ARI fixes: sprintf rule.
[deliverable/binutils-gdb.git] / gdb / go32-nat.c
1 /* Native debugging support for Intel x86 running DJGPP.
2 Copyright (C) 1997, 1999-2001, 2005-2012 Free Software Foundation,
3 Inc.
4 Written by Robert Hoehne.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /* To whomever it may concern, here's a general description of how
22 debugging in DJGPP works, and the special quirks GDB does to
23 support that.
24
25 When the DJGPP port of GDB is debugging a DJGPP program natively,
26 there aren't 2 separate processes, the debuggee and GDB itself, as
27 on other systems. (This is DOS, where there can only be one active
28 process at any given time, remember?) Instead, GDB and the
29 debuggee live in the same process. So when GDB calls
30 go32_create_inferior below, and that function calls edi_init from
31 the DJGPP debug support library libdbg.a, we load the debuggee's
32 executable file into GDB's address space, set it up for execution
33 as the stub loader (a short real-mode program prepended to each
34 DJGPP executable) normally would, and do a lot of preparations for
35 swapping between GDB's and debuggee's internal state, primarily wrt
36 the exception handlers. This swapping happens every time we resume
37 the debuggee or switch back to GDB's code, and it includes:
38
39 . swapping all the segment registers
40 . swapping the PSP (the Program Segment Prefix)
41 . swapping the signal handlers
42 . swapping the exception handlers
43 . swapping the FPU status
44 . swapping the 3 standard file handles (more about this below)
45
46 Then running the debuggee simply means longjmp into it where its PC
47 is and let it run until it stops for some reason. When it stops,
48 GDB catches the exception that stopped it and longjmp's back into
49 its own code. All the possible exit points of the debuggee are
50 watched; for example, the normal exit point is recognized because a
51 DOS program issues a special system call to exit. If one of those
52 exit points is hit, we mourn the inferior and clean up after it.
53 Cleaning up is very important, even if the process exits normally,
54 because otherwise we might leave behind traces of previous
55 execution, and in several cases GDB itself might be left hosed,
56 because all the exception handlers were not restored.
57
58 Swapping of the standard handles (in redir_to_child and
59 redir_to_debugger) is needed because, since both GDB and the
60 debuggee live in the same process, as far as the OS is concerned,
61 the share the same file table. This means that the standard
62 handles 0, 1, and 2 point to the same file table entries, and thus
63 are connected to the same devices. Therefore, if the debugger
64 redirects its standard output, the standard output of the debuggee
65 is also automagically redirected to the same file/device!
66 Similarly, if the debuggee redirects its stdout to a file, you
67 won't be able to see debugger's output (it will go to the same file
68 where the debuggee has its output); and if the debuggee closes its
69 standard input, you will lose the ability to talk to debugger!
70
71 For this reason, every time the debuggee is about to be resumed, we
72 call redir_to_child, which redirects the standard handles to where
73 the debuggee expects them to be. When the debuggee stops and GDB
74 regains control, we call redir_to_debugger, which redirects those 3
75 handles back to where GDB expects.
76
77 Note that only the first 3 handles are swapped, so if the debuggee
78 redirects or closes any other handles, GDB will not notice. In
79 particular, the exit code of a DJGPP program forcibly closes all
80 file handles beyond the first 3 ones, so when the debuggee exits,
81 GDB currently loses its stdaux and stdprn streams. Fortunately,
82 GDB does not use those as of this writing, and will never need
83 to. */
84
85 #include "defs.h"
86
87 #include <fcntl.h>
88
89 #include "i386-nat.h"
90 #include "inferior.h"
91 #include "gdbthread.h"
92 #include "gdb_wait.h"
93 #include "gdbcore.h"
94 #include "command.h"
95 #include "gdbcmd.h"
96 #include "floatformat.h"
97 #include "buildsym.h"
98 #include "i387-tdep.h"
99 #include "i386-tdep.h"
100 #include "value.h"
101 #include "regcache.h"
102 #include "gdb_string.h"
103 #include "top.h"
104
105 #include <stdio.h> /* might be required for __DJGPP_MINOR__ */
106 #include <stdlib.h>
107 #include <ctype.h>
108 #include <errno.h>
109 #include <unistd.h>
110 #include <sys/utsname.h>
111 #include <io.h>
112 #include <dos.h>
113 #include <dpmi.h>
114 #include <go32.h>
115 #include <sys/farptr.h>
116 #include <debug/v2load.h>
117 #include <debug/dbgcom.h>
118 #if __DJGPP_MINOR__ > 2
119 #include <debug/redir.h>
120 #endif
121
122 #include <langinfo.h>
123
124 #if __DJGPP_MINOR__ < 3
125 /* This code will be provided from DJGPP 2.03 on. Until then I code it
126 here. */
127 typedef struct
128 {
129 unsigned short sig0;
130 unsigned short sig1;
131 unsigned short sig2;
132 unsigned short sig3;
133 unsigned short exponent:15;
134 unsigned short sign:1;
135 }
136 NPXREG;
137
138 typedef struct
139 {
140 unsigned int control;
141 unsigned int status;
142 unsigned int tag;
143 unsigned int eip;
144 unsigned int cs;
145 unsigned int dataptr;
146 unsigned int datasel;
147 NPXREG reg[8];
148 }
149 NPX;
150
151 static NPX npx;
152
153 static void save_npx (void); /* Save the FPU of the debugged program. */
154 static void load_npx (void); /* Restore the FPU of the debugged program. */
155
156 /* ------------------------------------------------------------------------- */
157 /* Store the contents of the NPX in the global variable `npx'. */
158 /* *INDENT-OFF* */
159
160 static void
161 save_npx (void)
162 {
163 asm ("inb $0xa0, %%al \n\
164 testb $0x20, %%al \n\
165 jz 1f \n\
166 xorb %%al, %%al \n\
167 outb %%al, $0xf0 \n\
168 movb $0x20, %%al \n\
169 outb %%al, $0xa0 \n\
170 outb %%al, $0x20 \n\
171 1: \n\
172 fnsave %0 \n\
173 fwait "
174 : "=m" (npx)
175 : /* No input */
176 : "%eax");
177 }
178
179 /* *INDENT-ON* */
180
181
182 /* ------------------------------------------------------------------------- */
183 /* Reload the contents of the NPX from the global variable `npx'. */
184
185 static void
186 load_npx (void)
187 {
188 asm ("frstor %0":"=m" (npx));
189 }
190 /* ------------------------------------------------------------------------- */
191 /* Stubs for the missing redirection functions. */
192 typedef struct {
193 char *command;
194 int redirected;
195 } cmdline_t;
196
197 void
198 redir_cmdline_delete (cmdline_t *ptr)
199 {
200 ptr->redirected = 0;
201 }
202
203 int
204 redir_cmdline_parse (const char *args, cmdline_t *ptr)
205 {
206 return -1;
207 }
208
209 int
210 redir_to_child (cmdline_t *ptr)
211 {
212 return 1;
213 }
214
215 int
216 redir_to_debugger (cmdline_t *ptr)
217 {
218 return 1;
219 }
220
221 int
222 redir_debug_init (cmdline_t *ptr)
223 {
224 return 0;
225 }
226 #endif /* __DJGPP_MINOR < 3 */
227
228 typedef enum { wp_insert, wp_remove, wp_count } wp_op;
229
230 /* This holds the current reference counts for each debug register. */
231 static int dr_ref_count[4];
232
233 #define SOME_PID 42
234
235 static int prog_has_started = 0;
236 static void go32_open (char *name, int from_tty);
237 static void go32_close (int quitting);
238 static void go32_attach (struct target_ops *ops, char *args, int from_tty);
239 static void go32_detach (struct target_ops *ops, char *args, int from_tty);
240 static void go32_resume (struct target_ops *ops,
241 ptid_t ptid, int step,
242 enum gdb_signal siggnal);
243 static void go32_fetch_registers (struct target_ops *ops,
244 struct regcache *, int regno);
245 static void store_register (const struct regcache *, int regno);
246 static void go32_store_registers (struct target_ops *ops,
247 struct regcache *, int regno);
248 static void go32_prepare_to_store (struct regcache *);
249 static int go32_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len,
250 int write,
251 struct mem_attrib *attrib,
252 struct target_ops *target);
253 static void go32_files_info (struct target_ops *target);
254 static void go32_kill_inferior (struct target_ops *ops);
255 static void go32_create_inferior (struct target_ops *ops, char *exec_file,
256 char *args, char **env, int from_tty);
257 static void go32_mourn_inferior (struct target_ops *ops);
258 static int go32_can_run (void);
259
260 static struct target_ops go32_ops;
261 static void go32_terminal_init (void);
262 static void go32_terminal_inferior (void);
263 static void go32_terminal_ours (void);
264
265 #define r_ofs(x) (offsetof(TSS,x))
266
267 static struct
268 {
269 size_t tss_ofs;
270 size_t size;
271 }
272 regno_mapping[] =
273 {
274 {r_ofs (tss_eax), 4}, /* normal registers, from a_tss */
275 {r_ofs (tss_ecx), 4},
276 {r_ofs (tss_edx), 4},
277 {r_ofs (tss_ebx), 4},
278 {r_ofs (tss_esp), 4},
279 {r_ofs (tss_ebp), 4},
280 {r_ofs (tss_esi), 4},
281 {r_ofs (tss_edi), 4},
282 {r_ofs (tss_eip), 4},
283 {r_ofs (tss_eflags), 4},
284 {r_ofs (tss_cs), 2},
285 {r_ofs (tss_ss), 2},
286 {r_ofs (tss_ds), 2},
287 {r_ofs (tss_es), 2},
288 {r_ofs (tss_fs), 2},
289 {r_ofs (tss_gs), 2},
290 {0, 10}, /* 8 FP registers, from npx.reg[] */
291 {1, 10},
292 {2, 10},
293 {3, 10},
294 {4, 10},
295 {5, 10},
296 {6, 10},
297 {7, 10},
298 /* The order of the next 7 registers must be consistent
299 with their numbering in config/i386/tm-i386.h, which see. */
300 {0, 2}, /* control word, from npx */
301 {4, 2}, /* status word, from npx */
302 {8, 2}, /* tag word, from npx */
303 {16, 2}, /* last FP exception CS from npx */
304 {12, 4}, /* last FP exception EIP from npx */
305 {24, 2}, /* last FP exception operand selector from npx */
306 {20, 4}, /* last FP exception operand offset from npx */
307 {18, 2} /* last FP opcode from npx */
308 };
309
310 static struct
311 {
312 int go32_sig;
313 enum gdb_signal gdb_sig;
314 }
315 sig_map[] =
316 {
317 {0, GDB_SIGNAL_FPE},
318 {1, GDB_SIGNAL_TRAP},
319 /* Exception 2 is triggered by the NMI. DJGPP handles it as SIGILL,
320 but I think SIGBUS is better, since the NMI is usually activated
321 as a result of a memory parity check failure. */
322 {2, GDB_SIGNAL_BUS},
323 {3, GDB_SIGNAL_TRAP},
324 {4, GDB_SIGNAL_FPE},
325 {5, GDB_SIGNAL_SEGV},
326 {6, GDB_SIGNAL_ILL},
327 {7, GDB_SIGNAL_EMT}, /* no-coprocessor exception */
328 {8, GDB_SIGNAL_SEGV},
329 {9, GDB_SIGNAL_SEGV},
330 {10, GDB_SIGNAL_BUS},
331 {11, GDB_SIGNAL_SEGV},
332 {12, GDB_SIGNAL_SEGV},
333 {13, GDB_SIGNAL_SEGV},
334 {14, GDB_SIGNAL_SEGV},
335 {16, GDB_SIGNAL_FPE},
336 {17, GDB_SIGNAL_BUS},
337 {31, GDB_SIGNAL_ILL},
338 {0x1b, GDB_SIGNAL_INT},
339 {0x75, GDB_SIGNAL_FPE},
340 {0x78, GDB_SIGNAL_ALRM},
341 {0x79, GDB_SIGNAL_INT},
342 {0x7a, GDB_SIGNAL_QUIT},
343 {-1, GDB_SIGNAL_LAST}
344 };
345
346 static struct {
347 enum gdb_signal gdb_sig;
348 int djgpp_excepno;
349 } excepn_map[] = {
350 {GDB_SIGNAL_0, -1},
351 {GDB_SIGNAL_ILL, 6}, /* Invalid Opcode */
352 {GDB_SIGNAL_EMT, 7}, /* triggers SIGNOFP */
353 {GDB_SIGNAL_SEGV, 13}, /* GPF */
354 {GDB_SIGNAL_BUS, 17}, /* Alignment Check */
355 /* The rest are fake exceptions, see dpmiexcp.c in djlsr*.zip for
356 details. */
357 {GDB_SIGNAL_TERM, 0x1b}, /* triggers Ctrl-Break type of SIGINT */
358 {GDB_SIGNAL_FPE, 0x75},
359 {GDB_SIGNAL_INT, 0x79},
360 {GDB_SIGNAL_QUIT, 0x7a},
361 {GDB_SIGNAL_ALRM, 0x78}, /* triggers SIGTIMR */
362 {GDB_SIGNAL_PROF, 0x78},
363 {GDB_SIGNAL_LAST, -1}
364 };
365
366 static void
367 go32_open (char *name, int from_tty)
368 {
369 printf_unfiltered ("Done. Use the \"run\" command to run the program.\n");
370 }
371
372 static void
373 go32_close (int quitting)
374 {
375 }
376
377 static void
378 go32_attach (struct target_ops *ops, char *args, int from_tty)
379 {
380 error (_("\
381 You cannot attach to a running program on this platform.\n\
382 Use the `run' command to run DJGPP programs."));
383 }
384
385 static void
386 go32_detach (struct target_ops *ops, char *args, int from_tty)
387 {
388 }
389
390 static int resume_is_step;
391 static int resume_signal = -1;
392
393 static void
394 go32_resume (struct target_ops *ops,
395 ptid_t ptid, int step, enum gdb_signal siggnal)
396 {
397 int i;
398
399 resume_is_step = step;
400
401 if (siggnal != GDB_SIGNAL_0 && siggnal != GDB_SIGNAL_TRAP)
402 {
403 for (i = 0, resume_signal = -1;
404 excepn_map[i].gdb_sig != GDB_SIGNAL_LAST; i++)
405 if (excepn_map[i].gdb_sig == siggnal)
406 {
407 resume_signal = excepn_map[i].djgpp_excepno;
408 break;
409 }
410 if (resume_signal == -1)
411 printf_unfiltered ("Cannot deliver signal %s on this platform.\n",
412 gdb_signal_to_name (siggnal));
413 }
414 }
415
416 static char child_cwd[FILENAME_MAX];
417
418 static ptid_t
419 go32_wait (struct target_ops *ops,
420 ptid_t ptid, struct target_waitstatus *status, int options)
421 {
422 int i;
423 unsigned char saved_opcode;
424 unsigned long INT3_addr = 0;
425 int stepping_over_INT = 0;
426
427 a_tss.tss_eflags &= 0xfeff; /* Reset the single-step flag (TF). */
428 if (resume_is_step)
429 {
430 /* If the next instruction is INT xx or INTO, we need to handle
431 them specially. Intel manuals say that these instructions
432 reset the single-step flag (a.k.a. TF). However, it seems
433 that, at least in the DPMI environment, and at least when
434 stepping over the DPMI interrupt 31h, the problem is having
435 TF set at all when INT 31h is executed: the debuggee either
436 crashes (and takes the system with it) or is killed by a
437 SIGTRAP.
438
439 So we need to emulate single-step mode: we put an INT3 opcode
440 right after the INT xx instruction, let the debuggee run
441 until it hits INT3 and stops, then restore the original
442 instruction which we overwrote with the INT3 opcode, and back
443 up the debuggee's EIP to that instruction. */
444 read_child (a_tss.tss_eip, &saved_opcode, 1);
445 if (saved_opcode == 0xCD || saved_opcode == 0xCE)
446 {
447 unsigned char INT3_opcode = 0xCC;
448
449 INT3_addr
450 = saved_opcode == 0xCD ? a_tss.tss_eip + 2 : a_tss.tss_eip + 1;
451 stepping_over_INT = 1;
452 read_child (INT3_addr, &saved_opcode, 1);
453 write_child (INT3_addr, &INT3_opcode, 1);
454 }
455 else
456 a_tss.tss_eflags |= 0x0100; /* normal instruction: set TF */
457 }
458
459 /* The special value FFFFh in tss_trap indicates to run_child that
460 tss_irqn holds a signal to be delivered to the debuggee. */
461 if (resume_signal <= -1)
462 {
463 a_tss.tss_trap = 0;
464 a_tss.tss_irqn = 0xff;
465 }
466 else
467 {
468 a_tss.tss_trap = 0xffff; /* run_child looks for this. */
469 a_tss.tss_irqn = resume_signal;
470 }
471
472 /* The child might change working directory behind our back. The
473 GDB users won't like the side effects of that when they work with
474 relative file names, and GDB might be confused by its current
475 directory not being in sync with the truth. So we always make a
476 point of changing back to where GDB thinks is its cwd, when we
477 return control to the debugger, but restore child's cwd before we
478 run it. */
479 /* Initialize child_cwd, before the first call to run_child and not
480 in the initialization, so the child get also the changed directory
481 set with the gdb-command "cd ..." */
482 if (!*child_cwd)
483 /* Initialize child's cwd with the current one. */
484 getcwd (child_cwd, sizeof (child_cwd));
485
486 chdir (child_cwd);
487
488 #if __DJGPP_MINOR__ < 3
489 load_npx ();
490 #endif
491 run_child ();
492 #if __DJGPP_MINOR__ < 3
493 save_npx ();
494 #endif
495
496 /* Did we step over an INT xx instruction? */
497 if (stepping_over_INT && a_tss.tss_eip == INT3_addr + 1)
498 {
499 /* Restore the original opcode. */
500 a_tss.tss_eip--; /* EIP points *after* the INT3 instruction. */
501 write_child (a_tss.tss_eip, &saved_opcode, 1);
502 /* Simulate a TRAP exception. */
503 a_tss.tss_irqn = 1;
504 a_tss.tss_eflags |= 0x0100;
505 }
506
507 getcwd (child_cwd, sizeof (child_cwd)); /* in case it has changed */
508 chdir (current_directory);
509
510 if (a_tss.tss_irqn == 0x21)
511 {
512 status->kind = TARGET_WAITKIND_EXITED;
513 status->value.integer = a_tss.tss_eax & 0xff;
514 }
515 else
516 {
517 status->value.sig = GDB_SIGNAL_UNKNOWN;
518 status->kind = TARGET_WAITKIND_STOPPED;
519 for (i = 0; sig_map[i].go32_sig != -1; i++)
520 {
521 if (a_tss.tss_irqn == sig_map[i].go32_sig)
522 {
523 #if __DJGPP_MINOR__ < 3
524 if ((status->value.sig = sig_map[i].gdb_sig) !=
525 GDB_SIGNAL_TRAP)
526 status->kind = TARGET_WAITKIND_SIGNALLED;
527 #else
528 status->value.sig = sig_map[i].gdb_sig;
529 #endif
530 break;
531 }
532 }
533 }
534 return pid_to_ptid (SOME_PID);
535 }
536
537 static void
538 fetch_register (struct regcache *regcache, int regno)
539 {
540 struct gdbarch *gdbarch = get_regcache_arch (regcache);
541 if (regno < gdbarch_fp0_regnum (gdbarch))
542 regcache_raw_supply (regcache, regno,
543 (char *) &a_tss + regno_mapping[regno].tss_ofs);
544 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
545 regno))
546 i387_supply_fsave (regcache, regno, &npx);
547 else
548 internal_error (__FILE__, __LINE__,
549 _("Invalid register no. %d in fetch_register."), regno);
550 }
551
552 static void
553 go32_fetch_registers (struct target_ops *ops,
554 struct regcache *regcache, int regno)
555 {
556 if (regno >= 0)
557 fetch_register (regcache, regno);
558 else
559 {
560 for (regno = 0;
561 regno < gdbarch_fp0_regnum (get_regcache_arch (regcache));
562 regno++)
563 fetch_register (regcache, regno);
564 i387_supply_fsave (regcache, -1, &npx);
565 }
566 }
567
568 static void
569 store_register (const struct regcache *regcache, int regno)
570 {
571 struct gdbarch *gdbarch = get_regcache_arch (regcache);
572 if (regno < gdbarch_fp0_regnum (gdbarch))
573 regcache_raw_collect (regcache, regno,
574 (char *) &a_tss + regno_mapping[regno].tss_ofs);
575 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
576 regno))
577 i387_collect_fsave (regcache, regno, &npx);
578 else
579 internal_error (__FILE__, __LINE__,
580 _("Invalid register no. %d in store_register."), regno);
581 }
582
583 static void
584 go32_store_registers (struct target_ops *ops,
585 struct regcache *regcache, int regno)
586 {
587 unsigned r;
588
589 if (regno >= 0)
590 store_register (regcache, regno);
591 else
592 {
593 for (r = 0; r < gdbarch_fp0_regnum (get_regcache_arch (regcache)); r++)
594 store_register (regcache, r);
595 i387_collect_fsave (regcache, -1, &npx);
596 }
597 }
598
599 static void
600 go32_prepare_to_store (struct regcache *regcache)
601 {
602 }
603
604 static int
605 go32_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int write,
606 struct mem_attrib *attrib, struct target_ops *target)
607 {
608 if (write)
609 {
610 if (write_child (memaddr, myaddr, len))
611 {
612 return 0;
613 }
614 else
615 {
616 return len;
617 }
618 }
619 else
620 {
621 if (read_child (memaddr, myaddr, len))
622 {
623 return 0;
624 }
625 else
626 {
627 return len;
628 }
629 }
630 }
631
632 static cmdline_t child_cmd; /* Parsed child's command line kept here. */
633
634 static void
635 go32_files_info (struct target_ops *target)
636 {
637 printf_unfiltered ("You are running a DJGPP V2 program.\n");
638 }
639
640 static void
641 go32_kill_inferior (struct target_ops *ops)
642 {
643 go32_mourn_inferior (ops);
644 }
645
646 static void
647 go32_create_inferior (struct target_ops *ops, char *exec_file,
648 char *args, char **env, int from_tty)
649 {
650 extern char **environ;
651 jmp_buf start_state;
652 char *cmdline;
653 char **env_save = environ;
654 size_t cmdlen;
655 struct inferior *inf;
656
657 /* If no exec file handed to us, get it from the exec-file command -- with
658 a good, common error message if none is specified. */
659 if (exec_file == 0)
660 exec_file = get_exec_file (1);
661
662 resume_signal = -1;
663 resume_is_step = 0;
664
665 /* Initialize child's cwd as empty to be initialized when starting
666 the child. */
667 *child_cwd = 0;
668
669 /* Init command line storage. */
670 if (redir_debug_init (&child_cmd) == -1)
671 internal_error (__FILE__, __LINE__,
672 _("Cannot allocate redirection storage: "
673 "not enough memory.\n"));
674
675 /* Parse the command line and create redirections. */
676 if (strpbrk (args, "<>"))
677 {
678 if (redir_cmdline_parse (args, &child_cmd) == 0)
679 args = child_cmd.command;
680 else
681 error (_("Syntax error in command line."));
682 }
683 else
684 child_cmd.command = xstrdup (args);
685
686 cmdlen = strlen (args);
687 /* v2loadimage passes command lines via DOS memory, so it cannot
688 possibly handle commands longer than 1MB. */
689 if (cmdlen > 1024*1024)
690 error (_("Command line too long."));
691
692 cmdline = xmalloc (cmdlen + 4);
693 strcpy (cmdline + 1, args);
694 /* If the command-line length fits into DOS 126-char limits, use the
695 DOS command tail format; otherwise, tell v2loadimage to pass it
696 through a buffer in conventional memory. */
697 if (cmdlen < 127)
698 {
699 cmdline[0] = strlen (args);
700 cmdline[cmdlen + 1] = 13;
701 }
702 else
703 cmdline[0] = 0xff; /* Signal v2loadimage it's a long command. */
704
705 environ = env;
706
707 if (v2loadimage (exec_file, cmdline, start_state))
708 {
709 environ = env_save;
710 printf_unfiltered ("Load failed for image %s\n", exec_file);
711 exit (1);
712 }
713 environ = env_save;
714 xfree (cmdline);
715
716 edi_init (start_state);
717 #if __DJGPP_MINOR__ < 3
718 save_npx ();
719 #endif
720
721 inferior_ptid = pid_to_ptid (SOME_PID);
722 inf = current_inferior ();
723 inferior_appeared (inf, SOME_PID);
724
725 push_target (&go32_ops);
726
727 add_thread_silent (inferior_ptid);
728
729 clear_proceed_status ();
730 insert_breakpoints ();
731 prog_has_started = 1;
732 }
733
734 static void
735 go32_mourn_inferior (struct target_ops *ops)
736 {
737 ptid_t ptid;
738
739 redir_cmdline_delete (&child_cmd);
740 resume_signal = -1;
741 resume_is_step = 0;
742
743 cleanup_client ();
744
745 /* We need to make sure all the breakpoint enable bits in the DR7
746 register are reset when the inferior exits. Otherwise, if they
747 rerun the inferior, the uncleared bits may cause random SIGTRAPs,
748 failure to set more watchpoints, and other calamities. It would
749 be nice if GDB itself would take care to remove all breakpoints
750 at all times, but it doesn't, probably under an assumption that
751 the OS cleans up when the debuggee exits. */
752 i386_cleanup_dregs ();
753
754 ptid = inferior_ptid;
755 inferior_ptid = null_ptid;
756 delete_thread_silent (ptid);
757 prog_has_started = 0;
758
759 unpush_target (ops);
760 generic_mourn_inferior ();
761 }
762
763 static int
764 go32_can_run (void)
765 {
766 return 1;
767 }
768
769 /* Hardware watchpoint support. */
770
771 #define D_REGS edi.dr
772 #define CONTROL D_REGS[7]
773 #define STATUS D_REGS[6]
774
775 /* Pass the address ADDR to the inferior in the I'th debug register.
776 Here we just store the address in D_REGS, the watchpoint will be
777 actually set up when go32_wait runs the debuggee. */
778 static void
779 go32_set_dr (int i, CORE_ADDR addr)
780 {
781 if (i < 0 || i > 3)
782 internal_error (__FILE__, __LINE__,
783 _("Invalid register %d in go32_set_dr.\n"), i);
784 D_REGS[i] = addr;
785 }
786
787 /* Pass the value VAL to the inferior in the DR7 debug control
788 register. Here we just store the address in D_REGS, the watchpoint
789 will be actually set up when go32_wait runs the debuggee. */
790 static void
791 go32_set_dr7 (unsigned long val)
792 {
793 CONTROL = val;
794 }
795
796 /* Get the value of the DR6 debug status register from the inferior.
797 Here we just return the value stored in D_REGS, as we've got it
798 from the last go32_wait call. */
799 static unsigned long
800 go32_get_dr6 (void)
801 {
802 return STATUS;
803 }
804
805 /* Get the value of the DR7 debug status register from the inferior.
806 Here we just return the value stored in D_REGS, as we've got it
807 from the last go32_wait call. */
808
809 static unsigned long
810 go32_get_dr7 (void)
811 {
812 return CONTROL;
813 }
814
815 /* Get the value of the DR debug register I from the inferior. Here
816 we just return the value stored in D_REGS, as we've got it from the
817 last go32_wait call. */
818
819 static CORE_ADDR
820 go32_get_dr (int i)
821 {
822 if (i < 0 || i > 3)
823 internal_error (__FILE__, __LINE__,
824 _("Invalid register %d in go32_get_dr.\n"), i);
825 return D_REGS[i];
826 }
827
828 /* Put the device open on handle FD into either raw or cooked
829 mode, return 1 if it was in raw mode, zero otherwise. */
830
831 static int
832 device_mode (int fd, int raw_p)
833 {
834 int oldmode, newmode;
835 __dpmi_regs regs;
836
837 regs.x.ax = 0x4400;
838 regs.x.bx = fd;
839 __dpmi_int (0x21, &regs);
840 if (regs.x.flags & 1)
841 return -1;
842 newmode = oldmode = regs.x.dx;
843
844 if (raw_p)
845 newmode |= 0x20;
846 else
847 newmode &= ~0x20;
848
849 if (oldmode & 0x80) /* Only for character dev. */
850 {
851 regs.x.ax = 0x4401;
852 regs.x.bx = fd;
853 regs.x.dx = newmode & 0xff; /* Force upper byte zero, else it fails. */
854 __dpmi_int (0x21, &regs);
855 if (regs.x.flags & 1)
856 return -1;
857 }
858 return (oldmode & 0x20) == 0x20;
859 }
860
861
862 static int inf_mode_valid = 0;
863 static int inf_terminal_mode;
864
865 /* This semaphore is needed because, amazingly enough, GDB calls
866 target.to_terminal_ours more than once after the inferior stops.
867 But we need the information from the first call only, since the
868 second call will always see GDB's own cooked terminal. */
869 static int terminal_is_ours = 1;
870
871 static void
872 go32_terminal_init (void)
873 {
874 inf_mode_valid = 0; /* Reinitialize, in case they are restarting child. */
875 terminal_is_ours = 1;
876 }
877
878 static void
879 go32_terminal_info (char *args, int from_tty)
880 {
881 printf_unfiltered ("Inferior's terminal is in %s mode.\n",
882 !inf_mode_valid
883 ? "default" : inf_terminal_mode ? "raw" : "cooked");
884
885 #if __DJGPP_MINOR__ > 2
886 if (child_cmd.redirection)
887 {
888 int i;
889
890 for (i = 0; i < DBG_HANDLES; i++)
891 {
892 if (child_cmd.redirection[i]->file_name)
893 printf_unfiltered ("\tFile handle %d is redirected to `%s'.\n",
894 i, child_cmd.redirection[i]->file_name);
895 else if (_get_dev_info (child_cmd.redirection[i]->inf_handle) == -1)
896 printf_unfiltered
897 ("\tFile handle %d appears to be closed by inferior.\n", i);
898 /* Mask off the raw/cooked bit when comparing device info words. */
899 else if ((_get_dev_info (child_cmd.redirection[i]->inf_handle) & 0xdf)
900 != (_get_dev_info (i) & 0xdf))
901 printf_unfiltered
902 ("\tFile handle %d appears to be redirected by inferior.\n", i);
903 }
904 }
905 #endif
906 }
907
908 static void
909 go32_terminal_inferior (void)
910 {
911 /* Redirect standard handles as child wants them. */
912 errno = 0;
913 if (redir_to_child (&child_cmd) == -1)
914 {
915 redir_to_debugger (&child_cmd);
916 error (_("Cannot redirect standard handles for program: %s."),
917 safe_strerror (errno));
918 }
919 /* Set the console device of the inferior to whatever mode
920 (raw or cooked) we found it last time. */
921 if (terminal_is_ours)
922 {
923 if (inf_mode_valid)
924 device_mode (0, inf_terminal_mode);
925 terminal_is_ours = 0;
926 }
927 }
928
929 static void
930 go32_terminal_ours (void)
931 {
932 /* Switch to cooked mode on the gdb terminal and save the inferior
933 terminal mode to be restored when it is resumed. */
934 if (!terminal_is_ours)
935 {
936 inf_terminal_mode = device_mode (0, 0);
937 if (inf_terminal_mode != -1)
938 inf_mode_valid = 1;
939 else
940 /* If device_mode returned -1, we don't know what happens with
941 handle 0 anymore, so make the info invalid. */
942 inf_mode_valid = 0;
943 terminal_is_ours = 1;
944
945 /* Restore debugger's standard handles. */
946 errno = 0;
947 if (redir_to_debugger (&child_cmd) == -1)
948 {
949 redir_to_child (&child_cmd);
950 error (_("Cannot redirect standard handles for debugger: %s."),
951 safe_strerror (errno));
952 }
953 }
954 }
955
956 static int
957 go32_thread_alive (struct target_ops *ops, ptid_t ptid)
958 {
959 return !ptid_equal (inferior_ptid, null_ptid);
960 }
961
962 static char *
963 go32_pid_to_str (struct target_ops *ops, ptid_t ptid)
964 {
965 return normal_pid_to_str (ptid);
966 }
967
968 static void
969 init_go32_ops (void)
970 {
971 go32_ops.to_shortname = "djgpp";
972 go32_ops.to_longname = "djgpp target process";
973 go32_ops.to_doc =
974 "Program loaded by djgpp, when gdb is used as an external debugger";
975 go32_ops.to_open = go32_open;
976 go32_ops.to_close = go32_close;
977 go32_ops.to_attach = go32_attach;
978 go32_ops.to_detach = go32_detach;
979 go32_ops.to_resume = go32_resume;
980 go32_ops.to_wait = go32_wait;
981 go32_ops.to_fetch_registers = go32_fetch_registers;
982 go32_ops.to_store_registers = go32_store_registers;
983 go32_ops.to_prepare_to_store = go32_prepare_to_store;
984 go32_ops.deprecated_xfer_memory = go32_xfer_memory;
985 go32_ops.to_files_info = go32_files_info;
986 go32_ops.to_insert_breakpoint = memory_insert_breakpoint;
987 go32_ops.to_remove_breakpoint = memory_remove_breakpoint;
988 go32_ops.to_terminal_init = go32_terminal_init;
989 go32_ops.to_terminal_inferior = go32_terminal_inferior;
990 go32_ops.to_terminal_ours_for_output = go32_terminal_ours;
991 go32_ops.to_terminal_ours = go32_terminal_ours;
992 go32_ops.to_terminal_info = go32_terminal_info;
993 go32_ops.to_kill = go32_kill_inferior;
994 go32_ops.to_create_inferior = go32_create_inferior;
995 go32_ops.to_mourn_inferior = go32_mourn_inferior;
996 go32_ops.to_can_run = go32_can_run;
997 go32_ops.to_thread_alive = go32_thread_alive;
998 go32_ops.to_pid_to_str = go32_pid_to_str;
999 go32_ops.to_stratum = process_stratum;
1000 go32_ops.to_has_all_memory = default_child_has_all_memory;
1001 go32_ops.to_has_memory = default_child_has_memory;
1002 go32_ops.to_has_stack = default_child_has_stack;
1003 go32_ops.to_has_registers = default_child_has_registers;
1004 go32_ops.to_has_execution = default_child_has_execution;
1005
1006 i386_use_watchpoints (&go32_ops);
1007
1008
1009 i386_dr_low.set_control = go32_set_dr7;
1010 i386_dr_low.set_addr = go32_set_dr;
1011 i386_dr_low.get_status = go32_get_dr6;
1012 i386_dr_low.get_control = go32_get_dr7;
1013 i386_dr_low.get_addr = go32_get_dr;
1014 i386_set_debug_register_length (4);
1015
1016 go32_ops.to_magic = OPS_MAGIC;
1017
1018 /* Initialize child's cwd as empty to be initialized when starting
1019 the child. */
1020 *child_cwd = 0;
1021
1022 /* Initialize child's command line storage. */
1023 if (redir_debug_init (&child_cmd) == -1)
1024 internal_error (__FILE__, __LINE__,
1025 _("Cannot allocate redirection storage: "
1026 "not enough memory.\n"));
1027
1028 /* We are always processing GCC-compiled programs. */
1029 processing_gcc_compilation = 2;
1030
1031 /* Override the default name of the GDB init file. */
1032 strcpy (gdbinit, "gdb.ini");
1033 }
1034
1035 /* Return the current DOS codepage number. */
1036 static int
1037 dos_codepage (void)
1038 {
1039 __dpmi_regs regs;
1040
1041 regs.x.ax = 0x6601;
1042 __dpmi_int (0x21, &regs);
1043 if (!(regs.x.flags & 1))
1044 return regs.x.bx & 0xffff;
1045 else
1046 return 437; /* default */
1047 }
1048
1049 /* Limited emulation of `nl_langinfo', for charset.c. */
1050 char *
1051 nl_langinfo (nl_item item)
1052 {
1053 char *retval;
1054
1055 switch (item)
1056 {
1057 case CODESET:
1058 {
1059 /* 8 is enough for SHORT_MAX + "CP" + null. */
1060 char buf[8];
1061 int blen = sizeof (buf);
1062 int needed = snprintf (buf, blen, "CP%d", dos_codepage ());
1063
1064 if (needed > blen) /* Should never happen. */
1065 buf[0] = 0;
1066 retval = xstrdup (buf);
1067 }
1068 break;
1069 default:
1070 retval = xstrdup ("");
1071 break;
1072 }
1073 return retval;
1074 }
1075
1076 unsigned short windows_major, windows_minor;
1077
1078 /* Compute the version Windows reports via Int 2Fh/AX=1600h. */
1079 static void
1080 go32_get_windows_version(void)
1081 {
1082 __dpmi_regs r;
1083
1084 r.x.ax = 0x1600;
1085 __dpmi_int(0x2f, &r);
1086 if (r.h.al > 2 && r.h.al != 0x80 && r.h.al != 0xff
1087 && (r.h.al > 3 || r.h.ah > 0))
1088 {
1089 windows_major = r.h.al;
1090 windows_minor = r.h.ah;
1091 }
1092 else
1093 windows_major = 0xff; /* meaning no Windows */
1094 }
1095
1096 /* A subroutine of go32_sysinfo to display memory info. */
1097 static void
1098 print_mem (unsigned long datum, const char *header, int in_pages_p)
1099 {
1100 if (datum != 0xffffffffUL)
1101 {
1102 if (in_pages_p)
1103 datum <<= 12;
1104 puts_filtered (header);
1105 if (datum > 1024)
1106 {
1107 printf_filtered ("%lu KB", datum >> 10);
1108 if (datum > 1024 * 1024)
1109 printf_filtered (" (%lu MB)", datum >> 20);
1110 }
1111 else
1112 printf_filtered ("%lu Bytes", datum);
1113 puts_filtered ("\n");
1114 }
1115 }
1116
1117 /* Display assorted information about the underlying OS. */
1118 static void
1119 go32_sysinfo (char *arg, int from_tty)
1120 {
1121 static const char test_pattern[] =
1122 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1123 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1124 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeafdeadbeaf";
1125 struct utsname u;
1126 char cpuid_vendor[13];
1127 unsigned cpuid_max = 0, cpuid_eax, cpuid_ebx, cpuid_ecx, cpuid_edx;
1128 unsigned true_dos_version = _get_dos_version (1);
1129 unsigned advertized_dos_version = ((unsigned int)_osmajor << 8) | _osminor;
1130 int dpmi_flags;
1131 char dpmi_vendor_info[129];
1132 int dpmi_vendor_available;
1133 __dpmi_version_ret dpmi_version_data;
1134 long eflags;
1135 __dpmi_free_mem_info mem_info;
1136 __dpmi_regs regs;
1137
1138 cpuid_vendor[0] = '\0';
1139 if (uname (&u))
1140 strcpy (u.machine, "Unknown x86");
1141 else if (u.machine[0] == 'i' && u.machine[1] > 4)
1142 {
1143 /* CPUID with EAX = 0 returns the Vendor ID. */
1144 __asm__ __volatile__ ("xorl %%ebx, %%ebx;"
1145 "xorl %%ecx, %%ecx;"
1146 "xorl %%edx, %%edx;"
1147 "movl $0, %%eax;"
1148 "cpuid;"
1149 "movl %%ebx, %0;"
1150 "movl %%edx, %1;"
1151 "movl %%ecx, %2;"
1152 "movl %%eax, %3;"
1153 : "=m" (cpuid_vendor[0]),
1154 "=m" (cpuid_vendor[4]),
1155 "=m" (cpuid_vendor[8]),
1156 "=m" (cpuid_max)
1157 :
1158 : "%eax", "%ebx", "%ecx", "%edx");
1159 cpuid_vendor[12] = '\0';
1160 }
1161
1162 printf_filtered ("CPU Type.......................%s", u.machine);
1163 if (cpuid_vendor[0])
1164 printf_filtered (" (%s)", cpuid_vendor);
1165 puts_filtered ("\n");
1166
1167 /* CPUID with EAX = 1 returns processor signature and features. */
1168 if (cpuid_max >= 1)
1169 {
1170 static char *brand_name[] = {
1171 "",
1172 " Celeron",
1173 " III",
1174 " III Xeon",
1175 "", "", "", "",
1176 " 4"
1177 };
1178 char cpu_string[80];
1179 char cpu_brand[20];
1180 unsigned brand_idx;
1181 int intel_p = strcmp (cpuid_vendor, "GenuineIntel") == 0;
1182 int amd_p = strcmp (cpuid_vendor, "AuthenticAMD") == 0;
1183 unsigned cpu_family, cpu_model;
1184
1185 __asm__ __volatile__ ("movl $1, %%eax;"
1186 "cpuid;"
1187 : "=a" (cpuid_eax),
1188 "=b" (cpuid_ebx),
1189 "=d" (cpuid_edx)
1190 :
1191 : "%ecx");
1192 brand_idx = cpuid_ebx & 0xff;
1193 cpu_family = (cpuid_eax >> 8) & 0xf;
1194 cpu_model = (cpuid_eax >> 4) & 0xf;
1195 cpu_brand[0] = '\0';
1196 if (intel_p)
1197 {
1198 if (brand_idx > 0
1199 && brand_idx < sizeof(brand_name)/sizeof(brand_name[0])
1200 && *brand_name[brand_idx])
1201 strcpy (cpu_brand, brand_name[brand_idx]);
1202 else if (cpu_family == 5)
1203 {
1204 if (((cpuid_eax >> 12) & 3) == 0 && cpu_model == 4)
1205 strcpy (cpu_brand, " MMX");
1206 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 1)
1207 strcpy (cpu_brand, " OverDrive");
1208 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 2)
1209 strcpy (cpu_brand, " Dual");
1210 }
1211 else if (cpu_family == 6 && cpu_model < 8)
1212 {
1213 switch (cpu_model)
1214 {
1215 case 1:
1216 strcpy (cpu_brand, " Pro");
1217 break;
1218 case 3:
1219 strcpy (cpu_brand, " II");
1220 break;
1221 case 5:
1222 strcpy (cpu_brand, " II Xeon");
1223 break;
1224 case 6:
1225 strcpy (cpu_brand, " Celeron");
1226 break;
1227 case 7:
1228 strcpy (cpu_brand, " III");
1229 break;
1230 }
1231 }
1232 }
1233 else if (amd_p)
1234 {
1235 switch (cpu_family)
1236 {
1237 case 4:
1238 strcpy (cpu_brand, "486/5x86");
1239 break;
1240 case 5:
1241 switch (cpu_model)
1242 {
1243 case 0:
1244 case 1:
1245 case 2:
1246 case 3:
1247 strcpy (cpu_brand, "-K5");
1248 break;
1249 case 6:
1250 case 7:
1251 strcpy (cpu_brand, "-K6");
1252 break;
1253 case 8:
1254 strcpy (cpu_brand, "-K6-2");
1255 break;
1256 case 9:
1257 strcpy (cpu_brand, "-K6-III");
1258 break;
1259 }
1260 break;
1261 case 6:
1262 switch (cpu_model)
1263 {
1264 case 1:
1265 case 2:
1266 case 4:
1267 strcpy (cpu_brand, " Athlon");
1268 break;
1269 case 3:
1270 strcpy (cpu_brand, " Duron");
1271 break;
1272 }
1273 break;
1274 }
1275 }
1276 xsnprintf (cpu_string, sizeof (cpu_string), "%s%s Model %d Stepping %d",
1277 intel_p ? "Pentium" : (amd_p ? "AMD" : "ix86"),
1278 cpu_brand, cpu_model, cpuid_eax & 0xf);
1279 printfi_filtered (31, "%s\n", cpu_string);
1280 if (((cpuid_edx & (6 | (0x0d << 23))) != 0)
1281 || ((cpuid_edx & 1) == 0)
1282 || (amd_p && (cpuid_edx & (3 << 30)) != 0))
1283 {
1284 puts_filtered ("CPU Features...................");
1285 /* We only list features which might be useful in the DPMI
1286 environment. */
1287 if ((cpuid_edx & 1) == 0)
1288 puts_filtered ("No FPU "); /* It's unusual to not have an FPU. */
1289 if ((cpuid_edx & (1 << 1)) != 0)
1290 puts_filtered ("VME ");
1291 if ((cpuid_edx & (1 << 2)) != 0)
1292 puts_filtered ("DE ");
1293 if ((cpuid_edx & (1 << 4)) != 0)
1294 puts_filtered ("TSC ");
1295 if ((cpuid_edx & (1 << 23)) != 0)
1296 puts_filtered ("MMX ");
1297 if ((cpuid_edx & (1 << 25)) != 0)
1298 puts_filtered ("SSE ");
1299 if ((cpuid_edx & (1 << 26)) != 0)
1300 puts_filtered ("SSE2 ");
1301 if (amd_p)
1302 {
1303 if ((cpuid_edx & (1 << 31)) != 0)
1304 puts_filtered ("3DNow! ");
1305 if ((cpuid_edx & (1 << 30)) != 0)
1306 puts_filtered ("3DNow!Ext");
1307 }
1308 puts_filtered ("\n");
1309 }
1310 }
1311 puts_filtered ("\n");
1312 printf_filtered ("DOS Version....................%s %s.%s",
1313 _os_flavor, u.release, u.version);
1314 if (true_dos_version != advertized_dos_version)
1315 printf_filtered (" (disguised as v%d.%d)", _osmajor, _osminor);
1316 puts_filtered ("\n");
1317 if (!windows_major)
1318 go32_get_windows_version ();
1319 if (windows_major != 0xff)
1320 {
1321 const char *windows_flavor;
1322
1323 printf_filtered ("Windows Version................%d.%02d (Windows ",
1324 windows_major, windows_minor);
1325 switch (windows_major)
1326 {
1327 case 3:
1328 windows_flavor = "3.X";
1329 break;
1330 case 4:
1331 switch (windows_minor)
1332 {
1333 case 0:
1334 windows_flavor = "95, 95A, or 95B";
1335 break;
1336 case 3:
1337 windows_flavor = "95B OSR2.1 or 95C OSR2.5";
1338 break;
1339 case 10:
1340 windows_flavor = "98 or 98 SE";
1341 break;
1342 case 90:
1343 windows_flavor = "ME";
1344 break;
1345 default:
1346 windows_flavor = "9X";
1347 break;
1348 }
1349 break;
1350 default:
1351 windows_flavor = "??";
1352 break;
1353 }
1354 printf_filtered ("%s)\n", windows_flavor);
1355 }
1356 else if (true_dos_version == 0x532 && advertized_dos_version == 0x500)
1357 printf_filtered ("Windows Version................"
1358 "Windows NT family (W2K/XP/W2K3/Vista/W2K8)\n");
1359 puts_filtered ("\n");
1360 /* On some versions of Windows, __dpmi_get_capabilities returns
1361 zero, but the buffer is not filled with info, so we fill the
1362 buffer with a known pattern and test for it afterwards. */
1363 memcpy (dpmi_vendor_info, test_pattern, sizeof(dpmi_vendor_info));
1364 dpmi_vendor_available =
1365 __dpmi_get_capabilities (&dpmi_flags, dpmi_vendor_info);
1366 if (dpmi_vendor_available == 0
1367 && memcmp (dpmi_vendor_info, test_pattern,
1368 sizeof(dpmi_vendor_info)) != 0)
1369 {
1370 /* The DPMI spec says the vendor string should be ASCIIZ, but
1371 I don't trust the vendors to follow that... */
1372 if (!memchr (&dpmi_vendor_info[2], 0, 126))
1373 dpmi_vendor_info[128] = '\0';
1374 printf_filtered ("DPMI Host......................"
1375 "%s v%d.%d (capabilities: %#x)\n",
1376 &dpmi_vendor_info[2],
1377 (unsigned)dpmi_vendor_info[0],
1378 (unsigned)dpmi_vendor_info[1],
1379 ((unsigned)dpmi_flags & 0x7f));
1380 }
1381 else
1382 printf_filtered ("DPMI Host......................(Info not available)\n");
1383 __dpmi_get_version (&dpmi_version_data);
1384 printf_filtered ("DPMI Version...................%d.%02d\n",
1385 dpmi_version_data.major, dpmi_version_data.minor);
1386 printf_filtered ("DPMI Info......................"
1387 "%s-bit DPMI, with%s Virtual Memory support\n",
1388 (dpmi_version_data.flags & 1) ? "32" : "16",
1389 (dpmi_version_data.flags & 4) ? "" : "out");
1390 printfi_filtered (31, "Interrupts reflected to %s mode\n",
1391 (dpmi_version_data.flags & 2) ? "V86" : "Real");
1392 printfi_filtered (31, "Processor type: i%d86\n",
1393 dpmi_version_data.cpu);
1394 printfi_filtered (31, "PIC base interrupt: Master: %#x Slave: %#x\n",
1395 dpmi_version_data.master_pic, dpmi_version_data.slave_pic);
1396
1397 /* a_tss is only initialized when the debuggee is first run. */
1398 if (prog_has_started)
1399 {
1400 __asm__ __volatile__ ("pushfl ; popl %0" : "=g" (eflags));
1401 printf_filtered ("Protection....................."
1402 "Ring %d (in %s), with%s I/O protection\n",
1403 a_tss.tss_cs & 3, (a_tss.tss_cs & 4) ? "LDT" : "GDT",
1404 (a_tss.tss_cs & 3) > ((eflags >> 12) & 3) ? "" : "out");
1405 }
1406 puts_filtered ("\n");
1407 __dpmi_get_free_memory_information (&mem_info);
1408 print_mem (mem_info.total_number_of_physical_pages,
1409 "DPMI Total Physical Memory.....", 1);
1410 print_mem (mem_info.total_number_of_free_pages,
1411 "DPMI Free Physical Memory......", 1);
1412 print_mem (mem_info.size_of_paging_file_partition_in_pages,
1413 "DPMI Swap Space................", 1);
1414 print_mem (mem_info.linear_address_space_size_in_pages,
1415 "DPMI Total Linear Address Size.", 1);
1416 print_mem (mem_info.free_linear_address_space_in_pages,
1417 "DPMI Free Linear Address Size..", 1);
1418 print_mem (mem_info.largest_available_free_block_in_bytes,
1419 "DPMI Largest Free Memory Block.", 0);
1420
1421 regs.h.ah = 0x48;
1422 regs.x.bx = 0xffff;
1423 __dpmi_int (0x21, &regs);
1424 print_mem (regs.x.bx << 4, "Free DOS Memory................", 0);
1425 regs.x.ax = 0x5800;
1426 __dpmi_int (0x21, &regs);
1427 if ((regs.x.flags & 1) == 0)
1428 {
1429 static const char *dos_hilo[] = {
1430 "Low", "", "", "", "High", "", "", "", "High, then Low"
1431 };
1432 static const char *dos_fit[] = {
1433 "First", "Best", "Last"
1434 };
1435 int hilo_idx = (regs.x.ax >> 4) & 0x0f;
1436 int fit_idx = regs.x.ax & 0x0f;
1437
1438 if (hilo_idx > 8)
1439 hilo_idx = 0;
1440 if (fit_idx > 2)
1441 fit_idx = 0;
1442 printf_filtered ("DOS Memory Allocation..........%s memory, %s fit\n",
1443 dos_hilo[hilo_idx], dos_fit[fit_idx]);
1444 regs.x.ax = 0x5802;
1445 __dpmi_int (0x21, &regs);
1446 if ((regs.x.flags & 1) != 0)
1447 regs.h.al = 0;
1448 printfi_filtered (31, "UMBs %sin DOS memory chain\n",
1449 regs.h.al == 0 ? "not " : "");
1450 }
1451 }
1452
1453 struct seg_descr {
1454 unsigned short limit0;
1455 unsigned short base0;
1456 unsigned char base1;
1457 unsigned stype:5;
1458 unsigned dpl:2;
1459 unsigned present:1;
1460 unsigned limit1:4;
1461 unsigned available:1;
1462 unsigned dummy:1;
1463 unsigned bit32:1;
1464 unsigned page_granular:1;
1465 unsigned char base2;
1466 } __attribute__ ((packed));
1467
1468 struct gate_descr {
1469 unsigned short offset0;
1470 unsigned short selector;
1471 unsigned param_count:5;
1472 unsigned dummy:3;
1473 unsigned stype:5;
1474 unsigned dpl:2;
1475 unsigned present:1;
1476 unsigned short offset1;
1477 } __attribute__ ((packed));
1478
1479 /* Read LEN bytes starting at logical address ADDR, and put the result
1480 into DEST. Return 1 if success, zero if not. */
1481 static int
1482 read_memory_region (unsigned long addr, void *dest, size_t len)
1483 {
1484 unsigned long dos_ds_limit = __dpmi_get_segment_limit (_dos_ds);
1485 int retval = 1;
1486
1487 /* For the low memory, we can simply use _dos_ds. */
1488 if (addr <= dos_ds_limit - len)
1489 dosmemget (addr, len, dest);
1490 else
1491 {
1492 /* For memory above 1MB we need to set up a special segment to
1493 be able to access that memory. */
1494 int sel = __dpmi_allocate_ldt_descriptors (1);
1495
1496 if (sel <= 0)
1497 retval = 0;
1498 else
1499 {
1500 int access_rights = __dpmi_get_descriptor_access_rights (sel);
1501 size_t segment_limit = len - 1;
1502
1503 /* Make sure the crucial bits in the descriptor access
1504 rights are set correctly. Some DPMI providers might barf
1505 if we set the segment limit to something that is not an
1506 integral multiple of 4KB pages if the granularity bit is
1507 not set to byte-granular, even though the DPMI spec says
1508 it's the host's responsibility to set that bit correctly. */
1509 if (len > 1024 * 1024)
1510 {
1511 access_rights |= 0x8000;
1512 /* Page-granular segments should have the low 12 bits of
1513 the limit set. */
1514 segment_limit |= 0xfff;
1515 }
1516 else
1517 access_rights &= ~0x8000;
1518
1519 if (__dpmi_set_segment_base_address (sel, addr) != -1
1520 && __dpmi_set_descriptor_access_rights (sel, access_rights) != -1
1521 && __dpmi_set_segment_limit (sel, segment_limit) != -1
1522 /* W2K silently fails to set the segment limit, leaving
1523 it at zero; this test avoids the resulting crash. */
1524 && __dpmi_get_segment_limit (sel) >= segment_limit)
1525 movedata (sel, 0, _my_ds (), (unsigned)dest, len);
1526 else
1527 retval = 0;
1528
1529 __dpmi_free_ldt_descriptor (sel);
1530 }
1531 }
1532 return retval;
1533 }
1534
1535 /* Get a segment descriptor stored at index IDX in the descriptor
1536 table whose base address is TABLE_BASE. Return the descriptor
1537 type, or -1 if failure. */
1538 static int
1539 get_descriptor (unsigned long table_base, int idx, void *descr)
1540 {
1541 unsigned long addr = table_base + idx * 8; /* 8 bytes per entry */
1542
1543 if (read_memory_region (addr, descr, 8))
1544 return (int)((struct seg_descr *)descr)->stype;
1545 return -1;
1546 }
1547
1548 struct dtr_reg {
1549 unsigned short limit __attribute__((packed));
1550 unsigned long base __attribute__((packed));
1551 };
1552
1553 /* Display a segment descriptor stored at index IDX in a descriptor
1554 table whose type is TYPE and whose base address is BASE_ADDR. If
1555 FORCE is non-zero, display even invalid descriptors. */
1556 static void
1557 display_descriptor (unsigned type, unsigned long base_addr, int idx, int force)
1558 {
1559 struct seg_descr descr;
1560 struct gate_descr gate;
1561
1562 /* Get the descriptor from the table. */
1563 if (idx == 0 && type == 0)
1564 puts_filtered ("0x000: null descriptor\n");
1565 else if (get_descriptor (base_addr, idx, &descr) != -1)
1566 {
1567 /* For each type of descriptor table, this has a bit set if the
1568 corresponding type of selectors is valid in that table. */
1569 static unsigned allowed_descriptors[] = {
1570 0xffffdafeL, /* GDT */
1571 0x0000c0e0L, /* IDT */
1572 0xffffdafaL /* LDT */
1573 };
1574
1575 /* If the program hasn't started yet, assume the debuggee will
1576 have the same CPL as the debugger. */
1577 int cpl = prog_has_started ? (a_tss.tss_cs & 3) : _my_cs () & 3;
1578 unsigned long limit = (descr.limit1 << 16) | descr.limit0;
1579
1580 if (descr.present
1581 && (allowed_descriptors[type] & (1 << descr.stype)) != 0)
1582 {
1583 printf_filtered ("0x%03x: ",
1584 type == 1
1585 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1586 if (descr.page_granular)
1587 limit = (limit << 12) | 0xfff; /* big segment: low 12 bit set */
1588 if (descr.stype == 1 || descr.stype == 2 || descr.stype == 3
1589 || descr.stype == 9 || descr.stype == 11
1590 || (descr.stype >= 16 && descr.stype < 32))
1591 printf_filtered ("base=0x%02x%02x%04x limit=0x%08lx",
1592 descr.base2, descr.base1, descr.base0, limit);
1593
1594 switch (descr.stype)
1595 {
1596 case 1:
1597 case 3:
1598 printf_filtered (" 16-bit TSS (task %sactive)",
1599 descr.stype == 3 ? "" : "in");
1600 break;
1601 case 2:
1602 puts_filtered (" LDT");
1603 break;
1604 case 4:
1605 memcpy (&gate, &descr, sizeof gate);
1606 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1607 gate.selector, gate.offset1, gate.offset0);
1608 printf_filtered (" 16-bit Call Gate (params=%d)",
1609 gate.param_count);
1610 break;
1611 case 5:
1612 printf_filtered ("TSS selector=0x%04x", descr.base0);
1613 printfi_filtered (16, "Task Gate");
1614 break;
1615 case 6:
1616 case 7:
1617 memcpy (&gate, &descr, sizeof gate);
1618 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1619 gate.selector, gate.offset1, gate.offset0);
1620 printf_filtered (" 16-bit %s Gate",
1621 descr.stype == 6 ? "Interrupt" : "Trap");
1622 break;
1623 case 9:
1624 case 11:
1625 printf_filtered (" 32-bit TSS (task %sactive)",
1626 descr.stype == 3 ? "" : "in");
1627 break;
1628 case 12:
1629 memcpy (&gate, &descr, sizeof gate);
1630 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1631 gate.selector, gate.offset1, gate.offset0);
1632 printf_filtered (" 32-bit Call Gate (params=%d)",
1633 gate.param_count);
1634 break;
1635 case 14:
1636 case 15:
1637 memcpy (&gate, &descr, sizeof gate);
1638 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1639 gate.selector, gate.offset1, gate.offset0);
1640 printf_filtered (" 32-bit %s Gate",
1641 descr.stype == 14 ? "Interrupt" : "Trap");
1642 break;
1643 case 16: /* data segments */
1644 case 17:
1645 case 18:
1646 case 19:
1647 case 20:
1648 case 21:
1649 case 22:
1650 case 23:
1651 printf_filtered (" %s-bit Data (%s Exp-%s%s)",
1652 descr.bit32 ? "32" : "16",
1653 descr.stype & 2
1654 ? "Read/Write," : "Read-Only, ",
1655 descr.stype & 4 ? "down" : "up",
1656 descr.stype & 1 ? "" : ", N.Acc");
1657 break;
1658 case 24: /* code segments */
1659 case 25:
1660 case 26:
1661 case 27:
1662 case 28:
1663 case 29:
1664 case 30:
1665 case 31:
1666 printf_filtered (" %s-bit Code (%s, %sConf%s)",
1667 descr.bit32 ? "32" : "16",
1668 descr.stype & 2 ? "Exec/Read" : "Exec-Only",
1669 descr.stype & 4 ? "" : "N.",
1670 descr.stype & 1 ? "" : ", N.Acc");
1671 break;
1672 default:
1673 printf_filtered ("Unknown type 0x%02x", descr.stype);
1674 break;
1675 }
1676 puts_filtered ("\n");
1677 }
1678 else if (force)
1679 {
1680 printf_filtered ("0x%03x: ",
1681 type == 1
1682 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1683 if (!descr.present)
1684 puts_filtered ("Segment not present\n");
1685 else
1686 printf_filtered ("Segment type 0x%02x is invalid in this table\n",
1687 descr.stype);
1688 }
1689 }
1690 else if (force)
1691 printf_filtered ("0x%03x: Cannot read this descriptor\n", idx);
1692 }
1693
1694 static void
1695 go32_sldt (char *arg, int from_tty)
1696 {
1697 struct dtr_reg gdtr;
1698 unsigned short ldtr = 0;
1699 int ldt_idx;
1700 struct seg_descr ldt_descr;
1701 long ldt_entry = -1L;
1702 int cpl = (prog_has_started ? a_tss.tss_cs : _my_cs ()) & 3;
1703
1704 if (arg && *arg)
1705 {
1706 while (*arg && isspace(*arg))
1707 arg++;
1708
1709 if (*arg)
1710 {
1711 ldt_entry = parse_and_eval_long (arg);
1712 if (ldt_entry < 0
1713 || (ldt_entry & 4) == 0
1714 || (ldt_entry & 3) != (cpl & 3))
1715 error (_("Invalid LDT entry 0x%03lx."), (unsigned long)ldt_entry);
1716 }
1717 }
1718
1719 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1720 __asm__ __volatile__ ("sldt %0" : "=m" (ldtr) : /* no inputs */ );
1721 ldt_idx = ldtr / 8;
1722 if (ldt_idx == 0)
1723 puts_filtered ("There is no LDT.\n");
1724 /* LDT's entry in the GDT must have the type LDT, which is 2. */
1725 else if (get_descriptor (gdtr.base, ldt_idx, &ldt_descr) != 2)
1726 printf_filtered ("LDT is present (at %#x), but unreadable by GDB.\n",
1727 ldt_descr.base0
1728 | (ldt_descr.base1 << 16)
1729 | (ldt_descr.base2 << 24));
1730 else
1731 {
1732 unsigned base =
1733 ldt_descr.base0
1734 | (ldt_descr.base1 << 16)
1735 | (ldt_descr.base2 << 24);
1736 unsigned limit = ldt_descr.limit0 | (ldt_descr.limit1 << 16);
1737 int max_entry;
1738
1739 if (ldt_descr.page_granular)
1740 /* Page-granular segments must have the low 12 bits of their
1741 limit set. */
1742 limit = (limit << 12) | 0xfff;
1743 /* LDT cannot have more than 8K 8-byte entries, i.e. more than
1744 64KB. */
1745 if (limit > 0xffff)
1746 limit = 0xffff;
1747
1748 max_entry = (limit + 1) / 8;
1749
1750 if (ldt_entry >= 0)
1751 {
1752 if (ldt_entry > limit)
1753 error (_("Invalid LDT entry %#lx: outside valid limits [0..%#x]"),
1754 (unsigned long)ldt_entry, limit);
1755
1756 display_descriptor (ldt_descr.stype, base, ldt_entry / 8, 1);
1757 }
1758 else
1759 {
1760 int i;
1761
1762 for (i = 0; i < max_entry; i++)
1763 display_descriptor (ldt_descr.stype, base, i, 0);
1764 }
1765 }
1766 }
1767
1768 static void
1769 go32_sgdt (char *arg, int from_tty)
1770 {
1771 struct dtr_reg gdtr;
1772 long gdt_entry = -1L;
1773 int max_entry;
1774
1775 if (arg && *arg)
1776 {
1777 while (*arg && isspace(*arg))
1778 arg++;
1779
1780 if (*arg)
1781 {
1782 gdt_entry = parse_and_eval_long (arg);
1783 if (gdt_entry < 0 || (gdt_entry & 7) != 0)
1784 error (_("Invalid GDT entry 0x%03lx: "
1785 "not an integral multiple of 8."),
1786 (unsigned long)gdt_entry);
1787 }
1788 }
1789
1790 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1791 max_entry = (gdtr.limit + 1) / 8;
1792
1793 if (gdt_entry >= 0)
1794 {
1795 if (gdt_entry > gdtr.limit)
1796 error (_("Invalid GDT entry %#lx: outside valid limits [0..%#x]"),
1797 (unsigned long)gdt_entry, gdtr.limit);
1798
1799 display_descriptor (0, gdtr.base, gdt_entry / 8, 1);
1800 }
1801 else
1802 {
1803 int i;
1804
1805 for (i = 0; i < max_entry; i++)
1806 display_descriptor (0, gdtr.base, i, 0);
1807 }
1808 }
1809
1810 static void
1811 go32_sidt (char *arg, int from_tty)
1812 {
1813 struct dtr_reg idtr;
1814 long idt_entry = -1L;
1815 int max_entry;
1816
1817 if (arg && *arg)
1818 {
1819 while (*arg && isspace(*arg))
1820 arg++;
1821
1822 if (*arg)
1823 {
1824 idt_entry = parse_and_eval_long (arg);
1825 if (idt_entry < 0)
1826 error (_("Invalid (negative) IDT entry %ld."), idt_entry);
1827 }
1828 }
1829
1830 __asm__ __volatile__ ("sidt %0" : "=m" (idtr) : /* no inputs */ );
1831 max_entry = (idtr.limit + 1) / 8;
1832 if (max_entry > 0x100) /* No more than 256 entries. */
1833 max_entry = 0x100;
1834
1835 if (idt_entry >= 0)
1836 {
1837 if (idt_entry > idtr.limit)
1838 error (_("Invalid IDT entry %#lx: outside valid limits [0..%#x]"),
1839 (unsigned long)idt_entry, idtr.limit);
1840
1841 display_descriptor (1, idtr.base, idt_entry, 1);
1842 }
1843 else
1844 {
1845 int i;
1846
1847 for (i = 0; i < max_entry; i++)
1848 display_descriptor (1, idtr.base, i, 0);
1849 }
1850 }
1851
1852 /* Cached linear address of the base of the page directory. For
1853 now, available only under CWSDPMI. Code based on ideas and
1854 suggestions from Charles Sandmann <sandmann@clio.rice.edu>. */
1855 static unsigned long pdbr;
1856
1857 static unsigned long
1858 get_cr3 (void)
1859 {
1860 unsigned offset;
1861 unsigned taskreg;
1862 unsigned long taskbase, cr3;
1863 struct dtr_reg gdtr;
1864
1865 if (pdbr > 0 && pdbr <= 0xfffff)
1866 return pdbr;
1867
1868 /* Get the linear address of GDT and the Task Register. */
1869 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1870 __asm__ __volatile__ ("str %0" : "=m" (taskreg) : /* no inputs */ );
1871
1872 /* Task Register is a segment selector for the TSS of the current
1873 task. Therefore, it can be used as an index into the GDT to get
1874 at the segment descriptor for the TSS. To get the index, reset
1875 the low 3 bits of the selector (which give the CPL). Add 2 to the
1876 offset to point to the 3 low bytes of the base address. */
1877 offset = gdtr.base + (taskreg & 0xfff8) + 2;
1878
1879
1880 /* CWSDPMI's task base is always under the 1MB mark. */
1881 if (offset > 0xfffff)
1882 return 0;
1883
1884 _farsetsel (_dos_ds);
1885 taskbase = _farnspeekl (offset) & 0xffffffU;
1886 taskbase += _farnspeekl (offset + 2) & 0xff000000U;
1887 if (taskbase > 0xfffff)
1888 return 0;
1889
1890 /* CR3 (a.k.a. PDBR, the Page Directory Base Register) is stored at
1891 offset 1Ch in the TSS. */
1892 cr3 = _farnspeekl (taskbase + 0x1c) & ~0xfff;
1893 if (cr3 > 0xfffff)
1894 {
1895 #if 0 /* Not fullly supported yet. */
1896 /* The Page Directory is in UMBs. In that case, CWSDPMI puts
1897 the first Page Table right below the Page Directory. Thus,
1898 the first Page Table's entry for its own address and the Page
1899 Directory entry for that Page Table will hold the same
1900 physical address. The loop below searches the entire UMB
1901 range of addresses for such an occurence. */
1902 unsigned long addr, pte_idx;
1903
1904 for (addr = 0xb0000, pte_idx = 0xb0;
1905 pte_idx < 0xff;
1906 addr += 0x1000, pte_idx++)
1907 {
1908 if (((_farnspeekl (addr + 4 * pte_idx) & 0xfffff027) ==
1909 (_farnspeekl (addr + 0x1000) & 0xfffff027))
1910 && ((_farnspeekl (addr + 4 * pte_idx + 4) & 0xfffff000) == cr3))
1911 {
1912 cr3 = addr + 0x1000;
1913 break;
1914 }
1915 }
1916 #endif
1917
1918 if (cr3 > 0xfffff)
1919 cr3 = 0;
1920 }
1921
1922 return cr3;
1923 }
1924
1925 /* Return the N'th Page Directory entry. */
1926 static unsigned long
1927 get_pde (int n)
1928 {
1929 unsigned long pde = 0;
1930
1931 if (pdbr && n >= 0 && n < 1024)
1932 {
1933 pde = _farpeekl (_dos_ds, pdbr + 4*n);
1934 }
1935 return pde;
1936 }
1937
1938 /* Return the N'th entry of the Page Table whose Page Directory entry
1939 is PDE. */
1940 static unsigned long
1941 get_pte (unsigned long pde, int n)
1942 {
1943 unsigned long pte = 0;
1944
1945 /* pde & 0x80 tests the 4MB page bit. We don't support 4MB
1946 page tables, for now. */
1947 if ((pde & 1) && !(pde & 0x80) && n >= 0 && n < 1024)
1948 {
1949 pde &= ~0xfff; /* Clear non-address bits. */
1950 pte = _farpeekl (_dos_ds, pde + 4*n);
1951 }
1952 return pte;
1953 }
1954
1955 /* Display a Page Directory or Page Table entry. IS_DIR, if non-zero,
1956 says this is a Page Directory entry. If FORCE is non-zero, display
1957 the entry even if its Present flag is off. OFF is the offset of the
1958 address from the page's base address. */
1959 static void
1960 display_ptable_entry (unsigned long entry, int is_dir, int force, unsigned off)
1961 {
1962 if ((entry & 1) != 0)
1963 {
1964 printf_filtered ("Base=0x%05lx000", entry >> 12);
1965 if ((entry & 0x100) && !is_dir)
1966 puts_filtered (" Global");
1967 if ((entry & 0x40) && !is_dir)
1968 puts_filtered (" Dirty");
1969 printf_filtered (" %sAcc.", (entry & 0x20) ? "" : "Not-");
1970 printf_filtered (" %sCached", (entry & 0x10) ? "" : "Not-");
1971 printf_filtered (" Write-%s", (entry & 8) ? "Thru" : "Back");
1972 printf_filtered (" %s", (entry & 4) ? "Usr" : "Sup");
1973 printf_filtered (" Read-%s", (entry & 2) ? "Write" : "Only");
1974 if (off)
1975 printf_filtered (" +0x%x", off);
1976 puts_filtered ("\n");
1977 }
1978 else if (force)
1979 printf_filtered ("Page%s not present or not supported; value=0x%lx.\n",
1980 is_dir ? " Table" : "", entry >> 1);
1981 }
1982
1983 static void
1984 go32_pde (char *arg, int from_tty)
1985 {
1986 long pde_idx = -1, i;
1987
1988 if (arg && *arg)
1989 {
1990 while (*arg && isspace(*arg))
1991 arg++;
1992
1993 if (*arg)
1994 {
1995 pde_idx = parse_and_eval_long (arg);
1996 if (pde_idx < 0 || pde_idx >= 1024)
1997 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
1998 }
1999 }
2000
2001 pdbr = get_cr3 ();
2002 if (!pdbr)
2003 puts_filtered ("Access to Page Directories is "
2004 "not supported on this system.\n");
2005 else if (pde_idx >= 0)
2006 display_ptable_entry (get_pde (pde_idx), 1, 1, 0);
2007 else
2008 for (i = 0; i < 1024; i++)
2009 display_ptable_entry (get_pde (i), 1, 0, 0);
2010 }
2011
2012 /* A helper function to display entries in a Page Table pointed to by
2013 the N'th entry in the Page Directory. If FORCE is non-zero, say
2014 something even if the Page Table is not accessible. */
2015 static void
2016 display_page_table (long n, int force)
2017 {
2018 unsigned long pde = get_pde (n);
2019
2020 if ((pde & 1) != 0)
2021 {
2022 int i;
2023
2024 printf_filtered ("Page Table pointed to by "
2025 "Page Directory entry 0x%lx:\n", n);
2026 for (i = 0; i < 1024; i++)
2027 display_ptable_entry (get_pte (pde, i), 0, 0, 0);
2028 puts_filtered ("\n");
2029 }
2030 else if (force)
2031 printf_filtered ("Page Table not present; value=0x%lx.\n", pde >> 1);
2032 }
2033
2034 static void
2035 go32_pte (char *arg, int from_tty)
2036 {
2037 long pde_idx = -1L, i;
2038
2039 if (arg && *arg)
2040 {
2041 while (*arg && isspace(*arg))
2042 arg++;
2043
2044 if (*arg)
2045 {
2046 pde_idx = parse_and_eval_long (arg);
2047 if (pde_idx < 0 || pde_idx >= 1024)
2048 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
2049 }
2050 }
2051
2052 pdbr = get_cr3 ();
2053 if (!pdbr)
2054 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2055 else if (pde_idx >= 0)
2056 display_page_table (pde_idx, 1);
2057 else
2058 for (i = 0; i < 1024; i++)
2059 display_page_table (i, 0);
2060 }
2061
2062 static void
2063 go32_pte_for_address (char *arg, int from_tty)
2064 {
2065 CORE_ADDR addr = 0, i;
2066
2067 if (arg && *arg)
2068 {
2069 while (*arg && isspace(*arg))
2070 arg++;
2071
2072 if (*arg)
2073 addr = parse_and_eval_address (arg);
2074 }
2075 if (!addr)
2076 error_no_arg (_("linear address"));
2077
2078 pdbr = get_cr3 ();
2079 if (!pdbr)
2080 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2081 else
2082 {
2083 int pde_idx = (addr >> 22) & 0x3ff;
2084 int pte_idx = (addr >> 12) & 0x3ff;
2085 unsigned offs = addr & 0xfff;
2086
2087 printf_filtered ("Page Table entry for address %s:\n",
2088 hex_string(addr));
2089 display_ptable_entry (get_pte (get_pde (pde_idx), pte_idx), 0, 1, offs);
2090 }
2091 }
2092
2093 static struct cmd_list_element *info_dos_cmdlist = NULL;
2094
2095 static void
2096 go32_info_dos_command (char *args, int from_tty)
2097 {
2098 help_list (info_dos_cmdlist, "info dos ", class_info, gdb_stdout);
2099 }
2100
2101 /* -Wmissing-prototypes */
2102 extern initialize_file_ftype _initialize_go32_nat;
2103
2104 void
2105 _initialize_go32_nat (void)
2106 {
2107 init_go32_ops ();
2108 add_target (&go32_ops);
2109
2110 add_prefix_cmd ("dos", class_info, go32_info_dos_command, _("\
2111 Print information specific to DJGPP (aka MS-DOS) debugging."),
2112 &info_dos_cmdlist, "info dos ", 0, &infolist);
2113
2114 add_cmd ("sysinfo", class_info, go32_sysinfo, _("\
2115 Display information about the target system, including CPU, OS, DPMI, etc."),
2116 &info_dos_cmdlist);
2117 add_cmd ("ldt", class_info, go32_sldt, _("\
2118 Display entries in the LDT (Local Descriptor Table).\n\
2119 Entry number (an expression) as an argument means display only that entry."),
2120 &info_dos_cmdlist);
2121 add_cmd ("gdt", class_info, go32_sgdt, _("\
2122 Display entries in the GDT (Global Descriptor Table).\n\
2123 Entry number (an expression) as an argument means display only that entry."),
2124 &info_dos_cmdlist);
2125 add_cmd ("idt", class_info, go32_sidt, _("\
2126 Display entries in the IDT (Interrupt Descriptor Table).\n\
2127 Entry number (an expression) as an argument means display only that entry."),
2128 &info_dos_cmdlist);
2129 add_cmd ("pde", class_info, go32_pde, _("\
2130 Display entries in the Page Directory.\n\
2131 Entry number (an expression) as an argument means display only that entry."),
2132 &info_dos_cmdlist);
2133 add_cmd ("pte", class_info, go32_pte, _("\
2134 Display entries in Page Tables.\n\
2135 Entry number (an expression) as an argument means display only entries\n\
2136 from the Page Table pointed to by the specified Page Directory entry."),
2137 &info_dos_cmdlist);
2138 add_cmd ("address-pte", class_info, go32_pte_for_address, _("\
2139 Display a Page Table entry for a linear address.\n\
2140 The address argument must be a linear address, after adding to\n\
2141 it the base address of the appropriate segment.\n\
2142 The base address of variables and functions in the debuggee's data\n\
2143 or code segment is stored in the variable __djgpp_base_address,\n\
2144 so use `__djgpp_base_address + (char *)&var' as the argument.\n\
2145 For other segments, look up their base address in the output of\n\
2146 the `info dos ldt' command."),
2147 &info_dos_cmdlist);
2148 }
2149
2150 pid_t
2151 tcgetpgrp (int fd)
2152 {
2153 if (isatty (fd))
2154 return SOME_PID;
2155 errno = ENOTTY;
2156 return -1;
2157 }
2158
2159 int
2160 tcsetpgrp (int fd, pid_t pgid)
2161 {
2162 if (isatty (fd) && pgid == SOME_PID)
2163 return 0;
2164 errno = pgid == SOME_PID ? ENOTTY : ENOSYS;
2165 return -1;
2166 }
This page took 0.146604 seconds and 5 git commands to generate.