Add missing parenthesis
[deliverable/binutils-gdb.git] / gdb / go32-nat.c
1 /* Native debugging support for Intel x86 running DJGPP.
2 Copyright (C) 1997-2014 Free Software Foundation, Inc.
3 Written by Robert Hoehne.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* To whomever it may concern, here's a general description of how
21 debugging in DJGPP works, and the special quirks GDB does to
22 support that.
23
24 When the DJGPP port of GDB is debugging a DJGPP program natively,
25 there aren't 2 separate processes, the debuggee and GDB itself, as
26 on other systems. (This is DOS, where there can only be one active
27 process at any given time, remember?) Instead, GDB and the
28 debuggee live in the same process. So when GDB calls
29 go32_create_inferior below, and that function calls edi_init from
30 the DJGPP debug support library libdbg.a, we load the debuggee's
31 executable file into GDB's address space, set it up for execution
32 as the stub loader (a short real-mode program prepended to each
33 DJGPP executable) normally would, and do a lot of preparations for
34 swapping between GDB's and debuggee's internal state, primarily wrt
35 the exception handlers. This swapping happens every time we resume
36 the debuggee or switch back to GDB's code, and it includes:
37
38 . swapping all the segment registers
39 . swapping the PSP (the Program Segment Prefix)
40 . swapping the signal handlers
41 . swapping the exception handlers
42 . swapping the FPU status
43 . swapping the 3 standard file handles (more about this below)
44
45 Then running the debuggee simply means longjmp into it where its PC
46 is and let it run until it stops for some reason. When it stops,
47 GDB catches the exception that stopped it and longjmp's back into
48 its own code. All the possible exit points of the debuggee are
49 watched; for example, the normal exit point is recognized because a
50 DOS program issues a special system call to exit. If one of those
51 exit points is hit, we mourn the inferior and clean up after it.
52 Cleaning up is very important, even if the process exits normally,
53 because otherwise we might leave behind traces of previous
54 execution, and in several cases GDB itself might be left hosed,
55 because all the exception handlers were not restored.
56
57 Swapping of the standard handles (in redir_to_child and
58 redir_to_debugger) is needed because, since both GDB and the
59 debuggee live in the same process, as far as the OS is concerned,
60 the share the same file table. This means that the standard
61 handles 0, 1, and 2 point to the same file table entries, and thus
62 are connected to the same devices. Therefore, if the debugger
63 redirects its standard output, the standard output of the debuggee
64 is also automagically redirected to the same file/device!
65 Similarly, if the debuggee redirects its stdout to a file, you
66 won't be able to see debugger's output (it will go to the same file
67 where the debuggee has its output); and if the debuggee closes its
68 standard input, you will lose the ability to talk to debugger!
69
70 For this reason, every time the debuggee is about to be resumed, we
71 call redir_to_child, which redirects the standard handles to where
72 the debuggee expects them to be. When the debuggee stops and GDB
73 regains control, we call redir_to_debugger, which redirects those 3
74 handles back to where GDB expects.
75
76 Note that only the first 3 handles are swapped, so if the debuggee
77 redirects or closes any other handles, GDB will not notice. In
78 particular, the exit code of a DJGPP program forcibly closes all
79 file handles beyond the first 3 ones, so when the debuggee exits,
80 GDB currently loses its stdaux and stdprn streams. Fortunately,
81 GDB does not use those as of this writing, and will never need
82 to. */
83
84 #include "defs.h"
85
86 #include <fcntl.h>
87
88 #include "x86-nat.h"
89 #include "inferior.h"
90 #include "infrun.h"
91 #include "gdbthread.h"
92 #include "gdb_wait.h"
93 #include "gdbcore.h"
94 #include "command.h"
95 #include "gdbcmd.h"
96 #include "floatformat.h"
97 #include "buildsym.h"
98 #include "i387-tdep.h"
99 #include "i386-tdep.h"
100 #include "nat/x86-cpuid.h"
101 #include "value.h"
102 #include "regcache.h"
103 #include "top.h"
104 #include "cli/cli-utils.h"
105 #include "inf-child.h"
106
107 #include <ctype.h>
108 #include <unistd.h>
109 #include <sys/utsname.h>
110 #include <io.h>
111 #include <dos.h>
112 #include <dpmi.h>
113 #include <go32.h>
114 #include <sys/farptr.h>
115 #include <debug/v2load.h>
116 #include <debug/dbgcom.h>
117 #if __DJGPP_MINOR__ > 2
118 #include <debug/redir.h>
119 #endif
120
121 #include <langinfo.h>
122
123 #if __DJGPP_MINOR__ < 3
124 /* This code will be provided from DJGPP 2.03 on. Until then I code it
125 here. */
126 typedef struct
127 {
128 unsigned short sig0;
129 unsigned short sig1;
130 unsigned short sig2;
131 unsigned short sig3;
132 unsigned short exponent:15;
133 unsigned short sign:1;
134 }
135 NPXREG;
136
137 typedef struct
138 {
139 unsigned int control;
140 unsigned int status;
141 unsigned int tag;
142 unsigned int eip;
143 unsigned int cs;
144 unsigned int dataptr;
145 unsigned int datasel;
146 NPXREG reg[8];
147 }
148 NPX;
149
150 static NPX npx;
151
152 static void save_npx (void); /* Save the FPU of the debugged program. */
153 static void load_npx (void); /* Restore the FPU of the debugged program. */
154
155 /* ------------------------------------------------------------------------- */
156 /* Store the contents of the NPX in the global variable `npx'. */
157 /* *INDENT-OFF* */
158
159 static void
160 save_npx (void)
161 {
162 asm ("inb $0xa0, %%al \n\
163 testb $0x20, %%al \n\
164 jz 1f \n\
165 xorb %%al, %%al \n\
166 outb %%al, $0xf0 \n\
167 movb $0x20, %%al \n\
168 outb %%al, $0xa0 \n\
169 outb %%al, $0x20 \n\
170 1: \n\
171 fnsave %0 \n\
172 fwait "
173 : "=m" (npx)
174 : /* No input */
175 : "%eax");
176 }
177
178 /* *INDENT-ON* */
179
180
181 /* ------------------------------------------------------------------------- */
182 /* Reload the contents of the NPX from the global variable `npx'. */
183
184 static void
185 load_npx (void)
186 {
187 asm ("frstor %0":"=m" (npx));
188 }
189 /* ------------------------------------------------------------------------- */
190 /* Stubs for the missing redirection functions. */
191 typedef struct {
192 char *command;
193 int redirected;
194 } cmdline_t;
195
196 void
197 redir_cmdline_delete (cmdline_t *ptr)
198 {
199 ptr->redirected = 0;
200 }
201
202 int
203 redir_cmdline_parse (const char *args, cmdline_t *ptr)
204 {
205 return -1;
206 }
207
208 int
209 redir_to_child (cmdline_t *ptr)
210 {
211 return 1;
212 }
213
214 int
215 redir_to_debugger (cmdline_t *ptr)
216 {
217 return 1;
218 }
219
220 int
221 redir_debug_init (cmdline_t *ptr)
222 {
223 return 0;
224 }
225 #endif /* __DJGPP_MINOR < 3 */
226
227 typedef enum { wp_insert, wp_remove, wp_count } wp_op;
228
229 /* This holds the current reference counts for each debug register. */
230 static int dr_ref_count[4];
231
232 #define SOME_PID 42
233
234 static int prog_has_started = 0;
235 static void go32_mourn_inferior (struct target_ops *ops);
236
237 #define r_ofs(x) (offsetof(TSS,x))
238
239 static struct
240 {
241 size_t tss_ofs;
242 size_t size;
243 }
244 regno_mapping[] =
245 {
246 {r_ofs (tss_eax), 4}, /* normal registers, from a_tss */
247 {r_ofs (tss_ecx), 4},
248 {r_ofs (tss_edx), 4},
249 {r_ofs (tss_ebx), 4},
250 {r_ofs (tss_esp), 4},
251 {r_ofs (tss_ebp), 4},
252 {r_ofs (tss_esi), 4},
253 {r_ofs (tss_edi), 4},
254 {r_ofs (tss_eip), 4},
255 {r_ofs (tss_eflags), 4},
256 {r_ofs (tss_cs), 2},
257 {r_ofs (tss_ss), 2},
258 {r_ofs (tss_ds), 2},
259 {r_ofs (tss_es), 2},
260 {r_ofs (tss_fs), 2},
261 {r_ofs (tss_gs), 2},
262 {0, 10}, /* 8 FP registers, from npx.reg[] */
263 {1, 10},
264 {2, 10},
265 {3, 10},
266 {4, 10},
267 {5, 10},
268 {6, 10},
269 {7, 10},
270 /* The order of the next 7 registers must be consistent
271 with their numbering in config/i386/tm-i386.h, which see. */
272 {0, 2}, /* control word, from npx */
273 {4, 2}, /* status word, from npx */
274 {8, 2}, /* tag word, from npx */
275 {16, 2}, /* last FP exception CS from npx */
276 {12, 4}, /* last FP exception EIP from npx */
277 {24, 2}, /* last FP exception operand selector from npx */
278 {20, 4}, /* last FP exception operand offset from npx */
279 {18, 2} /* last FP opcode from npx */
280 };
281
282 static struct
283 {
284 int go32_sig;
285 enum gdb_signal gdb_sig;
286 }
287 sig_map[] =
288 {
289 {0, GDB_SIGNAL_FPE},
290 {1, GDB_SIGNAL_TRAP},
291 /* Exception 2 is triggered by the NMI. DJGPP handles it as SIGILL,
292 but I think SIGBUS is better, since the NMI is usually activated
293 as a result of a memory parity check failure. */
294 {2, GDB_SIGNAL_BUS},
295 {3, GDB_SIGNAL_TRAP},
296 {4, GDB_SIGNAL_FPE},
297 {5, GDB_SIGNAL_SEGV},
298 {6, GDB_SIGNAL_ILL},
299 {7, GDB_SIGNAL_EMT}, /* no-coprocessor exception */
300 {8, GDB_SIGNAL_SEGV},
301 {9, GDB_SIGNAL_SEGV},
302 {10, GDB_SIGNAL_BUS},
303 {11, GDB_SIGNAL_SEGV},
304 {12, GDB_SIGNAL_SEGV},
305 {13, GDB_SIGNAL_SEGV},
306 {14, GDB_SIGNAL_SEGV},
307 {16, GDB_SIGNAL_FPE},
308 {17, GDB_SIGNAL_BUS},
309 {31, GDB_SIGNAL_ILL},
310 {0x1b, GDB_SIGNAL_INT},
311 {0x75, GDB_SIGNAL_FPE},
312 {0x78, GDB_SIGNAL_ALRM},
313 {0x79, GDB_SIGNAL_INT},
314 {0x7a, GDB_SIGNAL_QUIT},
315 {-1, GDB_SIGNAL_LAST}
316 };
317
318 static struct {
319 enum gdb_signal gdb_sig;
320 int djgpp_excepno;
321 } excepn_map[] = {
322 {GDB_SIGNAL_0, -1},
323 {GDB_SIGNAL_ILL, 6}, /* Invalid Opcode */
324 {GDB_SIGNAL_EMT, 7}, /* triggers SIGNOFP */
325 {GDB_SIGNAL_SEGV, 13}, /* GPF */
326 {GDB_SIGNAL_BUS, 17}, /* Alignment Check */
327 /* The rest are fake exceptions, see dpmiexcp.c in djlsr*.zip for
328 details. */
329 {GDB_SIGNAL_TERM, 0x1b}, /* triggers Ctrl-Break type of SIGINT */
330 {GDB_SIGNAL_FPE, 0x75},
331 {GDB_SIGNAL_INT, 0x79},
332 {GDB_SIGNAL_QUIT, 0x7a},
333 {GDB_SIGNAL_ALRM, 0x78}, /* triggers SIGTIMR */
334 {GDB_SIGNAL_PROF, 0x78},
335 {GDB_SIGNAL_LAST, -1}
336 };
337
338 static void
339 go32_attach (struct target_ops *ops, const char *args, int from_tty)
340 {
341 error (_("\
342 You cannot attach to a running program on this platform.\n\
343 Use the `run' command to run DJGPP programs."));
344 }
345
346 static int resume_is_step;
347 static int resume_signal = -1;
348
349 static void
350 go32_resume (struct target_ops *ops,
351 ptid_t ptid, int step, enum gdb_signal siggnal)
352 {
353 int i;
354
355 resume_is_step = step;
356
357 if (siggnal != GDB_SIGNAL_0 && siggnal != GDB_SIGNAL_TRAP)
358 {
359 for (i = 0, resume_signal = -1;
360 excepn_map[i].gdb_sig != GDB_SIGNAL_LAST; i++)
361 if (excepn_map[i].gdb_sig == siggnal)
362 {
363 resume_signal = excepn_map[i].djgpp_excepno;
364 break;
365 }
366 if (resume_signal == -1)
367 printf_unfiltered ("Cannot deliver signal %s on this platform.\n",
368 gdb_signal_to_name (siggnal));
369 }
370 }
371
372 static char child_cwd[FILENAME_MAX];
373
374 static ptid_t
375 go32_wait (struct target_ops *ops,
376 ptid_t ptid, struct target_waitstatus *status, int options)
377 {
378 int i;
379 unsigned char saved_opcode;
380 unsigned long INT3_addr = 0;
381 int stepping_over_INT = 0;
382
383 a_tss.tss_eflags &= 0xfeff; /* Reset the single-step flag (TF). */
384 if (resume_is_step)
385 {
386 /* If the next instruction is INT xx or INTO, we need to handle
387 them specially. Intel manuals say that these instructions
388 reset the single-step flag (a.k.a. TF). However, it seems
389 that, at least in the DPMI environment, and at least when
390 stepping over the DPMI interrupt 31h, the problem is having
391 TF set at all when INT 31h is executed: the debuggee either
392 crashes (and takes the system with it) or is killed by a
393 SIGTRAP.
394
395 So we need to emulate single-step mode: we put an INT3 opcode
396 right after the INT xx instruction, let the debuggee run
397 until it hits INT3 and stops, then restore the original
398 instruction which we overwrote with the INT3 opcode, and back
399 up the debuggee's EIP to that instruction. */
400 read_child (a_tss.tss_eip, &saved_opcode, 1);
401 if (saved_opcode == 0xCD || saved_opcode == 0xCE)
402 {
403 unsigned char INT3_opcode = 0xCC;
404
405 INT3_addr
406 = saved_opcode == 0xCD ? a_tss.tss_eip + 2 : a_tss.tss_eip + 1;
407 stepping_over_INT = 1;
408 read_child (INT3_addr, &saved_opcode, 1);
409 write_child (INT3_addr, &INT3_opcode, 1);
410 }
411 else
412 a_tss.tss_eflags |= 0x0100; /* normal instruction: set TF */
413 }
414
415 /* The special value FFFFh in tss_trap indicates to run_child that
416 tss_irqn holds a signal to be delivered to the debuggee. */
417 if (resume_signal <= -1)
418 {
419 a_tss.tss_trap = 0;
420 a_tss.tss_irqn = 0xff;
421 }
422 else
423 {
424 a_tss.tss_trap = 0xffff; /* run_child looks for this. */
425 a_tss.tss_irqn = resume_signal;
426 }
427
428 /* The child might change working directory behind our back. The
429 GDB users won't like the side effects of that when they work with
430 relative file names, and GDB might be confused by its current
431 directory not being in sync with the truth. So we always make a
432 point of changing back to where GDB thinks is its cwd, when we
433 return control to the debugger, but restore child's cwd before we
434 run it. */
435 /* Initialize child_cwd, before the first call to run_child and not
436 in the initialization, so the child get also the changed directory
437 set with the gdb-command "cd ..." */
438 if (!*child_cwd)
439 /* Initialize child's cwd with the current one. */
440 getcwd (child_cwd, sizeof (child_cwd));
441
442 chdir (child_cwd);
443
444 #if __DJGPP_MINOR__ < 3
445 load_npx ();
446 #endif
447 run_child ();
448 #if __DJGPP_MINOR__ < 3
449 save_npx ();
450 #endif
451
452 /* Did we step over an INT xx instruction? */
453 if (stepping_over_INT && a_tss.tss_eip == INT3_addr + 1)
454 {
455 /* Restore the original opcode. */
456 a_tss.tss_eip--; /* EIP points *after* the INT3 instruction. */
457 write_child (a_tss.tss_eip, &saved_opcode, 1);
458 /* Simulate a TRAP exception. */
459 a_tss.tss_irqn = 1;
460 a_tss.tss_eflags |= 0x0100;
461 }
462
463 getcwd (child_cwd, sizeof (child_cwd)); /* in case it has changed */
464 chdir (current_directory);
465
466 if (a_tss.tss_irqn == 0x21)
467 {
468 status->kind = TARGET_WAITKIND_EXITED;
469 status->value.integer = a_tss.tss_eax & 0xff;
470 }
471 else
472 {
473 status->value.sig = GDB_SIGNAL_UNKNOWN;
474 status->kind = TARGET_WAITKIND_STOPPED;
475 for (i = 0; sig_map[i].go32_sig != -1; i++)
476 {
477 if (a_tss.tss_irqn == sig_map[i].go32_sig)
478 {
479 #if __DJGPP_MINOR__ < 3
480 if ((status->value.sig = sig_map[i].gdb_sig) !=
481 GDB_SIGNAL_TRAP)
482 status->kind = TARGET_WAITKIND_SIGNALLED;
483 #else
484 status->value.sig = sig_map[i].gdb_sig;
485 #endif
486 break;
487 }
488 }
489 }
490 return pid_to_ptid (SOME_PID);
491 }
492
493 static void
494 fetch_register (struct regcache *regcache, int regno)
495 {
496 struct gdbarch *gdbarch = get_regcache_arch (regcache);
497 if (regno < gdbarch_fp0_regnum (gdbarch))
498 regcache_raw_supply (regcache, regno,
499 (char *) &a_tss + regno_mapping[regno].tss_ofs);
500 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
501 regno))
502 i387_supply_fsave (regcache, regno, &npx);
503 else
504 internal_error (__FILE__, __LINE__,
505 _("Invalid register no. %d in fetch_register."), regno);
506 }
507
508 static void
509 go32_fetch_registers (struct target_ops *ops,
510 struct regcache *regcache, int regno)
511 {
512 if (regno >= 0)
513 fetch_register (regcache, regno);
514 else
515 {
516 for (regno = 0;
517 regno < gdbarch_fp0_regnum (get_regcache_arch (regcache));
518 regno++)
519 fetch_register (regcache, regno);
520 i387_supply_fsave (regcache, -1, &npx);
521 }
522 }
523
524 static void
525 store_register (const struct regcache *regcache, int regno)
526 {
527 struct gdbarch *gdbarch = get_regcache_arch (regcache);
528 if (regno < gdbarch_fp0_regnum (gdbarch))
529 regcache_raw_collect (regcache, regno,
530 (char *) &a_tss + regno_mapping[regno].tss_ofs);
531 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
532 regno))
533 i387_collect_fsave (regcache, regno, &npx);
534 else
535 internal_error (__FILE__, __LINE__,
536 _("Invalid register no. %d in store_register."), regno);
537 }
538
539 static void
540 go32_store_registers (struct target_ops *ops,
541 struct regcache *regcache, int regno)
542 {
543 unsigned r;
544
545 if (regno >= 0)
546 store_register (regcache, regno);
547 else
548 {
549 for (r = 0; r < gdbarch_fp0_regnum (get_regcache_arch (regcache)); r++)
550 store_register (regcache, r);
551 i387_collect_fsave (regcache, -1, &npx);
552 }
553 }
554
555 /* Const-correct version of DJGPP's write_child, which unfortunately
556 takes a non-const buffer pointer. */
557
558 static int
559 my_write_child (unsigned child_addr, const void *buf, unsigned len)
560 {
561 static void *buffer = NULL;
562 static unsigned buffer_len = 0;
563 int res;
564
565 if (buffer_len < len)
566 {
567 buffer = xrealloc (buffer, len);
568 buffer_len = len;
569 }
570
571 memcpy (buffer, buf, len);
572 res = write_child (child_addr, buffer, len);
573 return res;
574 }
575
576 /* Helper for go32_xfer_partial that handles memory transfers.
577 Arguments are like target_xfer_partial. */
578
579 static enum target_xfer_status
580 go32_xfer_memory (gdb_byte *readbuf, const gdb_byte *writebuf,
581 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
582 {
583 int res;
584
585 if (writebuf != NULL)
586 res = my_write_child (memaddr, writebuf, len);
587 else
588 res = read_child (memaddr, readbuf, len);
589
590 if (res <= 0)
591 return TARGET_XFER_E_IO;
592
593 *xfered_len = res;
594 return TARGET_XFER_OK;
595 }
596
597 /* Target to_xfer_partial implementation. */
598
599 static enum target_xfer_status
600 go32_xfer_partial (struct target_ops *ops, enum target_object object,
601 const char *annex, gdb_byte *readbuf,
602 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
603 ULONGEST *xfered_len)
604 {
605 switch (object)
606 {
607 case TARGET_OBJECT_MEMORY:
608 return go32_xfer_memory (readbuf, writebuf, offset, len, xfered_len);
609
610 default:
611 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
612 readbuf, writebuf, offset, len,
613 xfered_len);
614 }
615 }
616
617 static cmdline_t child_cmd; /* Parsed child's command line kept here. */
618
619 static void
620 go32_files_info (struct target_ops *target)
621 {
622 printf_unfiltered ("You are running a DJGPP V2 program.\n");
623 }
624
625 static void
626 go32_kill_inferior (struct target_ops *ops)
627 {
628 go32_mourn_inferior (ops);
629 }
630
631 static void
632 go32_create_inferior (struct target_ops *ops, char *exec_file,
633 char *args, char **env, int from_tty)
634 {
635 extern char **environ;
636 jmp_buf start_state;
637 char *cmdline;
638 char **env_save = environ;
639 size_t cmdlen;
640 struct inferior *inf;
641 int result;
642
643 /* If no exec file handed to us, get it from the exec-file command -- with
644 a good, common error message if none is specified. */
645 if (exec_file == 0)
646 exec_file = get_exec_file (1);
647
648 resume_signal = -1;
649 resume_is_step = 0;
650
651 /* Initialize child's cwd as empty to be initialized when starting
652 the child. */
653 *child_cwd = 0;
654
655 /* Init command line storage. */
656 if (redir_debug_init (&child_cmd) == -1)
657 internal_error (__FILE__, __LINE__,
658 _("Cannot allocate redirection storage: "
659 "not enough memory.\n"));
660
661 /* Parse the command line and create redirections. */
662 if (strpbrk (args, "<>"))
663 {
664 if (redir_cmdline_parse (args, &child_cmd) == 0)
665 args = child_cmd.command;
666 else
667 error (_("Syntax error in command line."));
668 }
669 else
670 child_cmd.command = xstrdup (args);
671
672 cmdlen = strlen (args);
673 /* v2loadimage passes command lines via DOS memory, so it cannot
674 possibly handle commands longer than 1MB. */
675 if (cmdlen > 1024*1024)
676 error (_("Command line too long."));
677
678 cmdline = xmalloc (cmdlen + 4);
679 strcpy (cmdline + 1, args);
680 /* If the command-line length fits into DOS 126-char limits, use the
681 DOS command tail format; otherwise, tell v2loadimage to pass it
682 through a buffer in conventional memory. */
683 if (cmdlen < 127)
684 {
685 cmdline[0] = strlen (args);
686 cmdline[cmdlen + 1] = 13;
687 }
688 else
689 cmdline[0] = 0xff; /* Signal v2loadimage it's a long command. */
690
691 environ = env;
692
693 result = v2loadimage (exec_file, cmdline, start_state);
694
695 environ = env_save;
696 xfree (cmdline);
697
698 if (result != 0)
699 error (_("Load failed for image %s"), exec_file);
700
701 edi_init (start_state);
702 #if __DJGPP_MINOR__ < 3
703 save_npx ();
704 #endif
705
706 inferior_ptid = pid_to_ptid (SOME_PID);
707 inf = current_inferior ();
708 inferior_appeared (inf, SOME_PID);
709
710 if (!target_is_pushed (ops))
711 push_target (ops);
712
713 add_thread_silent (inferior_ptid);
714
715 clear_proceed_status (0);
716 insert_breakpoints ();
717 prog_has_started = 1;
718 }
719
720 static void
721 go32_mourn_inferior (struct target_ops *ops)
722 {
723 ptid_t ptid;
724
725 redir_cmdline_delete (&child_cmd);
726 resume_signal = -1;
727 resume_is_step = 0;
728
729 cleanup_client ();
730
731 /* We need to make sure all the breakpoint enable bits in the DR7
732 register are reset when the inferior exits. Otherwise, if they
733 rerun the inferior, the uncleared bits may cause random SIGTRAPs,
734 failure to set more watchpoints, and other calamities. It would
735 be nice if GDB itself would take care to remove all breakpoints
736 at all times, but it doesn't, probably under an assumption that
737 the OS cleans up when the debuggee exits. */
738 x86_cleanup_dregs ();
739
740 ptid = inferior_ptid;
741 inferior_ptid = null_ptid;
742 delete_thread_silent (ptid);
743 prog_has_started = 0;
744
745 generic_mourn_inferior ();
746 inf_child_maybe_unpush_target (ops);
747 }
748
749 /* Hardware watchpoint support. */
750
751 #define D_REGS edi.dr
752 #define CONTROL D_REGS[7]
753 #define STATUS D_REGS[6]
754
755 /* Pass the address ADDR to the inferior in the I'th debug register.
756 Here we just store the address in D_REGS, the watchpoint will be
757 actually set up when go32_wait runs the debuggee. */
758 static void
759 go32_set_dr (int i, CORE_ADDR addr)
760 {
761 if (i < 0 || i > 3)
762 internal_error (__FILE__, __LINE__,
763 _("Invalid register %d in go32_set_dr.\n"), i);
764 D_REGS[i] = addr;
765 }
766
767 /* Pass the value VAL to the inferior in the DR7 debug control
768 register. Here we just store the address in D_REGS, the watchpoint
769 will be actually set up when go32_wait runs the debuggee. */
770 static void
771 go32_set_dr7 (unsigned long val)
772 {
773 CONTROL = val;
774 }
775
776 /* Get the value of the DR6 debug status register from the inferior.
777 Here we just return the value stored in D_REGS, as we've got it
778 from the last go32_wait call. */
779 static unsigned long
780 go32_get_dr6 (void)
781 {
782 return STATUS;
783 }
784
785 /* Get the value of the DR7 debug status register from the inferior.
786 Here we just return the value stored in D_REGS, as we've got it
787 from the last go32_wait call. */
788
789 static unsigned long
790 go32_get_dr7 (void)
791 {
792 return CONTROL;
793 }
794
795 /* Get the value of the DR debug register I from the inferior. Here
796 we just return the value stored in D_REGS, as we've got it from the
797 last go32_wait call. */
798
799 static CORE_ADDR
800 go32_get_dr (int i)
801 {
802 if (i < 0 || i > 3)
803 internal_error (__FILE__, __LINE__,
804 _("Invalid register %d in go32_get_dr.\n"), i);
805 return D_REGS[i];
806 }
807
808 /* Put the device open on handle FD into either raw or cooked
809 mode, return 1 if it was in raw mode, zero otherwise. */
810
811 static int
812 device_mode (int fd, int raw_p)
813 {
814 int oldmode, newmode;
815 __dpmi_regs regs;
816
817 regs.x.ax = 0x4400;
818 regs.x.bx = fd;
819 __dpmi_int (0x21, &regs);
820 if (regs.x.flags & 1)
821 return -1;
822 newmode = oldmode = regs.x.dx;
823
824 if (raw_p)
825 newmode |= 0x20;
826 else
827 newmode &= ~0x20;
828
829 if (oldmode & 0x80) /* Only for character dev. */
830 {
831 regs.x.ax = 0x4401;
832 regs.x.bx = fd;
833 regs.x.dx = newmode & 0xff; /* Force upper byte zero, else it fails. */
834 __dpmi_int (0x21, &regs);
835 if (regs.x.flags & 1)
836 return -1;
837 }
838 return (oldmode & 0x20) == 0x20;
839 }
840
841
842 static int inf_mode_valid = 0;
843 static int inf_terminal_mode;
844
845 /* This semaphore is needed because, amazingly enough, GDB calls
846 target.to_terminal_ours more than once after the inferior stops.
847 But we need the information from the first call only, since the
848 second call will always see GDB's own cooked terminal. */
849 static int terminal_is_ours = 1;
850
851 static void
852 go32_terminal_init (struct target_ops *self)
853 {
854 inf_mode_valid = 0; /* Reinitialize, in case they are restarting child. */
855 terminal_is_ours = 1;
856 }
857
858 static void
859 go32_terminal_info (struct target_ops *self, const char *args, int from_tty)
860 {
861 printf_unfiltered ("Inferior's terminal is in %s mode.\n",
862 !inf_mode_valid
863 ? "default" : inf_terminal_mode ? "raw" : "cooked");
864
865 #if __DJGPP_MINOR__ > 2
866 if (child_cmd.redirection)
867 {
868 int i;
869
870 for (i = 0; i < DBG_HANDLES; i++)
871 {
872 if (child_cmd.redirection[i]->file_name)
873 printf_unfiltered ("\tFile handle %d is redirected to `%s'.\n",
874 i, child_cmd.redirection[i]->file_name);
875 else if (_get_dev_info (child_cmd.redirection[i]->inf_handle) == -1)
876 printf_unfiltered
877 ("\tFile handle %d appears to be closed by inferior.\n", i);
878 /* Mask off the raw/cooked bit when comparing device info words. */
879 else if ((_get_dev_info (child_cmd.redirection[i]->inf_handle) & 0xdf)
880 != (_get_dev_info (i) & 0xdf))
881 printf_unfiltered
882 ("\tFile handle %d appears to be redirected by inferior.\n", i);
883 }
884 }
885 #endif
886 }
887
888 static void
889 go32_terminal_inferior (struct target_ops *self)
890 {
891 /* Redirect standard handles as child wants them. */
892 errno = 0;
893 if (redir_to_child (&child_cmd) == -1)
894 {
895 redir_to_debugger (&child_cmd);
896 error (_("Cannot redirect standard handles for program: %s."),
897 safe_strerror (errno));
898 }
899 /* Set the console device of the inferior to whatever mode
900 (raw or cooked) we found it last time. */
901 if (terminal_is_ours)
902 {
903 if (inf_mode_valid)
904 device_mode (0, inf_terminal_mode);
905 terminal_is_ours = 0;
906 }
907 }
908
909 static void
910 go32_terminal_ours (struct target_ops *self)
911 {
912 /* Switch to cooked mode on the gdb terminal and save the inferior
913 terminal mode to be restored when it is resumed. */
914 if (!terminal_is_ours)
915 {
916 inf_terminal_mode = device_mode (0, 0);
917 if (inf_terminal_mode != -1)
918 inf_mode_valid = 1;
919 else
920 /* If device_mode returned -1, we don't know what happens with
921 handle 0 anymore, so make the info invalid. */
922 inf_mode_valid = 0;
923 terminal_is_ours = 1;
924
925 /* Restore debugger's standard handles. */
926 errno = 0;
927 if (redir_to_debugger (&child_cmd) == -1)
928 {
929 redir_to_child (&child_cmd);
930 error (_("Cannot redirect standard handles for debugger: %s."),
931 safe_strerror (errno));
932 }
933 }
934 }
935
936 static int
937 go32_thread_alive (struct target_ops *ops, ptid_t ptid)
938 {
939 return !ptid_equal (inferior_ptid, null_ptid);
940 }
941
942 static char *
943 go32_pid_to_str (struct target_ops *ops, ptid_t ptid)
944 {
945 return normal_pid_to_str (ptid);
946 }
947
948 /* Create a go32 target. */
949
950 static struct target_ops *
951 go32_target (void)
952 {
953 struct target_ops *t = inf_child_target ();
954
955 t->to_attach = go32_attach;
956 t->to_resume = go32_resume;
957 t->to_wait = go32_wait;
958 t->to_fetch_registers = go32_fetch_registers;
959 t->to_store_registers = go32_store_registers;
960 t->to_xfer_partial = go32_xfer_partial;
961 t->to_files_info = go32_files_info;
962 t->to_terminal_init = go32_terminal_init;
963 t->to_terminal_inferior = go32_terminal_inferior;
964 t->to_terminal_ours_for_output = go32_terminal_ours;
965 t->to_terminal_ours = go32_terminal_ours;
966 t->to_terminal_info = go32_terminal_info;
967 t->to_kill = go32_kill_inferior;
968 t->to_create_inferior = go32_create_inferior;
969 t->to_mourn_inferior = go32_mourn_inferior;
970 t->to_thread_alive = go32_thread_alive;
971 t->to_pid_to_str = go32_pid_to_str;
972
973 return t;
974 }
975
976 /* Return the current DOS codepage number. */
977 static int
978 dos_codepage (void)
979 {
980 __dpmi_regs regs;
981
982 regs.x.ax = 0x6601;
983 __dpmi_int (0x21, &regs);
984 if (!(regs.x.flags & 1))
985 return regs.x.bx & 0xffff;
986 else
987 return 437; /* default */
988 }
989
990 /* Limited emulation of `nl_langinfo', for charset.c. */
991 char *
992 nl_langinfo (nl_item item)
993 {
994 char *retval;
995
996 switch (item)
997 {
998 case CODESET:
999 {
1000 /* 8 is enough for SHORT_MAX + "CP" + null. */
1001 char buf[8];
1002 int blen = sizeof (buf);
1003 int needed = snprintf (buf, blen, "CP%d", dos_codepage ());
1004
1005 if (needed > blen) /* Should never happen. */
1006 buf[0] = 0;
1007 retval = xstrdup (buf);
1008 }
1009 break;
1010 default:
1011 retval = xstrdup ("");
1012 break;
1013 }
1014 return retval;
1015 }
1016
1017 unsigned short windows_major, windows_minor;
1018
1019 /* Compute the version Windows reports via Int 2Fh/AX=1600h. */
1020 static void
1021 go32_get_windows_version(void)
1022 {
1023 __dpmi_regs r;
1024
1025 r.x.ax = 0x1600;
1026 __dpmi_int(0x2f, &r);
1027 if (r.h.al > 2 && r.h.al != 0x80 && r.h.al != 0xff
1028 && (r.h.al > 3 || r.h.ah > 0))
1029 {
1030 windows_major = r.h.al;
1031 windows_minor = r.h.ah;
1032 }
1033 else
1034 windows_major = 0xff; /* meaning no Windows */
1035 }
1036
1037 /* A subroutine of go32_sysinfo to display memory info. */
1038 static void
1039 print_mem (unsigned long datum, const char *header, int in_pages_p)
1040 {
1041 if (datum != 0xffffffffUL)
1042 {
1043 if (in_pages_p)
1044 datum <<= 12;
1045 puts_filtered (header);
1046 if (datum > 1024)
1047 {
1048 printf_filtered ("%lu KB", datum >> 10);
1049 if (datum > 1024 * 1024)
1050 printf_filtered (" (%lu MB)", datum >> 20);
1051 }
1052 else
1053 printf_filtered ("%lu Bytes", datum);
1054 puts_filtered ("\n");
1055 }
1056 }
1057
1058 /* Display assorted information about the underlying OS. */
1059 static void
1060 go32_sysinfo (char *arg, int from_tty)
1061 {
1062 static const char test_pattern[] =
1063 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1064 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1065 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeafdeadbeaf";
1066 struct utsname u;
1067 char cpuid_vendor[13];
1068 unsigned cpuid_max = 0, cpuid_eax, cpuid_ebx, cpuid_ecx, cpuid_edx;
1069 unsigned true_dos_version = _get_dos_version (1);
1070 unsigned advertized_dos_version = ((unsigned int)_osmajor << 8) | _osminor;
1071 int dpmi_flags;
1072 char dpmi_vendor_info[129];
1073 int dpmi_vendor_available;
1074 __dpmi_version_ret dpmi_version_data;
1075 long eflags;
1076 __dpmi_free_mem_info mem_info;
1077 __dpmi_regs regs;
1078
1079 cpuid_vendor[0] = '\0';
1080 if (uname (&u))
1081 strcpy (u.machine, "Unknown x86");
1082 else if (u.machine[0] == 'i' && u.machine[1] > 4)
1083 {
1084 /* CPUID with EAX = 0 returns the Vendor ID. */
1085 #if 0
1086 /* Ideally we would use x86_cpuid(), but it needs someone to run
1087 native tests first to make sure things actually work. They should.
1088 http://sourceware.org/ml/gdb-patches/2013-05/msg00164.html */
1089 unsigned int eax, ebx, ecx, edx;
1090
1091 if (x86_cpuid (0, &eax, &ebx, &ecx, &edx))
1092 {
1093 cpuid_max = eax;
1094 memcpy (&vendor[0], &ebx, 4);
1095 memcpy (&vendor[4], &ecx, 4);
1096 memcpy (&vendor[8], &edx, 4);
1097 cpuid_vendor[12] = '\0';
1098 }
1099 #else
1100 __asm__ __volatile__ ("xorl %%ebx, %%ebx;"
1101 "xorl %%ecx, %%ecx;"
1102 "xorl %%edx, %%edx;"
1103 "movl $0, %%eax;"
1104 "cpuid;"
1105 "movl %%ebx, %0;"
1106 "movl %%edx, %1;"
1107 "movl %%ecx, %2;"
1108 "movl %%eax, %3;"
1109 : "=m" (cpuid_vendor[0]),
1110 "=m" (cpuid_vendor[4]),
1111 "=m" (cpuid_vendor[8]),
1112 "=m" (cpuid_max)
1113 :
1114 : "%eax", "%ebx", "%ecx", "%edx");
1115 cpuid_vendor[12] = '\0';
1116 #endif
1117 }
1118
1119 printf_filtered ("CPU Type.......................%s", u.machine);
1120 if (cpuid_vendor[0])
1121 printf_filtered (" (%s)", cpuid_vendor);
1122 puts_filtered ("\n");
1123
1124 /* CPUID with EAX = 1 returns processor signature and features. */
1125 if (cpuid_max >= 1)
1126 {
1127 static char *brand_name[] = {
1128 "",
1129 " Celeron",
1130 " III",
1131 " III Xeon",
1132 "", "", "", "",
1133 " 4"
1134 };
1135 char cpu_string[80];
1136 char cpu_brand[20];
1137 unsigned brand_idx;
1138 int intel_p = strcmp (cpuid_vendor, "GenuineIntel") == 0;
1139 int amd_p = strcmp (cpuid_vendor, "AuthenticAMD") == 0;
1140 unsigned cpu_family, cpu_model;
1141
1142 #if 0
1143 /* See comment above about cpuid usage. */
1144 x86_cpuid (1, &cpuid_eax, &cpuid_ebx, NULL, &cpuid_edx);
1145 #else
1146 __asm__ __volatile__ ("movl $1, %%eax;"
1147 "cpuid;"
1148 : "=a" (cpuid_eax),
1149 "=b" (cpuid_ebx),
1150 "=d" (cpuid_edx)
1151 :
1152 : "%ecx");
1153 #endif
1154 brand_idx = cpuid_ebx & 0xff;
1155 cpu_family = (cpuid_eax >> 8) & 0xf;
1156 cpu_model = (cpuid_eax >> 4) & 0xf;
1157 cpu_brand[0] = '\0';
1158 if (intel_p)
1159 {
1160 if (brand_idx > 0
1161 && brand_idx < sizeof(brand_name)/sizeof(brand_name[0])
1162 && *brand_name[brand_idx])
1163 strcpy (cpu_brand, brand_name[brand_idx]);
1164 else if (cpu_family == 5)
1165 {
1166 if (((cpuid_eax >> 12) & 3) == 0 && cpu_model == 4)
1167 strcpy (cpu_brand, " MMX");
1168 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 1)
1169 strcpy (cpu_brand, " OverDrive");
1170 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 2)
1171 strcpy (cpu_brand, " Dual");
1172 }
1173 else if (cpu_family == 6 && cpu_model < 8)
1174 {
1175 switch (cpu_model)
1176 {
1177 case 1:
1178 strcpy (cpu_brand, " Pro");
1179 break;
1180 case 3:
1181 strcpy (cpu_brand, " II");
1182 break;
1183 case 5:
1184 strcpy (cpu_brand, " II Xeon");
1185 break;
1186 case 6:
1187 strcpy (cpu_brand, " Celeron");
1188 break;
1189 case 7:
1190 strcpy (cpu_brand, " III");
1191 break;
1192 }
1193 }
1194 }
1195 else if (amd_p)
1196 {
1197 switch (cpu_family)
1198 {
1199 case 4:
1200 strcpy (cpu_brand, "486/5x86");
1201 break;
1202 case 5:
1203 switch (cpu_model)
1204 {
1205 case 0:
1206 case 1:
1207 case 2:
1208 case 3:
1209 strcpy (cpu_brand, "-K5");
1210 break;
1211 case 6:
1212 case 7:
1213 strcpy (cpu_brand, "-K6");
1214 break;
1215 case 8:
1216 strcpy (cpu_brand, "-K6-2");
1217 break;
1218 case 9:
1219 strcpy (cpu_brand, "-K6-III");
1220 break;
1221 }
1222 break;
1223 case 6:
1224 switch (cpu_model)
1225 {
1226 case 1:
1227 case 2:
1228 case 4:
1229 strcpy (cpu_brand, " Athlon");
1230 break;
1231 case 3:
1232 strcpy (cpu_brand, " Duron");
1233 break;
1234 }
1235 break;
1236 }
1237 }
1238 xsnprintf (cpu_string, sizeof (cpu_string), "%s%s Model %d Stepping %d",
1239 intel_p ? "Pentium" : (amd_p ? "AMD" : "ix86"),
1240 cpu_brand, cpu_model, cpuid_eax & 0xf);
1241 printfi_filtered (31, "%s\n", cpu_string);
1242 if (((cpuid_edx & (6 | (0x0d << 23))) != 0)
1243 || ((cpuid_edx & 1) == 0)
1244 || (amd_p && (cpuid_edx & (3 << 30)) != 0))
1245 {
1246 puts_filtered ("CPU Features...................");
1247 /* We only list features which might be useful in the DPMI
1248 environment. */
1249 if ((cpuid_edx & 1) == 0)
1250 puts_filtered ("No FPU "); /* It's unusual to not have an FPU. */
1251 if ((cpuid_edx & (1 << 1)) != 0)
1252 puts_filtered ("VME ");
1253 if ((cpuid_edx & (1 << 2)) != 0)
1254 puts_filtered ("DE ");
1255 if ((cpuid_edx & (1 << 4)) != 0)
1256 puts_filtered ("TSC ");
1257 if ((cpuid_edx & (1 << 23)) != 0)
1258 puts_filtered ("MMX ");
1259 if ((cpuid_edx & (1 << 25)) != 0)
1260 puts_filtered ("SSE ");
1261 if ((cpuid_edx & (1 << 26)) != 0)
1262 puts_filtered ("SSE2 ");
1263 if (amd_p)
1264 {
1265 if ((cpuid_edx & (1 << 31)) != 0)
1266 puts_filtered ("3DNow! ");
1267 if ((cpuid_edx & (1 << 30)) != 0)
1268 puts_filtered ("3DNow!Ext");
1269 }
1270 puts_filtered ("\n");
1271 }
1272 }
1273 puts_filtered ("\n");
1274 printf_filtered ("DOS Version....................%s %s.%s",
1275 _os_flavor, u.release, u.version);
1276 if (true_dos_version != advertized_dos_version)
1277 printf_filtered (" (disguised as v%d.%d)", _osmajor, _osminor);
1278 puts_filtered ("\n");
1279 if (!windows_major)
1280 go32_get_windows_version ();
1281 if (windows_major != 0xff)
1282 {
1283 const char *windows_flavor;
1284
1285 printf_filtered ("Windows Version................%d.%02d (Windows ",
1286 windows_major, windows_minor);
1287 switch (windows_major)
1288 {
1289 case 3:
1290 windows_flavor = "3.X";
1291 break;
1292 case 4:
1293 switch (windows_minor)
1294 {
1295 case 0:
1296 windows_flavor = "95, 95A, or 95B";
1297 break;
1298 case 3:
1299 windows_flavor = "95B OSR2.1 or 95C OSR2.5";
1300 break;
1301 case 10:
1302 windows_flavor = "98 or 98 SE";
1303 break;
1304 case 90:
1305 windows_flavor = "ME";
1306 break;
1307 default:
1308 windows_flavor = "9X";
1309 break;
1310 }
1311 break;
1312 default:
1313 windows_flavor = "??";
1314 break;
1315 }
1316 printf_filtered ("%s)\n", windows_flavor);
1317 }
1318 else if (true_dos_version == 0x532 && advertized_dos_version == 0x500)
1319 printf_filtered ("Windows Version................"
1320 "Windows NT family (W2K/XP/W2K3/Vista/W2K8)\n");
1321 puts_filtered ("\n");
1322 /* On some versions of Windows, __dpmi_get_capabilities returns
1323 zero, but the buffer is not filled with info, so we fill the
1324 buffer with a known pattern and test for it afterwards. */
1325 memcpy (dpmi_vendor_info, test_pattern, sizeof(dpmi_vendor_info));
1326 dpmi_vendor_available =
1327 __dpmi_get_capabilities (&dpmi_flags, dpmi_vendor_info);
1328 if (dpmi_vendor_available == 0
1329 && memcmp (dpmi_vendor_info, test_pattern,
1330 sizeof(dpmi_vendor_info)) != 0)
1331 {
1332 /* The DPMI spec says the vendor string should be ASCIIZ, but
1333 I don't trust the vendors to follow that... */
1334 if (!memchr (&dpmi_vendor_info[2], 0, 126))
1335 dpmi_vendor_info[128] = '\0';
1336 printf_filtered ("DPMI Host......................"
1337 "%s v%d.%d (capabilities: %#x)\n",
1338 &dpmi_vendor_info[2],
1339 (unsigned)dpmi_vendor_info[0],
1340 (unsigned)dpmi_vendor_info[1],
1341 ((unsigned)dpmi_flags & 0x7f));
1342 }
1343 else
1344 printf_filtered ("DPMI Host......................(Info not available)\n");
1345 __dpmi_get_version (&dpmi_version_data);
1346 printf_filtered ("DPMI Version...................%d.%02d\n",
1347 dpmi_version_data.major, dpmi_version_data.minor);
1348 printf_filtered ("DPMI Info......................"
1349 "%s-bit DPMI, with%s Virtual Memory support\n",
1350 (dpmi_version_data.flags & 1) ? "32" : "16",
1351 (dpmi_version_data.flags & 4) ? "" : "out");
1352 printfi_filtered (31, "Interrupts reflected to %s mode\n",
1353 (dpmi_version_data.flags & 2) ? "V86" : "Real");
1354 printfi_filtered (31, "Processor type: i%d86\n",
1355 dpmi_version_data.cpu);
1356 printfi_filtered (31, "PIC base interrupt: Master: %#x Slave: %#x\n",
1357 dpmi_version_data.master_pic, dpmi_version_data.slave_pic);
1358
1359 /* a_tss is only initialized when the debuggee is first run. */
1360 if (prog_has_started)
1361 {
1362 __asm__ __volatile__ ("pushfl ; popl %0" : "=g" (eflags));
1363 printf_filtered ("Protection....................."
1364 "Ring %d (in %s), with%s I/O protection\n",
1365 a_tss.tss_cs & 3, (a_tss.tss_cs & 4) ? "LDT" : "GDT",
1366 (a_tss.tss_cs & 3) > ((eflags >> 12) & 3) ? "" : "out");
1367 }
1368 puts_filtered ("\n");
1369 __dpmi_get_free_memory_information (&mem_info);
1370 print_mem (mem_info.total_number_of_physical_pages,
1371 "DPMI Total Physical Memory.....", 1);
1372 print_mem (mem_info.total_number_of_free_pages,
1373 "DPMI Free Physical Memory......", 1);
1374 print_mem (mem_info.size_of_paging_file_partition_in_pages,
1375 "DPMI Swap Space................", 1);
1376 print_mem (mem_info.linear_address_space_size_in_pages,
1377 "DPMI Total Linear Address Size.", 1);
1378 print_mem (mem_info.free_linear_address_space_in_pages,
1379 "DPMI Free Linear Address Size..", 1);
1380 print_mem (mem_info.largest_available_free_block_in_bytes,
1381 "DPMI Largest Free Memory Block.", 0);
1382
1383 regs.h.ah = 0x48;
1384 regs.x.bx = 0xffff;
1385 __dpmi_int (0x21, &regs);
1386 print_mem (regs.x.bx << 4, "Free DOS Memory................", 0);
1387 regs.x.ax = 0x5800;
1388 __dpmi_int (0x21, &regs);
1389 if ((regs.x.flags & 1) == 0)
1390 {
1391 static const char *dos_hilo[] = {
1392 "Low", "", "", "", "High", "", "", "", "High, then Low"
1393 };
1394 static const char *dos_fit[] = {
1395 "First", "Best", "Last"
1396 };
1397 int hilo_idx = (regs.x.ax >> 4) & 0x0f;
1398 int fit_idx = regs.x.ax & 0x0f;
1399
1400 if (hilo_idx > 8)
1401 hilo_idx = 0;
1402 if (fit_idx > 2)
1403 fit_idx = 0;
1404 printf_filtered ("DOS Memory Allocation..........%s memory, %s fit\n",
1405 dos_hilo[hilo_idx], dos_fit[fit_idx]);
1406 regs.x.ax = 0x5802;
1407 __dpmi_int (0x21, &regs);
1408 if ((regs.x.flags & 1) != 0)
1409 regs.h.al = 0;
1410 printfi_filtered (31, "UMBs %sin DOS memory chain\n",
1411 regs.h.al == 0 ? "not " : "");
1412 }
1413 }
1414
1415 struct seg_descr {
1416 unsigned short limit0;
1417 unsigned short base0;
1418 unsigned char base1;
1419 unsigned stype:5;
1420 unsigned dpl:2;
1421 unsigned present:1;
1422 unsigned limit1:4;
1423 unsigned available:1;
1424 unsigned dummy:1;
1425 unsigned bit32:1;
1426 unsigned page_granular:1;
1427 unsigned char base2;
1428 } __attribute__ ((packed));
1429
1430 struct gate_descr {
1431 unsigned short offset0;
1432 unsigned short selector;
1433 unsigned param_count:5;
1434 unsigned dummy:3;
1435 unsigned stype:5;
1436 unsigned dpl:2;
1437 unsigned present:1;
1438 unsigned short offset1;
1439 } __attribute__ ((packed));
1440
1441 /* Read LEN bytes starting at logical address ADDR, and put the result
1442 into DEST. Return 1 if success, zero if not. */
1443 static int
1444 read_memory_region (unsigned long addr, void *dest, size_t len)
1445 {
1446 unsigned long dos_ds_limit = __dpmi_get_segment_limit (_dos_ds);
1447 int retval = 1;
1448
1449 /* For the low memory, we can simply use _dos_ds. */
1450 if (addr <= dos_ds_limit - len)
1451 dosmemget (addr, len, dest);
1452 else
1453 {
1454 /* For memory above 1MB we need to set up a special segment to
1455 be able to access that memory. */
1456 int sel = __dpmi_allocate_ldt_descriptors (1);
1457
1458 if (sel <= 0)
1459 retval = 0;
1460 else
1461 {
1462 int access_rights = __dpmi_get_descriptor_access_rights (sel);
1463 size_t segment_limit = len - 1;
1464
1465 /* Make sure the crucial bits in the descriptor access
1466 rights are set correctly. Some DPMI providers might barf
1467 if we set the segment limit to something that is not an
1468 integral multiple of 4KB pages if the granularity bit is
1469 not set to byte-granular, even though the DPMI spec says
1470 it's the host's responsibility to set that bit correctly. */
1471 if (len > 1024 * 1024)
1472 {
1473 access_rights |= 0x8000;
1474 /* Page-granular segments should have the low 12 bits of
1475 the limit set. */
1476 segment_limit |= 0xfff;
1477 }
1478 else
1479 access_rights &= ~0x8000;
1480
1481 if (__dpmi_set_segment_base_address (sel, addr) != -1
1482 && __dpmi_set_descriptor_access_rights (sel, access_rights) != -1
1483 && __dpmi_set_segment_limit (sel, segment_limit) != -1
1484 /* W2K silently fails to set the segment limit, leaving
1485 it at zero; this test avoids the resulting crash. */
1486 && __dpmi_get_segment_limit (sel) >= segment_limit)
1487 movedata (sel, 0, _my_ds (), (unsigned)dest, len);
1488 else
1489 retval = 0;
1490
1491 __dpmi_free_ldt_descriptor (sel);
1492 }
1493 }
1494 return retval;
1495 }
1496
1497 /* Get a segment descriptor stored at index IDX in the descriptor
1498 table whose base address is TABLE_BASE. Return the descriptor
1499 type, or -1 if failure. */
1500 static int
1501 get_descriptor (unsigned long table_base, int idx, void *descr)
1502 {
1503 unsigned long addr = table_base + idx * 8; /* 8 bytes per entry */
1504
1505 if (read_memory_region (addr, descr, 8))
1506 return (int)((struct seg_descr *)descr)->stype;
1507 return -1;
1508 }
1509
1510 struct dtr_reg {
1511 unsigned short limit __attribute__((packed));
1512 unsigned long base __attribute__((packed));
1513 };
1514
1515 /* Display a segment descriptor stored at index IDX in a descriptor
1516 table whose type is TYPE and whose base address is BASE_ADDR. If
1517 FORCE is non-zero, display even invalid descriptors. */
1518 static void
1519 display_descriptor (unsigned type, unsigned long base_addr, int idx, int force)
1520 {
1521 struct seg_descr descr;
1522 struct gate_descr gate;
1523
1524 /* Get the descriptor from the table. */
1525 if (idx == 0 && type == 0)
1526 puts_filtered ("0x000: null descriptor\n");
1527 else if (get_descriptor (base_addr, idx, &descr) != -1)
1528 {
1529 /* For each type of descriptor table, this has a bit set if the
1530 corresponding type of selectors is valid in that table. */
1531 static unsigned allowed_descriptors[] = {
1532 0xffffdafeL, /* GDT */
1533 0x0000c0e0L, /* IDT */
1534 0xffffdafaL /* LDT */
1535 };
1536
1537 /* If the program hasn't started yet, assume the debuggee will
1538 have the same CPL as the debugger. */
1539 int cpl = prog_has_started ? (a_tss.tss_cs & 3) : _my_cs () & 3;
1540 unsigned long limit = (descr.limit1 << 16) | descr.limit0;
1541
1542 if (descr.present
1543 && (allowed_descriptors[type] & (1 << descr.stype)) != 0)
1544 {
1545 printf_filtered ("0x%03x: ",
1546 type == 1
1547 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1548 if (descr.page_granular)
1549 limit = (limit << 12) | 0xfff; /* big segment: low 12 bit set */
1550 if (descr.stype == 1 || descr.stype == 2 || descr.stype == 3
1551 || descr.stype == 9 || descr.stype == 11
1552 || (descr.stype >= 16 && descr.stype < 32))
1553 printf_filtered ("base=0x%02x%02x%04x limit=0x%08lx",
1554 descr.base2, descr.base1, descr.base0, limit);
1555
1556 switch (descr.stype)
1557 {
1558 case 1:
1559 case 3:
1560 printf_filtered (" 16-bit TSS (task %sactive)",
1561 descr.stype == 3 ? "" : "in");
1562 break;
1563 case 2:
1564 puts_filtered (" LDT");
1565 break;
1566 case 4:
1567 memcpy (&gate, &descr, sizeof gate);
1568 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1569 gate.selector, gate.offset1, gate.offset0);
1570 printf_filtered (" 16-bit Call Gate (params=%d)",
1571 gate.param_count);
1572 break;
1573 case 5:
1574 printf_filtered ("TSS selector=0x%04x", descr.base0);
1575 printfi_filtered (16, "Task Gate");
1576 break;
1577 case 6:
1578 case 7:
1579 memcpy (&gate, &descr, sizeof gate);
1580 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1581 gate.selector, gate.offset1, gate.offset0);
1582 printf_filtered (" 16-bit %s Gate",
1583 descr.stype == 6 ? "Interrupt" : "Trap");
1584 break;
1585 case 9:
1586 case 11:
1587 printf_filtered (" 32-bit TSS (task %sactive)",
1588 descr.stype == 3 ? "" : "in");
1589 break;
1590 case 12:
1591 memcpy (&gate, &descr, sizeof gate);
1592 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1593 gate.selector, gate.offset1, gate.offset0);
1594 printf_filtered (" 32-bit Call Gate (params=%d)",
1595 gate.param_count);
1596 break;
1597 case 14:
1598 case 15:
1599 memcpy (&gate, &descr, sizeof gate);
1600 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1601 gate.selector, gate.offset1, gate.offset0);
1602 printf_filtered (" 32-bit %s Gate",
1603 descr.stype == 14 ? "Interrupt" : "Trap");
1604 break;
1605 case 16: /* data segments */
1606 case 17:
1607 case 18:
1608 case 19:
1609 case 20:
1610 case 21:
1611 case 22:
1612 case 23:
1613 printf_filtered (" %s-bit Data (%s Exp-%s%s)",
1614 descr.bit32 ? "32" : "16",
1615 descr.stype & 2
1616 ? "Read/Write," : "Read-Only, ",
1617 descr.stype & 4 ? "down" : "up",
1618 descr.stype & 1 ? "" : ", N.Acc");
1619 break;
1620 case 24: /* code segments */
1621 case 25:
1622 case 26:
1623 case 27:
1624 case 28:
1625 case 29:
1626 case 30:
1627 case 31:
1628 printf_filtered (" %s-bit Code (%s, %sConf%s)",
1629 descr.bit32 ? "32" : "16",
1630 descr.stype & 2 ? "Exec/Read" : "Exec-Only",
1631 descr.stype & 4 ? "" : "N.",
1632 descr.stype & 1 ? "" : ", N.Acc");
1633 break;
1634 default:
1635 printf_filtered ("Unknown type 0x%02x", descr.stype);
1636 break;
1637 }
1638 puts_filtered ("\n");
1639 }
1640 else if (force)
1641 {
1642 printf_filtered ("0x%03x: ",
1643 type == 1
1644 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1645 if (!descr.present)
1646 puts_filtered ("Segment not present\n");
1647 else
1648 printf_filtered ("Segment type 0x%02x is invalid in this table\n",
1649 descr.stype);
1650 }
1651 }
1652 else if (force)
1653 printf_filtered ("0x%03x: Cannot read this descriptor\n", idx);
1654 }
1655
1656 static void
1657 go32_sldt (char *arg, int from_tty)
1658 {
1659 struct dtr_reg gdtr;
1660 unsigned short ldtr = 0;
1661 int ldt_idx;
1662 struct seg_descr ldt_descr;
1663 long ldt_entry = -1L;
1664 int cpl = (prog_has_started ? a_tss.tss_cs : _my_cs ()) & 3;
1665
1666 if (arg && *arg)
1667 {
1668 arg = skip_spaces (arg);
1669
1670 if (*arg)
1671 {
1672 ldt_entry = parse_and_eval_long (arg);
1673 if (ldt_entry < 0
1674 || (ldt_entry & 4) == 0
1675 || (ldt_entry & 3) != (cpl & 3))
1676 error (_("Invalid LDT entry 0x%03lx."), (unsigned long)ldt_entry);
1677 }
1678 }
1679
1680 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1681 __asm__ __volatile__ ("sldt %0" : "=m" (ldtr) : /* no inputs */ );
1682 ldt_idx = ldtr / 8;
1683 if (ldt_idx == 0)
1684 puts_filtered ("There is no LDT.\n");
1685 /* LDT's entry in the GDT must have the type LDT, which is 2. */
1686 else if (get_descriptor (gdtr.base, ldt_idx, &ldt_descr) != 2)
1687 printf_filtered ("LDT is present (at %#x), but unreadable by GDB.\n",
1688 ldt_descr.base0
1689 | (ldt_descr.base1 << 16)
1690 | (ldt_descr.base2 << 24));
1691 else
1692 {
1693 unsigned base =
1694 ldt_descr.base0
1695 | (ldt_descr.base1 << 16)
1696 | (ldt_descr.base2 << 24);
1697 unsigned limit = ldt_descr.limit0 | (ldt_descr.limit1 << 16);
1698 int max_entry;
1699
1700 if (ldt_descr.page_granular)
1701 /* Page-granular segments must have the low 12 bits of their
1702 limit set. */
1703 limit = (limit << 12) | 0xfff;
1704 /* LDT cannot have more than 8K 8-byte entries, i.e. more than
1705 64KB. */
1706 if (limit > 0xffff)
1707 limit = 0xffff;
1708
1709 max_entry = (limit + 1) / 8;
1710
1711 if (ldt_entry >= 0)
1712 {
1713 if (ldt_entry > limit)
1714 error (_("Invalid LDT entry %#lx: outside valid limits [0..%#x]"),
1715 (unsigned long)ldt_entry, limit);
1716
1717 display_descriptor (ldt_descr.stype, base, ldt_entry / 8, 1);
1718 }
1719 else
1720 {
1721 int i;
1722
1723 for (i = 0; i < max_entry; i++)
1724 display_descriptor (ldt_descr.stype, base, i, 0);
1725 }
1726 }
1727 }
1728
1729 static void
1730 go32_sgdt (char *arg, int from_tty)
1731 {
1732 struct dtr_reg gdtr;
1733 long gdt_entry = -1L;
1734 int max_entry;
1735
1736 if (arg && *arg)
1737 {
1738 arg = skip_spaces (arg);
1739
1740 if (*arg)
1741 {
1742 gdt_entry = parse_and_eval_long (arg);
1743 if (gdt_entry < 0 || (gdt_entry & 7) != 0)
1744 error (_("Invalid GDT entry 0x%03lx: "
1745 "not an integral multiple of 8."),
1746 (unsigned long)gdt_entry);
1747 }
1748 }
1749
1750 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1751 max_entry = (gdtr.limit + 1) / 8;
1752
1753 if (gdt_entry >= 0)
1754 {
1755 if (gdt_entry > gdtr.limit)
1756 error (_("Invalid GDT entry %#lx: outside valid limits [0..%#x]"),
1757 (unsigned long)gdt_entry, gdtr.limit);
1758
1759 display_descriptor (0, gdtr.base, gdt_entry / 8, 1);
1760 }
1761 else
1762 {
1763 int i;
1764
1765 for (i = 0; i < max_entry; i++)
1766 display_descriptor (0, gdtr.base, i, 0);
1767 }
1768 }
1769
1770 static void
1771 go32_sidt (char *arg, int from_tty)
1772 {
1773 struct dtr_reg idtr;
1774 long idt_entry = -1L;
1775 int max_entry;
1776
1777 if (arg && *arg)
1778 {
1779 arg = skip_spaces (arg);
1780
1781 if (*arg)
1782 {
1783 idt_entry = parse_and_eval_long (arg);
1784 if (idt_entry < 0)
1785 error (_("Invalid (negative) IDT entry %ld."), idt_entry);
1786 }
1787 }
1788
1789 __asm__ __volatile__ ("sidt %0" : "=m" (idtr) : /* no inputs */ );
1790 max_entry = (idtr.limit + 1) / 8;
1791 if (max_entry > 0x100) /* No more than 256 entries. */
1792 max_entry = 0x100;
1793
1794 if (idt_entry >= 0)
1795 {
1796 if (idt_entry > idtr.limit)
1797 error (_("Invalid IDT entry %#lx: outside valid limits [0..%#x]"),
1798 (unsigned long)idt_entry, idtr.limit);
1799
1800 display_descriptor (1, idtr.base, idt_entry, 1);
1801 }
1802 else
1803 {
1804 int i;
1805
1806 for (i = 0; i < max_entry; i++)
1807 display_descriptor (1, idtr.base, i, 0);
1808 }
1809 }
1810
1811 /* Cached linear address of the base of the page directory. For
1812 now, available only under CWSDPMI. Code based on ideas and
1813 suggestions from Charles Sandmann <sandmann@clio.rice.edu>. */
1814 static unsigned long pdbr;
1815
1816 static unsigned long
1817 get_cr3 (void)
1818 {
1819 unsigned offset;
1820 unsigned taskreg;
1821 unsigned long taskbase, cr3;
1822 struct dtr_reg gdtr;
1823
1824 if (pdbr > 0 && pdbr <= 0xfffff)
1825 return pdbr;
1826
1827 /* Get the linear address of GDT and the Task Register. */
1828 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1829 __asm__ __volatile__ ("str %0" : "=m" (taskreg) : /* no inputs */ );
1830
1831 /* Task Register is a segment selector for the TSS of the current
1832 task. Therefore, it can be used as an index into the GDT to get
1833 at the segment descriptor for the TSS. To get the index, reset
1834 the low 3 bits of the selector (which give the CPL). Add 2 to the
1835 offset to point to the 3 low bytes of the base address. */
1836 offset = gdtr.base + (taskreg & 0xfff8) + 2;
1837
1838
1839 /* CWSDPMI's task base is always under the 1MB mark. */
1840 if (offset > 0xfffff)
1841 return 0;
1842
1843 _farsetsel (_dos_ds);
1844 taskbase = _farnspeekl (offset) & 0xffffffU;
1845 taskbase += _farnspeekl (offset + 2) & 0xff000000U;
1846 if (taskbase > 0xfffff)
1847 return 0;
1848
1849 /* CR3 (a.k.a. PDBR, the Page Directory Base Register) is stored at
1850 offset 1Ch in the TSS. */
1851 cr3 = _farnspeekl (taskbase + 0x1c) & ~0xfff;
1852 if (cr3 > 0xfffff)
1853 {
1854 #if 0 /* Not fullly supported yet. */
1855 /* The Page Directory is in UMBs. In that case, CWSDPMI puts
1856 the first Page Table right below the Page Directory. Thus,
1857 the first Page Table's entry for its own address and the Page
1858 Directory entry for that Page Table will hold the same
1859 physical address. The loop below searches the entire UMB
1860 range of addresses for such an occurence. */
1861 unsigned long addr, pte_idx;
1862
1863 for (addr = 0xb0000, pte_idx = 0xb0;
1864 pte_idx < 0xff;
1865 addr += 0x1000, pte_idx++)
1866 {
1867 if (((_farnspeekl (addr + 4 * pte_idx) & 0xfffff027) ==
1868 (_farnspeekl (addr + 0x1000) & 0xfffff027))
1869 && ((_farnspeekl (addr + 4 * pte_idx + 4) & 0xfffff000) == cr3))
1870 {
1871 cr3 = addr + 0x1000;
1872 break;
1873 }
1874 }
1875 #endif
1876
1877 if (cr3 > 0xfffff)
1878 cr3 = 0;
1879 }
1880
1881 return cr3;
1882 }
1883
1884 /* Return the N'th Page Directory entry. */
1885 static unsigned long
1886 get_pde (int n)
1887 {
1888 unsigned long pde = 0;
1889
1890 if (pdbr && n >= 0 && n < 1024)
1891 {
1892 pde = _farpeekl (_dos_ds, pdbr + 4*n);
1893 }
1894 return pde;
1895 }
1896
1897 /* Return the N'th entry of the Page Table whose Page Directory entry
1898 is PDE. */
1899 static unsigned long
1900 get_pte (unsigned long pde, int n)
1901 {
1902 unsigned long pte = 0;
1903
1904 /* pde & 0x80 tests the 4MB page bit. We don't support 4MB
1905 page tables, for now. */
1906 if ((pde & 1) && !(pde & 0x80) && n >= 0 && n < 1024)
1907 {
1908 pde &= ~0xfff; /* Clear non-address bits. */
1909 pte = _farpeekl (_dos_ds, pde + 4*n);
1910 }
1911 return pte;
1912 }
1913
1914 /* Display a Page Directory or Page Table entry. IS_DIR, if non-zero,
1915 says this is a Page Directory entry. If FORCE is non-zero, display
1916 the entry even if its Present flag is off. OFF is the offset of the
1917 address from the page's base address. */
1918 static void
1919 display_ptable_entry (unsigned long entry, int is_dir, int force, unsigned off)
1920 {
1921 if ((entry & 1) != 0)
1922 {
1923 printf_filtered ("Base=0x%05lx000", entry >> 12);
1924 if ((entry & 0x100) && !is_dir)
1925 puts_filtered (" Global");
1926 if ((entry & 0x40) && !is_dir)
1927 puts_filtered (" Dirty");
1928 printf_filtered (" %sAcc.", (entry & 0x20) ? "" : "Not-");
1929 printf_filtered (" %sCached", (entry & 0x10) ? "" : "Not-");
1930 printf_filtered (" Write-%s", (entry & 8) ? "Thru" : "Back");
1931 printf_filtered (" %s", (entry & 4) ? "Usr" : "Sup");
1932 printf_filtered (" Read-%s", (entry & 2) ? "Write" : "Only");
1933 if (off)
1934 printf_filtered (" +0x%x", off);
1935 puts_filtered ("\n");
1936 }
1937 else if (force)
1938 printf_filtered ("Page%s not present or not supported; value=0x%lx.\n",
1939 is_dir ? " Table" : "", entry >> 1);
1940 }
1941
1942 static void
1943 go32_pde (char *arg, int from_tty)
1944 {
1945 long pde_idx = -1, i;
1946
1947 if (arg && *arg)
1948 {
1949 arg = skip_spaces (arg);
1950
1951 if (*arg)
1952 {
1953 pde_idx = parse_and_eval_long (arg);
1954 if (pde_idx < 0 || pde_idx >= 1024)
1955 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
1956 }
1957 }
1958
1959 pdbr = get_cr3 ();
1960 if (!pdbr)
1961 puts_filtered ("Access to Page Directories is "
1962 "not supported on this system.\n");
1963 else if (pde_idx >= 0)
1964 display_ptable_entry (get_pde (pde_idx), 1, 1, 0);
1965 else
1966 for (i = 0; i < 1024; i++)
1967 display_ptable_entry (get_pde (i), 1, 0, 0);
1968 }
1969
1970 /* A helper function to display entries in a Page Table pointed to by
1971 the N'th entry in the Page Directory. If FORCE is non-zero, say
1972 something even if the Page Table is not accessible. */
1973 static void
1974 display_page_table (long n, int force)
1975 {
1976 unsigned long pde = get_pde (n);
1977
1978 if ((pde & 1) != 0)
1979 {
1980 int i;
1981
1982 printf_filtered ("Page Table pointed to by "
1983 "Page Directory entry 0x%lx:\n", n);
1984 for (i = 0; i < 1024; i++)
1985 display_ptable_entry (get_pte (pde, i), 0, 0, 0);
1986 puts_filtered ("\n");
1987 }
1988 else if (force)
1989 printf_filtered ("Page Table not present; value=0x%lx.\n", pde >> 1);
1990 }
1991
1992 static void
1993 go32_pte (char *arg, int from_tty)
1994 {
1995 long pde_idx = -1L, i;
1996
1997 if (arg && *arg)
1998 {
1999 arg = skip_spaces (arg);
2000
2001 if (*arg)
2002 {
2003 pde_idx = parse_and_eval_long (arg);
2004 if (pde_idx < 0 || pde_idx >= 1024)
2005 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
2006 }
2007 }
2008
2009 pdbr = get_cr3 ();
2010 if (!pdbr)
2011 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2012 else if (pde_idx >= 0)
2013 display_page_table (pde_idx, 1);
2014 else
2015 for (i = 0; i < 1024; i++)
2016 display_page_table (i, 0);
2017 }
2018
2019 static void
2020 go32_pte_for_address (char *arg, int from_tty)
2021 {
2022 CORE_ADDR addr = 0, i;
2023
2024 if (arg && *arg)
2025 {
2026 arg = skip_spaces (arg);
2027
2028 if (*arg)
2029 addr = parse_and_eval_address (arg);
2030 }
2031 if (!addr)
2032 error_no_arg (_("linear address"));
2033
2034 pdbr = get_cr3 ();
2035 if (!pdbr)
2036 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2037 else
2038 {
2039 int pde_idx = (addr >> 22) & 0x3ff;
2040 int pte_idx = (addr >> 12) & 0x3ff;
2041 unsigned offs = addr & 0xfff;
2042
2043 printf_filtered ("Page Table entry for address %s:\n",
2044 hex_string(addr));
2045 display_ptable_entry (get_pte (get_pde (pde_idx), pte_idx), 0, 1, offs);
2046 }
2047 }
2048
2049 static struct cmd_list_element *info_dos_cmdlist = NULL;
2050
2051 static void
2052 go32_info_dos_command (char *args, int from_tty)
2053 {
2054 help_list (info_dos_cmdlist, "info dos ", class_info, gdb_stdout);
2055 }
2056
2057 /* -Wmissing-prototypes */
2058 extern initialize_file_ftype _initialize_go32_nat;
2059
2060 void
2061 _initialize_go32_nat (void)
2062 {
2063 struct target_ops *t = go32_target ();
2064
2065 x86_dr_low.set_control = go32_set_dr7;
2066 x86_dr_low.set_addr = go32_set_dr;
2067 x86_dr_low.get_status = go32_get_dr6;
2068 x86_dr_low.get_control = go32_get_dr7;
2069 x86_dr_low.get_addr = go32_get_dr;
2070 x86_set_debug_register_length (4);
2071
2072 x86_use_watchpoints (t);
2073 add_target (t);
2074
2075 /* Initialize child's cwd as empty to be initialized when starting
2076 the child. */
2077 *child_cwd = 0;
2078
2079 /* Initialize child's command line storage. */
2080 if (redir_debug_init (&child_cmd) == -1)
2081 internal_error (__FILE__, __LINE__,
2082 _("Cannot allocate redirection storage: "
2083 "not enough memory.\n"));
2084
2085 /* We are always processing GCC-compiled programs. */
2086 processing_gcc_compilation = 2;
2087
2088 add_prefix_cmd ("dos", class_info, go32_info_dos_command, _("\
2089 Print information specific to DJGPP (aka MS-DOS) debugging."),
2090 &info_dos_cmdlist, "info dos ", 0, &infolist);
2091
2092 add_cmd ("sysinfo", class_info, go32_sysinfo, _("\
2093 Display information about the target system, including CPU, OS, DPMI, etc."),
2094 &info_dos_cmdlist);
2095 add_cmd ("ldt", class_info, go32_sldt, _("\
2096 Display entries in the LDT (Local Descriptor Table).\n\
2097 Entry number (an expression) as an argument means display only that entry."),
2098 &info_dos_cmdlist);
2099 add_cmd ("gdt", class_info, go32_sgdt, _("\
2100 Display entries in the GDT (Global Descriptor Table).\n\
2101 Entry number (an expression) as an argument means display only that entry."),
2102 &info_dos_cmdlist);
2103 add_cmd ("idt", class_info, go32_sidt, _("\
2104 Display entries in the IDT (Interrupt Descriptor Table).\n\
2105 Entry number (an expression) as an argument means display only that entry."),
2106 &info_dos_cmdlist);
2107 add_cmd ("pde", class_info, go32_pde, _("\
2108 Display entries in the Page Directory.\n\
2109 Entry number (an expression) as an argument means display only that entry."),
2110 &info_dos_cmdlist);
2111 add_cmd ("pte", class_info, go32_pte, _("\
2112 Display entries in Page Tables.\n\
2113 Entry number (an expression) as an argument means display only entries\n\
2114 from the Page Table pointed to by the specified Page Directory entry."),
2115 &info_dos_cmdlist);
2116 add_cmd ("address-pte", class_info, go32_pte_for_address, _("\
2117 Display a Page Table entry for a linear address.\n\
2118 The address argument must be a linear address, after adding to\n\
2119 it the base address of the appropriate segment.\n\
2120 The base address of variables and functions in the debuggee's data\n\
2121 or code segment is stored in the variable __djgpp_base_address,\n\
2122 so use `__djgpp_base_address + (char *)&var' as the argument.\n\
2123 For other segments, look up their base address in the output of\n\
2124 the `info dos ldt' command."),
2125 &info_dos_cmdlist);
2126 }
2127
2128 pid_t
2129 tcgetpgrp (int fd)
2130 {
2131 if (isatty (fd))
2132 return SOME_PID;
2133 errno = ENOTTY;
2134 return -1;
2135 }
2136
2137 int
2138 tcsetpgrp (int fd, pid_t pgid)
2139 {
2140 if (isatty (fd) && pgid == SOME_PID)
2141 return 0;
2142 errno = pgid == SOME_PID ? ENOTTY : ENOSYS;
2143 return -1;
2144 }
This page took 0.071655 seconds and 5 git commands to generate.