2011-01-07 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / gnu-v3-abi.c
1 /* Abstraction of GNU v3 abi.
2 Contributed by Jim Blandy <jimb@redhat.com>
3
4 Copyright (C) 2001, 2002, 2003, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "value.h"
24 #include "cp-abi.h"
25 #include "cp-support.h"
26 #include "demangle.h"
27 #include "objfiles.h"
28 #include "valprint.h"
29 #include "c-lang.h"
30
31 #include "gdb_assert.h"
32 #include "gdb_string.h"
33
34 static struct cp_abi_ops gnu_v3_abi_ops;
35
36 static int
37 gnuv3_is_vtable_name (const char *name)
38 {
39 return strncmp (name, "_ZTV", 4) == 0;
40 }
41
42 static int
43 gnuv3_is_operator_name (const char *name)
44 {
45 return strncmp (name, "operator", 8) == 0;
46 }
47
48
49 /* To help us find the components of a vtable, we build ourselves a
50 GDB type object representing the vtable structure. Following the
51 V3 ABI, it goes something like this:
52
53 struct gdb_gnu_v3_abi_vtable {
54
55 / * An array of virtual call and virtual base offsets. The real
56 length of this array depends on the class hierarchy; we use
57 negative subscripts to access the elements. Yucky, but
58 better than the alternatives. * /
59 ptrdiff_t vcall_and_vbase_offsets[0];
60
61 / * The offset from a virtual pointer referring to this table
62 to the top of the complete object. * /
63 ptrdiff_t offset_to_top;
64
65 / * The type_info pointer for this class. This is really a
66 std::type_info *, but GDB doesn't really look at the
67 type_info object itself, so we don't bother to get the type
68 exactly right. * /
69 void *type_info;
70
71 / * Virtual table pointers in objects point here. * /
72
73 / * Virtual function pointers. Like the vcall/vbase array, the
74 real length of this table depends on the class hierarchy. * /
75 void (*virtual_functions[0]) ();
76
77 };
78
79 The catch, of course, is that the exact layout of this table
80 depends on the ABI --- word size, endianness, alignment, etc. So
81 the GDB type object is actually a per-architecture kind of thing.
82
83 vtable_type_gdbarch_data is a gdbarch per-architecture data pointer
84 which refers to the struct type * for this structure, laid out
85 appropriately for the architecture. */
86 static struct gdbarch_data *vtable_type_gdbarch_data;
87
88
89 /* Human-readable names for the numbers of the fields above. */
90 enum {
91 vtable_field_vcall_and_vbase_offsets,
92 vtable_field_offset_to_top,
93 vtable_field_type_info,
94 vtable_field_virtual_functions
95 };
96
97
98 /* Return a GDB type representing `struct gdb_gnu_v3_abi_vtable',
99 described above, laid out appropriately for ARCH.
100
101 We use this function as the gdbarch per-architecture data
102 initialization function. */
103 static void *
104 build_gdb_vtable_type (struct gdbarch *arch)
105 {
106 struct type *t;
107 struct field *field_list, *field;
108 int offset;
109
110 struct type *void_ptr_type
111 = builtin_type (arch)->builtin_data_ptr;
112 struct type *ptr_to_void_fn_type
113 = builtin_type (arch)->builtin_func_ptr;
114
115 /* ARCH can't give us the true ptrdiff_t type, so we guess. */
116 struct type *ptrdiff_type
117 = arch_integer_type (arch, gdbarch_ptr_bit (arch), 0, "ptrdiff_t");
118
119 /* We assume no padding is necessary, since GDB doesn't know
120 anything about alignment at the moment. If this assumption bites
121 us, we should add a gdbarch method which, given a type, returns
122 the alignment that type requires, and then use that here. */
123
124 /* Build the field list. */
125 field_list = xmalloc (sizeof (struct field [4]));
126 memset (field_list, 0, sizeof (struct field [4]));
127 field = &field_list[0];
128 offset = 0;
129
130 /* ptrdiff_t vcall_and_vbase_offsets[0]; */
131 FIELD_NAME (*field) = "vcall_and_vbase_offsets";
132 FIELD_TYPE (*field) = lookup_array_range_type (ptrdiff_type, 0, -1);
133 FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT;
134 offset += TYPE_LENGTH (FIELD_TYPE (*field));
135 field++;
136
137 /* ptrdiff_t offset_to_top; */
138 FIELD_NAME (*field) = "offset_to_top";
139 FIELD_TYPE (*field) = ptrdiff_type;
140 FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT;
141 offset += TYPE_LENGTH (FIELD_TYPE (*field));
142 field++;
143
144 /* void *type_info; */
145 FIELD_NAME (*field) = "type_info";
146 FIELD_TYPE (*field) = void_ptr_type;
147 FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT;
148 offset += TYPE_LENGTH (FIELD_TYPE (*field));
149 field++;
150
151 /* void (*virtual_functions[0]) (); */
152 FIELD_NAME (*field) = "virtual_functions";
153 FIELD_TYPE (*field) = lookup_array_range_type (ptr_to_void_fn_type, 0, -1);
154 FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT;
155 offset += TYPE_LENGTH (FIELD_TYPE (*field));
156 field++;
157
158 /* We assumed in the allocation above that there were four fields. */
159 gdb_assert (field == (field_list + 4));
160
161 t = arch_type (arch, TYPE_CODE_STRUCT, offset, NULL);
162 TYPE_NFIELDS (t) = field - field_list;
163 TYPE_FIELDS (t) = field_list;
164 TYPE_TAG_NAME (t) = "gdb_gnu_v3_abi_vtable";
165 INIT_CPLUS_SPECIFIC (t);
166
167 return t;
168 }
169
170
171 /* Return the ptrdiff_t type used in the vtable type. */
172 static struct type *
173 vtable_ptrdiff_type (struct gdbarch *gdbarch)
174 {
175 struct type *vtable_type = gdbarch_data (gdbarch, vtable_type_gdbarch_data);
176
177 /* The "offset_to_top" field has the appropriate (ptrdiff_t) type. */
178 return TYPE_FIELD_TYPE (vtable_type, vtable_field_offset_to_top);
179 }
180
181 /* Return the offset from the start of the imaginary `struct
182 gdb_gnu_v3_abi_vtable' object to the vtable's "address point"
183 (i.e., where objects' virtual table pointers point). */
184 static int
185 vtable_address_point_offset (struct gdbarch *gdbarch)
186 {
187 struct type *vtable_type = gdbarch_data (gdbarch, vtable_type_gdbarch_data);
188
189 return (TYPE_FIELD_BITPOS (vtable_type, vtable_field_virtual_functions)
190 / TARGET_CHAR_BIT);
191 }
192
193
194 /* Determine whether structure TYPE is a dynamic class. Cache the
195 result. */
196
197 static int
198 gnuv3_dynamic_class (struct type *type)
199 {
200 int fieldnum, fieldelem;
201
202 if (TYPE_CPLUS_DYNAMIC (type))
203 return TYPE_CPLUS_DYNAMIC (type) == 1;
204
205 ALLOCATE_CPLUS_STRUCT_TYPE (type);
206
207 for (fieldnum = 0; fieldnum < TYPE_N_BASECLASSES (type); fieldnum++)
208 if (BASETYPE_VIA_VIRTUAL (type, fieldnum)
209 || gnuv3_dynamic_class (TYPE_FIELD_TYPE (type, fieldnum)))
210 {
211 TYPE_CPLUS_DYNAMIC (type) = 1;
212 return 1;
213 }
214
215 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
216 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
217 fieldelem++)
218 {
219 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, fieldnum);
220
221 if (TYPE_FN_FIELD_VIRTUAL_P (f, fieldelem))
222 {
223 TYPE_CPLUS_DYNAMIC (type) = 1;
224 return 1;
225 }
226 }
227
228 TYPE_CPLUS_DYNAMIC (type) = -1;
229 return 0;
230 }
231
232 /* Find the vtable for a value of CONTAINER_TYPE located at
233 CONTAINER_ADDR. Return a value of the correct vtable type for this
234 architecture, or NULL if CONTAINER does not have a vtable. */
235
236 static struct value *
237 gnuv3_get_vtable (struct gdbarch *gdbarch,
238 struct type *container_type, CORE_ADDR container_addr)
239 {
240 struct type *vtable_type = gdbarch_data (gdbarch,
241 vtable_type_gdbarch_data);
242 struct type *vtable_pointer_type;
243 struct value *vtable_pointer;
244 CORE_ADDR vtable_address;
245
246 /* If this type does not have a virtual table, don't read the first
247 field. */
248 if (!gnuv3_dynamic_class (check_typedef (container_type)))
249 return NULL;
250
251 /* We do not consult the debug information to find the virtual table.
252 The ABI specifies that it is always at offset zero in any class,
253 and debug information may not represent it.
254
255 We avoid using value_contents on principle, because the object might
256 be large. */
257
258 /* Find the type "pointer to virtual table". */
259 vtable_pointer_type = lookup_pointer_type (vtable_type);
260
261 /* Load it from the start of the class. */
262 vtable_pointer = value_at (vtable_pointer_type, container_addr);
263 vtable_address = value_as_address (vtable_pointer);
264
265 /* Correct it to point at the start of the virtual table, rather
266 than the address point. */
267 return value_at_lazy (vtable_type,
268 vtable_address
269 - vtable_address_point_offset (gdbarch));
270 }
271
272
273 static struct type *
274 gnuv3_rtti_type (struct value *value,
275 int *full_p, int *top_p, int *using_enc_p)
276 {
277 struct gdbarch *gdbarch;
278 struct type *values_type = check_typedef (value_type (value));
279 struct value *vtable;
280 struct minimal_symbol *vtable_symbol;
281 const char *vtable_symbol_name;
282 const char *class_name;
283 struct type *run_time_type;
284 LONGEST offset_to_top;
285
286 /* We only have RTTI for class objects. */
287 if (TYPE_CODE (values_type) != TYPE_CODE_CLASS)
288 return NULL;
289
290 /* Determine architecture. */
291 gdbarch = get_type_arch (values_type);
292
293 if (using_enc_p)
294 *using_enc_p = 0;
295
296 vtable = gnuv3_get_vtable (gdbarch, value_type (value),
297 value_as_address (value_addr (value)));
298 if (vtable == NULL)
299 return NULL;
300
301 /* Find the linker symbol for this vtable. */
302 vtable_symbol
303 = lookup_minimal_symbol_by_pc (value_address (vtable)
304 + value_embedded_offset (vtable));
305 if (! vtable_symbol)
306 return NULL;
307
308 /* The symbol's demangled name should be something like "vtable for
309 CLASS", where CLASS is the name of the run-time type of VALUE.
310 If we didn't like this approach, we could instead look in the
311 type_info object itself to get the class name. But this way
312 should work just as well, and doesn't read target memory. */
313 vtable_symbol_name = SYMBOL_DEMANGLED_NAME (vtable_symbol);
314 if (vtable_symbol_name == NULL
315 || strncmp (vtable_symbol_name, "vtable for ", 11))
316 {
317 warning (_("can't find linker symbol for virtual table for `%s' value"),
318 TYPE_NAME (values_type));
319 if (vtable_symbol_name)
320 warning (_(" found `%s' instead"), vtable_symbol_name);
321 return NULL;
322 }
323 class_name = vtable_symbol_name + 11;
324
325 /* Try to look up the class name as a type name. */
326 /* FIXME: chastain/2003-11-26: block=NULL is bogus. See pr gdb/1465. */
327 run_time_type = cp_lookup_rtti_type (class_name, NULL);
328 if (run_time_type == NULL)
329 return NULL;
330
331 /* Get the offset from VALUE to the top of the complete object.
332 NOTE: this is the reverse of the meaning of *TOP_P. */
333 offset_to_top
334 = value_as_long (value_field (vtable, vtable_field_offset_to_top));
335
336 if (full_p)
337 *full_p = (- offset_to_top == value_embedded_offset (value)
338 && (TYPE_LENGTH (value_enclosing_type (value))
339 >= TYPE_LENGTH (run_time_type)));
340 if (top_p)
341 *top_p = - offset_to_top;
342 return run_time_type;
343 }
344
345 /* Return a function pointer for CONTAINER's VTABLE_INDEX'th virtual
346 function, of type FNTYPE. */
347
348 static struct value *
349 gnuv3_get_virtual_fn (struct gdbarch *gdbarch, struct value *container,
350 struct type *fntype, int vtable_index)
351 {
352 struct value *vtable, *vfn;
353
354 /* Every class with virtual functions must have a vtable. */
355 vtable = gnuv3_get_vtable (gdbarch, value_type (container),
356 value_as_address (value_addr (container)));
357 gdb_assert (vtable != NULL);
358
359 /* Fetch the appropriate function pointer from the vtable. */
360 vfn = value_subscript (value_field (vtable, vtable_field_virtual_functions),
361 vtable_index);
362
363 /* If this architecture uses function descriptors directly in the vtable,
364 then the address of the vtable entry is actually a "function pointer"
365 (i.e. points to the descriptor). We don't need to scale the index
366 by the size of a function descriptor; GCC does that before outputing
367 debug information. */
368 if (gdbarch_vtable_function_descriptors (gdbarch))
369 vfn = value_addr (vfn);
370
371 /* Cast the function pointer to the appropriate type. */
372 vfn = value_cast (lookup_pointer_type (fntype), vfn);
373
374 return vfn;
375 }
376
377 /* GNU v3 implementation of value_virtual_fn_field. See cp-abi.h
378 for a description of the arguments. */
379
380 static struct value *
381 gnuv3_virtual_fn_field (struct value **value_p,
382 struct fn_field *f, int j,
383 struct type *vfn_base, int offset)
384 {
385 struct type *values_type = check_typedef (value_type (*value_p));
386 struct gdbarch *gdbarch;
387
388 /* Some simple sanity checks. */
389 if (TYPE_CODE (values_type) != TYPE_CODE_CLASS)
390 error (_("Only classes can have virtual functions."));
391
392 /* Determine architecture. */
393 gdbarch = get_type_arch (values_type);
394
395 /* Cast our value to the base class which defines this virtual
396 function. This takes care of any necessary `this'
397 adjustments. */
398 if (vfn_base != values_type)
399 *value_p = value_cast (vfn_base, *value_p);
400
401 return gnuv3_get_virtual_fn (gdbarch, *value_p, TYPE_FN_FIELD_TYPE (f, j),
402 TYPE_FN_FIELD_VOFFSET (f, j));
403 }
404
405 /* Compute the offset of the baseclass which is
406 the INDEXth baseclass of class TYPE,
407 for value at VALADDR (in host) at ADDRESS (in target).
408 The result is the offset of the baseclass value relative
409 to (the address of)(ARG) + OFFSET.
410
411 -1 is returned on error. */
412
413 static int
414 gnuv3_baseclass_offset (struct type *type, int index, const bfd_byte *valaddr,
415 CORE_ADDR address)
416 {
417 struct gdbarch *gdbarch;
418 struct type *ptr_type;
419 struct value *vtable;
420 struct value *vbase_array;
421 long int cur_base_offset, base_offset;
422
423 /* Determine architecture. */
424 gdbarch = get_type_arch (type);
425 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
426
427 /* If it isn't a virtual base, this is easy. The offset is in the
428 type definition. */
429 if (!BASETYPE_VIA_VIRTUAL (type, index))
430 return TYPE_BASECLASS_BITPOS (type, index) / 8;
431
432 /* To access a virtual base, we need to use the vbase offset stored in
433 our vtable. Recent GCC versions provide this information. If it isn't
434 available, we could get what we needed from RTTI, or from drawing the
435 complete inheritance graph based on the debug info. Neither is
436 worthwhile. */
437 cur_base_offset = TYPE_BASECLASS_BITPOS (type, index) / 8;
438 if (cur_base_offset >= - vtable_address_point_offset (gdbarch))
439 error (_("Expected a negative vbase offset (old compiler?)"));
440
441 cur_base_offset = cur_base_offset + vtable_address_point_offset (gdbarch);
442 if ((- cur_base_offset) % TYPE_LENGTH (ptr_type) != 0)
443 error (_("Misaligned vbase offset."));
444 cur_base_offset = cur_base_offset / ((int) TYPE_LENGTH (ptr_type));
445
446 vtable = gnuv3_get_vtable (gdbarch, type, address);
447 gdb_assert (vtable != NULL);
448 vbase_array = value_field (vtable, vtable_field_vcall_and_vbase_offsets);
449 base_offset = value_as_long (value_subscript (vbase_array, cur_base_offset));
450 return base_offset;
451 }
452
453 /* Locate a virtual method in DOMAIN or its non-virtual base classes
454 which has virtual table index VOFFSET. The method has an associated
455 "this" adjustment of ADJUSTMENT bytes. */
456
457 static const char *
458 gnuv3_find_method_in (struct type *domain, CORE_ADDR voffset,
459 LONGEST adjustment)
460 {
461 int i;
462
463 /* Search this class first. */
464 if (adjustment == 0)
465 {
466 int len;
467
468 len = TYPE_NFN_FIELDS (domain);
469 for (i = 0; i < len; i++)
470 {
471 int len2, j;
472 struct fn_field *f;
473
474 f = TYPE_FN_FIELDLIST1 (domain, i);
475 len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
476
477 check_stub_method_group (domain, i);
478 for (j = 0; j < len2; j++)
479 if (TYPE_FN_FIELD_VOFFSET (f, j) == voffset)
480 return TYPE_FN_FIELD_PHYSNAME (f, j);
481 }
482 }
483
484 /* Next search non-virtual bases. If it's in a virtual base,
485 we're out of luck. */
486 for (i = 0; i < TYPE_N_BASECLASSES (domain); i++)
487 {
488 int pos;
489 struct type *basetype;
490
491 if (BASETYPE_VIA_VIRTUAL (domain, i))
492 continue;
493
494 pos = TYPE_BASECLASS_BITPOS (domain, i) / 8;
495 basetype = TYPE_FIELD_TYPE (domain, i);
496 /* Recurse with a modified adjustment. We don't need to adjust
497 voffset. */
498 if (adjustment >= pos && adjustment < pos + TYPE_LENGTH (basetype))
499 return gnuv3_find_method_in (basetype, voffset, adjustment - pos);
500 }
501
502 return NULL;
503 }
504
505 /* Decode GNU v3 method pointer. */
506
507 static int
508 gnuv3_decode_method_ptr (struct gdbarch *gdbarch,
509 const gdb_byte *contents,
510 CORE_ADDR *value_p,
511 LONGEST *adjustment_p)
512 {
513 struct type *funcptr_type = builtin_type (gdbarch)->builtin_func_ptr;
514 struct type *offset_type = vtable_ptrdiff_type (gdbarch);
515 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
516 CORE_ADDR ptr_value;
517 LONGEST voffset, adjustment;
518 int vbit;
519
520 /* Extract the pointer to member. The first element is either a pointer
521 or a vtable offset. For pointers, we need to use extract_typed_address
522 to allow the back-end to convert the pointer to a GDB address -- but
523 vtable offsets we must handle as integers. At this point, we do not
524 yet know which case we have, so we extract the value under both
525 interpretations and choose the right one later on. */
526 ptr_value = extract_typed_address (contents, funcptr_type);
527 voffset = extract_signed_integer (contents,
528 TYPE_LENGTH (funcptr_type), byte_order);
529 contents += TYPE_LENGTH (funcptr_type);
530 adjustment = extract_signed_integer (contents,
531 TYPE_LENGTH (offset_type), byte_order);
532
533 if (!gdbarch_vbit_in_delta (gdbarch))
534 {
535 vbit = voffset & 1;
536 voffset = voffset ^ vbit;
537 }
538 else
539 {
540 vbit = adjustment & 1;
541 adjustment = adjustment >> 1;
542 }
543
544 *value_p = vbit? voffset : ptr_value;
545 *adjustment_p = adjustment;
546 return vbit;
547 }
548
549 /* GNU v3 implementation of cplus_print_method_ptr. */
550
551 static void
552 gnuv3_print_method_ptr (const gdb_byte *contents,
553 struct type *type,
554 struct ui_file *stream)
555 {
556 struct type *domain = TYPE_DOMAIN_TYPE (type);
557 struct gdbarch *gdbarch = get_type_arch (domain);
558 CORE_ADDR ptr_value;
559 LONGEST adjustment;
560 int vbit;
561
562 /* Extract the pointer to member. */
563 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
564
565 /* Check for NULL. */
566 if (ptr_value == 0 && vbit == 0)
567 {
568 fprintf_filtered (stream, "NULL");
569 return;
570 }
571
572 /* Search for a virtual method. */
573 if (vbit)
574 {
575 CORE_ADDR voffset;
576 const char *physname;
577
578 /* It's a virtual table offset, maybe in this class. Search
579 for a field with the correct vtable offset. First convert it
580 to an index, as used in TYPE_FN_FIELD_VOFFSET. */
581 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
582
583 physname = gnuv3_find_method_in (domain, voffset, adjustment);
584
585 /* If we found a method, print that. We don't bother to disambiguate
586 possible paths to the method based on the adjustment. */
587 if (physname)
588 {
589 char *demangled_name = cplus_demangle (physname,
590 DMGL_ANSI | DMGL_PARAMS);
591
592 fprintf_filtered (stream, "&virtual ");
593 if (demangled_name == NULL)
594 fputs_filtered (physname, stream);
595 else
596 {
597 fputs_filtered (demangled_name, stream);
598 xfree (demangled_name);
599 }
600 return;
601 }
602 }
603 else if (ptr_value != 0)
604 {
605 /* Found a non-virtual function: print out the type. */
606 fputs_filtered ("(", stream);
607 c_print_type (type, "", stream, -1, 0);
608 fputs_filtered (") ", stream);
609 }
610
611 /* We didn't find it; print the raw data. */
612 if (vbit)
613 {
614 fprintf_filtered (stream, "&virtual table offset ");
615 print_longest (stream, 'd', 1, ptr_value);
616 }
617 else
618 print_address_demangle (gdbarch, ptr_value, stream, demangle);
619
620 if (adjustment)
621 {
622 fprintf_filtered (stream, ", this adjustment ");
623 print_longest (stream, 'd', 1, adjustment);
624 }
625 }
626
627 /* GNU v3 implementation of cplus_method_ptr_size. */
628
629 static int
630 gnuv3_method_ptr_size (struct type *type)
631 {
632 struct gdbarch *gdbarch = get_type_arch (type);
633
634 return 2 * TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
635 }
636
637 /* GNU v3 implementation of cplus_make_method_ptr. */
638
639 static void
640 gnuv3_make_method_ptr (struct type *type, gdb_byte *contents,
641 CORE_ADDR value, int is_virtual)
642 {
643 struct gdbarch *gdbarch = get_type_arch (type);
644 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
645 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
646
647 /* FIXME drow/2006-12-24: The adjustment of "this" is currently
648 always zero, since the method pointer is of the correct type.
649 But if the method pointer came from a base class, this is
650 incorrect - it should be the offset to the base. The best
651 fix might be to create the pointer to member pointing at the
652 base class and cast it to the derived class, but that requires
653 support for adjusting pointers to members when casting them -
654 not currently supported by GDB. */
655
656 if (!gdbarch_vbit_in_delta (gdbarch))
657 {
658 store_unsigned_integer (contents, size, byte_order, value | is_virtual);
659 store_unsigned_integer (contents + size, size, byte_order, 0);
660 }
661 else
662 {
663 store_unsigned_integer (contents, size, byte_order, value);
664 store_unsigned_integer (contents + size, size, byte_order, is_virtual);
665 }
666 }
667
668 /* GNU v3 implementation of cplus_method_ptr_to_value. */
669
670 static struct value *
671 gnuv3_method_ptr_to_value (struct value **this_p, struct value *method_ptr)
672 {
673 struct gdbarch *gdbarch;
674 const gdb_byte *contents = value_contents (method_ptr);
675 CORE_ADDR ptr_value;
676 struct type *domain_type, *final_type, *method_type;
677 LONGEST adjustment;
678 int vbit;
679
680 domain_type = TYPE_DOMAIN_TYPE (check_typedef (value_type (method_ptr)));
681 final_type = lookup_pointer_type (domain_type);
682
683 method_type = TYPE_TARGET_TYPE (check_typedef (value_type (method_ptr)));
684
685 /* Extract the pointer to member. */
686 gdbarch = get_type_arch (domain_type);
687 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
688
689 /* First convert THIS to match the containing type of the pointer to
690 member. This cast may adjust the value of THIS. */
691 *this_p = value_cast (final_type, *this_p);
692
693 /* Then apply whatever adjustment is necessary. This creates a somewhat
694 strange pointer: it claims to have type FINAL_TYPE, but in fact it
695 might not be a valid FINAL_TYPE. For instance, it might be a
696 base class of FINAL_TYPE. And if it's not the primary base class,
697 then printing it out as a FINAL_TYPE object would produce some pretty
698 garbage.
699
700 But we don't really know the type of the first argument in
701 METHOD_TYPE either, which is why this happens. We can't
702 dereference this later as a FINAL_TYPE, but once we arrive in the
703 called method we'll have debugging information for the type of
704 "this" - and that'll match the value we produce here.
705
706 You can provoke this case by casting a Base::* to a Derived::*, for
707 instance. */
708 *this_p = value_cast (builtin_type (gdbarch)->builtin_data_ptr, *this_p);
709 *this_p = value_ptradd (*this_p, adjustment);
710 *this_p = value_cast (final_type, *this_p);
711
712 if (vbit)
713 {
714 LONGEST voffset;
715
716 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
717 return gnuv3_get_virtual_fn (gdbarch, value_ind (*this_p),
718 method_type, voffset);
719 }
720 else
721 return value_from_pointer (lookup_pointer_type (method_type), ptr_value);
722 }
723
724 /* Determine if we are currently in a C++ thunk. If so, get the address
725 of the routine we are thunking to and continue to there instead. */
726
727 static CORE_ADDR
728 gnuv3_skip_trampoline (struct frame_info *frame, CORE_ADDR stop_pc)
729 {
730 CORE_ADDR real_stop_pc, method_stop_pc;
731 struct gdbarch *gdbarch = get_frame_arch (frame);
732 struct minimal_symbol *thunk_sym, *fn_sym;
733 struct obj_section *section;
734 char *thunk_name, *fn_name;
735
736 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
737 if (real_stop_pc == 0)
738 real_stop_pc = stop_pc;
739
740 /* Find the linker symbol for this potential thunk. */
741 thunk_sym = lookup_minimal_symbol_by_pc (real_stop_pc);
742 section = find_pc_section (real_stop_pc);
743 if (thunk_sym == NULL || section == NULL)
744 return 0;
745
746 /* The symbol's demangled name should be something like "virtual
747 thunk to FUNCTION", where FUNCTION is the name of the function
748 being thunked to. */
749 thunk_name = SYMBOL_DEMANGLED_NAME (thunk_sym);
750 if (thunk_name == NULL || strstr (thunk_name, " thunk to ") == NULL)
751 return 0;
752
753 fn_name = strstr (thunk_name, " thunk to ") + strlen (" thunk to ");
754 fn_sym = lookup_minimal_symbol (fn_name, NULL, section->objfile);
755 if (fn_sym == NULL)
756 return 0;
757
758 method_stop_pc = SYMBOL_VALUE_ADDRESS (fn_sym);
759 real_stop_pc = gdbarch_skip_trampoline_code
760 (gdbarch, frame, method_stop_pc);
761 if (real_stop_pc == 0)
762 real_stop_pc = method_stop_pc;
763
764 return real_stop_pc;
765 }
766
767 /* Return nonzero if a type should be passed by reference.
768
769 The rule in the v3 ABI document comes from section 3.1.1. If the
770 type has a non-trivial copy constructor or destructor, then the
771 caller must make a copy (by calling the copy constructor if there
772 is one or perform the copy itself otherwise), pass the address of
773 the copy, and then destroy the temporary (if necessary).
774
775 For return values with non-trivial copy constructors or
776 destructors, space will be allocated in the caller, and a pointer
777 will be passed as the first argument (preceding "this").
778
779 We don't have a bulletproof mechanism for determining whether a
780 constructor or destructor is trivial. For GCC and DWARF2 debug
781 information, we can check the artificial flag.
782
783 We don't do anything with the constructors or destructors,
784 but we have to get the argument passing right anyway. */
785 static int
786 gnuv3_pass_by_reference (struct type *type)
787 {
788 int fieldnum, fieldelem;
789
790 CHECK_TYPEDEF (type);
791
792 /* We're only interested in things that can have methods. */
793 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
794 && TYPE_CODE (type) != TYPE_CODE_CLASS
795 && TYPE_CODE (type) != TYPE_CODE_UNION)
796 return 0;
797
798 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
799 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
800 fieldelem++)
801 {
802 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, fieldnum);
803 char *name = TYPE_FN_FIELDLIST_NAME (type, fieldnum);
804 struct type *fieldtype = TYPE_FN_FIELD_TYPE (fn, fieldelem);
805
806 /* If this function is marked as artificial, it is compiler-generated,
807 and we assume it is trivial. */
808 if (TYPE_FN_FIELD_ARTIFICIAL (fn, fieldelem))
809 continue;
810
811 /* If we've found a destructor, we must pass this by reference. */
812 if (name[0] == '~')
813 return 1;
814
815 /* If the mangled name of this method doesn't indicate that it
816 is a constructor, we're not interested.
817
818 FIXME drow/2007-09-23: We could do this using the name of
819 the method and the name of the class instead of dealing
820 with the mangled name. We don't have a convenient function
821 to strip off both leading scope qualifiers and trailing
822 template arguments yet. */
823 if (!is_constructor_name (TYPE_FN_FIELD_PHYSNAME (fn, fieldelem)))
824 continue;
825
826 /* If this method takes two arguments, and the second argument is
827 a reference to this class, then it is a copy constructor. */
828 if (TYPE_NFIELDS (fieldtype) == 2
829 && TYPE_CODE (TYPE_FIELD_TYPE (fieldtype, 1)) == TYPE_CODE_REF
830 && check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (fieldtype,
831 1))) == type)
832 return 1;
833 }
834
835 /* Even if all the constructors and destructors were artificial, one
836 of them may have invoked a non-artificial constructor or
837 destructor in a base class. If any base class needs to be passed
838 by reference, so does this class. Similarly for members, which
839 are constructed whenever this class is. We do not need to worry
840 about recursive loops here, since we are only looking at members
841 of complete class type. Also ignore any static members. */
842 for (fieldnum = 0; fieldnum < TYPE_NFIELDS (type); fieldnum++)
843 if (! field_is_static (&TYPE_FIELD (type, fieldnum))
844 && gnuv3_pass_by_reference (TYPE_FIELD_TYPE (type, fieldnum)))
845 return 1;
846
847 return 0;
848 }
849
850 static void
851 init_gnuv3_ops (void)
852 {
853 vtable_type_gdbarch_data
854 = gdbarch_data_register_post_init (build_gdb_vtable_type);
855
856 gnu_v3_abi_ops.shortname = "gnu-v3";
857 gnu_v3_abi_ops.longname = "GNU G++ Version 3 ABI";
858 gnu_v3_abi_ops.doc = "G++ Version 3 ABI";
859 gnu_v3_abi_ops.is_destructor_name =
860 (enum dtor_kinds (*) (const char *))is_gnu_v3_mangled_dtor;
861 gnu_v3_abi_ops.is_constructor_name =
862 (enum ctor_kinds (*) (const char *))is_gnu_v3_mangled_ctor;
863 gnu_v3_abi_ops.is_vtable_name = gnuv3_is_vtable_name;
864 gnu_v3_abi_ops.is_operator_name = gnuv3_is_operator_name;
865 gnu_v3_abi_ops.rtti_type = gnuv3_rtti_type;
866 gnu_v3_abi_ops.virtual_fn_field = gnuv3_virtual_fn_field;
867 gnu_v3_abi_ops.baseclass_offset = gnuv3_baseclass_offset;
868 gnu_v3_abi_ops.print_method_ptr = gnuv3_print_method_ptr;
869 gnu_v3_abi_ops.method_ptr_size = gnuv3_method_ptr_size;
870 gnu_v3_abi_ops.make_method_ptr = gnuv3_make_method_ptr;
871 gnu_v3_abi_ops.method_ptr_to_value = gnuv3_method_ptr_to_value;
872 gnu_v3_abi_ops.skip_trampoline = gnuv3_skip_trampoline;
873 gnu_v3_abi_ops.pass_by_reference = gnuv3_pass_by_reference;
874 }
875
876 extern initialize_file_ftype _initialize_gnu_v3_abi; /* -Wmissing-prototypes */
877
878 void
879 _initialize_gnu_v3_abi (void)
880 {
881 init_gnuv3_ops ();
882
883 register_cp_abi (&gnu_v3_abi_ops);
884 }
This page took 0.049912 seconds and 5 git commands to generate.