2011-01-07 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / go32-nat.c
1 /* Native debugging support for Intel x86 running DJGPP.
2 Copyright (C) 1997, 1999, 2000, 2001, 2005, 2006, 2007, 2008, 2009, 2010,
3 2011 Free Software Foundation, Inc.
4 Written by Robert Hoehne.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /* To whomever it may concern, here's a general description of how
22 debugging in DJGPP works, and the special quirks GDB does to
23 support that.
24
25 When the DJGPP port of GDB is debugging a DJGPP program natively,
26 there aren't 2 separate processes, the debuggee and GDB itself, as
27 on other systems. (This is DOS, where there can only be one active
28 process at any given time, remember?) Instead, GDB and the
29 debuggee live in the same process. So when GDB calls
30 go32_create_inferior below, and that function calls edi_init from
31 the DJGPP debug support library libdbg.a, we load the debuggee's
32 executable file into GDB's address space, set it up for execution
33 as the stub loader (a short real-mode program prepended to each
34 DJGPP executable) normally would, and do a lot of preparations for
35 swapping between GDB's and debuggee's internal state, primarily wrt
36 the exception handlers. This swapping happens every time we resume
37 the debuggee or switch back to GDB's code, and it includes:
38
39 . swapping all the segment registers
40 . swapping the PSP (the Program Segment Prefix)
41 . swapping the signal handlers
42 . swapping the exception handlers
43 . swapping the FPU status
44 . swapping the 3 standard file handles (more about this below)
45
46 Then running the debuggee simply means longjmp into it where its PC
47 is and let it run until it stops for some reason. When it stops,
48 GDB catches the exception that stopped it and longjmp's back into
49 its own code. All the possible exit points of the debuggee are
50 watched; for example, the normal exit point is recognized because a
51 DOS program issues a special system call to exit. If one of those
52 exit points is hit, we mourn the inferior and clean up after it.
53 Cleaning up is very important, even if the process exits normally,
54 because otherwise we might leave behind traces of previous
55 execution, and in several cases GDB itself might be left hosed,
56 because all the exception handlers were not restored.
57
58 Swapping of the standard handles (in redir_to_child and
59 redir_to_debugger) is needed because, since both GDB and the
60 debuggee live in the same process, as far as the OS is concerned,
61 the share the same file table. This means that the standard
62 handles 0, 1, and 2 point to the same file table entries, and thus
63 are connected to the same devices. Therefore, if the debugger
64 redirects its standard output, the standard output of the debuggee
65 is also automagically redirected to the same file/device!
66 Similarly, if the debuggee redirects its stdout to a file, you
67 won't be able to see debugger's output (it will go to the same file
68 where the debuggee has its output); and if the debuggee closes its
69 standard input, you will lose the ability to talk to debugger!
70
71 For this reason, every time the debuggee is about to be resumed, we
72 call redir_to_child, which redirects the standard handles to where
73 the debuggee expects them to be. When the debuggee stops and GDB
74 regains control, we call redir_to_debugger, which redirects those 3
75 handles back to where GDB expects.
76
77 Note that only the first 3 handles are swapped, so if the debuggee
78 redirects or closes any other handles, GDB will not notice. In
79 particular, the exit code of a DJGPP program forcibly closes all
80 file handles beyond the first 3 ones, so when the debuggee exits,
81 GDB currently loses its stdaux and stdprn streams. Fortunately,
82 GDB does not use those as of this writing, and will never need
83 to. */
84
85 #include <fcntl.h>
86
87 #include "defs.h"
88 #include "i386-nat.h"
89 #include "inferior.h"
90 #include "gdbthread.h"
91 #include "gdb_wait.h"
92 #include "gdbcore.h"
93 #include "command.h"
94 #include "gdbcmd.h"
95 #include "floatformat.h"
96 #include "buildsym.h"
97 #include "i387-tdep.h"
98 #include "i386-tdep.h"
99 #include "value.h"
100 #include "regcache.h"
101 #include "gdb_string.h"
102 #include "top.h"
103
104 #include <stdio.h> /* might be required for __DJGPP_MINOR__ */
105 #include <stdlib.h>
106 #include <ctype.h>
107 #include <errno.h>
108 #include <unistd.h>
109 #include <sys/utsname.h>
110 #include <io.h>
111 #include <dos.h>
112 #include <dpmi.h>
113 #include <go32.h>
114 #include <sys/farptr.h>
115 #include <debug/v2load.h>
116 #include <debug/dbgcom.h>
117 #if __DJGPP_MINOR__ > 2
118 #include <debug/redir.h>
119 #endif
120
121 #include <langinfo.h>
122
123 #if __DJGPP_MINOR__ < 3
124 /* This code will be provided from DJGPP 2.03 on. Until then I code it
125 here. */
126 typedef struct
127 {
128 unsigned short sig0;
129 unsigned short sig1;
130 unsigned short sig2;
131 unsigned short sig3;
132 unsigned short exponent:15;
133 unsigned short sign:1;
134 }
135 NPXREG;
136
137 typedef struct
138 {
139 unsigned int control;
140 unsigned int status;
141 unsigned int tag;
142 unsigned int eip;
143 unsigned int cs;
144 unsigned int dataptr;
145 unsigned int datasel;
146 NPXREG reg[8];
147 }
148 NPX;
149
150 static NPX npx;
151
152 static void save_npx (void); /* Save the FPU of the debugged program. */
153 static void load_npx (void); /* Restore the FPU of the debugged program. */
154
155 /* ------------------------------------------------------------------------- */
156 /* Store the contents of the NPX in the global variable `npx'. */
157 /* *INDENT-OFF* */
158
159 static void
160 save_npx (void)
161 {
162 asm ("inb $0xa0, %%al \n\
163 testb $0x20, %%al \n\
164 jz 1f \n\
165 xorb %%al, %%al \n\
166 outb %%al, $0xf0 \n\
167 movb $0x20, %%al \n\
168 outb %%al, $0xa0 \n\
169 outb %%al, $0x20 \n\
170 1: \n\
171 fnsave %0 \n\
172 fwait "
173 : "=m" (npx)
174 : /* No input */
175 : "%eax");
176 }
177
178 /* *INDENT-ON* */
179
180
181 /* ------------------------------------------------------------------------- */
182 /* Reload the contents of the NPX from the global variable `npx'. */
183
184 static void
185 load_npx (void)
186 {
187 asm ("frstor %0":"=m" (npx));
188 }
189 /* ------------------------------------------------------------------------- */
190 /* Stubs for the missing redirection functions. */
191 typedef struct {
192 char *command;
193 int redirected;
194 } cmdline_t;
195
196 void
197 redir_cmdline_delete (cmdline_t *ptr)
198 {
199 ptr->redirected = 0;
200 }
201
202 int
203 redir_cmdline_parse (const char *args, cmdline_t *ptr)
204 {
205 return -1;
206 }
207
208 int
209 redir_to_child (cmdline_t *ptr)
210 {
211 return 1;
212 }
213
214 int
215 redir_to_debugger (cmdline_t *ptr)
216 {
217 return 1;
218 }
219
220 int
221 redir_debug_init (cmdline_t *ptr)
222 {
223 return 0;
224 }
225 #endif /* __DJGPP_MINOR < 3 */
226
227 typedef enum { wp_insert, wp_remove, wp_count } wp_op;
228
229 /* This holds the current reference counts for each debug register. */
230 static int dr_ref_count[4];
231
232 #define SOME_PID 42
233
234 static int prog_has_started = 0;
235 static void go32_open (char *name, int from_tty);
236 static void go32_close (int quitting);
237 static void go32_attach (struct target_ops *ops, char *args, int from_tty);
238 static void go32_detach (struct target_ops *ops, char *args, int from_tty);
239 static void go32_resume (struct target_ops *ops,
240 ptid_t ptid, int step,
241 enum target_signal siggnal);
242 static void go32_fetch_registers (struct target_ops *ops,
243 struct regcache *, int regno);
244 static void store_register (const struct regcache *, int regno);
245 static void go32_store_registers (struct target_ops *ops,
246 struct regcache *, int regno);
247 static void go32_prepare_to_store (struct regcache *);
248 static int go32_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len,
249 int write,
250 struct mem_attrib *attrib,
251 struct target_ops *target);
252 static void go32_files_info (struct target_ops *target);
253 static void go32_kill_inferior (struct target_ops *ops);
254 static void go32_create_inferior (struct target_ops *ops, char *exec_file,
255 char *args, char **env, int from_tty);
256 static void go32_mourn_inferior (struct target_ops *ops);
257 static int go32_can_run (void);
258
259 static struct target_ops go32_ops;
260 static void go32_terminal_init (void);
261 static void go32_terminal_inferior (void);
262 static void go32_terminal_ours (void);
263
264 #define r_ofs(x) (offsetof(TSS,x))
265
266 static struct
267 {
268 size_t tss_ofs;
269 size_t size;
270 }
271 regno_mapping[] =
272 {
273 {r_ofs (tss_eax), 4}, /* normal registers, from a_tss */
274 {r_ofs (tss_ecx), 4},
275 {r_ofs (tss_edx), 4},
276 {r_ofs (tss_ebx), 4},
277 {r_ofs (tss_esp), 4},
278 {r_ofs (tss_ebp), 4},
279 {r_ofs (tss_esi), 4},
280 {r_ofs (tss_edi), 4},
281 {r_ofs (tss_eip), 4},
282 {r_ofs (tss_eflags), 4},
283 {r_ofs (tss_cs), 2},
284 {r_ofs (tss_ss), 2},
285 {r_ofs (tss_ds), 2},
286 {r_ofs (tss_es), 2},
287 {r_ofs (tss_fs), 2},
288 {r_ofs (tss_gs), 2},
289 {0, 10}, /* 8 FP registers, from npx.reg[] */
290 {1, 10},
291 {2, 10},
292 {3, 10},
293 {4, 10},
294 {5, 10},
295 {6, 10},
296 {7, 10},
297 /* The order of the next 7 registers must be consistent
298 with their numbering in config/i386/tm-i386.h, which see. */
299 {0, 2}, /* control word, from npx */
300 {4, 2}, /* status word, from npx */
301 {8, 2}, /* tag word, from npx */
302 {16, 2}, /* last FP exception CS from npx */
303 {12, 4}, /* last FP exception EIP from npx */
304 {24, 2}, /* last FP exception operand selector from npx */
305 {20, 4}, /* last FP exception operand offset from npx */
306 {18, 2} /* last FP opcode from npx */
307 };
308
309 static struct
310 {
311 int go32_sig;
312 enum target_signal gdb_sig;
313 }
314 sig_map[] =
315 {
316 {0, TARGET_SIGNAL_FPE},
317 {1, TARGET_SIGNAL_TRAP},
318 /* Exception 2 is triggered by the NMI. DJGPP handles it as SIGILL,
319 but I think SIGBUS is better, since the NMI is usually activated
320 as a result of a memory parity check failure. */
321 {2, TARGET_SIGNAL_BUS},
322 {3, TARGET_SIGNAL_TRAP},
323 {4, TARGET_SIGNAL_FPE},
324 {5, TARGET_SIGNAL_SEGV},
325 {6, TARGET_SIGNAL_ILL},
326 {7, TARGET_SIGNAL_EMT}, /* no-coprocessor exception */
327 {8, TARGET_SIGNAL_SEGV},
328 {9, TARGET_SIGNAL_SEGV},
329 {10, TARGET_SIGNAL_BUS},
330 {11, TARGET_SIGNAL_SEGV},
331 {12, TARGET_SIGNAL_SEGV},
332 {13, TARGET_SIGNAL_SEGV},
333 {14, TARGET_SIGNAL_SEGV},
334 {16, TARGET_SIGNAL_FPE},
335 {17, TARGET_SIGNAL_BUS},
336 {31, TARGET_SIGNAL_ILL},
337 {0x1b, TARGET_SIGNAL_INT},
338 {0x75, TARGET_SIGNAL_FPE},
339 {0x78, TARGET_SIGNAL_ALRM},
340 {0x79, TARGET_SIGNAL_INT},
341 {0x7a, TARGET_SIGNAL_QUIT},
342 {-1, TARGET_SIGNAL_LAST}
343 };
344
345 static struct {
346 enum target_signal gdb_sig;
347 int djgpp_excepno;
348 } excepn_map[] = {
349 {TARGET_SIGNAL_0, -1},
350 {TARGET_SIGNAL_ILL, 6}, /* Invalid Opcode */
351 {TARGET_SIGNAL_EMT, 7}, /* triggers SIGNOFP */
352 {TARGET_SIGNAL_SEGV, 13}, /* GPF */
353 {TARGET_SIGNAL_BUS, 17}, /* Alignment Check */
354 /* The rest are fake exceptions, see dpmiexcp.c in djlsr*.zip for
355 details. */
356 {TARGET_SIGNAL_TERM, 0x1b}, /* triggers Ctrl-Break type of SIGINT */
357 {TARGET_SIGNAL_FPE, 0x75},
358 {TARGET_SIGNAL_INT, 0x79},
359 {TARGET_SIGNAL_QUIT, 0x7a},
360 {TARGET_SIGNAL_ALRM, 0x78}, /* triggers SIGTIMR */
361 {TARGET_SIGNAL_PROF, 0x78},
362 {TARGET_SIGNAL_LAST, -1}
363 };
364
365 static void
366 go32_open (char *name, int from_tty)
367 {
368 printf_unfiltered ("Done. Use the \"run\" command to run the program.\n");
369 }
370
371 static void
372 go32_close (int quitting)
373 {
374 }
375
376 static void
377 go32_attach (struct target_ops *ops, char *args, int from_tty)
378 {
379 error (_("\
380 You cannot attach to a running program on this platform.\n\
381 Use the `run' command to run DJGPP programs."));
382 }
383
384 static void
385 go32_detach (struct target_ops *ops, char *args, int from_tty)
386 {
387 }
388
389 static int resume_is_step;
390 static int resume_signal = -1;
391
392 static void
393 go32_resume (struct target_ops *ops,
394 ptid_t ptid, int step, enum target_signal siggnal)
395 {
396 int i;
397
398 resume_is_step = step;
399
400 if (siggnal != TARGET_SIGNAL_0 && siggnal != TARGET_SIGNAL_TRAP)
401 {
402 for (i = 0, resume_signal = -1;
403 excepn_map[i].gdb_sig != TARGET_SIGNAL_LAST; i++)
404 if (excepn_map[i].gdb_sig == siggnal)
405 {
406 resume_signal = excepn_map[i].djgpp_excepno;
407 break;
408 }
409 if (resume_signal == -1)
410 printf_unfiltered ("Cannot deliver signal %s on this platform.\n",
411 target_signal_to_name (siggnal));
412 }
413 }
414
415 static char child_cwd[FILENAME_MAX];
416
417 static ptid_t
418 go32_wait (struct target_ops *ops,
419 ptid_t ptid, struct target_waitstatus *status, int options)
420 {
421 int i;
422 unsigned char saved_opcode;
423 unsigned long INT3_addr = 0;
424 int stepping_over_INT = 0;
425
426 a_tss.tss_eflags &= 0xfeff; /* Reset the single-step flag (TF). */
427 if (resume_is_step)
428 {
429 /* If the next instruction is INT xx or INTO, we need to handle
430 them specially. Intel manuals say that these instructions
431 reset the single-step flag (a.k.a. TF). However, it seems
432 that, at least in the DPMI environment, and at least when
433 stepping over the DPMI interrupt 31h, the problem is having
434 TF set at all when INT 31h is executed: the debuggee either
435 crashes (and takes the system with it) or is killed by a
436 SIGTRAP.
437
438 So we need to emulate single-step mode: we put an INT3 opcode
439 right after the INT xx instruction, let the debuggee run
440 until it hits INT3 and stops, then restore the original
441 instruction which we overwrote with the INT3 opcode, and back
442 up the debuggee's EIP to that instruction. */
443 read_child (a_tss.tss_eip, &saved_opcode, 1);
444 if (saved_opcode == 0xCD || saved_opcode == 0xCE)
445 {
446 unsigned char INT3_opcode = 0xCC;
447
448 INT3_addr
449 = saved_opcode == 0xCD ? a_tss.tss_eip + 2 : a_tss.tss_eip + 1;
450 stepping_over_INT = 1;
451 read_child (INT3_addr, &saved_opcode, 1);
452 write_child (INT3_addr, &INT3_opcode, 1);
453 }
454 else
455 a_tss.tss_eflags |= 0x0100; /* normal instruction: set TF */
456 }
457
458 /* The special value FFFFh in tss_trap indicates to run_child that
459 tss_irqn holds a signal to be delivered to the debuggee. */
460 if (resume_signal <= -1)
461 {
462 a_tss.tss_trap = 0;
463 a_tss.tss_irqn = 0xff;
464 }
465 else
466 {
467 a_tss.tss_trap = 0xffff; /* run_child looks for this. */
468 a_tss.tss_irqn = resume_signal;
469 }
470
471 /* The child might change working directory behind our back. The
472 GDB users won't like the side effects of that when they work with
473 relative file names, and GDB might be confused by its current
474 directory not being in sync with the truth. So we always make a
475 point of changing back to where GDB thinks is its cwd, when we
476 return control to the debugger, but restore child's cwd before we
477 run it. */
478 /* Initialize child_cwd, before the first call to run_child and not
479 in the initialization, so the child get also the changed directory
480 set with the gdb-command "cd ..." */
481 if (!*child_cwd)
482 /* Initialize child's cwd with the current one. */
483 getcwd (child_cwd, sizeof (child_cwd));
484
485 chdir (child_cwd);
486
487 #if __DJGPP_MINOR__ < 3
488 load_npx ();
489 #endif
490 run_child ();
491 #if __DJGPP_MINOR__ < 3
492 save_npx ();
493 #endif
494
495 /* Did we step over an INT xx instruction? */
496 if (stepping_over_INT && a_tss.tss_eip == INT3_addr + 1)
497 {
498 /* Restore the original opcode. */
499 a_tss.tss_eip--; /* EIP points *after* the INT3 instruction. */
500 write_child (a_tss.tss_eip, &saved_opcode, 1);
501 /* Simulate a TRAP exception. */
502 a_tss.tss_irqn = 1;
503 a_tss.tss_eflags |= 0x0100;
504 }
505
506 getcwd (child_cwd, sizeof (child_cwd)); /* in case it has changed */
507 chdir (current_directory);
508
509 if (a_tss.tss_irqn == 0x21)
510 {
511 status->kind = TARGET_WAITKIND_EXITED;
512 status->value.integer = a_tss.tss_eax & 0xff;
513 }
514 else
515 {
516 status->value.sig = TARGET_SIGNAL_UNKNOWN;
517 status->kind = TARGET_WAITKIND_STOPPED;
518 for (i = 0; sig_map[i].go32_sig != -1; i++)
519 {
520 if (a_tss.tss_irqn == sig_map[i].go32_sig)
521 {
522 #if __DJGPP_MINOR__ < 3
523 if ((status->value.sig = sig_map[i].gdb_sig) !=
524 TARGET_SIGNAL_TRAP)
525 status->kind = TARGET_WAITKIND_SIGNALLED;
526 #else
527 status->value.sig = sig_map[i].gdb_sig;
528 #endif
529 break;
530 }
531 }
532 }
533 return pid_to_ptid (SOME_PID);
534 }
535
536 static void
537 fetch_register (struct regcache *regcache, int regno)
538 {
539 struct gdbarch *gdbarch = get_regcache_arch (regcache);
540 if (regno < gdbarch_fp0_regnum (gdbarch))
541 regcache_raw_supply (regcache, regno,
542 (char *) &a_tss + regno_mapping[regno].tss_ofs);
543 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
544 regno))
545 i387_supply_fsave (regcache, regno, &npx);
546 else
547 internal_error (__FILE__, __LINE__,
548 _("Invalid register no. %d in fetch_register."), regno);
549 }
550
551 static void
552 go32_fetch_registers (struct target_ops *ops,
553 struct regcache *regcache, int regno)
554 {
555 if (regno >= 0)
556 fetch_register (regcache, regno);
557 else
558 {
559 for (regno = 0;
560 regno < gdbarch_fp0_regnum (get_regcache_arch (regcache));
561 regno++)
562 fetch_register (regcache, regno);
563 i387_supply_fsave (regcache, -1, &npx);
564 }
565 }
566
567 static void
568 store_register (const struct regcache *regcache, int regno)
569 {
570 struct gdbarch *gdbarch = get_regcache_arch (regcache);
571 if (regno < gdbarch_fp0_regnum (gdbarch))
572 regcache_raw_collect (regcache, regno,
573 (char *) &a_tss + regno_mapping[regno].tss_ofs);
574 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
575 regno))
576 i387_collect_fsave (regcache, regno, &npx);
577 else
578 internal_error (__FILE__, __LINE__,
579 _("Invalid register no. %d in store_register."), regno);
580 }
581
582 static void
583 go32_store_registers (struct target_ops *ops,
584 struct regcache *regcache, int regno)
585 {
586 unsigned r;
587
588 if (regno >= 0)
589 store_register (regcache, regno);
590 else
591 {
592 for (r = 0; r < gdbarch_fp0_regnum (get_regcache_arch (regcache)); r++)
593 store_register (regcache, r);
594 i387_collect_fsave (regcache, -1, &npx);
595 }
596 }
597
598 static void
599 go32_prepare_to_store (struct regcache *regcache)
600 {
601 }
602
603 static int
604 go32_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int write,
605 struct mem_attrib *attrib, struct target_ops *target)
606 {
607 if (write)
608 {
609 if (write_child (memaddr, myaddr, len))
610 {
611 return 0;
612 }
613 else
614 {
615 return len;
616 }
617 }
618 else
619 {
620 if (read_child (memaddr, myaddr, len))
621 {
622 return 0;
623 }
624 else
625 {
626 return len;
627 }
628 }
629 }
630
631 static cmdline_t child_cmd; /* Parsed child's command line kept here. */
632
633 static void
634 go32_files_info (struct target_ops *target)
635 {
636 printf_unfiltered ("You are running a DJGPP V2 program.\n");
637 }
638
639 static void
640 go32_kill_inferior (struct target_ops *ops)
641 {
642 go32_mourn_inferior (ops);
643 }
644
645 static void
646 go32_create_inferior (struct target_ops *ops, char *exec_file,
647 char *args, char **env, int from_tty)
648 {
649 extern char **environ;
650 jmp_buf start_state;
651 char *cmdline;
652 char **env_save = environ;
653 size_t cmdlen;
654 struct inferior *inf;
655
656 /* If no exec file handed to us, get it from the exec-file command -- with
657 a good, common error message if none is specified. */
658 if (exec_file == 0)
659 exec_file = get_exec_file (1);
660
661 resume_signal = -1;
662 resume_is_step = 0;
663
664 /* Initialize child's cwd as empty to be initialized when starting
665 the child. */
666 *child_cwd = 0;
667
668 /* Init command line storage. */
669 if (redir_debug_init (&child_cmd) == -1)
670 internal_error (__FILE__, __LINE__,
671 _("Cannot allocate redirection storage: "
672 "not enough memory.\n"));
673
674 /* Parse the command line and create redirections. */
675 if (strpbrk (args, "<>"))
676 {
677 if (redir_cmdline_parse (args, &child_cmd) == 0)
678 args = child_cmd.command;
679 else
680 error (_("Syntax error in command line."));
681 }
682 else
683 child_cmd.command = xstrdup (args);
684
685 cmdlen = strlen (args);
686 /* v2loadimage passes command lines via DOS memory, so it cannot
687 possibly handle commands longer than 1MB. */
688 if (cmdlen > 1024*1024)
689 error (_("Command line too long."));
690
691 cmdline = xmalloc (cmdlen + 4);
692 strcpy (cmdline + 1, args);
693 /* If the command-line length fits into DOS 126-char limits, use the
694 DOS command tail format; otherwise, tell v2loadimage to pass it
695 through a buffer in conventional memory. */
696 if (cmdlen < 127)
697 {
698 cmdline[0] = strlen (args);
699 cmdline[cmdlen + 1] = 13;
700 }
701 else
702 cmdline[0] = 0xff; /* Signal v2loadimage it's a long command. */
703
704 environ = env;
705
706 if (v2loadimage (exec_file, cmdline, start_state))
707 {
708 environ = env_save;
709 printf_unfiltered ("Load failed for image %s\n", exec_file);
710 exit (1);
711 }
712 environ = env_save;
713 xfree (cmdline);
714
715 edi_init (start_state);
716 #if __DJGPP_MINOR__ < 3
717 save_npx ();
718 #endif
719
720 inferior_ptid = pid_to_ptid (SOME_PID);
721 inf = current_inferior ();
722 inferior_appeared (inf, SOME_PID);
723
724 push_target (&go32_ops);
725
726 add_thread_silent (inferior_ptid);
727
728 clear_proceed_status ();
729 insert_breakpoints ();
730 prog_has_started = 1;
731 }
732
733 static void
734 go32_mourn_inferior (struct target_ops *ops)
735 {
736 ptid_t ptid;
737
738 redir_cmdline_delete (&child_cmd);
739 resume_signal = -1;
740 resume_is_step = 0;
741
742 cleanup_client ();
743
744 /* We need to make sure all the breakpoint enable bits in the DR7
745 register are reset when the inferior exits. Otherwise, if they
746 rerun the inferior, the uncleared bits may cause random SIGTRAPs,
747 failure to set more watchpoints, and other calamities. It would
748 be nice if GDB itself would take care to remove all breakpoints
749 at all times, but it doesn't, probably under an assumption that
750 the OS cleans up when the debuggee exits. */
751 i386_cleanup_dregs ();
752
753 ptid = inferior_ptid;
754 inferior_ptid = null_ptid;
755 delete_thread_silent (ptid);
756 prog_has_started = 0;
757
758 unpush_target (ops);
759 generic_mourn_inferior ();
760 }
761
762 static int
763 go32_can_run (void)
764 {
765 return 1;
766 }
767
768 /* Hardware watchpoint support. */
769
770 #define D_REGS edi.dr
771 #define CONTROL D_REGS[7]
772 #define STATUS D_REGS[6]
773
774 /* Pass the address ADDR to the inferior in the I'th debug register.
775 Here we just store the address in D_REGS, the watchpoint will be
776 actually set up when go32_wait runs the debuggee. */
777 static void
778 go32_set_dr (int i, CORE_ADDR addr)
779 {
780 if (i < 0 || i > 3)
781 internal_error (__FILE__, __LINE__,
782 _("Invalid register %d in go32_set_dr.\n"), i);
783 D_REGS[i] = addr;
784 }
785
786 /* Pass the value VAL to the inferior in the DR7 debug control
787 register. Here we just store the address in D_REGS, the watchpoint
788 will be actually set up when go32_wait runs the debuggee. */
789 static void
790 go32_set_dr7 (unsigned long val)
791 {
792 CONTROL = val;
793 }
794
795 /* Get the value of the DR6 debug status register from the inferior.
796 Here we just return the value stored in D_REGS, as we've got it
797 from the last go32_wait call. */
798 static unsigned long
799 go32_get_dr6 (void)
800 {
801 return STATUS;
802 }
803
804 /* Put the device open on handle FD into either raw or cooked
805 mode, return 1 if it was in raw mode, zero otherwise. */
806
807 static int
808 device_mode (int fd, int raw_p)
809 {
810 int oldmode, newmode;
811 __dpmi_regs regs;
812
813 regs.x.ax = 0x4400;
814 regs.x.bx = fd;
815 __dpmi_int (0x21, &regs);
816 if (regs.x.flags & 1)
817 return -1;
818 newmode = oldmode = regs.x.dx;
819
820 if (raw_p)
821 newmode |= 0x20;
822 else
823 newmode &= ~0x20;
824
825 if (oldmode & 0x80) /* Only for character dev. */
826 {
827 regs.x.ax = 0x4401;
828 regs.x.bx = fd;
829 regs.x.dx = newmode & 0xff; /* Force upper byte zero, else it fails. */
830 __dpmi_int (0x21, &regs);
831 if (regs.x.flags & 1)
832 return -1;
833 }
834 return (oldmode & 0x20) == 0x20;
835 }
836
837
838 static int inf_mode_valid = 0;
839 static int inf_terminal_mode;
840
841 /* This semaphore is needed because, amazingly enough, GDB calls
842 target.to_terminal_ours more than once after the inferior stops.
843 But we need the information from the first call only, since the
844 second call will always see GDB's own cooked terminal. */
845 static int terminal_is_ours = 1;
846
847 static void
848 go32_terminal_init (void)
849 {
850 inf_mode_valid = 0; /* Reinitialize, in case they are restarting child. */
851 terminal_is_ours = 1;
852 }
853
854 static void
855 go32_terminal_info (char *args, int from_tty)
856 {
857 printf_unfiltered ("Inferior's terminal is in %s mode.\n",
858 !inf_mode_valid
859 ? "default" : inf_terminal_mode ? "raw" : "cooked");
860
861 #if __DJGPP_MINOR__ > 2
862 if (child_cmd.redirection)
863 {
864 int i;
865
866 for (i = 0; i < DBG_HANDLES; i++)
867 {
868 if (child_cmd.redirection[i]->file_name)
869 printf_unfiltered ("\tFile handle %d is redirected to `%s'.\n",
870 i, child_cmd.redirection[i]->file_name);
871 else if (_get_dev_info (child_cmd.redirection[i]->inf_handle) == -1)
872 printf_unfiltered
873 ("\tFile handle %d appears to be closed by inferior.\n", i);
874 /* Mask off the raw/cooked bit when comparing device info words. */
875 else if ((_get_dev_info (child_cmd.redirection[i]->inf_handle) & 0xdf)
876 != (_get_dev_info (i) & 0xdf))
877 printf_unfiltered
878 ("\tFile handle %d appears to be redirected by inferior.\n", i);
879 }
880 }
881 #endif
882 }
883
884 static void
885 go32_terminal_inferior (void)
886 {
887 /* Redirect standard handles as child wants them. */
888 errno = 0;
889 if (redir_to_child (&child_cmd) == -1)
890 {
891 redir_to_debugger (&child_cmd);
892 error (_("Cannot redirect standard handles for program: %s."),
893 safe_strerror (errno));
894 }
895 /* Set the console device of the inferior to whatever mode
896 (raw or cooked) we found it last time. */
897 if (terminal_is_ours)
898 {
899 if (inf_mode_valid)
900 device_mode (0, inf_terminal_mode);
901 terminal_is_ours = 0;
902 }
903 }
904
905 static void
906 go32_terminal_ours (void)
907 {
908 /* Switch to cooked mode on the gdb terminal and save the inferior
909 terminal mode to be restored when it is resumed. */
910 if (!terminal_is_ours)
911 {
912 inf_terminal_mode = device_mode (0, 0);
913 if (inf_terminal_mode != -1)
914 inf_mode_valid = 1;
915 else
916 /* If device_mode returned -1, we don't know what happens with
917 handle 0 anymore, so make the info invalid. */
918 inf_mode_valid = 0;
919 terminal_is_ours = 1;
920
921 /* Restore debugger's standard handles. */
922 errno = 0;
923 if (redir_to_debugger (&child_cmd) == -1)
924 {
925 redir_to_child (&child_cmd);
926 error (_("Cannot redirect standard handles for debugger: %s."),
927 safe_strerror (errno));
928 }
929 }
930 }
931
932 static int
933 go32_thread_alive (struct target_ops *ops, ptid_t ptid)
934 {
935 return !ptid_equal (inferior_ptid, null_ptid);
936 }
937
938 static char *
939 go32_pid_to_str (struct target_ops *ops, ptid_t ptid)
940 {
941 return normal_pid_to_str (ptid);
942 }
943
944 static void
945 init_go32_ops (void)
946 {
947 go32_ops.to_shortname = "djgpp";
948 go32_ops.to_longname = "djgpp target process";
949 go32_ops.to_doc =
950 "Program loaded by djgpp, when gdb is used as an external debugger";
951 go32_ops.to_open = go32_open;
952 go32_ops.to_close = go32_close;
953 go32_ops.to_attach = go32_attach;
954 go32_ops.to_detach = go32_detach;
955 go32_ops.to_resume = go32_resume;
956 go32_ops.to_wait = go32_wait;
957 go32_ops.to_fetch_registers = go32_fetch_registers;
958 go32_ops.to_store_registers = go32_store_registers;
959 go32_ops.to_prepare_to_store = go32_prepare_to_store;
960 go32_ops.deprecated_xfer_memory = go32_xfer_memory;
961 go32_ops.to_files_info = go32_files_info;
962 go32_ops.to_insert_breakpoint = memory_insert_breakpoint;
963 go32_ops.to_remove_breakpoint = memory_remove_breakpoint;
964 go32_ops.to_terminal_init = go32_terminal_init;
965 go32_ops.to_terminal_inferior = go32_terminal_inferior;
966 go32_ops.to_terminal_ours_for_output = go32_terminal_ours;
967 go32_ops.to_terminal_ours = go32_terminal_ours;
968 go32_ops.to_terminal_info = go32_terminal_info;
969 go32_ops.to_kill = go32_kill_inferior;
970 go32_ops.to_create_inferior = go32_create_inferior;
971 go32_ops.to_mourn_inferior = go32_mourn_inferior;
972 go32_ops.to_can_run = go32_can_run;
973 go32_ops.to_thread_alive = go32_thread_alive;
974 go32_ops.to_pid_to_str = go32_pid_to_str;
975 go32_ops.to_stratum = process_stratum;
976 go32_ops.to_has_all_memory = default_child_has_all_memory;
977 go32_ops.to_has_memory = default_child_has_memory;
978 go32_ops.to_has_stack = default_child_has_stack;
979 go32_ops.to_has_registers = default_child_has_registers;
980 go32_ops.to_has_execution = default_child_has_execution;
981
982 i386_use_watchpoints (&go32_ops);
983
984
985 i386_dr_low.set_control = go32_set_dr7;
986 i386_dr_low.set_addr = go32_set_dr;
987 i386_dr_low.reset_addr = NULL;
988 i386_dr_low.get_status = go32_get_dr6;
989 i386_set_debug_register_length (4);
990
991 go32_ops.to_magic = OPS_MAGIC;
992
993 /* Initialize child's cwd as empty to be initialized when starting
994 the child. */
995 *child_cwd = 0;
996
997 /* Initialize child's command line storage. */
998 if (redir_debug_init (&child_cmd) == -1)
999 internal_error (__FILE__, __LINE__,
1000 _("Cannot allocate redirection storage: "
1001 "not enough memory.\n"));
1002
1003 /* We are always processing GCC-compiled programs. */
1004 processing_gcc_compilation = 2;
1005
1006 /* Override the default name of the GDB init file. */
1007 strcpy (gdbinit, "gdb.ini");
1008 }
1009
1010 /* Return the current DOS codepage number. */
1011 static int
1012 dos_codepage (void)
1013 {
1014 __dpmi_regs regs;
1015
1016 regs.x.ax = 0x6601;
1017 __dpmi_int (0x21, &regs);
1018 if (!(regs.x.flags & 1))
1019 return regs.x.bx & 0xffff;
1020 else
1021 return 437; /* default */
1022 }
1023
1024 /* Limited emulation of `nl_langinfo', for charset.c. */
1025 char *
1026 nl_langinfo (nl_item item)
1027 {
1028 char *retval;
1029
1030 switch (item)
1031 {
1032 case CODESET:
1033 {
1034 /* 8 is enough for SHORT_MAX + "CP" + null. */
1035 char buf[8];
1036 int blen = sizeof (buf);
1037 int needed = snprintf (buf, blen, "CP%d", dos_codepage ());
1038
1039 if (needed > blen) /* Should never happen. */
1040 buf[0] = 0;
1041 retval = xstrdup (buf);
1042 }
1043 break;
1044 default:
1045 retval = xstrdup ("");
1046 break;
1047 }
1048 return retval;
1049 }
1050
1051 unsigned short windows_major, windows_minor;
1052
1053 /* Compute the version Windows reports via Int 2Fh/AX=1600h. */
1054 static void
1055 go32_get_windows_version(void)
1056 {
1057 __dpmi_regs r;
1058
1059 r.x.ax = 0x1600;
1060 __dpmi_int(0x2f, &r);
1061 if (r.h.al > 2 && r.h.al != 0x80 && r.h.al != 0xff
1062 && (r.h.al > 3 || r.h.ah > 0))
1063 {
1064 windows_major = r.h.al;
1065 windows_minor = r.h.ah;
1066 }
1067 else
1068 windows_major = 0xff; /* meaning no Windows */
1069 }
1070
1071 /* A subroutine of go32_sysinfo to display memory info. */
1072 static void
1073 print_mem (unsigned long datum, const char *header, int in_pages_p)
1074 {
1075 if (datum != 0xffffffffUL)
1076 {
1077 if (in_pages_p)
1078 datum <<= 12;
1079 puts_filtered (header);
1080 if (datum > 1024)
1081 {
1082 printf_filtered ("%lu KB", datum >> 10);
1083 if (datum > 1024 * 1024)
1084 printf_filtered (" (%lu MB)", datum >> 20);
1085 }
1086 else
1087 printf_filtered ("%lu Bytes", datum);
1088 puts_filtered ("\n");
1089 }
1090 }
1091
1092 /* Display assorted information about the underlying OS. */
1093 static void
1094 go32_sysinfo (char *arg, int from_tty)
1095 {
1096 static const char test_pattern[] =
1097 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1098 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1099 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeafdeadbeaf";
1100 struct utsname u;
1101 char cpuid_vendor[13];
1102 unsigned cpuid_max = 0, cpuid_eax, cpuid_ebx, cpuid_ecx, cpuid_edx;
1103 unsigned true_dos_version = _get_dos_version (1);
1104 unsigned advertized_dos_version = ((unsigned int)_osmajor << 8) | _osminor;
1105 int dpmi_flags;
1106 char dpmi_vendor_info[129];
1107 int dpmi_vendor_available;
1108 __dpmi_version_ret dpmi_version_data;
1109 long eflags;
1110 __dpmi_free_mem_info mem_info;
1111 __dpmi_regs regs;
1112
1113 cpuid_vendor[0] = '\0';
1114 if (uname (&u))
1115 strcpy (u.machine, "Unknown x86");
1116 else if (u.machine[0] == 'i' && u.machine[1] > 4)
1117 {
1118 /* CPUID with EAX = 0 returns the Vendor ID. */
1119 __asm__ __volatile__ ("xorl %%ebx, %%ebx;"
1120 "xorl %%ecx, %%ecx;"
1121 "xorl %%edx, %%edx;"
1122 "movl $0, %%eax;"
1123 "cpuid;"
1124 "movl %%ebx, %0;"
1125 "movl %%edx, %1;"
1126 "movl %%ecx, %2;"
1127 "movl %%eax, %3;"
1128 : "=m" (cpuid_vendor[0]),
1129 "=m" (cpuid_vendor[4]),
1130 "=m" (cpuid_vendor[8]),
1131 "=m" (cpuid_max)
1132 :
1133 : "%eax", "%ebx", "%ecx", "%edx");
1134 cpuid_vendor[12] = '\0';
1135 }
1136
1137 printf_filtered ("CPU Type.......................%s", u.machine);
1138 if (cpuid_vendor[0])
1139 printf_filtered (" (%s)", cpuid_vendor);
1140 puts_filtered ("\n");
1141
1142 /* CPUID with EAX = 1 returns processor signature and features. */
1143 if (cpuid_max >= 1)
1144 {
1145 static char *brand_name[] = {
1146 "",
1147 " Celeron",
1148 " III",
1149 " III Xeon",
1150 "", "", "", "",
1151 " 4"
1152 };
1153 char cpu_string[80];
1154 char cpu_brand[20];
1155 unsigned brand_idx;
1156 int intel_p = strcmp (cpuid_vendor, "GenuineIntel") == 0;
1157 int amd_p = strcmp (cpuid_vendor, "AuthenticAMD") == 0;
1158 unsigned cpu_family, cpu_model;
1159
1160 __asm__ __volatile__ ("movl $1, %%eax;"
1161 "cpuid;"
1162 : "=a" (cpuid_eax),
1163 "=b" (cpuid_ebx),
1164 "=d" (cpuid_edx)
1165 :
1166 : "%ecx");
1167 brand_idx = cpuid_ebx & 0xff;
1168 cpu_family = (cpuid_eax >> 8) & 0xf;
1169 cpu_model = (cpuid_eax >> 4) & 0xf;
1170 cpu_brand[0] = '\0';
1171 if (intel_p)
1172 {
1173 if (brand_idx > 0
1174 && brand_idx < sizeof(brand_name)/sizeof(brand_name[0])
1175 && *brand_name[brand_idx])
1176 strcpy (cpu_brand, brand_name[brand_idx]);
1177 else if (cpu_family == 5)
1178 {
1179 if (((cpuid_eax >> 12) & 3) == 0 && cpu_model == 4)
1180 strcpy (cpu_brand, " MMX");
1181 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 1)
1182 strcpy (cpu_brand, " OverDrive");
1183 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 2)
1184 strcpy (cpu_brand, " Dual");
1185 }
1186 else if (cpu_family == 6 && cpu_model < 8)
1187 {
1188 switch (cpu_model)
1189 {
1190 case 1:
1191 strcpy (cpu_brand, " Pro");
1192 break;
1193 case 3:
1194 strcpy (cpu_brand, " II");
1195 break;
1196 case 5:
1197 strcpy (cpu_brand, " II Xeon");
1198 break;
1199 case 6:
1200 strcpy (cpu_brand, " Celeron");
1201 break;
1202 case 7:
1203 strcpy (cpu_brand, " III");
1204 break;
1205 }
1206 }
1207 }
1208 else if (amd_p)
1209 {
1210 switch (cpu_family)
1211 {
1212 case 4:
1213 strcpy (cpu_brand, "486/5x86");
1214 break;
1215 case 5:
1216 switch (cpu_model)
1217 {
1218 case 0:
1219 case 1:
1220 case 2:
1221 case 3:
1222 strcpy (cpu_brand, "-K5");
1223 break;
1224 case 6:
1225 case 7:
1226 strcpy (cpu_brand, "-K6");
1227 break;
1228 case 8:
1229 strcpy (cpu_brand, "-K6-2");
1230 break;
1231 case 9:
1232 strcpy (cpu_brand, "-K6-III");
1233 break;
1234 }
1235 break;
1236 case 6:
1237 switch (cpu_model)
1238 {
1239 case 1:
1240 case 2:
1241 case 4:
1242 strcpy (cpu_brand, " Athlon");
1243 break;
1244 case 3:
1245 strcpy (cpu_brand, " Duron");
1246 break;
1247 }
1248 break;
1249 }
1250 }
1251 sprintf (cpu_string, "%s%s Model %d Stepping %d",
1252 intel_p ? "Pentium" : (amd_p ? "AMD" : "ix86"),
1253 cpu_brand, cpu_model, cpuid_eax & 0xf);
1254 printfi_filtered (31, "%s\n", cpu_string);
1255 if (((cpuid_edx & (6 | (0x0d << 23))) != 0)
1256 || ((cpuid_edx & 1) == 0)
1257 || (amd_p && (cpuid_edx & (3 << 30)) != 0))
1258 {
1259 puts_filtered ("CPU Features...................");
1260 /* We only list features which might be useful in the DPMI
1261 environment. */
1262 if ((cpuid_edx & 1) == 0)
1263 puts_filtered ("No FPU "); /* It's unusual to not have an FPU. */
1264 if ((cpuid_edx & (1 << 1)) != 0)
1265 puts_filtered ("VME ");
1266 if ((cpuid_edx & (1 << 2)) != 0)
1267 puts_filtered ("DE ");
1268 if ((cpuid_edx & (1 << 4)) != 0)
1269 puts_filtered ("TSC ");
1270 if ((cpuid_edx & (1 << 23)) != 0)
1271 puts_filtered ("MMX ");
1272 if ((cpuid_edx & (1 << 25)) != 0)
1273 puts_filtered ("SSE ");
1274 if ((cpuid_edx & (1 << 26)) != 0)
1275 puts_filtered ("SSE2 ");
1276 if (amd_p)
1277 {
1278 if ((cpuid_edx & (1 << 31)) != 0)
1279 puts_filtered ("3DNow! ");
1280 if ((cpuid_edx & (1 << 30)) != 0)
1281 puts_filtered ("3DNow!Ext");
1282 }
1283 puts_filtered ("\n");
1284 }
1285 }
1286 puts_filtered ("\n");
1287 printf_filtered ("DOS Version....................%s %s.%s",
1288 _os_flavor, u.release, u.version);
1289 if (true_dos_version != advertized_dos_version)
1290 printf_filtered (" (disguised as v%d.%d)", _osmajor, _osminor);
1291 puts_filtered ("\n");
1292 if (!windows_major)
1293 go32_get_windows_version ();
1294 if (windows_major != 0xff)
1295 {
1296 const char *windows_flavor;
1297
1298 printf_filtered ("Windows Version................%d.%02d (Windows ",
1299 windows_major, windows_minor);
1300 switch (windows_major)
1301 {
1302 case 3:
1303 windows_flavor = "3.X";
1304 break;
1305 case 4:
1306 switch (windows_minor)
1307 {
1308 case 0:
1309 windows_flavor = "95, 95A, or 95B";
1310 break;
1311 case 3:
1312 windows_flavor = "95B OSR2.1 or 95C OSR2.5";
1313 break;
1314 case 10:
1315 windows_flavor = "98 or 98 SE";
1316 break;
1317 case 90:
1318 windows_flavor = "ME";
1319 break;
1320 default:
1321 windows_flavor = "9X";
1322 break;
1323 }
1324 break;
1325 default:
1326 windows_flavor = "??";
1327 break;
1328 }
1329 printf_filtered ("%s)\n", windows_flavor);
1330 }
1331 else if (true_dos_version == 0x532 && advertized_dos_version == 0x500)
1332 printf_filtered ("Windows Version................"
1333 "Windows NT family (W2K/XP/W2K3/Vista/W2K8)\n");
1334 puts_filtered ("\n");
1335 /* On some versions of Windows, __dpmi_get_capabilities returns
1336 zero, but the buffer is not filled with info, so we fill the
1337 buffer with a known pattern and test for it afterwards. */
1338 memcpy (dpmi_vendor_info, test_pattern, sizeof(dpmi_vendor_info));
1339 dpmi_vendor_available =
1340 __dpmi_get_capabilities (&dpmi_flags, dpmi_vendor_info);
1341 if (dpmi_vendor_available == 0
1342 && memcmp (dpmi_vendor_info, test_pattern,
1343 sizeof(dpmi_vendor_info)) != 0)
1344 {
1345 /* The DPMI spec says the vendor string should be ASCIIZ, but
1346 I don't trust the vendors to follow that... */
1347 if (!memchr (&dpmi_vendor_info[2], 0, 126))
1348 dpmi_vendor_info[128] = '\0';
1349 printf_filtered ("DPMI Host......................"
1350 "%s v%d.%d (capabilities: %#x)\n",
1351 &dpmi_vendor_info[2],
1352 (unsigned)dpmi_vendor_info[0],
1353 (unsigned)dpmi_vendor_info[1],
1354 ((unsigned)dpmi_flags & 0x7f));
1355 }
1356 else
1357 printf_filtered ("DPMI Host......................(Info not available)\n");
1358 __dpmi_get_version (&dpmi_version_data);
1359 printf_filtered ("DPMI Version...................%d.%02d\n",
1360 dpmi_version_data.major, dpmi_version_data.minor);
1361 printf_filtered ("DPMI Info......................"
1362 "%s-bit DPMI, with%s Virtual Memory support\n",
1363 (dpmi_version_data.flags & 1) ? "32" : "16",
1364 (dpmi_version_data.flags & 4) ? "" : "out");
1365 printfi_filtered (31, "Interrupts reflected to %s mode\n",
1366 (dpmi_version_data.flags & 2) ? "V86" : "Real");
1367 printfi_filtered (31, "Processor type: i%d86\n",
1368 dpmi_version_data.cpu);
1369 printfi_filtered (31, "PIC base interrupt: Master: %#x Slave: %#x\n",
1370 dpmi_version_data.master_pic, dpmi_version_data.slave_pic);
1371
1372 /* a_tss is only initialized when the debuggee is first run. */
1373 if (prog_has_started)
1374 {
1375 __asm__ __volatile__ ("pushfl ; popl %0" : "=g" (eflags));
1376 printf_filtered ("Protection....................."
1377 "Ring %d (in %s), with%s I/O protection\n",
1378 a_tss.tss_cs & 3, (a_tss.tss_cs & 4) ? "LDT" : "GDT",
1379 (a_tss.tss_cs & 3) > ((eflags >> 12) & 3) ? "" : "out");
1380 }
1381 puts_filtered ("\n");
1382 __dpmi_get_free_memory_information (&mem_info);
1383 print_mem (mem_info.total_number_of_physical_pages,
1384 "DPMI Total Physical Memory.....", 1);
1385 print_mem (mem_info.total_number_of_free_pages,
1386 "DPMI Free Physical Memory......", 1);
1387 print_mem (mem_info.size_of_paging_file_partition_in_pages,
1388 "DPMI Swap Space................", 1);
1389 print_mem (mem_info.linear_address_space_size_in_pages,
1390 "DPMI Total Linear Address Size.", 1);
1391 print_mem (mem_info.free_linear_address_space_in_pages,
1392 "DPMI Free Linear Address Size..", 1);
1393 print_mem (mem_info.largest_available_free_block_in_bytes,
1394 "DPMI Largest Free Memory Block.", 0);
1395
1396 regs.h.ah = 0x48;
1397 regs.x.bx = 0xffff;
1398 __dpmi_int (0x21, &regs);
1399 print_mem (regs.x.bx << 4, "Free DOS Memory................", 0);
1400 regs.x.ax = 0x5800;
1401 __dpmi_int (0x21, &regs);
1402 if ((regs.x.flags & 1) == 0)
1403 {
1404 static const char *dos_hilo[] = {
1405 "Low", "", "", "", "High", "", "", "", "High, then Low"
1406 };
1407 static const char *dos_fit[] = {
1408 "First", "Best", "Last"
1409 };
1410 int hilo_idx = (regs.x.ax >> 4) & 0x0f;
1411 int fit_idx = regs.x.ax & 0x0f;
1412
1413 if (hilo_idx > 8)
1414 hilo_idx = 0;
1415 if (fit_idx > 2)
1416 fit_idx = 0;
1417 printf_filtered ("DOS Memory Allocation..........%s memory, %s fit\n",
1418 dos_hilo[hilo_idx], dos_fit[fit_idx]);
1419 regs.x.ax = 0x5802;
1420 __dpmi_int (0x21, &regs);
1421 if ((regs.x.flags & 1) != 0)
1422 regs.h.al = 0;
1423 printfi_filtered (31, "UMBs %sin DOS memory chain\n",
1424 regs.h.al == 0 ? "not " : "");
1425 }
1426 }
1427
1428 struct seg_descr {
1429 unsigned short limit0;
1430 unsigned short base0;
1431 unsigned char base1;
1432 unsigned stype:5;
1433 unsigned dpl:2;
1434 unsigned present:1;
1435 unsigned limit1:4;
1436 unsigned available:1;
1437 unsigned dummy:1;
1438 unsigned bit32:1;
1439 unsigned page_granular:1;
1440 unsigned char base2;
1441 } __attribute__ ((packed));
1442
1443 struct gate_descr {
1444 unsigned short offset0;
1445 unsigned short selector;
1446 unsigned param_count:5;
1447 unsigned dummy:3;
1448 unsigned stype:5;
1449 unsigned dpl:2;
1450 unsigned present:1;
1451 unsigned short offset1;
1452 } __attribute__ ((packed));
1453
1454 /* Read LEN bytes starting at logical address ADDR, and put the result
1455 into DEST. Return 1 if success, zero if not. */
1456 static int
1457 read_memory_region (unsigned long addr, void *dest, size_t len)
1458 {
1459 unsigned long dos_ds_limit = __dpmi_get_segment_limit (_dos_ds);
1460 int retval = 1;
1461
1462 /* For the low memory, we can simply use _dos_ds. */
1463 if (addr <= dos_ds_limit - len)
1464 dosmemget (addr, len, dest);
1465 else
1466 {
1467 /* For memory above 1MB we need to set up a special segment to
1468 be able to access that memory. */
1469 int sel = __dpmi_allocate_ldt_descriptors (1);
1470
1471 if (sel <= 0)
1472 retval = 0;
1473 else
1474 {
1475 int access_rights = __dpmi_get_descriptor_access_rights (sel);
1476 size_t segment_limit = len - 1;
1477
1478 /* Make sure the crucial bits in the descriptor access
1479 rights are set correctly. Some DPMI providers might barf
1480 if we set the segment limit to something that is not an
1481 integral multiple of 4KB pages if the granularity bit is
1482 not set to byte-granular, even though the DPMI spec says
1483 it's the host's responsibility to set that bit correctly. */
1484 if (len > 1024 * 1024)
1485 {
1486 access_rights |= 0x8000;
1487 /* Page-granular segments should have the low 12 bits of
1488 the limit set. */
1489 segment_limit |= 0xfff;
1490 }
1491 else
1492 access_rights &= ~0x8000;
1493
1494 if (__dpmi_set_segment_base_address (sel, addr) != -1
1495 && __dpmi_set_descriptor_access_rights (sel, access_rights) != -1
1496 && __dpmi_set_segment_limit (sel, segment_limit) != -1
1497 /* W2K silently fails to set the segment limit, leaving
1498 it at zero; this test avoids the resulting crash. */
1499 && __dpmi_get_segment_limit (sel) >= segment_limit)
1500 movedata (sel, 0, _my_ds (), (unsigned)dest, len);
1501 else
1502 retval = 0;
1503
1504 __dpmi_free_ldt_descriptor (sel);
1505 }
1506 }
1507 return retval;
1508 }
1509
1510 /* Get a segment descriptor stored at index IDX in the descriptor
1511 table whose base address is TABLE_BASE. Return the descriptor
1512 type, or -1 if failure. */
1513 static int
1514 get_descriptor (unsigned long table_base, int idx, void *descr)
1515 {
1516 unsigned long addr = table_base + idx * 8; /* 8 bytes per entry */
1517
1518 if (read_memory_region (addr, descr, 8))
1519 return (int)((struct seg_descr *)descr)->stype;
1520 return -1;
1521 }
1522
1523 struct dtr_reg {
1524 unsigned short limit __attribute__((packed));
1525 unsigned long base __attribute__((packed));
1526 };
1527
1528 /* Display a segment descriptor stored at index IDX in a descriptor
1529 table whose type is TYPE and whose base address is BASE_ADDR. If
1530 FORCE is non-zero, display even invalid descriptors. */
1531 static void
1532 display_descriptor (unsigned type, unsigned long base_addr, int idx, int force)
1533 {
1534 struct seg_descr descr;
1535 struct gate_descr gate;
1536
1537 /* Get the descriptor from the table. */
1538 if (idx == 0 && type == 0)
1539 puts_filtered ("0x000: null descriptor\n");
1540 else if (get_descriptor (base_addr, idx, &descr) != -1)
1541 {
1542 /* For each type of descriptor table, this has a bit set if the
1543 corresponding type of selectors is valid in that table. */
1544 static unsigned allowed_descriptors[] = {
1545 0xffffdafeL, /* GDT */
1546 0x0000c0e0L, /* IDT */
1547 0xffffdafaL /* LDT */
1548 };
1549
1550 /* If the program hasn't started yet, assume the debuggee will
1551 have the same CPL as the debugger. */
1552 int cpl = prog_has_started ? (a_tss.tss_cs & 3) : _my_cs () & 3;
1553 unsigned long limit = (descr.limit1 << 16) | descr.limit0;
1554
1555 if (descr.present
1556 && (allowed_descriptors[type] & (1 << descr.stype)) != 0)
1557 {
1558 printf_filtered ("0x%03x: ",
1559 type == 1
1560 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1561 if (descr.page_granular)
1562 limit = (limit << 12) | 0xfff; /* big segment: low 12 bit set */
1563 if (descr.stype == 1 || descr.stype == 2 || descr.stype == 3
1564 || descr.stype == 9 || descr.stype == 11
1565 || (descr.stype >= 16 && descr.stype < 32))
1566 printf_filtered ("base=0x%02x%02x%04x limit=0x%08lx",
1567 descr.base2, descr.base1, descr.base0, limit);
1568
1569 switch (descr.stype)
1570 {
1571 case 1:
1572 case 3:
1573 printf_filtered (" 16-bit TSS (task %sactive)",
1574 descr.stype == 3 ? "" : "in");
1575 break;
1576 case 2:
1577 puts_filtered (" LDT");
1578 break;
1579 case 4:
1580 memcpy (&gate, &descr, sizeof gate);
1581 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1582 gate.selector, gate.offset1, gate.offset0);
1583 printf_filtered (" 16-bit Call Gate (params=%d)",
1584 gate.param_count);
1585 break;
1586 case 5:
1587 printf_filtered ("TSS selector=0x%04x", descr.base0);
1588 printfi_filtered (16, "Task Gate");
1589 break;
1590 case 6:
1591 case 7:
1592 memcpy (&gate, &descr, sizeof gate);
1593 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1594 gate.selector, gate.offset1, gate.offset0);
1595 printf_filtered (" 16-bit %s Gate",
1596 descr.stype == 6 ? "Interrupt" : "Trap");
1597 break;
1598 case 9:
1599 case 11:
1600 printf_filtered (" 32-bit TSS (task %sactive)",
1601 descr.stype == 3 ? "" : "in");
1602 break;
1603 case 12:
1604 memcpy (&gate, &descr, sizeof gate);
1605 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1606 gate.selector, gate.offset1, gate.offset0);
1607 printf_filtered (" 32-bit Call Gate (params=%d)",
1608 gate.param_count);
1609 break;
1610 case 14:
1611 case 15:
1612 memcpy (&gate, &descr, sizeof gate);
1613 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1614 gate.selector, gate.offset1, gate.offset0);
1615 printf_filtered (" 32-bit %s Gate",
1616 descr.stype == 14 ? "Interrupt" : "Trap");
1617 break;
1618 case 16: /* data segments */
1619 case 17:
1620 case 18:
1621 case 19:
1622 case 20:
1623 case 21:
1624 case 22:
1625 case 23:
1626 printf_filtered (" %s-bit Data (%s Exp-%s%s)",
1627 descr.bit32 ? "32" : "16",
1628 descr.stype & 2
1629 ? "Read/Write," : "Read-Only, ",
1630 descr.stype & 4 ? "down" : "up",
1631 descr.stype & 1 ? "" : ", N.Acc");
1632 break;
1633 case 24: /* code segments */
1634 case 25:
1635 case 26:
1636 case 27:
1637 case 28:
1638 case 29:
1639 case 30:
1640 case 31:
1641 printf_filtered (" %s-bit Code (%s, %sConf%s)",
1642 descr.bit32 ? "32" : "16",
1643 descr.stype & 2 ? "Exec/Read" : "Exec-Only",
1644 descr.stype & 4 ? "" : "N.",
1645 descr.stype & 1 ? "" : ", N.Acc");
1646 break;
1647 default:
1648 printf_filtered ("Unknown type 0x%02x", descr.stype);
1649 break;
1650 }
1651 puts_filtered ("\n");
1652 }
1653 else if (force)
1654 {
1655 printf_filtered ("0x%03x: ",
1656 type == 1
1657 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1658 if (!descr.present)
1659 puts_filtered ("Segment not present\n");
1660 else
1661 printf_filtered ("Segment type 0x%02x is invalid in this table\n",
1662 descr.stype);
1663 }
1664 }
1665 else if (force)
1666 printf_filtered ("0x%03x: Cannot read this descriptor\n", idx);
1667 }
1668
1669 static void
1670 go32_sldt (char *arg, int from_tty)
1671 {
1672 struct dtr_reg gdtr;
1673 unsigned short ldtr = 0;
1674 int ldt_idx;
1675 struct seg_descr ldt_descr;
1676 long ldt_entry = -1L;
1677 int cpl = (prog_has_started ? a_tss.tss_cs : _my_cs ()) & 3;
1678
1679 if (arg && *arg)
1680 {
1681 while (*arg && isspace(*arg))
1682 arg++;
1683
1684 if (*arg)
1685 {
1686 ldt_entry = parse_and_eval_long (arg);
1687 if (ldt_entry < 0
1688 || (ldt_entry & 4) == 0
1689 || (ldt_entry & 3) != (cpl & 3))
1690 error (_("Invalid LDT entry 0x%03lx."), (unsigned long)ldt_entry);
1691 }
1692 }
1693
1694 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1695 __asm__ __volatile__ ("sldt %0" : "=m" (ldtr) : /* no inputs */ );
1696 ldt_idx = ldtr / 8;
1697 if (ldt_idx == 0)
1698 puts_filtered ("There is no LDT.\n");
1699 /* LDT's entry in the GDT must have the type LDT, which is 2. */
1700 else if (get_descriptor (gdtr.base, ldt_idx, &ldt_descr) != 2)
1701 printf_filtered ("LDT is present (at %#x), but unreadable by GDB.\n",
1702 ldt_descr.base0
1703 | (ldt_descr.base1 << 16)
1704 | (ldt_descr.base2 << 24));
1705 else
1706 {
1707 unsigned base =
1708 ldt_descr.base0
1709 | (ldt_descr.base1 << 16)
1710 | (ldt_descr.base2 << 24);
1711 unsigned limit = ldt_descr.limit0 | (ldt_descr.limit1 << 16);
1712 int max_entry;
1713
1714 if (ldt_descr.page_granular)
1715 /* Page-granular segments must have the low 12 bits of their
1716 limit set. */
1717 limit = (limit << 12) | 0xfff;
1718 /* LDT cannot have more than 8K 8-byte entries, i.e. more than
1719 64KB. */
1720 if (limit > 0xffff)
1721 limit = 0xffff;
1722
1723 max_entry = (limit + 1) / 8;
1724
1725 if (ldt_entry >= 0)
1726 {
1727 if (ldt_entry > limit)
1728 error (_("Invalid LDT entry %#lx: outside valid limits [0..%#x]"),
1729 (unsigned long)ldt_entry, limit);
1730
1731 display_descriptor (ldt_descr.stype, base, ldt_entry / 8, 1);
1732 }
1733 else
1734 {
1735 int i;
1736
1737 for (i = 0; i < max_entry; i++)
1738 display_descriptor (ldt_descr.stype, base, i, 0);
1739 }
1740 }
1741 }
1742
1743 static void
1744 go32_sgdt (char *arg, int from_tty)
1745 {
1746 struct dtr_reg gdtr;
1747 long gdt_entry = -1L;
1748 int max_entry;
1749
1750 if (arg && *arg)
1751 {
1752 while (*arg && isspace(*arg))
1753 arg++;
1754
1755 if (*arg)
1756 {
1757 gdt_entry = parse_and_eval_long (arg);
1758 if (gdt_entry < 0 || (gdt_entry & 7) != 0)
1759 error (_("Invalid GDT entry 0x%03lx: "
1760 "not an integral multiple of 8."),
1761 (unsigned long)gdt_entry);
1762 }
1763 }
1764
1765 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1766 max_entry = (gdtr.limit + 1) / 8;
1767
1768 if (gdt_entry >= 0)
1769 {
1770 if (gdt_entry > gdtr.limit)
1771 error (_("Invalid GDT entry %#lx: outside valid limits [0..%#x]"),
1772 (unsigned long)gdt_entry, gdtr.limit);
1773
1774 display_descriptor (0, gdtr.base, gdt_entry / 8, 1);
1775 }
1776 else
1777 {
1778 int i;
1779
1780 for (i = 0; i < max_entry; i++)
1781 display_descriptor (0, gdtr.base, i, 0);
1782 }
1783 }
1784
1785 static void
1786 go32_sidt (char *arg, int from_tty)
1787 {
1788 struct dtr_reg idtr;
1789 long idt_entry = -1L;
1790 int max_entry;
1791
1792 if (arg && *arg)
1793 {
1794 while (*arg && isspace(*arg))
1795 arg++;
1796
1797 if (*arg)
1798 {
1799 idt_entry = parse_and_eval_long (arg);
1800 if (idt_entry < 0)
1801 error (_("Invalid (negative) IDT entry %ld."), idt_entry);
1802 }
1803 }
1804
1805 __asm__ __volatile__ ("sidt %0" : "=m" (idtr) : /* no inputs */ );
1806 max_entry = (idtr.limit + 1) / 8;
1807 if (max_entry > 0x100) /* No more than 256 entries. */
1808 max_entry = 0x100;
1809
1810 if (idt_entry >= 0)
1811 {
1812 if (idt_entry > idtr.limit)
1813 error (_("Invalid IDT entry %#lx: outside valid limits [0..%#x]"),
1814 (unsigned long)idt_entry, idtr.limit);
1815
1816 display_descriptor (1, idtr.base, idt_entry, 1);
1817 }
1818 else
1819 {
1820 int i;
1821
1822 for (i = 0; i < max_entry; i++)
1823 display_descriptor (1, idtr.base, i, 0);
1824 }
1825 }
1826
1827 /* Cached linear address of the base of the page directory. For
1828 now, available only under CWSDPMI. Code based on ideas and
1829 suggestions from Charles Sandmann <sandmann@clio.rice.edu>. */
1830 static unsigned long pdbr;
1831
1832 static unsigned long
1833 get_cr3 (void)
1834 {
1835 unsigned offset;
1836 unsigned taskreg;
1837 unsigned long taskbase, cr3;
1838 struct dtr_reg gdtr;
1839
1840 if (pdbr > 0 && pdbr <= 0xfffff)
1841 return pdbr;
1842
1843 /* Get the linear address of GDT and the Task Register. */
1844 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1845 __asm__ __volatile__ ("str %0" : "=m" (taskreg) : /* no inputs */ );
1846
1847 /* Task Register is a segment selector for the TSS of the current
1848 task. Therefore, it can be used as an index into the GDT to get
1849 at the segment descriptor for the TSS. To get the index, reset
1850 the low 3 bits of the selector (which give the CPL). Add 2 to the
1851 offset to point to the 3 low bytes of the base address. */
1852 offset = gdtr.base + (taskreg & 0xfff8) + 2;
1853
1854
1855 /* CWSDPMI's task base is always under the 1MB mark. */
1856 if (offset > 0xfffff)
1857 return 0;
1858
1859 _farsetsel (_dos_ds);
1860 taskbase = _farnspeekl (offset) & 0xffffffU;
1861 taskbase += _farnspeekl (offset + 2) & 0xff000000U;
1862 if (taskbase > 0xfffff)
1863 return 0;
1864
1865 /* CR3 (a.k.a. PDBR, the Page Directory Base Register) is stored at
1866 offset 1Ch in the TSS. */
1867 cr3 = _farnspeekl (taskbase + 0x1c) & ~0xfff;
1868 if (cr3 > 0xfffff)
1869 {
1870 #if 0 /* Not fullly supported yet. */
1871 /* The Page Directory is in UMBs. In that case, CWSDPMI puts
1872 the first Page Table right below the Page Directory. Thus,
1873 the first Page Table's entry for its own address and the Page
1874 Directory entry for that Page Table will hold the same
1875 physical address. The loop below searches the entire UMB
1876 range of addresses for such an occurence. */
1877 unsigned long addr, pte_idx;
1878
1879 for (addr = 0xb0000, pte_idx = 0xb0;
1880 pte_idx < 0xff;
1881 addr += 0x1000, pte_idx++)
1882 {
1883 if (((_farnspeekl (addr + 4 * pte_idx) & 0xfffff027) ==
1884 (_farnspeekl (addr + 0x1000) & 0xfffff027))
1885 && ((_farnspeekl (addr + 4 * pte_idx + 4) & 0xfffff000) == cr3))
1886 {
1887 cr3 = addr + 0x1000;
1888 break;
1889 }
1890 }
1891 #endif
1892
1893 if (cr3 > 0xfffff)
1894 cr3 = 0;
1895 }
1896
1897 return cr3;
1898 }
1899
1900 /* Return the N'th Page Directory entry. */
1901 static unsigned long
1902 get_pde (int n)
1903 {
1904 unsigned long pde = 0;
1905
1906 if (pdbr && n >= 0 && n < 1024)
1907 {
1908 pde = _farpeekl (_dos_ds, pdbr + 4*n);
1909 }
1910 return pde;
1911 }
1912
1913 /* Return the N'th entry of the Page Table whose Page Directory entry
1914 is PDE. */
1915 static unsigned long
1916 get_pte (unsigned long pde, int n)
1917 {
1918 unsigned long pte = 0;
1919
1920 /* pde & 0x80 tests the 4MB page bit. We don't support 4MB
1921 page tables, for now. */
1922 if ((pde & 1) && !(pde & 0x80) && n >= 0 && n < 1024)
1923 {
1924 pde &= ~0xfff; /* Clear non-address bits. */
1925 pte = _farpeekl (_dos_ds, pde + 4*n);
1926 }
1927 return pte;
1928 }
1929
1930 /* Display a Page Directory or Page Table entry. IS_DIR, if non-zero,
1931 says this is a Page Directory entry. If FORCE is non-zero, display
1932 the entry even if its Present flag is off. OFF is the offset of the
1933 address from the page's base address. */
1934 static void
1935 display_ptable_entry (unsigned long entry, int is_dir, int force, unsigned off)
1936 {
1937 if ((entry & 1) != 0)
1938 {
1939 printf_filtered ("Base=0x%05lx000", entry >> 12);
1940 if ((entry & 0x100) && !is_dir)
1941 puts_filtered (" Global");
1942 if ((entry & 0x40) && !is_dir)
1943 puts_filtered (" Dirty");
1944 printf_filtered (" %sAcc.", (entry & 0x20) ? "" : "Not-");
1945 printf_filtered (" %sCached", (entry & 0x10) ? "" : "Not-");
1946 printf_filtered (" Write-%s", (entry & 8) ? "Thru" : "Back");
1947 printf_filtered (" %s", (entry & 4) ? "Usr" : "Sup");
1948 printf_filtered (" Read-%s", (entry & 2) ? "Write" : "Only");
1949 if (off)
1950 printf_filtered (" +0x%x", off);
1951 puts_filtered ("\n");
1952 }
1953 else if (force)
1954 printf_filtered ("Page%s not present or not supported; value=0x%lx.\n",
1955 is_dir ? " Table" : "", entry >> 1);
1956 }
1957
1958 static void
1959 go32_pde (char *arg, int from_tty)
1960 {
1961 long pde_idx = -1, i;
1962
1963 if (arg && *arg)
1964 {
1965 while (*arg && isspace(*arg))
1966 arg++;
1967
1968 if (*arg)
1969 {
1970 pde_idx = parse_and_eval_long (arg);
1971 if (pde_idx < 0 || pde_idx >= 1024)
1972 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
1973 }
1974 }
1975
1976 pdbr = get_cr3 ();
1977 if (!pdbr)
1978 puts_filtered ("Access to Page Directories is "
1979 "not supported on this system.\n");
1980 else if (pde_idx >= 0)
1981 display_ptable_entry (get_pde (pde_idx), 1, 1, 0);
1982 else
1983 for (i = 0; i < 1024; i++)
1984 display_ptable_entry (get_pde (i), 1, 0, 0);
1985 }
1986
1987 /* A helper function to display entries in a Page Table pointed to by
1988 the N'th entry in the Page Directory. If FORCE is non-zero, say
1989 something even if the Page Table is not accessible. */
1990 static void
1991 display_page_table (long n, int force)
1992 {
1993 unsigned long pde = get_pde (n);
1994
1995 if ((pde & 1) != 0)
1996 {
1997 int i;
1998
1999 printf_filtered ("Page Table pointed to by "
2000 "Page Directory entry 0x%lx:\n", n);
2001 for (i = 0; i < 1024; i++)
2002 display_ptable_entry (get_pte (pde, i), 0, 0, 0);
2003 puts_filtered ("\n");
2004 }
2005 else if (force)
2006 printf_filtered ("Page Table not present; value=0x%lx.\n", pde >> 1);
2007 }
2008
2009 static void
2010 go32_pte (char *arg, int from_tty)
2011 {
2012 long pde_idx = -1L, i;
2013
2014 if (arg && *arg)
2015 {
2016 while (*arg && isspace(*arg))
2017 arg++;
2018
2019 if (*arg)
2020 {
2021 pde_idx = parse_and_eval_long (arg);
2022 if (pde_idx < 0 || pde_idx >= 1024)
2023 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
2024 }
2025 }
2026
2027 pdbr = get_cr3 ();
2028 if (!pdbr)
2029 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2030 else if (pde_idx >= 0)
2031 display_page_table (pde_idx, 1);
2032 else
2033 for (i = 0; i < 1024; i++)
2034 display_page_table (i, 0);
2035 }
2036
2037 static void
2038 go32_pte_for_address (char *arg, int from_tty)
2039 {
2040 CORE_ADDR addr = 0, i;
2041
2042 if (arg && *arg)
2043 {
2044 while (*arg && isspace(*arg))
2045 arg++;
2046
2047 if (*arg)
2048 addr = parse_and_eval_address (arg);
2049 }
2050 if (!addr)
2051 error_no_arg (_("linear address"));
2052
2053 pdbr = get_cr3 ();
2054 if (!pdbr)
2055 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2056 else
2057 {
2058 int pde_idx = (addr >> 22) & 0x3ff;
2059 int pte_idx = (addr >> 12) & 0x3ff;
2060 unsigned offs = addr & 0xfff;
2061
2062 printf_filtered ("Page Table entry for address %s:\n",
2063 hex_string(addr));
2064 display_ptable_entry (get_pte (get_pde (pde_idx), pte_idx), 0, 1, offs);
2065 }
2066 }
2067
2068 static struct cmd_list_element *info_dos_cmdlist = NULL;
2069
2070 static void
2071 go32_info_dos_command (char *args, int from_tty)
2072 {
2073 help_list (info_dos_cmdlist, "info dos ", class_info, gdb_stdout);
2074 }
2075
2076 void
2077 _initialize_go32_nat (void)
2078 {
2079 init_go32_ops ();
2080 add_target (&go32_ops);
2081
2082 add_prefix_cmd ("dos", class_info, go32_info_dos_command, _("\
2083 Print information specific to DJGPP (aka MS-DOS) debugging."),
2084 &info_dos_cmdlist, "info dos ", 0, &infolist);
2085
2086 add_cmd ("sysinfo", class_info, go32_sysinfo, _("\
2087 Display information about the target system, including CPU, OS, DPMI, etc."),
2088 &info_dos_cmdlist);
2089 add_cmd ("ldt", class_info, go32_sldt, _("\
2090 Display entries in the LDT (Local Descriptor Table).\n\
2091 Entry number (an expression) as an argument means display only that entry."),
2092 &info_dos_cmdlist);
2093 add_cmd ("gdt", class_info, go32_sgdt, _("\
2094 Display entries in the GDT (Global Descriptor Table).\n\
2095 Entry number (an expression) as an argument means display only that entry."),
2096 &info_dos_cmdlist);
2097 add_cmd ("idt", class_info, go32_sidt, _("\
2098 Display entries in the IDT (Interrupt Descriptor Table).\n\
2099 Entry number (an expression) as an argument means display only that entry."),
2100 &info_dos_cmdlist);
2101 add_cmd ("pde", class_info, go32_pde, _("\
2102 Display entries in the Page Directory.\n\
2103 Entry number (an expression) as an argument means display only that entry."),
2104 &info_dos_cmdlist);
2105 add_cmd ("pte", class_info, go32_pte, _("\
2106 Display entries in Page Tables.\n\
2107 Entry number (an expression) as an argument means display only entries\n\
2108 from the Page Table pointed to by the specified Page Directory entry."),
2109 &info_dos_cmdlist);
2110 add_cmd ("address-pte", class_info, go32_pte_for_address, _("\
2111 Display a Page Table entry for a linear address.\n\
2112 The address argument must be a linear address, after adding to\n\
2113 it the base address of the appropriate segment.\n\
2114 The base address of variables and functions in the debuggee's data\n\
2115 or code segment is stored in the variable __djgpp_base_address,\n\
2116 so use `__djgpp_base_address + (char *)&var' as the argument.\n\
2117 For other segments, look up their base address in the output of\n\
2118 the `info dos ldt' command."),
2119 &info_dos_cmdlist);
2120 }
2121
2122 pid_t
2123 tcgetpgrp (int fd)
2124 {
2125 if (isatty (fd))
2126 return SOME_PID;
2127 errno = ENOTTY;
2128 return -1;
2129 }
2130
2131 int
2132 tcsetpgrp (int fd, pid_t pgid)
2133 {
2134 if (isatty (fd) && pgid == SOME_PID)
2135 return 0;
2136 errno = pgid == SOME_PID ? ENOTTY : ENOSYS;
2137 return -1;
2138 }
This page took 0.103524 seconds and 4 git commands to generate.