[gdb/testsuite] Fix gdb.base/coredump-filter-build-id.exp with older eu-unstrip
[deliverable/binutils-gdb.git] / gdb / gnu-v3-abi.c
1 /* Abstraction of GNU v3 abi.
2 Contributed by Jim Blandy <jimb@redhat.com>
3
4 Copyright (C) 2001-2021 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "value.h"
23 #include "cp-abi.h"
24 #include "cp-support.h"
25 #include "demangle.h"
26 #include "dwarf2.h"
27 #include "objfiles.h"
28 #include "valprint.h"
29 #include "c-lang.h"
30 #include "typeprint.h"
31 #include <algorithm>
32 #include "cli/cli-style.h"
33 #include "dwarf2/loc.h"
34 #include "inferior.h"
35
36 static struct cp_abi_ops gnu_v3_abi_ops;
37
38 /* A gdbarch key for std::type_info, in the event that it can't be
39 found in the debug info. */
40
41 static struct gdbarch_data *std_type_info_gdbarch_data;
42
43
44 static int
45 gnuv3_is_vtable_name (const char *name)
46 {
47 return startswith (name, "_ZTV");
48 }
49
50 static int
51 gnuv3_is_operator_name (const char *name)
52 {
53 return startswith (name, CP_OPERATOR_STR);
54 }
55
56
57 /* To help us find the components of a vtable, we build ourselves a
58 GDB type object representing the vtable structure. Following the
59 V3 ABI, it goes something like this:
60
61 struct gdb_gnu_v3_abi_vtable {
62
63 / * An array of virtual call and virtual base offsets. The real
64 length of this array depends on the class hierarchy; we use
65 negative subscripts to access the elements. Yucky, but
66 better than the alternatives. * /
67 ptrdiff_t vcall_and_vbase_offsets[0];
68
69 / * The offset from a virtual pointer referring to this table
70 to the top of the complete object. * /
71 ptrdiff_t offset_to_top;
72
73 / * The type_info pointer for this class. This is really a
74 std::type_info *, but GDB doesn't really look at the
75 type_info object itself, so we don't bother to get the type
76 exactly right. * /
77 void *type_info;
78
79 / * Virtual table pointers in objects point here. * /
80
81 / * Virtual function pointers. Like the vcall/vbase array, the
82 real length of this table depends on the class hierarchy. * /
83 void (*virtual_functions[0]) ();
84
85 };
86
87 The catch, of course, is that the exact layout of this table
88 depends on the ABI --- word size, endianness, alignment, etc. So
89 the GDB type object is actually a per-architecture kind of thing.
90
91 vtable_type_gdbarch_data is a gdbarch per-architecture data pointer
92 which refers to the struct type * for this structure, laid out
93 appropriately for the architecture. */
94 static struct gdbarch_data *vtable_type_gdbarch_data;
95
96
97 /* Human-readable names for the numbers of the fields above. */
98 enum {
99 vtable_field_vcall_and_vbase_offsets,
100 vtable_field_offset_to_top,
101 vtable_field_type_info,
102 vtable_field_virtual_functions
103 };
104
105
106 /* Return a GDB type representing `struct gdb_gnu_v3_abi_vtable',
107 described above, laid out appropriately for ARCH.
108
109 We use this function as the gdbarch per-architecture data
110 initialization function. */
111 static void *
112 build_gdb_vtable_type (struct gdbarch *arch)
113 {
114 struct type *t;
115 struct field *field_list, *field;
116 int offset;
117
118 struct type *void_ptr_type
119 = builtin_type (arch)->builtin_data_ptr;
120 struct type *ptr_to_void_fn_type
121 = builtin_type (arch)->builtin_func_ptr;
122
123 /* ARCH can't give us the true ptrdiff_t type, so we guess. */
124 struct type *ptrdiff_type
125 = arch_integer_type (arch, gdbarch_ptr_bit (arch), 0, "ptrdiff_t");
126
127 /* We assume no padding is necessary, since GDB doesn't know
128 anything about alignment at the moment. If this assumption bites
129 us, we should add a gdbarch method which, given a type, returns
130 the alignment that type requires, and then use that here. */
131
132 /* Build the field list. */
133 field_list = XCNEWVEC (struct field, 4);
134 field = &field_list[0];
135 offset = 0;
136
137 /* ptrdiff_t vcall_and_vbase_offsets[0]; */
138 FIELD_NAME (*field) = "vcall_and_vbase_offsets";
139 field->set_type (lookup_array_range_type (ptrdiff_type, 0, -1));
140 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
141 offset += TYPE_LENGTH (field->type ());
142 field++;
143
144 /* ptrdiff_t offset_to_top; */
145 FIELD_NAME (*field) = "offset_to_top";
146 field->set_type (ptrdiff_type);
147 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
148 offset += TYPE_LENGTH (field->type ());
149 field++;
150
151 /* void *type_info; */
152 FIELD_NAME (*field) = "type_info";
153 field->set_type (void_ptr_type);
154 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
155 offset += TYPE_LENGTH (field->type ());
156 field++;
157
158 /* void (*virtual_functions[0]) (); */
159 FIELD_NAME (*field) = "virtual_functions";
160 field->set_type (lookup_array_range_type (ptr_to_void_fn_type, 0, -1));
161 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
162 offset += TYPE_LENGTH (field->type ());
163 field++;
164
165 /* We assumed in the allocation above that there were four fields. */
166 gdb_assert (field == (field_list + 4));
167
168 t = arch_type (arch, TYPE_CODE_STRUCT, offset * TARGET_CHAR_BIT, NULL);
169 t->set_num_fields (field - field_list);
170 t->set_fields (field_list);
171 t->set_name ("gdb_gnu_v3_abi_vtable");
172 INIT_CPLUS_SPECIFIC (t);
173
174 return make_type_with_address_space (t, TYPE_INSTANCE_FLAG_CODE_SPACE);
175 }
176
177
178 /* Return the ptrdiff_t type used in the vtable type. */
179 static struct type *
180 vtable_ptrdiff_type (struct gdbarch *gdbarch)
181 {
182 struct type *vtable_type
183 = (struct type *) gdbarch_data (gdbarch, vtable_type_gdbarch_data);
184
185 /* The "offset_to_top" field has the appropriate (ptrdiff_t) type. */
186 return vtable_type->field (vtable_field_offset_to_top).type ();
187 }
188
189 /* Return the offset from the start of the imaginary `struct
190 gdb_gnu_v3_abi_vtable' object to the vtable's "address point"
191 (i.e., where objects' virtual table pointers point). */
192 static int
193 vtable_address_point_offset (struct gdbarch *gdbarch)
194 {
195 struct type *vtable_type
196 = (struct type *) gdbarch_data (gdbarch, vtable_type_gdbarch_data);
197
198 return (TYPE_FIELD_BITPOS (vtable_type, vtable_field_virtual_functions)
199 / TARGET_CHAR_BIT);
200 }
201
202
203 /* Determine whether structure TYPE is a dynamic class. Cache the
204 result. */
205
206 static int
207 gnuv3_dynamic_class (struct type *type)
208 {
209 int fieldnum, fieldelem;
210
211 type = check_typedef (type);
212 gdb_assert (type->code () == TYPE_CODE_STRUCT
213 || type->code () == TYPE_CODE_UNION);
214
215 if (type->code () == TYPE_CODE_UNION)
216 return 0;
217
218 if (TYPE_CPLUS_DYNAMIC (type))
219 return TYPE_CPLUS_DYNAMIC (type) == 1;
220
221 ALLOCATE_CPLUS_STRUCT_TYPE (type);
222
223 for (fieldnum = 0; fieldnum < TYPE_N_BASECLASSES (type); fieldnum++)
224 if (BASETYPE_VIA_VIRTUAL (type, fieldnum)
225 || gnuv3_dynamic_class (type->field (fieldnum).type ()))
226 {
227 TYPE_CPLUS_DYNAMIC (type) = 1;
228 return 1;
229 }
230
231 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
232 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
233 fieldelem++)
234 {
235 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, fieldnum);
236
237 if (TYPE_FN_FIELD_VIRTUAL_P (f, fieldelem))
238 {
239 TYPE_CPLUS_DYNAMIC (type) = 1;
240 return 1;
241 }
242 }
243
244 TYPE_CPLUS_DYNAMIC (type) = -1;
245 return 0;
246 }
247
248 /* Find the vtable for a value of CONTAINER_TYPE located at
249 CONTAINER_ADDR. Return a value of the correct vtable type for this
250 architecture, or NULL if CONTAINER does not have a vtable. */
251
252 static struct value *
253 gnuv3_get_vtable (struct gdbarch *gdbarch,
254 struct type *container_type, CORE_ADDR container_addr)
255 {
256 struct type *vtable_type
257 = (struct type *) gdbarch_data (gdbarch, vtable_type_gdbarch_data);
258 struct type *vtable_pointer_type;
259 struct value *vtable_pointer;
260 CORE_ADDR vtable_address;
261
262 container_type = check_typedef (container_type);
263 gdb_assert (container_type->code () == TYPE_CODE_STRUCT);
264
265 /* If this type does not have a virtual table, don't read the first
266 field. */
267 if (!gnuv3_dynamic_class (container_type))
268 return NULL;
269
270 /* We do not consult the debug information to find the virtual table.
271 The ABI specifies that it is always at offset zero in any class,
272 and debug information may not represent it.
273
274 We avoid using value_contents on principle, because the object might
275 be large. */
276
277 /* Find the type "pointer to virtual table". */
278 vtable_pointer_type = lookup_pointer_type (vtable_type);
279
280 /* Load it from the start of the class. */
281 vtable_pointer = value_at (vtable_pointer_type, container_addr);
282 vtable_address = value_as_address (vtable_pointer);
283
284 /* Correct it to point at the start of the virtual table, rather
285 than the address point. */
286 return value_at_lazy (vtable_type,
287 vtable_address
288 - vtable_address_point_offset (gdbarch));
289 }
290
291
292 static struct type *
293 gnuv3_rtti_type (struct value *value,
294 int *full_p, LONGEST *top_p, int *using_enc_p)
295 {
296 struct gdbarch *gdbarch;
297 struct type *values_type = check_typedef (value_type (value));
298 struct value *vtable;
299 struct minimal_symbol *vtable_symbol;
300 const char *vtable_symbol_name;
301 const char *class_name;
302 struct type *run_time_type;
303 LONGEST offset_to_top;
304 const char *atsign;
305
306 /* We only have RTTI for dynamic class objects. */
307 if (values_type->code () != TYPE_CODE_STRUCT
308 || !gnuv3_dynamic_class (values_type))
309 return NULL;
310
311 /* Determine architecture. */
312 gdbarch = values_type->arch ();
313
314 if (using_enc_p)
315 *using_enc_p = 0;
316
317 vtable = gnuv3_get_vtable (gdbarch, values_type,
318 value_as_address (value_addr (value)));
319 if (vtable == NULL)
320 return NULL;
321
322 /* Find the linker symbol for this vtable. */
323 vtable_symbol
324 = lookup_minimal_symbol_by_pc (value_address (vtable)
325 + value_embedded_offset (vtable)).minsym;
326 if (! vtable_symbol)
327 return NULL;
328
329 /* The symbol's demangled name should be something like "vtable for
330 CLASS", where CLASS is the name of the run-time type of VALUE.
331 If we didn't like this approach, we could instead look in the
332 type_info object itself to get the class name. But this way
333 should work just as well, and doesn't read target memory. */
334 vtable_symbol_name = vtable_symbol->demangled_name ();
335 if (vtable_symbol_name == NULL
336 || !startswith (vtable_symbol_name, "vtable for "))
337 {
338 warning (_("can't find linker symbol for virtual table for `%s' value"),
339 TYPE_SAFE_NAME (values_type));
340 if (vtable_symbol_name)
341 warning (_(" found `%s' instead"), vtable_symbol_name);
342 return NULL;
343 }
344 class_name = vtable_symbol_name + 11;
345
346 /* Strip off @plt and version suffixes. */
347 atsign = strchr (class_name, '@');
348 if (atsign != NULL)
349 {
350 char *copy;
351
352 copy = (char *) alloca (atsign - class_name + 1);
353 memcpy (copy, class_name, atsign - class_name);
354 copy[atsign - class_name] = '\0';
355 class_name = copy;
356 }
357
358 /* Try to look up the class name as a type name. */
359 /* FIXME: chastain/2003-11-26: block=NULL is bogus. See pr gdb/1465. */
360 run_time_type = cp_lookup_rtti_type (class_name, NULL);
361 if (run_time_type == NULL)
362 return NULL;
363
364 /* Get the offset from VALUE to the top of the complete object.
365 NOTE: this is the reverse of the meaning of *TOP_P. */
366 offset_to_top
367 = value_as_long (value_field (vtable, vtable_field_offset_to_top));
368
369 if (full_p)
370 *full_p = (- offset_to_top == value_embedded_offset (value)
371 && (TYPE_LENGTH (value_enclosing_type (value))
372 >= TYPE_LENGTH (run_time_type)));
373 if (top_p)
374 *top_p = - offset_to_top;
375 return run_time_type;
376 }
377
378 /* Return a function pointer for CONTAINER's VTABLE_INDEX'th virtual
379 function, of type FNTYPE. */
380
381 static struct value *
382 gnuv3_get_virtual_fn (struct gdbarch *gdbarch, struct value *container,
383 struct type *fntype, int vtable_index)
384 {
385 struct value *vtable, *vfn;
386
387 /* Every class with virtual functions must have a vtable. */
388 vtable = gnuv3_get_vtable (gdbarch, value_type (container),
389 value_as_address (value_addr (container)));
390 gdb_assert (vtable != NULL);
391
392 /* Fetch the appropriate function pointer from the vtable. */
393 vfn = value_subscript (value_field (vtable, vtable_field_virtual_functions),
394 vtable_index);
395
396 /* If this architecture uses function descriptors directly in the vtable,
397 then the address of the vtable entry is actually a "function pointer"
398 (i.e. points to the descriptor). We don't need to scale the index
399 by the size of a function descriptor; GCC does that before outputting
400 debug information. */
401 if (gdbarch_vtable_function_descriptors (gdbarch))
402 vfn = value_addr (vfn);
403
404 /* Cast the function pointer to the appropriate type. */
405 vfn = value_cast (lookup_pointer_type (fntype), vfn);
406
407 return vfn;
408 }
409
410 /* GNU v3 implementation of value_virtual_fn_field. See cp-abi.h
411 for a description of the arguments. */
412
413 static struct value *
414 gnuv3_virtual_fn_field (struct value **value_p,
415 struct fn_field *f, int j,
416 struct type *vfn_base, int offset)
417 {
418 struct type *values_type = check_typedef (value_type (*value_p));
419 struct gdbarch *gdbarch;
420
421 /* Some simple sanity checks. */
422 if (values_type->code () != TYPE_CODE_STRUCT)
423 error (_("Only classes can have virtual functions."));
424
425 /* Determine architecture. */
426 gdbarch = values_type->arch ();
427
428 /* Cast our value to the base class which defines this virtual
429 function. This takes care of any necessary `this'
430 adjustments. */
431 if (vfn_base != values_type)
432 *value_p = value_cast (vfn_base, *value_p);
433
434 return gnuv3_get_virtual_fn (gdbarch, *value_p, TYPE_FN_FIELD_TYPE (f, j),
435 TYPE_FN_FIELD_VOFFSET (f, j));
436 }
437
438 /* Compute the offset of the baseclass which is
439 the INDEXth baseclass of class TYPE,
440 for value at VALADDR (in host) at ADDRESS (in target).
441 The result is the offset of the baseclass value relative
442 to (the address of)(ARG) + OFFSET.
443
444 -1 is returned on error. */
445
446 static int
447 gnuv3_baseclass_offset (struct type *type, int index,
448 const bfd_byte *valaddr, LONGEST embedded_offset,
449 CORE_ADDR address, const struct value *val)
450 {
451 struct gdbarch *gdbarch;
452 struct type *ptr_type;
453 struct value *vtable;
454 struct value *vbase_array;
455 long int cur_base_offset, base_offset;
456
457 /* Determine architecture. */
458 gdbarch = type->arch ();
459 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
460
461 /* If it isn't a virtual base, this is easy. The offset is in the
462 type definition. */
463 if (!BASETYPE_VIA_VIRTUAL (type, index))
464 return TYPE_BASECLASS_BITPOS (type, index) / 8;
465
466 /* If we have a DWARF expression for the offset, evaluate it. */
467 if (TYPE_FIELD_LOC_KIND (type, index) == FIELD_LOC_KIND_DWARF_BLOCK)
468 {
469 struct dwarf2_property_baton baton;
470 baton.property_type
471 = lookup_pointer_type (type->field (index).type ());
472 baton.locexpr = *TYPE_FIELD_DWARF_BLOCK (type, index);
473
474 struct dynamic_prop prop;
475 prop.set_locexpr (&baton);
476
477 struct property_addr_info addr_stack;
478 addr_stack.type = type;
479 /* Note that we don't set "valaddr" here. Doing so causes
480 regressions. FIXME. */
481 addr_stack.addr = address + embedded_offset;
482 addr_stack.next = nullptr;
483
484 CORE_ADDR result;
485 if (dwarf2_evaluate_property (&prop, nullptr, &addr_stack, &result,
486 true))
487 return (int) (result - addr_stack.addr);
488 }
489
490 /* To access a virtual base, we need to use the vbase offset stored in
491 our vtable. Recent GCC versions provide this information. If it isn't
492 available, we could get what we needed from RTTI, or from drawing the
493 complete inheritance graph based on the debug info. Neither is
494 worthwhile. */
495 cur_base_offset = TYPE_BASECLASS_BITPOS (type, index) / 8;
496 if (cur_base_offset >= - vtable_address_point_offset (gdbarch))
497 error (_("Expected a negative vbase offset (old compiler?)"));
498
499 cur_base_offset = cur_base_offset + vtable_address_point_offset (gdbarch);
500 if ((- cur_base_offset) % TYPE_LENGTH (ptr_type) != 0)
501 error (_("Misaligned vbase offset."));
502 cur_base_offset = cur_base_offset / ((int) TYPE_LENGTH (ptr_type));
503
504 vtable = gnuv3_get_vtable (gdbarch, type, address + embedded_offset);
505 gdb_assert (vtable != NULL);
506 vbase_array = value_field (vtable, vtable_field_vcall_and_vbase_offsets);
507 base_offset = value_as_long (value_subscript (vbase_array, cur_base_offset));
508 return base_offset;
509 }
510
511 /* Locate a virtual method in DOMAIN or its non-virtual base classes
512 which has virtual table index VOFFSET. The method has an associated
513 "this" adjustment of ADJUSTMENT bytes. */
514
515 static const char *
516 gnuv3_find_method_in (struct type *domain, CORE_ADDR voffset,
517 LONGEST adjustment)
518 {
519 int i;
520
521 /* Search this class first. */
522 if (adjustment == 0)
523 {
524 int len;
525
526 len = TYPE_NFN_FIELDS (domain);
527 for (i = 0; i < len; i++)
528 {
529 int len2, j;
530 struct fn_field *f;
531
532 f = TYPE_FN_FIELDLIST1 (domain, i);
533 len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
534
535 check_stub_method_group (domain, i);
536 for (j = 0; j < len2; j++)
537 if (TYPE_FN_FIELD_VOFFSET (f, j) == voffset)
538 return TYPE_FN_FIELD_PHYSNAME (f, j);
539 }
540 }
541
542 /* Next search non-virtual bases. If it's in a virtual base,
543 we're out of luck. */
544 for (i = 0; i < TYPE_N_BASECLASSES (domain); i++)
545 {
546 int pos;
547 struct type *basetype;
548
549 if (BASETYPE_VIA_VIRTUAL (domain, i))
550 continue;
551
552 pos = TYPE_BASECLASS_BITPOS (domain, i) / 8;
553 basetype = domain->field (i).type ();
554 /* Recurse with a modified adjustment. We don't need to adjust
555 voffset. */
556 if (adjustment >= pos && adjustment < pos + TYPE_LENGTH (basetype))
557 return gnuv3_find_method_in (basetype, voffset, adjustment - pos);
558 }
559
560 return NULL;
561 }
562
563 /* Decode GNU v3 method pointer. */
564
565 static int
566 gnuv3_decode_method_ptr (struct gdbarch *gdbarch,
567 const gdb_byte *contents,
568 CORE_ADDR *value_p,
569 LONGEST *adjustment_p)
570 {
571 struct type *funcptr_type = builtin_type (gdbarch)->builtin_func_ptr;
572 struct type *offset_type = vtable_ptrdiff_type (gdbarch);
573 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
574 CORE_ADDR ptr_value;
575 LONGEST voffset, adjustment;
576 int vbit;
577
578 /* Extract the pointer to member. The first element is either a pointer
579 or a vtable offset. For pointers, we need to use extract_typed_address
580 to allow the back-end to convert the pointer to a GDB address -- but
581 vtable offsets we must handle as integers. At this point, we do not
582 yet know which case we have, so we extract the value under both
583 interpretations and choose the right one later on. */
584 ptr_value = extract_typed_address (contents, funcptr_type);
585 voffset = extract_signed_integer (contents,
586 TYPE_LENGTH (funcptr_type), byte_order);
587 contents += TYPE_LENGTH (funcptr_type);
588 adjustment = extract_signed_integer (contents,
589 TYPE_LENGTH (offset_type), byte_order);
590
591 if (!gdbarch_vbit_in_delta (gdbarch))
592 {
593 vbit = voffset & 1;
594 voffset = voffset ^ vbit;
595 }
596 else
597 {
598 vbit = adjustment & 1;
599 adjustment = adjustment >> 1;
600 }
601
602 *value_p = vbit? voffset : ptr_value;
603 *adjustment_p = adjustment;
604 return vbit;
605 }
606
607 /* GNU v3 implementation of cplus_print_method_ptr. */
608
609 static void
610 gnuv3_print_method_ptr (const gdb_byte *contents,
611 struct type *type,
612 struct ui_file *stream)
613 {
614 struct type *self_type = TYPE_SELF_TYPE (type);
615 struct gdbarch *gdbarch = self_type->arch ();
616 CORE_ADDR ptr_value;
617 LONGEST adjustment;
618 int vbit;
619
620 /* Extract the pointer to member. */
621 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
622
623 /* Check for NULL. */
624 if (ptr_value == 0 && vbit == 0)
625 {
626 fprintf_filtered (stream, "NULL");
627 return;
628 }
629
630 /* Search for a virtual method. */
631 if (vbit)
632 {
633 CORE_ADDR voffset;
634 const char *physname;
635
636 /* It's a virtual table offset, maybe in this class. Search
637 for a field with the correct vtable offset. First convert it
638 to an index, as used in TYPE_FN_FIELD_VOFFSET. */
639 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
640
641 physname = gnuv3_find_method_in (self_type, voffset, adjustment);
642
643 /* If we found a method, print that. We don't bother to disambiguate
644 possible paths to the method based on the adjustment. */
645 if (physname)
646 {
647 char *demangled_name = gdb_demangle (physname,
648 DMGL_ANSI | DMGL_PARAMS);
649
650 fprintf_filtered (stream, "&virtual ");
651 if (demangled_name == NULL)
652 fputs_filtered (physname, stream);
653 else
654 {
655 fputs_filtered (demangled_name, stream);
656 xfree (demangled_name);
657 }
658 return;
659 }
660 }
661 else if (ptr_value != 0)
662 {
663 /* Found a non-virtual function: print out the type. */
664 fputs_filtered ("(", stream);
665 c_print_type (type, "", stream, -1, 0, &type_print_raw_options);
666 fputs_filtered (") ", stream);
667 }
668
669 /* We didn't find it; print the raw data. */
670 if (vbit)
671 {
672 fprintf_filtered (stream, "&virtual table offset ");
673 print_longest (stream, 'd', 1, ptr_value);
674 }
675 else
676 {
677 struct value_print_options opts;
678
679 get_user_print_options (&opts);
680 print_address_demangle (&opts, gdbarch, ptr_value, stream, demangle);
681 }
682
683 if (adjustment)
684 {
685 fprintf_filtered (stream, ", this adjustment ");
686 print_longest (stream, 'd', 1, adjustment);
687 }
688 }
689
690 /* GNU v3 implementation of cplus_method_ptr_size. */
691
692 static int
693 gnuv3_method_ptr_size (struct type *type)
694 {
695 return 2 * TYPE_LENGTH (builtin_type (type->arch ())->builtin_data_ptr);
696 }
697
698 /* GNU v3 implementation of cplus_make_method_ptr. */
699
700 static void
701 gnuv3_make_method_ptr (struct type *type, gdb_byte *contents,
702 CORE_ADDR value, int is_virtual)
703 {
704 struct gdbarch *gdbarch = type->arch ();
705 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
706 enum bfd_endian byte_order = type_byte_order (type);
707
708 /* FIXME drow/2006-12-24: The adjustment of "this" is currently
709 always zero, since the method pointer is of the correct type.
710 But if the method pointer came from a base class, this is
711 incorrect - it should be the offset to the base. The best
712 fix might be to create the pointer to member pointing at the
713 base class and cast it to the derived class, but that requires
714 support for adjusting pointers to members when casting them -
715 not currently supported by GDB. */
716
717 if (!gdbarch_vbit_in_delta (gdbarch))
718 {
719 store_unsigned_integer (contents, size, byte_order, value | is_virtual);
720 store_unsigned_integer (contents + size, size, byte_order, 0);
721 }
722 else
723 {
724 store_unsigned_integer (contents, size, byte_order, value);
725 store_unsigned_integer (contents + size, size, byte_order, is_virtual);
726 }
727 }
728
729 /* GNU v3 implementation of cplus_method_ptr_to_value. */
730
731 static struct value *
732 gnuv3_method_ptr_to_value (struct value **this_p, struct value *method_ptr)
733 {
734 struct gdbarch *gdbarch;
735 const gdb_byte *contents = value_contents (method_ptr);
736 CORE_ADDR ptr_value;
737 struct type *self_type, *final_type, *method_type;
738 LONGEST adjustment;
739 int vbit;
740
741 self_type = TYPE_SELF_TYPE (check_typedef (value_type (method_ptr)));
742 final_type = lookup_pointer_type (self_type);
743
744 method_type = TYPE_TARGET_TYPE (check_typedef (value_type (method_ptr)));
745
746 /* Extract the pointer to member. */
747 gdbarch = self_type->arch ();
748 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
749
750 /* First convert THIS to match the containing type of the pointer to
751 member. This cast may adjust the value of THIS. */
752 *this_p = value_cast (final_type, *this_p);
753
754 /* Then apply whatever adjustment is necessary. This creates a somewhat
755 strange pointer: it claims to have type FINAL_TYPE, but in fact it
756 might not be a valid FINAL_TYPE. For instance, it might be a
757 base class of FINAL_TYPE. And if it's not the primary base class,
758 then printing it out as a FINAL_TYPE object would produce some pretty
759 garbage.
760
761 But we don't really know the type of the first argument in
762 METHOD_TYPE either, which is why this happens. We can't
763 dereference this later as a FINAL_TYPE, but once we arrive in the
764 called method we'll have debugging information for the type of
765 "this" - and that'll match the value we produce here.
766
767 You can provoke this case by casting a Base::* to a Derived::*, for
768 instance. */
769 *this_p = value_cast (builtin_type (gdbarch)->builtin_data_ptr, *this_p);
770 *this_p = value_ptradd (*this_p, adjustment);
771 *this_p = value_cast (final_type, *this_p);
772
773 if (vbit)
774 {
775 LONGEST voffset;
776
777 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
778 return gnuv3_get_virtual_fn (gdbarch, value_ind (*this_p),
779 method_type, voffset);
780 }
781 else
782 return value_from_pointer (lookup_pointer_type (method_type), ptr_value);
783 }
784
785 /* Objects of this type are stored in a hash table and a vector when
786 printing the vtables for a class. */
787
788 struct value_and_voffset
789 {
790 /* The value representing the object. */
791 struct value *value;
792
793 /* The maximum vtable offset we've found for any object at this
794 offset in the outermost object. */
795 int max_voffset;
796 };
797
798 /* Hash function for value_and_voffset. */
799
800 static hashval_t
801 hash_value_and_voffset (const void *p)
802 {
803 const struct value_and_voffset *o = (const struct value_and_voffset *) p;
804
805 return value_address (o->value) + value_embedded_offset (o->value);
806 }
807
808 /* Equality function for value_and_voffset. */
809
810 static int
811 eq_value_and_voffset (const void *a, const void *b)
812 {
813 const struct value_and_voffset *ova = (const struct value_and_voffset *) a;
814 const struct value_and_voffset *ovb = (const struct value_and_voffset *) b;
815
816 return (value_address (ova->value) + value_embedded_offset (ova->value)
817 == value_address (ovb->value) + value_embedded_offset (ovb->value));
818 }
819
820 /* Comparison function for value_and_voffset. */
821
822 static bool
823 compare_value_and_voffset (const struct value_and_voffset *va,
824 const struct value_and_voffset *vb)
825 {
826 CORE_ADDR addra = (value_address (va->value)
827 + value_embedded_offset (va->value));
828 CORE_ADDR addrb = (value_address (vb->value)
829 + value_embedded_offset (vb->value));
830
831 return addra < addrb;
832 }
833
834 /* A helper function used when printing vtables. This determines the
835 key (most derived) sub-object at each address and also computes the
836 maximum vtable offset seen for the corresponding vtable. Updates
837 OFFSET_HASH and OFFSET_VEC with a new value_and_voffset object, if
838 needed. VALUE is the object to examine. */
839
840 static void
841 compute_vtable_size (htab_t offset_hash,
842 std::vector<value_and_voffset *> *offset_vec,
843 struct value *value)
844 {
845 int i;
846 struct type *type = check_typedef (value_type (value));
847 void **slot;
848 struct value_and_voffset search_vo, *current_vo;
849
850 gdb_assert (type->code () == TYPE_CODE_STRUCT);
851
852 /* If the object is not dynamic, then we are done; as it cannot have
853 dynamic base types either. */
854 if (!gnuv3_dynamic_class (type))
855 return;
856
857 /* Update the hash and the vec, if needed. */
858 search_vo.value = value;
859 slot = htab_find_slot (offset_hash, &search_vo, INSERT);
860 if (*slot)
861 current_vo = (struct value_and_voffset *) *slot;
862 else
863 {
864 current_vo = XNEW (struct value_and_voffset);
865 current_vo->value = value;
866 current_vo->max_voffset = -1;
867 *slot = current_vo;
868 offset_vec->push_back (current_vo);
869 }
870
871 /* Update the value_and_voffset object with the highest vtable
872 offset from this class. */
873 for (i = 0; i < TYPE_NFN_FIELDS (type); ++i)
874 {
875 int j;
876 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, i);
877
878 for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (type, i); ++j)
879 {
880 if (TYPE_FN_FIELD_VIRTUAL_P (fn, j))
881 {
882 int voffset = TYPE_FN_FIELD_VOFFSET (fn, j);
883
884 if (voffset > current_vo->max_voffset)
885 current_vo->max_voffset = voffset;
886 }
887 }
888 }
889
890 /* Recurse into base classes. */
891 for (i = 0; i < TYPE_N_BASECLASSES (type); ++i)
892 compute_vtable_size (offset_hash, offset_vec, value_field (value, i));
893 }
894
895 /* Helper for gnuv3_print_vtable that prints a single vtable. */
896
897 static void
898 print_one_vtable (struct gdbarch *gdbarch, struct value *value,
899 int max_voffset,
900 struct value_print_options *opts)
901 {
902 int i;
903 struct type *type = check_typedef (value_type (value));
904 struct value *vtable;
905 CORE_ADDR vt_addr;
906
907 vtable = gnuv3_get_vtable (gdbarch, type,
908 value_address (value)
909 + value_embedded_offset (value));
910 vt_addr = value_address (value_field (vtable,
911 vtable_field_virtual_functions));
912
913 printf_filtered (_("vtable for '%s' @ %s (subobject @ %s):\n"),
914 TYPE_SAFE_NAME (type),
915 paddress (gdbarch, vt_addr),
916 paddress (gdbarch, (value_address (value)
917 + value_embedded_offset (value))));
918
919 for (i = 0; i <= max_voffset; ++i)
920 {
921 /* Initialize it just to avoid a GCC false warning. */
922 CORE_ADDR addr = 0;
923 int got_error = 0;
924 struct value *vfn;
925
926 printf_filtered ("[%d]: ", i);
927
928 vfn = value_subscript (value_field (vtable,
929 vtable_field_virtual_functions),
930 i);
931
932 if (gdbarch_vtable_function_descriptors (gdbarch))
933 vfn = value_addr (vfn);
934
935 try
936 {
937 addr = value_as_address (vfn);
938 }
939 catch (const gdb_exception_error &ex)
940 {
941 fprintf_styled (gdb_stdout, metadata_style.style (),
942 _("<error: %s>"), ex.what ());
943 got_error = 1;
944 }
945
946 if (!got_error)
947 print_function_pointer_address (opts, gdbarch, addr, gdb_stdout);
948 printf_filtered ("\n");
949 }
950 }
951
952 /* Implementation of the print_vtable method. */
953
954 static void
955 gnuv3_print_vtable (struct value *value)
956 {
957 struct gdbarch *gdbarch;
958 struct type *type;
959 struct value *vtable;
960 struct value_print_options opts;
961 int count;
962
963 value = coerce_ref (value);
964 type = check_typedef (value_type (value));
965 if (type->code () == TYPE_CODE_PTR)
966 {
967 value = value_ind (value);
968 type = check_typedef (value_type (value));
969 }
970
971 get_user_print_options (&opts);
972
973 /* Respect 'set print object'. */
974 if (opts.objectprint)
975 {
976 value = value_full_object (value, NULL, 0, 0, 0);
977 type = check_typedef (value_type (value));
978 }
979
980 gdbarch = type->arch ();
981
982 vtable = NULL;
983 if (type->code () == TYPE_CODE_STRUCT)
984 vtable = gnuv3_get_vtable (gdbarch, type,
985 value_as_address (value_addr (value)));
986
987 if (!vtable)
988 {
989 printf_filtered (_("This object does not have a virtual function table\n"));
990 return;
991 }
992
993 htab_up offset_hash (htab_create_alloc (1, hash_value_and_voffset,
994 eq_value_and_voffset,
995 xfree, xcalloc, xfree));
996 std::vector<value_and_voffset *> result_vec;
997
998 compute_vtable_size (offset_hash.get (), &result_vec, value);
999 std::sort (result_vec.begin (), result_vec.end (),
1000 compare_value_and_voffset);
1001
1002 count = 0;
1003 for (value_and_voffset *iter : result_vec)
1004 {
1005 if (iter->max_voffset >= 0)
1006 {
1007 if (count > 0)
1008 printf_filtered ("\n");
1009 print_one_vtable (gdbarch, iter->value, iter->max_voffset, &opts);
1010 ++count;
1011 }
1012 }
1013 }
1014
1015 /* Return a GDB type representing `struct std::type_info', laid out
1016 appropriately for ARCH.
1017
1018 We use this function as the gdbarch per-architecture data
1019 initialization function. */
1020
1021 static void *
1022 build_std_type_info_type (struct gdbarch *arch)
1023 {
1024 struct type *t;
1025 struct field *field_list, *field;
1026 int offset;
1027 struct type *void_ptr_type
1028 = builtin_type (arch)->builtin_data_ptr;
1029 struct type *char_type
1030 = builtin_type (arch)->builtin_char;
1031 struct type *char_ptr_type
1032 = make_pointer_type (make_cv_type (1, 0, char_type, NULL), NULL);
1033
1034 field_list = XCNEWVEC (struct field, 2);
1035 field = &field_list[0];
1036 offset = 0;
1037
1038 /* The vtable. */
1039 FIELD_NAME (*field) = "_vptr.type_info";
1040 field->set_type (void_ptr_type);
1041 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
1042 offset += TYPE_LENGTH (field->type ());
1043 field++;
1044
1045 /* The name. */
1046 FIELD_NAME (*field) = "__name";
1047 field->set_type (char_ptr_type);
1048 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
1049 offset += TYPE_LENGTH (field->type ());
1050 field++;
1051
1052 gdb_assert (field == (field_list + 2));
1053
1054 t = arch_type (arch, TYPE_CODE_STRUCT, offset * TARGET_CHAR_BIT, NULL);
1055 t->set_num_fields (field - field_list);
1056 t->set_fields (field_list);
1057 t->set_name ("gdb_gnu_v3_type_info");
1058 INIT_CPLUS_SPECIFIC (t);
1059
1060 return t;
1061 }
1062
1063 /* Implement the 'get_typeid_type' method. */
1064
1065 static struct type *
1066 gnuv3_get_typeid_type (struct gdbarch *gdbarch)
1067 {
1068 struct symbol *typeinfo;
1069 struct type *typeinfo_type;
1070
1071 typeinfo = lookup_symbol ("std::type_info", NULL, STRUCT_DOMAIN,
1072 NULL).symbol;
1073 if (typeinfo == NULL)
1074 typeinfo_type
1075 = (struct type *) gdbarch_data (gdbarch, std_type_info_gdbarch_data);
1076 else
1077 typeinfo_type = SYMBOL_TYPE (typeinfo);
1078
1079 return typeinfo_type;
1080 }
1081
1082 /* Implement the 'get_typeid' method. */
1083
1084 static struct value *
1085 gnuv3_get_typeid (struct value *value)
1086 {
1087 struct type *typeinfo_type;
1088 struct type *type;
1089 struct gdbarch *gdbarch;
1090 struct value *result;
1091 std::string type_name;
1092 gdb::unique_xmalloc_ptr<char> canonical;
1093
1094 /* We have to handle values a bit trickily here, to allow this code
1095 to work properly with non_lvalue values that are really just
1096 disguised types. */
1097 if (value_lval_const (value) == lval_memory)
1098 value = coerce_ref (value);
1099
1100 type = check_typedef (value_type (value));
1101
1102 /* In the non_lvalue case, a reference might have slipped through
1103 here. */
1104 if (type->code () == TYPE_CODE_REF)
1105 type = check_typedef (TYPE_TARGET_TYPE (type));
1106
1107 /* Ignore top-level cv-qualifiers. */
1108 type = make_cv_type (0, 0, type, NULL);
1109 gdbarch = type->arch ();
1110
1111 type_name = type_to_string (type);
1112 if (type_name.empty ())
1113 error (_("cannot find typeinfo for unnamed type"));
1114
1115 /* We need to canonicalize the type name here, because we do lookups
1116 using the demangled name, and so we must match the format it
1117 uses. E.g., GDB tends to use "const char *" as a type name, but
1118 the demangler uses "char const *". */
1119 canonical = cp_canonicalize_string (type_name.c_str ());
1120 const char *name = (canonical == nullptr
1121 ? type_name.c_str ()
1122 : canonical.get ());
1123
1124 typeinfo_type = gnuv3_get_typeid_type (gdbarch);
1125
1126 /* We check for lval_memory because in the "typeid (type-id)" case,
1127 the type is passed via a not_lval value object. */
1128 if (type->code () == TYPE_CODE_STRUCT
1129 && value_lval_const (value) == lval_memory
1130 && gnuv3_dynamic_class (type))
1131 {
1132 struct value *vtable, *typeinfo_value;
1133 CORE_ADDR address = value_address (value) + value_embedded_offset (value);
1134
1135 vtable = gnuv3_get_vtable (gdbarch, type, address);
1136 if (vtable == NULL)
1137 error (_("cannot find typeinfo for object of type '%s'"),
1138 name);
1139 typeinfo_value = value_field (vtable, vtable_field_type_info);
1140 result = value_ind (value_cast (make_pointer_type (typeinfo_type, NULL),
1141 typeinfo_value));
1142 }
1143 else
1144 {
1145 std::string sym_name = std::string ("typeinfo for ") + name;
1146 bound_minimal_symbol minsym
1147 = lookup_minimal_symbol (sym_name.c_str (), NULL, NULL);
1148
1149 if (minsym.minsym == NULL)
1150 error (_("could not find typeinfo symbol for '%s'"), name);
1151
1152 result = value_at_lazy (typeinfo_type, BMSYMBOL_VALUE_ADDRESS (minsym));
1153 }
1154
1155 return result;
1156 }
1157
1158 /* Implement the 'get_typename_from_type_info' method. */
1159
1160 static std::string
1161 gnuv3_get_typename_from_type_info (struct value *type_info_ptr)
1162 {
1163 struct gdbarch *gdbarch = value_type (type_info_ptr)->arch ();
1164 struct bound_minimal_symbol typeinfo_sym;
1165 CORE_ADDR addr;
1166 const char *symname;
1167 const char *class_name;
1168 const char *atsign;
1169
1170 addr = value_as_address (type_info_ptr);
1171 typeinfo_sym = lookup_minimal_symbol_by_pc (addr);
1172 if (typeinfo_sym.minsym == NULL)
1173 error (_("could not find minimal symbol for typeinfo address %s"),
1174 paddress (gdbarch, addr));
1175
1176 #define TYPEINFO_PREFIX "typeinfo for "
1177 #define TYPEINFO_PREFIX_LEN (sizeof (TYPEINFO_PREFIX) - 1)
1178 symname = typeinfo_sym.minsym->demangled_name ();
1179 if (symname == NULL || strncmp (symname, TYPEINFO_PREFIX,
1180 TYPEINFO_PREFIX_LEN))
1181 error (_("typeinfo symbol '%s' has unexpected name"),
1182 typeinfo_sym.minsym->linkage_name ());
1183 class_name = symname + TYPEINFO_PREFIX_LEN;
1184
1185 /* Strip off @plt and version suffixes. */
1186 atsign = strchr (class_name, '@');
1187 if (atsign != NULL)
1188 return std::string (class_name, atsign - class_name);
1189 return class_name;
1190 }
1191
1192 /* Implement the 'get_type_from_type_info' method. */
1193
1194 static struct type *
1195 gnuv3_get_type_from_type_info (struct value *type_info_ptr)
1196 {
1197 /* We have to parse the type name, since in general there is not a
1198 symbol for a type. This is somewhat bogus since there may be a
1199 mis-parse. Another approach might be to re-use the demangler's
1200 internal form to reconstruct the type somehow. */
1201 std::string type_name = gnuv3_get_typename_from_type_info (type_info_ptr);
1202 expression_up expr (parse_expression (type_name.c_str ()));
1203 struct value *type_val = evaluate_type (expr.get ());
1204 return value_type (type_val);
1205 }
1206
1207 /* Determine if we are currently in a C++ thunk. If so, get the address
1208 of the routine we are thunking to and continue to there instead. */
1209
1210 static CORE_ADDR
1211 gnuv3_skip_trampoline (struct frame_info *frame, CORE_ADDR stop_pc)
1212 {
1213 CORE_ADDR real_stop_pc, method_stop_pc, func_addr;
1214 struct gdbarch *gdbarch = get_frame_arch (frame);
1215 struct bound_minimal_symbol thunk_sym, fn_sym;
1216 struct obj_section *section;
1217 const char *thunk_name, *fn_name;
1218
1219 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
1220 if (real_stop_pc == 0)
1221 real_stop_pc = stop_pc;
1222
1223 /* Find the linker symbol for this potential thunk. */
1224 thunk_sym = lookup_minimal_symbol_by_pc (real_stop_pc);
1225 section = find_pc_section (real_stop_pc);
1226 if (thunk_sym.minsym == NULL || section == NULL)
1227 return 0;
1228
1229 /* The symbol's demangled name should be something like "virtual
1230 thunk to FUNCTION", where FUNCTION is the name of the function
1231 being thunked to. */
1232 thunk_name = thunk_sym.minsym->demangled_name ();
1233 if (thunk_name == NULL || strstr (thunk_name, " thunk to ") == NULL)
1234 return 0;
1235
1236 fn_name = strstr (thunk_name, " thunk to ") + strlen (" thunk to ");
1237 fn_sym = lookup_minimal_symbol (fn_name, NULL, section->objfile);
1238 if (fn_sym.minsym == NULL)
1239 return 0;
1240
1241 method_stop_pc = BMSYMBOL_VALUE_ADDRESS (fn_sym);
1242
1243 /* Some targets have minimal symbols pointing to function descriptors
1244 (powerpc 64 for example). Make sure to retrieve the address
1245 of the real function from the function descriptor before passing on
1246 the address to other layers of GDB. */
1247 func_addr = gdbarch_convert_from_func_ptr_addr
1248 (gdbarch, method_stop_pc, current_inferior ()->top_target ());
1249 if (func_addr != 0)
1250 method_stop_pc = func_addr;
1251
1252 real_stop_pc = gdbarch_skip_trampoline_code
1253 (gdbarch, frame, method_stop_pc);
1254 if (real_stop_pc == 0)
1255 real_stop_pc = method_stop_pc;
1256
1257 return real_stop_pc;
1258 }
1259
1260 /* A member function is in one these states. */
1261
1262 enum definition_style
1263 {
1264 DOES_NOT_EXIST_IN_SOURCE,
1265 DEFAULTED_INSIDE,
1266 DEFAULTED_OUTSIDE,
1267 DELETED,
1268 EXPLICIT,
1269 };
1270
1271 /* Return how the given field is defined. */
1272
1273 static definition_style
1274 get_def_style (struct fn_field *fn, int fieldelem)
1275 {
1276 if (TYPE_FN_FIELD_DELETED (fn, fieldelem))
1277 return DELETED;
1278
1279 if (TYPE_FN_FIELD_ARTIFICIAL (fn, fieldelem))
1280 return DOES_NOT_EXIST_IN_SOURCE;
1281
1282 switch (TYPE_FN_FIELD_DEFAULTED (fn, fieldelem))
1283 {
1284 case DW_DEFAULTED_no:
1285 return EXPLICIT;
1286 case DW_DEFAULTED_in_class:
1287 return DEFAULTED_INSIDE;
1288 case DW_DEFAULTED_out_of_class:
1289 return DEFAULTED_OUTSIDE;
1290 default:
1291 break;
1292 }
1293
1294 return EXPLICIT;
1295 }
1296
1297 /* Helper functions to determine whether the given definition style
1298 denotes that the definition is user-provided or implicit.
1299 Being defaulted outside the class decl counts as an explicit
1300 user-definition, while being defaulted inside is implicit. */
1301
1302 static bool
1303 is_user_provided_def (definition_style def)
1304 {
1305 return def == EXPLICIT || def == DEFAULTED_OUTSIDE;
1306 }
1307
1308 static bool
1309 is_implicit_def (definition_style def)
1310 {
1311 return def == DOES_NOT_EXIST_IN_SOURCE || def == DEFAULTED_INSIDE;
1312 }
1313
1314 /* Helper function to decide if METHOD_TYPE is a copy/move
1315 constructor type for CLASS_TYPE. EXPECTED is the expected
1316 type code for the "right-hand-side" argument.
1317 This function is supposed to be used by the IS_COPY_CONSTRUCTOR_TYPE
1318 and IS_MOVE_CONSTRUCTOR_TYPE functions below. Normally, you should
1319 not need to call this directly. */
1320
1321 static bool
1322 is_copy_or_move_constructor_type (struct type *class_type,
1323 struct type *method_type,
1324 type_code expected)
1325 {
1326 /* The method should take at least two arguments... */
1327 if (method_type->num_fields () < 2)
1328 return false;
1329
1330 /* ...and the second argument should be the same as the class
1331 type, with the expected type code... */
1332 struct type *arg_type = method_type->field (1).type ();
1333
1334 if (arg_type->code () != expected)
1335 return false;
1336
1337 struct type *target = check_typedef (TYPE_TARGET_TYPE (arg_type));
1338 if (!(class_types_same_p (target, class_type)))
1339 return false;
1340
1341 /* ...and if any of the remaining arguments don't have a default value
1342 then this is not a copy or move constructor, but just a
1343 constructor. */
1344 for (int i = 2; i < method_type->num_fields (); i++)
1345 {
1346 arg_type = method_type->field (i).type ();
1347 /* FIXME aktemur/2019-10-31: As of this date, neither
1348 clang++-7.0.0 nor g++-8.2.0 produce a DW_AT_default_value
1349 attribute. GDB is also not set to read this attribute, yet.
1350 Hence, we immediately return false if there are more than
1351 2 parameters.
1352 GCC bug link:
1353 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=42959
1354 */
1355 return false;
1356 }
1357
1358 return true;
1359 }
1360
1361 /* Return true if METHOD_TYPE is a copy ctor type for CLASS_TYPE. */
1362
1363 static bool
1364 is_copy_constructor_type (struct type *class_type,
1365 struct type *method_type)
1366 {
1367 return is_copy_or_move_constructor_type (class_type, method_type,
1368 TYPE_CODE_REF);
1369 }
1370
1371 /* Return true if METHOD_TYPE is a move ctor type for CLASS_TYPE. */
1372
1373 static bool
1374 is_move_constructor_type (struct type *class_type,
1375 struct type *method_type)
1376 {
1377 return is_copy_or_move_constructor_type (class_type, method_type,
1378 TYPE_CODE_RVALUE_REF);
1379 }
1380
1381 /* Return pass-by-reference information for the given TYPE.
1382
1383 The rule in the v3 ABI document comes from section 3.1.1. If the
1384 type has a non-trivial copy constructor or destructor, then the
1385 caller must make a copy (by calling the copy constructor if there
1386 is one or perform the copy itself otherwise), pass the address of
1387 the copy, and then destroy the temporary (if necessary).
1388
1389 For return values with non-trivial copy/move constructors or
1390 destructors, space will be allocated in the caller, and a pointer
1391 will be passed as the first argument (preceding "this").
1392
1393 We don't have a bulletproof mechanism for determining whether a
1394 constructor or destructor is trivial. For GCC and DWARF5 debug
1395 information, we can check the calling_convention attribute,
1396 the 'artificial' flag, the 'defaulted' attribute, and the
1397 'deleted' attribute. */
1398
1399 static struct language_pass_by_ref_info
1400 gnuv3_pass_by_reference (struct type *type)
1401 {
1402 int fieldnum, fieldelem;
1403
1404 type = check_typedef (type);
1405
1406 /* Start with the default values. */
1407 struct language_pass_by_ref_info info;
1408
1409 bool has_cc_attr = false;
1410 bool is_pass_by_value = false;
1411 bool is_dynamic = false;
1412 definition_style cctor_def = DOES_NOT_EXIST_IN_SOURCE;
1413 definition_style dtor_def = DOES_NOT_EXIST_IN_SOURCE;
1414 definition_style mctor_def = DOES_NOT_EXIST_IN_SOURCE;
1415
1416 /* We're only interested in things that can have methods. */
1417 if (type->code () != TYPE_CODE_STRUCT
1418 && type->code () != TYPE_CODE_UNION)
1419 return info;
1420
1421 /* The compiler may have emitted the calling convention attribute.
1422 Note: GCC does not produce this attribute as of version 9.2.1.
1423 Bug link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92418 */
1424 if (TYPE_CPLUS_CALLING_CONVENTION (type) == DW_CC_pass_by_value)
1425 {
1426 has_cc_attr = true;
1427 is_pass_by_value = true;
1428 /* Do not return immediately. We have to find out if this type
1429 is copy_constructible and destructible. */
1430 }
1431
1432 if (TYPE_CPLUS_CALLING_CONVENTION (type) == DW_CC_pass_by_reference)
1433 {
1434 has_cc_attr = true;
1435 is_pass_by_value = false;
1436 }
1437
1438 /* A dynamic class has a non-trivial copy constructor.
1439 See c++98 section 12.8 Copying class objects [class.copy]. */
1440 if (gnuv3_dynamic_class (type))
1441 is_dynamic = true;
1442
1443 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
1444 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
1445 fieldelem++)
1446 {
1447 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, fieldnum);
1448 const char *name = TYPE_FN_FIELDLIST_NAME (type, fieldnum);
1449 struct type *fieldtype = TYPE_FN_FIELD_TYPE (fn, fieldelem);
1450
1451 if (name[0] == '~')
1452 {
1453 /* We've found a destructor.
1454 There should be at most one dtor definition. */
1455 gdb_assert (dtor_def == DOES_NOT_EXIST_IN_SOURCE);
1456 dtor_def = get_def_style (fn, fieldelem);
1457 }
1458 else if (is_constructor_name (TYPE_FN_FIELD_PHYSNAME (fn, fieldelem))
1459 || TYPE_FN_FIELD_CONSTRUCTOR (fn, fieldelem))
1460 {
1461 /* FIXME drow/2007-09-23: We could do this using the name of
1462 the method and the name of the class instead of dealing
1463 with the mangled name. We don't have a convenient function
1464 to strip off both leading scope qualifiers and trailing
1465 template arguments yet. */
1466 if (is_copy_constructor_type (type, fieldtype))
1467 {
1468 /* There may be more than one cctors. E.g.: one that
1469 take a const parameter and another that takes a
1470 non-const parameter. Such as:
1471
1472 class K {
1473 K (const K &k)...
1474 K (K &k)...
1475 };
1476
1477 It is sufficient for the type to be non-trivial
1478 even only one of the cctors is explicit.
1479 Therefore, update the cctor_def value in the
1480 implicit -> explicit direction, not backwards. */
1481
1482 if (is_implicit_def (cctor_def))
1483 cctor_def = get_def_style (fn, fieldelem);
1484 }
1485 else if (is_move_constructor_type (type, fieldtype))
1486 {
1487 /* Again, there may be multiple move ctors. Update the
1488 mctor_def value if we found an explicit def and the
1489 existing one is not explicit. Otherwise retain the
1490 existing value. */
1491 if (is_implicit_def (mctor_def))
1492 mctor_def = get_def_style (fn, fieldelem);
1493 }
1494 }
1495 }
1496
1497 bool cctor_implicitly_deleted
1498 = (mctor_def != DOES_NOT_EXIST_IN_SOURCE
1499 && cctor_def == DOES_NOT_EXIST_IN_SOURCE);
1500
1501 bool cctor_explicitly_deleted = (cctor_def == DELETED);
1502
1503 if (cctor_implicitly_deleted || cctor_explicitly_deleted)
1504 info.copy_constructible = false;
1505
1506 if (dtor_def == DELETED)
1507 info.destructible = false;
1508
1509 info.trivially_destructible = is_implicit_def (dtor_def);
1510
1511 info.trivially_copy_constructible
1512 = (is_implicit_def (cctor_def)
1513 && !is_dynamic);
1514
1515 info.trivially_copyable
1516 = (info.trivially_copy_constructible
1517 && info.trivially_destructible
1518 && !is_user_provided_def (mctor_def));
1519
1520 /* Even if all the constructors and destructors were artificial, one
1521 of them may have invoked a non-artificial constructor or
1522 destructor in a base class. If any base class needs to be passed
1523 by reference, so does this class. Similarly for members, which
1524 are constructed whenever this class is. We do not need to worry
1525 about recursive loops here, since we are only looking at members
1526 of complete class type. Also ignore any static members. */
1527 for (fieldnum = 0; fieldnum < type->num_fields (); fieldnum++)
1528 if (!field_is_static (&type->field (fieldnum)))
1529 {
1530 struct type *field_type = type->field (fieldnum).type ();
1531
1532 /* For arrays, make the decision based on the element type. */
1533 if (field_type->code () == TYPE_CODE_ARRAY)
1534 field_type = check_typedef (TYPE_TARGET_TYPE (field_type));
1535
1536 struct language_pass_by_ref_info field_info
1537 = gnuv3_pass_by_reference (field_type);
1538
1539 if (!field_info.copy_constructible)
1540 info.copy_constructible = false;
1541 if (!field_info.destructible)
1542 info.destructible = false;
1543 if (!field_info.trivially_copyable)
1544 info.trivially_copyable = false;
1545 if (!field_info.trivially_copy_constructible)
1546 info.trivially_copy_constructible = false;
1547 if (!field_info.trivially_destructible)
1548 info.trivially_destructible = false;
1549 }
1550
1551 /* Consistency check. */
1552 if (has_cc_attr && info.trivially_copyable != is_pass_by_value)
1553 {
1554 /* DWARF CC attribute is not the same as the inferred value;
1555 use the DWARF attribute. */
1556 info.trivially_copyable = is_pass_by_value;
1557 }
1558
1559 return info;
1560 }
1561
1562 static void
1563 init_gnuv3_ops (void)
1564 {
1565 vtable_type_gdbarch_data
1566 = gdbarch_data_register_post_init (build_gdb_vtable_type);
1567 std_type_info_gdbarch_data
1568 = gdbarch_data_register_post_init (build_std_type_info_type);
1569
1570 gnu_v3_abi_ops.shortname = "gnu-v3";
1571 gnu_v3_abi_ops.longname = "GNU G++ Version 3 ABI";
1572 gnu_v3_abi_ops.doc = "G++ Version 3 ABI";
1573 gnu_v3_abi_ops.is_destructor_name =
1574 (enum dtor_kinds (*) (const char *))is_gnu_v3_mangled_dtor;
1575 gnu_v3_abi_ops.is_constructor_name =
1576 (enum ctor_kinds (*) (const char *))is_gnu_v3_mangled_ctor;
1577 gnu_v3_abi_ops.is_vtable_name = gnuv3_is_vtable_name;
1578 gnu_v3_abi_ops.is_operator_name = gnuv3_is_operator_name;
1579 gnu_v3_abi_ops.rtti_type = gnuv3_rtti_type;
1580 gnu_v3_abi_ops.virtual_fn_field = gnuv3_virtual_fn_field;
1581 gnu_v3_abi_ops.baseclass_offset = gnuv3_baseclass_offset;
1582 gnu_v3_abi_ops.print_method_ptr = gnuv3_print_method_ptr;
1583 gnu_v3_abi_ops.method_ptr_size = gnuv3_method_ptr_size;
1584 gnu_v3_abi_ops.make_method_ptr = gnuv3_make_method_ptr;
1585 gnu_v3_abi_ops.method_ptr_to_value = gnuv3_method_ptr_to_value;
1586 gnu_v3_abi_ops.print_vtable = gnuv3_print_vtable;
1587 gnu_v3_abi_ops.get_typeid = gnuv3_get_typeid;
1588 gnu_v3_abi_ops.get_typeid_type = gnuv3_get_typeid_type;
1589 gnu_v3_abi_ops.get_type_from_type_info = gnuv3_get_type_from_type_info;
1590 gnu_v3_abi_ops.get_typename_from_type_info
1591 = gnuv3_get_typename_from_type_info;
1592 gnu_v3_abi_ops.skip_trampoline = gnuv3_skip_trampoline;
1593 gnu_v3_abi_ops.pass_by_reference = gnuv3_pass_by_reference;
1594 }
1595
1596 void _initialize_gnu_v3_abi ();
1597 void
1598 _initialize_gnu_v3_abi ()
1599 {
1600 init_gnuv3_ops ();
1601
1602 register_cp_abi (&gnu_v3_abi_ops);
1603 set_cp_abi_as_auto_default (gnu_v3_abi_ops.shortname);
1604 }
This page took 0.063375 seconds and 4 git commands to generate.