Copyright year update in most files of the GDB Project.
[deliverable/binutils-gdb.git] / gdb / h8300-tdep.c
1 /* Target-machine dependent code for Renesas H8/300, for GDB.
2
3 Copyright (C) 1988, 1990-1996, 1998-2003, 2005, 2007-2012 Free
4 Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /*
22 Contributed by Steve Chamberlain
23 sac@cygnus.com
24 */
25
26 #include "defs.h"
27 #include "value.h"
28 #include "arch-utils.h"
29 #include "regcache.h"
30 #include "gdbcore.h"
31 #include "objfiles.h"
32 #include "gdb_assert.h"
33 #include "dis-asm.h"
34 #include "dwarf2-frame.h"
35 #include "frame-base.h"
36 #include "frame-unwind.h"
37
38 enum gdb_regnum
39 {
40 E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM,
41 E_RET0_REGNUM = E_R0_REGNUM,
42 E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM, E_RET1_REGNUM = E_R1_REGNUM,
43 E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM,
44 E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM,
45 E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM,
46 E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM,
47 E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM,
48 E_SP_REGNUM,
49 E_CCR_REGNUM,
50 E_PC_REGNUM,
51 E_CYCLES_REGNUM,
52 E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM,
53 E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM,
54 E_INSTS_REGNUM,
55 E_MACH_REGNUM,
56 E_MACL_REGNUM,
57 E_SBR_REGNUM,
58 E_VBR_REGNUM
59 };
60
61 #define H8300_MAX_NUM_REGS 18
62
63 #define E_PSEUDO_CCR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch))
64 #define E_PSEUDO_EXR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch)+1)
65
66 struct h8300_frame_cache
67 {
68 /* Base address. */
69 CORE_ADDR base;
70 CORE_ADDR sp_offset;
71 CORE_ADDR pc;
72
73 /* Flag showing that a frame has been created in the prologue code. */
74 int uses_fp;
75
76 /* Saved registers. */
77 CORE_ADDR saved_regs[H8300_MAX_NUM_REGS];
78 CORE_ADDR saved_sp;
79 };
80
81 enum
82 {
83 h8300_reg_size = 2,
84 h8300h_reg_size = 4,
85 h8300_max_reg_size = 4,
86 };
87
88 static int is_h8300hmode (struct gdbarch *gdbarch);
89 static int is_h8300smode (struct gdbarch *gdbarch);
90 static int is_h8300sxmode (struct gdbarch *gdbarch);
91 static int is_h8300_normal_mode (struct gdbarch *gdbarch);
92
93 #define BINWORD(gdbarch) ((is_h8300hmode (gdbarch) \
94 && !is_h8300_normal_mode (gdbarch)) \
95 ? h8300h_reg_size : h8300_reg_size)
96
97 static CORE_ADDR
98 h8300_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
99 {
100 return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
101 }
102
103 static CORE_ADDR
104 h8300_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
105 {
106 return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
107 }
108
109 static struct frame_id
110 h8300_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
111 {
112 CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
113 return frame_id_build (sp, get_frame_pc (this_frame));
114 }
115
116 /* Normal frames. */
117
118 /* Allocate and initialize a frame cache. */
119
120 static void
121 h8300_init_frame_cache (struct gdbarch *gdbarch,
122 struct h8300_frame_cache *cache)
123 {
124 int i;
125
126 /* Base address. */
127 cache->base = 0;
128 cache->sp_offset = 0;
129 cache->pc = 0;
130
131 /* Frameless until proven otherwise. */
132 cache->uses_fp = 0;
133
134 /* Saved registers. We initialize these to -1 since zero is a valid
135 offset (that's where %fp is supposed to be stored). */
136 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
137 cache->saved_regs[i] = -1;
138 }
139
140 #define IS_MOVB_RnRm(x) (((x) & 0xff88) == 0x0c88)
141 #define IS_MOVW_RnRm(x) (((x) & 0xff88) == 0x0d00)
142 #define IS_MOVL_RnRm(x) (((x) & 0xff88) == 0x0f80)
143 #define IS_MOVB_Rn16_SP(x) (((x) & 0xfff0) == 0x6ee0)
144 #define IS_MOVB_EXT(x) ((x) == 0x7860)
145 #define IS_MOVB_Rn24_SP(x) (((x) & 0xfff0) == 0x6aa0)
146 #define IS_MOVW_Rn16_SP(x) (((x) & 0xfff0) == 0x6fe0)
147 #define IS_MOVW_EXT(x) ((x) == 0x78e0)
148 #define IS_MOVW_Rn24_SP(x) (((x) & 0xfff0) == 0x6ba0)
149 /* Same instructions as mov.w, just prefixed with 0x0100. */
150 #define IS_MOVL_PRE(x) ((x) == 0x0100)
151 #define IS_MOVL_Rn16_SP(x) (((x) & 0xfff0) == 0x6fe0)
152 #define IS_MOVL_EXT(x) ((x) == 0x78e0)
153 #define IS_MOVL_Rn24_SP(x) (((x) & 0xfff0) == 0x6ba0)
154
155 #define IS_PUSHFP_MOVESPFP(x) ((x) == 0x6df60d76)
156 #define IS_PUSH_FP(x) ((x) == 0x01006df6)
157 #define IS_MOV_SP_FP(x) ((x) == 0x0ff6)
158 #define IS_SUB2_SP(x) ((x) == 0x1b87)
159 #define IS_SUB4_SP(x) ((x) == 0x1b97)
160 #define IS_ADD_IMM_SP(x) ((x) == 0x7a1f)
161 #define IS_SUB_IMM_SP(x) ((x) == 0x7a3f)
162 #define IS_SUBL4_SP(x) ((x) == 0x1acf)
163 #define IS_MOV_IMM_Rn(x) (((x) & 0xfff0) == 0x7905)
164 #define IS_SUB_RnSP(x) (((x) & 0xff0f) == 0x1907)
165 #define IS_ADD_RnSP(x) (((x) & 0xff0f) == 0x0907)
166 #define IS_PUSH(x) (((x) & 0xfff0) == 0x6df0)
167
168 /* If the instruction at PC is an argument register spill, return its
169 length. Otherwise, return zero.
170
171 An argument register spill is an instruction that moves an argument
172 from the register in which it was passed to the stack slot in which
173 it really lives. It is a byte, word, or longword move from an
174 argument register to a negative offset from the frame pointer.
175
176 CV, 2003-06-16: Or, in optimized code or when the `register' qualifier
177 is used, it could be a byte, word or long move to registers r3-r5. */
178
179 static int
180 h8300_is_argument_spill (struct gdbarch *gdbarch, CORE_ADDR pc)
181 {
182 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
183 int w = read_memory_unsigned_integer (pc, 2, byte_order);
184
185 if ((IS_MOVB_RnRm (w) || IS_MOVW_RnRm (w) || IS_MOVL_RnRm (w))
186 && (w & 0x70) <= 0x20 /* Rs is R0, R1 or R2 */
187 && (w & 0x7) >= 0x3 && (w & 0x7) <= 0x5) /* Rd is R3, R4 or R5 */
188 return 2;
189
190 if (IS_MOVB_Rn16_SP (w)
191 && 8 <= (w & 0xf) && (w & 0xf) <= 10) /* Rs is R0L, R1L, or R2L */
192 {
193 /* ... and d:16 is negative. */
194 if (read_memory_integer (pc + 2, 2, byte_order) < 0)
195 return 4;
196 }
197 else if (IS_MOVB_EXT (w))
198 {
199 if (IS_MOVB_Rn24_SP (read_memory_unsigned_integer (pc + 2,
200 2, byte_order)))
201 {
202 LONGEST disp = read_memory_integer (pc + 4, 4, byte_order);
203
204 /* ... and d:24 is negative. */
205 if (disp < 0 && disp > 0xffffff)
206 return 8;
207 }
208 }
209 else if (IS_MOVW_Rn16_SP (w)
210 && (w & 0xf) <= 2) /* Rs is R0, R1, or R2 */
211 {
212 /* ... and d:16 is negative. */
213 if (read_memory_integer (pc + 2, 2, byte_order) < 0)
214 return 4;
215 }
216 else if (IS_MOVW_EXT (w))
217 {
218 if (IS_MOVW_Rn24_SP (read_memory_unsigned_integer (pc + 2,
219 2, byte_order)))
220 {
221 LONGEST disp = read_memory_integer (pc + 4, 4, byte_order);
222
223 /* ... and d:24 is negative. */
224 if (disp < 0 && disp > 0xffffff)
225 return 8;
226 }
227 }
228 else if (IS_MOVL_PRE (w))
229 {
230 int w2 = read_memory_integer (pc + 2, 2, byte_order);
231
232 if (IS_MOVL_Rn16_SP (w2)
233 && (w2 & 0xf) <= 2) /* Rs is ER0, ER1, or ER2 */
234 {
235 /* ... and d:16 is negative. */
236 if (read_memory_integer (pc + 4, 2, byte_order) < 0)
237 return 6;
238 }
239 else if (IS_MOVL_EXT (w2))
240 {
241 int w3 = read_memory_integer (pc + 4, 2, byte_order);
242
243 if (IS_MOVL_Rn24_SP (read_memory_integer (pc + 4, 2, byte_order)))
244 {
245 LONGEST disp = read_memory_integer (pc + 6, 4, byte_order);
246
247 /* ... and d:24 is negative. */
248 if (disp < 0 && disp > 0xffffff)
249 return 10;
250 }
251 }
252 }
253
254 return 0;
255 }
256
257 /* Do a full analysis of the prologue at PC and update CACHE
258 accordingly. Bail out early if CURRENT_PC is reached. Return the
259 address where the analysis stopped.
260
261 We handle all cases that can be generated by gcc.
262
263 For allocating a stack frame:
264
265 mov.w r6,@-sp
266 mov.w sp,r6
267 mov.w #-n,rN
268 add.w rN,sp
269
270 mov.w r6,@-sp
271 mov.w sp,r6
272 subs #2,sp
273 (repeat)
274
275 mov.l er6,@-sp
276 mov.l sp,er6
277 add.l #-n,sp
278
279 mov.w r6,@-sp
280 mov.w sp,r6
281 subs #4,sp
282 (repeat)
283
284 For saving registers:
285
286 mov.w rN,@-sp
287 mov.l erN,@-sp
288 stm.l reglist,@-sp
289
290 */
291
292 static CORE_ADDR
293 h8300_analyze_prologue (struct gdbarch *gdbarch,
294 CORE_ADDR pc, CORE_ADDR current_pc,
295 struct h8300_frame_cache *cache)
296 {
297 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
298 unsigned int op;
299 int regno, i, spill_size;
300
301 cache->sp_offset = 0;
302
303 if (pc >= current_pc)
304 return current_pc;
305
306 op = read_memory_unsigned_integer (pc, 4, byte_order);
307
308 if (IS_PUSHFP_MOVESPFP (op))
309 {
310 cache->saved_regs[E_FP_REGNUM] = 0;
311 cache->uses_fp = 1;
312 pc += 4;
313 }
314 else if (IS_PUSH_FP (op))
315 {
316 cache->saved_regs[E_FP_REGNUM] = 0;
317 pc += 4;
318 if (pc >= current_pc)
319 return current_pc;
320 op = read_memory_unsigned_integer (pc, 2, byte_order);
321 if (IS_MOV_SP_FP (op))
322 {
323 cache->uses_fp = 1;
324 pc += 2;
325 }
326 }
327
328 while (pc < current_pc)
329 {
330 op = read_memory_unsigned_integer (pc, 2, byte_order);
331 if (IS_SUB2_SP (op))
332 {
333 cache->sp_offset += 2;
334 pc += 2;
335 }
336 else if (IS_SUB4_SP (op))
337 {
338 cache->sp_offset += 4;
339 pc += 2;
340 }
341 else if (IS_ADD_IMM_SP (op))
342 {
343 cache->sp_offset += -read_memory_integer (pc + 2, 2, byte_order);
344 pc += 4;
345 }
346 else if (IS_SUB_IMM_SP (op))
347 {
348 cache->sp_offset += read_memory_integer (pc + 2, 2, byte_order);
349 pc += 4;
350 }
351 else if (IS_SUBL4_SP (op))
352 {
353 cache->sp_offset += 4;
354 pc += 2;
355 }
356 else if (IS_MOV_IMM_Rn (op))
357 {
358 int offset = read_memory_integer (pc + 2, 2, byte_order);
359 regno = op & 0x000f;
360 op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
361 if (IS_ADD_RnSP (op) && (op & 0x00f0) == regno)
362 {
363 cache->sp_offset -= offset;
364 pc += 6;
365 }
366 else if (IS_SUB_RnSP (op) && (op & 0x00f0) == regno)
367 {
368 cache->sp_offset += offset;
369 pc += 6;
370 }
371 else
372 break;
373 }
374 else if (IS_PUSH (op))
375 {
376 regno = op & 0x000f;
377 cache->sp_offset += 2;
378 cache->saved_regs[regno] = cache->sp_offset;
379 pc += 2;
380 }
381 else if (op == 0x0100)
382 {
383 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
384 if (IS_PUSH (op))
385 {
386 regno = op & 0x000f;
387 cache->sp_offset += 4;
388 cache->saved_regs[regno] = cache->sp_offset;
389 pc += 4;
390 }
391 else
392 break;
393 }
394 else if ((op & 0xffcf) == 0x0100)
395 {
396 int op1;
397 op1 = read_memory_unsigned_integer (pc + 2, 2, byte_order);
398 if (IS_PUSH (op1))
399 {
400 /* Since the prefix is 0x01x0, this is not a simple pushm but a
401 stm.l reglist,@-sp */
402 i = ((op & 0x0030) >> 4) + 1;
403 regno = op1 & 0x000f;
404 for (; i > 0; regno++, --i)
405 {
406 cache->sp_offset += 4;
407 cache->saved_regs[regno] = cache->sp_offset;
408 }
409 pc += 4;
410 }
411 else
412 break;
413 }
414 else
415 break;
416 }
417
418 /* Check for spilling an argument register to the stack frame.
419 This could also be an initializing store from non-prologue code,
420 but I don't think there's any harm in skipping that. */
421 while ((spill_size = h8300_is_argument_spill (gdbarch, pc)) > 0
422 && pc + spill_size <= current_pc)
423 pc += spill_size;
424
425 return pc;
426 }
427
428 static struct h8300_frame_cache *
429 h8300_frame_cache (struct frame_info *this_frame, void **this_cache)
430 {
431 struct gdbarch *gdbarch = get_frame_arch (this_frame);
432 struct h8300_frame_cache *cache;
433 char buf[4];
434 int i;
435 CORE_ADDR current_pc;
436
437 if (*this_cache)
438 return *this_cache;
439
440 cache = FRAME_OBSTACK_ZALLOC (struct h8300_frame_cache);
441 h8300_init_frame_cache (gdbarch, cache);
442 *this_cache = cache;
443
444 /* In principle, for normal frames, %fp holds the frame pointer,
445 which holds the base address for the current stack frame.
446 However, for functions that don't need it, the frame pointer is
447 optional. For these "frameless" functions the frame pointer is
448 actually the frame pointer of the calling frame. */
449
450 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
451 if (cache->base == 0)
452 return cache;
453
454 cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch);
455
456 cache->pc = get_frame_func (this_frame);
457 current_pc = get_frame_pc (this_frame);
458 if (cache->pc != 0)
459 h8300_analyze_prologue (gdbarch, cache->pc, current_pc, cache);
460
461 if (!cache->uses_fp)
462 {
463 /* We didn't find a valid frame, which means that CACHE->base
464 currently holds the frame pointer for our calling frame. If
465 we're at the start of a function, or somewhere half-way its
466 prologue, the function's frame probably hasn't been fully
467 setup yet. Try to reconstruct the base address for the stack
468 frame by looking at the stack pointer. For truly "frameless"
469 functions this might work too. */
470
471 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM)
472 + cache->sp_offset;
473 cache->saved_sp = cache->base + BINWORD (gdbarch);
474 cache->saved_regs[E_PC_REGNUM] = 0;
475 }
476 else
477 {
478 cache->saved_sp = cache->base + 2 * BINWORD (gdbarch);
479 cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch);
480 }
481
482 /* Adjust all the saved registers such that they contain addresses
483 instead of offsets. */
484 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
485 if (cache->saved_regs[i] != -1)
486 cache->saved_regs[i] = cache->base - cache->saved_regs[i];
487
488 return cache;
489 }
490
491 static void
492 h8300_frame_this_id (struct frame_info *this_frame, void **this_cache,
493 struct frame_id *this_id)
494 {
495 struct h8300_frame_cache *cache =
496 h8300_frame_cache (this_frame, this_cache);
497
498 /* This marks the outermost frame. */
499 if (cache->base == 0)
500 return;
501
502 *this_id = frame_id_build (cache->saved_sp, cache->pc);
503 }
504
505 static struct value *
506 h8300_frame_prev_register (struct frame_info *this_frame, void **this_cache,
507 int regnum)
508 {
509 struct gdbarch *gdbarch = get_frame_arch (this_frame);
510 struct h8300_frame_cache *cache =
511 h8300_frame_cache (this_frame, this_cache);
512
513 gdb_assert (regnum >= 0);
514
515 if (regnum == E_SP_REGNUM && cache->saved_sp)
516 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
517
518 if (regnum < gdbarch_num_regs (gdbarch)
519 && cache->saved_regs[regnum] != -1)
520 return frame_unwind_got_memory (this_frame, regnum,
521 cache->saved_regs[regnum]);
522
523 return frame_unwind_got_register (this_frame, regnum, regnum);
524 }
525
526 static const struct frame_unwind h8300_frame_unwind = {
527 NORMAL_FRAME,
528 default_frame_unwind_stop_reason,
529 h8300_frame_this_id,
530 h8300_frame_prev_register,
531 NULL,
532 default_frame_sniffer
533 };
534
535 static CORE_ADDR
536 h8300_frame_base_address (struct frame_info *this_frame, void **this_cache)
537 {
538 struct h8300_frame_cache *cache = h8300_frame_cache (this_frame, this_cache);
539 return cache->base;
540 }
541
542 static const struct frame_base h8300_frame_base = {
543 &h8300_frame_unwind,
544 h8300_frame_base_address,
545 h8300_frame_base_address,
546 h8300_frame_base_address
547 };
548
549 static CORE_ADDR
550 h8300_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
551 {
552 CORE_ADDR func_addr = 0 , func_end = 0;
553
554 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
555 {
556 struct symtab_and_line sal;
557 struct h8300_frame_cache cache;
558
559 /* Found a function. */
560 sal = find_pc_line (func_addr, 0);
561 if (sal.end && sal.end < func_end)
562 /* Found a line number, use it as end of prologue. */
563 return sal.end;
564
565 /* No useable line symbol. Use prologue parsing method. */
566 h8300_init_frame_cache (gdbarch, &cache);
567 return h8300_analyze_prologue (gdbarch, func_addr, func_end, &cache);
568 }
569
570 /* No function symbol -- just return the PC. */
571 return (CORE_ADDR) pc;
572 }
573
574 /* Function: push_dummy_call
575 Setup the function arguments for calling a function in the inferior.
576 In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits
577 on the H8/300H.
578
579 There are actually two ABI's here: -mquickcall (the default) and
580 -mno-quickcall. With -mno-quickcall, all arguments are passed on
581 the stack after the return address, word-aligned. With
582 -mquickcall, GCC tries to use r0 -- r2 to pass registers. Since
583 GCC doesn't indicate in the object file which ABI was used to
584 compile it, GDB only supports the default --- -mquickcall.
585
586 Here are the rules for -mquickcall, in detail:
587
588 Each argument, whether scalar or aggregate, is padded to occupy a
589 whole number of words. Arguments smaller than a word are padded at
590 the most significant end; those larger than a word are padded at
591 the least significant end.
592
593 The initial arguments are passed in r0 -- r2. Earlier arguments go in
594 lower-numbered registers. Multi-word arguments are passed in
595 consecutive registers, with the most significant end in the
596 lower-numbered register.
597
598 If an argument doesn't fit entirely in the remaining registers, it
599 is passed entirely on the stack. Stack arguments begin just after
600 the return address. Once an argument has overflowed onto the stack
601 this way, all subsequent arguments are passed on the stack.
602
603 The above rule has odd consequences. For example, on the h8/300s,
604 if a function takes two longs and an int as arguments:
605 - the first long will be passed in r0/r1,
606 - the second long will be passed entirely on the stack, since it
607 doesn't fit in r2,
608 - and the int will be passed on the stack, even though it could fit
609 in r2.
610
611 A weird exception: if an argument is larger than a word, but not a
612 whole number of words in length (before padding), it is passed on
613 the stack following the rules for stack arguments above, even if
614 there are sufficient registers available to hold it. Stranger
615 still, the argument registers are still `used up' --- even though
616 there's nothing in them.
617
618 So, for example, on the h8/300s, if a function expects a three-byte
619 structure and an int, the structure will go on the stack, and the
620 int will go in r2, not r0.
621
622 If the function returns an aggregate type (struct, union, or class)
623 by value, the caller must allocate space to hold the return value,
624 and pass the callee a pointer to this space as an invisible first
625 argument, in R0.
626
627 For varargs functions, the last fixed argument and all the variable
628 arguments are always passed on the stack. This means that calls to
629 varargs functions don't work properly unless there is a prototype
630 in scope.
631
632 Basically, this ABI is not good, for the following reasons:
633 - You can't call vararg functions properly unless a prototype is in scope.
634 - Structure passing is inconsistent, to no purpose I can see.
635 - It often wastes argument registers, of which there are only three
636 to begin with. */
637
638 static CORE_ADDR
639 h8300_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
640 struct regcache *regcache, CORE_ADDR bp_addr,
641 int nargs, struct value **args, CORE_ADDR sp,
642 int struct_return, CORE_ADDR struct_addr)
643 {
644 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
645 int stack_alloc = 0, stack_offset = 0;
646 int wordsize = BINWORD (gdbarch);
647 int reg = E_ARG0_REGNUM;
648 int argument;
649
650 /* First, make sure the stack is properly aligned. */
651 sp = align_down (sp, wordsize);
652
653 /* Now make sure there's space on the stack for the arguments. We
654 may over-allocate a little here, but that won't hurt anything. */
655 for (argument = 0; argument < nargs; argument++)
656 stack_alloc += align_up (TYPE_LENGTH (value_type (args[argument])),
657 wordsize);
658 sp -= stack_alloc;
659
660 /* Now load as many arguments as possible into registers, and push
661 the rest onto the stack.
662 If we're returning a structure by value, then we must pass a
663 pointer to the buffer for the return value as an invisible first
664 argument. */
665 if (struct_return)
666 regcache_cooked_write_unsigned (regcache, reg++, struct_addr);
667
668 for (argument = 0; argument < nargs; argument++)
669 {
670 struct type *type = value_type (args[argument]);
671 int len = TYPE_LENGTH (type);
672 char *contents = (char *) value_contents (args[argument]);
673
674 /* Pad the argument appropriately. */
675 int padded_len = align_up (len, wordsize);
676 gdb_byte *padded = alloca (padded_len);
677
678 memset (padded, 0, padded_len);
679 memcpy (len < wordsize ? padded + padded_len - len : padded,
680 contents, len);
681
682 /* Could the argument fit in the remaining registers? */
683 if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize)
684 {
685 /* Are we going to pass it on the stack anyway, for no good
686 reason? */
687 if (len > wordsize && len % wordsize)
688 {
689 /* I feel so unclean. */
690 write_memory (sp + stack_offset, padded, padded_len);
691 stack_offset += padded_len;
692
693 /* That's right --- even though we passed the argument
694 on the stack, we consume the registers anyway! Love
695 me, love my dog. */
696 reg += padded_len / wordsize;
697 }
698 else
699 {
700 /* Heavens to Betsy --- it's really going in registers!
701 Note that on the h8/300s, there are gaps between the
702 registers in the register file. */
703 int offset;
704
705 for (offset = 0; offset < padded_len; offset += wordsize)
706 {
707 ULONGEST word
708 = extract_unsigned_integer (padded + offset,
709 wordsize, byte_order);
710 regcache_cooked_write_unsigned (regcache, reg++, word);
711 }
712 }
713 }
714 else
715 {
716 /* It doesn't fit in registers! Onto the stack it goes. */
717 write_memory (sp + stack_offset, padded, padded_len);
718 stack_offset += padded_len;
719
720 /* Once one argument has spilled onto the stack, all
721 subsequent arguments go on the stack. */
722 reg = E_ARGLAST_REGNUM + 1;
723 }
724 }
725
726 /* Store return address. */
727 sp -= wordsize;
728 write_memory_unsigned_integer (sp, wordsize, byte_order, bp_addr);
729
730 /* Update stack pointer. */
731 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
732
733 /* Return the new stack pointer minus the return address slot since
734 that's what DWARF2/GCC uses as the frame's CFA. */
735 return sp + wordsize;
736 }
737
738 /* Function: extract_return_value
739 Figure out where in REGBUF the called function has left its return value.
740 Copy that into VALBUF. Be sure to account for CPU type. */
741
742 static void
743 h8300_extract_return_value (struct type *type, struct regcache *regcache,
744 void *valbuf)
745 {
746 struct gdbarch *gdbarch = get_regcache_arch (regcache);
747 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
748 int len = TYPE_LENGTH (type);
749 ULONGEST c, addr;
750
751 switch (len)
752 {
753 case 1:
754 case 2:
755 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
756 store_unsigned_integer (valbuf, len, byte_order, c);
757 break;
758 case 4: /* Needs two registers on plain H8/300 */
759 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
760 store_unsigned_integer (valbuf, 2, byte_order, c);
761 regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
762 store_unsigned_integer ((void *)((char *) valbuf + 2), 2, byte_order, c);
763 break;
764 case 8: /* long long is now 8 bytes. */
765 if (TYPE_CODE (type) == TYPE_CODE_INT)
766 {
767 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr);
768 c = read_memory_unsigned_integer ((CORE_ADDR) addr, len, byte_order);
769 store_unsigned_integer (valbuf, len, byte_order, c);
770 }
771 else
772 {
773 error (_("I don't know how this 8 byte value is returned."));
774 }
775 break;
776 }
777 }
778
779 static void
780 h8300h_extract_return_value (struct type *type, struct regcache *regcache,
781 void *valbuf)
782 {
783 struct gdbarch *gdbarch = get_regcache_arch (regcache);
784 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
785 int len = TYPE_LENGTH (type);
786 ULONGEST c, addr;
787
788 switch (len)
789 {
790 case 1:
791 case 2:
792 case 4:
793 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
794 store_unsigned_integer (valbuf, len, byte_order, c);
795 break;
796 case 8: /* long long is now 8 bytes. */
797 if (TYPE_CODE (type) == TYPE_CODE_INT)
798 {
799 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
800 store_unsigned_integer (valbuf, 4, byte_order, c);
801 regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
802 store_unsigned_integer ((void *) ((char *) valbuf + 4), 4,
803 byte_order, c);
804 }
805 else
806 {
807 error (_("I don't know how this 8 byte value is returned."));
808 }
809 break;
810 }
811 }
812
813 static int
814 h8300_use_struct_convention (struct type *value_type)
815 {
816 /* Types of 1, 2 or 4 bytes are returned in R0/R1, everything else on the
817 stack. */
818
819 if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
820 || TYPE_CODE (value_type) == TYPE_CODE_UNION)
821 return 1;
822 return !(TYPE_LENGTH (value_type) == 1
823 || TYPE_LENGTH (value_type) == 2
824 || TYPE_LENGTH (value_type) == 4);
825 }
826
827 static int
828 h8300h_use_struct_convention (struct type *value_type)
829 {
830 /* Types of 1, 2 or 4 bytes are returned in R0, INT types of 8 bytes are
831 returned in R0/R1, everything else on the stack. */
832 if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
833 || TYPE_CODE (value_type) == TYPE_CODE_UNION)
834 return 1;
835 return !(TYPE_LENGTH (value_type) == 1
836 || TYPE_LENGTH (value_type) == 2
837 || TYPE_LENGTH (value_type) == 4
838 || (TYPE_LENGTH (value_type) == 8
839 && TYPE_CODE (value_type) == TYPE_CODE_INT));
840 }
841
842 /* Function: store_return_value
843 Place the appropriate value in the appropriate registers.
844 Primarily used by the RETURN command. */
845
846 static void
847 h8300_store_return_value (struct type *type, struct regcache *regcache,
848 const void *valbuf)
849 {
850 struct gdbarch *gdbarch = get_regcache_arch (regcache);
851 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
852 int len = TYPE_LENGTH (type);
853 ULONGEST val;
854
855 switch (len)
856 {
857 case 1:
858 case 2: /* short... */
859 val = extract_unsigned_integer (valbuf, len, byte_order);
860 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
861 break;
862 case 4: /* long, float */
863 val = extract_unsigned_integer (valbuf, len, byte_order);
864 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
865 (val >> 16) & 0xffff);
866 regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM, val & 0xffff);
867 break;
868 case 8: /* long long, double and long double
869 are all defined as 4 byte types so
870 far so this shouldn't happen. */
871 error (_("I don't know how to return an 8 byte value."));
872 break;
873 }
874 }
875
876 static void
877 h8300h_store_return_value (struct type *type, struct regcache *regcache,
878 const void *valbuf)
879 {
880 struct gdbarch *gdbarch = get_regcache_arch (regcache);
881 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
882 int len = TYPE_LENGTH (type);
883 ULONGEST val;
884
885 switch (len)
886 {
887 case 1:
888 case 2:
889 case 4: /* long, float */
890 val = extract_unsigned_integer (valbuf, len, byte_order);
891 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
892 break;
893 case 8:
894 val = extract_unsigned_integer (valbuf, len, byte_order);
895 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
896 (val >> 32) & 0xffffffff);
897 regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM,
898 val & 0xffffffff);
899 break;
900 }
901 }
902
903 static enum return_value_convention
904 h8300_return_value (struct gdbarch *gdbarch, struct type *func_type,
905 struct type *type, struct regcache *regcache,
906 gdb_byte *readbuf, const gdb_byte *writebuf)
907 {
908 if (h8300_use_struct_convention (type))
909 return RETURN_VALUE_STRUCT_CONVENTION;
910 if (writebuf)
911 h8300_store_return_value (type, regcache, writebuf);
912 else if (readbuf)
913 h8300_extract_return_value (type, regcache, readbuf);
914 return RETURN_VALUE_REGISTER_CONVENTION;
915 }
916
917 static enum return_value_convention
918 h8300h_return_value (struct gdbarch *gdbarch, struct type *func_type,
919 struct type *type, struct regcache *regcache,
920 gdb_byte *readbuf, const gdb_byte *writebuf)
921 {
922 if (h8300h_use_struct_convention (type))
923 {
924 if (readbuf)
925 {
926 ULONGEST addr;
927
928 regcache_raw_read_unsigned (regcache, E_R0_REGNUM, &addr);
929 read_memory (addr, readbuf, TYPE_LENGTH (type));
930 }
931
932 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
933 }
934 if (writebuf)
935 h8300h_store_return_value (type, regcache, writebuf);
936 else if (readbuf)
937 h8300h_extract_return_value (type, regcache, readbuf);
938 return RETURN_VALUE_REGISTER_CONVENTION;
939 }
940
941 static struct cmd_list_element *setmachinelist;
942
943 static const char *
944 h8300_register_name (struct gdbarch *gdbarch, int regno)
945 {
946 /* The register names change depending on which h8300 processor
947 type is selected. */
948 static char *register_names[] = {
949 "r0", "r1", "r2", "r3", "r4", "r5", "r6",
950 "sp", "", "pc", "cycles", "tick", "inst",
951 "ccr", /* pseudo register */
952 };
953 if (regno < 0
954 || regno >= (sizeof (register_names) / sizeof (*register_names)))
955 internal_error (__FILE__, __LINE__,
956 _("h8300_register_name: illegal register number %d"),
957 regno);
958 else
959 return register_names[regno];
960 }
961
962 static const char *
963 h8300s_register_name (struct gdbarch *gdbarch, int regno)
964 {
965 static char *register_names[] = {
966 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
967 "sp", "", "pc", "cycles", "", "tick", "inst",
968 "mach", "macl",
969 "ccr", "exr" /* pseudo registers */
970 };
971 if (regno < 0
972 || regno >= (sizeof (register_names) / sizeof (*register_names)))
973 internal_error (__FILE__, __LINE__,
974 _("h8300s_register_name: illegal register number %d"),
975 regno);
976 else
977 return register_names[regno];
978 }
979
980 static const char *
981 h8300sx_register_name (struct gdbarch *gdbarch, int regno)
982 {
983 static char *register_names[] = {
984 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
985 "sp", "", "pc", "cycles", "", "tick", "inst",
986 "mach", "macl", "sbr", "vbr",
987 "ccr", "exr" /* pseudo registers */
988 };
989 if (regno < 0
990 || regno >= (sizeof (register_names) / sizeof (*register_names)))
991 internal_error (__FILE__, __LINE__,
992 _("h8300sx_register_name: illegal register number %d"),
993 regno);
994 else
995 return register_names[regno];
996 }
997
998 static void
999 h8300_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1000 struct frame_info *frame, int regno)
1001 {
1002 LONGEST rval;
1003 const char *name = gdbarch_register_name (gdbarch, regno);
1004
1005 if (!name || !*name)
1006 return;
1007
1008 rval = get_frame_register_signed (frame, regno);
1009
1010 fprintf_filtered (file, "%-14s ", name);
1011 if ((regno == E_PSEUDO_CCR_REGNUM (gdbarch)) || \
1012 (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch)))
1013 {
1014 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1015 print_longest (file, 'u', 1, rval);
1016 }
1017 else
1018 {
1019 fprintf_filtered (file, "0x%s ", phex ((ULONGEST) rval,
1020 BINWORD (gdbarch)));
1021 print_longest (file, 'd', 1, rval);
1022 }
1023 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1024 {
1025 /* CCR register */
1026 int C, Z, N, V;
1027 unsigned char l = rval & 0xff;
1028 fprintf_filtered (file, "\t");
1029 fprintf_filtered (file, "I-%d ", (l & 0x80) != 0);
1030 fprintf_filtered (file, "UI-%d ", (l & 0x40) != 0);
1031 fprintf_filtered (file, "H-%d ", (l & 0x20) != 0);
1032 fprintf_filtered (file, "U-%d ", (l & 0x10) != 0);
1033 N = (l & 0x8) != 0;
1034 Z = (l & 0x4) != 0;
1035 V = (l & 0x2) != 0;
1036 C = (l & 0x1) != 0;
1037 fprintf_filtered (file, "N-%d ", N);
1038 fprintf_filtered (file, "Z-%d ", Z);
1039 fprintf_filtered (file, "V-%d ", V);
1040 fprintf_filtered (file, "C-%d ", C);
1041 if ((C | Z) == 0)
1042 fprintf_filtered (file, "u> ");
1043 if ((C | Z) == 1)
1044 fprintf_filtered (file, "u<= ");
1045 if ((C == 0))
1046 fprintf_filtered (file, "u>= ");
1047 if (C == 1)
1048 fprintf_filtered (file, "u< ");
1049 if (Z == 0)
1050 fprintf_filtered (file, "!= ");
1051 if (Z == 1)
1052 fprintf_filtered (file, "== ");
1053 if ((N ^ V) == 0)
1054 fprintf_filtered (file, ">= ");
1055 if ((N ^ V) == 1)
1056 fprintf_filtered (file, "< ");
1057 if ((Z | (N ^ V)) == 0)
1058 fprintf_filtered (file, "> ");
1059 if ((Z | (N ^ V)) == 1)
1060 fprintf_filtered (file, "<= ");
1061 }
1062 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch))
1063 {
1064 /* EXR register */
1065 unsigned char l = rval & 0xff;
1066 fprintf_filtered (file, "\t");
1067 fprintf_filtered (file, "T-%d - - - ", (l & 0x80) != 0);
1068 fprintf_filtered (file, "I2-%d ", (l & 4) != 0);
1069 fprintf_filtered (file, "I1-%d ", (l & 2) != 0);
1070 fprintf_filtered (file, "I0-%d", (l & 1) != 0);
1071 }
1072 fprintf_filtered (file, "\n");
1073 }
1074
1075 static void
1076 h8300_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1077 struct frame_info *frame, int regno, int cpregs)
1078 {
1079 if (regno < 0)
1080 {
1081 for (regno = E_R0_REGNUM; regno <= E_SP_REGNUM; ++regno)
1082 h8300_print_register (gdbarch, file, frame, regno);
1083 h8300_print_register (gdbarch, file, frame,
1084 E_PSEUDO_CCR_REGNUM (gdbarch));
1085 h8300_print_register (gdbarch, file, frame, E_PC_REGNUM);
1086 if (is_h8300smode (gdbarch))
1087 {
1088 h8300_print_register (gdbarch, file, frame,
1089 E_PSEUDO_EXR_REGNUM (gdbarch));
1090 if (is_h8300sxmode (gdbarch))
1091 {
1092 h8300_print_register (gdbarch, file, frame, E_SBR_REGNUM);
1093 h8300_print_register (gdbarch, file, frame, E_VBR_REGNUM);
1094 }
1095 h8300_print_register (gdbarch, file, frame, E_MACH_REGNUM);
1096 h8300_print_register (gdbarch, file, frame, E_MACL_REGNUM);
1097 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1098 h8300_print_register (gdbarch, file, frame, E_TICKS_REGNUM);
1099 h8300_print_register (gdbarch, file, frame, E_INSTS_REGNUM);
1100 }
1101 else
1102 {
1103 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1104 h8300_print_register (gdbarch, file, frame, E_TICK_REGNUM);
1105 h8300_print_register (gdbarch, file, frame, E_INST_REGNUM);
1106 }
1107 }
1108 else
1109 {
1110 if (regno == E_CCR_REGNUM)
1111 h8300_print_register (gdbarch, file, frame,
1112 E_PSEUDO_CCR_REGNUM (gdbarch));
1113 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch)
1114 && is_h8300smode (gdbarch))
1115 h8300_print_register (gdbarch, file, frame,
1116 E_PSEUDO_EXR_REGNUM (gdbarch));
1117 else
1118 h8300_print_register (gdbarch, file, frame, regno);
1119 }
1120 }
1121
1122 static struct type *
1123 h8300_register_type (struct gdbarch *gdbarch, int regno)
1124 {
1125 if (regno < 0 || regno >= gdbarch_num_regs (gdbarch)
1126 + gdbarch_num_pseudo_regs (gdbarch))
1127 internal_error (__FILE__, __LINE__,
1128 _("h8300_register_type: illegal register number %d"),
1129 regno);
1130 else
1131 {
1132 switch (regno)
1133 {
1134 case E_PC_REGNUM:
1135 return builtin_type (gdbarch)->builtin_func_ptr;
1136 case E_SP_REGNUM:
1137 case E_FP_REGNUM:
1138 return builtin_type (gdbarch)->builtin_data_ptr;
1139 default:
1140 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1141 return builtin_type (gdbarch)->builtin_uint8;
1142 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
1143 return builtin_type (gdbarch)->builtin_uint8;
1144 else if (is_h8300hmode (gdbarch))
1145 return builtin_type (gdbarch)->builtin_int32;
1146 else
1147 return builtin_type (gdbarch)->builtin_int16;
1148 }
1149 }
1150 }
1151
1152 static enum register_status
1153 h8300_pseudo_register_read (struct gdbarch *gdbarch,
1154 struct regcache *regcache, int regno,
1155 gdb_byte *buf)
1156 {
1157 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1158 return regcache_raw_read (regcache, E_CCR_REGNUM, buf);
1159 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
1160 return regcache_raw_read (regcache, E_EXR_REGNUM, buf);
1161 else
1162 return regcache_raw_read (regcache, regno, buf);
1163 }
1164
1165 static void
1166 h8300_pseudo_register_write (struct gdbarch *gdbarch,
1167 struct regcache *regcache, int regno,
1168 const gdb_byte *buf)
1169 {
1170 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1171 regcache_raw_write (regcache, E_CCR_REGNUM, buf);
1172 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
1173 regcache_raw_write (regcache, E_EXR_REGNUM, buf);
1174 else
1175 regcache_raw_write (regcache, regno, buf);
1176 }
1177
1178 static int
1179 h8300_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno)
1180 {
1181 if (regno == E_CCR_REGNUM)
1182 return E_PSEUDO_CCR_REGNUM (gdbarch);
1183 return regno;
1184 }
1185
1186 static int
1187 h8300s_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno)
1188 {
1189 if (regno == E_CCR_REGNUM)
1190 return E_PSEUDO_CCR_REGNUM (gdbarch);
1191 if (regno == E_EXR_REGNUM)
1192 return E_PSEUDO_EXR_REGNUM (gdbarch);
1193 return regno;
1194 }
1195
1196 const static unsigned char *
1197 h8300_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
1198 int *lenptr)
1199 {
1200 /*static unsigned char breakpoint[] = { 0x7A, 0xFF }; *//* ??? */
1201 static unsigned char breakpoint[] = { 0x01, 0x80 }; /* Sleep */
1202
1203 *lenptr = sizeof (breakpoint);
1204 return breakpoint;
1205 }
1206
1207 static void
1208 h8300_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1209 struct frame_info *frame, const char *args)
1210 {
1211 fprintf_filtered (file, "\
1212 No floating-point info available for this processor.\n");
1213 }
1214
1215 static struct gdbarch *
1216 h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1217 {
1218 struct gdbarch_tdep *tdep = NULL;
1219 struct gdbarch *gdbarch;
1220
1221 arches = gdbarch_list_lookup_by_info (arches, &info);
1222 if (arches != NULL)
1223 return arches->gdbarch;
1224
1225 #if 0
1226 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1227 #endif
1228
1229 if (info.bfd_arch_info->arch != bfd_arch_h8300)
1230 return NULL;
1231
1232 gdbarch = gdbarch_alloc (&info, 0);
1233
1234 switch (info.bfd_arch_info->mach)
1235 {
1236 case bfd_mach_h8300:
1237 set_gdbarch_num_regs (gdbarch, 13);
1238 set_gdbarch_num_pseudo_regs (gdbarch, 1);
1239 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1240 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1241 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1242 set_gdbarch_register_name (gdbarch, h8300_register_name);
1243 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1244 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1245 set_gdbarch_return_value (gdbarch, h8300_return_value);
1246 set_gdbarch_print_insn (gdbarch, print_insn_h8300);
1247 break;
1248 case bfd_mach_h8300h:
1249 case bfd_mach_h8300hn:
1250 set_gdbarch_num_regs (gdbarch, 13);
1251 set_gdbarch_num_pseudo_regs (gdbarch, 1);
1252 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1253 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1254 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1255 set_gdbarch_register_name (gdbarch, h8300_register_name);
1256 if (info.bfd_arch_info->mach != bfd_mach_h8300hn)
1257 {
1258 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1259 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1260 }
1261 else
1262 {
1263 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1264 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1265 }
1266 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1267 set_gdbarch_print_insn (gdbarch, print_insn_h8300h);
1268 break;
1269 case bfd_mach_h8300s:
1270 case bfd_mach_h8300sn:
1271 set_gdbarch_num_regs (gdbarch, 16);
1272 set_gdbarch_num_pseudo_regs (gdbarch, 2);
1273 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1274 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1275 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1276 set_gdbarch_register_name (gdbarch, h8300s_register_name);
1277 if (info.bfd_arch_info->mach != bfd_mach_h8300sn)
1278 {
1279 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1280 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1281 }
1282 else
1283 {
1284 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1285 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1286 }
1287 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1288 set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
1289 break;
1290 case bfd_mach_h8300sx:
1291 case bfd_mach_h8300sxn:
1292 set_gdbarch_num_regs (gdbarch, 18);
1293 set_gdbarch_num_pseudo_regs (gdbarch, 2);
1294 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1295 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1296 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1297 set_gdbarch_register_name (gdbarch, h8300sx_register_name);
1298 if (info.bfd_arch_info->mach != bfd_mach_h8300sxn)
1299 {
1300 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1301 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1302 }
1303 else
1304 {
1305 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1306 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1307 }
1308 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1309 set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
1310 break;
1311 }
1312
1313 set_gdbarch_pseudo_register_read (gdbarch, h8300_pseudo_register_read);
1314 set_gdbarch_pseudo_register_write (gdbarch, h8300_pseudo_register_write);
1315
1316 /*
1317 * Basic register fields and methods.
1318 */
1319
1320 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1321 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1322 set_gdbarch_register_type (gdbarch, h8300_register_type);
1323 set_gdbarch_print_registers_info (gdbarch, h8300_print_registers_info);
1324 set_gdbarch_print_float_info (gdbarch, h8300_print_float_info);
1325
1326 /*
1327 * Frame Info
1328 */
1329 set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue);
1330
1331 /* Frame unwinder. */
1332 set_gdbarch_unwind_pc (gdbarch, h8300_unwind_pc);
1333 set_gdbarch_unwind_sp (gdbarch, h8300_unwind_sp);
1334 set_gdbarch_dummy_id (gdbarch, h8300_dummy_id);
1335 frame_base_set_default (gdbarch, &h8300_frame_base);
1336
1337 /*
1338 * Miscelany
1339 */
1340 /* Stack grows up. */
1341 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1342
1343 set_gdbarch_breakpoint_from_pc (gdbarch, h8300_breakpoint_from_pc);
1344 set_gdbarch_push_dummy_call (gdbarch, h8300_push_dummy_call);
1345
1346 set_gdbarch_char_signed (gdbarch, 0);
1347 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1348 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1349 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1350 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1351 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1352
1353 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1354
1355 /* Hook in the DWARF CFI frame unwinder. */
1356 dwarf2_append_unwinders (gdbarch);
1357 frame_unwind_append_unwinder (gdbarch, &h8300_frame_unwind);
1358
1359 return gdbarch;
1360
1361 }
1362
1363 extern initialize_file_ftype _initialize_h8300_tdep; /* -Wmissing-prototypes */
1364
1365 void
1366 _initialize_h8300_tdep (void)
1367 {
1368 register_gdbarch_init (bfd_arch_h8300, h8300_gdbarch_init);
1369 }
1370
1371 static int
1372 is_h8300hmode (struct gdbarch *gdbarch)
1373 {
1374 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1375 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1376 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
1377 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
1378 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300h
1379 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
1380 }
1381
1382 static int
1383 is_h8300smode (struct gdbarch *gdbarch)
1384 {
1385 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1386 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1387 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
1388 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn;
1389 }
1390
1391 static int
1392 is_h8300sxmode (struct gdbarch *gdbarch)
1393 {
1394 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1395 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn;
1396 }
1397
1398 static int
1399 is_h8300_normal_mode (struct gdbarch *gdbarch)
1400 {
1401 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1402 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
1403 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
1404 }
This page took 0.0883350000000001 seconds and 5 git commands to generate.