPE_SPECIFIC_CPLUS_STUFF,
594 TYPE_SPECIFIC_GNAT_STUFF,
595 TYPE_SPECIFIC_FLOATFORMAT,
596 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
597 TYPE_SPECIFIC_FUNC,
598 TYPE_SPECIFIC_SELF_TYPE
599 };
600
601 union type_owner
602 {
603 struct objfile *objfile;
604 struct gdbarch *gdbarch;
605 };
606
607 union field_location
608 {
609 /* * Position of this field, counting in bits from start of
610 containing structure. For big-endian targets, it is the bit
611 offset to the MSB. For little-endian targets, it is the bit
612 offset to the LSB. */
613
614 LONGEST bitpos;
615
616 /* * Enum value. */
617 LONGEST enumval;
618
619 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
620 physaddr is the location (in the target) of the static
621 field. Otherwise, physname is the mangled label of the
622 static field. */
623
624 CORE_ADDR physaddr;
625 const char *physname;
626
627 /* * The field location can be computed by evaluating the
628 following DWARF block. Its DATA is allocated on
629 objfile_obstack - no CU load is needed to access it. */
630
631 struct dwarf2_locexpr_baton *dwarf_block;
632 };
633
634 struct field
635 {
636 union field_location loc;
637
638 /* * For a function or member type, this is 1 if the argument is
639 marked artificial. Artificial arguments should not be shown
640 to the user. For TYPE_CODE_RANGE it is set if the specific
641 bound is not defined. */
642
643 unsigned int artificial : 1;
644
645 /* * Discriminant for union field_location. */
646
647 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
648
649 /* * Size of this field, in bits, or zero if not packed.
650 If non-zero in an array type, indicates the element size in
651 bits (used only in Ada at the moment).
652 For an unpacked field, the field's type's length
653 says how many bytes the field occupies. */
654
655 unsigned int bitsize : 28;
656
657 /* * In a struct or union type, type of this field.
658 - In a function or member type, type of this argument.
659 - In an array type, the domain-type of the array. */
660
661 struct type *type;
662
663 /* * Name of field, value or argument.
664 NULL for range bounds, array domains, and member function
665 arguments. */
666
667 const char *name;
668 };
669
670 struct range_bounds
671 {
672 /* * Low bound of range. */
673
674 struct dynamic_prop low;
675
676 /* * High bound of range. */
677
678 struct dynamic_prop high;
679
680 /* The stride value for this range. This can be stored in bits or bytes
681 based on the value of BYTE_STRIDE_P. It is optional to have a stride
682 value, if this range has no stride value defined then this will be set
683 to the constant zero. */
684
685 struct dynamic_prop stride;
686
687 /* * The bias. Sometimes a range value is biased before storage.
688 The bias is added to the stored bits to form the true value. */
689
690 LONGEST bias;
691
692 /* True if HIGH range bound contains the number of elements in the
693 subrange. This affects how the final high bound is computed. */
694
695 unsigned int flag_upper_bound_is_count : 1;
696
697 /* True if LOW or/and HIGH are resolved into a static bound from
698 a dynamic one. */
699
700 unsigned int flag_bound_evaluated : 1;
701
702 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
703
704 unsigned int flag_is_byte_stride : 1;
705 };
706
707 /* Compare two range_bounds objects for equality. Simply does
708 memberwise comparison. */
709 extern bool operator== (const range_bounds &l, const range_bounds &r);
710
711 /* Compare two range_bounds objects for inequality. */
712 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
713 {
714 return !(l == r);
715 }
716
717 union type_specific
718 {
719 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
720 point to cplus_struct_default, a default static instance of a
721 struct cplus_struct_type. */
722
723 struct cplus_struct_type *cplus_stuff;
724
725 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
726 provides additional information. */
727
728 struct gnat_aux_type *gnat_stuff;
729
730 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
731 floatformat object that describes the floating-point value
732 that resides within the type. */
733
734 const struct floatformat *floatformat;
735
736 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
737
738 struct func_type *func_stuff;
739
740 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
741 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
742 is a member of. */
743
744 struct type *self_type;
745 };
746
747 /* * Main structure representing a type in GDB.
748
749 This structure is space-critical. Its layout has been tweaked to
750 reduce the space used. */
751
752 struct main_type
753 {
754 /* * Code for kind of type. */
755
756 ENUM_BITFIELD(type_code) code : 8;
757
758 /* * Flags about this type. These fields appear at this location
759 because they packs nicely here. See the TYPE_* macros for
760 documentation about these fields. */
761
762 unsigned int flag_unsigned : 1;
763 unsigned int flag_nosign : 1;
764 unsigned int flag_stub : 1;
765 unsigned int flag_target_stub : 1;
766 unsigned int flag_static : 1;
767 unsigned int flag_prototyped : 1;
768 unsigned int flag_incomplete : 1;
769 unsigned int flag_varargs : 1;
770 unsigned int flag_vector : 1;
771 unsigned int flag_stub_supported : 1;
772 unsigned int flag_gnu_ifunc : 1;
773 unsigned int flag_fixed_instance : 1;
774 unsigned int flag_objfile_owned : 1;
775 unsigned int flag_endianity_not_default : 1;
776
777 /* * True if this type was declared with "class" rather than
778 "struct". */
779
780 unsigned int flag_declared_class : 1;
781
782 /* * True if this is an enum type with disjoint values. This
783 affects how the enum is printed. */
784
785 unsigned int flag_flag_enum : 1;
786
787 /* * A discriminant telling us which field of the type_specific
788 union is being used for this type, if any. */
789
790 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
791
792 /* * Number of fields described for this type. This field appears
793 at this location because it packs nicely here. */
794
795 short nfields;
796
797 /* * Name of this type, or NULL if none.
798
799 This is used for printing only. For looking up a name, look for
800 a symbol in the VAR_DOMAIN. This is generally allocated in the
801 objfile's obstack. However coffread.c uses malloc. */
802
803 const char *name;
804
805 /* * Every type is now associated with a particular objfile, and the
806 type is allocated on the objfile_obstack for that objfile. One
807 problem however, is that there are times when gdb allocates new
808 types while it is not in the process of reading symbols from a
809 particular objfile. Fortunately, these happen when the type
810 being created is a derived type of an existing type, such as in
811 lookup_pointer_type(). So we can just allocate the new type
812 using the same objfile as the existing type, but to do this we
813 need a backpointer to the objfile from the existing type. Yes
814 this is somewhat ugly, but without major overhaul of the internal
815 type system, it can't be avoided for now. */
816
817 union type_owner owner;
818
819 /* * For a pointer type, describes the type of object pointed to.
820 - For an array type, describes the type of the elements.
821 - For a function or method type, describes the type of the return value.
822 - For a range type, describes the type of the full range.
823 - For a complex type, describes the type of each coordinate.
824 - For a special record or union type encoding a dynamic-sized type
825 in GNAT, a memoized pointer to a corresponding static version of
826 the type.
827 - Unused otherwise. */
828
829 struct type *target_type;
830
831 /* * For structure and union types, a description of each field.
832 For set and pascal array types, there is one "field",
833 whose type is the domain type of the set or array.
834 For range types, there are two "fields",
835 the minimum and maximum values (both inclusive).
836 For enum types, each possible value is described by one "field".
837 For a function or method type, a "field" for each parameter.
838 For C++ classes, there is one field for each base class (if it is
839 a derived class) plus one field for each class data member. Member
840 functions are recorded elsewhere.
841
842 Using a pointer to a separate array of fields
843 allows all types to have the same size, which is useful
844 because we can allocate the space for a type before
845 we know what to put in it. */
846
847 union
848 {
849 struct field *fields;
850
851 /* * Union member used for range types. */
852
853 struct range_bounds *bounds;
854
855 /* If this is a scalar type, then this is its corresponding
856 complex type. */
857 struct type *complex_type;
858
859 } flds_bnds;
860
861 /* * Slot to point to additional language-specific fields of this
862 type. */
863
864 union type_specific type_specific;
865
866 /* * Contains all dynamic type properties. */
867 struct dynamic_prop_list *dyn_prop_list;
868 };
869
870 /* * Number of bits allocated for alignment. */
871
872 #define TYPE_ALIGN_BITS 8
873
874 /* * A ``struct type'' describes a particular instance of a type, with
875 some particular qualification. */
876
877 struct type
878 {
879 /* * Type that is a pointer to this type.
880 NULL if no such pointer-to type is known yet.
881 The debugger may add the address of such a type
882 if it has to construct one later. */
883
884 struct type *pointer_type;
885
886 /* * C++: also need a reference type. */
887
888 struct type *reference_type;
889
890 /* * A C++ rvalue reference type added in C++11. */
891
892 struct type *rvalue_reference_type;
893
894 /* * Variant chain. This points to a type that differs from this
895 one only in qualifiers and length. Currently, the possible
896 qualifiers are const, volatile, code-space, data-space, and
897 address class. The length may differ only when one of the
898 address class flags are set. The variants are linked in a
899 circular ring and share MAIN_TYPE. */
900
901 struct type *chain;
902
903 /* * The alignment for this type. Zero means that the alignment was
904 not specified in the debug info. Note that this is stored in a
905 funny way: as the log base 2 (plus 1) of the alignment; so a
906 value of 1 means the alignment is 1, and a value of 9 means the
907 alignment is 256. */
908
909 unsigned align_log2 : TYPE_ALIGN_BITS;
910
911 /* * Flags specific to this instance of the type, indicating where
912 on the ring we are.
913
914 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
915 binary or-ed with the target type, with a special case for
916 address class and space class. For example if this typedef does
917 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
918 instance flags are completely inherited from the target type. No
919 qualifiers can be cleared by the typedef. See also
920 check_typedef. */
921 unsigned instance_flags : 9;
922
923 /* * Length of storage for a value of this type. The value is the
924 expression in host bytes of what sizeof(type) would return. This
925 size includes padding. For example, an i386 extended-precision
926 floating point value really only occupies ten bytes, but most
927 ABI's declare its size to be 12 bytes, to preserve alignment.
928 A `struct type' representing such a floating-point type would
929 have a `length' value of 12, even though the last two bytes are
930 unused.
931
932 Since this field is expressed in host bytes, its value is appropriate
933 to pass to memcpy and such (it is assumed that GDB itself always runs
934 on an 8-bits addressable architecture). However, when using it for
935 target address arithmetic (e.g. adding it to a target address), the
936 type_length_units function should be used in order to get the length
937 expressed in target addressable memory units. */
938
939 ULONGEST length;
940
941 /* * Core type, shared by a group of qualified types. */
942
943 struct main_type *main_type;
944 };
945
946 #define NULL_TYPE ((struct type *) 0)
947
948 struct fn_fieldlist
949 {
950
951 /* * The overloaded name.
952 This is generally allocated in the objfile's obstack.
953 However stabsread.c sometimes uses malloc. */
954
955 const char *name;
956
957 /* * The number of methods with this name. */
958
959 int length;
960
961 /* * The list of methods. */
962
963 struct fn_field *fn_fields;
964 };
965
966
967
968 struct fn_field
969 {
970 /* * If is_stub is clear, this is the mangled name which we can look
971 up to find the address of the method (FIXME: it would be cleaner
972 to have a pointer to the struct symbol here instead).
973
974 If is_stub is set, this is the portion of the mangled name which
975 specifies the arguments. For example, "ii", if there are two int
976 arguments, or "" if there are no arguments. See gdb_mangle_name
977 for the conversion from this format to the one used if is_stub is
978 clear. */
979
980 const char *physname;
981
982 /* * The function type for the method.
983
984 (This comment used to say "The return value of the method", but
985 that's wrong. The function type is expected here, i.e. something
986 with TYPE_CODE_METHOD, and *not* the return-value type). */
987
988 struct type *type;
989
990 /* * For virtual functions. First baseclass that defines this
991 virtual function. */
992
993 struct type *fcontext;
994
995 /* Attributes. */
996
997 unsigned int is_const:1;
998 unsigned int is_volatile:1;
999 unsigned int is_private:1;
1000 unsigned int is_protected:1;
1001 unsigned int is_artificial:1;
1002
1003 /* * A stub method only has some fields valid (but they are enough
1004 to reconstruct the rest of the fields). */
1005
1006 unsigned int is_stub:1;
1007
1008 /* * True if this function is a constructor, false otherwise. */
1009
1010 unsigned int is_constructor : 1;
1011
1012 /* * True if this function is deleted, false otherwise. */
1013
1014 unsigned int is_deleted : 1;
1015
1016 /* * DW_AT_defaulted attribute for this function. The value is one
1017 of the DW_DEFAULTED constants. */
1018
1019 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1020
1021 /* * Unused. */
1022
1023 unsigned int dummy:6;
1024
1025 /* * Index into that baseclass's virtual function table, minus 2;
1026 else if static: VOFFSET_STATIC; else: 0. */
1027
1028 unsigned int voffset:16;
1029
1030 #define VOFFSET_STATIC 1
1031
1032 };
1033
1034 struct decl_field
1035 {
1036 /* * Unqualified name to be prefixed by owning class qualified
1037 name. */
1038
1039 const char *name;
1040
1041 /* * Type this typedef named NAME represents. */
1042
1043 struct type *type;
1044
1045 /* * True if this field was declared protected, false otherwise. */
1046 unsigned int is_protected : 1;
1047
1048 /* * True if this field was declared private, false otherwise. */
1049 unsigned int is_private : 1;
1050 };
1051
1052 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1053 TYPE_CODE_UNION nodes. */
1054
1055 struct cplus_struct_type
1056 {
1057 /* * Number of base classes this type derives from. The
1058 baseclasses are stored in the first N_BASECLASSES fields
1059 (i.e. the `fields' field of the struct type). The only fields
1060 of struct field that are used are: type, name, loc.bitpos. */
1061
1062 short n_baseclasses;
1063
1064 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1065 All access to this field must be through TYPE_VPTR_FIELDNO as one
1066 thing it does is check whether the field has been initialized.
1067 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1068 which for portability reasons doesn't initialize this field.
1069 TYPE_VPTR_FIELDNO returns -1 for this case.
1070
1071 If -1, we were unable to find the virtual function table pointer in
1072 initial symbol reading, and get_vptr_fieldno should be called to find
1073 it if possible. get_vptr_fieldno will update this field if possible.
1074 Otherwise the value is left at -1.
1075
1076 Unused if this type does not have virtual functions. */
1077
1078 short vptr_fieldno;
1079
1080 /* * Number of methods with unique names. All overloaded methods
1081 with the same name count only once. */
1082
1083 short nfn_fields;
1084
1085 /* * Number of template arguments. */
1086
1087 unsigned short n_template_arguments;
1088
1089 /* * One if this struct is a dynamic class, as defined by the
1090 Itanium C++ ABI: if it requires a virtual table pointer,
1091 because it or any of its base classes have one or more virtual
1092 member functions or virtual base classes. Minus one if not
1093 dynamic. Zero if not yet computed. */
1094
1095 int is_dynamic : 2;
1096
1097 /* * The calling convention for this type, fetched from the
1098 DW_AT_calling_convention attribute. The value is one of the
1099 DW_CC constants. */
1100
1101 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1102
1103 /* * The base class which defined the virtual function table pointer. */
1104
1105 struct type *vptr_basetype;
1106
1107 /* * For derived classes, the number of base classes is given by
1108 n_baseclasses and virtual_field_bits is a bit vector containing
1109 one bit per base class. If the base class is virtual, the
1110 corresponding bit will be set.
1111 I.E, given:
1112
1113 class A{};
1114 class B{};
1115 class C : public B, public virtual A {};
1116
1117 B is a baseclass of C; A is a virtual baseclass for C.
1118 This is a C++ 2.0 language feature. */
1119
1120 B_TYPE *virtual_field_bits;
1121
1122 /* * For classes with private fields, the number of fields is
1123 given by nfields and private_field_bits is a bit vector
1124 containing one bit per field.
1125
1126 If the field is private, the corresponding bit will be set. */
1127
1128 B_TYPE *private_field_bits;
1129
1130 /* * For classes with protected fields, the number of fields is
1131 given by nfields and protected_field_bits is a bit vector
1132 containing one bit per field.
1133
1134 If the field is private, the corresponding bit will be set. */
1135
1136 B_TYPE *protected_field_bits;
1137
1138 /* * For classes with fields to be ignored, either this is
1139 optimized out or this field has length 0. */
1140
1141 B_TYPE *ignore_field_bits;
1142
1143 /* * For classes, structures, and unions, a description of each
1144 field, which consists of an overloaded name, followed by the
1145 types of arguments that the method expects, and then the name
1146 after it has been renamed to make it distinct.
1147
1148 fn_fieldlists points to an array of nfn_fields of these. */
1149
1150 struct fn_fieldlist *fn_fieldlists;
1151
1152 /* * typedefs defined inside this class. typedef_field points to
1153 an array of typedef_field_count elements. */
1154
1155 struct decl_field *typedef_field;
1156
1157 unsigned typedef_field_count;
1158
1159 /* * The nested types defined by this type. nested_types points to
1160 an array of nested_types_count elements. */
1161
1162 struct decl_field *nested_types;
1163
1164 unsigned nested_types_count;
1165
1166 /* * The template arguments. This is an array with
1167 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1168 classes. */
1169
1170 struct symbol **template_arguments;
1171 };
1172
1173 /* * Struct used to store conversion rankings. */
1174
1175 struct rank
1176 {
1177 short rank;
1178
1179 /* * When two conversions are of the same type and therefore have
1180 the same rank, subrank is used to differentiate the two.
1181
1182 Eg: Two derived-class-pointer to base-class-pointer conversions
1183 would both have base pointer conversion rank, but the
1184 conversion with the shorter distance to the ancestor is
1185 preferable. 'subrank' would be used to reflect that. */
1186
1187 short subrank;
1188 };
1189
1190 /* * Used for ranking a function for overload resolution. */
1191
1192 typedef std::vector<rank> badness_vector;
1193
1194 /* * GNAT Ada-specific information for various Ada types. */
1195
1196 struct gnat_aux_type
1197 {
1198 /* * Parallel type used to encode information about dynamic types
1199 used in Ada (such as variant records, variable-size array,
1200 etc). */
1201 struct type* descriptive_type;
1202 };
1203
1204 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1205
1206 struct func_type
1207 {
1208 /* * The calling convention for targets supporting multiple ABIs.
1209 Right now this is only fetched from the Dwarf-2
1210 DW_AT_calling_convention attribute. The value is one of the
1211 DW_CC constants. */
1212
1213 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1214
1215 /* * Whether this function normally returns to its caller. It is
1216 set from the DW_AT_noreturn attribute if set on the
1217 DW_TAG_subprogram. */
1218
1219 unsigned int is_noreturn : 1;
1220
1221 /* * Only those DW_TAG_call_site's in this function that have
1222 DW_AT_call_tail_call set are linked in this list. Function
1223 without its tail call list complete
1224 (DW_AT_call_all_tail_calls or its superset
1225 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1226 DW_TAG_call_site's exist in such function. */
1227
1228 struct call_site *tail_call_list;
1229
1230 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1231 contains the method. */
1232
1233 struct type *self_type;
1234 };
1235
1236 /* struct call_site_parameter can be referenced in callees by several ways. */
1237
1238 enum call_site_parameter_kind
1239 {
1240 /* * Use field call_site_parameter.u.dwarf_reg. */
1241 CALL_SITE_PARAMETER_DWARF_REG,
1242
1243 /* * Use field call_site_parameter.u.fb_offset. */
1244 CALL_SITE_PARAMETER_FB_OFFSET,
1245
1246 /* * Use field call_site_parameter.u.param_offset. */
1247 CALL_SITE_PARAMETER_PARAM_OFFSET
1248 };
1249
1250 struct call_site_target
1251 {
1252 union field_location loc;
1253
1254 /* * Discriminant for union field_location. */
1255
1256 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1257 };
1258
1259 union call_site_parameter_u
1260 {
1261 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1262 as DWARF register number, for register passed
1263 parameters. */
1264
1265 int dwarf_reg;
1266
1267 /* * Offset from the callee's frame base, for stack passed
1268 parameters. This equals offset from the caller's stack
1269 pointer. */
1270
1271 CORE_ADDR fb_offset;
1272
1273 /* * Offset relative to the start of this PER_CU to
1274 DW_TAG_formal_parameter which is referenced by both
1275 caller and the callee. */
1276
1277 cu_offset param_cu_off;
1278 };
1279
1280 struct call_site_parameter
1281 {
1282 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1283
1284 union call_site_parameter_u u;
1285
1286 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1287
1288 const gdb_byte *value;
1289 size_t value_size;
1290
1291 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1292 It may be NULL if not provided by DWARF. */
1293
1294 const gdb_byte *data_value;
1295 size_t data_value_size;
1296 };
1297
1298 /* * A place where a function gets called from, represented by
1299 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1300
1301 struct call_site
1302 {
1303 /* * Address of the first instruction after this call. It must be
1304 the first field as we overload core_addr_hash and core_addr_eq
1305 for it. */
1306
1307 CORE_ADDR pc;
1308
1309 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1310
1311 struct call_site *tail_call_next;
1312
1313 /* * Describe DW_AT_call_target. Missing attribute uses
1314 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1315
1316 struct call_site_target target;
1317
1318 /* * Size of the PARAMETER array. */
1319
1320 unsigned parameter_count;
1321
1322 /* * CU of the function where the call is located. It gets used
1323 for DWARF blocks execution in the parameter array below. */
1324
1325 struct dwarf2_per_cu_data *per_cu;
1326
1327 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1328
1329 struct call_site_parameter parameter[1];
1330 };
1331
1332 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1333 static structure. */
1334
1335 extern const struct cplus_struct_type cplus_struct_default;
1336
1337 extern void allocate_cplus_struct_type (struct type *);
1338
1339 #define INIT_CPLUS_SPECIFIC(type) \
1340 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1341 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1342 &cplus_struct_default)
1343
1344 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1345
1346 #define HAVE_CPLUS_STRUCT(type) \
1347 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1348 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1349
1350 #define INIT_NONE_SPECIFIC(type) \
1351 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1352 TYPE_MAIN_TYPE (type)->type_specific = {})
1353
1354 extern const struct gnat_aux_type gnat_aux_default;
1355
1356 extern void allocate_gnat_aux_type (struct type *);
1357
1358 #define INIT_GNAT_SPECIFIC(type) \
1359 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1360 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1361 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1362 /* * A macro that returns non-zero if the type-specific data should be
1363 read as "gnat-stuff". */
1364 #define HAVE_GNAT_AUX_INFO(type) \
1365 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1366
1367 /* * True if TYPE is known to be an Ada type of some kind. */
1368 #define ADA_TYPE_P(type) \
1369 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1370 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1371 && TYPE_FIXED_INSTANCE (type)))
1372
1373 #define INIT_FUNC_SPECIFIC(type) \
1374 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1375 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1376 TYPE_ZALLOC (type, \
1377 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1378
1379 #define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1380 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1381 #define TYPE_NAME(thistype) TYPE_MAIN_TYPE(thistype)->name
1382 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1383 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1384 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1385 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1386 #define TYPE_CHAIN(thistype) (thistype)->chain
1387 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1388 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1389 so you only have to call check_typedef once. Since allocate_value
1390 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1391 #define TYPE_LENGTH(thistype) (thistype)->length
1392
1393 /* * Return the alignment of the type in target addressable memory
1394 units, or 0 if no alignment was specified. */
1395 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1396
1397 /* * Return the alignment of the type in target addressable memory
1398 units, or 0 if no alignment was specified. */
1399 extern unsigned type_raw_align (struct type *);
1400
1401 /* * Return the alignment of the type in target addressable memory
1402 units. Return 0 if the alignment cannot be determined; but note
1403 that this makes an effort to compute the alignment even it it was
1404 not specified in the debug info. */
1405 extern unsigned type_align (struct type *);
1406
1407 /* * Set the alignment of the type. The alignment must be a power of
1408 2. Returns false if the given value does not fit in the available
1409 space in struct type. */
1410 extern bool set_type_align (struct type *, ULONGEST);
1411
1412 /* * Note that TYPE_CODE can be TYPE_CODE_TYPEDEF, so if you want the real
1413 type, you need to do TYPE_CODE (check_type (this_type)). */
1414 #define TYPE_CODE(thistype) TYPE_MAIN_TYPE(thistype)->code
1415 #define TYPE_NFIELDS(thistype) TYPE_MAIN_TYPE(thistype)->nfields
1416 #define TYPE_FIELDS(thistype) TYPE_MAIN_TYPE(thistype)->flds_bnds.fields
1417
1418 #define TYPE_INDEX_TYPE(type) TYPE_FIELD_TYPE (type, 0)
1419 #define TYPE_RANGE_DATA(thistype) TYPE_MAIN_TYPE(thistype)->flds_bnds.bounds
1420 #define TYPE_LOW_BOUND(range_type) \
1421 TYPE_RANGE_DATA(range_type)->low.data.const_val
1422 #define TYPE_HIGH_BOUND(range_type) \
1423 TYPE_RANGE_DATA(range_type)->high.data.const_val
1424 #define TYPE_LOW_BOUND_UNDEFINED(range_type) \
1425 (TYPE_RANGE_DATA(range_type)->low.kind == PROP_UNDEFINED)
1426 #define TYPE_HIGH_BOUND_UNDEFINED(range_type) \
1427 (TYPE_RANGE_DATA(range_type)->high.kind == PROP_UNDEFINED)
1428 #define TYPE_HIGH_BOUND_KIND(range_type) \
1429 TYPE_RANGE_DATA(range_type)->high.kind
1430 #define TYPE_LOW_BOUND_KIND(range_type) \
1431 TYPE_RANGE_DATA(range_type)->low.kind
1432 #define TYPE_BIT_STRIDE(range_type) \
1433 (TYPE_RANGE_DATA(range_type)->stride.data.const_val \
1434 * (TYPE_RANGE_DATA(range_type)->flag_is_byte_stride ? 8 : 1))
1435
1436 /* Property accessors for the type data location. */
1437 #define TYPE_DATA_LOCATION(thistype) \
1438 get_dyn_prop (DYN_PROP_DATA_LOCATION, thistype)
1439 #define TYPE_DATA_LOCATION_BATON(thistype) \
1440 TYPE_DATA_LOCATION (thistype)->data.baton
1441 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1442 TYPE_DATA_LOCATION (thistype)->data.const_val
1443 #define TYPE_DATA_LOCATION_KIND(thistype) \
1444 TYPE_DATA_LOCATION (thistype)->kind
1445 #define TYPE_DYNAMIC_LENGTH(thistype) \
1446 get_dyn_prop (DYN_PROP_BYTE_SIZE, thistype)
1447
1448 /* Property accessors for the type allocated/associated. */
1449 #define TYPE_ALLOCATED_PROP(thistype) \
1450 get_dyn_prop (DYN_PROP_ALLOCATED, thistype)
1451 #define TYPE_ASSOCIATED_PROP(thistype) \
1452 get_dyn_prop (DYN_PROP_ASSOCIATED, thistype)
1453
1454 /* Attribute accessors for dynamic properties. */
1455 #define TYPE_DYN_PROP_LIST(thistype) \
1456 TYPE_MAIN_TYPE(thistype)->dyn_prop_list
1457 #define TYPE_DYN_PROP_BATON(dynprop) \
1458 dynprop->data.baton
1459 #define TYPE_DYN_PROP_ADDR(dynprop) \
1460 dynprop->data.const_val
1461 #define TYPE_DYN_PROP_KIND(dynprop) \
1462 dynprop->kind
1463
1464
1465 /* Accessors for struct range_bounds data attached to an array type's
1466 index type. */
1467
1468 #define TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED(arraytype) \
1469 TYPE_HIGH_BOUND_UNDEFINED(TYPE_INDEX_TYPE(arraytype))
1470 #define TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED(arraytype) \
1471 TYPE_LOW_BOUND_UNDEFINED(TYPE_INDEX_TYPE(arraytype))
1472
1473 #define TYPE_ARRAY_UPPER_BOUND_VALUE(arraytype) \
1474 (TYPE_HIGH_BOUND(TYPE_INDEX_TYPE((arraytype))))
1475
1476 #define TYPE_ARRAY_LOWER_BOUND_VALUE(arraytype) \
1477 (TYPE_LOW_BOUND(TYPE_INDEX_TYPE((arraytype))))
1478
1479 #define TYPE_ARRAY_BIT_STRIDE(arraytype) \
1480 (TYPE_BIT_STRIDE(TYPE_INDEX_TYPE((arraytype))))
1481
1482 /* C++ */
1483
1484 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1485 /* Do not call this, use TYPE_SELF_TYPE. */
1486 extern struct type *internal_type_self_type (struct type *);
1487 extern void set_type_self_type (struct type *, struct type *);
1488
1489 extern int internal_type_vptr_fieldno (struct type *);
1490 extern void set_type_vptr_fieldno (struct type *, int);
1491 extern struct type *internal_type_vptr_basetype (struct type *);
1492 extern void set_type_vptr_basetype (struct type *, struct type *);
1493 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1494 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1495
1496 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1497 #define TYPE_SPECIFIC_FIELD(thistype) \
1498 TYPE_MAIN_TYPE(thistype)->type_specific_field
1499 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1500 where we're trying to print an Ada array using the C language.
1501 In that case, there is no "cplus_stuff", but the C language assumes
1502 that there is. What we do, in that case, is pretend that there is
1503 an implicit one which is the default cplus stuff. */
1504 #define TYPE_CPLUS_SPECIFIC(thistype) \
1505 (!HAVE_CPLUS_STRUCT(thistype) \
1506 ? (struct cplus_struct_type*)&cplus_struct_default \
1507 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1508 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1509 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1510 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1511 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1512 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1513 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1514 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1515 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1516 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1517 #define TYPE_BASECLASS(thistype,index) TYPE_FIELD_TYPE(thistype, index)
1518 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1519 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1520 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1521 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1522 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1523 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1524
1525 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1526 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1527 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1528
1529 #define FIELD_TYPE(thisfld) ((thisfld).type)
1530 #define FIELD_NAME(thisfld) ((thisfld).name)
1531 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1532 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1533 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1534 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1535 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1536 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1537 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1538 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1539 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1540 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1541 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1542 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1543 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1544 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1545 #define SET_FIELD_PHYSNAME(thisfld, name) \
1546 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1547 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1548 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1549 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1550 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1551 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1552 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1553 FIELD_DWARF_BLOCK (thisfld) = (addr))
1554 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1555 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1556
1557 #define TYPE_FIELD(thistype, n) TYPE_MAIN_TYPE(thistype)->flds_bnds.fields[n]
1558 #define TYPE_FIELD_TYPE(thistype, n) FIELD_TYPE(TYPE_FIELD(thistype, n))
1559 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME(TYPE_FIELD(thistype, n))
1560 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND (TYPE_FIELD (thistype, n))
1561 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS (TYPE_FIELD (thistype, n))
1562 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL (TYPE_FIELD (thistype, n))
1563 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME (TYPE_FIELD (thistype, n))
1564 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR (TYPE_FIELD (thistype, n))
1565 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK (TYPE_FIELD (thistype, n))
1566 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL(TYPE_FIELD(thistype,n))
1567 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE(TYPE_FIELD(thistype,n))
1568 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE(TYPE_FIELD(thistype,n))!=0)
1569
1570 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1571 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1572 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1573 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1574 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1575 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1576 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1577 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1578 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1579 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1580 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1581 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1582 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1583 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1584 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1585 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1586 #define TYPE_FIELD_PRIVATE(thistype, n) \
1587 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1588 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1589 #define TYPE_FIELD_PROTECTED(thistype, n) \
1590 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1591 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1592 #define TYPE_FIELD_IGNORE(thistype, n) \
1593 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1594 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1595 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1596 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1597 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1598
1599 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1600 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1601 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1602 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1603 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1604
1605 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1606 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1607 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1608 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1609 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1610 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1611
1612 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1613 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1614 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1615 #define TYPE_FN_FIELD_ARGS(thisfn, n) TYPE_FIELDS ((thisfn)[n].type)
1616 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1617 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1618 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1619 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1620 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1621 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1622 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1623 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1624 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1625 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1626 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1627 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
1628 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
1629
1630 /* Accessors for typedefs defined by a class. */
1631 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1632 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1633 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1634 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1635 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1636 TYPE_TYPEDEF_FIELD (thistype, n).name
1637 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1638 TYPE_TYPEDEF_FIELD (thistype, n).type
1639 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1640 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1641 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1642 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1643 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1644 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1645
1646 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1647 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1648 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
1649 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
1650 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
1651 TYPE_NESTED_TYPES_FIELD (thistype, n).name
1652 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
1653 TYPE_NESTED_TYPES_FIELD (thistype, n).type
1654 #define TYPE_NESTED_TYPES_COUNT(thistype) \
1655 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
1656 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
1657 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
1658 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
1659 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
1660
1661 #define TYPE_IS_OPAQUE(thistype) \
1662 (((TYPE_CODE (thistype) == TYPE_CODE_STRUCT) \
1663 || (TYPE_CODE (thistype) == TYPE_CODE_UNION)) \
1664 && (TYPE_NFIELDS (thistype) == 0) \
1665 && (!HAVE_CPLUS_STRUCT (thistype) \
1666 || TYPE_NFN_FIELDS (thistype) == 0) \
1667 && (TYPE_STUB (thistype) || !TYPE_STUB_SUPPORTED (thistype)))
1668
1669 /* * A helper macro that returns the name of a type or "unnamed type"
1670 if the type has no name. */
1671
1672 #define TYPE_SAFE_NAME(type) \
1673 (TYPE_NAME (type) ? TYPE_NAME (type) : _("<unnamed type>"))
1674
1675 /* * A helper macro that returns the name of an error type. If the
1676 type has a name, it is used; otherwise, a default is used. */
1677
1678 #define TYPE_ERROR_NAME(type) \
1679 (TYPE_NAME (type) ? TYPE_NAME (type) : _("<error type>"))
1680
1681 /* Given TYPE, return its floatformat. */
1682 const struct floatformat *floatformat_from_type (const struct type *type);
1683
1684 struct builtin_type
1685 {
1686 /* Integral types. */
1687
1688 /* Implicit size/sign (based on the architecture's ABI). */
1689 struct type *builtin_void;
1690 struct type *builtin_char;
1691 struct type *builtin_short;
1692 struct type *builtin_int;
1693 struct type *builtin_long;
1694 struct type *builtin_signed_char;
1695 struct type *builtin_unsigned_char;
1696 struct type *builtin_unsigned_short;
1697 struct type *builtin_unsigned_int;
1698 struct type *builtin_unsigned_long;
1699 struct type *builtin_half;
1700 struct type *builtin_float;
1701 struct type *builtin_double;
1702 struct type *builtin_long_double;
1703 struct type *builtin_complex;
1704 struct type *builtin_double_complex;
1705 struct type *builtin_string;
1706 struct type *builtin_bool;
1707 struct type *builtin_long_long;
1708 struct type *builtin_unsigned_long_long;
1709 struct type *builtin_decfloat;
1710 struct type *builtin_decdouble;
1711 struct type *builtin_declong;
1712
1713 /* "True" character types.
1714 We use these for the '/c' print format, because c_char is just a
1715 one-byte integral type, which languages less laid back than C
1716 will print as ... well, a one-byte integral type. */
1717 struct type *builtin_true_char;
1718 struct type *builtin_true_unsigned_char;
1719
1720 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1721 is for when an architecture needs to describe a register that has
1722 no size. */
1723 struct type *builtin_int0;
1724 struct type *builtin_int8;
1725 struct type *builtin_uint8;
1726 struct type *builtin_int16;
1727 struct type *builtin_uint16;
1728 struct type *builtin_int24;
1729 struct type *builtin_uint24;
1730 struct type *builtin_int32;
1731 struct type *builtin_uint32;
1732 struct type *builtin_int64;
1733 struct type *builtin_uint64;
1734 struct type *builtin_int128;
1735 struct type *builtin_uint128;
1736
1737 /* Wide character types. */
1738 struct type *builtin_char16;
1739 struct type *builtin_char32;
1740 struct type *builtin_wchar;
1741
1742 /* Pointer types. */
1743
1744 /* * `pointer to data' type. Some target platforms use an implicitly
1745 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1746 struct type *builtin_data_ptr;
1747
1748 /* * `pointer to function (returning void)' type. Harvard
1749 architectures mean that ABI function and code pointers are not
1750 interconvertible. Similarly, since ANSI, C standards have
1751 explicitly said that pointers to functions and pointers to data
1752 are not interconvertible --- that is, you can't cast a function
1753 pointer to void * and back, and expect to get the same value.
1754 However, all function pointer types are interconvertible, so void
1755 (*) () can server as a generic function pointer. */
1756
1757 struct type *builtin_func_ptr;
1758
1759 /* * `function returning pointer to function (returning void)' type.
1760 The final void return type is not significant for it. */
1761
1762 struct type *builtin_func_func;
1763
1764 /* Special-purpose types. */
1765
1766 /* * This type is used to represent a GDB internal function. */
1767
1768 struct type *internal_fn;
1769
1770 /* * This type is used to represent an xmethod. */
1771 struct type *xmethod;
1772 };
1773
1774 /* * Return the type table for the specified architecture. */
1775
1776 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
1777
1778 /* * Per-objfile types used by symbol readers. */
1779
1780 struct objfile_type
1781 {
1782 /* Basic types based on the objfile architecture. */
1783 struct type *builtin_void;
1784 struct type *builtin_char;
1785 struct type *builtin_short;
1786 struct type *builtin_int;
1787 struct type *builtin_long;
1788 struct type *builtin_long_long;
1789 struct type *builtin_signed_char;
1790 struct type *builtin_unsigned_char;
1791 struct type *builtin_unsigned_short;
1792 struct type *builtin_unsigned_int;
1793 struct type *builtin_unsigned_long;
1794 struct type *builtin_unsigned_long_long;
1795 struct type *builtin_half;
1796 struct type *builtin_float;
1797 struct type *builtin_double;
1798 struct type *builtin_long_double;
1799
1800 /* * This type is used to represent symbol addresses. */
1801 struct type *builtin_core_addr;
1802
1803 /* * This type represents a type that was unrecognized in symbol
1804 read-in. */
1805 struct type *builtin_error;
1806
1807 /* * Types used for symbols with no debug information. */
1808 struct type *nodebug_text_symbol;
1809 struct type *nodebug_text_gnu_ifunc_symbol;
1810 struct type *nodebug_got_plt_symbol;
1811 struct type *nodebug_data_symbol;
1812 struct type *nodebug_unknown_symbol;
1813 struct type *nodebug_tls_symbol;
1814 };
1815
1816 /* * Return the type table for the specified objfile. */
1817
1818 extern const struct objfile_type *objfile_type (struct objfile *objfile);
1819
1820 /* Explicit floating-point formats. See "floatformat.h". */
1821 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
1822 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
1823 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
1824 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
1825 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
1826 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
1827 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
1828 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
1829 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
1830 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
1831 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
1832 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
1833
1834
1835 /* Allocate space for storing data associated with a particular
1836 type. We ensure that the space is allocated using the same
1837 mechanism that was used to allocate the space for the type
1838 structure itself. I.e. if the type is on an objfile's
1839 objfile_obstack, then the space for data associated with that type
1840 will also be allocated on the objfile_obstack. If the type is
1841 associated with a gdbarch, then the space for data associated with that
1842 type will also be allocated on the gdbarch_obstack.
1843
1844 If a type is not associated with neither an objfile or a gdbarch then
1845 you should not use this macro to allocate space for data, instead you
1846 should call xmalloc directly, and ensure the memory is correctly freed
1847 when it is no longer needed. */
1848
1849 #define TYPE_ALLOC(t,size) \
1850 (obstack_alloc ((TYPE_OBJFILE_OWNED (t) \
1851 ? &TYPE_OBJFILE (t)->objfile_obstack \
1852 : gdbarch_obstack (TYPE_OWNER (t).gdbarch)), \
1853 size))
1854
1855
1856 /* See comment on TYPE_ALLOC. */
1857
1858 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
1859
1860 /* Use alloc_type to allocate a type owned by an objfile. Use
1861 alloc_type_arch to allocate a type owned by an architecture. Use
1862 alloc_type_copy to allocate a type with the same owner as a
1863 pre-existing template type, no matter whether objfile or
1864 gdbarch. */
1865 extern struct type *alloc_type (struct objfile *);
1866 extern struct type *alloc_type_arch (struct gdbarch *);
1867 extern struct type *alloc_type_copy (const struct type *);
1868
1869 /* * Return the type's architecture. For types owned by an
1870 architecture, that architecture is returned. For types owned by an
1871 objfile, that objfile's architecture is returned. */
1872
1873 extern struct gdbarch *get_type_arch (const struct type *);
1874
1875 /* * This returns the target type (or NULL) of TYPE, also skipping
1876 past typedefs. */
1877
1878 extern struct type *get_target_type (struct type *type);
1879
1880 /* Return the equivalent of TYPE_LENGTH, but in number of target
1881 addressable memory units of the associated gdbarch instead of bytes. */
1882
1883 extern unsigned int type_length_units (struct type *type);
1884
1885 /* * Helper function to construct objfile-owned types. */
1886
1887 extern struct type *init_type (struct objfile *, enum type_code, int,
1888 const char *);
1889 extern struct type *init_integer_type (struct objfile *, int, int,
1890 const char *);
1891 extern struct type *init_character_type (struct objfile *, int, int,
1892 const char *);
1893 extern struct type *init_boolean_type (struct objfile *, int, int,
1894 const char *);
1895 extern struct type *init_float_type (struct objfile *, int, const char *,
1896 const struct floatformat **,
1897 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
1898 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
1899 extern struct type *init_complex_type (const char *, struct type *);
1900 extern struct type *init_pointer_type (struct objfile *, int, const char *,
1901 struct type *);
1902
1903 /* Helper functions to construct architecture-owned types. */
1904 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
1905 const char *);
1906 extern struct type *arch_integer_type (struct gdbarch *, int, int,
1907 const char *);
1908 extern struct type *arch_character_type (struct gdbarch *, int, int,
1909 const char *);
1910 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
1911 const char *);
1912 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
1913 const struct floatformat **);
1914 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
1915 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
1916 struct type *);
1917
1918 /* Helper functions to construct a struct or record type. An
1919 initially empty type is created using arch_composite_type().
1920 Fields are then added using append_composite_type_field*(). A union
1921 type has its size set to the largest field. A struct type has each
1922 field packed against the previous. */
1923
1924 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
1925 const char *name, enum type_code code);
1926 extern void append_composite_type_field (struct type *t, const char *name,
1927 struct type *field);
1928 extern void append_composite_type_field_aligned (struct type *t,
1929 const char *name,
1930 struct type *field,
1931 int alignment);
1932 struct field *append_composite_type_field_raw (struct type *t, const char *name,
1933 struct type *field);
1934
1935 /* Helper functions to construct a bit flags type. An initially empty
1936 type is created using arch_flag_type(). Flags are then added using
1937 append_flag_type_field() and append_flag_type_flag(). */
1938 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
1939 const char *name, int bit);
1940 extern void append_flags_type_field (struct type *type,
1941 int start_bitpos, int nr_bits,
1942 struct type *field_type, const char *name);
1943 extern void append_flags_type_flag (struct type *type, int bitpos,
1944 const char *name);
1945
1946 extern void make_vector_type (struct type *array_type);
1947 extern struct type *init_vector_type (struct type *elt_type, int n);
1948
1949 extern struct type *lookup_reference_type (struct type *, enum type_code);
1950 extern struct type *lookup_lvalue_reference_type (struct type *);
1951 extern struct type *lookup_rvalue_reference_type (struct type *);
1952
1953
1954 extern struct type *make_reference_type (struct type *, struct type **,
1955 enum type_code);
1956
1957 extern struct type *make_cv_type (int, int, struct type *, struct type **);
1958
1959 extern struct type *make_restrict_type (struct type *);
1960
1961 extern struct type *make_unqualified_type (struct type *);
1962
1963 extern struct type *make_atomic_type (struct type *);
1964
1965 extern void replace_type (struct type *, struct type *);
1966
1967 extern int address_space_name_to_int (struct gdbarch *, const char *);
1968
1969 extern const char *address_space_int_to_name (struct gdbarch *, int);
1970
1971 extern struct type *make_type_with_address_space (struct type *type,
1972 int space_identifier);
1973
1974 extern struct type *lookup_memberptr_type (struct type *, struct type *);
1975
1976 extern struct type *lookup_methodptr_type (struct type *);
1977
1978 extern void smash_to_method_type (struct type *type, struct type *self_type,
1979 struct type *to_type, struct field *args,
1980 int nargs, int varargs);
1981
1982 extern void smash_to_memberptr_type (struct type *, struct type *,
1983 struct type *);
1984
1985 extern void smash_to_methodptr_type (struct type *, struct type *);
1986
1987 extern struct type *allocate_stub_method (struct type *);
1988
1989 extern const char *type_name_or_error (struct type *type);
1990
1991 struct struct_elt
1992 {
1993 /* The field of the element, or NULL if no element was found. */
1994 struct field *field;
1995
1996 /* The bit offset of the element in the parent structure. */
1997 LONGEST offset;
1998 };
1999
2000 /* Given a type TYPE, lookup the field and offset of the component named
2001 NAME.
2002
2003 TYPE can be either a struct or union, or a pointer or reference to
2004 a struct or union. If it is a pointer or reference, its target
2005 type is automatically used. Thus '.' and '->' are interchangable,
2006 as specified for the definitions of the expression element types
2007 STRUCTOP_STRUCT and STRUCTOP_PTR.
2008
2009 If NOERR is nonzero, the returned structure will have field set to
2010 NULL if there is no component named NAME.
2011
2012 If the component NAME is a field in an anonymous substructure of
2013 TYPE, the returned offset is a "global" offset relative to TYPE
2014 rather than an offset within the substructure. */
2015
2016 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2017
2018 /* Given a type TYPE, lookup the type of the component named NAME.
2019
2020 TYPE can be either a struct or union, or a pointer or reference to
2021 a struct or union. If it is a pointer or reference, its target
2022 type is automatically used. Thus '.' and '->' are interchangable,
2023 as specified for the definitions of the expression element types
2024 STRUCTOP_STRUCT and STRUCTOP_PTR.
2025
2026 If NOERR is nonzero, return NULL if there is no component named
2027 NAME. */
2028
2029 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2030
2031 extern struct type *make_pointer_type (struct type *, struct type **);
2032
2033 extern struct type *lookup_pointer_type (struct type *);
2034
2035 extern struct type *make_function_type (struct type *, struct type **);
2036
2037 extern struct type *lookup_function_type (struct type *);
2038
2039 extern struct type *lookup_function_type_with_arguments (struct type *,
2040 int,
2041 struct type **);
2042
2043 extern struct type *create_static_range_type (struct type *, struct type *,
2044 LONGEST, LONGEST);
2045
2046
2047 extern struct type *create_array_type_with_stride
2048 (struct type *, struct type *, struct type *,
2049 struct dynamic_prop *, unsigned int);
2050
2051 extern struct type *create_range_type (struct type *, struct type *,
2052 const struct dynamic_prop *,
2053 const struct dynamic_prop *,
2054 LONGEST);
2055
2056 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2057 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2058 stride. */
2059
2060 extern struct type * create_range_type_with_stride
2061 (struct type *result_type, struct type *index_type,
2062 const struct dynamic_prop *low_bound,
2063 const struct dynamic_prop *high_bound, LONGEST bias,
2064 const struct dynamic_prop *stride, bool byte_stride_p);
2065
2066 extern struct type *create_array_type (struct type *, struct type *,
2067 struct type *);
2068
2069 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2070
2071 extern struct type *create_string_type (struct type *, struct type *,
2072 struct type *);
2073 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2074
2075 extern struct type *create_set_type (struct type *, struct type *);
2076
2077 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2078 const char *);
2079
2080 extern struct type *lookup_signed_typename (const struct language_defn *,
2081 const char *);
2082
2083 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2084
2085 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2086
2087 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2088 ADDR specifies the location of the variable the type is bound to.
2089 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2090 static properties is returned. */
2091 extern struct type *resolve_dynamic_type
2092 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2093 CORE_ADDR addr);
2094
2095 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2096 extern int is_dynamic_type (struct type *type);
2097
2098 /* * Return the dynamic property of the requested KIND from TYPE's
2099 list of dynamic properties. */
2100 extern struct dynamic_prop *get_dyn_prop
2101 (enum dynamic_prop_node_kind kind, const struct type *type);
2102
2103 /* * Given a dynamic property PROP of a given KIND, add this dynamic
2104 property to the given TYPE.
2105
2106 This function assumes that TYPE is objfile-owned. */
2107 extern void add_dyn_prop
2108 (enum dynamic_prop_node_kind kind, struct dynamic_prop prop,
2109 struct type *type);
2110
2111 extern void remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2112 struct type *type);
2113
2114 extern struct type *check_typedef (struct type *);
2115
2116 extern void check_stub_method_group (struct type *, int);
2117
2118 extern char *gdb_mangle_name (struct type *, int, int);
2119
2120 extern struct type *lookup_typename (const struct language_defn *,
2121 const char *, const struct block *, int);
2122
2123 extern struct type *lookup_template_type (const char *, struct type *,
2124 const struct block *);
2125
2126 extern int get_vptr_fieldno (struct type *, struct type **);
2127
2128 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
2129
2130 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
2131 LONGEST *high_bound);
2132
2133 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
2134
2135 extern int class_types_same_p (const struct type *, const struct type *);
2136
2137 extern int is_ancestor (struct type *, struct type *);
2138
2139 extern int is_public_ancestor (struct type *, struct type *);
2140
2141 extern int is_unique_ancestor (struct type *, struct value *);
2142
2143 /* Overload resolution */
2144
2145 /* * Badness if parameter list length doesn't match arg list length. */
2146 extern const struct rank LENGTH_MISMATCH_BADNESS;
2147
2148 /* * Dummy badness value for nonexistent parameter positions. */
2149 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2150 /* * Badness if no conversion among types. */
2151 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2152
2153 /* * Badness of an exact match. */
2154 extern const struct rank EXACT_MATCH_BADNESS;
2155
2156 /* * Badness of integral promotion. */
2157 extern const struct rank INTEGER_PROMOTION_BADNESS;
2158 /* * Badness of floating promotion. */
2159 extern const struct rank FLOAT_PROMOTION_BADNESS;
2160 /* * Badness of converting a derived class pointer
2161 to a base class pointer. */
2162 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2163 /* * Badness of integral conversion. */
2164 extern const struct rank INTEGER_CONVERSION_BADNESS;
2165 /* * Badness of floating conversion. */
2166 extern const struct rank FLOAT_CONVERSION_BADNESS;
2167 /* * Badness of integer<->floating conversions. */
2168 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2169 /* * Badness of conversion of pointer to void pointer. */
2170 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2171 /* * Badness of conversion to boolean. */
2172 extern const struct rank BOOL_CONVERSION_BADNESS;
2173 /* * Badness of converting derived to base class. */
2174 extern const struct rank BASE_CONVERSION_BADNESS;
2175 /* * Badness of converting from non-reference to reference. Subrank
2176 is the type of reference conversion being done. */
2177 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2178 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2179 /* * Conversion to rvalue reference. */
2180 #define REFERENCE_CONVERSION_RVALUE 1
2181 /* * Conversion to const lvalue reference. */
2182 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2183
2184 /* * Badness of converting integer 0 to NULL pointer. */
2185 extern const struct rank NULL_POINTER_CONVERSION;
2186 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2187 being done. */
2188 extern const struct rank CV_CONVERSION_BADNESS;
2189 #define CV_CONVERSION_CONST 1
2190 #define CV_CONVERSION_VOLATILE 2
2191
2192 /* Non-standard conversions allowed by the debugger */
2193
2194 /* * Converting a pointer to an int is usually OK. */
2195 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2196
2197 /* * Badness of converting a (non-zero) integer constant
2198 to a pointer. */
2199 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2200
2201 extern struct rank sum_ranks (struct rank a, struct rank b);
2202 extern int compare_ranks (struct rank a, struct rank b);
2203
2204 extern int compare_badness (const badness_vector &,
2205 const badness_vector &);
2206
2207 extern badness_vector rank_function (gdb::array_view<type *> parms,
2208 gdb::array_view<value *> args);
2209
2210 extern struct rank rank_one_type (struct type *, struct type *,
2211 struct value *);
2212
2213 extern void recursive_dump_type (struct type *, int);
2214
2215 extern int field_is_static (struct field *);
2216
2217 /* printcmd.c */
2218
2219 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2220 const struct value_print_options *,
2221 int, struct ui_file *);
2222
2223 extern int can_dereference (struct type *);
2224
2225 extern int is_integral_type (struct type *);
2226
2227 extern int is_floating_type (struct type *);
2228
2229 extern int is_scalar_type (struct type *type);
2230
2231 extern int is_scalar_type_recursive (struct type *);
2232
2233 extern int class_or_union_p (const struct type *);
2234
2235 extern void maintenance_print_type (const char *, int);
2236
2237 extern htab_t create_copied_types_hash (struct objfile *objfile);
2238
2239 extern struct type *copy_type_recursive (struct objfile *objfile,
2240 struct type *type,
2241 htab_t copied_types);
2242
2243 extern struct type *copy_type (const struct type *type);
2244
2245 extern bool types_equal (struct type *, struct type *);
2246
2247 extern bool types_deeply_equal (struct type *, struct type *);
2248
2249 extern int type_not_allocated (const struct type *type);
2250
2251 extern int type_not_associated (const struct type *type);
2252
2253 /* * When the type includes explicit byte ordering, return that.
2254 Otherwise, the byte ordering from gdbarch_byte_order for
2255 get_type_arch is returned. */
2256
2257 extern enum bfd_endian type_byte_order (const struct type *type);
2258
2259 /* A flag to enable printing of debugging information of C++
2260 overloading. */
2261
2262 extern unsigned int overload_debug;
2263
2264 #endif /* GDBTYPES_H */
This page took 0.135292 seconds and 5 git commands to generate.