* target.h (TARGET_WNOHANG): New.
[deliverable/binutils-gdb.git] / gdb / go32-nat.c
1 /* Native debugging support for Intel x86 running DJGPP.
2 Copyright (C) 1997, 1999, 2000, 2001, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Written by Robert Hoehne.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /* To whomever it may concern, here's a general description of how
22 debugging in DJGPP works, and the special quirks GDB does to
23 support that.
24
25 When the DJGPP port of GDB is debugging a DJGPP program natively,
26 there aren't 2 separate processes, the debuggee and GDB itself, as
27 on other systems. (This is DOS, where there can only be one active
28 process at any given time, remember?) Instead, GDB and the
29 debuggee live in the same process. So when GDB calls
30 go32_create_inferior below, and that function calls edi_init from
31 the DJGPP debug support library libdbg.a, we load the debuggee's
32 executable file into GDB's address space, set it up for execution
33 as the stub loader (a short real-mode program prepended to each
34 DJGPP executable) normally would, and do a lot of preparations for
35 swapping between GDB's and debuggee's internal state, primarily wrt
36 the exception handlers. This swapping happens every time we resume
37 the debuggee or switch back to GDB's code, and it includes:
38
39 . swapping all the segment registers
40 . swapping the PSP (the Program Segment Prefix)
41 . swapping the signal handlers
42 . swapping the exception handlers
43 . swapping the FPU status
44 . swapping the 3 standard file handles (more about this below)
45
46 Then running the debuggee simply means longjmp into it where its PC
47 is and let it run until it stops for some reason. When it stops,
48 GDB catches the exception that stopped it and longjmp's back into
49 its own code. All the possible exit points of the debuggee are
50 watched; for example, the normal exit point is recognized because a
51 DOS program issues a special system call to exit. If one of those
52 exit points is hit, we mourn the inferior and clean up after it.
53 Cleaning up is very important, even if the process exits normally,
54 because otherwise we might leave behind traces of previous
55 execution, and in several cases GDB itself might be left hosed,
56 because all the exception handlers were not restored.
57
58 Swapping of the standard handles (in redir_to_child and
59 redir_to_debugger) is needed because, since both GDB and the
60 debuggee live in the same process, as far as the OS is concerned,
61 the share the same file table. This means that the standard
62 handles 0, 1, and 2 point to the same file table entries, and thus
63 are connected to the same devices. Therefore, if the debugger
64 redirects its standard output, the standard output of the debuggee
65 is also automagically redirected to the same file/device!
66 Similarly, if the debuggee redirects its stdout to a file, you
67 won't be able to see debugger's output (it will go to the same file
68 where the debuggee has its output); and if the debuggee closes its
69 standard input, you will lose the ability to talk to debugger!
70
71 For this reason, every time the debuggee is about to be resumed, we
72 call redir_to_child, which redirects the standard handles to where
73 the debuggee expects them to be. When the debuggee stops and GDB
74 regains control, we call redir_to_debugger, which redirects those 3
75 handles back to where GDB expects.
76
77 Note that only the first 3 handles are swapped, so if the debuggee
78 redirects or closes any other handles, GDB will not notice. In
79 particular, the exit code of a DJGPP program forcibly closes all
80 file handles beyond the first 3 ones, so when the debuggee exits,
81 GDB currently loses its stdaux and stdprn streams. Fortunately,
82 GDB does not use those as of this writing, and will never need
83 to. */
84
85 #include <fcntl.h>
86
87 #include "defs.h"
88 #include "i386-nat.h"
89 #include "inferior.h"
90 #include "gdbthread.h"
91 #include "gdb_wait.h"
92 #include "gdbcore.h"
93 #include "command.h"
94 #include "gdbcmd.h"
95 #include "floatformat.h"
96 #include "buildsym.h"
97 #include "i387-tdep.h"
98 #include "i386-tdep.h"
99 #include "value.h"
100 #include "regcache.h"
101 #include "gdb_string.h"
102 #include "top.h"
103
104 #include <stdio.h> /* might be required for __DJGPP_MINOR__ */
105 #include <stdlib.h>
106 #include <ctype.h>
107 #include <errno.h>
108 #include <unistd.h>
109 #include <sys/utsname.h>
110 #include <io.h>
111 #include <dos.h>
112 #include <dpmi.h>
113 #include <go32.h>
114 #include <sys/farptr.h>
115 #include <debug/v2load.h>
116 #include <debug/dbgcom.h>
117 #if __DJGPP_MINOR__ > 2
118 #include <debug/redir.h>
119 #endif
120
121 #include <langinfo.h>
122
123 #if __DJGPP_MINOR__ < 3
124 /* This code will be provided from DJGPP 2.03 on. Until then I code it
125 here */
126 typedef struct
127 {
128 unsigned short sig0;
129 unsigned short sig1;
130 unsigned short sig2;
131 unsigned short sig3;
132 unsigned short exponent:15;
133 unsigned short sign:1;
134 }
135 NPXREG;
136
137 typedef struct
138 {
139 unsigned int control;
140 unsigned int status;
141 unsigned int tag;
142 unsigned int eip;
143 unsigned int cs;
144 unsigned int dataptr;
145 unsigned int datasel;
146 NPXREG reg[8];
147 }
148 NPX;
149
150 static NPX npx;
151
152 static void save_npx (void); /* Save the FPU of the debugged program */
153 static void load_npx (void); /* Restore the FPU of the debugged program */
154
155 /* ------------------------------------------------------------------------- */
156 /* Store the contents of the NPX in the global variable `npx'. */
157 /* *INDENT-OFF* */
158
159 static void
160 save_npx (void)
161 {
162 asm ("inb $0xa0, %%al \n\
163 testb $0x20, %%al \n\
164 jz 1f \n\
165 xorb %%al, %%al \n\
166 outb %%al, $0xf0 \n\
167 movb $0x20, %%al \n\
168 outb %%al, $0xa0 \n\
169 outb %%al, $0x20 \n\
170 1: \n\
171 fnsave %0 \n\
172 fwait "
173 : "=m" (npx)
174 : /* No input */
175 : "%eax");
176 }
177
178 /* *INDENT-ON* */
179
180
181 /* ------------------------------------------------------------------------- */
182 /* Reload the contents of the NPX from the global variable `npx'. */
183
184 static void
185 load_npx (void)
186 {
187 asm ("frstor %0":"=m" (npx));
188 }
189 /* ------------------------------------------------------------------------- */
190 /* Stubs for the missing redirection functions. */
191 typedef struct {
192 char *command;
193 int redirected;
194 } cmdline_t;
195
196 void
197 redir_cmdline_delete (cmdline_t *ptr)
198 {
199 ptr->redirected = 0;
200 }
201
202 int
203 redir_cmdline_parse (const char *args, cmdline_t *ptr)
204 {
205 return -1;
206 }
207
208 int
209 redir_to_child (cmdline_t *ptr)
210 {
211 return 1;
212 }
213
214 int
215 redir_to_debugger (cmdline_t *ptr)
216 {
217 return 1;
218 }
219
220 int
221 redir_debug_init (cmdline_t *ptr)
222 {
223 return 0;
224 }
225 #endif /* __DJGPP_MINOR < 3 */
226
227 typedef enum { wp_insert, wp_remove, wp_count } wp_op;
228
229 /* This holds the current reference counts for each debug register. */
230 static int dr_ref_count[4];
231
232 #define SOME_PID 42
233
234 static int prog_has_started = 0;
235 static void go32_open (char *name, int from_tty);
236 static void go32_close (int quitting);
237 static void go32_attach (struct target_ops *ops, char *args, int from_tty);
238 static void go32_detach (struct target_ops *ops, char *args, int from_tty);
239 static void go32_resume (struct target_ops *ops,
240 ptid_t ptid, int step,
241 enum target_signal siggnal);
242 static void go32_fetch_registers (struct target_ops *ops,
243 struct regcache *, int regno);
244 static void store_register (const struct regcache *, int regno);
245 static void go32_store_registers (struct target_ops *ops,
246 struct regcache *, int regno);
247 static void go32_prepare_to_store (struct regcache *);
248 static int go32_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len,
249 int write,
250 struct mem_attrib *attrib,
251 struct target_ops *target);
252 static void go32_files_info (struct target_ops *target);
253 static void go32_kill_inferior (struct target_ops *ops);
254 static void go32_create_inferior (struct target_ops *ops, char *exec_file,
255 char *args, char **env, int from_tty);
256 static void go32_mourn_inferior (struct target_ops *ops);
257 static int go32_can_run (void);
258
259 static struct target_ops go32_ops;
260 static void go32_terminal_init (void);
261 static void go32_terminal_inferior (void);
262 static void go32_terminal_ours (void);
263
264 #define r_ofs(x) (offsetof(TSS,x))
265
266 static struct
267 {
268 size_t tss_ofs;
269 size_t size;
270 }
271 regno_mapping[] =
272 {
273 {r_ofs (tss_eax), 4}, /* normal registers, from a_tss */
274 {r_ofs (tss_ecx), 4},
275 {r_ofs (tss_edx), 4},
276 {r_ofs (tss_ebx), 4},
277 {r_ofs (tss_esp), 4},
278 {r_ofs (tss_ebp), 4},
279 {r_ofs (tss_esi), 4},
280 {r_ofs (tss_edi), 4},
281 {r_ofs (tss_eip), 4},
282 {r_ofs (tss_eflags), 4},
283 {r_ofs (tss_cs), 2},
284 {r_ofs (tss_ss), 2},
285 {r_ofs (tss_ds), 2},
286 {r_ofs (tss_es), 2},
287 {r_ofs (tss_fs), 2},
288 {r_ofs (tss_gs), 2},
289 {0, 10}, /* 8 FP registers, from npx.reg[] */
290 {1, 10},
291 {2, 10},
292 {3, 10},
293 {4, 10},
294 {5, 10},
295 {6, 10},
296 {7, 10},
297 /* The order of the next 7 registers must be consistent
298 with their numbering in config/i386/tm-i386.h, which see. */
299 {0, 2}, /* control word, from npx */
300 {4, 2}, /* status word, from npx */
301 {8, 2}, /* tag word, from npx */
302 {16, 2}, /* last FP exception CS from npx */
303 {12, 4}, /* last FP exception EIP from npx */
304 {24, 2}, /* last FP exception operand selector from npx */
305 {20, 4}, /* last FP exception operand offset from npx */
306 {18, 2} /* last FP opcode from npx */
307 };
308
309 static struct
310 {
311 int go32_sig;
312 enum target_signal gdb_sig;
313 }
314 sig_map[] =
315 {
316 {0, TARGET_SIGNAL_FPE},
317 {1, TARGET_SIGNAL_TRAP},
318 /* Exception 2 is triggered by the NMI. DJGPP handles it as SIGILL,
319 but I think SIGBUS is better, since the NMI is usually activated
320 as a result of a memory parity check failure. */
321 {2, TARGET_SIGNAL_BUS},
322 {3, TARGET_SIGNAL_TRAP},
323 {4, TARGET_SIGNAL_FPE},
324 {5, TARGET_SIGNAL_SEGV},
325 {6, TARGET_SIGNAL_ILL},
326 {7, TARGET_SIGNAL_EMT}, /* no-coprocessor exception */
327 {8, TARGET_SIGNAL_SEGV},
328 {9, TARGET_SIGNAL_SEGV},
329 {10, TARGET_SIGNAL_BUS},
330 {11, TARGET_SIGNAL_SEGV},
331 {12, TARGET_SIGNAL_SEGV},
332 {13, TARGET_SIGNAL_SEGV},
333 {14, TARGET_SIGNAL_SEGV},
334 {16, TARGET_SIGNAL_FPE},
335 {17, TARGET_SIGNAL_BUS},
336 {31, TARGET_SIGNAL_ILL},
337 {0x1b, TARGET_SIGNAL_INT},
338 {0x75, TARGET_SIGNAL_FPE},
339 {0x78, TARGET_SIGNAL_ALRM},
340 {0x79, TARGET_SIGNAL_INT},
341 {0x7a, TARGET_SIGNAL_QUIT},
342 {-1, TARGET_SIGNAL_LAST}
343 };
344
345 static struct {
346 enum target_signal gdb_sig;
347 int djgpp_excepno;
348 } excepn_map[] = {
349 {TARGET_SIGNAL_0, -1},
350 {TARGET_SIGNAL_ILL, 6}, /* Invalid Opcode */
351 {TARGET_SIGNAL_EMT, 7}, /* triggers SIGNOFP */
352 {TARGET_SIGNAL_SEGV, 13}, /* GPF */
353 {TARGET_SIGNAL_BUS, 17}, /* Alignment Check */
354 /* The rest are fake exceptions, see dpmiexcp.c in djlsr*.zip for
355 details. */
356 {TARGET_SIGNAL_TERM, 0x1b}, /* triggers Ctrl-Break type of SIGINT */
357 {TARGET_SIGNAL_FPE, 0x75},
358 {TARGET_SIGNAL_INT, 0x79},
359 {TARGET_SIGNAL_QUIT, 0x7a},
360 {TARGET_SIGNAL_ALRM, 0x78}, /* triggers SIGTIMR */
361 {TARGET_SIGNAL_PROF, 0x78},
362 {TARGET_SIGNAL_LAST, -1}
363 };
364
365 static void
366 go32_open (char *name, int from_tty)
367 {
368 printf_unfiltered ("Done. Use the \"run\" command to run the program.\n");
369 }
370
371 static void
372 go32_close (int quitting)
373 {
374 }
375
376 static void
377 go32_attach (struct target_ops *ops, char *args, int from_tty)
378 {
379 error (_("\
380 You cannot attach to a running program on this platform.\n\
381 Use the `run' command to run DJGPP programs."));
382 }
383
384 static void
385 go32_detach (struct target_ops *ops, char *args, int from_tty)
386 {
387 }
388
389 static int resume_is_step;
390 static int resume_signal = -1;
391
392 static void
393 go32_resume (struct target_ops *ops,
394 ptid_t ptid, int step, enum target_signal siggnal)
395 {
396 int i;
397
398 resume_is_step = step;
399
400 if (siggnal != TARGET_SIGNAL_0 && siggnal != TARGET_SIGNAL_TRAP)
401 {
402 for (i = 0, resume_signal = -1;
403 excepn_map[i].gdb_sig != TARGET_SIGNAL_LAST; i++)
404 if (excepn_map[i].gdb_sig == siggnal)
405 {
406 resume_signal = excepn_map[i].djgpp_excepno;
407 break;
408 }
409 if (resume_signal == -1)
410 printf_unfiltered ("Cannot deliver signal %s on this platform.\n",
411 target_signal_to_name (siggnal));
412 }
413 }
414
415 static char child_cwd[FILENAME_MAX];
416
417 static ptid_t
418 go32_wait (struct target_ops *ops,
419 ptid_t ptid, struct target_waitstatus *status, int options)
420 {
421 int i;
422 unsigned char saved_opcode;
423 unsigned long INT3_addr = 0;
424 int stepping_over_INT = 0;
425
426 a_tss.tss_eflags &= 0xfeff; /* reset the single-step flag (TF) */
427 if (resume_is_step)
428 {
429 /* If the next instruction is INT xx or INTO, we need to handle
430 them specially. Intel manuals say that these instructions
431 reset the single-step flag (a.k.a. TF). However, it seems
432 that, at least in the DPMI environment, and at least when
433 stepping over the DPMI interrupt 31h, the problem is having
434 TF set at all when INT 31h is executed: the debuggee either
435 crashes (and takes the system with it) or is killed by a
436 SIGTRAP.
437
438 So we need to emulate single-step mode: we put an INT3 opcode
439 right after the INT xx instruction, let the debuggee run
440 until it hits INT3 and stops, then restore the original
441 instruction which we overwrote with the INT3 opcode, and back
442 up the debuggee's EIP to that instruction. */
443 read_child (a_tss.tss_eip, &saved_opcode, 1);
444 if (saved_opcode == 0xCD || saved_opcode == 0xCE)
445 {
446 unsigned char INT3_opcode = 0xCC;
447
448 INT3_addr
449 = saved_opcode == 0xCD ? a_tss.tss_eip + 2 : a_tss.tss_eip + 1;
450 stepping_over_INT = 1;
451 read_child (INT3_addr, &saved_opcode, 1);
452 write_child (INT3_addr, &INT3_opcode, 1);
453 }
454 else
455 a_tss.tss_eflags |= 0x0100; /* normal instruction: set TF */
456 }
457
458 /* The special value FFFFh in tss_trap indicates to run_child that
459 tss_irqn holds a signal to be delivered to the debuggee. */
460 if (resume_signal <= -1)
461 {
462 a_tss.tss_trap = 0;
463 a_tss.tss_irqn = 0xff;
464 }
465 else
466 {
467 a_tss.tss_trap = 0xffff; /* run_child looks for this */
468 a_tss.tss_irqn = resume_signal;
469 }
470
471 /* The child might change working directory behind our back. The
472 GDB users won't like the side effects of that when they work with
473 relative file names, and GDB might be confused by its current
474 directory not being in sync with the truth. So we always make a
475 point of changing back to where GDB thinks is its cwd, when we
476 return control to the debugger, but restore child's cwd before we
477 run it. */
478 /* Initialize child_cwd, before the first call to run_child and not
479 in the initialization, so the child get also the changed directory
480 set with the gdb-command "cd ..." */
481 if (!*child_cwd)
482 /* Initialize child's cwd with the current one. */
483 getcwd (child_cwd, sizeof (child_cwd));
484
485 chdir (child_cwd);
486
487 #if __DJGPP_MINOR__ < 3
488 load_npx ();
489 #endif
490 run_child ();
491 #if __DJGPP_MINOR__ < 3
492 save_npx ();
493 #endif
494
495 /* Did we step over an INT xx instruction? */
496 if (stepping_over_INT && a_tss.tss_eip == INT3_addr + 1)
497 {
498 /* Restore the original opcode. */
499 a_tss.tss_eip--; /* EIP points *after* the INT3 instruction */
500 write_child (a_tss.tss_eip, &saved_opcode, 1);
501 /* Simulate a TRAP exception. */
502 a_tss.tss_irqn = 1;
503 a_tss.tss_eflags |= 0x0100;
504 }
505
506 getcwd (child_cwd, sizeof (child_cwd)); /* in case it has changed */
507 chdir (current_directory);
508
509 if (a_tss.tss_irqn == 0x21)
510 {
511 status->kind = TARGET_WAITKIND_EXITED;
512 status->value.integer = a_tss.tss_eax & 0xff;
513 }
514 else
515 {
516 status->value.sig = TARGET_SIGNAL_UNKNOWN;
517 status->kind = TARGET_WAITKIND_STOPPED;
518 for (i = 0; sig_map[i].go32_sig != -1; i++)
519 {
520 if (a_tss.tss_irqn == sig_map[i].go32_sig)
521 {
522 #if __DJGPP_MINOR__ < 3
523 if ((status->value.sig = sig_map[i].gdb_sig) !=
524 TARGET_SIGNAL_TRAP)
525 status->kind = TARGET_WAITKIND_SIGNALLED;
526 #else
527 status->value.sig = sig_map[i].gdb_sig;
528 #endif
529 break;
530 }
531 }
532 }
533 return pid_to_ptid (SOME_PID);
534 }
535
536 static void
537 fetch_register (struct regcache *regcache, int regno)
538 {
539 struct gdbarch *gdbarch = get_regcache_arch (regcache);
540 if (regno < gdbarch_fp0_regnum (gdbarch))
541 regcache_raw_supply (regcache, regno,
542 (char *) &a_tss + regno_mapping[regno].tss_ofs);
543 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch, regno))
544 i387_supply_fsave (regcache, regno, &npx);
545 else
546 internal_error (__FILE__, __LINE__,
547 _("Invalid register no. %d in fetch_register."), regno);
548 }
549
550 static void
551 go32_fetch_registers (struct target_ops *ops,
552 struct regcache *regcache, int regno)
553 {
554 if (regno >= 0)
555 fetch_register (regcache, regno);
556 else
557 {
558 for (regno = 0;
559 regno < gdbarch_fp0_regnum (get_regcache_arch (regcache));
560 regno++)
561 fetch_register (regcache, regno);
562 i387_supply_fsave (regcache, -1, &npx);
563 }
564 }
565
566 static void
567 store_register (const struct regcache *regcache, int regno)
568 {
569 struct gdbarch *gdbarch = get_regcache_arch (regcache);
570 if (regno < gdbarch_fp0_regnum (gdbarch))
571 regcache_raw_collect (regcache, regno,
572 (char *) &a_tss + regno_mapping[regno].tss_ofs);
573 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch, regno))
574 i387_collect_fsave (regcache, regno, &npx);
575 else
576 internal_error (__FILE__, __LINE__,
577 _("Invalid register no. %d in store_register."), regno);
578 }
579
580 static void
581 go32_store_registers (struct target_ops *ops,
582 struct regcache *regcache, int regno)
583 {
584 unsigned r;
585
586 if (regno >= 0)
587 store_register (regcache, regno);
588 else
589 {
590 for (r = 0; r < gdbarch_fp0_regnum (get_regcache_arch (regcache)); r++)
591 store_register (regcache, r);
592 i387_collect_fsave (regcache, -1, &npx);
593 }
594 }
595
596 static void
597 go32_prepare_to_store (struct regcache *regcache)
598 {
599 }
600
601 static int
602 go32_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int write,
603 struct mem_attrib *attrib, struct target_ops *target)
604 {
605 if (write)
606 {
607 if (write_child (memaddr, myaddr, len))
608 {
609 return 0;
610 }
611 else
612 {
613 return len;
614 }
615 }
616 else
617 {
618 if (read_child (memaddr, myaddr, len))
619 {
620 return 0;
621 }
622 else
623 {
624 return len;
625 }
626 }
627 }
628
629 static cmdline_t child_cmd; /* parsed child's command line kept here */
630
631 static void
632 go32_files_info (struct target_ops *target)
633 {
634 printf_unfiltered ("You are running a DJGPP V2 program.\n");
635 }
636
637 static void
638 go32_kill_inferior (struct target_ops *ops)
639 {
640 go32_mourn_inferior (ops);
641 }
642
643 static void
644 go32_create_inferior (struct target_ops *ops, char *exec_file,
645 char *args, char **env, int from_tty)
646 {
647 extern char **environ;
648 jmp_buf start_state;
649 char *cmdline;
650 char **env_save = environ;
651 size_t cmdlen;
652
653 /* If no exec file handed to us, get it from the exec-file command -- with
654 a good, common error message if none is specified. */
655 if (exec_file == 0)
656 exec_file = get_exec_file (1);
657
658 resume_signal = -1;
659 resume_is_step = 0;
660
661 /* Initialize child's cwd as empty to be initialized when starting
662 the child. */
663 *child_cwd = 0;
664
665 /* Init command line storage. */
666 if (redir_debug_init (&child_cmd) == -1)
667 internal_error (__FILE__, __LINE__,
668 _("Cannot allocate redirection storage: not enough memory.\n"));
669
670 /* Parse the command line and create redirections. */
671 if (strpbrk (args, "<>"))
672 {
673 if (redir_cmdline_parse (args, &child_cmd) == 0)
674 args = child_cmd.command;
675 else
676 error (_("Syntax error in command line."));
677 }
678 else
679 child_cmd.command = xstrdup (args);
680
681 cmdlen = strlen (args);
682 /* v2loadimage passes command lines via DOS memory, so it cannot
683 possibly handle commands longer than 1MB. */
684 if (cmdlen > 1024*1024)
685 error (_("Command line too long."));
686
687 cmdline = xmalloc (cmdlen + 4);
688 strcpy (cmdline + 1, args);
689 /* If the command-line length fits into DOS 126-char limits, use the
690 DOS command tail format; otherwise, tell v2loadimage to pass it
691 through a buffer in conventional memory. */
692 if (cmdlen < 127)
693 {
694 cmdline[0] = strlen (args);
695 cmdline[cmdlen + 1] = 13;
696 }
697 else
698 cmdline[0] = 0xff; /* signal v2loadimage it's a long command */
699
700 environ = env;
701
702 if (v2loadimage (exec_file, cmdline, start_state))
703 {
704 environ = env_save;
705 printf_unfiltered ("Load failed for image %s\n", exec_file);
706 exit (1);
707 }
708 environ = env_save;
709 xfree (cmdline);
710
711 edi_init (start_state);
712 #if __DJGPP_MINOR__ < 3
713 save_npx ();
714 #endif
715
716 inferior_ptid = pid_to_ptid (SOME_PID);
717 add_inferior_silent (SOME_PID);
718
719 push_target (&go32_ops);
720
721 add_thread_silent (inferior_ptid);
722
723 clear_proceed_status ();
724 insert_breakpoints ();
725 prog_has_started = 1;
726 }
727
728 static void
729 go32_mourn_inferior (struct target_ops *ops)
730 {
731 ptid_t ptid;
732
733 redir_cmdline_delete (&child_cmd);
734 resume_signal = -1;
735 resume_is_step = 0;
736
737 cleanup_client ();
738
739 /* We need to make sure all the breakpoint enable bits in the DR7
740 register are reset when the inferior exits. Otherwise, if they
741 rerun the inferior, the uncleared bits may cause random SIGTRAPs,
742 failure to set more watchpoints, and other calamities. It would
743 be nice if GDB itself would take care to remove all breakpoints
744 at all times, but it doesn't, probably under an assumption that
745 the OS cleans up when the debuggee exits. */
746 i386_cleanup_dregs ();
747
748 ptid = inferior_ptid;
749 inferior_ptid = null_ptid;
750 delete_thread_silent (ptid);
751 prog_has_started = 0;
752
753 unpush_target (ops);
754 generic_mourn_inferior ();
755 }
756
757 static int
758 go32_can_run (void)
759 {
760 return 1;
761 }
762
763 /* Hardware watchpoint support. */
764
765 #define D_REGS edi.dr
766 #define CONTROL D_REGS[7]
767 #define STATUS D_REGS[6]
768
769 /* Pass the address ADDR to the inferior in the I'th debug register.
770 Here we just store the address in D_REGS, the watchpoint will be
771 actually set up when go32_wait runs the debuggee. */
772 static void
773 go32_set_dr (int i, CORE_ADDR addr)
774 {
775 if (i < 0 || i > 3)
776 internal_error (__FILE__, __LINE__,
777 _("Invalid register %d in go32_set_dr.\n"), i);
778 D_REGS[i] = addr;
779 }
780
781 /* Pass the value VAL to the inferior in the DR7 debug control
782 register. Here we just store the address in D_REGS, the watchpoint
783 will be actually set up when go32_wait runs the debuggee. */
784 static void
785 go32_set_dr7 (unsigned long val)
786 {
787 CONTROL = val;
788 }
789
790 /* Get the value of the DR6 debug status register from the inferior.
791 Here we just return the value stored in D_REGS, as we've got it
792 from the last go32_wait call. */
793 static unsigned long
794 go32_get_dr6 (void)
795 {
796 return STATUS;
797 }
798
799 /* Put the device open on handle FD into either raw or cooked
800 mode, return 1 if it was in raw mode, zero otherwise. */
801
802 static int
803 device_mode (int fd, int raw_p)
804 {
805 int oldmode, newmode;
806 __dpmi_regs regs;
807
808 regs.x.ax = 0x4400;
809 regs.x.bx = fd;
810 __dpmi_int (0x21, &regs);
811 if (regs.x.flags & 1)
812 return -1;
813 newmode = oldmode = regs.x.dx;
814
815 if (raw_p)
816 newmode |= 0x20;
817 else
818 newmode &= ~0x20;
819
820 if (oldmode & 0x80) /* Only for character dev */
821 {
822 regs.x.ax = 0x4401;
823 regs.x.bx = fd;
824 regs.x.dx = newmode & 0xff; /* Force upper byte zero, else it fails */
825 __dpmi_int (0x21, &regs);
826 if (regs.x.flags & 1)
827 return -1;
828 }
829 return (oldmode & 0x20) == 0x20;
830 }
831
832
833 static int inf_mode_valid = 0;
834 static int inf_terminal_mode;
835
836 /* This semaphore is needed because, amazingly enough, GDB calls
837 target.to_terminal_ours more than once after the inferior stops.
838 But we need the information from the first call only, since the
839 second call will always see GDB's own cooked terminal. */
840 static int terminal_is_ours = 1;
841
842 static void
843 go32_terminal_init (void)
844 {
845 inf_mode_valid = 0; /* reinitialize, in case they are restarting child */
846 terminal_is_ours = 1;
847 }
848
849 static void
850 go32_terminal_info (char *args, int from_tty)
851 {
852 printf_unfiltered ("Inferior's terminal is in %s mode.\n",
853 !inf_mode_valid
854 ? "default" : inf_terminal_mode ? "raw" : "cooked");
855
856 #if __DJGPP_MINOR__ > 2
857 if (child_cmd.redirection)
858 {
859 int i;
860
861 for (i = 0; i < DBG_HANDLES; i++)
862 {
863 if (child_cmd.redirection[i]->file_name)
864 printf_unfiltered ("\tFile handle %d is redirected to `%s'.\n",
865 i, child_cmd.redirection[i]->file_name);
866 else if (_get_dev_info (child_cmd.redirection[i]->inf_handle) == -1)
867 printf_unfiltered
868 ("\tFile handle %d appears to be closed by inferior.\n", i);
869 /* Mask off the raw/cooked bit when comparing device info words. */
870 else if ((_get_dev_info (child_cmd.redirection[i]->inf_handle) & 0xdf)
871 != (_get_dev_info (i) & 0xdf))
872 printf_unfiltered
873 ("\tFile handle %d appears to be redirected by inferior.\n", i);
874 }
875 }
876 #endif
877 }
878
879 static void
880 go32_terminal_inferior (void)
881 {
882 /* Redirect standard handles as child wants them. */
883 errno = 0;
884 if (redir_to_child (&child_cmd) == -1)
885 {
886 redir_to_debugger (&child_cmd);
887 error (_("Cannot redirect standard handles for program: %s."),
888 safe_strerror (errno));
889 }
890 /* set the console device of the inferior to whatever mode
891 (raw or cooked) we found it last time */
892 if (terminal_is_ours)
893 {
894 if (inf_mode_valid)
895 device_mode (0, inf_terminal_mode);
896 terminal_is_ours = 0;
897 }
898 }
899
900 static void
901 go32_terminal_ours (void)
902 {
903 /* Switch to cooked mode on the gdb terminal and save the inferior
904 terminal mode to be restored when it is resumed */
905 if (!terminal_is_ours)
906 {
907 inf_terminal_mode = device_mode (0, 0);
908 if (inf_terminal_mode != -1)
909 inf_mode_valid = 1;
910 else
911 /* If device_mode returned -1, we don't know what happens with
912 handle 0 anymore, so make the info invalid. */
913 inf_mode_valid = 0;
914 terminal_is_ours = 1;
915
916 /* Restore debugger's standard handles. */
917 errno = 0;
918 if (redir_to_debugger (&child_cmd) == -1)
919 {
920 redir_to_child (&child_cmd);
921 error (_("Cannot redirect standard handles for debugger: %s."),
922 safe_strerror (errno));
923 }
924 }
925 }
926
927 static int
928 go32_thread_alive (struct target_ops *ops, ptid_t ptid)
929 {
930 return !ptid_equal (inferior_ptid, null_ptid);
931 }
932
933 static char *
934 go32_pid_to_str (struct target_ops *ops, ptid_t ptid)
935 {
936 return normal_pid_to_str (ptid);
937 }
938
939 static void
940 init_go32_ops (void)
941 {
942 go32_ops.to_shortname = "djgpp";
943 go32_ops.to_longname = "djgpp target process";
944 go32_ops.to_doc =
945 "Program loaded by djgpp, when gdb is used as an external debugger";
946 go32_ops.to_open = go32_open;
947 go32_ops.to_close = go32_close;
948 go32_ops.to_attach = go32_attach;
949 go32_ops.to_detach = go32_detach;
950 go32_ops.to_resume = go32_resume;
951 go32_ops.to_wait = go32_wait;
952 go32_ops.to_fetch_registers = go32_fetch_registers;
953 go32_ops.to_store_registers = go32_store_registers;
954 go32_ops.to_prepare_to_store = go32_prepare_to_store;
955 go32_ops.deprecated_xfer_memory = go32_xfer_memory;
956 go32_ops.to_files_info = go32_files_info;
957 go32_ops.to_insert_breakpoint = memory_insert_breakpoint;
958 go32_ops.to_remove_breakpoint = memory_remove_breakpoint;
959 go32_ops.to_terminal_init = go32_terminal_init;
960 go32_ops.to_terminal_inferior = go32_terminal_inferior;
961 go32_ops.to_terminal_ours_for_output = go32_terminal_ours;
962 go32_ops.to_terminal_ours = go32_terminal_ours;
963 go32_ops.to_terminal_info = go32_terminal_info;
964 go32_ops.to_kill = go32_kill_inferior;
965 go32_ops.to_create_inferior = go32_create_inferior;
966 go32_ops.to_mourn_inferior = go32_mourn_inferior;
967 go32_ops.to_can_run = go32_can_run;
968 go32_ops.to_thread_alive = go32_thread_alive;
969 go32_ops.to_pid_to_str = go32_pid_to_str;
970 go32_ops.to_stratum = process_stratum;
971 go32_ops.to_has_all_memory = 1;
972 go32_ops.to_has_memory = 1;
973 go32_ops.to_has_stack = 1;
974 go32_ops.to_has_registers = 1;
975 go32_ops.to_has_execution = 1;
976
977 i386_use_watchpoints (&go32_ops);
978
979
980 i386_dr_low.set_control = go32_set_dr7;
981 i386_dr_low.set_addr = go32_set_dr;
982 i386_dr_low.reset_addr = NULL;
983 i386_dr_low.get_status = go32_get_dr6;
984 i386_set_debug_register_length (4);
985
986 go32_ops.to_magic = OPS_MAGIC;
987
988 /* Initialize child's cwd as empty to be initialized when starting
989 the child. */
990 *child_cwd = 0;
991
992 /* Initialize child's command line storage. */
993 if (redir_debug_init (&child_cmd) == -1)
994 internal_error (__FILE__, __LINE__,
995 _("Cannot allocate redirection storage: not enough memory.\n"));
996
997 /* We are always processing GCC-compiled programs. */
998 processing_gcc_compilation = 2;
999
1000 /* Override the default name of the GDB init file. */
1001 strcpy (gdbinit, "gdb.ini");
1002 }
1003
1004 /* Return the current DOS codepage number. */
1005 static int
1006 dos_codepage (void)
1007 {
1008 __dpmi_regs regs;
1009
1010 regs.x.ax = 0x6601;
1011 __dpmi_int (0x21, &regs);
1012 if (!(regs.x.flags & 1))
1013 return regs.x.bx & 0xffff;
1014 else
1015 return 437; /* default */
1016 }
1017
1018 /* Limited emulation of `nl_langinfo', for charset.c. */
1019 char *
1020 nl_langinfo (nl_item item)
1021 {
1022 char *retval;
1023
1024 switch (item)
1025 {
1026 case CODESET:
1027 {
1028 /* 8 is enough for SHORT_MAX + "CP" + null. */
1029 char buf[8];
1030 int blen = sizeof (buf);
1031 int needed = snprintf (buf, blen, "CP%d", dos_codepage ());
1032
1033 if (needed > blen) /* should never happen */
1034 buf[0] = 0;
1035 retval = xstrdup (buf);
1036 }
1037 break;
1038 default:
1039 retval = xstrdup ("");
1040 break;
1041 }
1042 return retval;
1043 }
1044
1045 unsigned short windows_major, windows_minor;
1046
1047 /* Compute the version Windows reports via Int 2Fh/AX=1600h. */
1048 static void
1049 go32_get_windows_version(void)
1050 {
1051 __dpmi_regs r;
1052
1053 r.x.ax = 0x1600;
1054 __dpmi_int(0x2f, &r);
1055 if (r.h.al > 2 && r.h.al != 0x80 && r.h.al != 0xff
1056 && (r.h.al > 3 || r.h.ah > 0))
1057 {
1058 windows_major = r.h.al;
1059 windows_minor = r.h.ah;
1060 }
1061 else
1062 windows_major = 0xff; /* meaning no Windows */
1063 }
1064
1065 /* A subroutine of go32_sysinfo to display memory info. */
1066 static void
1067 print_mem (unsigned long datum, const char *header, int in_pages_p)
1068 {
1069 if (datum != 0xffffffffUL)
1070 {
1071 if (in_pages_p)
1072 datum <<= 12;
1073 puts_filtered (header);
1074 if (datum > 1024)
1075 {
1076 printf_filtered ("%lu KB", datum >> 10);
1077 if (datum > 1024 * 1024)
1078 printf_filtered (" (%lu MB)", datum >> 20);
1079 }
1080 else
1081 printf_filtered ("%lu Bytes", datum);
1082 puts_filtered ("\n");
1083 }
1084 }
1085
1086 /* Display assorted information about the underlying OS. */
1087 static void
1088 go32_sysinfo (char *arg, int from_tty)
1089 {
1090 static const char test_pattern[] =
1091 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1092 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1093 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeafdeadbeaf";
1094 struct utsname u;
1095 char cpuid_vendor[13];
1096 unsigned cpuid_max = 0, cpuid_eax, cpuid_ebx, cpuid_ecx, cpuid_edx;
1097 unsigned true_dos_version = _get_dos_version (1);
1098 unsigned advertized_dos_version = ((unsigned int)_osmajor << 8) | _osminor;
1099 int dpmi_flags;
1100 char dpmi_vendor_info[129];
1101 int dpmi_vendor_available;
1102 __dpmi_version_ret dpmi_version_data;
1103 long eflags;
1104 __dpmi_free_mem_info mem_info;
1105 __dpmi_regs regs;
1106
1107 cpuid_vendor[0] = '\0';
1108 if (uname (&u))
1109 strcpy (u.machine, "Unknown x86");
1110 else if (u.machine[0] == 'i' && u.machine[1] > 4)
1111 {
1112 /* CPUID with EAX = 0 returns the Vendor ID. */
1113 __asm__ __volatile__ ("xorl %%ebx, %%ebx;"
1114 "xorl %%ecx, %%ecx;"
1115 "xorl %%edx, %%edx;"
1116 "movl $0, %%eax;"
1117 "cpuid;"
1118 "movl %%ebx, %0;"
1119 "movl %%edx, %1;"
1120 "movl %%ecx, %2;"
1121 "movl %%eax, %3;"
1122 : "=m" (cpuid_vendor[0]),
1123 "=m" (cpuid_vendor[4]),
1124 "=m" (cpuid_vendor[8]),
1125 "=m" (cpuid_max)
1126 :
1127 : "%eax", "%ebx", "%ecx", "%edx");
1128 cpuid_vendor[12] = '\0';
1129 }
1130
1131 printf_filtered ("CPU Type.......................%s", u.machine);
1132 if (cpuid_vendor[0])
1133 printf_filtered (" (%s)", cpuid_vendor);
1134 puts_filtered ("\n");
1135
1136 /* CPUID with EAX = 1 returns processor signature and features. */
1137 if (cpuid_max >= 1)
1138 {
1139 static char *brand_name[] = {
1140 "",
1141 " Celeron",
1142 " III",
1143 " III Xeon",
1144 "", "", "", "",
1145 " 4"
1146 };
1147 char cpu_string[80];
1148 char cpu_brand[20];
1149 unsigned brand_idx;
1150 int intel_p = strcmp (cpuid_vendor, "GenuineIntel") == 0;
1151 int amd_p = strcmp (cpuid_vendor, "AuthenticAMD") == 0;
1152 unsigned cpu_family, cpu_model;
1153
1154 __asm__ __volatile__ ("movl $1, %%eax;"
1155 "cpuid;"
1156 : "=a" (cpuid_eax),
1157 "=b" (cpuid_ebx),
1158 "=d" (cpuid_edx)
1159 :
1160 : "%ecx");
1161 brand_idx = cpuid_ebx & 0xff;
1162 cpu_family = (cpuid_eax >> 8) & 0xf;
1163 cpu_model = (cpuid_eax >> 4) & 0xf;
1164 cpu_brand[0] = '\0';
1165 if (intel_p)
1166 {
1167 if (brand_idx > 0
1168 && brand_idx < sizeof(brand_name)/sizeof(brand_name[0])
1169 && *brand_name[brand_idx])
1170 strcpy (cpu_brand, brand_name[brand_idx]);
1171 else if (cpu_family == 5)
1172 {
1173 if (((cpuid_eax >> 12) & 3) == 0 && cpu_model == 4)
1174 strcpy (cpu_brand, " MMX");
1175 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 1)
1176 strcpy (cpu_brand, " OverDrive");
1177 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 2)
1178 strcpy (cpu_brand, " Dual");
1179 }
1180 else if (cpu_family == 6 && cpu_model < 8)
1181 {
1182 switch (cpu_model)
1183 {
1184 case 1:
1185 strcpy (cpu_brand, " Pro");
1186 break;
1187 case 3:
1188 strcpy (cpu_brand, " II");
1189 break;
1190 case 5:
1191 strcpy (cpu_brand, " II Xeon");
1192 break;
1193 case 6:
1194 strcpy (cpu_brand, " Celeron");
1195 break;
1196 case 7:
1197 strcpy (cpu_brand, " III");
1198 break;
1199 }
1200 }
1201 }
1202 else if (amd_p)
1203 {
1204 switch (cpu_family)
1205 {
1206 case 4:
1207 strcpy (cpu_brand, "486/5x86");
1208 break;
1209 case 5:
1210 switch (cpu_model)
1211 {
1212 case 0:
1213 case 1:
1214 case 2:
1215 case 3:
1216 strcpy (cpu_brand, "-K5");
1217 break;
1218 case 6:
1219 case 7:
1220 strcpy (cpu_brand, "-K6");
1221 break;
1222 case 8:
1223 strcpy (cpu_brand, "-K6-2");
1224 break;
1225 case 9:
1226 strcpy (cpu_brand, "-K6-III");
1227 break;
1228 }
1229 break;
1230 case 6:
1231 switch (cpu_model)
1232 {
1233 case 1:
1234 case 2:
1235 case 4:
1236 strcpy (cpu_brand, " Athlon");
1237 break;
1238 case 3:
1239 strcpy (cpu_brand, " Duron");
1240 break;
1241 }
1242 break;
1243 }
1244 }
1245 sprintf (cpu_string, "%s%s Model %d Stepping %d",
1246 intel_p ? "Pentium" : (amd_p ? "AMD" : "ix86"),
1247 cpu_brand, cpu_model, cpuid_eax & 0xf);
1248 printfi_filtered (31, "%s\n", cpu_string);
1249 if (((cpuid_edx & (6 | (0x0d << 23))) != 0)
1250 || ((cpuid_edx & 1) == 0)
1251 || (amd_p && (cpuid_edx & (3 << 30)) != 0))
1252 {
1253 puts_filtered ("CPU Features...................");
1254 /* We only list features which might be useful in the DPMI
1255 environment. */
1256 if ((cpuid_edx & 1) == 0)
1257 puts_filtered ("No FPU "); /* it's unusual to not have an FPU */
1258 if ((cpuid_edx & (1 << 1)) != 0)
1259 puts_filtered ("VME ");
1260 if ((cpuid_edx & (1 << 2)) != 0)
1261 puts_filtered ("DE ");
1262 if ((cpuid_edx & (1 << 4)) != 0)
1263 puts_filtered ("TSC ");
1264 if ((cpuid_edx & (1 << 23)) != 0)
1265 puts_filtered ("MMX ");
1266 if ((cpuid_edx & (1 << 25)) != 0)
1267 puts_filtered ("SSE ");
1268 if ((cpuid_edx & (1 << 26)) != 0)
1269 puts_filtered ("SSE2 ");
1270 if (amd_p)
1271 {
1272 if ((cpuid_edx & (1 << 31)) != 0)
1273 puts_filtered ("3DNow! ");
1274 if ((cpuid_edx & (1 << 30)) != 0)
1275 puts_filtered ("3DNow!Ext");
1276 }
1277 puts_filtered ("\n");
1278 }
1279 }
1280 puts_filtered ("\n");
1281 printf_filtered ("DOS Version....................%s %s.%s",
1282 _os_flavor, u.release, u.version);
1283 if (true_dos_version != advertized_dos_version)
1284 printf_filtered (" (disguised as v%d.%d)", _osmajor, _osminor);
1285 puts_filtered ("\n");
1286 if (!windows_major)
1287 go32_get_windows_version ();
1288 if (windows_major != 0xff)
1289 {
1290 const char *windows_flavor;
1291
1292 printf_filtered ("Windows Version................%d.%02d (Windows ",
1293 windows_major, windows_minor);
1294 switch (windows_major)
1295 {
1296 case 3:
1297 windows_flavor = "3.X";
1298 break;
1299 case 4:
1300 switch (windows_minor)
1301 {
1302 case 0:
1303 windows_flavor = "95, 95A, or 95B";
1304 break;
1305 case 3:
1306 windows_flavor = "95B OSR2.1 or 95C OSR2.5";
1307 break;
1308 case 10:
1309 windows_flavor = "98 or 98 SE";
1310 break;
1311 case 90:
1312 windows_flavor = "ME";
1313 break;
1314 default:
1315 windows_flavor = "9X";
1316 break;
1317 }
1318 break;
1319 default:
1320 windows_flavor = "??";
1321 break;
1322 }
1323 printf_filtered ("%s)\n", windows_flavor);
1324 }
1325 else if (true_dos_version == 0x532 && advertized_dos_version == 0x500)
1326 printf_filtered ("Windows Version................Windows NT family (W2K/XP/W2K3/Vista/W2K8)\n");
1327 puts_filtered ("\n");
1328 /* On some versions of Windows, __dpmi_get_capabilities returns
1329 zero, but the buffer is not filled with info, so we fill the
1330 buffer with a known pattern and test for it afterwards. */
1331 memcpy (dpmi_vendor_info, test_pattern, sizeof(dpmi_vendor_info));
1332 dpmi_vendor_available =
1333 __dpmi_get_capabilities (&dpmi_flags, dpmi_vendor_info);
1334 if (dpmi_vendor_available == 0
1335 && memcmp (dpmi_vendor_info, test_pattern,
1336 sizeof(dpmi_vendor_info)) != 0)
1337 {
1338 /* The DPMI spec says the vendor string should be ASCIIZ, but
1339 I don't trust the vendors to follow that... */
1340 if (!memchr (&dpmi_vendor_info[2], 0, 126))
1341 dpmi_vendor_info[128] = '\0';
1342 printf_filtered ("DPMI Host......................%s v%d.%d (capabilities: %#x)\n",
1343 &dpmi_vendor_info[2],
1344 (unsigned)dpmi_vendor_info[0],
1345 (unsigned)dpmi_vendor_info[1],
1346 ((unsigned)dpmi_flags & 0x7f));
1347 }
1348 else
1349 printf_filtered ("DPMI Host......................(Info not available)\n");
1350 __dpmi_get_version (&dpmi_version_data);
1351 printf_filtered ("DPMI Version...................%d.%02d\n",
1352 dpmi_version_data.major, dpmi_version_data.minor);
1353 printf_filtered ("DPMI Info......................%s-bit DPMI, with%s Virtual Memory support\n",
1354 (dpmi_version_data.flags & 1) ? "32" : "16",
1355 (dpmi_version_data.flags & 4) ? "" : "out");
1356 printfi_filtered (31, "Interrupts reflected to %s mode\n",
1357 (dpmi_version_data.flags & 2) ? "V86" : "Real");
1358 printfi_filtered (31, "Processor type: i%d86\n",
1359 dpmi_version_data.cpu);
1360 printfi_filtered (31, "PIC base interrupt: Master: %#x Slave: %#x\n",
1361 dpmi_version_data.master_pic, dpmi_version_data.slave_pic);
1362
1363 /* a_tss is only initialized when the debuggee is first run. */
1364 if (prog_has_started)
1365 {
1366 __asm__ __volatile__ ("pushfl ; popl %0" : "=g" (eflags));
1367 printf_filtered ("Protection.....................Ring %d (in %s), with%s I/O protection\n",
1368 a_tss.tss_cs & 3, (a_tss.tss_cs & 4) ? "LDT" : "GDT",
1369 (a_tss.tss_cs & 3) > ((eflags >> 12) & 3) ? "" : "out");
1370 }
1371 puts_filtered ("\n");
1372 __dpmi_get_free_memory_information (&mem_info);
1373 print_mem (mem_info.total_number_of_physical_pages,
1374 "DPMI Total Physical Memory.....", 1);
1375 print_mem (mem_info.total_number_of_free_pages,
1376 "DPMI Free Physical Memory......", 1);
1377 print_mem (mem_info.size_of_paging_file_partition_in_pages,
1378 "DPMI Swap Space................", 1);
1379 print_mem (mem_info.linear_address_space_size_in_pages,
1380 "DPMI Total Linear Address Size.", 1);
1381 print_mem (mem_info.free_linear_address_space_in_pages,
1382 "DPMI Free Linear Address Size..", 1);
1383 print_mem (mem_info.largest_available_free_block_in_bytes,
1384 "DPMI Largest Free Memory Block.", 0);
1385
1386 regs.h.ah = 0x48;
1387 regs.x.bx = 0xffff;
1388 __dpmi_int (0x21, &regs);
1389 print_mem (regs.x.bx << 4, "Free DOS Memory................", 0);
1390 regs.x.ax = 0x5800;
1391 __dpmi_int (0x21, &regs);
1392 if ((regs.x.flags & 1) == 0)
1393 {
1394 static const char *dos_hilo[] = {
1395 "Low", "", "", "", "High", "", "", "", "High, then Low"
1396 };
1397 static const char *dos_fit[] = {
1398 "First", "Best", "Last"
1399 };
1400 int hilo_idx = (regs.x.ax >> 4) & 0x0f;
1401 int fit_idx = regs.x.ax & 0x0f;
1402
1403 if (hilo_idx > 8)
1404 hilo_idx = 0;
1405 if (fit_idx > 2)
1406 fit_idx = 0;
1407 printf_filtered ("DOS Memory Allocation..........%s memory, %s fit\n",
1408 dos_hilo[hilo_idx], dos_fit[fit_idx]);
1409 regs.x.ax = 0x5802;
1410 __dpmi_int (0x21, &regs);
1411 if ((regs.x.flags & 1) != 0)
1412 regs.h.al = 0;
1413 printfi_filtered (31, "UMBs %sin DOS memory chain\n",
1414 regs.h.al == 0 ? "not " : "");
1415 }
1416 }
1417
1418 struct seg_descr {
1419 unsigned short limit0;
1420 unsigned short base0;
1421 unsigned char base1;
1422 unsigned stype:5;
1423 unsigned dpl:2;
1424 unsigned present:1;
1425 unsigned limit1:4;
1426 unsigned available:1;
1427 unsigned dummy:1;
1428 unsigned bit32:1;
1429 unsigned page_granular:1;
1430 unsigned char base2;
1431 } __attribute__ ((packed));
1432
1433 struct gate_descr {
1434 unsigned short offset0;
1435 unsigned short selector;
1436 unsigned param_count:5;
1437 unsigned dummy:3;
1438 unsigned stype:5;
1439 unsigned dpl:2;
1440 unsigned present:1;
1441 unsigned short offset1;
1442 } __attribute__ ((packed));
1443
1444 /* Read LEN bytes starting at logical address ADDR, and put the result
1445 into DEST. Return 1 if success, zero if not. */
1446 static int
1447 read_memory_region (unsigned long addr, void *dest, size_t len)
1448 {
1449 unsigned long dos_ds_limit = __dpmi_get_segment_limit (_dos_ds);
1450 int retval = 1;
1451
1452 /* For the low memory, we can simply use _dos_ds. */
1453 if (addr <= dos_ds_limit - len)
1454 dosmemget (addr, len, dest);
1455 else
1456 {
1457 /* For memory above 1MB we need to set up a special segment to
1458 be able to access that memory. */
1459 int sel = __dpmi_allocate_ldt_descriptors (1);
1460
1461 if (sel <= 0)
1462 retval = 0;
1463 else
1464 {
1465 int access_rights = __dpmi_get_descriptor_access_rights (sel);
1466 size_t segment_limit = len - 1;
1467
1468 /* Make sure the crucial bits in the descriptor access
1469 rights are set correctly. Some DPMI providers might barf
1470 if we set the segment limit to something that is not an
1471 integral multiple of 4KB pages if the granularity bit is
1472 not set to byte-granular, even though the DPMI spec says
1473 it's the host's responsibility to set that bit correctly. */
1474 if (len > 1024 * 1024)
1475 {
1476 access_rights |= 0x8000;
1477 /* Page-granular segments should have the low 12 bits of
1478 the limit set. */
1479 segment_limit |= 0xfff;
1480 }
1481 else
1482 access_rights &= ~0x8000;
1483
1484 if (__dpmi_set_segment_base_address (sel, addr) != -1
1485 && __dpmi_set_descriptor_access_rights (sel, access_rights) != -1
1486 && __dpmi_set_segment_limit (sel, segment_limit) != -1
1487 /* W2K silently fails to set the segment limit, leaving
1488 it at zero; this test avoids the resulting crash. */
1489 && __dpmi_get_segment_limit (sel) >= segment_limit)
1490 movedata (sel, 0, _my_ds (), (unsigned)dest, len);
1491 else
1492 retval = 0;
1493
1494 __dpmi_free_ldt_descriptor (sel);
1495 }
1496 }
1497 return retval;
1498 }
1499
1500 /* Get a segment descriptor stored at index IDX in the descriptor
1501 table whose base address is TABLE_BASE. Return the descriptor
1502 type, or -1 if failure. */
1503 static int
1504 get_descriptor (unsigned long table_base, int idx, void *descr)
1505 {
1506 unsigned long addr = table_base + idx * 8; /* 8 bytes per entry */
1507
1508 if (read_memory_region (addr, descr, 8))
1509 return (int)((struct seg_descr *)descr)->stype;
1510 return -1;
1511 }
1512
1513 struct dtr_reg {
1514 unsigned short limit __attribute__((packed));
1515 unsigned long base __attribute__((packed));
1516 };
1517
1518 /* Display a segment descriptor stored at index IDX in a descriptor
1519 table whose type is TYPE and whose base address is BASE_ADDR. If
1520 FORCE is non-zero, display even invalid descriptors. */
1521 static void
1522 display_descriptor (unsigned type, unsigned long base_addr, int idx, int force)
1523 {
1524 struct seg_descr descr;
1525 struct gate_descr gate;
1526
1527 /* Get the descriptor from the table. */
1528 if (idx == 0 && type == 0)
1529 puts_filtered ("0x000: null descriptor\n");
1530 else if (get_descriptor (base_addr, idx, &descr) != -1)
1531 {
1532 /* For each type of descriptor table, this has a bit set if the
1533 corresponding type of selectors is valid in that table. */
1534 static unsigned allowed_descriptors[] = {
1535 0xffffdafeL, /* GDT */
1536 0x0000c0e0L, /* IDT */
1537 0xffffdafaL /* LDT */
1538 };
1539
1540 /* If the program hasn't started yet, assume the debuggee will
1541 have the same CPL as the debugger. */
1542 int cpl = prog_has_started ? (a_tss.tss_cs & 3) : _my_cs () & 3;
1543 unsigned long limit = (descr.limit1 << 16) | descr.limit0;
1544
1545 if (descr.present
1546 && (allowed_descriptors[type] & (1 << descr.stype)) != 0)
1547 {
1548 printf_filtered ("0x%03x: ",
1549 type == 1
1550 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1551 if (descr.page_granular)
1552 limit = (limit << 12) | 0xfff; /* big segment: low 12 bit set */
1553 if (descr.stype == 1 || descr.stype == 2 || descr.stype == 3
1554 || descr.stype == 9 || descr.stype == 11
1555 || (descr.stype >= 16 && descr.stype < 32))
1556 printf_filtered ("base=0x%02x%02x%04x limit=0x%08lx",
1557 descr.base2, descr.base1, descr.base0, limit);
1558
1559 switch (descr.stype)
1560 {
1561 case 1:
1562 case 3:
1563 printf_filtered (" 16-bit TSS (task %sactive)",
1564 descr.stype == 3 ? "" : "in");
1565 break;
1566 case 2:
1567 puts_filtered (" LDT");
1568 break;
1569 case 4:
1570 memcpy (&gate, &descr, sizeof gate);
1571 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1572 gate.selector, gate.offset1, gate.offset0);
1573 printf_filtered (" 16-bit Call Gate (params=%d)",
1574 gate.param_count);
1575 break;
1576 case 5:
1577 printf_filtered ("TSS selector=0x%04x", descr.base0);
1578 printfi_filtered (16, "Task Gate");
1579 break;
1580 case 6:
1581 case 7:
1582 memcpy (&gate, &descr, sizeof gate);
1583 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1584 gate.selector, gate.offset1, gate.offset0);
1585 printf_filtered (" 16-bit %s Gate",
1586 descr.stype == 6 ? "Interrupt" : "Trap");
1587 break;
1588 case 9:
1589 case 11:
1590 printf_filtered (" 32-bit TSS (task %sactive)",
1591 descr.stype == 3 ? "" : "in");
1592 break;
1593 case 12:
1594 memcpy (&gate, &descr, sizeof gate);
1595 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1596 gate.selector, gate.offset1, gate.offset0);
1597 printf_filtered (" 32-bit Call Gate (params=%d)",
1598 gate.param_count);
1599 break;
1600 case 14:
1601 case 15:
1602 memcpy (&gate, &descr, sizeof gate);
1603 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1604 gate.selector, gate.offset1, gate.offset0);
1605 printf_filtered (" 32-bit %s Gate",
1606 descr.stype == 14 ? "Interrupt" : "Trap");
1607 break;
1608 case 16: /* data segments */
1609 case 17:
1610 case 18:
1611 case 19:
1612 case 20:
1613 case 21:
1614 case 22:
1615 case 23:
1616 printf_filtered (" %s-bit Data (%s Exp-%s%s)",
1617 descr.bit32 ? "32" : "16",
1618 descr.stype & 2 ? "Read/Write," : "Read-Only, ",
1619 descr.stype & 4 ? "down" : "up",
1620 descr.stype & 1 ? "" : ", N.Acc");
1621 break;
1622 case 24: /* code segments */
1623 case 25:
1624 case 26:
1625 case 27:
1626 case 28:
1627 case 29:
1628 case 30:
1629 case 31:
1630 printf_filtered (" %s-bit Code (%s, %sConf%s)",
1631 descr.bit32 ? "32" : "16",
1632 descr.stype & 2 ? "Exec/Read" : "Exec-Only",
1633 descr.stype & 4 ? "" : "N.",
1634 descr.stype & 1 ? "" : ", N.Acc");
1635 break;
1636 default:
1637 printf_filtered ("Unknown type 0x%02x", descr.stype);
1638 break;
1639 }
1640 puts_filtered ("\n");
1641 }
1642 else if (force)
1643 {
1644 printf_filtered ("0x%03x: ",
1645 type == 1
1646 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1647 if (!descr.present)
1648 puts_filtered ("Segment not present\n");
1649 else
1650 printf_filtered ("Segment type 0x%02x is invalid in this table\n",
1651 descr.stype);
1652 }
1653 }
1654 else if (force)
1655 printf_filtered ("0x%03x: Cannot read this descriptor\n", idx);
1656 }
1657
1658 static void
1659 go32_sldt (char *arg, int from_tty)
1660 {
1661 struct dtr_reg gdtr;
1662 unsigned short ldtr = 0;
1663 int ldt_idx;
1664 struct seg_descr ldt_descr;
1665 long ldt_entry = -1L;
1666 int cpl = (prog_has_started ? a_tss.tss_cs : _my_cs ()) & 3;
1667
1668 if (arg && *arg)
1669 {
1670 while (*arg && isspace(*arg))
1671 arg++;
1672
1673 if (*arg)
1674 {
1675 ldt_entry = parse_and_eval_long (arg);
1676 if (ldt_entry < 0
1677 || (ldt_entry & 4) == 0
1678 || (ldt_entry & 3) != (cpl & 3))
1679 error (_("Invalid LDT entry 0x%03lx."), (unsigned long)ldt_entry);
1680 }
1681 }
1682
1683 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1684 __asm__ __volatile__ ("sldt %0" : "=m" (ldtr) : /* no inputs */ );
1685 ldt_idx = ldtr / 8;
1686 if (ldt_idx == 0)
1687 puts_filtered ("There is no LDT.\n");
1688 /* LDT's entry in the GDT must have the type LDT, which is 2. */
1689 else if (get_descriptor (gdtr.base, ldt_idx, &ldt_descr) != 2)
1690 printf_filtered ("LDT is present (at %#x), but unreadable by GDB.\n",
1691 ldt_descr.base0
1692 | (ldt_descr.base1 << 16)
1693 | (ldt_descr.base2 << 24));
1694 else
1695 {
1696 unsigned base =
1697 ldt_descr.base0
1698 | (ldt_descr.base1 << 16)
1699 | (ldt_descr.base2 << 24);
1700 unsigned limit = ldt_descr.limit0 | (ldt_descr.limit1 << 16);
1701 int max_entry;
1702
1703 if (ldt_descr.page_granular)
1704 /* Page-granular segments must have the low 12 bits of their
1705 limit set. */
1706 limit = (limit << 12) | 0xfff;
1707 /* LDT cannot have more than 8K 8-byte entries, i.e. more than
1708 64KB. */
1709 if (limit > 0xffff)
1710 limit = 0xffff;
1711
1712 max_entry = (limit + 1) / 8;
1713
1714 if (ldt_entry >= 0)
1715 {
1716 if (ldt_entry > limit)
1717 error (_("Invalid LDT entry %#lx: outside valid limits [0..%#x]"),
1718 (unsigned long)ldt_entry, limit);
1719
1720 display_descriptor (ldt_descr.stype, base, ldt_entry / 8, 1);
1721 }
1722 else
1723 {
1724 int i;
1725
1726 for (i = 0; i < max_entry; i++)
1727 display_descriptor (ldt_descr.stype, base, i, 0);
1728 }
1729 }
1730 }
1731
1732 static void
1733 go32_sgdt (char *arg, int from_tty)
1734 {
1735 struct dtr_reg gdtr;
1736 long gdt_entry = -1L;
1737 int max_entry;
1738
1739 if (arg && *arg)
1740 {
1741 while (*arg && isspace(*arg))
1742 arg++;
1743
1744 if (*arg)
1745 {
1746 gdt_entry = parse_and_eval_long (arg);
1747 if (gdt_entry < 0 || (gdt_entry & 7) != 0)
1748 error (_("Invalid GDT entry 0x%03lx: not an integral multiple of 8."),
1749 (unsigned long)gdt_entry);
1750 }
1751 }
1752
1753 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1754 max_entry = (gdtr.limit + 1) / 8;
1755
1756 if (gdt_entry >= 0)
1757 {
1758 if (gdt_entry > gdtr.limit)
1759 error (_("Invalid GDT entry %#lx: outside valid limits [0..%#x]"),
1760 (unsigned long)gdt_entry, gdtr.limit);
1761
1762 display_descriptor (0, gdtr.base, gdt_entry / 8, 1);
1763 }
1764 else
1765 {
1766 int i;
1767
1768 for (i = 0; i < max_entry; i++)
1769 display_descriptor (0, gdtr.base, i, 0);
1770 }
1771 }
1772
1773 static void
1774 go32_sidt (char *arg, int from_tty)
1775 {
1776 struct dtr_reg idtr;
1777 long idt_entry = -1L;
1778 int max_entry;
1779
1780 if (arg && *arg)
1781 {
1782 while (*arg && isspace(*arg))
1783 arg++;
1784
1785 if (*arg)
1786 {
1787 idt_entry = parse_and_eval_long (arg);
1788 if (idt_entry < 0)
1789 error (_("Invalid (negative) IDT entry %ld."), idt_entry);
1790 }
1791 }
1792
1793 __asm__ __volatile__ ("sidt %0" : "=m" (idtr) : /* no inputs */ );
1794 max_entry = (idtr.limit + 1) / 8;
1795 if (max_entry > 0x100) /* no more than 256 entries */
1796 max_entry = 0x100;
1797
1798 if (idt_entry >= 0)
1799 {
1800 if (idt_entry > idtr.limit)
1801 error (_("Invalid IDT entry %#lx: outside valid limits [0..%#x]"),
1802 (unsigned long)idt_entry, idtr.limit);
1803
1804 display_descriptor (1, idtr.base, idt_entry, 1);
1805 }
1806 else
1807 {
1808 int i;
1809
1810 for (i = 0; i < max_entry; i++)
1811 display_descriptor (1, idtr.base, i, 0);
1812 }
1813 }
1814
1815 /* Cached linear address of the base of the page directory. For
1816 now, available only under CWSDPMI. Code based on ideas and
1817 suggestions from Charles Sandmann <sandmann@clio.rice.edu>. */
1818 static unsigned long pdbr;
1819
1820 static unsigned long
1821 get_cr3 (void)
1822 {
1823 unsigned offset;
1824 unsigned taskreg;
1825 unsigned long taskbase, cr3;
1826 struct dtr_reg gdtr;
1827
1828 if (pdbr > 0 && pdbr <= 0xfffff)
1829 return pdbr;
1830
1831 /* Get the linear address of GDT and the Task Register. */
1832 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1833 __asm__ __volatile__ ("str %0" : "=m" (taskreg) : /* no inputs */ );
1834
1835 /* Task Register is a segment selector for the TSS of the current
1836 task. Therefore, it can be used as an index into the GDT to get
1837 at the segment descriptor for the TSS. To get the index, reset
1838 the low 3 bits of the selector (which give the CPL). Add 2 to the
1839 offset to point to the 3 low bytes of the base address. */
1840 offset = gdtr.base + (taskreg & 0xfff8) + 2;
1841
1842
1843 /* CWSDPMI's task base is always under the 1MB mark. */
1844 if (offset > 0xfffff)
1845 return 0;
1846
1847 _farsetsel (_dos_ds);
1848 taskbase = _farnspeekl (offset) & 0xffffffU;
1849 taskbase += _farnspeekl (offset + 2) & 0xff000000U;
1850 if (taskbase > 0xfffff)
1851 return 0;
1852
1853 /* CR3 (a.k.a. PDBR, the Page Directory Base Register) is stored at
1854 offset 1Ch in the TSS. */
1855 cr3 = _farnspeekl (taskbase + 0x1c) & ~0xfff;
1856 if (cr3 > 0xfffff)
1857 {
1858 #if 0 /* not fullly supported yet */
1859 /* The Page Directory is in UMBs. In that case, CWSDPMI puts
1860 the first Page Table right below the Page Directory. Thus,
1861 the first Page Table's entry for its own address and the Page
1862 Directory entry for that Page Table will hold the same
1863 physical address. The loop below searches the entire UMB
1864 range of addresses for such an occurence. */
1865 unsigned long addr, pte_idx;
1866
1867 for (addr = 0xb0000, pte_idx = 0xb0;
1868 pte_idx < 0xff;
1869 addr += 0x1000, pte_idx++)
1870 {
1871 if (((_farnspeekl (addr + 4 * pte_idx) & 0xfffff027) ==
1872 (_farnspeekl (addr + 0x1000) & 0xfffff027))
1873 && ((_farnspeekl (addr + 4 * pte_idx + 4) & 0xfffff000) == cr3))
1874 {
1875 cr3 = addr + 0x1000;
1876 break;
1877 }
1878 }
1879 #endif
1880
1881 if (cr3 > 0xfffff)
1882 cr3 = 0;
1883 }
1884
1885 return cr3;
1886 }
1887
1888 /* Return the N'th Page Directory entry. */
1889 static unsigned long
1890 get_pde (int n)
1891 {
1892 unsigned long pde = 0;
1893
1894 if (pdbr && n >= 0 && n < 1024)
1895 {
1896 pde = _farpeekl (_dos_ds, pdbr + 4*n);
1897 }
1898 return pde;
1899 }
1900
1901 /* Return the N'th entry of the Page Table whose Page Directory entry
1902 is PDE. */
1903 static unsigned long
1904 get_pte (unsigned long pde, int n)
1905 {
1906 unsigned long pte = 0;
1907
1908 /* pde & 0x80 tests the 4MB page bit. We don't support 4MB
1909 page tables, for now. */
1910 if ((pde & 1) && !(pde & 0x80) && n >= 0 && n < 1024)
1911 {
1912 pde &= ~0xfff; /* clear non-address bits */
1913 pte = _farpeekl (_dos_ds, pde + 4*n);
1914 }
1915 return pte;
1916 }
1917
1918 /* Display a Page Directory or Page Table entry. IS_DIR, if non-zero,
1919 says this is a Page Directory entry. If FORCE is non-zero, display
1920 the entry even if its Present flag is off. OFF is the offset of the
1921 address from the page's base address. */
1922 static void
1923 display_ptable_entry (unsigned long entry, int is_dir, int force, unsigned off)
1924 {
1925 if ((entry & 1) != 0)
1926 {
1927 printf_filtered ("Base=0x%05lx000", entry >> 12);
1928 if ((entry & 0x100) && !is_dir)
1929 puts_filtered (" Global");
1930 if ((entry & 0x40) && !is_dir)
1931 puts_filtered (" Dirty");
1932 printf_filtered (" %sAcc.", (entry & 0x20) ? "" : "Not-");
1933 printf_filtered (" %sCached", (entry & 0x10) ? "" : "Not-");
1934 printf_filtered (" Write-%s", (entry & 8) ? "Thru" : "Back");
1935 printf_filtered (" %s", (entry & 4) ? "Usr" : "Sup");
1936 printf_filtered (" Read-%s", (entry & 2) ? "Write" : "Only");
1937 if (off)
1938 printf_filtered (" +0x%x", off);
1939 puts_filtered ("\n");
1940 }
1941 else if (force)
1942 printf_filtered ("Page%s not present or not supported; value=0x%lx.\n",
1943 is_dir ? " Table" : "", entry >> 1);
1944 }
1945
1946 static void
1947 go32_pde (char *arg, int from_tty)
1948 {
1949 long pde_idx = -1, i;
1950
1951 if (arg && *arg)
1952 {
1953 while (*arg && isspace(*arg))
1954 arg++;
1955
1956 if (*arg)
1957 {
1958 pde_idx = parse_and_eval_long (arg);
1959 if (pde_idx < 0 || pde_idx >= 1024)
1960 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
1961 }
1962 }
1963
1964 pdbr = get_cr3 ();
1965 if (!pdbr)
1966 puts_filtered ("Access to Page Directories is not supported on this system.\n");
1967 else if (pde_idx >= 0)
1968 display_ptable_entry (get_pde (pde_idx), 1, 1, 0);
1969 else
1970 for (i = 0; i < 1024; i++)
1971 display_ptable_entry (get_pde (i), 1, 0, 0);
1972 }
1973
1974 /* A helper function to display entries in a Page Table pointed to by
1975 the N'th entry in the Page Directory. If FORCE is non-zero, say
1976 something even if the Page Table is not accessible. */
1977 static void
1978 display_page_table (long n, int force)
1979 {
1980 unsigned long pde = get_pde (n);
1981
1982 if ((pde & 1) != 0)
1983 {
1984 int i;
1985
1986 printf_filtered ("Page Table pointed to by Page Directory entry 0x%lx:\n", n);
1987 for (i = 0; i < 1024; i++)
1988 display_ptable_entry (get_pte (pde, i), 0, 0, 0);
1989 puts_filtered ("\n");
1990 }
1991 else if (force)
1992 printf_filtered ("Page Table not present; value=0x%lx.\n", pde >> 1);
1993 }
1994
1995 static void
1996 go32_pte (char *arg, int from_tty)
1997 {
1998 long pde_idx = -1L, i;
1999
2000 if (arg && *arg)
2001 {
2002 while (*arg && isspace(*arg))
2003 arg++;
2004
2005 if (*arg)
2006 {
2007 pde_idx = parse_and_eval_long (arg);
2008 if (pde_idx < 0 || pde_idx >= 1024)
2009 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
2010 }
2011 }
2012
2013 pdbr = get_cr3 ();
2014 if (!pdbr)
2015 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2016 else if (pde_idx >= 0)
2017 display_page_table (pde_idx, 1);
2018 else
2019 for (i = 0; i < 1024; i++)
2020 display_page_table (i, 0);
2021 }
2022
2023 static void
2024 go32_pte_for_address (char *arg, int from_tty)
2025 {
2026 CORE_ADDR addr = 0, i;
2027
2028 if (arg && *arg)
2029 {
2030 while (*arg && isspace(*arg))
2031 arg++;
2032
2033 if (*arg)
2034 addr = parse_and_eval_address (arg);
2035 }
2036 if (!addr)
2037 error_no_arg (_("linear address"));
2038
2039 pdbr = get_cr3 ();
2040 if (!pdbr)
2041 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2042 else
2043 {
2044 int pde_idx = (addr >> 22) & 0x3ff;
2045 int pte_idx = (addr >> 12) & 0x3ff;
2046 unsigned offs = addr & 0xfff;
2047
2048 printf_filtered ("Page Table entry for address 0x%llx:\n",
2049 (unsigned long long)addr);
2050 display_ptable_entry (get_pte (get_pde (pde_idx), pte_idx), 0, 1, offs);
2051 }
2052 }
2053
2054 static struct cmd_list_element *info_dos_cmdlist = NULL;
2055
2056 static void
2057 go32_info_dos_command (char *args, int from_tty)
2058 {
2059 help_list (info_dos_cmdlist, "info dos ", class_info, gdb_stdout);
2060 }
2061
2062 void
2063 _initialize_go32_nat (void)
2064 {
2065 init_go32_ops ();
2066 add_target (&go32_ops);
2067
2068 add_prefix_cmd ("dos", class_info, go32_info_dos_command, _("\
2069 Print information specific to DJGPP (aka MS-DOS) debugging."),
2070 &info_dos_cmdlist, "info dos ", 0, &infolist);
2071
2072 add_cmd ("sysinfo", class_info, go32_sysinfo, _("\
2073 Display information about the target system, including CPU, OS, DPMI, etc."),
2074 &info_dos_cmdlist);
2075 add_cmd ("ldt", class_info, go32_sldt, _("\
2076 Display entries in the LDT (Local Descriptor Table).\n\
2077 Entry number (an expression) as an argument means display only that entry."),
2078 &info_dos_cmdlist);
2079 add_cmd ("gdt", class_info, go32_sgdt, _("\
2080 Display entries in the GDT (Global Descriptor Table).\n\
2081 Entry number (an expression) as an argument means display only that entry."),
2082 &info_dos_cmdlist);
2083 add_cmd ("idt", class_info, go32_sidt, _("\
2084 Display entries in the IDT (Interrupt Descriptor Table).\n\
2085 Entry number (an expression) as an argument means display only that entry."),
2086 &info_dos_cmdlist);
2087 add_cmd ("pde", class_info, go32_pde, _("\
2088 Display entries in the Page Directory.\n\
2089 Entry number (an expression) as an argument means display only that entry."),
2090 &info_dos_cmdlist);
2091 add_cmd ("pte", class_info, go32_pte, _("\
2092 Display entries in Page Tables.\n\
2093 Entry number (an expression) as an argument means display only entries\n\
2094 from the Page Table pointed to by the specified Page Directory entry."),
2095 &info_dos_cmdlist);
2096 add_cmd ("address-pte", class_info, go32_pte_for_address, _("\
2097 Display a Page Table entry for a linear address.\n\
2098 The address argument must be a linear address, after adding to\n\
2099 it the base address of the appropriate segment.\n\
2100 The base address of variables and functions in the debuggee's data\n\
2101 or code segment is stored in the variable __djgpp_base_address,\n\
2102 so use `__djgpp_base_address + (char *)&var' as the argument.\n\
2103 For other segments, look up their base address in the output of\n\
2104 the `info dos ldt' command."),
2105 &info_dos_cmdlist);
2106 }
2107
2108 pid_t
2109 tcgetpgrp (int fd)
2110 {
2111 if (isatty (fd))
2112 return SOME_PID;
2113 errno = ENOTTY;
2114 return -1;
2115 }
2116
2117 int
2118 tcsetpgrp (int fd, pid_t pgid)
2119 {
2120 if (isatty (fd) && pgid == SOME_PID)
2121 return 0;
2122 errno = pgid == SOME_PID ? ENOTTY : ENOSYS;
2123 return -1;
2124 }
This page took 0.083831 seconds and 5 git commands to generate.