gdb/
[deliverable/binutils-gdb.git] / gdb / gnu-v3-abi.c
1 /* Abstraction of GNU v3 abi.
2 Contributed by Jim Blandy <jimb@redhat.com>
3
4 Copyright (C) 2001, 2002, 2003, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "value.h"
24 #include "cp-abi.h"
25 #include "cp-support.h"
26 #include "demangle.h"
27 #include "objfiles.h"
28 #include "valprint.h"
29 #include "c-lang.h"
30
31 #include "gdb_assert.h"
32 #include "gdb_string.h"
33
34 static struct cp_abi_ops gnu_v3_abi_ops;
35
36 static int
37 gnuv3_is_vtable_name (const char *name)
38 {
39 return strncmp (name, "_ZTV", 4) == 0;
40 }
41
42 static int
43 gnuv3_is_operator_name (const char *name)
44 {
45 return strncmp (name, "operator", 8) == 0;
46 }
47
48
49 /* To help us find the components of a vtable, we build ourselves a
50 GDB type object representing the vtable structure. Following the
51 V3 ABI, it goes something like this:
52
53 struct gdb_gnu_v3_abi_vtable {
54
55 / * An array of virtual call and virtual base offsets. The real
56 length of this array depends on the class hierarchy; we use
57 negative subscripts to access the elements. Yucky, but
58 better than the alternatives. * /
59 ptrdiff_t vcall_and_vbase_offsets[0];
60
61 / * The offset from a virtual pointer referring to this table
62 to the top of the complete object. * /
63 ptrdiff_t offset_to_top;
64
65 / * The type_info pointer for this class. This is really a
66 std::type_info *, but GDB doesn't really look at the
67 type_info object itself, so we don't bother to get the type
68 exactly right. * /
69 void *type_info;
70
71 / * Virtual table pointers in objects point here. * /
72
73 / * Virtual function pointers. Like the vcall/vbase array, the
74 real length of this table depends on the class hierarchy. * /
75 void (*virtual_functions[0]) ();
76
77 };
78
79 The catch, of course, is that the exact layout of this table
80 depends on the ABI --- word size, endianness, alignment, etc. So
81 the GDB type object is actually a per-architecture kind of thing.
82
83 vtable_type_gdbarch_data is a gdbarch per-architecture data pointer
84 which refers to the struct type * for this structure, laid out
85 appropriately for the architecture. */
86 static struct gdbarch_data *vtable_type_gdbarch_data;
87
88
89 /* Human-readable names for the numbers of the fields above. */
90 enum {
91 vtable_field_vcall_and_vbase_offsets,
92 vtable_field_offset_to_top,
93 vtable_field_type_info,
94 vtable_field_virtual_functions
95 };
96
97
98 /* Return a GDB type representing `struct gdb_gnu_v3_abi_vtable',
99 described above, laid out appropriately for ARCH.
100
101 We use this function as the gdbarch per-architecture data
102 initialization function. */
103 static void *
104 build_gdb_vtable_type (struct gdbarch *arch)
105 {
106 struct type *t;
107 struct field *field_list, *field;
108 int offset;
109
110 struct type *void_ptr_type
111 = builtin_type (arch)->builtin_data_ptr;
112 struct type *ptr_to_void_fn_type
113 = builtin_type (arch)->builtin_func_ptr;
114
115 /* ARCH can't give us the true ptrdiff_t type, so we guess. */
116 struct type *ptrdiff_type
117 = arch_integer_type (arch, gdbarch_ptr_bit (arch), 0, "ptrdiff_t");
118
119 /* We assume no padding is necessary, since GDB doesn't know
120 anything about alignment at the moment. If this assumption bites
121 us, we should add a gdbarch method which, given a type, returns
122 the alignment that type requires, and then use that here. */
123
124 /* Build the field list. */
125 field_list = xmalloc (sizeof (struct field [4]));
126 memset (field_list, 0, sizeof (struct field [4]));
127 field = &field_list[0];
128 offset = 0;
129
130 /* ptrdiff_t vcall_and_vbase_offsets[0]; */
131 FIELD_NAME (*field) = "vcall_and_vbase_offsets";
132 FIELD_TYPE (*field) = lookup_array_range_type (ptrdiff_type, 0, -1);
133 FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT;
134 offset += TYPE_LENGTH (FIELD_TYPE (*field));
135 field++;
136
137 /* ptrdiff_t offset_to_top; */
138 FIELD_NAME (*field) = "offset_to_top";
139 FIELD_TYPE (*field) = ptrdiff_type;
140 FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT;
141 offset += TYPE_LENGTH (FIELD_TYPE (*field));
142 field++;
143
144 /* void *type_info; */
145 FIELD_NAME (*field) = "type_info";
146 FIELD_TYPE (*field) = void_ptr_type;
147 FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT;
148 offset += TYPE_LENGTH (FIELD_TYPE (*field));
149 field++;
150
151 /* void (*virtual_functions[0]) (); */
152 FIELD_NAME (*field) = "virtual_functions";
153 FIELD_TYPE (*field) = lookup_array_range_type (ptr_to_void_fn_type, 0, -1);
154 FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT;
155 offset += TYPE_LENGTH (FIELD_TYPE (*field));
156 field++;
157
158 /* We assumed in the allocation above that there were four fields. */
159 gdb_assert (field == (field_list + 4));
160
161 t = arch_type (arch, TYPE_CODE_STRUCT, offset, NULL);
162 TYPE_NFIELDS (t) = field - field_list;
163 TYPE_FIELDS (t) = field_list;
164 TYPE_TAG_NAME (t) = "gdb_gnu_v3_abi_vtable";
165 INIT_CPLUS_SPECIFIC (t);
166
167 return t;
168 }
169
170
171 /* Return the ptrdiff_t type used in the vtable type. */
172 static struct type *
173 vtable_ptrdiff_type (struct gdbarch *gdbarch)
174 {
175 struct type *vtable_type = gdbarch_data (gdbarch, vtable_type_gdbarch_data);
176
177 /* The "offset_to_top" field has the appropriate (ptrdiff_t) type. */
178 return TYPE_FIELD_TYPE (vtable_type, vtable_field_offset_to_top);
179 }
180
181 /* Return the offset from the start of the imaginary `struct
182 gdb_gnu_v3_abi_vtable' object to the vtable's "address point"
183 (i.e., where objects' virtual table pointers point). */
184 static int
185 vtable_address_point_offset (struct gdbarch *gdbarch)
186 {
187 struct type *vtable_type = gdbarch_data (gdbarch, vtable_type_gdbarch_data);
188
189 return (TYPE_FIELD_BITPOS (vtable_type, vtable_field_virtual_functions)
190 / TARGET_CHAR_BIT);
191 }
192
193
194 /* Determine whether structure TYPE is a dynamic class. Cache the
195 result. */
196
197 static int
198 gnuv3_dynamic_class (struct type *type)
199 {
200 int fieldnum, fieldelem;
201
202 if (TYPE_CPLUS_DYNAMIC (type))
203 return TYPE_CPLUS_DYNAMIC (type) == 1;
204
205 ALLOCATE_CPLUS_STRUCT_TYPE (type);
206
207 for (fieldnum = 0; fieldnum < TYPE_N_BASECLASSES (type); fieldnum++)
208 if (BASETYPE_VIA_VIRTUAL (type, fieldnum)
209 || gnuv3_dynamic_class (TYPE_FIELD_TYPE (type, fieldnum)))
210 {
211 TYPE_CPLUS_DYNAMIC (type) = 1;
212 return 1;
213 }
214
215 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
216 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
217 fieldelem++)
218 {
219 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, fieldnum);
220
221 if (TYPE_FN_FIELD_VIRTUAL_P (f, fieldelem))
222 {
223 TYPE_CPLUS_DYNAMIC (type) = 1;
224 return 1;
225 }
226 }
227
228 TYPE_CPLUS_DYNAMIC (type) = -1;
229 return 0;
230 }
231
232 /* Find the vtable for a value of CONTAINER_TYPE located at
233 CONTAINER_ADDR. Return a value of the correct vtable type for this
234 architecture, or NULL if CONTAINER does not have a vtable. */
235
236 static struct value *
237 gnuv3_get_vtable (struct gdbarch *gdbarch,
238 struct type *container_type, CORE_ADDR container_addr)
239 {
240 struct type *vtable_type = gdbarch_data (gdbarch,
241 vtable_type_gdbarch_data);
242 struct type *vtable_pointer_type;
243 struct value *vtable_pointer;
244 CORE_ADDR vtable_address;
245
246 /* If this type does not have a virtual table, don't read the first
247 field. */
248 if (!gnuv3_dynamic_class (check_typedef (container_type)))
249 return NULL;
250
251 /* We do not consult the debug information to find the virtual table.
252 The ABI specifies that it is always at offset zero in any class,
253 and debug information may not represent it.
254
255 We avoid using value_contents on principle, because the object might
256 be large. */
257
258 /* Find the type "pointer to virtual table". */
259 vtable_pointer_type = lookup_pointer_type (vtable_type);
260
261 /* Load it from the start of the class. */
262 vtable_pointer = value_at (vtable_pointer_type, container_addr);
263 vtable_address = value_as_address (vtable_pointer);
264
265 /* Correct it to point at the start of the virtual table, rather
266 than the address point. */
267 return value_at_lazy (vtable_type,
268 vtable_address - vtable_address_point_offset (gdbarch));
269 }
270
271
272 static struct type *
273 gnuv3_rtti_type (struct value *value,
274 int *full_p, int *top_p, int *using_enc_p)
275 {
276 struct gdbarch *gdbarch;
277 struct type *values_type = check_typedef (value_type (value));
278 struct value *vtable;
279 struct minimal_symbol *vtable_symbol;
280 const char *vtable_symbol_name;
281 const char *class_name;
282 struct type *run_time_type;
283 LONGEST offset_to_top;
284
285 /* We only have RTTI for class objects. */
286 if (TYPE_CODE (values_type) != TYPE_CODE_CLASS)
287 return NULL;
288
289 /* Determine architecture. */
290 gdbarch = get_type_arch (values_type);
291
292 if (using_enc_p)
293 *using_enc_p = 0;
294
295 vtable = gnuv3_get_vtable (gdbarch, value_type (value),
296 value_as_address (value_addr (value)));
297 if (vtable == NULL)
298 return NULL;
299
300 /* Find the linker symbol for this vtable. */
301 vtable_symbol
302 = lookup_minimal_symbol_by_pc (value_address (vtable)
303 + value_embedded_offset (vtable));
304 if (! vtable_symbol)
305 return NULL;
306
307 /* The symbol's demangled name should be something like "vtable for
308 CLASS", where CLASS is the name of the run-time type of VALUE.
309 If we didn't like this approach, we could instead look in the
310 type_info object itself to get the class name. But this way
311 should work just as well, and doesn't read target memory. */
312 vtable_symbol_name = SYMBOL_DEMANGLED_NAME (vtable_symbol);
313 if (vtable_symbol_name == NULL
314 || strncmp (vtable_symbol_name, "vtable for ", 11))
315 {
316 warning (_("can't find linker symbol for virtual table for `%s' value"),
317 TYPE_NAME (values_type));
318 if (vtable_symbol_name)
319 warning (_(" found `%s' instead"), vtable_symbol_name);
320 return NULL;
321 }
322 class_name = vtable_symbol_name + 11;
323
324 /* Try to look up the class name as a type name. */
325 /* FIXME: chastain/2003-11-26: block=NULL is bogus. See pr gdb/1465. */
326 run_time_type = cp_lookup_rtti_type (class_name, NULL);
327 if (run_time_type == NULL)
328 return NULL;
329
330 /* Get the offset from VALUE to the top of the complete object.
331 NOTE: this is the reverse of the meaning of *TOP_P. */
332 offset_to_top
333 = value_as_long (value_field (vtable, vtable_field_offset_to_top));
334
335 if (full_p)
336 *full_p = (- offset_to_top == value_embedded_offset (value)
337 && (TYPE_LENGTH (value_enclosing_type (value))
338 >= TYPE_LENGTH (run_time_type)));
339 if (top_p)
340 *top_p = - offset_to_top;
341 return run_time_type;
342 }
343
344 /* Return a function pointer for CONTAINER's VTABLE_INDEX'th virtual
345 function, of type FNTYPE. */
346
347 static struct value *
348 gnuv3_get_virtual_fn (struct gdbarch *gdbarch, struct value *container,
349 struct type *fntype, int vtable_index)
350 {
351 struct value *vtable, *vfn;
352
353 /* Every class with virtual functions must have a vtable. */
354 vtable = gnuv3_get_vtable (gdbarch, value_type (container),
355 value_as_address (value_addr (container)));
356 gdb_assert (vtable != NULL);
357
358 /* Fetch the appropriate function pointer from the vtable. */
359 vfn = value_subscript (value_field (vtable, vtable_field_virtual_functions),
360 vtable_index);
361
362 /* If this architecture uses function descriptors directly in the vtable,
363 then the address of the vtable entry is actually a "function pointer"
364 (i.e. points to the descriptor). We don't need to scale the index
365 by the size of a function descriptor; GCC does that before outputing
366 debug information. */
367 if (gdbarch_vtable_function_descriptors (gdbarch))
368 vfn = value_addr (vfn);
369
370 /* Cast the function pointer to the appropriate type. */
371 vfn = value_cast (lookup_pointer_type (fntype), vfn);
372
373 return vfn;
374 }
375
376 /* GNU v3 implementation of value_virtual_fn_field. See cp-abi.h
377 for a description of the arguments. */
378
379 static struct value *
380 gnuv3_virtual_fn_field (struct value **value_p,
381 struct fn_field *f, int j,
382 struct type *vfn_base, int offset)
383 {
384 struct type *values_type = check_typedef (value_type (*value_p));
385 struct gdbarch *gdbarch;
386
387 /* Some simple sanity checks. */
388 if (TYPE_CODE (values_type) != TYPE_CODE_CLASS)
389 error (_("Only classes can have virtual functions."));
390
391 /* Determine architecture. */
392 gdbarch = get_type_arch (values_type);
393
394 /* Cast our value to the base class which defines this virtual
395 function. This takes care of any necessary `this'
396 adjustments. */
397 if (vfn_base != values_type)
398 *value_p = value_cast (vfn_base, *value_p);
399
400 return gnuv3_get_virtual_fn (gdbarch, *value_p, TYPE_FN_FIELD_TYPE (f, j),
401 TYPE_FN_FIELD_VOFFSET (f, j));
402 }
403
404 /* Compute the offset of the baseclass which is
405 the INDEXth baseclass of class TYPE,
406 for value at VALADDR (in host) at ADDRESS (in target).
407 The result is the offset of the baseclass value relative
408 to (the address of)(ARG) + OFFSET.
409
410 -1 is returned on error. */
411 static int
412 gnuv3_baseclass_offset (struct type *type, int index, const bfd_byte *valaddr,
413 CORE_ADDR address)
414 {
415 struct gdbarch *gdbarch;
416 struct type *ptr_type;
417 struct value *vtable;
418 struct value *vbase_array;
419 long int cur_base_offset, base_offset;
420
421 /* Determine architecture. */
422 gdbarch = get_type_arch (type);
423 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
424
425 /* If it isn't a virtual base, this is easy. The offset is in the
426 type definition. */
427 if (!BASETYPE_VIA_VIRTUAL (type, index))
428 return TYPE_BASECLASS_BITPOS (type, index) / 8;
429
430 /* To access a virtual base, we need to use the vbase offset stored in
431 our vtable. Recent GCC versions provide this information. If it isn't
432 available, we could get what we needed from RTTI, or from drawing the
433 complete inheritance graph based on the debug info. Neither is
434 worthwhile. */
435 cur_base_offset = TYPE_BASECLASS_BITPOS (type, index) / 8;
436 if (cur_base_offset >= - vtable_address_point_offset (gdbarch))
437 error (_("Expected a negative vbase offset (old compiler?)"));
438
439 cur_base_offset = cur_base_offset + vtable_address_point_offset (gdbarch);
440 if ((- cur_base_offset) % TYPE_LENGTH (ptr_type) != 0)
441 error (_("Misaligned vbase offset."));
442 cur_base_offset = cur_base_offset / ((int) TYPE_LENGTH (ptr_type));
443
444 vtable = gnuv3_get_vtable (gdbarch, type, address);
445 gdb_assert (vtable != NULL);
446 vbase_array = value_field (vtable, vtable_field_vcall_and_vbase_offsets);
447 base_offset = value_as_long (value_subscript (vbase_array, cur_base_offset));
448 return base_offset;
449 }
450
451 /* Locate a virtual method in DOMAIN or its non-virtual base classes
452 which has virtual table index VOFFSET. The method has an associated
453 "this" adjustment of ADJUSTMENT bytes. */
454
455 static const char *
456 gnuv3_find_method_in (struct type *domain, CORE_ADDR voffset,
457 LONGEST adjustment)
458 {
459 int i;
460
461 /* Search this class first. */
462 if (adjustment == 0)
463 {
464 int len;
465
466 len = TYPE_NFN_FIELDS (domain);
467 for (i = 0; i < len; i++)
468 {
469 int len2, j;
470 struct fn_field *f;
471
472 f = TYPE_FN_FIELDLIST1 (domain, i);
473 len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
474
475 check_stub_method_group (domain, i);
476 for (j = 0; j < len2; j++)
477 if (TYPE_FN_FIELD_VOFFSET (f, j) == voffset)
478 return TYPE_FN_FIELD_PHYSNAME (f, j);
479 }
480 }
481
482 /* Next search non-virtual bases. If it's in a virtual base,
483 we're out of luck. */
484 for (i = 0; i < TYPE_N_BASECLASSES (domain); i++)
485 {
486 int pos;
487 struct type *basetype;
488
489 if (BASETYPE_VIA_VIRTUAL (domain, i))
490 continue;
491
492 pos = TYPE_BASECLASS_BITPOS (domain, i) / 8;
493 basetype = TYPE_FIELD_TYPE (domain, i);
494 /* Recurse with a modified adjustment. We don't need to adjust
495 voffset. */
496 if (adjustment >= pos && adjustment < pos + TYPE_LENGTH (basetype))
497 return gnuv3_find_method_in (basetype, voffset, adjustment - pos);
498 }
499
500 return NULL;
501 }
502
503 /* Decode GNU v3 method pointer. */
504
505 static int
506 gnuv3_decode_method_ptr (struct gdbarch *gdbarch,
507 const gdb_byte *contents,
508 CORE_ADDR *value_p,
509 LONGEST *adjustment_p)
510 {
511 struct type *funcptr_type = builtin_type (gdbarch)->builtin_func_ptr;
512 struct type *offset_type = vtable_ptrdiff_type (gdbarch);
513 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
514 CORE_ADDR ptr_value;
515 LONGEST voffset, adjustment;
516 int vbit;
517
518 /* Extract the pointer to member. The first element is either a pointer
519 or a vtable offset. For pointers, we need to use extract_typed_address
520 to allow the back-end to convert the pointer to a GDB address -- but
521 vtable offsets we must handle as integers. At this point, we do not
522 yet know which case we have, so we extract the value under both
523 interpretations and choose the right one later on. */
524 ptr_value = extract_typed_address (contents, funcptr_type);
525 voffset = extract_signed_integer (contents,
526 TYPE_LENGTH (funcptr_type), byte_order);
527 contents += TYPE_LENGTH (funcptr_type);
528 adjustment = extract_signed_integer (contents,
529 TYPE_LENGTH (offset_type), byte_order);
530
531 if (!gdbarch_vbit_in_delta (gdbarch))
532 {
533 vbit = voffset & 1;
534 voffset = voffset ^ vbit;
535 }
536 else
537 {
538 vbit = adjustment & 1;
539 adjustment = adjustment >> 1;
540 }
541
542 *value_p = vbit? voffset : ptr_value;
543 *adjustment_p = adjustment;
544 return vbit;
545 }
546
547 /* GNU v3 implementation of cplus_print_method_ptr. */
548
549 static void
550 gnuv3_print_method_ptr (const gdb_byte *contents,
551 struct type *type,
552 struct ui_file *stream)
553 {
554 struct type *domain = TYPE_DOMAIN_TYPE (type);
555 struct gdbarch *gdbarch = get_type_arch (domain);
556 CORE_ADDR ptr_value;
557 LONGEST adjustment;
558 int vbit;
559
560 /* Extract the pointer to member. */
561 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
562
563 /* Check for NULL. */
564 if (ptr_value == 0 && vbit == 0)
565 {
566 fprintf_filtered (stream, "NULL");
567 return;
568 }
569
570 /* Search for a virtual method. */
571 if (vbit)
572 {
573 CORE_ADDR voffset;
574 const char *physname;
575
576 /* It's a virtual table offset, maybe in this class. Search
577 for a field with the correct vtable offset. First convert it
578 to an index, as used in TYPE_FN_FIELD_VOFFSET. */
579 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
580
581 physname = gnuv3_find_method_in (domain, voffset, adjustment);
582
583 /* If we found a method, print that. We don't bother to disambiguate
584 possible paths to the method based on the adjustment. */
585 if (physname)
586 {
587 char *demangled_name = cplus_demangle (physname,
588 DMGL_ANSI | DMGL_PARAMS);
589
590 fprintf_filtered (stream, "&virtual ");
591 if (demangled_name == NULL)
592 fputs_filtered (physname, stream);
593 else
594 {
595 fputs_filtered (demangled_name, stream);
596 xfree (demangled_name);
597 }
598 return;
599 }
600 }
601 else if (ptr_value != 0)
602 {
603 /* Found a non-virtual function: print out the type. */
604 fputs_filtered ("(", stream);
605 c_print_type (type, "", stream, -1, 0);
606 fputs_filtered (") ", stream);
607 }
608
609 /* We didn't find it; print the raw data. */
610 if (vbit)
611 {
612 fprintf_filtered (stream, "&virtual table offset ");
613 print_longest (stream, 'd', 1, ptr_value);
614 }
615 else
616 print_address_demangle (gdbarch, ptr_value, stream, demangle);
617
618 if (adjustment)
619 {
620 fprintf_filtered (stream, ", this adjustment ");
621 print_longest (stream, 'd', 1, adjustment);
622 }
623 }
624
625 /* GNU v3 implementation of cplus_method_ptr_size. */
626
627 static int
628 gnuv3_method_ptr_size (struct type *type)
629 {
630 struct gdbarch *gdbarch = get_type_arch (type);
631
632 return 2 * TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
633 }
634
635 /* GNU v3 implementation of cplus_make_method_ptr. */
636
637 static void
638 gnuv3_make_method_ptr (struct type *type, gdb_byte *contents,
639 CORE_ADDR value, int is_virtual)
640 {
641 struct gdbarch *gdbarch = get_type_arch (type);
642 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
643 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
644
645 /* FIXME drow/2006-12-24: The adjustment of "this" is currently
646 always zero, since the method pointer is of the correct type.
647 But if the method pointer came from a base class, this is
648 incorrect - it should be the offset to the base. The best
649 fix might be to create the pointer to member pointing at the
650 base class and cast it to the derived class, but that requires
651 support for adjusting pointers to members when casting them -
652 not currently supported by GDB. */
653
654 if (!gdbarch_vbit_in_delta (gdbarch))
655 {
656 store_unsigned_integer (contents, size, byte_order, value | is_virtual);
657 store_unsigned_integer (contents + size, size, byte_order, 0);
658 }
659 else
660 {
661 store_unsigned_integer (contents, size, byte_order, value);
662 store_unsigned_integer (contents + size, size, byte_order, is_virtual);
663 }
664 }
665
666 /* GNU v3 implementation of cplus_method_ptr_to_value. */
667
668 static struct value *
669 gnuv3_method_ptr_to_value (struct value **this_p, struct value *method_ptr)
670 {
671 struct gdbarch *gdbarch;
672 const gdb_byte *contents = value_contents (method_ptr);
673 CORE_ADDR ptr_value;
674 struct type *domain_type, *final_type, *method_type;
675 LONGEST adjustment;
676 int vbit;
677
678 domain_type = TYPE_DOMAIN_TYPE (check_typedef (value_type (method_ptr)));
679 final_type = lookup_pointer_type (domain_type);
680
681 method_type = TYPE_TARGET_TYPE (check_typedef (value_type (method_ptr)));
682
683 /* Extract the pointer to member. */
684 gdbarch = get_type_arch (domain_type);
685 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
686
687 /* First convert THIS to match the containing type of the pointer to
688 member. This cast may adjust the value of THIS. */
689 *this_p = value_cast (final_type, *this_p);
690
691 /* Then apply whatever adjustment is necessary. This creates a somewhat
692 strange pointer: it claims to have type FINAL_TYPE, but in fact it
693 might not be a valid FINAL_TYPE. For instance, it might be a
694 base class of FINAL_TYPE. And if it's not the primary base class,
695 then printing it out as a FINAL_TYPE object would produce some pretty
696 garbage.
697
698 But we don't really know the type of the first argument in
699 METHOD_TYPE either, which is why this happens. We can't
700 dereference this later as a FINAL_TYPE, but once we arrive in the
701 called method we'll have debugging information for the type of
702 "this" - and that'll match the value we produce here.
703
704 You can provoke this case by casting a Base::* to a Derived::*, for
705 instance. */
706 *this_p = value_cast (builtin_type (gdbarch)->builtin_data_ptr, *this_p);
707 *this_p = value_ptradd (*this_p, adjustment);
708 *this_p = value_cast (final_type, *this_p);
709
710 if (vbit)
711 {
712 LONGEST voffset;
713
714 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
715 return gnuv3_get_virtual_fn (gdbarch, value_ind (*this_p),
716 method_type, voffset);
717 }
718 else
719 return value_from_pointer (lookup_pointer_type (method_type), ptr_value);
720 }
721
722 /* Determine if we are currently in a C++ thunk. If so, get the address
723 of the routine we are thunking to and continue to there instead. */
724
725 static CORE_ADDR
726 gnuv3_skip_trampoline (struct frame_info *frame, CORE_ADDR stop_pc)
727 {
728 CORE_ADDR real_stop_pc, method_stop_pc;
729 struct gdbarch *gdbarch = get_frame_arch (frame);
730 struct minimal_symbol *thunk_sym, *fn_sym;
731 struct obj_section *section;
732 char *thunk_name, *fn_name;
733
734 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
735 if (real_stop_pc == 0)
736 real_stop_pc = stop_pc;
737
738 /* Find the linker symbol for this potential thunk. */
739 thunk_sym = lookup_minimal_symbol_by_pc (real_stop_pc);
740 section = find_pc_section (real_stop_pc);
741 if (thunk_sym == NULL || section == NULL)
742 return 0;
743
744 /* The symbol's demangled name should be something like "virtual
745 thunk to FUNCTION", where FUNCTION is the name of the function
746 being thunked to. */
747 thunk_name = SYMBOL_DEMANGLED_NAME (thunk_sym);
748 if (thunk_name == NULL || strstr (thunk_name, " thunk to ") == NULL)
749 return 0;
750
751 fn_name = strstr (thunk_name, " thunk to ") + strlen (" thunk to ");
752 fn_sym = lookup_minimal_symbol (fn_name, NULL, section->objfile);
753 if (fn_sym == NULL)
754 return 0;
755
756 method_stop_pc = SYMBOL_VALUE_ADDRESS (fn_sym);
757 real_stop_pc = gdbarch_skip_trampoline_code
758 (gdbarch, frame, method_stop_pc);
759 if (real_stop_pc == 0)
760 real_stop_pc = method_stop_pc;
761
762 return real_stop_pc;
763 }
764
765 /* Return nonzero if a type should be passed by reference.
766
767 The rule in the v3 ABI document comes from section 3.1.1. If the
768 type has a non-trivial copy constructor or destructor, then the
769 caller must make a copy (by calling the copy constructor if there
770 is one or perform the copy itself otherwise), pass the address of
771 the copy, and then destroy the temporary (if necessary).
772
773 For return values with non-trivial copy constructors or
774 destructors, space will be allocated in the caller, and a pointer
775 will be passed as the first argument (preceding "this").
776
777 We don't have a bulletproof mechanism for determining whether a
778 constructor or destructor is trivial. For GCC and DWARF2 debug
779 information, we can check the artificial flag.
780
781 We don't do anything with the constructors or destructors,
782 but we have to get the argument passing right anyway. */
783 static int
784 gnuv3_pass_by_reference (struct type *type)
785 {
786 int fieldnum, fieldelem;
787
788 CHECK_TYPEDEF (type);
789
790 /* We're only interested in things that can have methods. */
791 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
792 && TYPE_CODE (type) != TYPE_CODE_CLASS
793 && TYPE_CODE (type) != TYPE_CODE_UNION)
794 return 0;
795
796 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
797 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
798 fieldelem++)
799 {
800 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, fieldnum);
801 char *name = TYPE_FN_FIELDLIST_NAME (type, fieldnum);
802 struct type *fieldtype = TYPE_FN_FIELD_TYPE (fn, fieldelem);
803
804 /* If this function is marked as artificial, it is compiler-generated,
805 and we assume it is trivial. */
806 if (TYPE_FN_FIELD_ARTIFICIAL (fn, fieldelem))
807 continue;
808
809 /* If we've found a destructor, we must pass this by reference. */
810 if (name[0] == '~')
811 return 1;
812
813 /* If the mangled name of this method doesn't indicate that it
814 is a constructor, we're not interested.
815
816 FIXME drow/2007-09-23: We could do this using the name of
817 the method and the name of the class instead of dealing
818 with the mangled name. We don't have a convenient function
819 to strip off both leading scope qualifiers and trailing
820 template arguments yet. */
821 if (!is_constructor_name (TYPE_FN_FIELD_PHYSNAME (fn, fieldelem)))
822 continue;
823
824 /* If this method takes two arguments, and the second argument is
825 a reference to this class, then it is a copy constructor. */
826 if (TYPE_NFIELDS (fieldtype) == 2
827 && TYPE_CODE (TYPE_FIELD_TYPE (fieldtype, 1)) == TYPE_CODE_REF
828 && check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (fieldtype, 1))) == type)
829 return 1;
830 }
831
832 /* Even if all the constructors and destructors were artificial, one
833 of them may have invoked a non-artificial constructor or
834 destructor in a base class. If any base class needs to be passed
835 by reference, so does this class. Similarly for members, which
836 are constructed whenever this class is. We do not need to worry
837 about recursive loops here, since we are only looking at members
838 of complete class type. Also ignore any static members. */
839 for (fieldnum = 0; fieldnum < TYPE_NFIELDS (type); fieldnum++)
840 if (! field_is_static (&TYPE_FIELD (type, fieldnum))
841 && gnuv3_pass_by_reference (TYPE_FIELD_TYPE (type, fieldnum)))
842 return 1;
843
844 return 0;
845 }
846
847 static void
848 init_gnuv3_ops (void)
849 {
850 vtable_type_gdbarch_data = gdbarch_data_register_post_init (build_gdb_vtable_type);
851
852 gnu_v3_abi_ops.shortname = "gnu-v3";
853 gnu_v3_abi_ops.longname = "GNU G++ Version 3 ABI";
854 gnu_v3_abi_ops.doc = "G++ Version 3 ABI";
855 gnu_v3_abi_ops.is_destructor_name =
856 (enum dtor_kinds (*) (const char *))is_gnu_v3_mangled_dtor;
857 gnu_v3_abi_ops.is_constructor_name =
858 (enum ctor_kinds (*) (const char *))is_gnu_v3_mangled_ctor;
859 gnu_v3_abi_ops.is_vtable_name = gnuv3_is_vtable_name;
860 gnu_v3_abi_ops.is_operator_name = gnuv3_is_operator_name;
861 gnu_v3_abi_ops.rtti_type = gnuv3_rtti_type;
862 gnu_v3_abi_ops.virtual_fn_field = gnuv3_virtual_fn_field;
863 gnu_v3_abi_ops.baseclass_offset = gnuv3_baseclass_offset;
864 gnu_v3_abi_ops.print_method_ptr = gnuv3_print_method_ptr;
865 gnu_v3_abi_ops.method_ptr_size = gnuv3_method_ptr_size;
866 gnu_v3_abi_ops.make_method_ptr = gnuv3_make_method_ptr;
867 gnu_v3_abi_ops.method_ptr_to_value = gnuv3_method_ptr_to_value;
868 gnu_v3_abi_ops.skip_trampoline = gnuv3_skip_trampoline;
869 gnu_v3_abi_ops.pass_by_reference = gnuv3_pass_by_reference;
870 }
871
872 extern initialize_file_ftype _initialize_gnu_v3_abi; /* -Wmissing-prototypes */
873
874 void
875 _initialize_gnu_v3_abi (void)
876 {
877 init_gnuv3_ops ();
878
879 register_cp_abi (&gnu_v3_abi_ops);
880 }
This page took 0.05026 seconds and 5 git commands to generate.