Fix overload resolution involving rvalue references and cv qualifiers.
[deliverable/binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2017 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "common/offset-type.h"
49
50 /* Forward declarations for prototypes. */
51 struct field;
52 struct block;
53 struct value_print_options;
54 struct language_defn;
55
56 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
57 are already DWARF-specific. */
58
59 /* * Offset relative to the start of its containing CU (compilation
60 unit). */
61 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
62
63 /* * Offset relative to the start of its .debug_info or .debug_types
64 section. */
65 DEFINE_OFFSET_TYPE (sect_offset, unsigned int);
66
67 /* Some macros for char-based bitfields. */
68
69 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
70 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
71 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
72 #define B_TYPE unsigned char
73 #define B_BYTES(x) ( 1 + ((x)>>3) )
74 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
75
76 /* * Different kinds of data types are distinguished by the `code'
77 field. */
78
79 enum type_code
80 {
81 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
82 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
83 TYPE_CODE_PTR, /**< Pointer type */
84
85 /* * Array type with lower & upper bounds.
86
87 Regardless of the language, GDB represents multidimensional
88 array types the way C does: as arrays of arrays. So an
89 instance of a GDB array type T can always be seen as a series
90 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
91 memory.
92
93 Row-major languages like C lay out multi-dimensional arrays so
94 that incrementing the rightmost index in a subscripting
95 expression results in the smallest change in the address of the
96 element referred to. Column-major languages like Fortran lay
97 them out so that incrementing the leftmost index results in the
98 smallest change.
99
100 This means that, in column-major languages, working our way
101 from type to target type corresponds to working through indices
102 from right to left, not left to right. */
103 TYPE_CODE_ARRAY,
104
105 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
106 TYPE_CODE_UNION, /**< C union or Pascal variant part */
107 TYPE_CODE_ENUM, /**< Enumeration type */
108 TYPE_CODE_FLAGS, /**< Bit flags type */
109 TYPE_CODE_FUNC, /**< Function type */
110 TYPE_CODE_INT, /**< Integer type */
111
112 /* * Floating type. This is *NOT* a complex type. Beware, there
113 are parts of GDB which bogusly assume that TYPE_CODE_FLT can
114 mean complex. */
115 TYPE_CODE_FLT,
116
117 /* * Void type. The length field specifies the length (probably
118 always one) which is used in pointer arithmetic involving
119 pointers to this type, but actually dereferencing such a
120 pointer is invalid; a void type has no length and no actual
121 representation in memory or registers. A pointer to a void
122 type is a generic pointer. */
123 TYPE_CODE_VOID,
124
125 TYPE_CODE_SET, /**< Pascal sets */
126 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
127
128 /* * A string type which is like an array of character but prints
129 differently. It does not contain a length field as Pascal
130 strings (for many Pascals, anyway) do; if we want to deal with
131 such strings, we should use a new type code. */
132 TYPE_CODE_STRING,
133
134 /* * Unknown type. The length field is valid if we were able to
135 deduce that much about the type, or 0 if we don't even know
136 that. */
137 TYPE_CODE_ERROR,
138
139 /* C++ */
140 TYPE_CODE_METHOD, /**< Method type */
141
142 /* * Pointer-to-member-function type. This describes how to access a
143 particular member function of a class (possibly a virtual
144 member function). The representation may vary between different
145 C++ ABIs. */
146 TYPE_CODE_METHODPTR,
147
148 /* * Pointer-to-member type. This is the offset within a class to
149 some particular data member. The only currently supported
150 representation uses an unbiased offset, with -1 representing
151 NULL; this is used by the Itanium C++ ABI (used by GCC on all
152 platforms). */
153 TYPE_CODE_MEMBERPTR,
154
155 TYPE_CODE_REF, /**< C++ Reference types */
156
157 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
158
159 TYPE_CODE_CHAR, /**< *real* character type */
160
161 /* * Boolean type. 0 is false, 1 is true, and other values are
162 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
163 TYPE_CODE_BOOL,
164
165 /* Fortran */
166 TYPE_CODE_COMPLEX, /**< Complex float */
167
168 TYPE_CODE_TYPEDEF,
169
170 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
171
172 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
173
174 TYPE_CODE_MODULE, /**< Fortran module. */
175
176 /* * Internal function type. */
177 TYPE_CODE_INTERNAL_FUNCTION,
178
179 /* * Methods implemented in extension languages. */
180 TYPE_CODE_XMETHOD
181 };
182
183 /* * Some bits for the type's instance_flags word. See the macros
184 below for documentation on each bit. */
185
186 enum type_instance_flag_value
187 {
188 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
189 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
190 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
191 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
192 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
193 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
194 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
195 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
196 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
197 };
198
199 /* * Unsigned integer type. If this is not set for a TYPE_CODE_INT,
200 the type is signed (unless TYPE_NOSIGN (below) is set). */
201
202 #define TYPE_UNSIGNED(t) (TYPE_MAIN_TYPE (t)->flag_unsigned)
203
204 /* * No sign for this type. In C++, "char", "signed char", and
205 "unsigned char" are distinct types; so we need an extra flag to
206 indicate the absence of a sign! */
207
208 #define TYPE_NOSIGN(t) (TYPE_MAIN_TYPE (t)->flag_nosign)
209
210 /* * This appears in a type's flags word if it is a stub type (e.g.,
211 if someone referenced a type that wasn't defined in a source file
212 via (struct sir_not_appearing_in_this_film *)). */
213
214 #define TYPE_STUB(t) (TYPE_MAIN_TYPE (t)->flag_stub)
215
216 /* * The target type of this type is a stub type, and this type needs
217 to be updated if it gets un-stubbed in check_typedef. Used for
218 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
219 based on the TYPE_LENGTH of the target type. Also, set for
220 TYPE_CODE_TYPEDEF. */
221
222 #define TYPE_TARGET_STUB(t) (TYPE_MAIN_TYPE (t)->flag_target_stub)
223
224 /* * Static type. If this is set, the corresponding type had
225 a static modifier.
226 Note: This may be unnecessary, since static data members
227 are indicated by other means (bitpos == -1). */
228
229 #define TYPE_STATIC(t) (TYPE_MAIN_TYPE (t)->flag_static)
230
231 /* * This is a function type which appears to have a prototype. We
232 need this for function calls in order to tell us if it's necessary
233 to coerce the args, or to just do the standard conversions. This
234 is used with a short field. */
235
236 #define TYPE_PROTOTYPED(t) (TYPE_MAIN_TYPE (t)->flag_prototyped)
237
238 /* * This flag is used to indicate that processing for this type
239 is incomplete.
240
241 (Mostly intended for HP platforms, where class methods, for
242 instance, can be encountered before their classes in the debug
243 info; the incomplete type has to be marked so that the class and
244 the method can be assigned correct types.) */
245
246 #define TYPE_INCOMPLETE(t) (TYPE_MAIN_TYPE (t)->flag_incomplete)
247
248 /* * FIXME drow/2002-06-03: Only used for methods, but applies as well
249 to functions. */
250
251 #define TYPE_VARARGS(t) (TYPE_MAIN_TYPE (t)->flag_varargs)
252
253 /* * Identify a vector type. Gcc is handling this by adding an extra
254 attribute to the array type. We slurp that in as a new flag of a
255 type. This is used only in dwarf2read.c. */
256 #define TYPE_VECTOR(t) (TYPE_MAIN_TYPE (t)->flag_vector)
257
258 /* * The debugging formats (especially STABS) do not contain enough
259 information to represent all Ada types---especially those whose
260 size depends on dynamic quantities. Therefore, the GNAT Ada
261 compiler includes extra information in the form of additional type
262 definitions connected by naming conventions. This flag indicates
263 that the type is an ordinary (unencoded) GDB type that has been
264 created from the necessary run-time information, and does not need
265 further interpretation. Optionally marks ordinary, fixed-size GDB
266 type. */
267
268 #define TYPE_FIXED_INSTANCE(t) (TYPE_MAIN_TYPE (t)->flag_fixed_instance)
269
270 /* * This debug target supports TYPE_STUB(t). In the unsupported case
271 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
272 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
273 guessed the TYPE_STUB(t) value (see dwarfread.c). */
274
275 #define TYPE_STUB_SUPPORTED(t) (TYPE_MAIN_TYPE (t)->flag_stub_supported)
276
277 /* * Not textual. By default, GDB treats all single byte integers as
278 characters (or elements of strings) unless this flag is set. */
279
280 #define TYPE_NOTTEXT(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
281
282 /* * Used only for TYPE_CODE_FUNC where it specifies the real function
283 address is returned by this function call. TYPE_TARGET_TYPE
284 determines the final returned function type to be presented to
285 user. */
286
287 #define TYPE_GNU_IFUNC(t) (TYPE_MAIN_TYPE (t)->flag_gnu_ifunc)
288
289 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
290 the objfile retrieved as TYPE_OBJFILE. Otherweise, the type is
291 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
292
293 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
294 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
295 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
296
297 /* * True if this type was declared using the "class" keyword. This is
298 only valid for C++ structure and enum types. If false, a structure
299 was declared as a "struct"; if true it was declared "class". For
300 enum types, this is true when "enum class" or "enum struct" was
301 used to declare the type.. */
302
303 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
304
305 /* * True if this type is a "flag" enum. A flag enum is one where all
306 the values are pairwise disjoint when "and"ed together. This
307 affects how enum values are printed. */
308
309 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
310
311 /* * Constant type. If this is set, the corresponding type has a
312 const modifier. */
313
314 #define TYPE_CONST(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST)
315
316 /* * Volatile type. If this is set, the corresponding type has a
317 volatile modifier. */
318
319 #define TYPE_VOLATILE(t) \
320 (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE)
321
322 /* * Restrict type. If this is set, the corresponding type has a
323 restrict modifier. */
324
325 #define TYPE_RESTRICT(t) \
326 (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT)
327
328 /* * Atomic type. If this is set, the corresponding type has an
329 _Atomic modifier. */
330
331 #define TYPE_ATOMIC(t) \
332 (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC)
333
334 /* * True if this type represents either an lvalue or lvalue reference type. */
335
336 #define TYPE_IS_REFERENCE(t) \
337 (TYPE_CODE (t) == TYPE_CODE_REF || TYPE_CODE (t) == TYPE_CODE_RVALUE_REF)
338
339 /* * Instruction-space delimited type. This is for Harvard architectures
340 which have separate instruction and data address spaces (and perhaps
341 others).
342
343 GDB usually defines a flat address space that is a superset of the
344 architecture's two (or more) address spaces, but this is an extension
345 of the architecture's model.
346
347 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
348 resides in instruction memory, even if its address (in the extended
349 flat address space) does not reflect this.
350
351 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
352 corresponding type resides in the data memory space, even if
353 this is not indicated by its (flat address space) address.
354
355 If neither flag is set, the default space for functions / methods
356 is instruction space, and for data objects is data memory. */
357
358 #define TYPE_CODE_SPACE(t) \
359 (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE)
360
361 #define TYPE_DATA_SPACE(t) \
362 (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE)
363
364 /* * Address class flags. Some environments provide for pointers
365 whose size is different from that of a normal pointer or address
366 types where the bits are interpreted differently than normal
367 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
368 target specific ways to represent these different types of address
369 classes. */
370
371 #define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
372 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
373 #define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
374 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
375 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
376 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
377 #define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
378 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
379
380 enum dynamic_prop_kind
381 {
382 PROP_UNDEFINED, /* Not defined. */
383 PROP_CONST, /* Constant. */
384 PROP_ADDR_OFFSET, /* Address offset. */
385 PROP_LOCEXPR, /* Location expression. */
386 PROP_LOCLIST /* Location list. */
387 };
388
389 union dynamic_prop_data
390 {
391 /* Storage for constant property. */
392
393 LONGEST const_val;
394
395 /* Storage for dynamic property. */
396
397 void *baton;
398 };
399
400 /* * Used to store a dynamic property. */
401
402 struct dynamic_prop
403 {
404 /* Determine which field of the union dynamic_prop.data is used. */
405 enum dynamic_prop_kind kind;
406
407 /* Storage for dynamic or static value. */
408 union dynamic_prop_data data;
409 };
410
411 /* * Define a type's dynamic property node kind. */
412 enum dynamic_prop_node_kind
413 {
414 /* A property providing a type's data location.
415 Evaluating this field yields to the location of an object's data. */
416 DYN_PROP_DATA_LOCATION,
417
418 /* A property representing DW_AT_allocated. The presence of this attribute
419 indicates that the object of the type can be allocated/deallocated. */
420 DYN_PROP_ALLOCATED,
421
422 /* A property representing DW_AT_allocated. The presence of this attribute
423 indicated that the object of the type can be associated. */
424 DYN_PROP_ASSOCIATED,
425 };
426
427 /* * List for dynamic type attributes. */
428 struct dynamic_prop_list
429 {
430 /* The kind of dynamic prop in this node. */
431 enum dynamic_prop_node_kind prop_kind;
432
433 /* The dynamic property itself. */
434 struct dynamic_prop prop;
435
436 /* A pointer to the next dynamic property. */
437 struct dynamic_prop_list *next;
438 };
439
440 /* * Determine which field of the union main_type.fields[x].loc is
441 used. */
442
443 enum field_loc_kind
444 {
445 FIELD_LOC_KIND_BITPOS, /**< bitpos */
446 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
447 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
448 FIELD_LOC_KIND_PHYSNAME, /**< physname */
449 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
450 };
451
452 /* * A discriminant to determine which field in the
453 main_type.type_specific union is being used, if any.
454
455 For types such as TYPE_CODE_FLT, the use of this
456 discriminant is really redundant, as we know from the type code
457 which field is going to be used. As such, it would be possible to
458 reduce the size of this enum in order to save a bit or two for
459 other fields of struct main_type. But, since we still have extra
460 room , and for the sake of clarity and consistency, we treat all fields
461 of the union the same way. */
462
463 enum type_specific_kind
464 {
465 TYPE_SPECIFIC_NONE,
466 TYPE_SPECIFIC_CPLUS_STUFF,
467 TYPE_SPECIFIC_GNAT_STUFF,
468 TYPE_SPECIFIC_FLOATFORMAT,
469 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
470 TYPE_SPECIFIC_FUNC,
471 TYPE_SPECIFIC_SELF_TYPE
472 };
473
474 union type_owner
475 {
476 struct objfile *objfile;
477 struct gdbarch *gdbarch;
478 };
479
480 union field_location
481 {
482 /* * Position of this field, counting in bits from start of
483 containing structure. For gdbarch_bits_big_endian=1
484 targets, it is the bit offset to the MSB. For
485 gdbarch_bits_big_endian=0 targets, it is the bit offset to
486 the LSB. */
487
488 LONGEST bitpos;
489
490 /* * Enum value. */
491 LONGEST enumval;
492
493 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
494 physaddr is the location (in the target) of the static
495 field. Otherwise, physname is the mangled label of the
496 static field. */
497
498 CORE_ADDR physaddr;
499 const char *physname;
500
501 /* * The field location can be computed by evaluating the
502 following DWARF block. Its DATA is allocated on
503 objfile_obstack - no CU load is needed to access it. */
504
505 struct dwarf2_locexpr_baton *dwarf_block;
506 };
507
508 struct field
509 {
510 union field_location loc;
511
512 /* * For a function or member type, this is 1 if the argument is
513 marked artificial. Artificial arguments should not be shown
514 to the user. For TYPE_CODE_RANGE it is set if the specific
515 bound is not defined. */
516
517 unsigned int artificial : 1;
518
519 /* * Discriminant for union field_location. */
520
521 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
522
523 /* * Size of this field, in bits, or zero if not packed.
524 If non-zero in an array type, indicates the element size in
525 bits (used only in Ada at the moment).
526 For an unpacked field, the field's type's length
527 says how many bytes the field occupies. */
528
529 unsigned int bitsize : 28;
530
531 /* * In a struct or union type, type of this field.
532 - In a function or member type, type of this argument.
533 - In an array type, the domain-type of the array. */
534
535 struct type *type;
536
537 /* * Name of field, value or argument.
538 NULL for range bounds, array domains, and member function
539 arguments. */
540
541 const char *name;
542 };
543
544 struct range_bounds
545 {
546 /* * Low bound of range. */
547
548 struct dynamic_prop low;
549
550 /* * High bound of range. */
551
552 struct dynamic_prop high;
553
554 /* True if HIGH range bound contains the number of elements in the
555 subrange. This affects how the final hight bound is computed. */
556
557 int flag_upper_bound_is_count : 1;
558
559 /* True if LOW or/and HIGH are resolved into a static bound from
560 a dynamic one. */
561
562 int flag_bound_evaluated : 1;
563 };
564
565 union type_specific
566 {
567 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
568 point to cplus_struct_default, a default static instance of a
569 struct cplus_struct_type. */
570
571 struct cplus_struct_type *cplus_stuff;
572
573 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
574 provides additional information. */
575
576 struct gnat_aux_type *gnat_stuff;
577
578 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to two
579 floatformat objects that describe the floating-point value
580 that resides within the type. The first is for big endian
581 targets and the second is for little endian targets. */
582
583 const struct floatformat **floatformat;
584
585 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
586
587 struct func_type *func_stuff;
588
589 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
590 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
591 is a member of. */
592
593 struct type *self_type;
594 };
595
596 /* * Main structure representing a type in GDB.
597
598 This structure is space-critical. Its layout has been tweaked to
599 reduce the space used. */
600
601 struct main_type
602 {
603 /* * Code for kind of type. */
604
605 ENUM_BITFIELD(type_code) code : 8;
606
607 /* * Flags about this type. These fields appear at this location
608 because they packs nicely here. See the TYPE_* macros for
609 documentation about these fields. */
610
611 unsigned int flag_unsigned : 1;
612 unsigned int flag_nosign : 1;
613 unsigned int flag_stub : 1;
614 unsigned int flag_target_stub : 1;
615 unsigned int flag_static : 1;
616 unsigned int flag_prototyped : 1;
617 unsigned int flag_incomplete : 1;
618 unsigned int flag_varargs : 1;
619 unsigned int flag_vector : 1;
620 unsigned int flag_stub_supported : 1;
621 unsigned int flag_gnu_ifunc : 1;
622 unsigned int flag_fixed_instance : 1;
623 unsigned int flag_objfile_owned : 1;
624
625 /* * True if this type was declared with "class" rather than
626 "struct". */
627
628 unsigned int flag_declared_class : 1;
629
630 /* * True if this is an enum type with disjoint values. This
631 affects how the enum is printed. */
632
633 unsigned int flag_flag_enum : 1;
634
635 /* * A discriminant telling us which field of the type_specific
636 union is being used for this type, if any. */
637
638 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
639
640 /* * Number of fields described for this type. This field appears
641 at this location because it packs nicely here. */
642
643 short nfields;
644
645 /* * Name of this type, or NULL if none.
646
647 This is used for printing only, except by poorly designed C++
648 code. For looking up a name, look for a symbol in the
649 VAR_DOMAIN. This is generally allocated in the objfile's
650 obstack. However coffread.c uses malloc. */
651
652 const char *name;
653
654 /* * Tag name for this type, or NULL if none. This means that the
655 name of the type consists of a keyword followed by the tag name.
656 Which keyword is determined by the type code ("struct" for
657 TYPE_CODE_STRUCT, etc.). As far as I know C/C++ are the only
658 languages with this feature.
659
660 This is used for printing only, except by poorly designed C++ code.
661 For looking up a name, look for a symbol in the STRUCT_DOMAIN.
662 One more legitimate use is that if TYPE_STUB is set, this is
663 the name to use to look for definitions in other files. */
664
665 const char *tag_name;
666
667 /* * Every type is now associated with a particular objfile, and the
668 type is allocated on the objfile_obstack for that objfile. One
669 problem however, is that there are times when gdb allocates new
670 types while it is not in the process of reading symbols from a
671 particular objfile. Fortunately, these happen when the type
672 being created is a derived type of an existing type, such as in
673 lookup_pointer_type(). So we can just allocate the new type
674 using the same objfile as the existing type, but to do this we
675 need a backpointer to the objfile from the existing type. Yes
676 this is somewhat ugly, but without major overhaul of the internal
677 type system, it can't be avoided for now. */
678
679 union type_owner owner;
680
681 /* * For a pointer type, describes the type of object pointed to.
682 - For an array type, describes the type of the elements.
683 - For a function or method type, describes the type of the return value.
684 - For a range type, describes the type of the full range.
685 - For a complex type, describes the type of each coordinate.
686 - For a special record or union type encoding a dynamic-sized type
687 in GNAT, a memoized pointer to a corresponding static version of
688 the type.
689 - Unused otherwise. */
690
691 struct type *target_type;
692
693 /* * For structure and union types, a description of each field.
694 For set and pascal array types, there is one "field",
695 whose type is the domain type of the set or array.
696 For range types, there are two "fields",
697 the minimum and maximum values (both inclusive).
698 For enum types, each possible value is described by one "field".
699 For a function or method type, a "field" for each parameter.
700 For C++ classes, there is one field for each base class (if it is
701 a derived class) plus one field for each class data member. Member
702 functions are recorded elsewhere.
703
704 Using a pointer to a separate array of fields
705 allows all types to have the same size, which is useful
706 because we can allocate the space for a type before
707 we know what to put in it. */
708
709 union
710 {
711 struct field *fields;
712
713 /* * Union member used for range types. */
714
715 struct range_bounds *bounds;
716
717 } flds_bnds;
718
719 /* * Slot to point to additional language-specific fields of this
720 type. */
721
722 union type_specific type_specific;
723
724 /* * Contains all dynamic type properties. */
725 struct dynamic_prop_list *dyn_prop_list;
726 };
727
728 /* * A ``struct type'' describes a particular instance of a type, with
729 some particular qualification. */
730
731 struct type
732 {
733 /* * Type that is a pointer to this type.
734 NULL if no such pointer-to type is known yet.
735 The debugger may add the address of such a type
736 if it has to construct one later. */
737
738 struct type *pointer_type;
739
740 /* * C++: also need a reference type. */
741
742 struct type *reference_type;
743
744 /* * A C++ rvalue reference type added in C++11. */
745
746 struct type *rvalue_reference_type;
747
748 /* * Variant chain. This points to a type that differs from this
749 one only in qualifiers and length. Currently, the possible
750 qualifiers are const, volatile, code-space, data-space, and
751 address class. The length may differ only when one of the
752 address class flags are set. The variants are linked in a
753 circular ring and share MAIN_TYPE. */
754
755 struct type *chain;
756
757 /* * Flags specific to this instance of the type, indicating where
758 on the ring we are.
759
760 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
761 binary or-ed with the target type, with a special case for
762 address class and space class. For example if this typedef does
763 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
764 instance flags are completely inherited from the target type. No
765 qualifiers can be cleared by the typedef. See also
766 check_typedef. */
767 int instance_flags;
768
769 /* * Length of storage for a value of this type. The value is the
770 expression in host bytes of what sizeof(type) would return. This
771 size includes padding. For example, an i386 extended-precision
772 floating point value really only occupies ten bytes, but most
773 ABI's declare its size to be 12 bytes, to preserve alignment.
774 A `struct type' representing such a floating-point type would
775 have a `length' value of 12, even though the last two bytes are
776 unused.
777
778 Since this field is expressed in host bytes, its value is appropriate
779 to pass to memcpy and such (it is assumed that GDB itself always runs
780 on an 8-bits addressable architecture). However, when using it for
781 target address arithmetic (e.g. adding it to a target address), the
782 type_length_units function should be used in order to get the length
783 expressed in target addressable memory units. */
784
785 unsigned int length;
786
787 /* * Core type, shared by a group of qualified types. */
788
789 struct main_type *main_type;
790 };
791
792 #define NULL_TYPE ((struct type *) 0)
793
794 struct fn_fieldlist
795 {
796
797 /* * The overloaded name.
798 This is generally allocated in the objfile's obstack.
799 However stabsread.c sometimes uses malloc. */
800
801 const char *name;
802
803 /* * The number of methods with this name. */
804
805 int length;
806
807 /* * The list of methods. */
808
809 struct fn_field *fn_fields;
810 };
811
812
813
814 struct fn_field
815 {
816 /* * If is_stub is clear, this is the mangled name which we can look
817 up to find the address of the method (FIXME: it would be cleaner
818 to have a pointer to the struct symbol here instead).
819
820 If is_stub is set, this is the portion of the mangled name which
821 specifies the arguments. For example, "ii", if there are two int
822 arguments, or "" if there are no arguments. See gdb_mangle_name
823 for the conversion from this format to the one used if is_stub is
824 clear. */
825
826 const char *physname;
827
828 /* * The function type for the method.
829
830 (This comment used to say "The return value of the method", but
831 that's wrong. The function type is expected here, i.e. something
832 with TYPE_CODE_METHOD, and *not* the return-value type). */
833
834 struct type *type;
835
836 /* * For virtual functions. First baseclass that defines this
837 virtual function. */
838
839 struct type *fcontext;
840
841 /* Attributes. */
842
843 unsigned int is_const:1;
844 unsigned int is_volatile:1;
845 unsigned int is_private:1;
846 unsigned int is_protected:1;
847 unsigned int is_public:1;
848 unsigned int is_abstract:1;
849 unsigned int is_static:1;
850 unsigned int is_final:1;
851 unsigned int is_synchronized:1;
852 unsigned int is_native:1;
853 unsigned int is_artificial:1;
854
855 /* * A stub method only has some fields valid (but they are enough
856 to reconstruct the rest of the fields). */
857
858 unsigned int is_stub:1;
859
860 /* * True if this function is a constructor, false otherwise. */
861
862 unsigned int is_constructor : 1;
863
864 /* * Unused. */
865
866 unsigned int dummy:3;
867
868 /* * Index into that baseclass's virtual function table, minus 2;
869 else if static: VOFFSET_STATIC; else: 0. */
870
871 unsigned int voffset:16;
872
873 #define VOFFSET_STATIC 1
874
875 };
876
877 struct typedef_field
878 {
879 /* * Unqualified name to be prefixed by owning class qualified
880 name. */
881
882 const char *name;
883
884 /* * Type this typedef named NAME represents. */
885
886 struct type *type;
887 };
888
889 /* * C++ language-specific information for TYPE_CODE_STRUCT and
890 TYPE_CODE_UNION nodes. */
891
892 struct cplus_struct_type
893 {
894 /* * Number of base classes this type derives from. The
895 baseclasses are stored in the first N_BASECLASSES fields
896 (i.e. the `fields' field of the struct type). The only fields
897 of struct field that are used are: type, name, loc.bitpos. */
898
899 short n_baseclasses;
900
901 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
902 All access to this field must be through TYPE_VPTR_FIELDNO as one
903 thing it does is check whether the field has been initialized.
904 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
905 which for portability reasons doesn't initialize this field.
906 TYPE_VPTR_FIELDNO returns -1 for this case.
907
908 If -1, we were unable to find the virtual function table pointer in
909 initial symbol reading, and get_vptr_fieldno should be called to find
910 it if possible. get_vptr_fieldno will update this field if possible.
911 Otherwise the value is left at -1.
912
913 Unused if this type does not have virtual functions. */
914
915 short vptr_fieldno;
916
917 /* * Number of methods with unique names. All overloaded methods
918 with the same name count only once. */
919
920 short nfn_fields;
921
922 /* * Number of template arguments. */
923
924 unsigned short n_template_arguments;
925
926 /* * One if this struct is a dynamic class, as defined by the
927 Itanium C++ ABI: if it requires a virtual table pointer,
928 because it or any of its base classes have one or more virtual
929 member functions or virtual base classes. Minus one if not
930 dynamic. Zero if not yet computed. */
931
932 int is_dynamic : 2;
933
934 /* * The base class which defined the virtual function table pointer. */
935
936 struct type *vptr_basetype;
937
938 /* * For derived classes, the number of base classes is given by
939 n_baseclasses and virtual_field_bits is a bit vector containing
940 one bit per base class. If the base class is virtual, the
941 corresponding bit will be set.
942 I.E, given:
943
944 class A{};
945 class B{};
946 class C : public B, public virtual A {};
947
948 B is a baseclass of C; A is a virtual baseclass for C.
949 This is a C++ 2.0 language feature. */
950
951 B_TYPE *virtual_field_bits;
952
953 /* * For classes with private fields, the number of fields is
954 given by nfields and private_field_bits is a bit vector
955 containing one bit per field.
956
957 If the field is private, the corresponding bit will be set. */
958
959 B_TYPE *private_field_bits;
960
961 /* * For classes with protected fields, the number of fields is
962 given by nfields and protected_field_bits is a bit vector
963 containing one bit per field.
964
965 If the field is private, the corresponding bit will be set. */
966
967 B_TYPE *protected_field_bits;
968
969 /* * For classes with fields to be ignored, either this is
970 optimized out or this field has length 0. */
971
972 B_TYPE *ignore_field_bits;
973
974 /* * For classes, structures, and unions, a description of each
975 field, which consists of an overloaded name, followed by the
976 types of arguments that the method expects, and then the name
977 after it has been renamed to make it distinct.
978
979 fn_fieldlists points to an array of nfn_fields of these. */
980
981 struct fn_fieldlist *fn_fieldlists;
982
983 /* * typedefs defined inside this class. typedef_field points to
984 an array of typedef_field_count elements. */
985
986 struct typedef_field *typedef_field;
987
988 unsigned typedef_field_count;
989
990 /* * The template arguments. This is an array with
991 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
992 classes. */
993
994 struct symbol **template_arguments;
995 };
996
997 /* * Struct used to store conversion rankings. */
998
999 struct rank
1000 {
1001 short rank;
1002
1003 /* * When two conversions are of the same type and therefore have
1004 the same rank, subrank is used to differentiate the two.
1005
1006 Eg: Two derived-class-pointer to base-class-pointer conversions
1007 would both have base pointer conversion rank, but the
1008 conversion with the shorter distance to the ancestor is
1009 preferable. 'subrank' would be used to reflect that. */
1010
1011 short subrank;
1012 };
1013
1014 /* * Struct used for ranking a function for overload resolution. */
1015
1016 struct badness_vector
1017 {
1018 int length;
1019 struct rank *rank;
1020 };
1021
1022 /* * GNAT Ada-specific information for various Ada types. */
1023
1024 struct gnat_aux_type
1025 {
1026 /* * Parallel type used to encode information about dynamic types
1027 used in Ada (such as variant records, variable-size array,
1028 etc). */
1029 struct type* descriptive_type;
1030 };
1031
1032 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1033
1034 struct func_type
1035 {
1036 /* * The calling convention for targets supporting multiple ABIs.
1037 Right now this is only fetched from the Dwarf-2
1038 DW_AT_calling_convention attribute. The value is one of the
1039 DW_CC enum dwarf_calling_convention constants. */
1040
1041 unsigned calling_convention : 8;
1042
1043 /* * Whether this function normally returns to its caller. It is
1044 set from the DW_AT_noreturn attribute if set on the
1045 DW_TAG_subprogram. */
1046
1047 unsigned int is_noreturn : 1;
1048
1049 /* * Only those DW_TAG_call_site's in this function that have
1050 DW_AT_call_tail_call set are linked in this list. Function
1051 without its tail call list complete
1052 (DW_AT_call_all_tail_calls or its superset
1053 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1054 DW_TAG_call_site's exist in such function. */
1055
1056 struct call_site *tail_call_list;
1057
1058 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1059 contains the method. */
1060
1061 struct type *self_type;
1062 };
1063
1064 /* struct call_site_parameter can be referenced in callees by several ways. */
1065
1066 enum call_site_parameter_kind
1067 {
1068 /* * Use field call_site_parameter.u.dwarf_reg. */
1069 CALL_SITE_PARAMETER_DWARF_REG,
1070
1071 /* * Use field call_site_parameter.u.fb_offset. */
1072 CALL_SITE_PARAMETER_FB_OFFSET,
1073
1074 /* * Use field call_site_parameter.u.param_offset. */
1075 CALL_SITE_PARAMETER_PARAM_OFFSET
1076 };
1077
1078 struct call_site_target
1079 {
1080 union field_location loc;
1081
1082 /* * Discriminant for union field_location. */
1083
1084 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1085 };
1086
1087 union call_site_parameter_u
1088 {
1089 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1090 as DWARF register number, for register passed
1091 parameters. */
1092
1093 int dwarf_reg;
1094
1095 /* * Offset from the callee's frame base, for stack passed
1096 parameters. This equals offset from the caller's stack
1097 pointer. */
1098
1099 CORE_ADDR fb_offset;
1100
1101 /* * Offset relative to the start of this PER_CU to
1102 DW_TAG_formal_parameter which is referenced by both
1103 caller and the callee. */
1104
1105 cu_offset param_cu_off;
1106 };
1107
1108 struct call_site_parameter
1109 {
1110 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1111
1112 union call_site_parameter_u u;
1113
1114 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1115
1116 const gdb_byte *value;
1117 size_t value_size;
1118
1119 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1120 It may be NULL if not provided by DWARF. */
1121
1122 const gdb_byte *data_value;
1123 size_t data_value_size;
1124 };
1125
1126 /* * A place where a function gets called from, represented by
1127 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1128
1129 struct call_site
1130 {
1131 /* * Address of the first instruction after this call. It must be
1132 the first field as we overload core_addr_hash and core_addr_eq
1133 for it. */
1134
1135 CORE_ADDR pc;
1136
1137 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1138
1139 struct call_site *tail_call_next;
1140
1141 /* * Describe DW_AT_call_target. Missing attribute uses
1142 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1143
1144 struct call_site_target target;
1145
1146 /* * Size of the PARAMETER array. */
1147
1148 unsigned parameter_count;
1149
1150 /* * CU of the function where the call is located. It gets used
1151 for DWARF blocks execution in the parameter array below. */
1152
1153 struct dwarf2_per_cu_data *per_cu;
1154
1155 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1156
1157 struct call_site_parameter parameter[1];
1158 };
1159
1160 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1161 static structure. */
1162
1163 extern const struct cplus_struct_type cplus_struct_default;
1164
1165 extern void allocate_cplus_struct_type (struct type *);
1166
1167 #define INIT_CPLUS_SPECIFIC(type) \
1168 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1169 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1170 &cplus_struct_default)
1171
1172 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1173
1174 #define HAVE_CPLUS_STRUCT(type) \
1175 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1176 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1177
1178 extern const struct gnat_aux_type gnat_aux_default;
1179
1180 extern void allocate_gnat_aux_type (struct type *);
1181
1182 #define INIT_GNAT_SPECIFIC(type) \
1183 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1184 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1185 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1186 /* * A macro that returns non-zero if the type-specific data should be
1187 read as "gnat-stuff". */
1188 #define HAVE_GNAT_AUX_INFO(type) \
1189 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1190
1191 #define INIT_FUNC_SPECIFIC(type) \
1192 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1193 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1194 TYPE_ZALLOC (type, \
1195 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1196
1197 #define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1198 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1199 #define TYPE_NAME(thistype) TYPE_MAIN_TYPE(thistype)->name
1200 #define TYPE_TAG_NAME(type) TYPE_MAIN_TYPE(type)->tag_name
1201 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1202 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1203 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1204 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1205 #define TYPE_CHAIN(thistype) (thistype)->chain
1206 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1207 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1208 so you only have to call check_typedef once. Since allocate_value
1209 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1210 #define TYPE_LENGTH(thistype) (thistype)->length
1211 /* * Note that TYPE_CODE can be TYPE_CODE_TYPEDEF, so if you want the real
1212 type, you need to do TYPE_CODE (check_type (this_type)). */
1213 #define TYPE_CODE(thistype) TYPE_MAIN_TYPE(thistype)->code
1214 #define TYPE_NFIELDS(thistype) TYPE_MAIN_TYPE(thistype)->nfields
1215 #define TYPE_FIELDS(thistype) TYPE_MAIN_TYPE(thistype)->flds_bnds.fields
1216
1217 #define TYPE_INDEX_TYPE(type) TYPE_FIELD_TYPE (type, 0)
1218 #define TYPE_RANGE_DATA(thistype) TYPE_MAIN_TYPE(thistype)->flds_bnds.bounds
1219 #define TYPE_LOW_BOUND(range_type) \
1220 TYPE_RANGE_DATA(range_type)->low.data.const_val
1221 #define TYPE_HIGH_BOUND(range_type) \
1222 TYPE_RANGE_DATA(range_type)->high.data.const_val
1223 #define TYPE_LOW_BOUND_UNDEFINED(range_type) \
1224 (TYPE_RANGE_DATA(range_type)->low.kind == PROP_UNDEFINED)
1225 #define TYPE_HIGH_BOUND_UNDEFINED(range_type) \
1226 (TYPE_RANGE_DATA(range_type)->high.kind == PROP_UNDEFINED)
1227 #define TYPE_HIGH_BOUND_KIND(range_type) \
1228 TYPE_RANGE_DATA(range_type)->high.kind
1229 #define TYPE_LOW_BOUND_KIND(range_type) \
1230 TYPE_RANGE_DATA(range_type)->low.kind
1231
1232 /* Property accessors for the type data location. */
1233 #define TYPE_DATA_LOCATION(thistype) \
1234 get_dyn_prop (DYN_PROP_DATA_LOCATION, thistype)
1235 #define TYPE_DATA_LOCATION_BATON(thistype) \
1236 TYPE_DATA_LOCATION (thistype)->data.baton
1237 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1238 TYPE_DATA_LOCATION (thistype)->data.const_val
1239 #define TYPE_DATA_LOCATION_KIND(thistype) \
1240 TYPE_DATA_LOCATION (thistype)->kind
1241
1242 /* Property accessors for the type allocated/associated. */
1243 #define TYPE_ALLOCATED_PROP(thistype) \
1244 get_dyn_prop (DYN_PROP_ALLOCATED, thistype)
1245 #define TYPE_ASSOCIATED_PROP(thistype) \
1246 get_dyn_prop (DYN_PROP_ASSOCIATED, thistype)
1247
1248 /* Attribute accessors for dynamic properties. */
1249 #define TYPE_DYN_PROP_LIST(thistype) \
1250 TYPE_MAIN_TYPE(thistype)->dyn_prop_list
1251 #define TYPE_DYN_PROP_BATON(dynprop) \
1252 dynprop->data.baton
1253 #define TYPE_DYN_PROP_ADDR(dynprop) \
1254 dynprop->data.const_val
1255 #define TYPE_DYN_PROP_KIND(dynprop) \
1256 dynprop->kind
1257
1258
1259 /* Moto-specific stuff for FORTRAN arrays. */
1260
1261 #define TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED(arraytype) \
1262 TYPE_HIGH_BOUND_UNDEFINED(TYPE_INDEX_TYPE(arraytype))
1263 #define TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED(arraytype) \
1264 TYPE_LOW_BOUND_UNDEFINED(TYPE_INDEX_TYPE(arraytype))
1265
1266 #define TYPE_ARRAY_UPPER_BOUND_VALUE(arraytype) \
1267 (TYPE_HIGH_BOUND(TYPE_INDEX_TYPE((arraytype))))
1268
1269 #define TYPE_ARRAY_LOWER_BOUND_VALUE(arraytype) \
1270 (TYPE_LOW_BOUND(TYPE_INDEX_TYPE((arraytype))))
1271
1272 /* C++ */
1273
1274 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1275 /* Do not call this, use TYPE_SELF_TYPE. */
1276 extern struct type *internal_type_self_type (struct type *);
1277 extern void set_type_self_type (struct type *, struct type *);
1278
1279 extern int internal_type_vptr_fieldno (struct type *);
1280 extern void set_type_vptr_fieldno (struct type *, int);
1281 extern struct type *internal_type_vptr_basetype (struct type *);
1282 extern void set_type_vptr_basetype (struct type *, struct type *);
1283 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1284 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1285
1286 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1287 #define TYPE_SPECIFIC_FIELD(thistype) \
1288 TYPE_MAIN_TYPE(thistype)->type_specific_field
1289 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1290 where we're trying to print an Ada array using the C language.
1291 In that case, there is no "cplus_stuff", but the C language assumes
1292 that there is. What we do, in that case, is pretend that there is
1293 an implicit one which is the default cplus stuff. */
1294 #define TYPE_CPLUS_SPECIFIC(thistype) \
1295 (!HAVE_CPLUS_STRUCT(thistype) \
1296 ? (struct cplus_struct_type*)&cplus_struct_default \
1297 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1298 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1299 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1300 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1301 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1302 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1303 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1304 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1305 #define TYPE_BASECLASS(thistype,index) TYPE_FIELD_TYPE(thistype, index)
1306 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1307 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1308 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1309 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1310 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1311 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1312
1313 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1314 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1315 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1316
1317 #define FIELD_TYPE(thisfld) ((thisfld).type)
1318 #define FIELD_NAME(thisfld) ((thisfld).name)
1319 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1320 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1321 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1322 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1323 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1324 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1325 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1326 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1327 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1328 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1329 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1330 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1331 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1332 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1333 #define SET_FIELD_PHYSNAME(thisfld, name) \
1334 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1335 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1336 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1337 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1338 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1339 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1340 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1341 FIELD_DWARF_BLOCK (thisfld) = (addr))
1342 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1343 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1344
1345 #define TYPE_FIELD(thistype, n) TYPE_MAIN_TYPE(thistype)->flds_bnds.fields[n]
1346 #define TYPE_FIELD_TYPE(thistype, n) FIELD_TYPE(TYPE_FIELD(thistype, n))
1347 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME(TYPE_FIELD(thistype, n))
1348 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND (TYPE_FIELD (thistype, n))
1349 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS (TYPE_FIELD (thistype, n))
1350 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL (TYPE_FIELD (thistype, n))
1351 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME (TYPE_FIELD (thistype, n))
1352 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR (TYPE_FIELD (thistype, n))
1353 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK (TYPE_FIELD (thistype, n))
1354 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL(TYPE_FIELD(thistype,n))
1355 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE(TYPE_FIELD(thistype,n))
1356 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE(TYPE_FIELD(thistype,n))!=0)
1357
1358 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1359 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1360 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1361 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1362 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1363 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1364 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1365 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1366 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1367 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1368 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1369 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1370 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1371 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1372 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1373 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1374 #define TYPE_FIELD_PRIVATE(thistype, n) \
1375 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1376 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1377 #define TYPE_FIELD_PROTECTED(thistype, n) \
1378 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1379 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1380 #define TYPE_FIELD_IGNORE(thistype, n) \
1381 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1382 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1383 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1384 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1385 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1386
1387 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1388 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1389 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1390 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1391 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1392
1393 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1394 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1395 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1396 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1397 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1398 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1399
1400 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1401 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1402 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1403 #define TYPE_FN_FIELD_ARGS(thisfn, n) TYPE_FIELDS ((thisfn)[n].type)
1404 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1405 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1406 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1407 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1408 #define TYPE_FN_FIELD_PUBLIC(thisfn, n) ((thisfn)[n].is_public)
1409 #define TYPE_FN_FIELD_STATIC(thisfn, n) ((thisfn)[n].is_static)
1410 #define TYPE_FN_FIELD_FINAL(thisfn, n) ((thisfn)[n].is_final)
1411 #define TYPE_FN_FIELD_SYNCHRONIZED(thisfn, n) ((thisfn)[n].is_synchronized)
1412 #define TYPE_FN_FIELD_NATIVE(thisfn, n) ((thisfn)[n].is_native)
1413 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1414 #define TYPE_FN_FIELD_ABSTRACT(thisfn, n) ((thisfn)[n].is_abstract)
1415 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1416 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1417 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1418 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1419 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1420 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1421
1422 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1423 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1424 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1425 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1426 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1427 TYPE_TYPEDEF_FIELD (thistype, n).name
1428 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1429 TYPE_TYPEDEF_FIELD (thistype, n).type
1430 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1431 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1432
1433 #define TYPE_IS_OPAQUE(thistype) \
1434 (((TYPE_CODE (thistype) == TYPE_CODE_STRUCT) \
1435 || (TYPE_CODE (thistype) == TYPE_CODE_UNION)) \
1436 && (TYPE_NFIELDS (thistype) == 0) \
1437 && (!HAVE_CPLUS_STRUCT (thistype) \
1438 || TYPE_NFN_FIELDS (thistype) == 0) \
1439 && (TYPE_STUB (thistype) || !TYPE_STUB_SUPPORTED (thistype)))
1440
1441 /* * A helper macro that returns the name of a type or "unnamed type"
1442 if the type has no name. */
1443
1444 #define TYPE_SAFE_NAME(type) \
1445 (TYPE_NAME (type) ? TYPE_NAME (type) : _("<unnamed type>"))
1446
1447 /* * A helper macro that returns the name of an error type. If the
1448 type has a name, it is used; otherwise, a default is used. */
1449
1450 #define TYPE_ERROR_NAME(type) \
1451 (TYPE_NAME (type) ? TYPE_NAME (type) : _("<error type>"))
1452
1453 struct builtin_type
1454 {
1455 /* Integral types. */
1456
1457 /* Implicit size/sign (based on the architecture's ABI). */
1458 struct type *builtin_void;
1459 struct type *builtin_char;
1460 struct type *builtin_short;
1461 struct type *builtin_int;
1462 struct type *builtin_long;
1463 struct type *builtin_signed_char;
1464 struct type *builtin_unsigned_char;
1465 struct type *builtin_unsigned_short;
1466 struct type *builtin_unsigned_int;
1467 struct type *builtin_unsigned_long;
1468 struct type *builtin_float;
1469 struct type *builtin_double;
1470 struct type *builtin_long_double;
1471 struct type *builtin_complex;
1472 struct type *builtin_double_complex;
1473 struct type *builtin_string;
1474 struct type *builtin_bool;
1475 struct type *builtin_long_long;
1476 struct type *builtin_unsigned_long_long;
1477 struct type *builtin_decfloat;
1478 struct type *builtin_decdouble;
1479 struct type *builtin_declong;
1480
1481 /* "True" character types.
1482 We use these for the '/c' print format, because c_char is just a
1483 one-byte integral type, which languages less laid back than C
1484 will print as ... well, a one-byte integral type. */
1485 struct type *builtin_true_char;
1486 struct type *builtin_true_unsigned_char;
1487
1488 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1489 is for when an architecture needs to describe a register that has
1490 no size. */
1491 struct type *builtin_int0;
1492 struct type *builtin_int8;
1493 struct type *builtin_uint8;
1494 struct type *builtin_int16;
1495 struct type *builtin_uint16;
1496 struct type *builtin_int32;
1497 struct type *builtin_uint32;
1498 struct type *builtin_int64;
1499 struct type *builtin_uint64;
1500 struct type *builtin_int128;
1501 struct type *builtin_uint128;
1502
1503 /* Wide character types. */
1504 struct type *builtin_char16;
1505 struct type *builtin_char32;
1506 struct type *builtin_wchar;
1507
1508 /* Pointer types. */
1509
1510 /* * `pointer to data' type. Some target platforms use an implicitly
1511 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1512 struct type *builtin_data_ptr;
1513
1514 /* * `pointer to function (returning void)' type. Harvard
1515 architectures mean that ABI function and code pointers are not
1516 interconvertible. Similarly, since ANSI, C standards have
1517 explicitly said that pointers to functions and pointers to data
1518 are not interconvertible --- that is, you can't cast a function
1519 pointer to void * and back, and expect to get the same value.
1520 However, all function pointer types are interconvertible, so void
1521 (*) () can server as a generic function pointer. */
1522
1523 struct type *builtin_func_ptr;
1524
1525 /* * `function returning pointer to function (returning void)' type.
1526 The final void return type is not significant for it. */
1527
1528 struct type *builtin_func_func;
1529
1530 /* Special-purpose types. */
1531
1532 /* * This type is used to represent a GDB internal function. */
1533
1534 struct type *internal_fn;
1535
1536 /* * This type is used to represent an xmethod. */
1537 struct type *xmethod;
1538 };
1539
1540 /* * Return the type table for the specified architecture. */
1541
1542 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
1543
1544 /* * Per-objfile types used by symbol readers. */
1545
1546 struct objfile_type
1547 {
1548 /* Basic types based on the objfile architecture. */
1549 struct type *builtin_void;
1550 struct type *builtin_char;
1551 struct type *builtin_short;
1552 struct type *builtin_int;
1553 struct type *builtin_long;
1554 struct type *builtin_long_long;
1555 struct type *builtin_signed_char;
1556 struct type *builtin_unsigned_char;
1557 struct type *builtin_unsigned_short;
1558 struct type *builtin_unsigned_int;
1559 struct type *builtin_unsigned_long;
1560 struct type *builtin_unsigned_long_long;
1561 struct type *builtin_float;
1562 struct type *builtin_double;
1563 struct type *builtin_long_double;
1564
1565 /* * This type is used to represent symbol addresses. */
1566 struct type *builtin_core_addr;
1567
1568 /* * This type represents a type that was unrecognized in symbol
1569 read-in. */
1570 struct type *builtin_error;
1571
1572 /* * Types used for symbols with no debug information. */
1573 struct type *nodebug_text_symbol;
1574 struct type *nodebug_text_gnu_ifunc_symbol;
1575 struct type *nodebug_got_plt_symbol;
1576 struct type *nodebug_data_symbol;
1577 struct type *nodebug_unknown_symbol;
1578 struct type *nodebug_tls_symbol;
1579 };
1580
1581 /* * Return the type table for the specified objfile. */
1582
1583 extern const struct objfile_type *objfile_type (struct objfile *objfile);
1584
1585 /* Explicit floating-point formats. See "floatformat.h". */
1586 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
1587 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
1588 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
1589 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
1590 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
1591 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
1592 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
1593 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
1594 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
1595 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
1596 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
1597 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
1598
1599
1600 /* * Allocate space for storing data associated with a particular
1601 type. We ensure that the space is allocated using the same
1602 mechanism that was used to allocate the space for the type
1603 structure itself. I.e. if the type is on an objfile's
1604 objfile_obstack, then the space for data associated with that type
1605 will also be allocated on the objfile_obstack. If the type is not
1606 associated with any particular objfile (such as builtin types),
1607 then the data space will be allocated with xmalloc, the same as for
1608 the type structure. */
1609
1610 #define TYPE_ALLOC(t,size) \
1611 (TYPE_OBJFILE_OWNED (t) \
1612 ? obstack_alloc (&TYPE_OBJFILE (t) -> objfile_obstack, size) \
1613 : xmalloc (size))
1614
1615 #define TYPE_ZALLOC(t,size) \
1616 (TYPE_OBJFILE_OWNED (t) \
1617 ? memset (obstack_alloc (&TYPE_OBJFILE (t)->objfile_obstack, size), \
1618 0, size) \
1619 : xzalloc (size))
1620
1621 /* Use alloc_type to allocate a type owned by an objfile. Use
1622 alloc_type_arch to allocate a type owned by an architecture. Use
1623 alloc_type_copy to allocate a type with the same owner as a
1624 pre-existing template type, no matter whether objfile or
1625 gdbarch. */
1626 extern struct type *alloc_type (struct objfile *);
1627 extern struct type *alloc_type_arch (struct gdbarch *);
1628 extern struct type *alloc_type_copy (const struct type *);
1629
1630 /* * Return the type's architecture. For types owned by an
1631 architecture, that architecture is returned. For types owned by an
1632 objfile, that objfile's architecture is returned. */
1633
1634 extern struct gdbarch *get_type_arch (const struct type *);
1635
1636 /* * This returns the target type (or NULL) of TYPE, also skipping
1637 past typedefs. */
1638
1639 extern struct type *get_target_type (struct type *type);
1640
1641 /* Return the equivalent of TYPE_LENGTH, but in number of target
1642 addressable memory units of the associated gdbarch instead of bytes. */
1643
1644 extern unsigned int type_length_units (struct type *type);
1645
1646 /* * Helper function to construct objfile-owned types. */
1647
1648 extern struct type *init_type (struct objfile *, enum type_code, int,
1649 const char *);
1650 extern struct type *init_integer_type (struct objfile *, int, int,
1651 const char *);
1652 extern struct type *init_character_type (struct objfile *, int, int,
1653 const char *);
1654 extern struct type *init_boolean_type (struct objfile *, int, int,
1655 const char *);
1656 extern struct type *init_float_type (struct objfile *, int, const char *,
1657 const struct floatformat **);
1658 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
1659 extern struct type *init_complex_type (struct objfile *, const char *,
1660 struct type *);
1661 extern struct type *init_pointer_type (struct objfile *, int, const char *,
1662 struct type *);
1663
1664 /* Helper functions to construct architecture-owned types. */
1665 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
1666 const char *);
1667 extern struct type *arch_integer_type (struct gdbarch *, int, int,
1668 const char *);
1669 extern struct type *arch_character_type (struct gdbarch *, int, int,
1670 const char *);
1671 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
1672 const char *);
1673 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
1674 const struct floatformat **);
1675 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
1676 extern struct type *arch_complex_type (struct gdbarch *, const char *,
1677 struct type *);
1678 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
1679 struct type *);
1680
1681 /* Helper functions to construct a struct or record type. An
1682 initially empty type is created using arch_composite_type().
1683 Fields are then added using append_composite_type_field*(). A union
1684 type has its size set to the largest field. A struct type has each
1685 field packed against the previous. */
1686
1687 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
1688 const char *name, enum type_code code);
1689 extern void append_composite_type_field (struct type *t, const char *name,
1690 struct type *field);
1691 extern void append_composite_type_field_aligned (struct type *t,
1692 const char *name,
1693 struct type *field,
1694 int alignment);
1695 struct field *append_composite_type_field_raw (struct type *t, const char *name,
1696 struct type *field);
1697
1698 /* Helper functions to construct a bit flags type. An initially empty
1699 type is created using arch_flag_type(). Flags are then added using
1700 append_flag_type_field() and append_flag_type_flag(). */
1701 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
1702 const char *name, int length);
1703 extern void append_flags_type_field (struct type *type,
1704 int start_bitpos, int nr_bits,
1705 struct type *field_type, const char *name);
1706 extern void append_flags_type_flag (struct type *type, int bitpos,
1707 const char *name);
1708
1709 extern void make_vector_type (struct type *array_type);
1710 extern struct type *init_vector_type (struct type *elt_type, int n);
1711
1712 extern struct type *lookup_reference_type (struct type *, enum type_code);
1713 extern struct type *lookup_lvalue_reference_type (struct type *);
1714 extern struct type *lookup_rvalue_reference_type (struct type *);
1715
1716
1717 extern struct type *make_reference_type (struct type *, struct type **,
1718 enum type_code);
1719
1720 extern struct type *make_cv_type (int, int, struct type *, struct type **);
1721
1722 extern struct type *make_restrict_type (struct type *);
1723
1724 extern struct type *make_unqualified_type (struct type *);
1725
1726 extern struct type *make_atomic_type (struct type *);
1727
1728 extern void replace_type (struct type *, struct type *);
1729
1730 extern int address_space_name_to_int (struct gdbarch *, char *);
1731
1732 extern const char *address_space_int_to_name (struct gdbarch *, int);
1733
1734 extern struct type *make_type_with_address_space (struct type *type,
1735 int space_identifier);
1736
1737 extern struct type *lookup_memberptr_type (struct type *, struct type *);
1738
1739 extern struct type *lookup_methodptr_type (struct type *);
1740
1741 extern void smash_to_method_type (struct type *type, struct type *self_type,
1742 struct type *to_type, struct field *args,
1743 int nargs, int varargs);
1744
1745 extern void smash_to_memberptr_type (struct type *, struct type *,
1746 struct type *);
1747
1748 extern void smash_to_methodptr_type (struct type *, struct type *);
1749
1750 extern struct type *allocate_stub_method (struct type *);
1751
1752 extern const char *type_name_no_tag (const struct type *);
1753
1754 extern const char *type_name_no_tag_or_error (struct type *type);
1755
1756 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
1757
1758 extern struct type *make_pointer_type (struct type *, struct type **);
1759
1760 extern struct type *lookup_pointer_type (struct type *);
1761
1762 extern struct type *make_function_type (struct type *, struct type **);
1763
1764 extern struct type *lookup_function_type (struct type *);
1765
1766 extern struct type *lookup_function_type_with_arguments (struct type *,
1767 int,
1768 struct type **);
1769
1770 extern struct type *create_static_range_type (struct type *, struct type *,
1771 LONGEST, LONGEST);
1772
1773
1774 extern struct type *create_array_type_with_stride
1775 (struct type *, struct type *, struct type *, unsigned int);
1776
1777 extern struct type *create_range_type (struct type *, struct type *,
1778 const struct dynamic_prop *,
1779 const struct dynamic_prop *);
1780
1781 extern struct type *create_array_type (struct type *, struct type *,
1782 struct type *);
1783
1784 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
1785
1786 extern struct type *create_string_type (struct type *, struct type *,
1787 struct type *);
1788 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
1789
1790 extern struct type *create_set_type (struct type *, struct type *);
1791
1792 extern struct type *lookup_unsigned_typename (const struct language_defn *,
1793 struct gdbarch *, const char *);
1794
1795 extern struct type *lookup_signed_typename (const struct language_defn *,
1796 struct gdbarch *, const char *);
1797
1798 extern void get_unsigned_type_max (struct type *, ULONGEST *);
1799
1800 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
1801
1802 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
1803 ADDR specifies the location of the variable the type is bound to.
1804 If TYPE has no dynamic properties return TYPE; otherwise a new type with
1805 static properties is returned. */
1806 extern struct type *resolve_dynamic_type (struct type *type,
1807 const gdb_byte *valaddr,
1808 CORE_ADDR addr);
1809
1810 /* * Predicate if the type has dynamic values, which are not resolved yet. */
1811 extern int is_dynamic_type (struct type *type);
1812
1813 /* * Return the dynamic property of the requested KIND from TYPE's
1814 list of dynamic properties. */
1815 extern struct dynamic_prop *get_dyn_prop
1816 (enum dynamic_prop_node_kind kind, const struct type *type);
1817
1818 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1819 property to the given TYPE.
1820
1821 This function assumes that TYPE is objfile-owned, and that OBJFILE
1822 is the TYPE's objfile. */
1823 extern void add_dyn_prop
1824 (enum dynamic_prop_node_kind kind, struct dynamic_prop prop,
1825 struct type *type, struct objfile *objfile);
1826
1827 extern void remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
1828 struct type *type);
1829
1830 extern struct type *check_typedef (struct type *);
1831
1832 extern void check_stub_method_group (struct type *, int);
1833
1834 extern char *gdb_mangle_name (struct type *, int, int);
1835
1836 extern struct type *lookup_typename (const struct language_defn *,
1837 struct gdbarch *, const char *,
1838 const struct block *, int);
1839
1840 extern struct type *lookup_template_type (char *, struct type *,
1841 const struct block *);
1842
1843 extern int get_vptr_fieldno (struct type *, struct type **);
1844
1845 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
1846
1847 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
1848 LONGEST *high_bound);
1849
1850 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
1851
1852 extern int class_types_same_p (const struct type *, const struct type *);
1853
1854 extern int is_ancestor (struct type *, struct type *);
1855
1856 extern int is_public_ancestor (struct type *, struct type *);
1857
1858 extern int is_unique_ancestor (struct type *, struct value *);
1859
1860 /* Overload resolution */
1861
1862 #define LENGTH_MATCH(bv) ((bv)->rank[0])
1863
1864 /* * Badness if parameter list length doesn't match arg list length. */
1865 extern const struct rank LENGTH_MISMATCH_BADNESS;
1866
1867 /* * Dummy badness value for nonexistent parameter positions. */
1868 extern const struct rank TOO_FEW_PARAMS_BADNESS;
1869 /* * Badness if no conversion among types. */
1870 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
1871
1872 /* * Badness of an exact match. */
1873 extern const struct rank EXACT_MATCH_BADNESS;
1874
1875 /* * Badness of integral promotion. */
1876 extern const struct rank INTEGER_PROMOTION_BADNESS;
1877 /* * Badness of floating promotion. */
1878 extern const struct rank FLOAT_PROMOTION_BADNESS;
1879 /* * Badness of converting a derived class pointer
1880 to a base class pointer. */
1881 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
1882 /* * Badness of integral conversion. */
1883 extern const struct rank INTEGER_CONVERSION_BADNESS;
1884 /* * Badness of floating conversion. */
1885 extern const struct rank FLOAT_CONVERSION_BADNESS;
1886 /* * Badness of integer<->floating conversions. */
1887 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
1888 /* * Badness of conversion of pointer to void pointer. */
1889 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
1890 /* * Badness of conversion to boolean. */
1891 extern const struct rank BOOL_CONVERSION_BADNESS;
1892 /* * Badness of converting derived to base class. */
1893 extern const struct rank BASE_CONVERSION_BADNESS;
1894 /* * Badness of converting from non-reference to reference. Subrank
1895 is the type of reference conversion being done. */
1896 extern const struct rank REFERENCE_CONVERSION_BADNESS;
1897 /* * Conversion to rvalue reference. */
1898 #define REFERENCE_CONVERSION_RVALUE 1
1899 /* * Conversion to const lvalue reference. */
1900 #define REFERENCE_CONVERSION_CONST_LVALUE 2
1901
1902 /* * Badness of converting integer 0 to NULL pointer. */
1903 extern const struct rank NULL_POINTER_CONVERSION;
1904 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
1905 being done. */
1906 extern const struct rank CV_CONVERSION_BADNESS;
1907 #define CV_CONVERSION_CONST 1
1908 #define CV_CONVERSION_VOLATILE 2
1909
1910 /* Non-standard conversions allowed by the debugger */
1911
1912 /* * Converting a pointer to an int is usually OK. */
1913 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
1914
1915 /* * Badness of converting a (non-zero) integer constant
1916 to a pointer. */
1917 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
1918
1919 extern struct rank sum_ranks (struct rank a, struct rank b);
1920 extern int compare_ranks (struct rank a, struct rank b);
1921
1922 extern int compare_badness (struct badness_vector *, struct badness_vector *);
1923
1924 extern struct badness_vector *rank_function (struct type **, int,
1925 struct value **, int);
1926
1927 extern struct rank rank_one_type (struct type *, struct type *,
1928 struct value *);
1929
1930 extern void recursive_dump_type (struct type *, int);
1931
1932 extern int field_is_static (struct field *);
1933
1934 /* printcmd.c */
1935
1936 extern void print_scalar_formatted (const gdb_byte *, struct type *,
1937 const struct value_print_options *,
1938 int, struct ui_file *);
1939
1940 extern int can_dereference (struct type *);
1941
1942 extern int is_integral_type (struct type *);
1943
1944 extern int is_scalar_type (struct type *type);
1945
1946 extern int is_scalar_type_recursive (struct type *);
1947
1948 extern int class_or_union_p (const struct type *);
1949
1950 extern void maintenance_print_type (char *, int);
1951
1952 extern htab_t create_copied_types_hash (struct objfile *objfile);
1953
1954 extern struct type *copy_type_recursive (struct objfile *objfile,
1955 struct type *type,
1956 htab_t copied_types);
1957
1958 extern struct type *copy_type (const struct type *type);
1959
1960 extern int types_equal (struct type *, struct type *);
1961
1962 extern int types_deeply_equal (struct type *, struct type *);
1963
1964 extern int type_not_allocated (const struct type *type);
1965
1966 extern int type_not_associated (const struct type *type);
1967
1968 #endif /* GDBTYPES_H */
This page took 0.068673 seconds and 5 git commands to generate.