Reimplement DJGPP's .gdbinit -> gdb.ini renaming.
[deliverable/binutils-gdb.git] / gdb / go32-nat.c
1 /* Native debugging support for Intel x86 running DJGPP.
2 Copyright (C) 1997-2013 Free Software Foundation, Inc.
3 Written by Robert Hoehne.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* To whomever it may concern, here's a general description of how
21 debugging in DJGPP works, and the special quirks GDB does to
22 support that.
23
24 When the DJGPP port of GDB is debugging a DJGPP program natively,
25 there aren't 2 separate processes, the debuggee and GDB itself, as
26 on other systems. (This is DOS, where there can only be one active
27 process at any given time, remember?) Instead, GDB and the
28 debuggee live in the same process. So when GDB calls
29 go32_create_inferior below, and that function calls edi_init from
30 the DJGPP debug support library libdbg.a, we load the debuggee's
31 executable file into GDB's address space, set it up for execution
32 as the stub loader (a short real-mode program prepended to each
33 DJGPP executable) normally would, and do a lot of preparations for
34 swapping between GDB's and debuggee's internal state, primarily wrt
35 the exception handlers. This swapping happens every time we resume
36 the debuggee or switch back to GDB's code, and it includes:
37
38 . swapping all the segment registers
39 . swapping the PSP (the Program Segment Prefix)
40 . swapping the signal handlers
41 . swapping the exception handlers
42 . swapping the FPU status
43 . swapping the 3 standard file handles (more about this below)
44
45 Then running the debuggee simply means longjmp into it where its PC
46 is and let it run until it stops for some reason. When it stops,
47 GDB catches the exception that stopped it and longjmp's back into
48 its own code. All the possible exit points of the debuggee are
49 watched; for example, the normal exit point is recognized because a
50 DOS program issues a special system call to exit. If one of those
51 exit points is hit, we mourn the inferior and clean up after it.
52 Cleaning up is very important, even if the process exits normally,
53 because otherwise we might leave behind traces of previous
54 execution, and in several cases GDB itself might be left hosed,
55 because all the exception handlers were not restored.
56
57 Swapping of the standard handles (in redir_to_child and
58 redir_to_debugger) is needed because, since both GDB and the
59 debuggee live in the same process, as far as the OS is concerned,
60 the share the same file table. This means that the standard
61 handles 0, 1, and 2 point to the same file table entries, and thus
62 are connected to the same devices. Therefore, if the debugger
63 redirects its standard output, the standard output of the debuggee
64 is also automagically redirected to the same file/device!
65 Similarly, if the debuggee redirects its stdout to a file, you
66 won't be able to see debugger's output (it will go to the same file
67 where the debuggee has its output); and if the debuggee closes its
68 standard input, you will lose the ability to talk to debugger!
69
70 For this reason, every time the debuggee is about to be resumed, we
71 call redir_to_child, which redirects the standard handles to where
72 the debuggee expects them to be. When the debuggee stops and GDB
73 regains control, we call redir_to_debugger, which redirects those 3
74 handles back to where GDB expects.
75
76 Note that only the first 3 handles are swapped, so if the debuggee
77 redirects or closes any other handles, GDB will not notice. In
78 particular, the exit code of a DJGPP program forcibly closes all
79 file handles beyond the first 3 ones, so when the debuggee exits,
80 GDB currently loses its stdaux and stdprn streams. Fortunately,
81 GDB does not use those as of this writing, and will never need
82 to. */
83
84 #include "defs.h"
85
86 #include <fcntl.h>
87
88 #include "i386-nat.h"
89 #include "inferior.h"
90 #include "gdbthread.h"
91 #include "gdb_wait.h"
92 #include "gdbcore.h"
93 #include "command.h"
94 #include "gdbcmd.h"
95 #include "floatformat.h"
96 #include "buildsym.h"
97 #include "i387-tdep.h"
98 #include "i386-tdep.h"
99 #include "i386-cpuid.h"
100 #include "value.h"
101 #include "regcache.h"
102 #include "gdb_string.h"
103 #include "top.h"
104 #include "cli/cli-utils.h"
105
106 #include <stdio.h> /* might be required for __DJGPP_MINOR__ */
107 #include <stdlib.h>
108 #include <ctype.h>
109 #include <errno.h>
110 #include <unistd.h>
111 #include <sys/utsname.h>
112 #include <io.h>
113 #include <dos.h>
114 #include <dpmi.h>
115 #include <go32.h>
116 #include <sys/farptr.h>
117 #include <debug/v2load.h>
118 #include <debug/dbgcom.h>
119 #if __DJGPP_MINOR__ > 2
120 #include <debug/redir.h>
121 #endif
122
123 #include <langinfo.h>
124
125 #if __DJGPP_MINOR__ < 3
126 /* This code will be provided from DJGPP 2.03 on. Until then I code it
127 here. */
128 typedef struct
129 {
130 unsigned short sig0;
131 unsigned short sig1;
132 unsigned short sig2;
133 unsigned short sig3;
134 unsigned short exponent:15;
135 unsigned short sign:1;
136 }
137 NPXREG;
138
139 typedef struct
140 {
141 unsigned int control;
142 unsigned int status;
143 unsigned int tag;
144 unsigned int eip;
145 unsigned int cs;
146 unsigned int dataptr;
147 unsigned int datasel;
148 NPXREG reg[8];
149 }
150 NPX;
151
152 static NPX npx;
153
154 static void save_npx (void); /* Save the FPU of the debugged program. */
155 static void load_npx (void); /* Restore the FPU of the debugged program. */
156
157 /* ------------------------------------------------------------------------- */
158 /* Store the contents of the NPX in the global variable `npx'. */
159 /* *INDENT-OFF* */
160
161 static void
162 save_npx (void)
163 {
164 asm ("inb $0xa0, %%al \n\
165 testb $0x20, %%al \n\
166 jz 1f \n\
167 xorb %%al, %%al \n\
168 outb %%al, $0xf0 \n\
169 movb $0x20, %%al \n\
170 outb %%al, $0xa0 \n\
171 outb %%al, $0x20 \n\
172 1: \n\
173 fnsave %0 \n\
174 fwait "
175 : "=m" (npx)
176 : /* No input */
177 : "%eax");
178 }
179
180 /* *INDENT-ON* */
181
182
183 /* ------------------------------------------------------------------------- */
184 /* Reload the contents of the NPX from the global variable `npx'. */
185
186 static void
187 load_npx (void)
188 {
189 asm ("frstor %0":"=m" (npx));
190 }
191 /* ------------------------------------------------------------------------- */
192 /* Stubs for the missing redirection functions. */
193 typedef struct {
194 char *command;
195 int redirected;
196 } cmdline_t;
197
198 void
199 redir_cmdline_delete (cmdline_t *ptr)
200 {
201 ptr->redirected = 0;
202 }
203
204 int
205 redir_cmdline_parse (const char *args, cmdline_t *ptr)
206 {
207 return -1;
208 }
209
210 int
211 redir_to_child (cmdline_t *ptr)
212 {
213 return 1;
214 }
215
216 int
217 redir_to_debugger (cmdline_t *ptr)
218 {
219 return 1;
220 }
221
222 int
223 redir_debug_init (cmdline_t *ptr)
224 {
225 return 0;
226 }
227 #endif /* __DJGPP_MINOR < 3 */
228
229 typedef enum { wp_insert, wp_remove, wp_count } wp_op;
230
231 /* This holds the current reference counts for each debug register. */
232 static int dr_ref_count[4];
233
234 #define SOME_PID 42
235
236 static int prog_has_started = 0;
237 static void go32_open (char *name, int from_tty);
238 static void go32_close (void);
239 static void go32_attach (struct target_ops *ops, char *args, int from_tty);
240 static void go32_detach (struct target_ops *ops, char *args, int from_tty);
241 static void go32_resume (struct target_ops *ops,
242 ptid_t ptid, int step,
243 enum gdb_signal siggnal);
244 static void go32_fetch_registers (struct target_ops *ops,
245 struct regcache *, int regno);
246 static void store_register (const struct regcache *, int regno);
247 static void go32_store_registers (struct target_ops *ops,
248 struct regcache *, int regno);
249 static void go32_prepare_to_store (struct regcache *);
250 static int go32_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len,
251 int write,
252 struct mem_attrib *attrib,
253 struct target_ops *target);
254 static void go32_files_info (struct target_ops *target);
255 static void go32_kill_inferior (struct target_ops *ops);
256 static void go32_create_inferior (struct target_ops *ops, char *exec_file,
257 char *args, char **env, int from_tty);
258 static void go32_mourn_inferior (struct target_ops *ops);
259 static int go32_can_run (void);
260
261 static struct target_ops go32_ops;
262 static void go32_terminal_init (void);
263 static void go32_terminal_inferior (void);
264 static void go32_terminal_ours (void);
265
266 #define r_ofs(x) (offsetof(TSS,x))
267
268 static struct
269 {
270 size_t tss_ofs;
271 size_t size;
272 }
273 regno_mapping[] =
274 {
275 {r_ofs (tss_eax), 4}, /* normal registers, from a_tss */
276 {r_ofs (tss_ecx), 4},
277 {r_ofs (tss_edx), 4},
278 {r_ofs (tss_ebx), 4},
279 {r_ofs (tss_esp), 4},
280 {r_ofs (tss_ebp), 4},
281 {r_ofs (tss_esi), 4},
282 {r_ofs (tss_edi), 4},
283 {r_ofs (tss_eip), 4},
284 {r_ofs (tss_eflags), 4},
285 {r_ofs (tss_cs), 2},
286 {r_ofs (tss_ss), 2},
287 {r_ofs (tss_ds), 2},
288 {r_ofs (tss_es), 2},
289 {r_ofs (tss_fs), 2},
290 {r_ofs (tss_gs), 2},
291 {0, 10}, /* 8 FP registers, from npx.reg[] */
292 {1, 10},
293 {2, 10},
294 {3, 10},
295 {4, 10},
296 {5, 10},
297 {6, 10},
298 {7, 10},
299 /* The order of the next 7 registers must be consistent
300 with their numbering in config/i386/tm-i386.h, which see. */
301 {0, 2}, /* control word, from npx */
302 {4, 2}, /* status word, from npx */
303 {8, 2}, /* tag word, from npx */
304 {16, 2}, /* last FP exception CS from npx */
305 {12, 4}, /* last FP exception EIP from npx */
306 {24, 2}, /* last FP exception operand selector from npx */
307 {20, 4}, /* last FP exception operand offset from npx */
308 {18, 2} /* last FP opcode from npx */
309 };
310
311 static struct
312 {
313 int go32_sig;
314 enum gdb_signal gdb_sig;
315 }
316 sig_map[] =
317 {
318 {0, GDB_SIGNAL_FPE},
319 {1, GDB_SIGNAL_TRAP},
320 /* Exception 2 is triggered by the NMI. DJGPP handles it as SIGILL,
321 but I think SIGBUS is better, since the NMI is usually activated
322 as a result of a memory parity check failure. */
323 {2, GDB_SIGNAL_BUS},
324 {3, GDB_SIGNAL_TRAP},
325 {4, GDB_SIGNAL_FPE},
326 {5, GDB_SIGNAL_SEGV},
327 {6, GDB_SIGNAL_ILL},
328 {7, GDB_SIGNAL_EMT}, /* no-coprocessor exception */
329 {8, GDB_SIGNAL_SEGV},
330 {9, GDB_SIGNAL_SEGV},
331 {10, GDB_SIGNAL_BUS},
332 {11, GDB_SIGNAL_SEGV},
333 {12, GDB_SIGNAL_SEGV},
334 {13, GDB_SIGNAL_SEGV},
335 {14, GDB_SIGNAL_SEGV},
336 {16, GDB_SIGNAL_FPE},
337 {17, GDB_SIGNAL_BUS},
338 {31, GDB_SIGNAL_ILL},
339 {0x1b, GDB_SIGNAL_INT},
340 {0x75, GDB_SIGNAL_FPE},
341 {0x78, GDB_SIGNAL_ALRM},
342 {0x79, GDB_SIGNAL_INT},
343 {0x7a, GDB_SIGNAL_QUIT},
344 {-1, GDB_SIGNAL_LAST}
345 };
346
347 static struct {
348 enum gdb_signal gdb_sig;
349 int djgpp_excepno;
350 } excepn_map[] = {
351 {GDB_SIGNAL_0, -1},
352 {GDB_SIGNAL_ILL, 6}, /* Invalid Opcode */
353 {GDB_SIGNAL_EMT, 7}, /* triggers SIGNOFP */
354 {GDB_SIGNAL_SEGV, 13}, /* GPF */
355 {GDB_SIGNAL_BUS, 17}, /* Alignment Check */
356 /* The rest are fake exceptions, see dpmiexcp.c in djlsr*.zip for
357 details. */
358 {GDB_SIGNAL_TERM, 0x1b}, /* triggers Ctrl-Break type of SIGINT */
359 {GDB_SIGNAL_FPE, 0x75},
360 {GDB_SIGNAL_INT, 0x79},
361 {GDB_SIGNAL_QUIT, 0x7a},
362 {GDB_SIGNAL_ALRM, 0x78}, /* triggers SIGTIMR */
363 {GDB_SIGNAL_PROF, 0x78},
364 {GDB_SIGNAL_LAST, -1}
365 };
366
367 static void
368 go32_open (char *name, int from_tty)
369 {
370 printf_unfiltered ("Done. Use the \"run\" command to run the program.\n");
371 }
372
373 static void
374 go32_close (void)
375 {
376 }
377
378 static void
379 go32_attach (struct target_ops *ops, char *args, int from_tty)
380 {
381 error (_("\
382 You cannot attach to a running program on this platform.\n\
383 Use the `run' command to run DJGPP programs."));
384 }
385
386 static void
387 go32_detach (struct target_ops *ops, char *args, int from_tty)
388 {
389 }
390
391 static int resume_is_step;
392 static int resume_signal = -1;
393
394 static void
395 go32_resume (struct target_ops *ops,
396 ptid_t ptid, int step, enum gdb_signal siggnal)
397 {
398 int i;
399
400 resume_is_step = step;
401
402 if (siggnal != GDB_SIGNAL_0 && siggnal != GDB_SIGNAL_TRAP)
403 {
404 for (i = 0, resume_signal = -1;
405 excepn_map[i].gdb_sig != GDB_SIGNAL_LAST; i++)
406 if (excepn_map[i].gdb_sig == siggnal)
407 {
408 resume_signal = excepn_map[i].djgpp_excepno;
409 break;
410 }
411 if (resume_signal == -1)
412 printf_unfiltered ("Cannot deliver signal %s on this platform.\n",
413 gdb_signal_to_name (siggnal));
414 }
415 }
416
417 static char child_cwd[FILENAME_MAX];
418
419 static ptid_t
420 go32_wait (struct target_ops *ops,
421 ptid_t ptid, struct target_waitstatus *status, int options)
422 {
423 int i;
424 unsigned char saved_opcode;
425 unsigned long INT3_addr = 0;
426 int stepping_over_INT = 0;
427
428 a_tss.tss_eflags &= 0xfeff; /* Reset the single-step flag (TF). */
429 if (resume_is_step)
430 {
431 /* If the next instruction is INT xx or INTO, we need to handle
432 them specially. Intel manuals say that these instructions
433 reset the single-step flag (a.k.a. TF). However, it seems
434 that, at least in the DPMI environment, and at least when
435 stepping over the DPMI interrupt 31h, the problem is having
436 TF set at all when INT 31h is executed: the debuggee either
437 crashes (and takes the system with it) or is killed by a
438 SIGTRAP.
439
440 So we need to emulate single-step mode: we put an INT3 opcode
441 right after the INT xx instruction, let the debuggee run
442 until it hits INT3 and stops, then restore the original
443 instruction which we overwrote with the INT3 opcode, and back
444 up the debuggee's EIP to that instruction. */
445 read_child (a_tss.tss_eip, &saved_opcode, 1);
446 if (saved_opcode == 0xCD || saved_opcode == 0xCE)
447 {
448 unsigned char INT3_opcode = 0xCC;
449
450 INT3_addr
451 = saved_opcode == 0xCD ? a_tss.tss_eip + 2 : a_tss.tss_eip + 1;
452 stepping_over_INT = 1;
453 read_child (INT3_addr, &saved_opcode, 1);
454 write_child (INT3_addr, &INT3_opcode, 1);
455 }
456 else
457 a_tss.tss_eflags |= 0x0100; /* normal instruction: set TF */
458 }
459
460 /* The special value FFFFh in tss_trap indicates to run_child that
461 tss_irqn holds a signal to be delivered to the debuggee. */
462 if (resume_signal <= -1)
463 {
464 a_tss.tss_trap = 0;
465 a_tss.tss_irqn = 0xff;
466 }
467 else
468 {
469 a_tss.tss_trap = 0xffff; /* run_child looks for this. */
470 a_tss.tss_irqn = resume_signal;
471 }
472
473 /* The child might change working directory behind our back. The
474 GDB users won't like the side effects of that when they work with
475 relative file names, and GDB might be confused by its current
476 directory not being in sync with the truth. So we always make a
477 point of changing back to where GDB thinks is its cwd, when we
478 return control to the debugger, but restore child's cwd before we
479 run it. */
480 /* Initialize child_cwd, before the first call to run_child and not
481 in the initialization, so the child get also the changed directory
482 set with the gdb-command "cd ..." */
483 if (!*child_cwd)
484 /* Initialize child's cwd with the current one. */
485 getcwd (child_cwd, sizeof (child_cwd));
486
487 chdir (child_cwd);
488
489 #if __DJGPP_MINOR__ < 3
490 load_npx ();
491 #endif
492 run_child ();
493 #if __DJGPP_MINOR__ < 3
494 save_npx ();
495 #endif
496
497 /* Did we step over an INT xx instruction? */
498 if (stepping_over_INT && a_tss.tss_eip == INT3_addr + 1)
499 {
500 /* Restore the original opcode. */
501 a_tss.tss_eip--; /* EIP points *after* the INT3 instruction. */
502 write_child (a_tss.tss_eip, &saved_opcode, 1);
503 /* Simulate a TRAP exception. */
504 a_tss.tss_irqn = 1;
505 a_tss.tss_eflags |= 0x0100;
506 }
507
508 getcwd (child_cwd, sizeof (child_cwd)); /* in case it has changed */
509 chdir (current_directory);
510
511 if (a_tss.tss_irqn == 0x21)
512 {
513 status->kind = TARGET_WAITKIND_EXITED;
514 status->value.integer = a_tss.tss_eax & 0xff;
515 }
516 else
517 {
518 status->value.sig = GDB_SIGNAL_UNKNOWN;
519 status->kind = TARGET_WAITKIND_STOPPED;
520 for (i = 0; sig_map[i].go32_sig != -1; i++)
521 {
522 if (a_tss.tss_irqn == sig_map[i].go32_sig)
523 {
524 #if __DJGPP_MINOR__ < 3
525 if ((status->value.sig = sig_map[i].gdb_sig) !=
526 GDB_SIGNAL_TRAP)
527 status->kind = TARGET_WAITKIND_SIGNALLED;
528 #else
529 status->value.sig = sig_map[i].gdb_sig;
530 #endif
531 break;
532 }
533 }
534 }
535 return pid_to_ptid (SOME_PID);
536 }
537
538 static void
539 fetch_register (struct regcache *regcache, int regno)
540 {
541 struct gdbarch *gdbarch = get_regcache_arch (regcache);
542 if (regno < gdbarch_fp0_regnum (gdbarch))
543 regcache_raw_supply (regcache, regno,
544 (char *) &a_tss + regno_mapping[regno].tss_ofs);
545 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
546 regno))
547 i387_supply_fsave (regcache, regno, &npx);
548 else
549 internal_error (__FILE__, __LINE__,
550 _("Invalid register no. %d in fetch_register."), regno);
551 }
552
553 static void
554 go32_fetch_registers (struct target_ops *ops,
555 struct regcache *regcache, int regno)
556 {
557 if (regno >= 0)
558 fetch_register (regcache, regno);
559 else
560 {
561 for (regno = 0;
562 regno < gdbarch_fp0_regnum (get_regcache_arch (regcache));
563 regno++)
564 fetch_register (regcache, regno);
565 i387_supply_fsave (regcache, -1, &npx);
566 }
567 }
568
569 static void
570 store_register (const struct regcache *regcache, int regno)
571 {
572 struct gdbarch *gdbarch = get_regcache_arch (regcache);
573 if (regno < gdbarch_fp0_regnum (gdbarch))
574 regcache_raw_collect (regcache, regno,
575 (char *) &a_tss + regno_mapping[regno].tss_ofs);
576 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
577 regno))
578 i387_collect_fsave (regcache, regno, &npx);
579 else
580 internal_error (__FILE__, __LINE__,
581 _("Invalid register no. %d in store_register."), regno);
582 }
583
584 static void
585 go32_store_registers (struct target_ops *ops,
586 struct regcache *regcache, int regno)
587 {
588 unsigned r;
589
590 if (regno >= 0)
591 store_register (regcache, regno);
592 else
593 {
594 for (r = 0; r < gdbarch_fp0_regnum (get_regcache_arch (regcache)); r++)
595 store_register (regcache, r);
596 i387_collect_fsave (regcache, -1, &npx);
597 }
598 }
599
600 static void
601 go32_prepare_to_store (struct regcache *regcache)
602 {
603 }
604
605 static int
606 go32_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int write,
607 struct mem_attrib *attrib, struct target_ops *target)
608 {
609 if (write)
610 {
611 if (write_child (memaddr, myaddr, len))
612 {
613 return 0;
614 }
615 else
616 {
617 return len;
618 }
619 }
620 else
621 {
622 if (read_child (memaddr, myaddr, len))
623 {
624 return 0;
625 }
626 else
627 {
628 return len;
629 }
630 }
631 }
632
633 static cmdline_t child_cmd; /* Parsed child's command line kept here. */
634
635 static void
636 go32_files_info (struct target_ops *target)
637 {
638 printf_unfiltered ("You are running a DJGPP V2 program.\n");
639 }
640
641 static void
642 go32_kill_inferior (struct target_ops *ops)
643 {
644 go32_mourn_inferior (ops);
645 }
646
647 static void
648 go32_create_inferior (struct target_ops *ops, char *exec_file,
649 char *args, char **env, int from_tty)
650 {
651 extern char **environ;
652 jmp_buf start_state;
653 char *cmdline;
654 char **env_save = environ;
655 size_t cmdlen;
656 struct inferior *inf;
657
658 /* If no exec file handed to us, get it from the exec-file command -- with
659 a good, common error message if none is specified. */
660 if (exec_file == 0)
661 exec_file = get_exec_file (1);
662
663 resume_signal = -1;
664 resume_is_step = 0;
665
666 /* Initialize child's cwd as empty to be initialized when starting
667 the child. */
668 *child_cwd = 0;
669
670 /* Init command line storage. */
671 if (redir_debug_init (&child_cmd) == -1)
672 internal_error (__FILE__, __LINE__,
673 _("Cannot allocate redirection storage: "
674 "not enough memory.\n"));
675
676 /* Parse the command line and create redirections. */
677 if (strpbrk (args, "<>"))
678 {
679 if (redir_cmdline_parse (args, &child_cmd) == 0)
680 args = child_cmd.command;
681 else
682 error (_("Syntax error in command line."));
683 }
684 else
685 child_cmd.command = xstrdup (args);
686
687 cmdlen = strlen (args);
688 /* v2loadimage passes command lines via DOS memory, so it cannot
689 possibly handle commands longer than 1MB. */
690 if (cmdlen > 1024*1024)
691 error (_("Command line too long."));
692
693 cmdline = xmalloc (cmdlen + 4);
694 strcpy (cmdline + 1, args);
695 /* If the command-line length fits into DOS 126-char limits, use the
696 DOS command tail format; otherwise, tell v2loadimage to pass it
697 through a buffer in conventional memory. */
698 if (cmdlen < 127)
699 {
700 cmdline[0] = strlen (args);
701 cmdline[cmdlen + 1] = 13;
702 }
703 else
704 cmdline[0] = 0xff; /* Signal v2loadimage it's a long command. */
705
706 environ = env;
707
708 if (v2loadimage (exec_file, cmdline, start_state))
709 {
710 environ = env_save;
711 printf_unfiltered ("Load failed for image %s\n", exec_file);
712 exit (1);
713 }
714 environ = env_save;
715 xfree (cmdline);
716
717 edi_init (start_state);
718 #if __DJGPP_MINOR__ < 3
719 save_npx ();
720 #endif
721
722 inferior_ptid = pid_to_ptid (SOME_PID);
723 inf = current_inferior ();
724 inferior_appeared (inf, SOME_PID);
725
726 push_target (&go32_ops);
727
728 add_thread_silent (inferior_ptid);
729
730 clear_proceed_status ();
731 insert_breakpoints ();
732 prog_has_started = 1;
733 }
734
735 static void
736 go32_mourn_inferior (struct target_ops *ops)
737 {
738 ptid_t ptid;
739
740 redir_cmdline_delete (&child_cmd);
741 resume_signal = -1;
742 resume_is_step = 0;
743
744 cleanup_client ();
745
746 /* We need to make sure all the breakpoint enable bits in the DR7
747 register are reset when the inferior exits. Otherwise, if they
748 rerun the inferior, the uncleared bits may cause random SIGTRAPs,
749 failure to set more watchpoints, and other calamities. It would
750 be nice if GDB itself would take care to remove all breakpoints
751 at all times, but it doesn't, probably under an assumption that
752 the OS cleans up when the debuggee exits. */
753 i386_cleanup_dregs ();
754
755 ptid = inferior_ptid;
756 inferior_ptid = null_ptid;
757 delete_thread_silent (ptid);
758 prog_has_started = 0;
759
760 unpush_target (ops);
761 generic_mourn_inferior ();
762 }
763
764 static int
765 go32_can_run (void)
766 {
767 return 1;
768 }
769
770 /* Hardware watchpoint support. */
771
772 #define D_REGS edi.dr
773 #define CONTROL D_REGS[7]
774 #define STATUS D_REGS[6]
775
776 /* Pass the address ADDR to the inferior in the I'th debug register.
777 Here we just store the address in D_REGS, the watchpoint will be
778 actually set up when go32_wait runs the debuggee. */
779 static void
780 go32_set_dr (int i, CORE_ADDR addr)
781 {
782 if (i < 0 || i > 3)
783 internal_error (__FILE__, __LINE__,
784 _("Invalid register %d in go32_set_dr.\n"), i);
785 D_REGS[i] = addr;
786 }
787
788 /* Pass the value VAL to the inferior in the DR7 debug control
789 register. Here we just store the address in D_REGS, the watchpoint
790 will be actually set up when go32_wait runs the debuggee. */
791 static void
792 go32_set_dr7 (unsigned long val)
793 {
794 CONTROL = val;
795 }
796
797 /* Get the value of the DR6 debug status register from the inferior.
798 Here we just return the value stored in D_REGS, as we've got it
799 from the last go32_wait call. */
800 static unsigned long
801 go32_get_dr6 (void)
802 {
803 return STATUS;
804 }
805
806 /* Get the value of the DR7 debug status register from the inferior.
807 Here we just return the value stored in D_REGS, as we've got it
808 from the last go32_wait call. */
809
810 static unsigned long
811 go32_get_dr7 (void)
812 {
813 return CONTROL;
814 }
815
816 /* Get the value of the DR debug register I from the inferior. Here
817 we just return the value stored in D_REGS, as we've got it from the
818 last go32_wait call. */
819
820 static CORE_ADDR
821 go32_get_dr (int i)
822 {
823 if (i < 0 || i > 3)
824 internal_error (__FILE__, __LINE__,
825 _("Invalid register %d in go32_get_dr.\n"), i);
826 return D_REGS[i];
827 }
828
829 /* Put the device open on handle FD into either raw or cooked
830 mode, return 1 if it was in raw mode, zero otherwise. */
831
832 static int
833 device_mode (int fd, int raw_p)
834 {
835 int oldmode, newmode;
836 __dpmi_regs regs;
837
838 regs.x.ax = 0x4400;
839 regs.x.bx = fd;
840 __dpmi_int (0x21, &regs);
841 if (regs.x.flags & 1)
842 return -1;
843 newmode = oldmode = regs.x.dx;
844
845 if (raw_p)
846 newmode |= 0x20;
847 else
848 newmode &= ~0x20;
849
850 if (oldmode & 0x80) /* Only for character dev. */
851 {
852 regs.x.ax = 0x4401;
853 regs.x.bx = fd;
854 regs.x.dx = newmode & 0xff; /* Force upper byte zero, else it fails. */
855 __dpmi_int (0x21, &regs);
856 if (regs.x.flags & 1)
857 return -1;
858 }
859 return (oldmode & 0x20) == 0x20;
860 }
861
862
863 static int inf_mode_valid = 0;
864 static int inf_terminal_mode;
865
866 /* This semaphore is needed because, amazingly enough, GDB calls
867 target.to_terminal_ours more than once after the inferior stops.
868 But we need the information from the first call only, since the
869 second call will always see GDB's own cooked terminal. */
870 static int terminal_is_ours = 1;
871
872 static void
873 go32_terminal_init (void)
874 {
875 inf_mode_valid = 0; /* Reinitialize, in case they are restarting child. */
876 terminal_is_ours = 1;
877 }
878
879 static void
880 go32_terminal_info (const char *args, int from_tty)
881 {
882 printf_unfiltered ("Inferior's terminal is in %s mode.\n",
883 !inf_mode_valid
884 ? "default" : inf_terminal_mode ? "raw" : "cooked");
885
886 #if __DJGPP_MINOR__ > 2
887 if (child_cmd.redirection)
888 {
889 int i;
890
891 for (i = 0; i < DBG_HANDLES; i++)
892 {
893 if (child_cmd.redirection[i]->file_name)
894 printf_unfiltered ("\tFile handle %d is redirected to `%s'.\n",
895 i, child_cmd.redirection[i]->file_name);
896 else if (_get_dev_info (child_cmd.redirection[i]->inf_handle) == -1)
897 printf_unfiltered
898 ("\tFile handle %d appears to be closed by inferior.\n", i);
899 /* Mask off the raw/cooked bit when comparing device info words. */
900 else if ((_get_dev_info (child_cmd.redirection[i]->inf_handle) & 0xdf)
901 != (_get_dev_info (i) & 0xdf))
902 printf_unfiltered
903 ("\tFile handle %d appears to be redirected by inferior.\n", i);
904 }
905 }
906 #endif
907 }
908
909 static void
910 go32_terminal_inferior (void)
911 {
912 /* Redirect standard handles as child wants them. */
913 errno = 0;
914 if (redir_to_child (&child_cmd) == -1)
915 {
916 redir_to_debugger (&child_cmd);
917 error (_("Cannot redirect standard handles for program: %s."),
918 safe_strerror (errno));
919 }
920 /* Set the console device of the inferior to whatever mode
921 (raw or cooked) we found it last time. */
922 if (terminal_is_ours)
923 {
924 if (inf_mode_valid)
925 device_mode (0, inf_terminal_mode);
926 terminal_is_ours = 0;
927 }
928 }
929
930 static void
931 go32_terminal_ours (void)
932 {
933 /* Switch to cooked mode on the gdb terminal and save the inferior
934 terminal mode to be restored when it is resumed. */
935 if (!terminal_is_ours)
936 {
937 inf_terminal_mode = device_mode (0, 0);
938 if (inf_terminal_mode != -1)
939 inf_mode_valid = 1;
940 else
941 /* If device_mode returned -1, we don't know what happens with
942 handle 0 anymore, so make the info invalid. */
943 inf_mode_valid = 0;
944 terminal_is_ours = 1;
945
946 /* Restore debugger's standard handles. */
947 errno = 0;
948 if (redir_to_debugger (&child_cmd) == -1)
949 {
950 redir_to_child (&child_cmd);
951 error (_("Cannot redirect standard handles for debugger: %s."),
952 safe_strerror (errno));
953 }
954 }
955 }
956
957 static int
958 go32_thread_alive (struct target_ops *ops, ptid_t ptid)
959 {
960 return !ptid_equal (inferior_ptid, null_ptid);
961 }
962
963 static char *
964 go32_pid_to_str (struct target_ops *ops, ptid_t ptid)
965 {
966 return normal_pid_to_str (ptid);
967 }
968
969 static void
970 init_go32_ops (void)
971 {
972 go32_ops.to_shortname = "djgpp";
973 go32_ops.to_longname = "djgpp target process";
974 go32_ops.to_doc =
975 "Program loaded by djgpp, when gdb is used as an external debugger";
976 go32_ops.to_open = go32_open;
977 go32_ops.to_close = go32_close;
978 go32_ops.to_attach = go32_attach;
979 go32_ops.to_detach = go32_detach;
980 go32_ops.to_resume = go32_resume;
981 go32_ops.to_wait = go32_wait;
982 go32_ops.to_fetch_registers = go32_fetch_registers;
983 go32_ops.to_store_registers = go32_store_registers;
984 go32_ops.to_prepare_to_store = go32_prepare_to_store;
985 go32_ops.deprecated_xfer_memory = go32_xfer_memory;
986 go32_ops.to_files_info = go32_files_info;
987 go32_ops.to_insert_breakpoint = memory_insert_breakpoint;
988 go32_ops.to_remove_breakpoint = memory_remove_breakpoint;
989 go32_ops.to_terminal_init = go32_terminal_init;
990 go32_ops.to_terminal_inferior = go32_terminal_inferior;
991 go32_ops.to_terminal_ours_for_output = go32_terminal_ours;
992 go32_ops.to_terminal_ours = go32_terminal_ours;
993 go32_ops.to_terminal_info = go32_terminal_info;
994 go32_ops.to_kill = go32_kill_inferior;
995 go32_ops.to_create_inferior = go32_create_inferior;
996 go32_ops.to_mourn_inferior = go32_mourn_inferior;
997 go32_ops.to_can_run = go32_can_run;
998 go32_ops.to_thread_alive = go32_thread_alive;
999 go32_ops.to_pid_to_str = go32_pid_to_str;
1000 go32_ops.to_stratum = process_stratum;
1001 go32_ops.to_has_all_memory = default_child_has_all_memory;
1002 go32_ops.to_has_memory = default_child_has_memory;
1003 go32_ops.to_has_stack = default_child_has_stack;
1004 go32_ops.to_has_registers = default_child_has_registers;
1005 go32_ops.to_has_execution = default_child_has_execution;
1006
1007 i386_use_watchpoints (&go32_ops);
1008
1009
1010 i386_dr_low.set_control = go32_set_dr7;
1011 i386_dr_low.set_addr = go32_set_dr;
1012 i386_dr_low.get_status = go32_get_dr6;
1013 i386_dr_low.get_control = go32_get_dr7;
1014 i386_dr_low.get_addr = go32_get_dr;
1015 i386_set_debug_register_length (4);
1016
1017 go32_ops.to_magic = OPS_MAGIC;
1018
1019 /* Initialize child's cwd as empty to be initialized when starting
1020 the child. */
1021 *child_cwd = 0;
1022
1023 /* Initialize child's command line storage. */
1024 if (redir_debug_init (&child_cmd) == -1)
1025 internal_error (__FILE__, __LINE__,
1026 _("Cannot allocate redirection storage: "
1027 "not enough memory.\n"));
1028
1029 /* We are always processing GCC-compiled programs. */
1030 processing_gcc_compilation = 2;
1031 }
1032
1033 /* Return the current DOS codepage number. */
1034 static int
1035 dos_codepage (void)
1036 {
1037 __dpmi_regs regs;
1038
1039 regs.x.ax = 0x6601;
1040 __dpmi_int (0x21, &regs);
1041 if (!(regs.x.flags & 1))
1042 return regs.x.bx & 0xffff;
1043 else
1044 return 437; /* default */
1045 }
1046
1047 /* Limited emulation of `nl_langinfo', for charset.c. */
1048 char *
1049 nl_langinfo (nl_item item)
1050 {
1051 char *retval;
1052
1053 switch (item)
1054 {
1055 case CODESET:
1056 {
1057 /* 8 is enough for SHORT_MAX + "CP" + null. */
1058 char buf[8];
1059 int blen = sizeof (buf);
1060 int needed = snprintf (buf, blen, "CP%d", dos_codepage ());
1061
1062 if (needed > blen) /* Should never happen. */
1063 buf[0] = 0;
1064 retval = xstrdup (buf);
1065 }
1066 break;
1067 default:
1068 retval = xstrdup ("");
1069 break;
1070 }
1071 return retval;
1072 }
1073
1074 unsigned short windows_major, windows_minor;
1075
1076 /* Compute the version Windows reports via Int 2Fh/AX=1600h. */
1077 static void
1078 go32_get_windows_version(void)
1079 {
1080 __dpmi_regs r;
1081
1082 r.x.ax = 0x1600;
1083 __dpmi_int(0x2f, &r);
1084 if (r.h.al > 2 && r.h.al != 0x80 && r.h.al != 0xff
1085 && (r.h.al > 3 || r.h.ah > 0))
1086 {
1087 windows_major = r.h.al;
1088 windows_minor = r.h.ah;
1089 }
1090 else
1091 windows_major = 0xff; /* meaning no Windows */
1092 }
1093
1094 /* A subroutine of go32_sysinfo to display memory info. */
1095 static void
1096 print_mem (unsigned long datum, const char *header, int in_pages_p)
1097 {
1098 if (datum != 0xffffffffUL)
1099 {
1100 if (in_pages_p)
1101 datum <<= 12;
1102 puts_filtered (header);
1103 if (datum > 1024)
1104 {
1105 printf_filtered ("%lu KB", datum >> 10);
1106 if (datum > 1024 * 1024)
1107 printf_filtered (" (%lu MB)", datum >> 20);
1108 }
1109 else
1110 printf_filtered ("%lu Bytes", datum);
1111 puts_filtered ("\n");
1112 }
1113 }
1114
1115 /* Display assorted information about the underlying OS. */
1116 static void
1117 go32_sysinfo (char *arg, int from_tty)
1118 {
1119 static const char test_pattern[] =
1120 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1121 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1122 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeafdeadbeaf";
1123 struct utsname u;
1124 char cpuid_vendor[13];
1125 unsigned cpuid_max = 0, cpuid_eax, cpuid_ebx, cpuid_ecx, cpuid_edx;
1126 unsigned true_dos_version = _get_dos_version (1);
1127 unsigned advertized_dos_version = ((unsigned int)_osmajor << 8) | _osminor;
1128 int dpmi_flags;
1129 char dpmi_vendor_info[129];
1130 int dpmi_vendor_available;
1131 __dpmi_version_ret dpmi_version_data;
1132 long eflags;
1133 __dpmi_free_mem_info mem_info;
1134 __dpmi_regs regs;
1135
1136 cpuid_vendor[0] = '\0';
1137 if (uname (&u))
1138 strcpy (u.machine, "Unknown x86");
1139 else if (u.machine[0] == 'i' && u.machine[1] > 4)
1140 {
1141 /* CPUID with EAX = 0 returns the Vendor ID. */
1142 #if 0
1143 /* Ideally we would use i386_cpuid(), but it needs someone to run
1144 native tests first to make sure things actually work. They should.
1145 http://sourceware.org/ml/gdb-patches/2013-05/msg00164.html */
1146 unsigned int eax, ebx, ecx, edx;
1147
1148 if (i386_cpuid (0, &eax, &ebx, &ecx, &edx))
1149 {
1150 cpuid_max = eax;
1151 memcpy (&vendor[0], &ebx, 4);
1152 memcpy (&vendor[4], &ecx, 4);
1153 memcpy (&vendor[8], &edx, 4);
1154 cpuid_vendor[12] = '\0';
1155 }
1156 #else
1157 __asm__ __volatile__ ("xorl %%ebx, %%ebx;"
1158 "xorl %%ecx, %%ecx;"
1159 "xorl %%edx, %%edx;"
1160 "movl $0, %%eax;"
1161 "cpuid;"
1162 "movl %%ebx, %0;"
1163 "movl %%edx, %1;"
1164 "movl %%ecx, %2;"
1165 "movl %%eax, %3;"
1166 : "=m" (cpuid_vendor[0]),
1167 "=m" (cpuid_vendor[4]),
1168 "=m" (cpuid_vendor[8]),
1169 "=m" (cpuid_max)
1170 :
1171 : "%eax", "%ebx", "%ecx", "%edx");
1172 cpuid_vendor[12] = '\0';
1173 #endif
1174 }
1175
1176 printf_filtered ("CPU Type.......................%s", u.machine);
1177 if (cpuid_vendor[0])
1178 printf_filtered (" (%s)", cpuid_vendor);
1179 puts_filtered ("\n");
1180
1181 /* CPUID with EAX = 1 returns processor signature and features. */
1182 if (cpuid_max >= 1)
1183 {
1184 static char *brand_name[] = {
1185 "",
1186 " Celeron",
1187 " III",
1188 " III Xeon",
1189 "", "", "", "",
1190 " 4"
1191 };
1192 char cpu_string[80];
1193 char cpu_brand[20];
1194 unsigned brand_idx;
1195 int intel_p = strcmp (cpuid_vendor, "GenuineIntel") == 0;
1196 int amd_p = strcmp (cpuid_vendor, "AuthenticAMD") == 0;
1197 unsigned cpu_family, cpu_model;
1198
1199 #if 0
1200 /* See comment above about cpuid usage. */
1201 i386_cpuid (1, &cpuid_eax, &cpuid_ebx, NULL, &cpuid_edx);
1202 #else
1203 __asm__ __volatile__ ("movl $1, %%eax;"
1204 "cpuid;"
1205 : "=a" (cpuid_eax),
1206 "=b" (cpuid_ebx),
1207 "=d" (cpuid_edx)
1208 :
1209 : "%ecx");
1210 #endif
1211 brand_idx = cpuid_ebx & 0xff;
1212 cpu_family = (cpuid_eax >> 8) & 0xf;
1213 cpu_model = (cpuid_eax >> 4) & 0xf;
1214 cpu_brand[0] = '\0';
1215 if (intel_p)
1216 {
1217 if (brand_idx > 0
1218 && brand_idx < sizeof(brand_name)/sizeof(brand_name[0])
1219 && *brand_name[brand_idx])
1220 strcpy (cpu_brand, brand_name[brand_idx]);
1221 else if (cpu_family == 5)
1222 {
1223 if (((cpuid_eax >> 12) & 3) == 0 && cpu_model == 4)
1224 strcpy (cpu_brand, " MMX");
1225 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 1)
1226 strcpy (cpu_brand, " OverDrive");
1227 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 2)
1228 strcpy (cpu_brand, " Dual");
1229 }
1230 else if (cpu_family == 6 && cpu_model < 8)
1231 {
1232 switch (cpu_model)
1233 {
1234 case 1:
1235 strcpy (cpu_brand, " Pro");
1236 break;
1237 case 3:
1238 strcpy (cpu_brand, " II");
1239 break;
1240 case 5:
1241 strcpy (cpu_brand, " II Xeon");
1242 break;
1243 case 6:
1244 strcpy (cpu_brand, " Celeron");
1245 break;
1246 case 7:
1247 strcpy (cpu_brand, " III");
1248 break;
1249 }
1250 }
1251 }
1252 else if (amd_p)
1253 {
1254 switch (cpu_family)
1255 {
1256 case 4:
1257 strcpy (cpu_brand, "486/5x86");
1258 break;
1259 case 5:
1260 switch (cpu_model)
1261 {
1262 case 0:
1263 case 1:
1264 case 2:
1265 case 3:
1266 strcpy (cpu_brand, "-K5");
1267 break;
1268 case 6:
1269 case 7:
1270 strcpy (cpu_brand, "-K6");
1271 break;
1272 case 8:
1273 strcpy (cpu_brand, "-K6-2");
1274 break;
1275 case 9:
1276 strcpy (cpu_brand, "-K6-III");
1277 break;
1278 }
1279 break;
1280 case 6:
1281 switch (cpu_model)
1282 {
1283 case 1:
1284 case 2:
1285 case 4:
1286 strcpy (cpu_brand, " Athlon");
1287 break;
1288 case 3:
1289 strcpy (cpu_brand, " Duron");
1290 break;
1291 }
1292 break;
1293 }
1294 }
1295 xsnprintf (cpu_string, sizeof (cpu_string), "%s%s Model %d Stepping %d",
1296 intel_p ? "Pentium" : (amd_p ? "AMD" : "ix86"),
1297 cpu_brand, cpu_model, cpuid_eax & 0xf);
1298 printfi_filtered (31, "%s\n", cpu_string);
1299 if (((cpuid_edx & (6 | (0x0d << 23))) != 0)
1300 || ((cpuid_edx & 1) == 0)
1301 || (amd_p && (cpuid_edx & (3 << 30)) != 0))
1302 {
1303 puts_filtered ("CPU Features...................");
1304 /* We only list features which might be useful in the DPMI
1305 environment. */
1306 if ((cpuid_edx & 1) == 0)
1307 puts_filtered ("No FPU "); /* It's unusual to not have an FPU. */
1308 if ((cpuid_edx & (1 << 1)) != 0)
1309 puts_filtered ("VME ");
1310 if ((cpuid_edx & (1 << 2)) != 0)
1311 puts_filtered ("DE ");
1312 if ((cpuid_edx & (1 << 4)) != 0)
1313 puts_filtered ("TSC ");
1314 if ((cpuid_edx & (1 << 23)) != 0)
1315 puts_filtered ("MMX ");
1316 if ((cpuid_edx & (1 << 25)) != 0)
1317 puts_filtered ("SSE ");
1318 if ((cpuid_edx & (1 << 26)) != 0)
1319 puts_filtered ("SSE2 ");
1320 if (amd_p)
1321 {
1322 if ((cpuid_edx & (1 << 31)) != 0)
1323 puts_filtered ("3DNow! ");
1324 if ((cpuid_edx & (1 << 30)) != 0)
1325 puts_filtered ("3DNow!Ext");
1326 }
1327 puts_filtered ("\n");
1328 }
1329 }
1330 puts_filtered ("\n");
1331 printf_filtered ("DOS Version....................%s %s.%s",
1332 _os_flavor, u.release, u.version);
1333 if (true_dos_version != advertized_dos_version)
1334 printf_filtered (" (disguised as v%d.%d)", _osmajor, _osminor);
1335 puts_filtered ("\n");
1336 if (!windows_major)
1337 go32_get_windows_version ();
1338 if (windows_major != 0xff)
1339 {
1340 const char *windows_flavor;
1341
1342 printf_filtered ("Windows Version................%d.%02d (Windows ",
1343 windows_major, windows_minor);
1344 switch (windows_major)
1345 {
1346 case 3:
1347 windows_flavor = "3.X";
1348 break;
1349 case 4:
1350 switch (windows_minor)
1351 {
1352 case 0:
1353 windows_flavor = "95, 95A, or 95B";
1354 break;
1355 case 3:
1356 windows_flavor = "95B OSR2.1 or 95C OSR2.5";
1357 break;
1358 case 10:
1359 windows_flavor = "98 or 98 SE";
1360 break;
1361 case 90:
1362 windows_flavor = "ME";
1363 break;
1364 default:
1365 windows_flavor = "9X";
1366 break;
1367 }
1368 break;
1369 default:
1370 windows_flavor = "??";
1371 break;
1372 }
1373 printf_filtered ("%s)\n", windows_flavor);
1374 }
1375 else if (true_dos_version == 0x532 && advertized_dos_version == 0x500)
1376 printf_filtered ("Windows Version................"
1377 "Windows NT family (W2K/XP/W2K3/Vista/W2K8)\n");
1378 puts_filtered ("\n");
1379 /* On some versions of Windows, __dpmi_get_capabilities returns
1380 zero, but the buffer is not filled with info, so we fill the
1381 buffer with a known pattern and test for it afterwards. */
1382 memcpy (dpmi_vendor_info, test_pattern, sizeof(dpmi_vendor_info));
1383 dpmi_vendor_available =
1384 __dpmi_get_capabilities (&dpmi_flags, dpmi_vendor_info);
1385 if (dpmi_vendor_available == 0
1386 && memcmp (dpmi_vendor_info, test_pattern,
1387 sizeof(dpmi_vendor_info)) != 0)
1388 {
1389 /* The DPMI spec says the vendor string should be ASCIIZ, but
1390 I don't trust the vendors to follow that... */
1391 if (!memchr (&dpmi_vendor_info[2], 0, 126))
1392 dpmi_vendor_info[128] = '\0';
1393 printf_filtered ("DPMI Host......................"
1394 "%s v%d.%d (capabilities: %#x)\n",
1395 &dpmi_vendor_info[2],
1396 (unsigned)dpmi_vendor_info[0],
1397 (unsigned)dpmi_vendor_info[1],
1398 ((unsigned)dpmi_flags & 0x7f));
1399 }
1400 else
1401 printf_filtered ("DPMI Host......................(Info not available)\n");
1402 __dpmi_get_version (&dpmi_version_data);
1403 printf_filtered ("DPMI Version...................%d.%02d\n",
1404 dpmi_version_data.major, dpmi_version_data.minor);
1405 printf_filtered ("DPMI Info......................"
1406 "%s-bit DPMI, with%s Virtual Memory support\n",
1407 (dpmi_version_data.flags & 1) ? "32" : "16",
1408 (dpmi_version_data.flags & 4) ? "" : "out");
1409 printfi_filtered (31, "Interrupts reflected to %s mode\n",
1410 (dpmi_version_data.flags & 2) ? "V86" : "Real");
1411 printfi_filtered (31, "Processor type: i%d86\n",
1412 dpmi_version_data.cpu);
1413 printfi_filtered (31, "PIC base interrupt: Master: %#x Slave: %#x\n",
1414 dpmi_version_data.master_pic, dpmi_version_data.slave_pic);
1415
1416 /* a_tss is only initialized when the debuggee is first run. */
1417 if (prog_has_started)
1418 {
1419 __asm__ __volatile__ ("pushfl ; popl %0" : "=g" (eflags));
1420 printf_filtered ("Protection....................."
1421 "Ring %d (in %s), with%s I/O protection\n",
1422 a_tss.tss_cs & 3, (a_tss.tss_cs & 4) ? "LDT" : "GDT",
1423 (a_tss.tss_cs & 3) > ((eflags >> 12) & 3) ? "" : "out");
1424 }
1425 puts_filtered ("\n");
1426 __dpmi_get_free_memory_information (&mem_info);
1427 print_mem (mem_info.total_number_of_physical_pages,
1428 "DPMI Total Physical Memory.....", 1);
1429 print_mem (mem_info.total_number_of_free_pages,
1430 "DPMI Free Physical Memory......", 1);
1431 print_mem (mem_info.size_of_paging_file_partition_in_pages,
1432 "DPMI Swap Space................", 1);
1433 print_mem (mem_info.linear_address_space_size_in_pages,
1434 "DPMI Total Linear Address Size.", 1);
1435 print_mem (mem_info.free_linear_address_space_in_pages,
1436 "DPMI Free Linear Address Size..", 1);
1437 print_mem (mem_info.largest_available_free_block_in_bytes,
1438 "DPMI Largest Free Memory Block.", 0);
1439
1440 regs.h.ah = 0x48;
1441 regs.x.bx = 0xffff;
1442 __dpmi_int (0x21, &regs);
1443 print_mem (regs.x.bx << 4, "Free DOS Memory................", 0);
1444 regs.x.ax = 0x5800;
1445 __dpmi_int (0x21, &regs);
1446 if ((regs.x.flags & 1) == 0)
1447 {
1448 static const char *dos_hilo[] = {
1449 "Low", "", "", "", "High", "", "", "", "High, then Low"
1450 };
1451 static const char *dos_fit[] = {
1452 "First", "Best", "Last"
1453 };
1454 int hilo_idx = (regs.x.ax >> 4) & 0x0f;
1455 int fit_idx = regs.x.ax & 0x0f;
1456
1457 if (hilo_idx > 8)
1458 hilo_idx = 0;
1459 if (fit_idx > 2)
1460 fit_idx = 0;
1461 printf_filtered ("DOS Memory Allocation..........%s memory, %s fit\n",
1462 dos_hilo[hilo_idx], dos_fit[fit_idx]);
1463 regs.x.ax = 0x5802;
1464 __dpmi_int (0x21, &regs);
1465 if ((regs.x.flags & 1) != 0)
1466 regs.h.al = 0;
1467 printfi_filtered (31, "UMBs %sin DOS memory chain\n",
1468 regs.h.al == 0 ? "not " : "");
1469 }
1470 }
1471
1472 struct seg_descr {
1473 unsigned short limit0;
1474 unsigned short base0;
1475 unsigned char base1;
1476 unsigned stype:5;
1477 unsigned dpl:2;
1478 unsigned present:1;
1479 unsigned limit1:4;
1480 unsigned available:1;
1481 unsigned dummy:1;
1482 unsigned bit32:1;
1483 unsigned page_granular:1;
1484 unsigned char base2;
1485 } __attribute__ ((packed));
1486
1487 struct gate_descr {
1488 unsigned short offset0;
1489 unsigned short selector;
1490 unsigned param_count:5;
1491 unsigned dummy:3;
1492 unsigned stype:5;
1493 unsigned dpl:2;
1494 unsigned present:1;
1495 unsigned short offset1;
1496 } __attribute__ ((packed));
1497
1498 /* Read LEN bytes starting at logical address ADDR, and put the result
1499 into DEST. Return 1 if success, zero if not. */
1500 static int
1501 read_memory_region (unsigned long addr, void *dest, size_t len)
1502 {
1503 unsigned long dos_ds_limit = __dpmi_get_segment_limit (_dos_ds);
1504 int retval = 1;
1505
1506 /* For the low memory, we can simply use _dos_ds. */
1507 if (addr <= dos_ds_limit - len)
1508 dosmemget (addr, len, dest);
1509 else
1510 {
1511 /* For memory above 1MB we need to set up a special segment to
1512 be able to access that memory. */
1513 int sel = __dpmi_allocate_ldt_descriptors (1);
1514
1515 if (sel <= 0)
1516 retval = 0;
1517 else
1518 {
1519 int access_rights = __dpmi_get_descriptor_access_rights (sel);
1520 size_t segment_limit = len - 1;
1521
1522 /* Make sure the crucial bits in the descriptor access
1523 rights are set correctly. Some DPMI providers might barf
1524 if we set the segment limit to something that is not an
1525 integral multiple of 4KB pages if the granularity bit is
1526 not set to byte-granular, even though the DPMI spec says
1527 it's the host's responsibility to set that bit correctly. */
1528 if (len > 1024 * 1024)
1529 {
1530 access_rights |= 0x8000;
1531 /* Page-granular segments should have the low 12 bits of
1532 the limit set. */
1533 segment_limit |= 0xfff;
1534 }
1535 else
1536 access_rights &= ~0x8000;
1537
1538 if (__dpmi_set_segment_base_address (sel, addr) != -1
1539 && __dpmi_set_descriptor_access_rights (sel, access_rights) != -1
1540 && __dpmi_set_segment_limit (sel, segment_limit) != -1
1541 /* W2K silently fails to set the segment limit, leaving
1542 it at zero; this test avoids the resulting crash. */
1543 && __dpmi_get_segment_limit (sel) >= segment_limit)
1544 movedata (sel, 0, _my_ds (), (unsigned)dest, len);
1545 else
1546 retval = 0;
1547
1548 __dpmi_free_ldt_descriptor (sel);
1549 }
1550 }
1551 return retval;
1552 }
1553
1554 /* Get a segment descriptor stored at index IDX in the descriptor
1555 table whose base address is TABLE_BASE. Return the descriptor
1556 type, or -1 if failure. */
1557 static int
1558 get_descriptor (unsigned long table_base, int idx, void *descr)
1559 {
1560 unsigned long addr = table_base + idx * 8; /* 8 bytes per entry */
1561
1562 if (read_memory_region (addr, descr, 8))
1563 return (int)((struct seg_descr *)descr)->stype;
1564 return -1;
1565 }
1566
1567 struct dtr_reg {
1568 unsigned short limit __attribute__((packed));
1569 unsigned long base __attribute__((packed));
1570 };
1571
1572 /* Display a segment descriptor stored at index IDX in a descriptor
1573 table whose type is TYPE and whose base address is BASE_ADDR. If
1574 FORCE is non-zero, display even invalid descriptors. */
1575 static void
1576 display_descriptor (unsigned type, unsigned long base_addr, int idx, int force)
1577 {
1578 struct seg_descr descr;
1579 struct gate_descr gate;
1580
1581 /* Get the descriptor from the table. */
1582 if (idx == 0 && type == 0)
1583 puts_filtered ("0x000: null descriptor\n");
1584 else if (get_descriptor (base_addr, idx, &descr) != -1)
1585 {
1586 /* For each type of descriptor table, this has a bit set if the
1587 corresponding type of selectors is valid in that table. */
1588 static unsigned allowed_descriptors[] = {
1589 0xffffdafeL, /* GDT */
1590 0x0000c0e0L, /* IDT */
1591 0xffffdafaL /* LDT */
1592 };
1593
1594 /* If the program hasn't started yet, assume the debuggee will
1595 have the same CPL as the debugger. */
1596 int cpl = prog_has_started ? (a_tss.tss_cs & 3) : _my_cs () & 3;
1597 unsigned long limit = (descr.limit1 << 16) | descr.limit0;
1598
1599 if (descr.present
1600 && (allowed_descriptors[type] & (1 << descr.stype)) != 0)
1601 {
1602 printf_filtered ("0x%03x: ",
1603 type == 1
1604 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1605 if (descr.page_granular)
1606 limit = (limit << 12) | 0xfff; /* big segment: low 12 bit set */
1607 if (descr.stype == 1 || descr.stype == 2 || descr.stype == 3
1608 || descr.stype == 9 || descr.stype == 11
1609 || (descr.stype >= 16 && descr.stype < 32))
1610 printf_filtered ("base=0x%02x%02x%04x limit=0x%08lx",
1611 descr.base2, descr.base1, descr.base0, limit);
1612
1613 switch (descr.stype)
1614 {
1615 case 1:
1616 case 3:
1617 printf_filtered (" 16-bit TSS (task %sactive)",
1618 descr.stype == 3 ? "" : "in");
1619 break;
1620 case 2:
1621 puts_filtered (" LDT");
1622 break;
1623 case 4:
1624 memcpy (&gate, &descr, sizeof gate);
1625 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1626 gate.selector, gate.offset1, gate.offset0);
1627 printf_filtered (" 16-bit Call Gate (params=%d)",
1628 gate.param_count);
1629 break;
1630 case 5:
1631 printf_filtered ("TSS selector=0x%04x", descr.base0);
1632 printfi_filtered (16, "Task Gate");
1633 break;
1634 case 6:
1635 case 7:
1636 memcpy (&gate, &descr, sizeof gate);
1637 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1638 gate.selector, gate.offset1, gate.offset0);
1639 printf_filtered (" 16-bit %s Gate",
1640 descr.stype == 6 ? "Interrupt" : "Trap");
1641 break;
1642 case 9:
1643 case 11:
1644 printf_filtered (" 32-bit TSS (task %sactive)",
1645 descr.stype == 3 ? "" : "in");
1646 break;
1647 case 12:
1648 memcpy (&gate, &descr, sizeof gate);
1649 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1650 gate.selector, gate.offset1, gate.offset0);
1651 printf_filtered (" 32-bit Call Gate (params=%d)",
1652 gate.param_count);
1653 break;
1654 case 14:
1655 case 15:
1656 memcpy (&gate, &descr, sizeof gate);
1657 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1658 gate.selector, gate.offset1, gate.offset0);
1659 printf_filtered (" 32-bit %s Gate",
1660 descr.stype == 14 ? "Interrupt" : "Trap");
1661 break;
1662 case 16: /* data segments */
1663 case 17:
1664 case 18:
1665 case 19:
1666 case 20:
1667 case 21:
1668 case 22:
1669 case 23:
1670 printf_filtered (" %s-bit Data (%s Exp-%s%s)",
1671 descr.bit32 ? "32" : "16",
1672 descr.stype & 2
1673 ? "Read/Write," : "Read-Only, ",
1674 descr.stype & 4 ? "down" : "up",
1675 descr.stype & 1 ? "" : ", N.Acc");
1676 break;
1677 case 24: /* code segments */
1678 case 25:
1679 case 26:
1680 case 27:
1681 case 28:
1682 case 29:
1683 case 30:
1684 case 31:
1685 printf_filtered (" %s-bit Code (%s, %sConf%s)",
1686 descr.bit32 ? "32" : "16",
1687 descr.stype & 2 ? "Exec/Read" : "Exec-Only",
1688 descr.stype & 4 ? "" : "N.",
1689 descr.stype & 1 ? "" : ", N.Acc");
1690 break;
1691 default:
1692 printf_filtered ("Unknown type 0x%02x", descr.stype);
1693 break;
1694 }
1695 puts_filtered ("\n");
1696 }
1697 else if (force)
1698 {
1699 printf_filtered ("0x%03x: ",
1700 type == 1
1701 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1702 if (!descr.present)
1703 puts_filtered ("Segment not present\n");
1704 else
1705 printf_filtered ("Segment type 0x%02x is invalid in this table\n",
1706 descr.stype);
1707 }
1708 }
1709 else if (force)
1710 printf_filtered ("0x%03x: Cannot read this descriptor\n", idx);
1711 }
1712
1713 static void
1714 go32_sldt (char *arg, int from_tty)
1715 {
1716 struct dtr_reg gdtr;
1717 unsigned short ldtr = 0;
1718 int ldt_idx;
1719 struct seg_descr ldt_descr;
1720 long ldt_entry = -1L;
1721 int cpl = (prog_has_started ? a_tss.tss_cs : _my_cs ()) & 3;
1722
1723 if (arg && *arg)
1724 {
1725 arg = skip_spaces (arg);
1726
1727 if (*arg)
1728 {
1729 ldt_entry = parse_and_eval_long (arg);
1730 if (ldt_entry < 0
1731 || (ldt_entry & 4) == 0
1732 || (ldt_entry & 3) != (cpl & 3))
1733 error (_("Invalid LDT entry 0x%03lx."), (unsigned long)ldt_entry);
1734 }
1735 }
1736
1737 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1738 __asm__ __volatile__ ("sldt %0" : "=m" (ldtr) : /* no inputs */ );
1739 ldt_idx = ldtr / 8;
1740 if (ldt_idx == 0)
1741 puts_filtered ("There is no LDT.\n");
1742 /* LDT's entry in the GDT must have the type LDT, which is 2. */
1743 else if (get_descriptor (gdtr.base, ldt_idx, &ldt_descr) != 2)
1744 printf_filtered ("LDT is present (at %#x), but unreadable by GDB.\n",
1745 ldt_descr.base0
1746 | (ldt_descr.base1 << 16)
1747 | (ldt_descr.base2 << 24));
1748 else
1749 {
1750 unsigned base =
1751 ldt_descr.base0
1752 | (ldt_descr.base1 << 16)
1753 | (ldt_descr.base2 << 24);
1754 unsigned limit = ldt_descr.limit0 | (ldt_descr.limit1 << 16);
1755 int max_entry;
1756
1757 if (ldt_descr.page_granular)
1758 /* Page-granular segments must have the low 12 bits of their
1759 limit set. */
1760 limit = (limit << 12) | 0xfff;
1761 /* LDT cannot have more than 8K 8-byte entries, i.e. more than
1762 64KB. */
1763 if (limit > 0xffff)
1764 limit = 0xffff;
1765
1766 max_entry = (limit + 1) / 8;
1767
1768 if (ldt_entry >= 0)
1769 {
1770 if (ldt_entry > limit)
1771 error (_("Invalid LDT entry %#lx: outside valid limits [0..%#x]"),
1772 (unsigned long)ldt_entry, limit);
1773
1774 display_descriptor (ldt_descr.stype, base, ldt_entry / 8, 1);
1775 }
1776 else
1777 {
1778 int i;
1779
1780 for (i = 0; i < max_entry; i++)
1781 display_descriptor (ldt_descr.stype, base, i, 0);
1782 }
1783 }
1784 }
1785
1786 static void
1787 go32_sgdt (char *arg, int from_tty)
1788 {
1789 struct dtr_reg gdtr;
1790 long gdt_entry = -1L;
1791 int max_entry;
1792
1793 if (arg && *arg)
1794 {
1795 arg = skip_spaces (arg);
1796
1797 if (*arg)
1798 {
1799 gdt_entry = parse_and_eval_long (arg);
1800 if (gdt_entry < 0 || (gdt_entry & 7) != 0)
1801 error (_("Invalid GDT entry 0x%03lx: "
1802 "not an integral multiple of 8."),
1803 (unsigned long)gdt_entry);
1804 }
1805 }
1806
1807 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1808 max_entry = (gdtr.limit + 1) / 8;
1809
1810 if (gdt_entry >= 0)
1811 {
1812 if (gdt_entry > gdtr.limit)
1813 error (_("Invalid GDT entry %#lx: outside valid limits [0..%#x]"),
1814 (unsigned long)gdt_entry, gdtr.limit);
1815
1816 display_descriptor (0, gdtr.base, gdt_entry / 8, 1);
1817 }
1818 else
1819 {
1820 int i;
1821
1822 for (i = 0; i < max_entry; i++)
1823 display_descriptor (0, gdtr.base, i, 0);
1824 }
1825 }
1826
1827 static void
1828 go32_sidt (char *arg, int from_tty)
1829 {
1830 struct dtr_reg idtr;
1831 long idt_entry = -1L;
1832 int max_entry;
1833
1834 if (arg && *arg)
1835 {
1836 arg = skip_spaces (arg);
1837
1838 if (*arg)
1839 {
1840 idt_entry = parse_and_eval_long (arg);
1841 if (idt_entry < 0)
1842 error (_("Invalid (negative) IDT entry %ld."), idt_entry);
1843 }
1844 }
1845
1846 __asm__ __volatile__ ("sidt %0" : "=m" (idtr) : /* no inputs */ );
1847 max_entry = (idtr.limit + 1) / 8;
1848 if (max_entry > 0x100) /* No more than 256 entries. */
1849 max_entry = 0x100;
1850
1851 if (idt_entry >= 0)
1852 {
1853 if (idt_entry > idtr.limit)
1854 error (_("Invalid IDT entry %#lx: outside valid limits [0..%#x]"),
1855 (unsigned long)idt_entry, idtr.limit);
1856
1857 display_descriptor (1, idtr.base, idt_entry, 1);
1858 }
1859 else
1860 {
1861 int i;
1862
1863 for (i = 0; i < max_entry; i++)
1864 display_descriptor (1, idtr.base, i, 0);
1865 }
1866 }
1867
1868 /* Cached linear address of the base of the page directory. For
1869 now, available only under CWSDPMI. Code based on ideas and
1870 suggestions from Charles Sandmann <sandmann@clio.rice.edu>. */
1871 static unsigned long pdbr;
1872
1873 static unsigned long
1874 get_cr3 (void)
1875 {
1876 unsigned offset;
1877 unsigned taskreg;
1878 unsigned long taskbase, cr3;
1879 struct dtr_reg gdtr;
1880
1881 if (pdbr > 0 && pdbr <= 0xfffff)
1882 return pdbr;
1883
1884 /* Get the linear address of GDT and the Task Register. */
1885 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1886 __asm__ __volatile__ ("str %0" : "=m" (taskreg) : /* no inputs */ );
1887
1888 /* Task Register is a segment selector for the TSS of the current
1889 task. Therefore, it can be used as an index into the GDT to get
1890 at the segment descriptor for the TSS. To get the index, reset
1891 the low 3 bits of the selector (which give the CPL). Add 2 to the
1892 offset to point to the 3 low bytes of the base address. */
1893 offset = gdtr.base + (taskreg & 0xfff8) + 2;
1894
1895
1896 /* CWSDPMI's task base is always under the 1MB mark. */
1897 if (offset > 0xfffff)
1898 return 0;
1899
1900 _farsetsel (_dos_ds);
1901 taskbase = _farnspeekl (offset) & 0xffffffU;
1902 taskbase += _farnspeekl (offset + 2) & 0xff000000U;
1903 if (taskbase > 0xfffff)
1904 return 0;
1905
1906 /* CR3 (a.k.a. PDBR, the Page Directory Base Register) is stored at
1907 offset 1Ch in the TSS. */
1908 cr3 = _farnspeekl (taskbase + 0x1c) & ~0xfff;
1909 if (cr3 > 0xfffff)
1910 {
1911 #if 0 /* Not fullly supported yet. */
1912 /* The Page Directory is in UMBs. In that case, CWSDPMI puts
1913 the first Page Table right below the Page Directory. Thus,
1914 the first Page Table's entry for its own address and the Page
1915 Directory entry for that Page Table will hold the same
1916 physical address. The loop below searches the entire UMB
1917 range of addresses for such an occurence. */
1918 unsigned long addr, pte_idx;
1919
1920 for (addr = 0xb0000, pte_idx = 0xb0;
1921 pte_idx < 0xff;
1922 addr += 0x1000, pte_idx++)
1923 {
1924 if (((_farnspeekl (addr + 4 * pte_idx) & 0xfffff027) ==
1925 (_farnspeekl (addr + 0x1000) & 0xfffff027))
1926 && ((_farnspeekl (addr + 4 * pte_idx + 4) & 0xfffff000) == cr3))
1927 {
1928 cr3 = addr + 0x1000;
1929 break;
1930 }
1931 }
1932 #endif
1933
1934 if (cr3 > 0xfffff)
1935 cr3 = 0;
1936 }
1937
1938 return cr3;
1939 }
1940
1941 /* Return the N'th Page Directory entry. */
1942 static unsigned long
1943 get_pde (int n)
1944 {
1945 unsigned long pde = 0;
1946
1947 if (pdbr && n >= 0 && n < 1024)
1948 {
1949 pde = _farpeekl (_dos_ds, pdbr + 4*n);
1950 }
1951 return pde;
1952 }
1953
1954 /* Return the N'th entry of the Page Table whose Page Directory entry
1955 is PDE. */
1956 static unsigned long
1957 get_pte (unsigned long pde, int n)
1958 {
1959 unsigned long pte = 0;
1960
1961 /* pde & 0x80 tests the 4MB page bit. We don't support 4MB
1962 page tables, for now. */
1963 if ((pde & 1) && !(pde & 0x80) && n >= 0 && n < 1024)
1964 {
1965 pde &= ~0xfff; /* Clear non-address bits. */
1966 pte = _farpeekl (_dos_ds, pde + 4*n);
1967 }
1968 return pte;
1969 }
1970
1971 /* Display a Page Directory or Page Table entry. IS_DIR, if non-zero,
1972 says this is a Page Directory entry. If FORCE is non-zero, display
1973 the entry even if its Present flag is off. OFF is the offset of the
1974 address from the page's base address. */
1975 static void
1976 display_ptable_entry (unsigned long entry, int is_dir, int force, unsigned off)
1977 {
1978 if ((entry & 1) != 0)
1979 {
1980 printf_filtered ("Base=0x%05lx000", entry >> 12);
1981 if ((entry & 0x100) && !is_dir)
1982 puts_filtered (" Global");
1983 if ((entry & 0x40) && !is_dir)
1984 puts_filtered (" Dirty");
1985 printf_filtered (" %sAcc.", (entry & 0x20) ? "" : "Not-");
1986 printf_filtered (" %sCached", (entry & 0x10) ? "" : "Not-");
1987 printf_filtered (" Write-%s", (entry & 8) ? "Thru" : "Back");
1988 printf_filtered (" %s", (entry & 4) ? "Usr" : "Sup");
1989 printf_filtered (" Read-%s", (entry & 2) ? "Write" : "Only");
1990 if (off)
1991 printf_filtered (" +0x%x", off);
1992 puts_filtered ("\n");
1993 }
1994 else if (force)
1995 printf_filtered ("Page%s not present or not supported; value=0x%lx.\n",
1996 is_dir ? " Table" : "", entry >> 1);
1997 }
1998
1999 static void
2000 go32_pde (char *arg, int from_tty)
2001 {
2002 long pde_idx = -1, i;
2003
2004 if (arg && *arg)
2005 {
2006 arg = skip_spaces (arg);
2007
2008 if (*arg)
2009 {
2010 pde_idx = parse_and_eval_long (arg);
2011 if (pde_idx < 0 || pde_idx >= 1024)
2012 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
2013 }
2014 }
2015
2016 pdbr = get_cr3 ();
2017 if (!pdbr)
2018 puts_filtered ("Access to Page Directories is "
2019 "not supported on this system.\n");
2020 else if (pde_idx >= 0)
2021 display_ptable_entry (get_pde (pde_idx), 1, 1, 0);
2022 else
2023 for (i = 0; i < 1024; i++)
2024 display_ptable_entry (get_pde (i), 1, 0, 0);
2025 }
2026
2027 /* A helper function to display entries in a Page Table pointed to by
2028 the N'th entry in the Page Directory. If FORCE is non-zero, say
2029 something even if the Page Table is not accessible. */
2030 static void
2031 display_page_table (long n, int force)
2032 {
2033 unsigned long pde = get_pde (n);
2034
2035 if ((pde & 1) != 0)
2036 {
2037 int i;
2038
2039 printf_filtered ("Page Table pointed to by "
2040 "Page Directory entry 0x%lx:\n", n);
2041 for (i = 0; i < 1024; i++)
2042 display_ptable_entry (get_pte (pde, i), 0, 0, 0);
2043 puts_filtered ("\n");
2044 }
2045 else if (force)
2046 printf_filtered ("Page Table not present; value=0x%lx.\n", pde >> 1);
2047 }
2048
2049 static void
2050 go32_pte (char *arg, int from_tty)
2051 {
2052 long pde_idx = -1L, i;
2053
2054 if (arg && *arg)
2055 {
2056 arg = skip_spaces (arg);
2057
2058 if (*arg)
2059 {
2060 pde_idx = parse_and_eval_long (arg);
2061 if (pde_idx < 0 || pde_idx >= 1024)
2062 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
2063 }
2064 }
2065
2066 pdbr = get_cr3 ();
2067 if (!pdbr)
2068 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2069 else if (pde_idx >= 0)
2070 display_page_table (pde_idx, 1);
2071 else
2072 for (i = 0; i < 1024; i++)
2073 display_page_table (i, 0);
2074 }
2075
2076 static void
2077 go32_pte_for_address (char *arg, int from_tty)
2078 {
2079 CORE_ADDR addr = 0, i;
2080
2081 if (arg && *arg)
2082 {
2083 arg = skip_spaces (arg);
2084
2085 if (*arg)
2086 addr = parse_and_eval_address (arg);
2087 }
2088 if (!addr)
2089 error_no_arg (_("linear address"));
2090
2091 pdbr = get_cr3 ();
2092 if (!pdbr)
2093 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2094 else
2095 {
2096 int pde_idx = (addr >> 22) & 0x3ff;
2097 int pte_idx = (addr >> 12) & 0x3ff;
2098 unsigned offs = addr & 0xfff;
2099
2100 printf_filtered ("Page Table entry for address %s:\n",
2101 hex_string(addr));
2102 display_ptable_entry (get_pte (get_pde (pde_idx), pte_idx), 0, 1, offs);
2103 }
2104 }
2105
2106 static struct cmd_list_element *info_dos_cmdlist = NULL;
2107
2108 static void
2109 go32_info_dos_command (char *args, int from_tty)
2110 {
2111 help_list (info_dos_cmdlist, "info dos ", class_info, gdb_stdout);
2112 }
2113
2114 /* -Wmissing-prototypes */
2115 extern initialize_file_ftype _initialize_go32_nat;
2116
2117 void
2118 _initialize_go32_nat (void)
2119 {
2120 init_go32_ops ();
2121 add_target (&go32_ops);
2122
2123 add_prefix_cmd ("dos", class_info, go32_info_dos_command, _("\
2124 Print information specific to DJGPP (aka MS-DOS) debugging."),
2125 &info_dos_cmdlist, "info dos ", 0, &infolist);
2126
2127 add_cmd ("sysinfo", class_info, go32_sysinfo, _("\
2128 Display information about the target system, including CPU, OS, DPMI, etc."),
2129 &info_dos_cmdlist);
2130 add_cmd ("ldt", class_info, go32_sldt, _("\
2131 Display entries in the LDT (Local Descriptor Table).\n\
2132 Entry number (an expression) as an argument means display only that entry."),
2133 &info_dos_cmdlist);
2134 add_cmd ("gdt", class_info, go32_sgdt, _("\
2135 Display entries in the GDT (Global Descriptor Table).\n\
2136 Entry number (an expression) as an argument means display only that entry."),
2137 &info_dos_cmdlist);
2138 add_cmd ("idt", class_info, go32_sidt, _("\
2139 Display entries in the IDT (Interrupt Descriptor Table).\n\
2140 Entry number (an expression) as an argument means display only that entry."),
2141 &info_dos_cmdlist);
2142 add_cmd ("pde", class_info, go32_pde, _("\
2143 Display entries in the Page Directory.\n\
2144 Entry number (an expression) as an argument means display only that entry."),
2145 &info_dos_cmdlist);
2146 add_cmd ("pte", class_info, go32_pte, _("\
2147 Display entries in Page Tables.\n\
2148 Entry number (an expression) as an argument means display only entries\n\
2149 from the Page Table pointed to by the specified Page Directory entry."),
2150 &info_dos_cmdlist);
2151 add_cmd ("address-pte", class_info, go32_pte_for_address, _("\
2152 Display a Page Table entry for a linear address.\n\
2153 The address argument must be a linear address, after adding to\n\
2154 it the base address of the appropriate segment.\n\
2155 The base address of variables and functions in the debuggee's data\n\
2156 or code segment is stored in the variable __djgpp_base_address,\n\
2157 so use `__djgpp_base_address + (char *)&var' as the argument.\n\
2158 For other segments, look up their base address in the output of\n\
2159 the `info dos ldt' command."),
2160 &info_dos_cmdlist);
2161 }
2162
2163 pid_t
2164 tcgetpgrp (int fd)
2165 {
2166 if (isatty (fd))
2167 return SOME_PID;
2168 errno = ENOTTY;
2169 return -1;
2170 }
2171
2172 int
2173 tcsetpgrp (int fd, pid_t pgid)
2174 {
2175 if (isatty (fd) && pgid == SOME_PID)
2176 return 0;
2177 errno = pgid == SOME_PID ? ENOTTY : ENOSYS;
2178 return -1;
2179 }
This page took 0.088311 seconds and 5 git commands to generate.