gdb: add accessors to struct dynamic_prop
[deliverable/binutils-gdb.git] / gdb / gnu-v3-abi.c
1 /* Abstraction of GNU v3 abi.
2 Contributed by Jim Blandy <jimb@redhat.com>
3
4 Copyright (C) 2001-2020 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "value.h"
23 #include "cp-abi.h"
24 #include "cp-support.h"
25 #include "demangle.h"
26 #include "dwarf2.h"
27 #include "objfiles.h"
28 #include "valprint.h"
29 #include "c-lang.h"
30 #include "typeprint.h"
31 #include <algorithm>
32 #include "cli/cli-style.h"
33 #include "dwarf2/loc.h"
34
35 static struct cp_abi_ops gnu_v3_abi_ops;
36
37 /* A gdbarch key for std::type_info, in the event that it can't be
38 found in the debug info. */
39
40 static struct gdbarch_data *std_type_info_gdbarch_data;
41
42
43 static int
44 gnuv3_is_vtable_name (const char *name)
45 {
46 return startswith (name, "_ZTV");
47 }
48
49 static int
50 gnuv3_is_operator_name (const char *name)
51 {
52 return startswith (name, CP_OPERATOR_STR);
53 }
54
55
56 /* To help us find the components of a vtable, we build ourselves a
57 GDB type object representing the vtable structure. Following the
58 V3 ABI, it goes something like this:
59
60 struct gdb_gnu_v3_abi_vtable {
61
62 / * An array of virtual call and virtual base offsets. The real
63 length of this array depends on the class hierarchy; we use
64 negative subscripts to access the elements. Yucky, but
65 better than the alternatives. * /
66 ptrdiff_t vcall_and_vbase_offsets[0];
67
68 / * The offset from a virtual pointer referring to this table
69 to the top of the complete object. * /
70 ptrdiff_t offset_to_top;
71
72 / * The type_info pointer for this class. This is really a
73 std::type_info *, but GDB doesn't really look at the
74 type_info object itself, so we don't bother to get the type
75 exactly right. * /
76 void *type_info;
77
78 / * Virtual table pointers in objects point here. * /
79
80 / * Virtual function pointers. Like the vcall/vbase array, the
81 real length of this table depends on the class hierarchy. * /
82 void (*virtual_functions[0]) ();
83
84 };
85
86 The catch, of course, is that the exact layout of this table
87 depends on the ABI --- word size, endianness, alignment, etc. So
88 the GDB type object is actually a per-architecture kind of thing.
89
90 vtable_type_gdbarch_data is a gdbarch per-architecture data pointer
91 which refers to the struct type * for this structure, laid out
92 appropriately for the architecture. */
93 static struct gdbarch_data *vtable_type_gdbarch_data;
94
95
96 /* Human-readable names for the numbers of the fields above. */
97 enum {
98 vtable_field_vcall_and_vbase_offsets,
99 vtable_field_offset_to_top,
100 vtable_field_type_info,
101 vtable_field_virtual_functions
102 };
103
104
105 /* Return a GDB type representing `struct gdb_gnu_v3_abi_vtable',
106 described above, laid out appropriately for ARCH.
107
108 We use this function as the gdbarch per-architecture data
109 initialization function. */
110 static void *
111 build_gdb_vtable_type (struct gdbarch *arch)
112 {
113 struct type *t;
114 struct field *field_list, *field;
115 int offset;
116
117 struct type *void_ptr_type
118 = builtin_type (arch)->builtin_data_ptr;
119 struct type *ptr_to_void_fn_type
120 = builtin_type (arch)->builtin_func_ptr;
121
122 /* ARCH can't give us the true ptrdiff_t type, so we guess. */
123 struct type *ptrdiff_type
124 = arch_integer_type (arch, gdbarch_ptr_bit (arch), 0, "ptrdiff_t");
125
126 /* We assume no padding is necessary, since GDB doesn't know
127 anything about alignment at the moment. If this assumption bites
128 us, we should add a gdbarch method which, given a type, returns
129 the alignment that type requires, and then use that here. */
130
131 /* Build the field list. */
132 field_list = XCNEWVEC (struct field, 4);
133 field = &field_list[0];
134 offset = 0;
135
136 /* ptrdiff_t vcall_and_vbase_offsets[0]; */
137 FIELD_NAME (*field) = "vcall_and_vbase_offsets";
138 field->set_type (lookup_array_range_type (ptrdiff_type, 0, -1));
139 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
140 offset += TYPE_LENGTH (field->type ());
141 field++;
142
143 /* ptrdiff_t offset_to_top; */
144 FIELD_NAME (*field) = "offset_to_top";
145 field->set_type (ptrdiff_type);
146 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
147 offset += TYPE_LENGTH (field->type ());
148 field++;
149
150 /* void *type_info; */
151 FIELD_NAME (*field) = "type_info";
152 field->set_type (void_ptr_type);
153 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
154 offset += TYPE_LENGTH (field->type ());
155 field++;
156
157 /* void (*virtual_functions[0]) (); */
158 FIELD_NAME (*field) = "virtual_functions";
159 field->set_type (lookup_array_range_type (ptr_to_void_fn_type, 0, -1));
160 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
161 offset += TYPE_LENGTH (field->type ());
162 field++;
163
164 /* We assumed in the allocation above that there were four fields. */
165 gdb_assert (field == (field_list + 4));
166
167 t = arch_type (arch, TYPE_CODE_STRUCT, offset * TARGET_CHAR_BIT, NULL);
168 t->set_num_fields (field - field_list);
169 t->set_fields (field_list);
170 t->set_name ("gdb_gnu_v3_abi_vtable");
171 INIT_CPLUS_SPECIFIC (t);
172
173 return make_type_with_address_space (t, TYPE_INSTANCE_FLAG_CODE_SPACE);
174 }
175
176
177 /* Return the ptrdiff_t type used in the vtable type. */
178 static struct type *
179 vtable_ptrdiff_type (struct gdbarch *gdbarch)
180 {
181 struct type *vtable_type
182 = (struct type *) gdbarch_data (gdbarch, vtable_type_gdbarch_data);
183
184 /* The "offset_to_top" field has the appropriate (ptrdiff_t) type. */
185 return vtable_type->field (vtable_field_offset_to_top).type ();
186 }
187
188 /* Return the offset from the start of the imaginary `struct
189 gdb_gnu_v3_abi_vtable' object to the vtable's "address point"
190 (i.e., where objects' virtual table pointers point). */
191 static int
192 vtable_address_point_offset (struct gdbarch *gdbarch)
193 {
194 struct type *vtable_type
195 = (struct type *) gdbarch_data (gdbarch, vtable_type_gdbarch_data);
196
197 return (TYPE_FIELD_BITPOS (vtable_type, vtable_field_virtual_functions)
198 / TARGET_CHAR_BIT);
199 }
200
201
202 /* Determine whether structure TYPE is a dynamic class. Cache the
203 result. */
204
205 static int
206 gnuv3_dynamic_class (struct type *type)
207 {
208 int fieldnum, fieldelem;
209
210 type = check_typedef (type);
211 gdb_assert (type->code () == TYPE_CODE_STRUCT
212 || type->code () == TYPE_CODE_UNION);
213
214 if (type->code () == TYPE_CODE_UNION)
215 return 0;
216
217 if (TYPE_CPLUS_DYNAMIC (type))
218 return TYPE_CPLUS_DYNAMIC (type) == 1;
219
220 ALLOCATE_CPLUS_STRUCT_TYPE (type);
221
222 for (fieldnum = 0; fieldnum < TYPE_N_BASECLASSES (type); fieldnum++)
223 if (BASETYPE_VIA_VIRTUAL (type, fieldnum)
224 || gnuv3_dynamic_class (type->field (fieldnum).type ()))
225 {
226 TYPE_CPLUS_DYNAMIC (type) = 1;
227 return 1;
228 }
229
230 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
231 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
232 fieldelem++)
233 {
234 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, fieldnum);
235
236 if (TYPE_FN_FIELD_VIRTUAL_P (f, fieldelem))
237 {
238 TYPE_CPLUS_DYNAMIC (type) = 1;
239 return 1;
240 }
241 }
242
243 TYPE_CPLUS_DYNAMIC (type) = -1;
244 return 0;
245 }
246
247 /* Find the vtable for a value of CONTAINER_TYPE located at
248 CONTAINER_ADDR. Return a value of the correct vtable type for this
249 architecture, or NULL if CONTAINER does not have a vtable. */
250
251 static struct value *
252 gnuv3_get_vtable (struct gdbarch *gdbarch,
253 struct type *container_type, CORE_ADDR container_addr)
254 {
255 struct type *vtable_type
256 = (struct type *) gdbarch_data (gdbarch, vtable_type_gdbarch_data);
257 struct type *vtable_pointer_type;
258 struct value *vtable_pointer;
259 CORE_ADDR vtable_address;
260
261 container_type = check_typedef (container_type);
262 gdb_assert (container_type->code () == TYPE_CODE_STRUCT);
263
264 /* If this type does not have a virtual table, don't read the first
265 field. */
266 if (!gnuv3_dynamic_class (container_type))
267 return NULL;
268
269 /* We do not consult the debug information to find the virtual table.
270 The ABI specifies that it is always at offset zero in any class,
271 and debug information may not represent it.
272
273 We avoid using value_contents on principle, because the object might
274 be large. */
275
276 /* Find the type "pointer to virtual table". */
277 vtable_pointer_type = lookup_pointer_type (vtable_type);
278
279 /* Load it from the start of the class. */
280 vtable_pointer = value_at (vtable_pointer_type, container_addr);
281 vtable_address = value_as_address (vtable_pointer);
282
283 /* Correct it to point at the start of the virtual table, rather
284 than the address point. */
285 return value_at_lazy (vtable_type,
286 vtable_address
287 - vtable_address_point_offset (gdbarch));
288 }
289
290
291 static struct type *
292 gnuv3_rtti_type (struct value *value,
293 int *full_p, LONGEST *top_p, int *using_enc_p)
294 {
295 struct gdbarch *gdbarch;
296 struct type *values_type = check_typedef (value_type (value));
297 struct value *vtable;
298 struct minimal_symbol *vtable_symbol;
299 const char *vtable_symbol_name;
300 const char *class_name;
301 struct type *run_time_type;
302 LONGEST offset_to_top;
303 const char *atsign;
304
305 /* We only have RTTI for dynamic class objects. */
306 if (values_type->code () != TYPE_CODE_STRUCT
307 || !gnuv3_dynamic_class (values_type))
308 return NULL;
309
310 /* Determine architecture. */
311 gdbarch = get_type_arch (values_type);
312
313 if (using_enc_p)
314 *using_enc_p = 0;
315
316 vtable = gnuv3_get_vtable (gdbarch, values_type,
317 value_as_address (value_addr (value)));
318 if (vtable == NULL)
319 return NULL;
320
321 /* Find the linker symbol for this vtable. */
322 vtable_symbol
323 = lookup_minimal_symbol_by_pc (value_address (vtable)
324 + value_embedded_offset (vtable)).minsym;
325 if (! vtable_symbol)
326 return NULL;
327
328 /* The symbol's demangled name should be something like "vtable for
329 CLASS", where CLASS is the name of the run-time type of VALUE.
330 If we didn't like this approach, we could instead look in the
331 type_info object itself to get the class name. But this way
332 should work just as well, and doesn't read target memory. */
333 vtable_symbol_name = vtable_symbol->demangled_name ();
334 if (vtable_symbol_name == NULL
335 || !startswith (vtable_symbol_name, "vtable for "))
336 {
337 warning (_("can't find linker symbol for virtual table for `%s' value"),
338 TYPE_SAFE_NAME (values_type));
339 if (vtable_symbol_name)
340 warning (_(" found `%s' instead"), vtable_symbol_name);
341 return NULL;
342 }
343 class_name = vtable_symbol_name + 11;
344
345 /* Strip off @plt and version suffixes. */
346 atsign = strchr (class_name, '@');
347 if (atsign != NULL)
348 {
349 char *copy;
350
351 copy = (char *) alloca (atsign - class_name + 1);
352 memcpy (copy, class_name, atsign - class_name);
353 copy[atsign - class_name] = '\0';
354 class_name = copy;
355 }
356
357 /* Try to look up the class name as a type name. */
358 /* FIXME: chastain/2003-11-26: block=NULL is bogus. See pr gdb/1465. */
359 run_time_type = cp_lookup_rtti_type (class_name, NULL);
360 if (run_time_type == NULL)
361 return NULL;
362
363 /* Get the offset from VALUE to the top of the complete object.
364 NOTE: this is the reverse of the meaning of *TOP_P. */
365 offset_to_top
366 = value_as_long (value_field (vtable, vtable_field_offset_to_top));
367
368 if (full_p)
369 *full_p = (- offset_to_top == value_embedded_offset (value)
370 && (TYPE_LENGTH (value_enclosing_type (value))
371 >= TYPE_LENGTH (run_time_type)));
372 if (top_p)
373 *top_p = - offset_to_top;
374 return run_time_type;
375 }
376
377 /* Return a function pointer for CONTAINER's VTABLE_INDEX'th virtual
378 function, of type FNTYPE. */
379
380 static struct value *
381 gnuv3_get_virtual_fn (struct gdbarch *gdbarch, struct value *container,
382 struct type *fntype, int vtable_index)
383 {
384 struct value *vtable, *vfn;
385
386 /* Every class with virtual functions must have a vtable. */
387 vtable = gnuv3_get_vtable (gdbarch, value_type (container),
388 value_as_address (value_addr (container)));
389 gdb_assert (vtable != NULL);
390
391 /* Fetch the appropriate function pointer from the vtable. */
392 vfn = value_subscript (value_field (vtable, vtable_field_virtual_functions),
393 vtable_index);
394
395 /* If this architecture uses function descriptors directly in the vtable,
396 then the address of the vtable entry is actually a "function pointer"
397 (i.e. points to the descriptor). We don't need to scale the index
398 by the size of a function descriptor; GCC does that before outputting
399 debug information. */
400 if (gdbarch_vtable_function_descriptors (gdbarch))
401 vfn = value_addr (vfn);
402
403 /* Cast the function pointer to the appropriate type. */
404 vfn = value_cast (lookup_pointer_type (fntype), vfn);
405
406 return vfn;
407 }
408
409 /* GNU v3 implementation of value_virtual_fn_field. See cp-abi.h
410 for a description of the arguments. */
411
412 static struct value *
413 gnuv3_virtual_fn_field (struct value **value_p,
414 struct fn_field *f, int j,
415 struct type *vfn_base, int offset)
416 {
417 struct type *values_type = check_typedef (value_type (*value_p));
418 struct gdbarch *gdbarch;
419
420 /* Some simple sanity checks. */
421 if (values_type->code () != TYPE_CODE_STRUCT)
422 error (_("Only classes can have virtual functions."));
423
424 /* Determine architecture. */
425 gdbarch = get_type_arch (values_type);
426
427 /* Cast our value to the base class which defines this virtual
428 function. This takes care of any necessary `this'
429 adjustments. */
430 if (vfn_base != values_type)
431 *value_p = value_cast (vfn_base, *value_p);
432
433 return gnuv3_get_virtual_fn (gdbarch, *value_p, TYPE_FN_FIELD_TYPE (f, j),
434 TYPE_FN_FIELD_VOFFSET (f, j));
435 }
436
437 /* Compute the offset of the baseclass which is
438 the INDEXth baseclass of class TYPE,
439 for value at VALADDR (in host) at ADDRESS (in target).
440 The result is the offset of the baseclass value relative
441 to (the address of)(ARG) + OFFSET.
442
443 -1 is returned on error. */
444
445 static int
446 gnuv3_baseclass_offset (struct type *type, int index,
447 const bfd_byte *valaddr, LONGEST embedded_offset,
448 CORE_ADDR address, const struct value *val)
449 {
450 struct gdbarch *gdbarch;
451 struct type *ptr_type;
452 struct value *vtable;
453 struct value *vbase_array;
454 long int cur_base_offset, base_offset;
455
456 /* Determine architecture. */
457 gdbarch = get_type_arch (type);
458 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
459
460 /* If it isn't a virtual base, this is easy. The offset is in the
461 type definition. */
462 if (!BASETYPE_VIA_VIRTUAL (type, index))
463 return TYPE_BASECLASS_BITPOS (type, index) / 8;
464
465 /* If we have a DWARF expression for the offset, evaluate it. */
466 if (TYPE_FIELD_LOC_KIND (type, index) == FIELD_LOC_KIND_DWARF_BLOCK)
467 {
468 struct dwarf2_property_baton baton;
469 baton.property_type
470 = lookup_pointer_type (type->field (index).type ());
471 baton.locexpr = *TYPE_FIELD_DWARF_BLOCK (type, index);
472
473 struct dynamic_prop prop;
474 prop.set_locexpr (&baton);
475
476 struct property_addr_info addr_stack;
477 addr_stack.type = type;
478 /* Note that we don't set "valaddr" here. Doing so causes
479 regressions. FIXME. */
480 addr_stack.addr = address + embedded_offset;
481 addr_stack.next = nullptr;
482
483 CORE_ADDR result;
484 if (dwarf2_evaluate_property (&prop, nullptr, &addr_stack, &result,
485 true))
486 return (int) (result - addr_stack.addr);
487 }
488
489 /* To access a virtual base, we need to use the vbase offset stored in
490 our vtable. Recent GCC versions provide this information. If it isn't
491 available, we could get what we needed from RTTI, or from drawing the
492 complete inheritance graph based on the debug info. Neither is
493 worthwhile. */
494 cur_base_offset = TYPE_BASECLASS_BITPOS (type, index) / 8;
495 if (cur_base_offset >= - vtable_address_point_offset (gdbarch))
496 error (_("Expected a negative vbase offset (old compiler?)"));
497
498 cur_base_offset = cur_base_offset + vtable_address_point_offset (gdbarch);
499 if ((- cur_base_offset) % TYPE_LENGTH (ptr_type) != 0)
500 error (_("Misaligned vbase offset."));
501 cur_base_offset = cur_base_offset / ((int) TYPE_LENGTH (ptr_type));
502
503 vtable = gnuv3_get_vtable (gdbarch, type, address + embedded_offset);
504 gdb_assert (vtable != NULL);
505 vbase_array = value_field (vtable, vtable_field_vcall_and_vbase_offsets);
506 base_offset = value_as_long (value_subscript (vbase_array, cur_base_offset));
507 return base_offset;
508 }
509
510 /* Locate a virtual method in DOMAIN or its non-virtual base classes
511 which has virtual table index VOFFSET. The method has an associated
512 "this" adjustment of ADJUSTMENT bytes. */
513
514 static const char *
515 gnuv3_find_method_in (struct type *domain, CORE_ADDR voffset,
516 LONGEST adjustment)
517 {
518 int i;
519
520 /* Search this class first. */
521 if (adjustment == 0)
522 {
523 int len;
524
525 len = TYPE_NFN_FIELDS (domain);
526 for (i = 0; i < len; i++)
527 {
528 int len2, j;
529 struct fn_field *f;
530
531 f = TYPE_FN_FIELDLIST1 (domain, i);
532 len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
533
534 check_stub_method_group (domain, i);
535 for (j = 0; j < len2; j++)
536 if (TYPE_FN_FIELD_VOFFSET (f, j) == voffset)
537 return TYPE_FN_FIELD_PHYSNAME (f, j);
538 }
539 }
540
541 /* Next search non-virtual bases. If it's in a virtual base,
542 we're out of luck. */
543 for (i = 0; i < TYPE_N_BASECLASSES (domain); i++)
544 {
545 int pos;
546 struct type *basetype;
547
548 if (BASETYPE_VIA_VIRTUAL (domain, i))
549 continue;
550
551 pos = TYPE_BASECLASS_BITPOS (domain, i) / 8;
552 basetype = domain->field (i).type ();
553 /* Recurse with a modified adjustment. We don't need to adjust
554 voffset. */
555 if (adjustment >= pos && adjustment < pos + TYPE_LENGTH (basetype))
556 return gnuv3_find_method_in (basetype, voffset, adjustment - pos);
557 }
558
559 return NULL;
560 }
561
562 /* Decode GNU v3 method pointer. */
563
564 static int
565 gnuv3_decode_method_ptr (struct gdbarch *gdbarch,
566 const gdb_byte *contents,
567 CORE_ADDR *value_p,
568 LONGEST *adjustment_p)
569 {
570 struct type *funcptr_type = builtin_type (gdbarch)->builtin_func_ptr;
571 struct type *offset_type = vtable_ptrdiff_type (gdbarch);
572 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
573 CORE_ADDR ptr_value;
574 LONGEST voffset, adjustment;
575 int vbit;
576
577 /* Extract the pointer to member. The first element is either a pointer
578 or a vtable offset. For pointers, we need to use extract_typed_address
579 to allow the back-end to convert the pointer to a GDB address -- but
580 vtable offsets we must handle as integers. At this point, we do not
581 yet know which case we have, so we extract the value under both
582 interpretations and choose the right one later on. */
583 ptr_value = extract_typed_address (contents, funcptr_type);
584 voffset = extract_signed_integer (contents,
585 TYPE_LENGTH (funcptr_type), byte_order);
586 contents += TYPE_LENGTH (funcptr_type);
587 adjustment = extract_signed_integer (contents,
588 TYPE_LENGTH (offset_type), byte_order);
589
590 if (!gdbarch_vbit_in_delta (gdbarch))
591 {
592 vbit = voffset & 1;
593 voffset = voffset ^ vbit;
594 }
595 else
596 {
597 vbit = adjustment & 1;
598 adjustment = adjustment >> 1;
599 }
600
601 *value_p = vbit? voffset : ptr_value;
602 *adjustment_p = adjustment;
603 return vbit;
604 }
605
606 /* GNU v3 implementation of cplus_print_method_ptr. */
607
608 static void
609 gnuv3_print_method_ptr (const gdb_byte *contents,
610 struct type *type,
611 struct ui_file *stream)
612 {
613 struct type *self_type = TYPE_SELF_TYPE (type);
614 struct gdbarch *gdbarch = get_type_arch (self_type);
615 CORE_ADDR ptr_value;
616 LONGEST adjustment;
617 int vbit;
618
619 /* Extract the pointer to member. */
620 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
621
622 /* Check for NULL. */
623 if (ptr_value == 0 && vbit == 0)
624 {
625 fprintf_filtered (stream, "NULL");
626 return;
627 }
628
629 /* Search for a virtual method. */
630 if (vbit)
631 {
632 CORE_ADDR voffset;
633 const char *physname;
634
635 /* It's a virtual table offset, maybe in this class. Search
636 for a field with the correct vtable offset. First convert it
637 to an index, as used in TYPE_FN_FIELD_VOFFSET. */
638 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
639
640 physname = gnuv3_find_method_in (self_type, voffset, adjustment);
641
642 /* If we found a method, print that. We don't bother to disambiguate
643 possible paths to the method based on the adjustment. */
644 if (physname)
645 {
646 char *demangled_name = gdb_demangle (physname,
647 DMGL_ANSI | DMGL_PARAMS);
648
649 fprintf_filtered (stream, "&virtual ");
650 if (demangled_name == NULL)
651 fputs_filtered (physname, stream);
652 else
653 {
654 fputs_filtered (demangled_name, stream);
655 xfree (demangled_name);
656 }
657 return;
658 }
659 }
660 else if (ptr_value != 0)
661 {
662 /* Found a non-virtual function: print out the type. */
663 fputs_filtered ("(", stream);
664 c_print_type (type, "", stream, -1, 0, &type_print_raw_options);
665 fputs_filtered (") ", stream);
666 }
667
668 /* We didn't find it; print the raw data. */
669 if (vbit)
670 {
671 fprintf_filtered (stream, "&virtual table offset ");
672 print_longest (stream, 'd', 1, ptr_value);
673 }
674 else
675 {
676 struct value_print_options opts;
677
678 get_user_print_options (&opts);
679 print_address_demangle (&opts, gdbarch, ptr_value, stream, demangle);
680 }
681
682 if (adjustment)
683 {
684 fprintf_filtered (stream, ", this adjustment ");
685 print_longest (stream, 'd', 1, adjustment);
686 }
687 }
688
689 /* GNU v3 implementation of cplus_method_ptr_size. */
690
691 static int
692 gnuv3_method_ptr_size (struct type *type)
693 {
694 struct gdbarch *gdbarch = get_type_arch (type);
695
696 return 2 * TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
697 }
698
699 /* GNU v3 implementation of cplus_make_method_ptr. */
700
701 static void
702 gnuv3_make_method_ptr (struct type *type, gdb_byte *contents,
703 CORE_ADDR value, int is_virtual)
704 {
705 struct gdbarch *gdbarch = get_type_arch (type);
706 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
707 enum bfd_endian byte_order = type_byte_order (type);
708
709 /* FIXME drow/2006-12-24: The adjustment of "this" is currently
710 always zero, since the method pointer is of the correct type.
711 But if the method pointer came from a base class, this is
712 incorrect - it should be the offset to the base. The best
713 fix might be to create the pointer to member pointing at the
714 base class and cast it to the derived class, but that requires
715 support for adjusting pointers to members when casting them -
716 not currently supported by GDB. */
717
718 if (!gdbarch_vbit_in_delta (gdbarch))
719 {
720 store_unsigned_integer (contents, size, byte_order, value | is_virtual);
721 store_unsigned_integer (contents + size, size, byte_order, 0);
722 }
723 else
724 {
725 store_unsigned_integer (contents, size, byte_order, value);
726 store_unsigned_integer (contents + size, size, byte_order, is_virtual);
727 }
728 }
729
730 /* GNU v3 implementation of cplus_method_ptr_to_value. */
731
732 static struct value *
733 gnuv3_method_ptr_to_value (struct value **this_p, struct value *method_ptr)
734 {
735 struct gdbarch *gdbarch;
736 const gdb_byte *contents = value_contents (method_ptr);
737 CORE_ADDR ptr_value;
738 struct type *self_type, *final_type, *method_type;
739 LONGEST adjustment;
740 int vbit;
741
742 self_type = TYPE_SELF_TYPE (check_typedef (value_type (method_ptr)));
743 final_type = lookup_pointer_type (self_type);
744
745 method_type = TYPE_TARGET_TYPE (check_typedef (value_type (method_ptr)));
746
747 /* Extract the pointer to member. */
748 gdbarch = get_type_arch (self_type);
749 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
750
751 /* First convert THIS to match the containing type of the pointer to
752 member. This cast may adjust the value of THIS. */
753 *this_p = value_cast (final_type, *this_p);
754
755 /* Then apply whatever adjustment is necessary. This creates a somewhat
756 strange pointer: it claims to have type FINAL_TYPE, but in fact it
757 might not be a valid FINAL_TYPE. For instance, it might be a
758 base class of FINAL_TYPE. And if it's not the primary base class,
759 then printing it out as a FINAL_TYPE object would produce some pretty
760 garbage.
761
762 But we don't really know the type of the first argument in
763 METHOD_TYPE either, which is why this happens. We can't
764 dereference this later as a FINAL_TYPE, but once we arrive in the
765 called method we'll have debugging information for the type of
766 "this" - and that'll match the value we produce here.
767
768 You can provoke this case by casting a Base::* to a Derived::*, for
769 instance. */
770 *this_p = value_cast (builtin_type (gdbarch)->builtin_data_ptr, *this_p);
771 *this_p = value_ptradd (*this_p, adjustment);
772 *this_p = value_cast (final_type, *this_p);
773
774 if (vbit)
775 {
776 LONGEST voffset;
777
778 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
779 return gnuv3_get_virtual_fn (gdbarch, value_ind (*this_p),
780 method_type, voffset);
781 }
782 else
783 return value_from_pointer (lookup_pointer_type (method_type), ptr_value);
784 }
785
786 /* Objects of this type are stored in a hash table and a vector when
787 printing the vtables for a class. */
788
789 struct value_and_voffset
790 {
791 /* The value representing the object. */
792 struct value *value;
793
794 /* The maximum vtable offset we've found for any object at this
795 offset in the outermost object. */
796 int max_voffset;
797 };
798
799 /* Hash function for value_and_voffset. */
800
801 static hashval_t
802 hash_value_and_voffset (const void *p)
803 {
804 const struct value_and_voffset *o = (const struct value_and_voffset *) p;
805
806 return value_address (o->value) + value_embedded_offset (o->value);
807 }
808
809 /* Equality function for value_and_voffset. */
810
811 static int
812 eq_value_and_voffset (const void *a, const void *b)
813 {
814 const struct value_and_voffset *ova = (const struct value_and_voffset *) a;
815 const struct value_and_voffset *ovb = (const struct value_and_voffset *) b;
816
817 return (value_address (ova->value) + value_embedded_offset (ova->value)
818 == value_address (ovb->value) + value_embedded_offset (ovb->value));
819 }
820
821 /* Comparison function for value_and_voffset. */
822
823 static bool
824 compare_value_and_voffset (const struct value_and_voffset *va,
825 const struct value_and_voffset *vb)
826 {
827 CORE_ADDR addra = (value_address (va->value)
828 + value_embedded_offset (va->value));
829 CORE_ADDR addrb = (value_address (vb->value)
830 + value_embedded_offset (vb->value));
831
832 return addra < addrb;
833 }
834
835 /* A helper function used when printing vtables. This determines the
836 key (most derived) sub-object at each address and also computes the
837 maximum vtable offset seen for the corresponding vtable. Updates
838 OFFSET_HASH and OFFSET_VEC with a new value_and_voffset object, if
839 needed. VALUE is the object to examine. */
840
841 static void
842 compute_vtable_size (htab_t offset_hash,
843 std::vector<value_and_voffset *> *offset_vec,
844 struct value *value)
845 {
846 int i;
847 struct type *type = check_typedef (value_type (value));
848 void **slot;
849 struct value_and_voffset search_vo, *current_vo;
850
851 gdb_assert (type->code () == TYPE_CODE_STRUCT);
852
853 /* If the object is not dynamic, then we are done; as it cannot have
854 dynamic base types either. */
855 if (!gnuv3_dynamic_class (type))
856 return;
857
858 /* Update the hash and the vec, if needed. */
859 search_vo.value = value;
860 slot = htab_find_slot (offset_hash, &search_vo, INSERT);
861 if (*slot)
862 current_vo = (struct value_and_voffset *) *slot;
863 else
864 {
865 current_vo = XNEW (struct value_and_voffset);
866 current_vo->value = value;
867 current_vo->max_voffset = -1;
868 *slot = current_vo;
869 offset_vec->push_back (current_vo);
870 }
871
872 /* Update the value_and_voffset object with the highest vtable
873 offset from this class. */
874 for (i = 0; i < TYPE_NFN_FIELDS (type); ++i)
875 {
876 int j;
877 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, i);
878
879 for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (type, i); ++j)
880 {
881 if (TYPE_FN_FIELD_VIRTUAL_P (fn, j))
882 {
883 int voffset = TYPE_FN_FIELD_VOFFSET (fn, j);
884
885 if (voffset > current_vo->max_voffset)
886 current_vo->max_voffset = voffset;
887 }
888 }
889 }
890
891 /* Recurse into base classes. */
892 for (i = 0; i < TYPE_N_BASECLASSES (type); ++i)
893 compute_vtable_size (offset_hash, offset_vec, value_field (value, i));
894 }
895
896 /* Helper for gnuv3_print_vtable that prints a single vtable. */
897
898 static void
899 print_one_vtable (struct gdbarch *gdbarch, struct value *value,
900 int max_voffset,
901 struct value_print_options *opts)
902 {
903 int i;
904 struct type *type = check_typedef (value_type (value));
905 struct value *vtable;
906 CORE_ADDR vt_addr;
907
908 vtable = gnuv3_get_vtable (gdbarch, type,
909 value_address (value)
910 + value_embedded_offset (value));
911 vt_addr = value_address (value_field (vtable,
912 vtable_field_virtual_functions));
913
914 printf_filtered (_("vtable for '%s' @ %s (subobject @ %s):\n"),
915 TYPE_SAFE_NAME (type),
916 paddress (gdbarch, vt_addr),
917 paddress (gdbarch, (value_address (value)
918 + value_embedded_offset (value))));
919
920 for (i = 0; i <= max_voffset; ++i)
921 {
922 /* Initialize it just to avoid a GCC false warning. */
923 CORE_ADDR addr = 0;
924 int got_error = 0;
925 struct value *vfn;
926
927 printf_filtered ("[%d]: ", i);
928
929 vfn = value_subscript (value_field (vtable,
930 vtable_field_virtual_functions),
931 i);
932
933 if (gdbarch_vtable_function_descriptors (gdbarch))
934 vfn = value_addr (vfn);
935
936 try
937 {
938 addr = value_as_address (vfn);
939 }
940 catch (const gdb_exception_error &ex)
941 {
942 fprintf_styled (gdb_stdout, metadata_style.style (),
943 _("<error: %s>"), ex.what ());
944 got_error = 1;
945 }
946
947 if (!got_error)
948 print_function_pointer_address (opts, gdbarch, addr, gdb_stdout);
949 printf_filtered ("\n");
950 }
951 }
952
953 /* Implementation of the print_vtable method. */
954
955 static void
956 gnuv3_print_vtable (struct value *value)
957 {
958 struct gdbarch *gdbarch;
959 struct type *type;
960 struct value *vtable;
961 struct value_print_options opts;
962 int count;
963
964 value = coerce_ref (value);
965 type = check_typedef (value_type (value));
966 if (type->code () == TYPE_CODE_PTR)
967 {
968 value = value_ind (value);
969 type = check_typedef (value_type (value));
970 }
971
972 get_user_print_options (&opts);
973
974 /* Respect 'set print object'. */
975 if (opts.objectprint)
976 {
977 value = value_full_object (value, NULL, 0, 0, 0);
978 type = check_typedef (value_type (value));
979 }
980
981 gdbarch = get_type_arch (type);
982
983 vtable = NULL;
984 if (type->code () == TYPE_CODE_STRUCT)
985 vtable = gnuv3_get_vtable (gdbarch, type,
986 value_as_address (value_addr (value)));
987
988 if (!vtable)
989 {
990 printf_filtered (_("This object does not have a virtual function table\n"));
991 return;
992 }
993
994 htab_up offset_hash (htab_create_alloc (1, hash_value_and_voffset,
995 eq_value_and_voffset,
996 xfree, xcalloc, xfree));
997 std::vector<value_and_voffset *> result_vec;
998
999 compute_vtable_size (offset_hash.get (), &result_vec, value);
1000 std::sort (result_vec.begin (), result_vec.end (),
1001 compare_value_and_voffset);
1002
1003 count = 0;
1004 for (value_and_voffset *iter : result_vec)
1005 {
1006 if (iter->max_voffset >= 0)
1007 {
1008 if (count > 0)
1009 printf_filtered ("\n");
1010 print_one_vtable (gdbarch, iter->value, iter->max_voffset, &opts);
1011 ++count;
1012 }
1013 }
1014 }
1015
1016 /* Return a GDB type representing `struct std::type_info', laid out
1017 appropriately for ARCH.
1018
1019 We use this function as the gdbarch per-architecture data
1020 initialization function. */
1021
1022 static void *
1023 build_std_type_info_type (struct gdbarch *arch)
1024 {
1025 struct type *t;
1026 struct field *field_list, *field;
1027 int offset;
1028 struct type *void_ptr_type
1029 = builtin_type (arch)->builtin_data_ptr;
1030 struct type *char_type
1031 = builtin_type (arch)->builtin_char;
1032 struct type *char_ptr_type
1033 = make_pointer_type (make_cv_type (1, 0, char_type, NULL), NULL);
1034
1035 field_list = XCNEWVEC (struct field, 2);
1036 field = &field_list[0];
1037 offset = 0;
1038
1039 /* The vtable. */
1040 FIELD_NAME (*field) = "_vptr.type_info";
1041 field->set_type (void_ptr_type);
1042 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
1043 offset += TYPE_LENGTH (field->type ());
1044 field++;
1045
1046 /* The name. */
1047 FIELD_NAME (*field) = "__name";
1048 field->set_type (char_ptr_type);
1049 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
1050 offset += TYPE_LENGTH (field->type ());
1051 field++;
1052
1053 gdb_assert (field == (field_list + 2));
1054
1055 t = arch_type (arch, TYPE_CODE_STRUCT, offset * TARGET_CHAR_BIT, NULL);
1056 t->set_num_fields (field - field_list);
1057 t->set_fields (field_list);
1058 t->set_name ("gdb_gnu_v3_type_info");
1059 INIT_CPLUS_SPECIFIC (t);
1060
1061 return t;
1062 }
1063
1064 /* Implement the 'get_typeid_type' method. */
1065
1066 static struct type *
1067 gnuv3_get_typeid_type (struct gdbarch *gdbarch)
1068 {
1069 struct symbol *typeinfo;
1070 struct type *typeinfo_type;
1071
1072 typeinfo = lookup_symbol ("std::type_info", NULL, STRUCT_DOMAIN,
1073 NULL).symbol;
1074 if (typeinfo == NULL)
1075 typeinfo_type
1076 = (struct type *) gdbarch_data (gdbarch, std_type_info_gdbarch_data);
1077 else
1078 typeinfo_type = SYMBOL_TYPE (typeinfo);
1079
1080 return typeinfo_type;
1081 }
1082
1083 /* Implement the 'get_typeid' method. */
1084
1085 static struct value *
1086 gnuv3_get_typeid (struct value *value)
1087 {
1088 struct type *typeinfo_type;
1089 struct type *type;
1090 struct gdbarch *gdbarch;
1091 struct value *result;
1092 std::string type_name;
1093 gdb::unique_xmalloc_ptr<char> canonical;
1094
1095 /* We have to handle values a bit trickily here, to allow this code
1096 to work properly with non_lvalue values that are really just
1097 disguised types. */
1098 if (value_lval_const (value) == lval_memory)
1099 value = coerce_ref (value);
1100
1101 type = check_typedef (value_type (value));
1102
1103 /* In the non_lvalue case, a reference might have slipped through
1104 here. */
1105 if (type->code () == TYPE_CODE_REF)
1106 type = check_typedef (TYPE_TARGET_TYPE (type));
1107
1108 /* Ignore top-level cv-qualifiers. */
1109 type = make_cv_type (0, 0, type, NULL);
1110 gdbarch = get_type_arch (type);
1111
1112 type_name = type_to_string (type);
1113 if (type_name.empty ())
1114 error (_("cannot find typeinfo for unnamed type"));
1115
1116 /* We need to canonicalize the type name here, because we do lookups
1117 using the demangled name, and so we must match the format it
1118 uses. E.g., GDB tends to use "const char *" as a type name, but
1119 the demangler uses "char const *". */
1120 canonical = cp_canonicalize_string (type_name.c_str ());
1121 const char *name = (canonical == nullptr
1122 ? type_name.c_str ()
1123 : canonical.get ());
1124
1125 typeinfo_type = gnuv3_get_typeid_type (gdbarch);
1126
1127 /* We check for lval_memory because in the "typeid (type-id)" case,
1128 the type is passed via a not_lval value object. */
1129 if (type->code () == TYPE_CODE_STRUCT
1130 && value_lval_const (value) == lval_memory
1131 && gnuv3_dynamic_class (type))
1132 {
1133 struct value *vtable, *typeinfo_value;
1134 CORE_ADDR address = value_address (value) + value_embedded_offset (value);
1135
1136 vtable = gnuv3_get_vtable (gdbarch, type, address);
1137 if (vtable == NULL)
1138 error (_("cannot find typeinfo for object of type '%s'"),
1139 name);
1140 typeinfo_value = value_field (vtable, vtable_field_type_info);
1141 result = value_ind (value_cast (make_pointer_type (typeinfo_type, NULL),
1142 typeinfo_value));
1143 }
1144 else
1145 {
1146 std::string sym_name = std::string ("typeinfo for ") + name;
1147 bound_minimal_symbol minsym
1148 = lookup_minimal_symbol (sym_name.c_str (), NULL, NULL);
1149
1150 if (minsym.minsym == NULL)
1151 error (_("could not find typeinfo symbol for '%s'"), name);
1152
1153 result = value_at_lazy (typeinfo_type, BMSYMBOL_VALUE_ADDRESS (minsym));
1154 }
1155
1156 return result;
1157 }
1158
1159 /* Implement the 'get_typename_from_type_info' method. */
1160
1161 static std::string
1162 gnuv3_get_typename_from_type_info (struct value *type_info_ptr)
1163 {
1164 struct gdbarch *gdbarch = get_type_arch (value_type (type_info_ptr));
1165 struct bound_minimal_symbol typeinfo_sym;
1166 CORE_ADDR addr;
1167 const char *symname;
1168 const char *class_name;
1169 const char *atsign;
1170
1171 addr = value_as_address (type_info_ptr);
1172 typeinfo_sym = lookup_minimal_symbol_by_pc (addr);
1173 if (typeinfo_sym.minsym == NULL)
1174 error (_("could not find minimal symbol for typeinfo address %s"),
1175 paddress (gdbarch, addr));
1176
1177 #define TYPEINFO_PREFIX "typeinfo for "
1178 #define TYPEINFO_PREFIX_LEN (sizeof (TYPEINFO_PREFIX) - 1)
1179 symname = typeinfo_sym.minsym->demangled_name ();
1180 if (symname == NULL || strncmp (symname, TYPEINFO_PREFIX,
1181 TYPEINFO_PREFIX_LEN))
1182 error (_("typeinfo symbol '%s' has unexpected name"),
1183 typeinfo_sym.minsym->linkage_name ());
1184 class_name = symname + TYPEINFO_PREFIX_LEN;
1185
1186 /* Strip off @plt and version suffixes. */
1187 atsign = strchr (class_name, '@');
1188 if (atsign != NULL)
1189 return std::string (class_name, atsign - class_name);
1190 return class_name;
1191 }
1192
1193 /* Implement the 'get_type_from_type_info' method. */
1194
1195 static struct type *
1196 gnuv3_get_type_from_type_info (struct value *type_info_ptr)
1197 {
1198 /* We have to parse the type name, since in general there is not a
1199 symbol for a type. This is somewhat bogus since there may be a
1200 mis-parse. Another approach might be to re-use the demangler's
1201 internal form to reconstruct the type somehow. */
1202 std::string type_name = gnuv3_get_typename_from_type_info (type_info_ptr);
1203 expression_up expr (parse_expression (type_name.c_str ()));
1204 struct value *type_val = evaluate_type (expr.get ());
1205 return value_type (type_val);
1206 }
1207
1208 /* Determine if we are currently in a C++ thunk. If so, get the address
1209 of the routine we are thunking to and continue to there instead. */
1210
1211 static CORE_ADDR
1212 gnuv3_skip_trampoline (struct frame_info *frame, CORE_ADDR stop_pc)
1213 {
1214 CORE_ADDR real_stop_pc, method_stop_pc, func_addr;
1215 struct gdbarch *gdbarch = get_frame_arch (frame);
1216 struct bound_minimal_symbol thunk_sym, fn_sym;
1217 struct obj_section *section;
1218 const char *thunk_name, *fn_name;
1219
1220 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
1221 if (real_stop_pc == 0)
1222 real_stop_pc = stop_pc;
1223
1224 /* Find the linker symbol for this potential thunk. */
1225 thunk_sym = lookup_minimal_symbol_by_pc (real_stop_pc);
1226 section = find_pc_section (real_stop_pc);
1227 if (thunk_sym.minsym == NULL || section == NULL)
1228 return 0;
1229
1230 /* The symbol's demangled name should be something like "virtual
1231 thunk to FUNCTION", where FUNCTION is the name of the function
1232 being thunked to. */
1233 thunk_name = thunk_sym.minsym->demangled_name ();
1234 if (thunk_name == NULL || strstr (thunk_name, " thunk to ") == NULL)
1235 return 0;
1236
1237 fn_name = strstr (thunk_name, " thunk to ") + strlen (" thunk to ");
1238 fn_sym = lookup_minimal_symbol (fn_name, NULL, section->objfile);
1239 if (fn_sym.minsym == NULL)
1240 return 0;
1241
1242 method_stop_pc = BMSYMBOL_VALUE_ADDRESS (fn_sym);
1243
1244 /* Some targets have minimal symbols pointing to function descriptors
1245 (powerpc 64 for example). Make sure to retrieve the address
1246 of the real function from the function descriptor before passing on
1247 the address to other layers of GDB. */
1248 func_addr = gdbarch_convert_from_func_ptr_addr (gdbarch, method_stop_pc,
1249 current_top_target ());
1250 if (func_addr != 0)
1251 method_stop_pc = func_addr;
1252
1253 real_stop_pc = gdbarch_skip_trampoline_code
1254 (gdbarch, frame, method_stop_pc);
1255 if (real_stop_pc == 0)
1256 real_stop_pc = method_stop_pc;
1257
1258 return real_stop_pc;
1259 }
1260
1261 /* A member function is in one these states. */
1262
1263 enum definition_style
1264 {
1265 DOES_NOT_EXIST_IN_SOURCE,
1266 DEFAULTED_INSIDE,
1267 DEFAULTED_OUTSIDE,
1268 DELETED,
1269 EXPLICIT,
1270 };
1271
1272 /* Return how the given field is defined. */
1273
1274 static definition_style
1275 get_def_style (struct fn_field *fn, int fieldelem)
1276 {
1277 if (TYPE_FN_FIELD_DELETED (fn, fieldelem))
1278 return DELETED;
1279
1280 if (TYPE_FN_FIELD_ARTIFICIAL (fn, fieldelem))
1281 return DOES_NOT_EXIST_IN_SOURCE;
1282
1283 switch (TYPE_FN_FIELD_DEFAULTED (fn, fieldelem))
1284 {
1285 case DW_DEFAULTED_no:
1286 return EXPLICIT;
1287 case DW_DEFAULTED_in_class:
1288 return DEFAULTED_INSIDE;
1289 case DW_DEFAULTED_out_of_class:
1290 return DEFAULTED_OUTSIDE;
1291 default:
1292 break;
1293 }
1294
1295 return EXPLICIT;
1296 }
1297
1298 /* Helper functions to determine whether the given definition style
1299 denotes that the definition is user-provided or implicit.
1300 Being defaulted outside the class decl counts as an explicit
1301 user-definition, while being defaulted inside is implicit. */
1302
1303 static bool
1304 is_user_provided_def (definition_style def)
1305 {
1306 return def == EXPLICIT || def == DEFAULTED_OUTSIDE;
1307 }
1308
1309 static bool
1310 is_implicit_def (definition_style def)
1311 {
1312 return def == DOES_NOT_EXIST_IN_SOURCE || def == DEFAULTED_INSIDE;
1313 }
1314
1315 /* Helper function to decide if METHOD_TYPE is a copy/move
1316 constructor type for CLASS_TYPE. EXPECTED is the expected
1317 type code for the "right-hand-side" argument.
1318 This function is supposed to be used by the IS_COPY_CONSTRUCTOR_TYPE
1319 and IS_MOVE_CONSTRUCTOR_TYPE functions below. Normally, you should
1320 not need to call this directly. */
1321
1322 static bool
1323 is_copy_or_move_constructor_type (struct type *class_type,
1324 struct type *method_type,
1325 type_code expected)
1326 {
1327 /* The method should take at least two arguments... */
1328 if (method_type->num_fields () < 2)
1329 return false;
1330
1331 /* ...and the second argument should be the same as the class
1332 type, with the expected type code... */
1333 struct type *arg_type = method_type->field (1).type ();
1334
1335 if (arg_type->code () != expected)
1336 return false;
1337
1338 struct type *target = check_typedef (TYPE_TARGET_TYPE (arg_type));
1339 if (!(class_types_same_p (target, class_type)))
1340 return false;
1341
1342 /* ...and if any of the remaining arguments don't have a default value
1343 then this is not a copy or move constructor, but just a
1344 constructor. */
1345 for (int i = 2; i < method_type->num_fields (); i++)
1346 {
1347 arg_type = method_type->field (i).type ();
1348 /* FIXME aktemur/2019-10-31: As of this date, neither
1349 clang++-7.0.0 nor g++-8.2.0 produce a DW_AT_default_value
1350 attribute. GDB is also not set to read this attribute, yet.
1351 Hence, we immediately return false if there are more than
1352 2 parameters.
1353 GCC bug link:
1354 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=42959
1355 */
1356 return false;
1357 }
1358
1359 return true;
1360 }
1361
1362 /* Return true if METHOD_TYPE is a copy ctor type for CLASS_TYPE. */
1363
1364 static bool
1365 is_copy_constructor_type (struct type *class_type,
1366 struct type *method_type)
1367 {
1368 return is_copy_or_move_constructor_type (class_type, method_type,
1369 TYPE_CODE_REF);
1370 }
1371
1372 /* Return true if METHOD_TYPE is a move ctor type for CLASS_TYPE. */
1373
1374 static bool
1375 is_move_constructor_type (struct type *class_type,
1376 struct type *method_type)
1377 {
1378 return is_copy_or_move_constructor_type (class_type, method_type,
1379 TYPE_CODE_RVALUE_REF);
1380 }
1381
1382 /* Return pass-by-reference information for the given TYPE.
1383
1384 The rule in the v3 ABI document comes from section 3.1.1. If the
1385 type has a non-trivial copy constructor or destructor, then the
1386 caller must make a copy (by calling the copy constructor if there
1387 is one or perform the copy itself otherwise), pass the address of
1388 the copy, and then destroy the temporary (if necessary).
1389
1390 For return values with non-trivial copy/move constructors or
1391 destructors, space will be allocated in the caller, and a pointer
1392 will be passed as the first argument (preceding "this").
1393
1394 We don't have a bulletproof mechanism for determining whether a
1395 constructor or destructor is trivial. For GCC and DWARF5 debug
1396 information, we can check the calling_convention attribute,
1397 the 'artificial' flag, the 'defaulted' attribute, and the
1398 'deleted' attribute. */
1399
1400 static struct language_pass_by_ref_info
1401 gnuv3_pass_by_reference (struct type *type)
1402 {
1403 int fieldnum, fieldelem;
1404
1405 type = check_typedef (type);
1406
1407 /* Start with the default values. */
1408 struct language_pass_by_ref_info info;
1409
1410 bool has_cc_attr = false;
1411 bool is_pass_by_value = false;
1412 bool is_dynamic = false;
1413 definition_style cctor_def = DOES_NOT_EXIST_IN_SOURCE;
1414 definition_style dtor_def = DOES_NOT_EXIST_IN_SOURCE;
1415 definition_style mctor_def = DOES_NOT_EXIST_IN_SOURCE;
1416
1417 /* We're only interested in things that can have methods. */
1418 if (type->code () != TYPE_CODE_STRUCT
1419 && type->code () != TYPE_CODE_UNION)
1420 return info;
1421
1422 /* The compiler may have emitted the calling convention attribute.
1423 Note: GCC does not produce this attribute as of version 9.2.1.
1424 Bug link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92418 */
1425 if (TYPE_CPLUS_CALLING_CONVENTION (type) == DW_CC_pass_by_value)
1426 {
1427 has_cc_attr = true;
1428 is_pass_by_value = true;
1429 /* Do not return immediately. We have to find out if this type
1430 is copy_constructible and destructible. */
1431 }
1432
1433 if (TYPE_CPLUS_CALLING_CONVENTION (type) == DW_CC_pass_by_reference)
1434 {
1435 has_cc_attr = true;
1436 is_pass_by_value = false;
1437 }
1438
1439 /* A dynamic class has a non-trivial copy constructor.
1440 See c++98 section 12.8 Copying class objects [class.copy]. */
1441 if (gnuv3_dynamic_class (type))
1442 is_dynamic = true;
1443
1444 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
1445 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
1446 fieldelem++)
1447 {
1448 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, fieldnum);
1449 const char *name = TYPE_FN_FIELDLIST_NAME (type, fieldnum);
1450 struct type *fieldtype = TYPE_FN_FIELD_TYPE (fn, fieldelem);
1451
1452 if (name[0] == '~')
1453 {
1454 /* We've found a destructor.
1455 There should be at most one dtor definition. */
1456 gdb_assert (dtor_def == DOES_NOT_EXIST_IN_SOURCE);
1457 dtor_def = get_def_style (fn, fieldelem);
1458 }
1459 else if (is_constructor_name (TYPE_FN_FIELD_PHYSNAME (fn, fieldelem))
1460 || TYPE_FN_FIELD_CONSTRUCTOR (fn, fieldelem))
1461 {
1462 /* FIXME drow/2007-09-23: We could do this using the name of
1463 the method and the name of the class instead of dealing
1464 with the mangled name. We don't have a convenient function
1465 to strip off both leading scope qualifiers and trailing
1466 template arguments yet. */
1467 if (is_copy_constructor_type (type, fieldtype))
1468 {
1469 /* There may be more than one cctors. E.g.: one that
1470 take a const parameter and another that takes a
1471 non-const parameter. Such as:
1472
1473 class K {
1474 K (const K &k)...
1475 K (K &k)...
1476 };
1477
1478 It is sufficient for the type to be non-trivial
1479 even only one of the cctors is explicit.
1480 Therefore, update the cctor_def value in the
1481 implicit -> explicit direction, not backwards. */
1482
1483 if (is_implicit_def (cctor_def))
1484 cctor_def = get_def_style (fn, fieldelem);
1485 }
1486 else if (is_move_constructor_type (type, fieldtype))
1487 {
1488 /* Again, there may be multiple move ctors. Update the
1489 mctor_def value if we found an explicit def and the
1490 existing one is not explicit. Otherwise retain the
1491 existing value. */
1492 if (is_implicit_def (mctor_def))
1493 mctor_def = get_def_style (fn, fieldelem);
1494 }
1495 }
1496 }
1497
1498 bool cctor_implicitly_deleted
1499 = (mctor_def != DOES_NOT_EXIST_IN_SOURCE
1500 && cctor_def == DOES_NOT_EXIST_IN_SOURCE);
1501
1502 bool cctor_explicitly_deleted = (cctor_def == DELETED);
1503
1504 if (cctor_implicitly_deleted || cctor_explicitly_deleted)
1505 info.copy_constructible = false;
1506
1507 if (dtor_def == DELETED)
1508 info.destructible = false;
1509
1510 info.trivially_destructible = is_implicit_def (dtor_def);
1511
1512 info.trivially_copy_constructible
1513 = (is_implicit_def (cctor_def)
1514 && !is_dynamic);
1515
1516 info.trivially_copyable
1517 = (info.trivially_copy_constructible
1518 && info.trivially_destructible
1519 && !is_user_provided_def (mctor_def));
1520
1521 /* Even if all the constructors and destructors were artificial, one
1522 of them may have invoked a non-artificial constructor or
1523 destructor in a base class. If any base class needs to be passed
1524 by reference, so does this class. Similarly for members, which
1525 are constructed whenever this class is. We do not need to worry
1526 about recursive loops here, since we are only looking at members
1527 of complete class type. Also ignore any static members. */
1528 for (fieldnum = 0; fieldnum < type->num_fields (); fieldnum++)
1529 if (!field_is_static (&type->field (fieldnum)))
1530 {
1531 struct type *field_type = type->field (fieldnum).type ();
1532
1533 /* For arrays, make the decision based on the element type. */
1534 if (field_type->code () == TYPE_CODE_ARRAY)
1535 field_type = check_typedef (TYPE_TARGET_TYPE (field_type));
1536
1537 struct language_pass_by_ref_info field_info
1538 = gnuv3_pass_by_reference (field_type);
1539
1540 if (!field_info.copy_constructible)
1541 info.copy_constructible = false;
1542 if (!field_info.destructible)
1543 info.destructible = false;
1544 if (!field_info.trivially_copyable)
1545 info.trivially_copyable = false;
1546 if (!field_info.trivially_copy_constructible)
1547 info.trivially_copy_constructible = false;
1548 if (!field_info.trivially_destructible)
1549 info.trivially_destructible = false;
1550 }
1551
1552 /* Consistency check. */
1553 if (has_cc_attr && info.trivially_copyable != is_pass_by_value)
1554 {
1555 /* DWARF CC attribute is not the same as the inferred value;
1556 use the DWARF attribute. */
1557 info.trivially_copyable = is_pass_by_value;
1558 }
1559
1560 return info;
1561 }
1562
1563 static void
1564 init_gnuv3_ops (void)
1565 {
1566 vtable_type_gdbarch_data
1567 = gdbarch_data_register_post_init (build_gdb_vtable_type);
1568 std_type_info_gdbarch_data
1569 = gdbarch_data_register_post_init (build_std_type_info_type);
1570
1571 gnu_v3_abi_ops.shortname = "gnu-v3";
1572 gnu_v3_abi_ops.longname = "GNU G++ Version 3 ABI";
1573 gnu_v3_abi_ops.doc = "G++ Version 3 ABI";
1574 gnu_v3_abi_ops.is_destructor_name =
1575 (enum dtor_kinds (*) (const char *))is_gnu_v3_mangled_dtor;
1576 gnu_v3_abi_ops.is_constructor_name =
1577 (enum ctor_kinds (*) (const char *))is_gnu_v3_mangled_ctor;
1578 gnu_v3_abi_ops.is_vtable_name = gnuv3_is_vtable_name;
1579 gnu_v3_abi_ops.is_operator_name = gnuv3_is_operator_name;
1580 gnu_v3_abi_ops.rtti_type = gnuv3_rtti_type;
1581 gnu_v3_abi_ops.virtual_fn_field = gnuv3_virtual_fn_field;
1582 gnu_v3_abi_ops.baseclass_offset = gnuv3_baseclass_offset;
1583 gnu_v3_abi_ops.print_method_ptr = gnuv3_print_method_ptr;
1584 gnu_v3_abi_ops.method_ptr_size = gnuv3_method_ptr_size;
1585 gnu_v3_abi_ops.make_method_ptr = gnuv3_make_method_ptr;
1586 gnu_v3_abi_ops.method_ptr_to_value = gnuv3_method_ptr_to_value;
1587 gnu_v3_abi_ops.print_vtable = gnuv3_print_vtable;
1588 gnu_v3_abi_ops.get_typeid = gnuv3_get_typeid;
1589 gnu_v3_abi_ops.get_typeid_type = gnuv3_get_typeid_type;
1590 gnu_v3_abi_ops.get_type_from_type_info = gnuv3_get_type_from_type_info;
1591 gnu_v3_abi_ops.get_typename_from_type_info
1592 = gnuv3_get_typename_from_type_info;
1593 gnu_v3_abi_ops.skip_trampoline = gnuv3_skip_trampoline;
1594 gnu_v3_abi_ops.pass_by_reference = gnuv3_pass_by_reference;
1595 }
1596
1597 void _initialize_gnu_v3_abi ();
1598 void
1599 _initialize_gnu_v3_abi ()
1600 {
1601 init_gnuv3_ops ();
1602
1603 register_cp_abi (&gnu_v3_abi_ops);
1604 set_cp_abi_as_auto_default (gnu_v3_abi_ops.shortname);
1605 }
This page took 0.059939 seconds and 5 git commands to generate.