Add target_ops argument to to_terminal_inferior
[deliverable/binutils-gdb.git] / gdb / go32-nat.c
1 /* Native debugging support for Intel x86 running DJGPP.
2 Copyright (C) 1997-2014 Free Software Foundation, Inc.
3 Written by Robert Hoehne.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* To whomever it may concern, here's a general description of how
21 debugging in DJGPP works, and the special quirks GDB does to
22 support that.
23
24 When the DJGPP port of GDB is debugging a DJGPP program natively,
25 there aren't 2 separate processes, the debuggee and GDB itself, as
26 on other systems. (This is DOS, where there can only be one active
27 process at any given time, remember?) Instead, GDB and the
28 debuggee live in the same process. So when GDB calls
29 go32_create_inferior below, and that function calls edi_init from
30 the DJGPP debug support library libdbg.a, we load the debuggee's
31 executable file into GDB's address space, set it up for execution
32 as the stub loader (a short real-mode program prepended to each
33 DJGPP executable) normally would, and do a lot of preparations for
34 swapping between GDB's and debuggee's internal state, primarily wrt
35 the exception handlers. This swapping happens every time we resume
36 the debuggee or switch back to GDB's code, and it includes:
37
38 . swapping all the segment registers
39 . swapping the PSP (the Program Segment Prefix)
40 . swapping the signal handlers
41 . swapping the exception handlers
42 . swapping the FPU status
43 . swapping the 3 standard file handles (more about this below)
44
45 Then running the debuggee simply means longjmp into it where its PC
46 is and let it run until it stops for some reason. When it stops,
47 GDB catches the exception that stopped it and longjmp's back into
48 its own code. All the possible exit points of the debuggee are
49 watched; for example, the normal exit point is recognized because a
50 DOS program issues a special system call to exit. If one of those
51 exit points is hit, we mourn the inferior and clean up after it.
52 Cleaning up is very important, even if the process exits normally,
53 because otherwise we might leave behind traces of previous
54 execution, and in several cases GDB itself might be left hosed,
55 because all the exception handlers were not restored.
56
57 Swapping of the standard handles (in redir_to_child and
58 redir_to_debugger) is needed because, since both GDB and the
59 debuggee live in the same process, as far as the OS is concerned,
60 the share the same file table. This means that the standard
61 handles 0, 1, and 2 point to the same file table entries, and thus
62 are connected to the same devices. Therefore, if the debugger
63 redirects its standard output, the standard output of the debuggee
64 is also automagically redirected to the same file/device!
65 Similarly, if the debuggee redirects its stdout to a file, you
66 won't be able to see debugger's output (it will go to the same file
67 where the debuggee has its output); and if the debuggee closes its
68 standard input, you will lose the ability to talk to debugger!
69
70 For this reason, every time the debuggee is about to be resumed, we
71 call redir_to_child, which redirects the standard handles to where
72 the debuggee expects them to be. When the debuggee stops and GDB
73 regains control, we call redir_to_debugger, which redirects those 3
74 handles back to where GDB expects.
75
76 Note that only the first 3 handles are swapped, so if the debuggee
77 redirects or closes any other handles, GDB will not notice. In
78 particular, the exit code of a DJGPP program forcibly closes all
79 file handles beyond the first 3 ones, so when the debuggee exits,
80 GDB currently loses its stdaux and stdprn streams. Fortunately,
81 GDB does not use those as of this writing, and will never need
82 to. */
83
84 #include "defs.h"
85
86 #include <fcntl.h>
87
88 #include "i386-nat.h"
89 #include "inferior.h"
90 #include "gdbthread.h"
91 #include "gdb_wait.h"
92 #include "gdbcore.h"
93 #include "command.h"
94 #include "gdbcmd.h"
95 #include "floatformat.h"
96 #include "buildsym.h"
97 #include "i387-tdep.h"
98 #include "i386-tdep.h"
99 #include "i386-cpuid.h"
100 #include "value.h"
101 #include "regcache.h"
102 #include <string.h>
103 #include "top.h"
104 #include "cli/cli-utils.h"
105
106 #include <stdio.h> /* might be required for __DJGPP_MINOR__ */
107 #include <stdlib.h>
108 #include <ctype.h>
109 #include <errno.h>
110 #include <unistd.h>
111 #include <sys/utsname.h>
112 #include <io.h>
113 #include <dos.h>
114 #include <dpmi.h>
115 #include <go32.h>
116 #include <sys/farptr.h>
117 #include <debug/v2load.h>
118 #include <debug/dbgcom.h>
119 #if __DJGPP_MINOR__ > 2
120 #include <debug/redir.h>
121 #endif
122
123 #include <langinfo.h>
124
125 #if __DJGPP_MINOR__ < 3
126 /* This code will be provided from DJGPP 2.03 on. Until then I code it
127 here. */
128 typedef struct
129 {
130 unsigned short sig0;
131 unsigned short sig1;
132 unsigned short sig2;
133 unsigned short sig3;
134 unsigned short exponent:15;
135 unsigned short sign:1;
136 }
137 NPXREG;
138
139 typedef struct
140 {
141 unsigned int control;
142 unsigned int status;
143 unsigned int tag;
144 unsigned int eip;
145 unsigned int cs;
146 unsigned int dataptr;
147 unsigned int datasel;
148 NPXREG reg[8];
149 }
150 NPX;
151
152 static NPX npx;
153
154 static void save_npx (void); /* Save the FPU of the debugged program. */
155 static void load_npx (void); /* Restore the FPU of the debugged program. */
156
157 /* ------------------------------------------------------------------------- */
158 /* Store the contents of the NPX in the global variable `npx'. */
159 /* *INDENT-OFF* */
160
161 static void
162 save_npx (void)
163 {
164 asm ("inb $0xa0, %%al \n\
165 testb $0x20, %%al \n\
166 jz 1f \n\
167 xorb %%al, %%al \n\
168 outb %%al, $0xf0 \n\
169 movb $0x20, %%al \n\
170 outb %%al, $0xa0 \n\
171 outb %%al, $0x20 \n\
172 1: \n\
173 fnsave %0 \n\
174 fwait "
175 : "=m" (npx)
176 : /* No input */
177 : "%eax");
178 }
179
180 /* *INDENT-ON* */
181
182
183 /* ------------------------------------------------------------------------- */
184 /* Reload the contents of the NPX from the global variable `npx'. */
185
186 static void
187 load_npx (void)
188 {
189 asm ("frstor %0":"=m" (npx));
190 }
191 /* ------------------------------------------------------------------------- */
192 /* Stubs for the missing redirection functions. */
193 typedef struct {
194 char *command;
195 int redirected;
196 } cmdline_t;
197
198 void
199 redir_cmdline_delete (cmdline_t *ptr)
200 {
201 ptr->redirected = 0;
202 }
203
204 int
205 redir_cmdline_parse (const char *args, cmdline_t *ptr)
206 {
207 return -1;
208 }
209
210 int
211 redir_to_child (cmdline_t *ptr)
212 {
213 return 1;
214 }
215
216 int
217 redir_to_debugger (cmdline_t *ptr)
218 {
219 return 1;
220 }
221
222 int
223 redir_debug_init (cmdline_t *ptr)
224 {
225 return 0;
226 }
227 #endif /* __DJGPP_MINOR < 3 */
228
229 typedef enum { wp_insert, wp_remove, wp_count } wp_op;
230
231 /* This holds the current reference counts for each debug register. */
232 static int dr_ref_count[4];
233
234 #define SOME_PID 42
235
236 static int prog_has_started = 0;
237 static void go32_mourn_inferior (struct target_ops *ops);
238
239 static struct target_ops go32_ops;
240
241 #define r_ofs(x) (offsetof(TSS,x))
242
243 static struct
244 {
245 size_t tss_ofs;
246 size_t size;
247 }
248 regno_mapping[] =
249 {
250 {r_ofs (tss_eax), 4}, /* normal registers, from a_tss */
251 {r_ofs (tss_ecx), 4},
252 {r_ofs (tss_edx), 4},
253 {r_ofs (tss_ebx), 4},
254 {r_ofs (tss_esp), 4},
255 {r_ofs (tss_ebp), 4},
256 {r_ofs (tss_esi), 4},
257 {r_ofs (tss_edi), 4},
258 {r_ofs (tss_eip), 4},
259 {r_ofs (tss_eflags), 4},
260 {r_ofs (tss_cs), 2},
261 {r_ofs (tss_ss), 2},
262 {r_ofs (tss_ds), 2},
263 {r_ofs (tss_es), 2},
264 {r_ofs (tss_fs), 2},
265 {r_ofs (tss_gs), 2},
266 {0, 10}, /* 8 FP registers, from npx.reg[] */
267 {1, 10},
268 {2, 10},
269 {3, 10},
270 {4, 10},
271 {5, 10},
272 {6, 10},
273 {7, 10},
274 /* The order of the next 7 registers must be consistent
275 with their numbering in config/i386/tm-i386.h, which see. */
276 {0, 2}, /* control word, from npx */
277 {4, 2}, /* status word, from npx */
278 {8, 2}, /* tag word, from npx */
279 {16, 2}, /* last FP exception CS from npx */
280 {12, 4}, /* last FP exception EIP from npx */
281 {24, 2}, /* last FP exception operand selector from npx */
282 {20, 4}, /* last FP exception operand offset from npx */
283 {18, 2} /* last FP opcode from npx */
284 };
285
286 static struct
287 {
288 int go32_sig;
289 enum gdb_signal gdb_sig;
290 }
291 sig_map[] =
292 {
293 {0, GDB_SIGNAL_FPE},
294 {1, GDB_SIGNAL_TRAP},
295 /* Exception 2 is triggered by the NMI. DJGPP handles it as SIGILL,
296 but I think SIGBUS is better, since the NMI is usually activated
297 as a result of a memory parity check failure. */
298 {2, GDB_SIGNAL_BUS},
299 {3, GDB_SIGNAL_TRAP},
300 {4, GDB_SIGNAL_FPE},
301 {5, GDB_SIGNAL_SEGV},
302 {6, GDB_SIGNAL_ILL},
303 {7, GDB_SIGNAL_EMT}, /* no-coprocessor exception */
304 {8, GDB_SIGNAL_SEGV},
305 {9, GDB_SIGNAL_SEGV},
306 {10, GDB_SIGNAL_BUS},
307 {11, GDB_SIGNAL_SEGV},
308 {12, GDB_SIGNAL_SEGV},
309 {13, GDB_SIGNAL_SEGV},
310 {14, GDB_SIGNAL_SEGV},
311 {16, GDB_SIGNAL_FPE},
312 {17, GDB_SIGNAL_BUS},
313 {31, GDB_SIGNAL_ILL},
314 {0x1b, GDB_SIGNAL_INT},
315 {0x75, GDB_SIGNAL_FPE},
316 {0x78, GDB_SIGNAL_ALRM},
317 {0x79, GDB_SIGNAL_INT},
318 {0x7a, GDB_SIGNAL_QUIT},
319 {-1, GDB_SIGNAL_LAST}
320 };
321
322 static struct {
323 enum gdb_signal gdb_sig;
324 int djgpp_excepno;
325 } excepn_map[] = {
326 {GDB_SIGNAL_0, -1},
327 {GDB_SIGNAL_ILL, 6}, /* Invalid Opcode */
328 {GDB_SIGNAL_EMT, 7}, /* triggers SIGNOFP */
329 {GDB_SIGNAL_SEGV, 13}, /* GPF */
330 {GDB_SIGNAL_BUS, 17}, /* Alignment Check */
331 /* The rest are fake exceptions, see dpmiexcp.c in djlsr*.zip for
332 details. */
333 {GDB_SIGNAL_TERM, 0x1b}, /* triggers Ctrl-Break type of SIGINT */
334 {GDB_SIGNAL_FPE, 0x75},
335 {GDB_SIGNAL_INT, 0x79},
336 {GDB_SIGNAL_QUIT, 0x7a},
337 {GDB_SIGNAL_ALRM, 0x78}, /* triggers SIGTIMR */
338 {GDB_SIGNAL_PROF, 0x78},
339 {GDB_SIGNAL_LAST, -1}
340 };
341
342 static void
343 go32_open (char *name, int from_tty)
344 {
345 printf_unfiltered ("Done. Use the \"run\" command to run the program.\n");
346 }
347
348 static void
349 go32_close (struct target_ops *self)
350 {
351 }
352
353 static void
354 go32_attach (struct target_ops *ops, char *args, int from_tty)
355 {
356 error (_("\
357 You cannot attach to a running program on this platform.\n\
358 Use the `run' command to run DJGPP programs."));
359 }
360
361 static void
362 go32_detach (struct target_ops *ops, const char *args, int from_tty)
363 {
364 }
365
366 static int resume_is_step;
367 static int resume_signal = -1;
368
369 static void
370 go32_resume (struct target_ops *ops,
371 ptid_t ptid, int step, enum gdb_signal siggnal)
372 {
373 int i;
374
375 resume_is_step = step;
376
377 if (siggnal != GDB_SIGNAL_0 && siggnal != GDB_SIGNAL_TRAP)
378 {
379 for (i = 0, resume_signal = -1;
380 excepn_map[i].gdb_sig != GDB_SIGNAL_LAST; i++)
381 if (excepn_map[i].gdb_sig == siggnal)
382 {
383 resume_signal = excepn_map[i].djgpp_excepno;
384 break;
385 }
386 if (resume_signal == -1)
387 printf_unfiltered ("Cannot deliver signal %s on this platform.\n",
388 gdb_signal_to_name (siggnal));
389 }
390 }
391
392 static char child_cwd[FILENAME_MAX];
393
394 static ptid_t
395 go32_wait (struct target_ops *ops,
396 ptid_t ptid, struct target_waitstatus *status, int options)
397 {
398 int i;
399 unsigned char saved_opcode;
400 unsigned long INT3_addr = 0;
401 int stepping_over_INT = 0;
402
403 a_tss.tss_eflags &= 0xfeff; /* Reset the single-step flag (TF). */
404 if (resume_is_step)
405 {
406 /* If the next instruction is INT xx or INTO, we need to handle
407 them specially. Intel manuals say that these instructions
408 reset the single-step flag (a.k.a. TF). However, it seems
409 that, at least in the DPMI environment, and at least when
410 stepping over the DPMI interrupt 31h, the problem is having
411 TF set at all when INT 31h is executed: the debuggee either
412 crashes (and takes the system with it) or is killed by a
413 SIGTRAP.
414
415 So we need to emulate single-step mode: we put an INT3 opcode
416 right after the INT xx instruction, let the debuggee run
417 until it hits INT3 and stops, then restore the original
418 instruction which we overwrote with the INT3 opcode, and back
419 up the debuggee's EIP to that instruction. */
420 read_child (a_tss.tss_eip, &saved_opcode, 1);
421 if (saved_opcode == 0xCD || saved_opcode == 0xCE)
422 {
423 unsigned char INT3_opcode = 0xCC;
424
425 INT3_addr
426 = saved_opcode == 0xCD ? a_tss.tss_eip + 2 : a_tss.tss_eip + 1;
427 stepping_over_INT = 1;
428 read_child (INT3_addr, &saved_opcode, 1);
429 write_child (INT3_addr, &INT3_opcode, 1);
430 }
431 else
432 a_tss.tss_eflags |= 0x0100; /* normal instruction: set TF */
433 }
434
435 /* The special value FFFFh in tss_trap indicates to run_child that
436 tss_irqn holds a signal to be delivered to the debuggee. */
437 if (resume_signal <= -1)
438 {
439 a_tss.tss_trap = 0;
440 a_tss.tss_irqn = 0xff;
441 }
442 else
443 {
444 a_tss.tss_trap = 0xffff; /* run_child looks for this. */
445 a_tss.tss_irqn = resume_signal;
446 }
447
448 /* The child might change working directory behind our back. The
449 GDB users won't like the side effects of that when they work with
450 relative file names, and GDB might be confused by its current
451 directory not being in sync with the truth. So we always make a
452 point of changing back to where GDB thinks is its cwd, when we
453 return control to the debugger, but restore child's cwd before we
454 run it. */
455 /* Initialize child_cwd, before the first call to run_child and not
456 in the initialization, so the child get also the changed directory
457 set with the gdb-command "cd ..." */
458 if (!*child_cwd)
459 /* Initialize child's cwd with the current one. */
460 getcwd (child_cwd, sizeof (child_cwd));
461
462 chdir (child_cwd);
463
464 #if __DJGPP_MINOR__ < 3
465 load_npx ();
466 #endif
467 run_child ();
468 #if __DJGPP_MINOR__ < 3
469 save_npx ();
470 #endif
471
472 /* Did we step over an INT xx instruction? */
473 if (stepping_over_INT && a_tss.tss_eip == INT3_addr + 1)
474 {
475 /* Restore the original opcode. */
476 a_tss.tss_eip--; /* EIP points *after* the INT3 instruction. */
477 write_child (a_tss.tss_eip, &saved_opcode, 1);
478 /* Simulate a TRAP exception. */
479 a_tss.tss_irqn = 1;
480 a_tss.tss_eflags |= 0x0100;
481 }
482
483 getcwd (child_cwd, sizeof (child_cwd)); /* in case it has changed */
484 chdir (current_directory);
485
486 if (a_tss.tss_irqn == 0x21)
487 {
488 status->kind = TARGET_WAITKIND_EXITED;
489 status->value.integer = a_tss.tss_eax & 0xff;
490 }
491 else
492 {
493 status->value.sig = GDB_SIGNAL_UNKNOWN;
494 status->kind = TARGET_WAITKIND_STOPPED;
495 for (i = 0; sig_map[i].go32_sig != -1; i++)
496 {
497 if (a_tss.tss_irqn == sig_map[i].go32_sig)
498 {
499 #if __DJGPP_MINOR__ < 3
500 if ((status->value.sig = sig_map[i].gdb_sig) !=
501 GDB_SIGNAL_TRAP)
502 status->kind = TARGET_WAITKIND_SIGNALLED;
503 #else
504 status->value.sig = sig_map[i].gdb_sig;
505 #endif
506 break;
507 }
508 }
509 }
510 return pid_to_ptid (SOME_PID);
511 }
512
513 static void
514 fetch_register (struct regcache *regcache, int regno)
515 {
516 struct gdbarch *gdbarch = get_regcache_arch (regcache);
517 if (regno < gdbarch_fp0_regnum (gdbarch))
518 regcache_raw_supply (regcache, regno,
519 (char *) &a_tss + regno_mapping[regno].tss_ofs);
520 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
521 regno))
522 i387_supply_fsave (regcache, regno, &npx);
523 else
524 internal_error (__FILE__, __LINE__,
525 _("Invalid register no. %d in fetch_register."), regno);
526 }
527
528 static void
529 go32_fetch_registers (struct target_ops *ops,
530 struct regcache *regcache, int regno)
531 {
532 if (regno >= 0)
533 fetch_register (regcache, regno);
534 else
535 {
536 for (regno = 0;
537 regno < gdbarch_fp0_regnum (get_regcache_arch (regcache));
538 regno++)
539 fetch_register (regcache, regno);
540 i387_supply_fsave (regcache, -1, &npx);
541 }
542 }
543
544 static void
545 store_register (const struct regcache *regcache, int regno)
546 {
547 struct gdbarch *gdbarch = get_regcache_arch (regcache);
548 if (regno < gdbarch_fp0_regnum (gdbarch))
549 regcache_raw_collect (regcache, regno,
550 (char *) &a_tss + regno_mapping[regno].tss_ofs);
551 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
552 regno))
553 i387_collect_fsave (regcache, regno, &npx);
554 else
555 internal_error (__FILE__, __LINE__,
556 _("Invalid register no. %d in store_register."), regno);
557 }
558
559 static void
560 go32_store_registers (struct target_ops *ops,
561 struct regcache *regcache, int regno)
562 {
563 unsigned r;
564
565 if (regno >= 0)
566 store_register (regcache, regno);
567 else
568 {
569 for (r = 0; r < gdbarch_fp0_regnum (get_regcache_arch (regcache)); r++)
570 store_register (regcache, r);
571 i387_collect_fsave (regcache, -1, &npx);
572 }
573 }
574
575 static void
576 go32_prepare_to_store (struct target_ops *self, struct regcache *regcache)
577 {
578 }
579
580 static int
581 go32_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int write,
582 struct mem_attrib *attrib, struct target_ops *target)
583 {
584 if (write)
585 {
586 if (write_child (memaddr, myaddr, len))
587 {
588 return 0;
589 }
590 else
591 {
592 return len;
593 }
594 }
595 else
596 {
597 if (read_child (memaddr, myaddr, len))
598 {
599 return 0;
600 }
601 else
602 {
603 return len;
604 }
605 }
606 }
607
608 static cmdline_t child_cmd; /* Parsed child's command line kept here. */
609
610 static void
611 go32_files_info (struct target_ops *target)
612 {
613 printf_unfiltered ("You are running a DJGPP V2 program.\n");
614 }
615
616 static void
617 go32_kill_inferior (struct target_ops *ops)
618 {
619 go32_mourn_inferior (ops);
620 }
621
622 static void
623 go32_create_inferior (struct target_ops *ops, char *exec_file,
624 char *args, char **env, int from_tty)
625 {
626 extern char **environ;
627 jmp_buf start_state;
628 char *cmdline;
629 char **env_save = environ;
630 size_t cmdlen;
631 struct inferior *inf;
632
633 /* If no exec file handed to us, get it from the exec-file command -- with
634 a good, common error message if none is specified. */
635 if (exec_file == 0)
636 exec_file = get_exec_file (1);
637
638 resume_signal = -1;
639 resume_is_step = 0;
640
641 /* Initialize child's cwd as empty to be initialized when starting
642 the child. */
643 *child_cwd = 0;
644
645 /* Init command line storage. */
646 if (redir_debug_init (&child_cmd) == -1)
647 internal_error (__FILE__, __LINE__,
648 _("Cannot allocate redirection storage: "
649 "not enough memory.\n"));
650
651 /* Parse the command line and create redirections. */
652 if (strpbrk (args, "<>"))
653 {
654 if (redir_cmdline_parse (args, &child_cmd) == 0)
655 args = child_cmd.command;
656 else
657 error (_("Syntax error in command line."));
658 }
659 else
660 child_cmd.command = xstrdup (args);
661
662 cmdlen = strlen (args);
663 /* v2loadimage passes command lines via DOS memory, so it cannot
664 possibly handle commands longer than 1MB. */
665 if (cmdlen > 1024*1024)
666 error (_("Command line too long."));
667
668 cmdline = xmalloc (cmdlen + 4);
669 strcpy (cmdline + 1, args);
670 /* If the command-line length fits into DOS 126-char limits, use the
671 DOS command tail format; otherwise, tell v2loadimage to pass it
672 through a buffer in conventional memory. */
673 if (cmdlen < 127)
674 {
675 cmdline[0] = strlen (args);
676 cmdline[cmdlen + 1] = 13;
677 }
678 else
679 cmdline[0] = 0xff; /* Signal v2loadimage it's a long command. */
680
681 environ = env;
682
683 if (v2loadimage (exec_file, cmdline, start_state))
684 {
685 environ = env_save;
686 printf_unfiltered ("Load failed for image %s\n", exec_file);
687 exit (1);
688 }
689 environ = env_save;
690 xfree (cmdline);
691
692 edi_init (start_state);
693 #if __DJGPP_MINOR__ < 3
694 save_npx ();
695 #endif
696
697 inferior_ptid = pid_to_ptid (SOME_PID);
698 inf = current_inferior ();
699 inferior_appeared (inf, SOME_PID);
700
701 push_target (&go32_ops);
702
703 add_thread_silent (inferior_ptid);
704
705 clear_proceed_status ();
706 insert_breakpoints ();
707 prog_has_started = 1;
708 }
709
710 static void
711 go32_mourn_inferior (struct target_ops *ops)
712 {
713 ptid_t ptid;
714
715 redir_cmdline_delete (&child_cmd);
716 resume_signal = -1;
717 resume_is_step = 0;
718
719 cleanup_client ();
720
721 /* We need to make sure all the breakpoint enable bits in the DR7
722 register are reset when the inferior exits. Otherwise, if they
723 rerun the inferior, the uncleared bits may cause random SIGTRAPs,
724 failure to set more watchpoints, and other calamities. It would
725 be nice if GDB itself would take care to remove all breakpoints
726 at all times, but it doesn't, probably under an assumption that
727 the OS cleans up when the debuggee exits. */
728 i386_cleanup_dregs ();
729
730 ptid = inferior_ptid;
731 inferior_ptid = null_ptid;
732 delete_thread_silent (ptid);
733 prog_has_started = 0;
734
735 unpush_target (ops);
736 generic_mourn_inferior ();
737 }
738
739 static int
740 go32_can_run (void)
741 {
742 return 1;
743 }
744
745 /* Hardware watchpoint support. */
746
747 #define D_REGS edi.dr
748 #define CONTROL D_REGS[7]
749 #define STATUS D_REGS[6]
750
751 /* Pass the address ADDR to the inferior in the I'th debug register.
752 Here we just store the address in D_REGS, the watchpoint will be
753 actually set up when go32_wait runs the debuggee. */
754 static void
755 go32_set_dr (int i, CORE_ADDR addr)
756 {
757 if (i < 0 || i > 3)
758 internal_error (__FILE__, __LINE__,
759 _("Invalid register %d in go32_set_dr.\n"), i);
760 D_REGS[i] = addr;
761 }
762
763 /* Pass the value VAL to the inferior in the DR7 debug control
764 register. Here we just store the address in D_REGS, the watchpoint
765 will be actually set up when go32_wait runs the debuggee. */
766 static void
767 go32_set_dr7 (unsigned long val)
768 {
769 CONTROL = val;
770 }
771
772 /* Get the value of the DR6 debug status register from the inferior.
773 Here we just return the value stored in D_REGS, as we've got it
774 from the last go32_wait call. */
775 static unsigned long
776 go32_get_dr6 (void)
777 {
778 return STATUS;
779 }
780
781 /* Get the value of the DR7 debug status register from the inferior.
782 Here we just return the value stored in D_REGS, as we've got it
783 from the last go32_wait call. */
784
785 static unsigned long
786 go32_get_dr7 (void)
787 {
788 return CONTROL;
789 }
790
791 /* Get the value of the DR debug register I from the inferior. Here
792 we just return the value stored in D_REGS, as we've got it from the
793 last go32_wait call. */
794
795 static CORE_ADDR
796 go32_get_dr (int i)
797 {
798 if (i < 0 || i > 3)
799 internal_error (__FILE__, __LINE__,
800 _("Invalid register %d in go32_get_dr.\n"), i);
801 return D_REGS[i];
802 }
803
804 /* Put the device open on handle FD into either raw or cooked
805 mode, return 1 if it was in raw mode, zero otherwise. */
806
807 static int
808 device_mode (int fd, int raw_p)
809 {
810 int oldmode, newmode;
811 __dpmi_regs regs;
812
813 regs.x.ax = 0x4400;
814 regs.x.bx = fd;
815 __dpmi_int (0x21, &regs);
816 if (regs.x.flags & 1)
817 return -1;
818 newmode = oldmode = regs.x.dx;
819
820 if (raw_p)
821 newmode |= 0x20;
822 else
823 newmode &= ~0x20;
824
825 if (oldmode & 0x80) /* Only for character dev. */
826 {
827 regs.x.ax = 0x4401;
828 regs.x.bx = fd;
829 regs.x.dx = newmode & 0xff; /* Force upper byte zero, else it fails. */
830 __dpmi_int (0x21, &regs);
831 if (regs.x.flags & 1)
832 return -1;
833 }
834 return (oldmode & 0x20) == 0x20;
835 }
836
837
838 static int inf_mode_valid = 0;
839 static int inf_terminal_mode;
840
841 /* This semaphore is needed because, amazingly enough, GDB calls
842 target.to_terminal_ours more than once after the inferior stops.
843 But we need the information from the first call only, since the
844 second call will always see GDB's own cooked terminal. */
845 static int terminal_is_ours = 1;
846
847 static void
848 go32_terminal_init (struct target_ops *self)
849 {
850 inf_mode_valid = 0; /* Reinitialize, in case they are restarting child. */
851 terminal_is_ours = 1;
852 }
853
854 static void
855 go32_terminal_info (const char *args, int from_tty)
856 {
857 printf_unfiltered ("Inferior's terminal is in %s mode.\n",
858 !inf_mode_valid
859 ? "default" : inf_terminal_mode ? "raw" : "cooked");
860
861 #if __DJGPP_MINOR__ > 2
862 if (child_cmd.redirection)
863 {
864 int i;
865
866 for (i = 0; i < DBG_HANDLES; i++)
867 {
868 if (child_cmd.redirection[i]->file_name)
869 printf_unfiltered ("\tFile handle %d is redirected to `%s'.\n",
870 i, child_cmd.redirection[i]->file_name);
871 else if (_get_dev_info (child_cmd.redirection[i]->inf_handle) == -1)
872 printf_unfiltered
873 ("\tFile handle %d appears to be closed by inferior.\n", i);
874 /* Mask off the raw/cooked bit when comparing device info words. */
875 else if ((_get_dev_info (child_cmd.redirection[i]->inf_handle) & 0xdf)
876 != (_get_dev_info (i) & 0xdf))
877 printf_unfiltered
878 ("\tFile handle %d appears to be redirected by inferior.\n", i);
879 }
880 }
881 #endif
882 }
883
884 static void
885 go32_terminal_inferior (struct target_ops *self)
886 {
887 /* Redirect standard handles as child wants them. */
888 errno = 0;
889 if (redir_to_child (&child_cmd) == -1)
890 {
891 redir_to_debugger (&child_cmd);
892 error (_("Cannot redirect standard handles for program: %s."),
893 safe_strerror (errno));
894 }
895 /* Set the console device of the inferior to whatever mode
896 (raw or cooked) we found it last time. */
897 if (terminal_is_ours)
898 {
899 if (inf_mode_valid)
900 device_mode (0, inf_terminal_mode);
901 terminal_is_ours = 0;
902 }
903 }
904
905 static void
906 go32_terminal_ours (void)
907 {
908 /* Switch to cooked mode on the gdb terminal and save the inferior
909 terminal mode to be restored when it is resumed. */
910 if (!terminal_is_ours)
911 {
912 inf_terminal_mode = device_mode (0, 0);
913 if (inf_terminal_mode != -1)
914 inf_mode_valid = 1;
915 else
916 /* If device_mode returned -1, we don't know what happens with
917 handle 0 anymore, so make the info invalid. */
918 inf_mode_valid = 0;
919 terminal_is_ours = 1;
920
921 /* Restore debugger's standard handles. */
922 errno = 0;
923 if (redir_to_debugger (&child_cmd) == -1)
924 {
925 redir_to_child (&child_cmd);
926 error (_("Cannot redirect standard handles for debugger: %s."),
927 safe_strerror (errno));
928 }
929 }
930 }
931
932 static int
933 go32_thread_alive (struct target_ops *ops, ptid_t ptid)
934 {
935 return !ptid_equal (inferior_ptid, null_ptid);
936 }
937
938 static char *
939 go32_pid_to_str (struct target_ops *ops, ptid_t ptid)
940 {
941 return normal_pid_to_str (ptid);
942 }
943
944 static void
945 init_go32_ops (void)
946 {
947 go32_ops.to_shortname = "djgpp";
948 go32_ops.to_longname = "djgpp target process";
949 go32_ops.to_doc =
950 "Program loaded by djgpp, when gdb is used as an external debugger";
951 go32_ops.to_open = go32_open;
952 go32_ops.to_close = go32_close;
953 go32_ops.to_attach = go32_attach;
954 go32_ops.to_detach = go32_detach;
955 go32_ops.to_resume = go32_resume;
956 go32_ops.to_wait = go32_wait;
957 go32_ops.to_fetch_registers = go32_fetch_registers;
958 go32_ops.to_store_registers = go32_store_registers;
959 go32_ops.to_prepare_to_store = go32_prepare_to_store;
960 go32_ops.deprecated_xfer_memory = go32_xfer_memory;
961 go32_ops.to_files_info = go32_files_info;
962 go32_ops.to_insert_breakpoint = memory_insert_breakpoint;
963 go32_ops.to_remove_breakpoint = memory_remove_breakpoint;
964 go32_ops.to_terminal_init = go32_terminal_init;
965 go32_ops.to_terminal_inferior = go32_terminal_inferior;
966 go32_ops.to_terminal_ours_for_output = go32_terminal_ours;
967 go32_ops.to_terminal_ours = go32_terminal_ours;
968 go32_ops.to_terminal_info = go32_terminal_info;
969 go32_ops.to_kill = go32_kill_inferior;
970 go32_ops.to_create_inferior = go32_create_inferior;
971 go32_ops.to_mourn_inferior = go32_mourn_inferior;
972 go32_ops.to_can_run = go32_can_run;
973 go32_ops.to_thread_alive = go32_thread_alive;
974 go32_ops.to_pid_to_str = go32_pid_to_str;
975 go32_ops.to_stratum = process_stratum;
976 go32_ops.to_has_all_memory = default_child_has_all_memory;
977 go32_ops.to_has_memory = default_child_has_memory;
978 go32_ops.to_has_stack = default_child_has_stack;
979 go32_ops.to_has_registers = default_child_has_registers;
980 go32_ops.to_has_execution = default_child_has_execution;
981
982 i386_use_watchpoints (&go32_ops);
983
984
985 i386_dr_low.set_control = go32_set_dr7;
986 i386_dr_low.set_addr = go32_set_dr;
987 i386_dr_low.get_status = go32_get_dr6;
988 i386_dr_low.get_control = go32_get_dr7;
989 i386_dr_low.get_addr = go32_get_dr;
990 i386_set_debug_register_length (4);
991
992 go32_ops.to_magic = OPS_MAGIC;
993
994 /* Initialize child's cwd as empty to be initialized when starting
995 the child. */
996 *child_cwd = 0;
997
998 /* Initialize child's command line storage. */
999 if (redir_debug_init (&child_cmd) == -1)
1000 internal_error (__FILE__, __LINE__,
1001 _("Cannot allocate redirection storage: "
1002 "not enough memory.\n"));
1003
1004 /* We are always processing GCC-compiled programs. */
1005 processing_gcc_compilation = 2;
1006 }
1007
1008 /* Return the current DOS codepage number. */
1009 static int
1010 dos_codepage (void)
1011 {
1012 __dpmi_regs regs;
1013
1014 regs.x.ax = 0x6601;
1015 __dpmi_int (0x21, &regs);
1016 if (!(regs.x.flags & 1))
1017 return regs.x.bx & 0xffff;
1018 else
1019 return 437; /* default */
1020 }
1021
1022 /* Limited emulation of `nl_langinfo', for charset.c. */
1023 char *
1024 nl_langinfo (nl_item item)
1025 {
1026 char *retval;
1027
1028 switch (item)
1029 {
1030 case CODESET:
1031 {
1032 /* 8 is enough for SHORT_MAX + "CP" + null. */
1033 char buf[8];
1034 int blen = sizeof (buf);
1035 int needed = snprintf (buf, blen, "CP%d", dos_codepage ());
1036
1037 if (needed > blen) /* Should never happen. */
1038 buf[0] = 0;
1039 retval = xstrdup (buf);
1040 }
1041 break;
1042 default:
1043 retval = xstrdup ("");
1044 break;
1045 }
1046 return retval;
1047 }
1048
1049 unsigned short windows_major, windows_minor;
1050
1051 /* Compute the version Windows reports via Int 2Fh/AX=1600h. */
1052 static void
1053 go32_get_windows_version(void)
1054 {
1055 __dpmi_regs r;
1056
1057 r.x.ax = 0x1600;
1058 __dpmi_int(0x2f, &r);
1059 if (r.h.al > 2 && r.h.al != 0x80 && r.h.al != 0xff
1060 && (r.h.al > 3 || r.h.ah > 0))
1061 {
1062 windows_major = r.h.al;
1063 windows_minor = r.h.ah;
1064 }
1065 else
1066 windows_major = 0xff; /* meaning no Windows */
1067 }
1068
1069 /* A subroutine of go32_sysinfo to display memory info. */
1070 static void
1071 print_mem (unsigned long datum, const char *header, int in_pages_p)
1072 {
1073 if (datum != 0xffffffffUL)
1074 {
1075 if (in_pages_p)
1076 datum <<= 12;
1077 puts_filtered (header);
1078 if (datum > 1024)
1079 {
1080 printf_filtered ("%lu KB", datum >> 10);
1081 if (datum > 1024 * 1024)
1082 printf_filtered (" (%lu MB)", datum >> 20);
1083 }
1084 else
1085 printf_filtered ("%lu Bytes", datum);
1086 puts_filtered ("\n");
1087 }
1088 }
1089
1090 /* Display assorted information about the underlying OS. */
1091 static void
1092 go32_sysinfo (char *arg, int from_tty)
1093 {
1094 static const char test_pattern[] =
1095 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1096 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1097 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeafdeadbeaf";
1098 struct utsname u;
1099 char cpuid_vendor[13];
1100 unsigned cpuid_max = 0, cpuid_eax, cpuid_ebx, cpuid_ecx, cpuid_edx;
1101 unsigned true_dos_version = _get_dos_version (1);
1102 unsigned advertized_dos_version = ((unsigned int)_osmajor << 8) | _osminor;
1103 int dpmi_flags;
1104 char dpmi_vendor_info[129];
1105 int dpmi_vendor_available;
1106 __dpmi_version_ret dpmi_version_data;
1107 long eflags;
1108 __dpmi_free_mem_info mem_info;
1109 __dpmi_regs regs;
1110
1111 cpuid_vendor[0] = '\0';
1112 if (uname (&u))
1113 strcpy (u.machine, "Unknown x86");
1114 else if (u.machine[0] == 'i' && u.machine[1] > 4)
1115 {
1116 /* CPUID with EAX = 0 returns the Vendor ID. */
1117 #if 0
1118 /* Ideally we would use i386_cpuid(), but it needs someone to run
1119 native tests first to make sure things actually work. They should.
1120 http://sourceware.org/ml/gdb-patches/2013-05/msg00164.html */
1121 unsigned int eax, ebx, ecx, edx;
1122
1123 if (i386_cpuid (0, &eax, &ebx, &ecx, &edx))
1124 {
1125 cpuid_max = eax;
1126 memcpy (&vendor[0], &ebx, 4);
1127 memcpy (&vendor[4], &ecx, 4);
1128 memcpy (&vendor[8], &edx, 4);
1129 cpuid_vendor[12] = '\0';
1130 }
1131 #else
1132 __asm__ __volatile__ ("xorl %%ebx, %%ebx;"
1133 "xorl %%ecx, %%ecx;"
1134 "xorl %%edx, %%edx;"
1135 "movl $0, %%eax;"
1136 "cpuid;"
1137 "movl %%ebx, %0;"
1138 "movl %%edx, %1;"
1139 "movl %%ecx, %2;"
1140 "movl %%eax, %3;"
1141 : "=m" (cpuid_vendor[0]),
1142 "=m" (cpuid_vendor[4]),
1143 "=m" (cpuid_vendor[8]),
1144 "=m" (cpuid_max)
1145 :
1146 : "%eax", "%ebx", "%ecx", "%edx");
1147 cpuid_vendor[12] = '\0';
1148 #endif
1149 }
1150
1151 printf_filtered ("CPU Type.......................%s", u.machine);
1152 if (cpuid_vendor[0])
1153 printf_filtered (" (%s)", cpuid_vendor);
1154 puts_filtered ("\n");
1155
1156 /* CPUID with EAX = 1 returns processor signature and features. */
1157 if (cpuid_max >= 1)
1158 {
1159 static char *brand_name[] = {
1160 "",
1161 " Celeron",
1162 " III",
1163 " III Xeon",
1164 "", "", "", "",
1165 " 4"
1166 };
1167 char cpu_string[80];
1168 char cpu_brand[20];
1169 unsigned brand_idx;
1170 int intel_p = strcmp (cpuid_vendor, "GenuineIntel") == 0;
1171 int amd_p = strcmp (cpuid_vendor, "AuthenticAMD") == 0;
1172 unsigned cpu_family, cpu_model;
1173
1174 #if 0
1175 /* See comment above about cpuid usage. */
1176 i386_cpuid (1, &cpuid_eax, &cpuid_ebx, NULL, &cpuid_edx);
1177 #else
1178 __asm__ __volatile__ ("movl $1, %%eax;"
1179 "cpuid;"
1180 : "=a" (cpuid_eax),
1181 "=b" (cpuid_ebx),
1182 "=d" (cpuid_edx)
1183 :
1184 : "%ecx");
1185 #endif
1186 brand_idx = cpuid_ebx & 0xff;
1187 cpu_family = (cpuid_eax >> 8) & 0xf;
1188 cpu_model = (cpuid_eax >> 4) & 0xf;
1189 cpu_brand[0] = '\0';
1190 if (intel_p)
1191 {
1192 if (brand_idx > 0
1193 && brand_idx < sizeof(brand_name)/sizeof(brand_name[0])
1194 && *brand_name[brand_idx])
1195 strcpy (cpu_brand, brand_name[brand_idx]);
1196 else if (cpu_family == 5)
1197 {
1198 if (((cpuid_eax >> 12) & 3) == 0 && cpu_model == 4)
1199 strcpy (cpu_brand, " MMX");
1200 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 1)
1201 strcpy (cpu_brand, " OverDrive");
1202 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 2)
1203 strcpy (cpu_brand, " Dual");
1204 }
1205 else if (cpu_family == 6 && cpu_model < 8)
1206 {
1207 switch (cpu_model)
1208 {
1209 case 1:
1210 strcpy (cpu_brand, " Pro");
1211 break;
1212 case 3:
1213 strcpy (cpu_brand, " II");
1214 break;
1215 case 5:
1216 strcpy (cpu_brand, " II Xeon");
1217 break;
1218 case 6:
1219 strcpy (cpu_brand, " Celeron");
1220 break;
1221 case 7:
1222 strcpy (cpu_brand, " III");
1223 break;
1224 }
1225 }
1226 }
1227 else if (amd_p)
1228 {
1229 switch (cpu_family)
1230 {
1231 case 4:
1232 strcpy (cpu_brand, "486/5x86");
1233 break;
1234 case 5:
1235 switch (cpu_model)
1236 {
1237 case 0:
1238 case 1:
1239 case 2:
1240 case 3:
1241 strcpy (cpu_brand, "-K5");
1242 break;
1243 case 6:
1244 case 7:
1245 strcpy (cpu_brand, "-K6");
1246 break;
1247 case 8:
1248 strcpy (cpu_brand, "-K6-2");
1249 break;
1250 case 9:
1251 strcpy (cpu_brand, "-K6-III");
1252 break;
1253 }
1254 break;
1255 case 6:
1256 switch (cpu_model)
1257 {
1258 case 1:
1259 case 2:
1260 case 4:
1261 strcpy (cpu_brand, " Athlon");
1262 break;
1263 case 3:
1264 strcpy (cpu_brand, " Duron");
1265 break;
1266 }
1267 break;
1268 }
1269 }
1270 xsnprintf (cpu_string, sizeof (cpu_string), "%s%s Model %d Stepping %d",
1271 intel_p ? "Pentium" : (amd_p ? "AMD" : "ix86"),
1272 cpu_brand, cpu_model, cpuid_eax & 0xf);
1273 printfi_filtered (31, "%s\n", cpu_string);
1274 if (((cpuid_edx & (6 | (0x0d << 23))) != 0)
1275 || ((cpuid_edx & 1) == 0)
1276 || (amd_p && (cpuid_edx & (3 << 30)) != 0))
1277 {
1278 puts_filtered ("CPU Features...................");
1279 /* We only list features which might be useful in the DPMI
1280 environment. */
1281 if ((cpuid_edx & 1) == 0)
1282 puts_filtered ("No FPU "); /* It's unusual to not have an FPU. */
1283 if ((cpuid_edx & (1 << 1)) != 0)
1284 puts_filtered ("VME ");
1285 if ((cpuid_edx & (1 << 2)) != 0)
1286 puts_filtered ("DE ");
1287 if ((cpuid_edx & (1 << 4)) != 0)
1288 puts_filtered ("TSC ");
1289 if ((cpuid_edx & (1 << 23)) != 0)
1290 puts_filtered ("MMX ");
1291 if ((cpuid_edx & (1 << 25)) != 0)
1292 puts_filtered ("SSE ");
1293 if ((cpuid_edx & (1 << 26)) != 0)
1294 puts_filtered ("SSE2 ");
1295 if (amd_p)
1296 {
1297 if ((cpuid_edx & (1 << 31)) != 0)
1298 puts_filtered ("3DNow! ");
1299 if ((cpuid_edx & (1 << 30)) != 0)
1300 puts_filtered ("3DNow!Ext");
1301 }
1302 puts_filtered ("\n");
1303 }
1304 }
1305 puts_filtered ("\n");
1306 printf_filtered ("DOS Version....................%s %s.%s",
1307 _os_flavor, u.release, u.version);
1308 if (true_dos_version != advertized_dos_version)
1309 printf_filtered (" (disguised as v%d.%d)", _osmajor, _osminor);
1310 puts_filtered ("\n");
1311 if (!windows_major)
1312 go32_get_windows_version ();
1313 if (windows_major != 0xff)
1314 {
1315 const char *windows_flavor;
1316
1317 printf_filtered ("Windows Version................%d.%02d (Windows ",
1318 windows_major, windows_minor);
1319 switch (windows_major)
1320 {
1321 case 3:
1322 windows_flavor = "3.X";
1323 break;
1324 case 4:
1325 switch (windows_minor)
1326 {
1327 case 0:
1328 windows_flavor = "95, 95A, or 95B";
1329 break;
1330 case 3:
1331 windows_flavor = "95B OSR2.1 or 95C OSR2.5";
1332 break;
1333 case 10:
1334 windows_flavor = "98 or 98 SE";
1335 break;
1336 case 90:
1337 windows_flavor = "ME";
1338 break;
1339 default:
1340 windows_flavor = "9X";
1341 break;
1342 }
1343 break;
1344 default:
1345 windows_flavor = "??";
1346 break;
1347 }
1348 printf_filtered ("%s)\n", windows_flavor);
1349 }
1350 else if (true_dos_version == 0x532 && advertized_dos_version == 0x500)
1351 printf_filtered ("Windows Version................"
1352 "Windows NT family (W2K/XP/W2K3/Vista/W2K8)\n");
1353 puts_filtered ("\n");
1354 /* On some versions of Windows, __dpmi_get_capabilities returns
1355 zero, but the buffer is not filled with info, so we fill the
1356 buffer with a known pattern and test for it afterwards. */
1357 memcpy (dpmi_vendor_info, test_pattern, sizeof(dpmi_vendor_info));
1358 dpmi_vendor_available =
1359 __dpmi_get_capabilities (&dpmi_flags, dpmi_vendor_info);
1360 if (dpmi_vendor_available == 0
1361 && memcmp (dpmi_vendor_info, test_pattern,
1362 sizeof(dpmi_vendor_info)) != 0)
1363 {
1364 /* The DPMI spec says the vendor string should be ASCIIZ, but
1365 I don't trust the vendors to follow that... */
1366 if (!memchr (&dpmi_vendor_info[2], 0, 126))
1367 dpmi_vendor_info[128] = '\0';
1368 printf_filtered ("DPMI Host......................"
1369 "%s v%d.%d (capabilities: %#x)\n",
1370 &dpmi_vendor_info[2],
1371 (unsigned)dpmi_vendor_info[0],
1372 (unsigned)dpmi_vendor_info[1],
1373 ((unsigned)dpmi_flags & 0x7f));
1374 }
1375 else
1376 printf_filtered ("DPMI Host......................(Info not available)\n");
1377 __dpmi_get_version (&dpmi_version_data);
1378 printf_filtered ("DPMI Version...................%d.%02d\n",
1379 dpmi_version_data.major, dpmi_version_data.minor);
1380 printf_filtered ("DPMI Info......................"
1381 "%s-bit DPMI, with%s Virtual Memory support\n",
1382 (dpmi_version_data.flags & 1) ? "32" : "16",
1383 (dpmi_version_data.flags & 4) ? "" : "out");
1384 printfi_filtered (31, "Interrupts reflected to %s mode\n",
1385 (dpmi_version_data.flags & 2) ? "V86" : "Real");
1386 printfi_filtered (31, "Processor type: i%d86\n",
1387 dpmi_version_data.cpu);
1388 printfi_filtered (31, "PIC base interrupt: Master: %#x Slave: %#x\n",
1389 dpmi_version_data.master_pic, dpmi_version_data.slave_pic);
1390
1391 /* a_tss is only initialized when the debuggee is first run. */
1392 if (prog_has_started)
1393 {
1394 __asm__ __volatile__ ("pushfl ; popl %0" : "=g" (eflags));
1395 printf_filtered ("Protection....................."
1396 "Ring %d (in %s), with%s I/O protection\n",
1397 a_tss.tss_cs & 3, (a_tss.tss_cs & 4) ? "LDT" : "GDT",
1398 (a_tss.tss_cs & 3) > ((eflags >> 12) & 3) ? "" : "out");
1399 }
1400 puts_filtered ("\n");
1401 __dpmi_get_free_memory_information (&mem_info);
1402 print_mem (mem_info.total_number_of_physical_pages,
1403 "DPMI Total Physical Memory.....", 1);
1404 print_mem (mem_info.total_number_of_free_pages,
1405 "DPMI Free Physical Memory......", 1);
1406 print_mem (mem_info.size_of_paging_file_partition_in_pages,
1407 "DPMI Swap Space................", 1);
1408 print_mem (mem_info.linear_address_space_size_in_pages,
1409 "DPMI Total Linear Address Size.", 1);
1410 print_mem (mem_info.free_linear_address_space_in_pages,
1411 "DPMI Free Linear Address Size..", 1);
1412 print_mem (mem_info.largest_available_free_block_in_bytes,
1413 "DPMI Largest Free Memory Block.", 0);
1414
1415 regs.h.ah = 0x48;
1416 regs.x.bx = 0xffff;
1417 __dpmi_int (0x21, &regs);
1418 print_mem (regs.x.bx << 4, "Free DOS Memory................", 0);
1419 regs.x.ax = 0x5800;
1420 __dpmi_int (0x21, &regs);
1421 if ((regs.x.flags & 1) == 0)
1422 {
1423 static const char *dos_hilo[] = {
1424 "Low", "", "", "", "High", "", "", "", "High, then Low"
1425 };
1426 static const char *dos_fit[] = {
1427 "First", "Best", "Last"
1428 };
1429 int hilo_idx = (regs.x.ax >> 4) & 0x0f;
1430 int fit_idx = regs.x.ax & 0x0f;
1431
1432 if (hilo_idx > 8)
1433 hilo_idx = 0;
1434 if (fit_idx > 2)
1435 fit_idx = 0;
1436 printf_filtered ("DOS Memory Allocation..........%s memory, %s fit\n",
1437 dos_hilo[hilo_idx], dos_fit[fit_idx]);
1438 regs.x.ax = 0x5802;
1439 __dpmi_int (0x21, &regs);
1440 if ((regs.x.flags & 1) != 0)
1441 regs.h.al = 0;
1442 printfi_filtered (31, "UMBs %sin DOS memory chain\n",
1443 regs.h.al == 0 ? "not " : "");
1444 }
1445 }
1446
1447 struct seg_descr {
1448 unsigned short limit0;
1449 unsigned short base0;
1450 unsigned char base1;
1451 unsigned stype:5;
1452 unsigned dpl:2;
1453 unsigned present:1;
1454 unsigned limit1:4;
1455 unsigned available:1;
1456 unsigned dummy:1;
1457 unsigned bit32:1;
1458 unsigned page_granular:1;
1459 unsigned char base2;
1460 } __attribute__ ((packed));
1461
1462 struct gate_descr {
1463 unsigned short offset0;
1464 unsigned short selector;
1465 unsigned param_count:5;
1466 unsigned dummy:3;
1467 unsigned stype:5;
1468 unsigned dpl:2;
1469 unsigned present:1;
1470 unsigned short offset1;
1471 } __attribute__ ((packed));
1472
1473 /* Read LEN bytes starting at logical address ADDR, and put the result
1474 into DEST. Return 1 if success, zero if not. */
1475 static int
1476 read_memory_region (unsigned long addr, void *dest, size_t len)
1477 {
1478 unsigned long dos_ds_limit = __dpmi_get_segment_limit (_dos_ds);
1479 int retval = 1;
1480
1481 /* For the low memory, we can simply use _dos_ds. */
1482 if (addr <= dos_ds_limit - len)
1483 dosmemget (addr, len, dest);
1484 else
1485 {
1486 /* For memory above 1MB we need to set up a special segment to
1487 be able to access that memory. */
1488 int sel = __dpmi_allocate_ldt_descriptors (1);
1489
1490 if (sel <= 0)
1491 retval = 0;
1492 else
1493 {
1494 int access_rights = __dpmi_get_descriptor_access_rights (sel);
1495 size_t segment_limit = len - 1;
1496
1497 /* Make sure the crucial bits in the descriptor access
1498 rights are set correctly. Some DPMI providers might barf
1499 if we set the segment limit to something that is not an
1500 integral multiple of 4KB pages if the granularity bit is
1501 not set to byte-granular, even though the DPMI spec says
1502 it's the host's responsibility to set that bit correctly. */
1503 if (len > 1024 * 1024)
1504 {
1505 access_rights |= 0x8000;
1506 /* Page-granular segments should have the low 12 bits of
1507 the limit set. */
1508 segment_limit |= 0xfff;
1509 }
1510 else
1511 access_rights &= ~0x8000;
1512
1513 if (__dpmi_set_segment_base_address (sel, addr) != -1
1514 && __dpmi_set_descriptor_access_rights (sel, access_rights) != -1
1515 && __dpmi_set_segment_limit (sel, segment_limit) != -1
1516 /* W2K silently fails to set the segment limit, leaving
1517 it at zero; this test avoids the resulting crash. */
1518 && __dpmi_get_segment_limit (sel) >= segment_limit)
1519 movedata (sel, 0, _my_ds (), (unsigned)dest, len);
1520 else
1521 retval = 0;
1522
1523 __dpmi_free_ldt_descriptor (sel);
1524 }
1525 }
1526 return retval;
1527 }
1528
1529 /* Get a segment descriptor stored at index IDX in the descriptor
1530 table whose base address is TABLE_BASE. Return the descriptor
1531 type, or -1 if failure. */
1532 static int
1533 get_descriptor (unsigned long table_base, int idx, void *descr)
1534 {
1535 unsigned long addr = table_base + idx * 8; /* 8 bytes per entry */
1536
1537 if (read_memory_region (addr, descr, 8))
1538 return (int)((struct seg_descr *)descr)->stype;
1539 return -1;
1540 }
1541
1542 struct dtr_reg {
1543 unsigned short limit __attribute__((packed));
1544 unsigned long base __attribute__((packed));
1545 };
1546
1547 /* Display a segment descriptor stored at index IDX in a descriptor
1548 table whose type is TYPE and whose base address is BASE_ADDR. If
1549 FORCE is non-zero, display even invalid descriptors. */
1550 static void
1551 display_descriptor (unsigned type, unsigned long base_addr, int idx, int force)
1552 {
1553 struct seg_descr descr;
1554 struct gate_descr gate;
1555
1556 /* Get the descriptor from the table. */
1557 if (idx == 0 && type == 0)
1558 puts_filtered ("0x000: null descriptor\n");
1559 else if (get_descriptor (base_addr, idx, &descr) != -1)
1560 {
1561 /* For each type of descriptor table, this has a bit set if the
1562 corresponding type of selectors is valid in that table. */
1563 static unsigned allowed_descriptors[] = {
1564 0xffffdafeL, /* GDT */
1565 0x0000c0e0L, /* IDT */
1566 0xffffdafaL /* LDT */
1567 };
1568
1569 /* If the program hasn't started yet, assume the debuggee will
1570 have the same CPL as the debugger. */
1571 int cpl = prog_has_started ? (a_tss.tss_cs & 3) : _my_cs () & 3;
1572 unsigned long limit = (descr.limit1 << 16) | descr.limit0;
1573
1574 if (descr.present
1575 && (allowed_descriptors[type] & (1 << descr.stype)) != 0)
1576 {
1577 printf_filtered ("0x%03x: ",
1578 type == 1
1579 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1580 if (descr.page_granular)
1581 limit = (limit << 12) | 0xfff; /* big segment: low 12 bit set */
1582 if (descr.stype == 1 || descr.stype == 2 || descr.stype == 3
1583 || descr.stype == 9 || descr.stype == 11
1584 || (descr.stype >= 16 && descr.stype < 32))
1585 printf_filtered ("base=0x%02x%02x%04x limit=0x%08lx",
1586 descr.base2, descr.base1, descr.base0, limit);
1587
1588 switch (descr.stype)
1589 {
1590 case 1:
1591 case 3:
1592 printf_filtered (" 16-bit TSS (task %sactive)",
1593 descr.stype == 3 ? "" : "in");
1594 break;
1595 case 2:
1596 puts_filtered (" LDT");
1597 break;
1598 case 4:
1599 memcpy (&gate, &descr, sizeof gate);
1600 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1601 gate.selector, gate.offset1, gate.offset0);
1602 printf_filtered (" 16-bit Call Gate (params=%d)",
1603 gate.param_count);
1604 break;
1605 case 5:
1606 printf_filtered ("TSS selector=0x%04x", descr.base0);
1607 printfi_filtered (16, "Task Gate");
1608 break;
1609 case 6:
1610 case 7:
1611 memcpy (&gate, &descr, sizeof gate);
1612 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1613 gate.selector, gate.offset1, gate.offset0);
1614 printf_filtered (" 16-bit %s Gate",
1615 descr.stype == 6 ? "Interrupt" : "Trap");
1616 break;
1617 case 9:
1618 case 11:
1619 printf_filtered (" 32-bit TSS (task %sactive)",
1620 descr.stype == 3 ? "" : "in");
1621 break;
1622 case 12:
1623 memcpy (&gate, &descr, sizeof gate);
1624 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1625 gate.selector, gate.offset1, gate.offset0);
1626 printf_filtered (" 32-bit Call Gate (params=%d)",
1627 gate.param_count);
1628 break;
1629 case 14:
1630 case 15:
1631 memcpy (&gate, &descr, sizeof gate);
1632 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1633 gate.selector, gate.offset1, gate.offset0);
1634 printf_filtered (" 32-bit %s Gate",
1635 descr.stype == 14 ? "Interrupt" : "Trap");
1636 break;
1637 case 16: /* data segments */
1638 case 17:
1639 case 18:
1640 case 19:
1641 case 20:
1642 case 21:
1643 case 22:
1644 case 23:
1645 printf_filtered (" %s-bit Data (%s Exp-%s%s)",
1646 descr.bit32 ? "32" : "16",
1647 descr.stype & 2
1648 ? "Read/Write," : "Read-Only, ",
1649 descr.stype & 4 ? "down" : "up",
1650 descr.stype & 1 ? "" : ", N.Acc");
1651 break;
1652 case 24: /* code segments */
1653 case 25:
1654 case 26:
1655 case 27:
1656 case 28:
1657 case 29:
1658 case 30:
1659 case 31:
1660 printf_filtered (" %s-bit Code (%s, %sConf%s)",
1661 descr.bit32 ? "32" : "16",
1662 descr.stype & 2 ? "Exec/Read" : "Exec-Only",
1663 descr.stype & 4 ? "" : "N.",
1664 descr.stype & 1 ? "" : ", N.Acc");
1665 break;
1666 default:
1667 printf_filtered ("Unknown type 0x%02x", descr.stype);
1668 break;
1669 }
1670 puts_filtered ("\n");
1671 }
1672 else if (force)
1673 {
1674 printf_filtered ("0x%03x: ",
1675 type == 1
1676 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1677 if (!descr.present)
1678 puts_filtered ("Segment not present\n");
1679 else
1680 printf_filtered ("Segment type 0x%02x is invalid in this table\n",
1681 descr.stype);
1682 }
1683 }
1684 else if (force)
1685 printf_filtered ("0x%03x: Cannot read this descriptor\n", idx);
1686 }
1687
1688 static void
1689 go32_sldt (char *arg, int from_tty)
1690 {
1691 struct dtr_reg gdtr;
1692 unsigned short ldtr = 0;
1693 int ldt_idx;
1694 struct seg_descr ldt_descr;
1695 long ldt_entry = -1L;
1696 int cpl = (prog_has_started ? a_tss.tss_cs : _my_cs ()) & 3;
1697
1698 if (arg && *arg)
1699 {
1700 arg = skip_spaces (arg);
1701
1702 if (*arg)
1703 {
1704 ldt_entry = parse_and_eval_long (arg);
1705 if (ldt_entry < 0
1706 || (ldt_entry & 4) == 0
1707 || (ldt_entry & 3) != (cpl & 3))
1708 error (_("Invalid LDT entry 0x%03lx."), (unsigned long)ldt_entry);
1709 }
1710 }
1711
1712 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1713 __asm__ __volatile__ ("sldt %0" : "=m" (ldtr) : /* no inputs */ );
1714 ldt_idx = ldtr / 8;
1715 if (ldt_idx == 0)
1716 puts_filtered ("There is no LDT.\n");
1717 /* LDT's entry in the GDT must have the type LDT, which is 2. */
1718 else if (get_descriptor (gdtr.base, ldt_idx, &ldt_descr) != 2)
1719 printf_filtered ("LDT is present (at %#x), but unreadable by GDB.\n",
1720 ldt_descr.base0
1721 | (ldt_descr.base1 << 16)
1722 | (ldt_descr.base2 << 24));
1723 else
1724 {
1725 unsigned base =
1726 ldt_descr.base0
1727 | (ldt_descr.base1 << 16)
1728 | (ldt_descr.base2 << 24);
1729 unsigned limit = ldt_descr.limit0 | (ldt_descr.limit1 << 16);
1730 int max_entry;
1731
1732 if (ldt_descr.page_granular)
1733 /* Page-granular segments must have the low 12 bits of their
1734 limit set. */
1735 limit = (limit << 12) | 0xfff;
1736 /* LDT cannot have more than 8K 8-byte entries, i.e. more than
1737 64KB. */
1738 if (limit > 0xffff)
1739 limit = 0xffff;
1740
1741 max_entry = (limit + 1) / 8;
1742
1743 if (ldt_entry >= 0)
1744 {
1745 if (ldt_entry > limit)
1746 error (_("Invalid LDT entry %#lx: outside valid limits [0..%#x]"),
1747 (unsigned long)ldt_entry, limit);
1748
1749 display_descriptor (ldt_descr.stype, base, ldt_entry / 8, 1);
1750 }
1751 else
1752 {
1753 int i;
1754
1755 for (i = 0; i < max_entry; i++)
1756 display_descriptor (ldt_descr.stype, base, i, 0);
1757 }
1758 }
1759 }
1760
1761 static void
1762 go32_sgdt (char *arg, int from_tty)
1763 {
1764 struct dtr_reg gdtr;
1765 long gdt_entry = -1L;
1766 int max_entry;
1767
1768 if (arg && *arg)
1769 {
1770 arg = skip_spaces (arg);
1771
1772 if (*arg)
1773 {
1774 gdt_entry = parse_and_eval_long (arg);
1775 if (gdt_entry < 0 || (gdt_entry & 7) != 0)
1776 error (_("Invalid GDT entry 0x%03lx: "
1777 "not an integral multiple of 8."),
1778 (unsigned long)gdt_entry);
1779 }
1780 }
1781
1782 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1783 max_entry = (gdtr.limit + 1) / 8;
1784
1785 if (gdt_entry >= 0)
1786 {
1787 if (gdt_entry > gdtr.limit)
1788 error (_("Invalid GDT entry %#lx: outside valid limits [0..%#x]"),
1789 (unsigned long)gdt_entry, gdtr.limit);
1790
1791 display_descriptor (0, gdtr.base, gdt_entry / 8, 1);
1792 }
1793 else
1794 {
1795 int i;
1796
1797 for (i = 0; i < max_entry; i++)
1798 display_descriptor (0, gdtr.base, i, 0);
1799 }
1800 }
1801
1802 static void
1803 go32_sidt (char *arg, int from_tty)
1804 {
1805 struct dtr_reg idtr;
1806 long idt_entry = -1L;
1807 int max_entry;
1808
1809 if (arg && *arg)
1810 {
1811 arg = skip_spaces (arg);
1812
1813 if (*arg)
1814 {
1815 idt_entry = parse_and_eval_long (arg);
1816 if (idt_entry < 0)
1817 error (_("Invalid (negative) IDT entry %ld."), idt_entry);
1818 }
1819 }
1820
1821 __asm__ __volatile__ ("sidt %0" : "=m" (idtr) : /* no inputs */ );
1822 max_entry = (idtr.limit + 1) / 8;
1823 if (max_entry > 0x100) /* No more than 256 entries. */
1824 max_entry = 0x100;
1825
1826 if (idt_entry >= 0)
1827 {
1828 if (idt_entry > idtr.limit)
1829 error (_("Invalid IDT entry %#lx: outside valid limits [0..%#x]"),
1830 (unsigned long)idt_entry, idtr.limit);
1831
1832 display_descriptor (1, idtr.base, idt_entry, 1);
1833 }
1834 else
1835 {
1836 int i;
1837
1838 for (i = 0; i < max_entry; i++)
1839 display_descriptor (1, idtr.base, i, 0);
1840 }
1841 }
1842
1843 /* Cached linear address of the base of the page directory. For
1844 now, available only under CWSDPMI. Code based on ideas and
1845 suggestions from Charles Sandmann <sandmann@clio.rice.edu>. */
1846 static unsigned long pdbr;
1847
1848 static unsigned long
1849 get_cr3 (void)
1850 {
1851 unsigned offset;
1852 unsigned taskreg;
1853 unsigned long taskbase, cr3;
1854 struct dtr_reg gdtr;
1855
1856 if (pdbr > 0 && pdbr <= 0xfffff)
1857 return pdbr;
1858
1859 /* Get the linear address of GDT and the Task Register. */
1860 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1861 __asm__ __volatile__ ("str %0" : "=m" (taskreg) : /* no inputs */ );
1862
1863 /* Task Register is a segment selector for the TSS of the current
1864 task. Therefore, it can be used as an index into the GDT to get
1865 at the segment descriptor for the TSS. To get the index, reset
1866 the low 3 bits of the selector (which give the CPL). Add 2 to the
1867 offset to point to the 3 low bytes of the base address. */
1868 offset = gdtr.base + (taskreg & 0xfff8) + 2;
1869
1870
1871 /* CWSDPMI's task base is always under the 1MB mark. */
1872 if (offset > 0xfffff)
1873 return 0;
1874
1875 _farsetsel (_dos_ds);
1876 taskbase = _farnspeekl (offset) & 0xffffffU;
1877 taskbase += _farnspeekl (offset + 2) & 0xff000000U;
1878 if (taskbase > 0xfffff)
1879 return 0;
1880
1881 /* CR3 (a.k.a. PDBR, the Page Directory Base Register) is stored at
1882 offset 1Ch in the TSS. */
1883 cr3 = _farnspeekl (taskbase + 0x1c) & ~0xfff;
1884 if (cr3 > 0xfffff)
1885 {
1886 #if 0 /* Not fullly supported yet. */
1887 /* The Page Directory is in UMBs. In that case, CWSDPMI puts
1888 the first Page Table right below the Page Directory. Thus,
1889 the first Page Table's entry for its own address and the Page
1890 Directory entry for that Page Table will hold the same
1891 physical address. The loop below searches the entire UMB
1892 range of addresses for such an occurence. */
1893 unsigned long addr, pte_idx;
1894
1895 for (addr = 0xb0000, pte_idx = 0xb0;
1896 pte_idx < 0xff;
1897 addr += 0x1000, pte_idx++)
1898 {
1899 if (((_farnspeekl (addr + 4 * pte_idx) & 0xfffff027) ==
1900 (_farnspeekl (addr + 0x1000) & 0xfffff027))
1901 && ((_farnspeekl (addr + 4 * pte_idx + 4) & 0xfffff000) == cr3))
1902 {
1903 cr3 = addr + 0x1000;
1904 break;
1905 }
1906 }
1907 #endif
1908
1909 if (cr3 > 0xfffff)
1910 cr3 = 0;
1911 }
1912
1913 return cr3;
1914 }
1915
1916 /* Return the N'th Page Directory entry. */
1917 static unsigned long
1918 get_pde (int n)
1919 {
1920 unsigned long pde = 0;
1921
1922 if (pdbr && n >= 0 && n < 1024)
1923 {
1924 pde = _farpeekl (_dos_ds, pdbr + 4*n);
1925 }
1926 return pde;
1927 }
1928
1929 /* Return the N'th entry of the Page Table whose Page Directory entry
1930 is PDE. */
1931 static unsigned long
1932 get_pte (unsigned long pde, int n)
1933 {
1934 unsigned long pte = 0;
1935
1936 /* pde & 0x80 tests the 4MB page bit. We don't support 4MB
1937 page tables, for now. */
1938 if ((pde & 1) && !(pde & 0x80) && n >= 0 && n < 1024)
1939 {
1940 pde &= ~0xfff; /* Clear non-address bits. */
1941 pte = _farpeekl (_dos_ds, pde + 4*n);
1942 }
1943 return pte;
1944 }
1945
1946 /* Display a Page Directory or Page Table entry. IS_DIR, if non-zero,
1947 says this is a Page Directory entry. If FORCE is non-zero, display
1948 the entry even if its Present flag is off. OFF is the offset of the
1949 address from the page's base address. */
1950 static void
1951 display_ptable_entry (unsigned long entry, int is_dir, int force, unsigned off)
1952 {
1953 if ((entry & 1) != 0)
1954 {
1955 printf_filtered ("Base=0x%05lx000", entry >> 12);
1956 if ((entry & 0x100) && !is_dir)
1957 puts_filtered (" Global");
1958 if ((entry & 0x40) && !is_dir)
1959 puts_filtered (" Dirty");
1960 printf_filtered (" %sAcc.", (entry & 0x20) ? "" : "Not-");
1961 printf_filtered (" %sCached", (entry & 0x10) ? "" : "Not-");
1962 printf_filtered (" Write-%s", (entry & 8) ? "Thru" : "Back");
1963 printf_filtered (" %s", (entry & 4) ? "Usr" : "Sup");
1964 printf_filtered (" Read-%s", (entry & 2) ? "Write" : "Only");
1965 if (off)
1966 printf_filtered (" +0x%x", off);
1967 puts_filtered ("\n");
1968 }
1969 else if (force)
1970 printf_filtered ("Page%s not present or not supported; value=0x%lx.\n",
1971 is_dir ? " Table" : "", entry >> 1);
1972 }
1973
1974 static void
1975 go32_pde (char *arg, int from_tty)
1976 {
1977 long pde_idx = -1, i;
1978
1979 if (arg && *arg)
1980 {
1981 arg = skip_spaces (arg);
1982
1983 if (*arg)
1984 {
1985 pde_idx = parse_and_eval_long (arg);
1986 if (pde_idx < 0 || pde_idx >= 1024)
1987 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
1988 }
1989 }
1990
1991 pdbr = get_cr3 ();
1992 if (!pdbr)
1993 puts_filtered ("Access to Page Directories is "
1994 "not supported on this system.\n");
1995 else if (pde_idx >= 0)
1996 display_ptable_entry (get_pde (pde_idx), 1, 1, 0);
1997 else
1998 for (i = 0; i < 1024; i++)
1999 display_ptable_entry (get_pde (i), 1, 0, 0);
2000 }
2001
2002 /* A helper function to display entries in a Page Table pointed to by
2003 the N'th entry in the Page Directory. If FORCE is non-zero, say
2004 something even if the Page Table is not accessible. */
2005 static void
2006 display_page_table (long n, int force)
2007 {
2008 unsigned long pde = get_pde (n);
2009
2010 if ((pde & 1) != 0)
2011 {
2012 int i;
2013
2014 printf_filtered ("Page Table pointed to by "
2015 "Page Directory entry 0x%lx:\n", n);
2016 for (i = 0; i < 1024; i++)
2017 display_ptable_entry (get_pte (pde, i), 0, 0, 0);
2018 puts_filtered ("\n");
2019 }
2020 else if (force)
2021 printf_filtered ("Page Table not present; value=0x%lx.\n", pde >> 1);
2022 }
2023
2024 static void
2025 go32_pte (char *arg, int from_tty)
2026 {
2027 long pde_idx = -1L, i;
2028
2029 if (arg && *arg)
2030 {
2031 arg = skip_spaces (arg);
2032
2033 if (*arg)
2034 {
2035 pde_idx = parse_and_eval_long (arg);
2036 if (pde_idx < 0 || pde_idx >= 1024)
2037 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
2038 }
2039 }
2040
2041 pdbr = get_cr3 ();
2042 if (!pdbr)
2043 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2044 else if (pde_idx >= 0)
2045 display_page_table (pde_idx, 1);
2046 else
2047 for (i = 0; i < 1024; i++)
2048 display_page_table (i, 0);
2049 }
2050
2051 static void
2052 go32_pte_for_address (char *arg, int from_tty)
2053 {
2054 CORE_ADDR addr = 0, i;
2055
2056 if (arg && *arg)
2057 {
2058 arg = skip_spaces (arg);
2059
2060 if (*arg)
2061 addr = parse_and_eval_address (arg);
2062 }
2063 if (!addr)
2064 error_no_arg (_("linear address"));
2065
2066 pdbr = get_cr3 ();
2067 if (!pdbr)
2068 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2069 else
2070 {
2071 int pde_idx = (addr >> 22) & 0x3ff;
2072 int pte_idx = (addr >> 12) & 0x3ff;
2073 unsigned offs = addr & 0xfff;
2074
2075 printf_filtered ("Page Table entry for address %s:\n",
2076 hex_string(addr));
2077 display_ptable_entry (get_pte (get_pde (pde_idx), pte_idx), 0, 1, offs);
2078 }
2079 }
2080
2081 static struct cmd_list_element *info_dos_cmdlist = NULL;
2082
2083 static void
2084 go32_info_dos_command (char *args, int from_tty)
2085 {
2086 help_list (info_dos_cmdlist, "info dos ", class_info, gdb_stdout);
2087 }
2088
2089 /* -Wmissing-prototypes */
2090 extern initialize_file_ftype _initialize_go32_nat;
2091
2092 void
2093 _initialize_go32_nat (void)
2094 {
2095 init_go32_ops ();
2096 add_target (&go32_ops);
2097
2098 add_prefix_cmd ("dos", class_info, go32_info_dos_command, _("\
2099 Print information specific to DJGPP (aka MS-DOS) debugging."),
2100 &info_dos_cmdlist, "info dos ", 0, &infolist);
2101
2102 add_cmd ("sysinfo", class_info, go32_sysinfo, _("\
2103 Display information about the target system, including CPU, OS, DPMI, etc."),
2104 &info_dos_cmdlist);
2105 add_cmd ("ldt", class_info, go32_sldt, _("\
2106 Display entries in the LDT (Local Descriptor Table).\n\
2107 Entry number (an expression) as an argument means display only that entry."),
2108 &info_dos_cmdlist);
2109 add_cmd ("gdt", class_info, go32_sgdt, _("\
2110 Display entries in the GDT (Global Descriptor Table).\n\
2111 Entry number (an expression) as an argument means display only that entry."),
2112 &info_dos_cmdlist);
2113 add_cmd ("idt", class_info, go32_sidt, _("\
2114 Display entries in the IDT (Interrupt Descriptor Table).\n\
2115 Entry number (an expression) as an argument means display only that entry."),
2116 &info_dos_cmdlist);
2117 add_cmd ("pde", class_info, go32_pde, _("\
2118 Display entries in the Page Directory.\n\
2119 Entry number (an expression) as an argument means display only that entry."),
2120 &info_dos_cmdlist);
2121 add_cmd ("pte", class_info, go32_pte, _("\
2122 Display entries in Page Tables.\n\
2123 Entry number (an expression) as an argument means display only entries\n\
2124 from the Page Table pointed to by the specified Page Directory entry."),
2125 &info_dos_cmdlist);
2126 add_cmd ("address-pte", class_info, go32_pte_for_address, _("\
2127 Display a Page Table entry for a linear address.\n\
2128 The address argument must be a linear address, after adding to\n\
2129 it the base address of the appropriate segment.\n\
2130 The base address of variables and functions in the debuggee's data\n\
2131 or code segment is stored in the variable __djgpp_base_address,\n\
2132 so use `__djgpp_base_address + (char *)&var' as the argument.\n\
2133 For other segments, look up their base address in the output of\n\
2134 the `info dos ldt' command."),
2135 &info_dos_cmdlist);
2136 }
2137
2138 pid_t
2139 tcgetpgrp (int fd)
2140 {
2141 if (isatty (fd))
2142 return SOME_PID;
2143 errno = ENOTTY;
2144 return -1;
2145 }
2146
2147 int
2148 tcsetpgrp (int fd, pid_t pgid)
2149 {
2150 if (isatty (fd) && pgid == SOME_PID)
2151 return 0;
2152 errno = pgid == SOME_PID ? ENOTTY : ENOSYS;
2153 return -1;
2154 }
This page took 0.075278 seconds and 5 git commands to generate.