2012-05-18 Sergio Durigan Junior <sergiodj@redhat.com>
[deliverable/binutils-gdb.git] / gdb / h8300-tdep.c
1 /* Target-machine dependent code for Renesas H8/300, for GDB.
2
3 Copyright (C) 1988, 1990-1996, 1998-2003, 2005, 2007-2012 Free
4 Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /*
22 Contributed by Steve Chamberlain
23 sac@cygnus.com
24 */
25
26 #include "defs.h"
27 #include "value.h"
28 #include "arch-utils.h"
29 #include "regcache.h"
30 #include "gdbcore.h"
31 #include "objfiles.h"
32 #include "gdb_assert.h"
33 #include "dis-asm.h"
34 #include "dwarf2-frame.h"
35 #include "frame-base.h"
36 #include "frame-unwind.h"
37
38 enum gdb_regnum
39 {
40 E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM,
41 E_RET0_REGNUM = E_R0_REGNUM,
42 E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM, E_RET1_REGNUM = E_R1_REGNUM,
43 E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM,
44 E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM,
45 E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM,
46 E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM,
47 E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM,
48 E_SP_REGNUM,
49 E_CCR_REGNUM,
50 E_PC_REGNUM,
51 E_CYCLES_REGNUM,
52 E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM,
53 E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM,
54 E_INSTS_REGNUM,
55 E_MACH_REGNUM,
56 E_MACL_REGNUM,
57 E_SBR_REGNUM,
58 E_VBR_REGNUM
59 };
60
61 #define H8300_MAX_NUM_REGS 18
62
63 #define E_PSEUDO_CCR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch))
64 #define E_PSEUDO_EXR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch)+1)
65
66 struct h8300_frame_cache
67 {
68 /* Base address. */
69 CORE_ADDR base;
70 CORE_ADDR sp_offset;
71 CORE_ADDR pc;
72
73 /* Flag showing that a frame has been created in the prologue code. */
74 int uses_fp;
75
76 /* Saved registers. */
77 CORE_ADDR saved_regs[H8300_MAX_NUM_REGS];
78 CORE_ADDR saved_sp;
79 };
80
81 enum
82 {
83 h8300_reg_size = 2,
84 h8300h_reg_size = 4,
85 h8300_max_reg_size = 4,
86 };
87
88 static int is_h8300hmode (struct gdbarch *gdbarch);
89 static int is_h8300smode (struct gdbarch *gdbarch);
90 static int is_h8300sxmode (struct gdbarch *gdbarch);
91 static int is_h8300_normal_mode (struct gdbarch *gdbarch);
92
93 #define BINWORD(gdbarch) ((is_h8300hmode (gdbarch) \
94 && !is_h8300_normal_mode (gdbarch)) \
95 ? h8300h_reg_size : h8300_reg_size)
96
97 static CORE_ADDR
98 h8300_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
99 {
100 return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
101 }
102
103 static CORE_ADDR
104 h8300_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
105 {
106 return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
107 }
108
109 static struct frame_id
110 h8300_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
111 {
112 CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
113 return frame_id_build (sp, get_frame_pc (this_frame));
114 }
115
116 /* Normal frames. */
117
118 /* Allocate and initialize a frame cache. */
119
120 static void
121 h8300_init_frame_cache (struct gdbarch *gdbarch,
122 struct h8300_frame_cache *cache)
123 {
124 int i;
125
126 /* Base address. */
127 cache->base = 0;
128 cache->sp_offset = 0;
129 cache->pc = 0;
130
131 /* Frameless until proven otherwise. */
132 cache->uses_fp = 0;
133
134 /* Saved registers. We initialize these to -1 since zero is a valid
135 offset (that's where %fp is supposed to be stored). */
136 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
137 cache->saved_regs[i] = -1;
138 }
139
140 #define IS_MOVB_RnRm(x) (((x) & 0xff88) == 0x0c88)
141 #define IS_MOVW_RnRm(x) (((x) & 0xff88) == 0x0d00)
142 #define IS_MOVL_RnRm(x) (((x) & 0xff88) == 0x0f80)
143 #define IS_MOVB_Rn16_SP(x) (((x) & 0xfff0) == 0x6ee0)
144 #define IS_MOVB_EXT(x) ((x) == 0x7860)
145 #define IS_MOVB_Rn24_SP(x) (((x) & 0xfff0) == 0x6aa0)
146 #define IS_MOVW_Rn16_SP(x) (((x) & 0xfff0) == 0x6fe0)
147 #define IS_MOVW_EXT(x) ((x) == 0x78e0)
148 #define IS_MOVW_Rn24_SP(x) (((x) & 0xfff0) == 0x6ba0)
149 /* Same instructions as mov.w, just prefixed with 0x0100. */
150 #define IS_MOVL_PRE(x) ((x) == 0x0100)
151 #define IS_MOVL_Rn16_SP(x) (((x) & 0xfff0) == 0x6fe0)
152 #define IS_MOVL_EXT(x) ((x) == 0x78e0)
153 #define IS_MOVL_Rn24_SP(x) (((x) & 0xfff0) == 0x6ba0)
154
155 #define IS_PUSHFP_MOVESPFP(x) ((x) == 0x6df60d76)
156 #define IS_PUSH_FP(x) ((x) == 0x01006df6)
157 #define IS_MOV_SP_FP(x) ((x) == 0x0ff6)
158 #define IS_SUB2_SP(x) ((x) == 0x1b87)
159 #define IS_SUB4_SP(x) ((x) == 0x1b97)
160 #define IS_ADD_IMM_SP(x) ((x) == 0x7a1f)
161 #define IS_SUB_IMM_SP(x) ((x) == 0x7a3f)
162 #define IS_SUBL4_SP(x) ((x) == 0x1acf)
163 #define IS_MOV_IMM_Rn(x) (((x) & 0xfff0) == 0x7905)
164 #define IS_SUB_RnSP(x) (((x) & 0xff0f) == 0x1907)
165 #define IS_ADD_RnSP(x) (((x) & 0xff0f) == 0x0907)
166 #define IS_PUSH(x) (((x) & 0xfff0) == 0x6df0)
167
168 /* If the instruction at PC is an argument register spill, return its
169 length. Otherwise, return zero.
170
171 An argument register spill is an instruction that moves an argument
172 from the register in which it was passed to the stack slot in which
173 it really lives. It is a byte, word, or longword move from an
174 argument register to a negative offset from the frame pointer.
175
176 CV, 2003-06-16: Or, in optimized code or when the `register' qualifier
177 is used, it could be a byte, word or long move to registers r3-r5. */
178
179 static int
180 h8300_is_argument_spill (struct gdbarch *gdbarch, CORE_ADDR pc)
181 {
182 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
183 int w = read_memory_unsigned_integer (pc, 2, byte_order);
184
185 if ((IS_MOVB_RnRm (w) || IS_MOVW_RnRm (w) || IS_MOVL_RnRm (w))
186 && (w & 0x70) <= 0x20 /* Rs is R0, R1 or R2 */
187 && (w & 0x7) >= 0x3 && (w & 0x7) <= 0x5) /* Rd is R3, R4 or R5 */
188 return 2;
189
190 if (IS_MOVB_Rn16_SP (w)
191 && 8 <= (w & 0xf) && (w & 0xf) <= 10) /* Rs is R0L, R1L, or R2L */
192 {
193 /* ... and d:16 is negative. */
194 if (read_memory_integer (pc + 2, 2, byte_order) < 0)
195 return 4;
196 }
197 else if (IS_MOVB_EXT (w))
198 {
199 if (IS_MOVB_Rn24_SP (read_memory_unsigned_integer (pc + 2,
200 2, byte_order)))
201 {
202 LONGEST disp = read_memory_integer (pc + 4, 4, byte_order);
203
204 /* ... and d:24 is negative. */
205 if (disp < 0 && disp > 0xffffff)
206 return 8;
207 }
208 }
209 else if (IS_MOVW_Rn16_SP (w)
210 && (w & 0xf) <= 2) /* Rs is R0, R1, or R2 */
211 {
212 /* ... and d:16 is negative. */
213 if (read_memory_integer (pc + 2, 2, byte_order) < 0)
214 return 4;
215 }
216 else if (IS_MOVW_EXT (w))
217 {
218 if (IS_MOVW_Rn24_SP (read_memory_unsigned_integer (pc + 2,
219 2, byte_order)))
220 {
221 LONGEST disp = read_memory_integer (pc + 4, 4, byte_order);
222
223 /* ... and d:24 is negative. */
224 if (disp < 0 && disp > 0xffffff)
225 return 8;
226 }
227 }
228 else if (IS_MOVL_PRE (w))
229 {
230 int w2 = read_memory_integer (pc + 2, 2, byte_order);
231
232 if (IS_MOVL_Rn16_SP (w2)
233 && (w2 & 0xf) <= 2) /* Rs is ER0, ER1, or ER2 */
234 {
235 /* ... and d:16 is negative. */
236 if (read_memory_integer (pc + 4, 2, byte_order) < 0)
237 return 6;
238 }
239 else if (IS_MOVL_EXT (w2))
240 {
241 int w3 = read_memory_integer (pc + 4, 2, byte_order);
242
243 if (IS_MOVL_Rn24_SP (read_memory_integer (pc + 4, 2, byte_order)))
244 {
245 LONGEST disp = read_memory_integer (pc + 6, 4, byte_order);
246
247 /* ... and d:24 is negative. */
248 if (disp < 0 && disp > 0xffffff)
249 return 10;
250 }
251 }
252 }
253
254 return 0;
255 }
256
257 /* Do a full analysis of the prologue at PC and update CACHE
258 accordingly. Bail out early if CURRENT_PC is reached. Return the
259 address where the analysis stopped.
260
261 We handle all cases that can be generated by gcc.
262
263 For allocating a stack frame:
264
265 mov.w r6,@-sp
266 mov.w sp,r6
267 mov.w #-n,rN
268 add.w rN,sp
269
270 mov.w r6,@-sp
271 mov.w sp,r6
272 subs #2,sp
273 (repeat)
274
275 mov.l er6,@-sp
276 mov.l sp,er6
277 add.l #-n,sp
278
279 mov.w r6,@-sp
280 mov.w sp,r6
281 subs #4,sp
282 (repeat)
283
284 For saving registers:
285
286 mov.w rN,@-sp
287 mov.l erN,@-sp
288 stm.l reglist,@-sp
289
290 */
291
292 static CORE_ADDR
293 h8300_analyze_prologue (struct gdbarch *gdbarch,
294 CORE_ADDR pc, CORE_ADDR current_pc,
295 struct h8300_frame_cache *cache)
296 {
297 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
298 unsigned int op;
299 int regno, i, spill_size;
300
301 cache->sp_offset = 0;
302
303 if (pc >= current_pc)
304 return current_pc;
305
306 op = read_memory_unsigned_integer (pc, 4, byte_order);
307
308 if (IS_PUSHFP_MOVESPFP (op))
309 {
310 cache->saved_regs[E_FP_REGNUM] = 0;
311 cache->uses_fp = 1;
312 pc += 4;
313 }
314 else if (IS_PUSH_FP (op))
315 {
316 cache->saved_regs[E_FP_REGNUM] = 0;
317 pc += 4;
318 if (pc >= current_pc)
319 return current_pc;
320 op = read_memory_unsigned_integer (pc, 2, byte_order);
321 if (IS_MOV_SP_FP (op))
322 {
323 cache->uses_fp = 1;
324 pc += 2;
325 }
326 }
327
328 while (pc < current_pc)
329 {
330 op = read_memory_unsigned_integer (pc, 2, byte_order);
331 if (IS_SUB2_SP (op))
332 {
333 cache->sp_offset += 2;
334 pc += 2;
335 }
336 else if (IS_SUB4_SP (op))
337 {
338 cache->sp_offset += 4;
339 pc += 2;
340 }
341 else if (IS_ADD_IMM_SP (op))
342 {
343 cache->sp_offset += -read_memory_integer (pc + 2, 2, byte_order);
344 pc += 4;
345 }
346 else if (IS_SUB_IMM_SP (op))
347 {
348 cache->sp_offset += read_memory_integer (pc + 2, 2, byte_order);
349 pc += 4;
350 }
351 else if (IS_SUBL4_SP (op))
352 {
353 cache->sp_offset += 4;
354 pc += 2;
355 }
356 else if (IS_MOV_IMM_Rn (op))
357 {
358 int offset = read_memory_integer (pc + 2, 2, byte_order);
359 regno = op & 0x000f;
360 op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
361 if (IS_ADD_RnSP (op) && (op & 0x00f0) == regno)
362 {
363 cache->sp_offset -= offset;
364 pc += 6;
365 }
366 else if (IS_SUB_RnSP (op) && (op & 0x00f0) == regno)
367 {
368 cache->sp_offset += offset;
369 pc += 6;
370 }
371 else
372 break;
373 }
374 else if (IS_PUSH (op))
375 {
376 regno = op & 0x000f;
377 cache->sp_offset += 2;
378 cache->saved_regs[regno] = cache->sp_offset;
379 pc += 2;
380 }
381 else if (op == 0x0100)
382 {
383 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
384 if (IS_PUSH (op))
385 {
386 regno = op & 0x000f;
387 cache->sp_offset += 4;
388 cache->saved_regs[regno] = cache->sp_offset;
389 pc += 4;
390 }
391 else
392 break;
393 }
394 else if ((op & 0xffcf) == 0x0100)
395 {
396 int op1;
397 op1 = read_memory_unsigned_integer (pc + 2, 2, byte_order);
398 if (IS_PUSH (op1))
399 {
400 /* Since the prefix is 0x01x0, this is not a simple pushm but a
401 stm.l reglist,@-sp */
402 i = ((op & 0x0030) >> 4) + 1;
403 regno = op1 & 0x000f;
404 for (; i > 0; regno++, --i)
405 {
406 cache->sp_offset += 4;
407 cache->saved_regs[regno] = cache->sp_offset;
408 }
409 pc += 4;
410 }
411 else
412 break;
413 }
414 else
415 break;
416 }
417
418 /* Check for spilling an argument register to the stack frame.
419 This could also be an initializing store from non-prologue code,
420 but I don't think there's any harm in skipping that. */
421 while ((spill_size = h8300_is_argument_spill (gdbarch, pc)) > 0
422 && pc + spill_size <= current_pc)
423 pc += spill_size;
424
425 return pc;
426 }
427
428 static struct h8300_frame_cache *
429 h8300_frame_cache (struct frame_info *this_frame, void **this_cache)
430 {
431 struct gdbarch *gdbarch = get_frame_arch (this_frame);
432 struct h8300_frame_cache *cache;
433 int i;
434 CORE_ADDR current_pc;
435
436 if (*this_cache)
437 return *this_cache;
438
439 cache = FRAME_OBSTACK_ZALLOC (struct h8300_frame_cache);
440 h8300_init_frame_cache (gdbarch, cache);
441 *this_cache = cache;
442
443 /* In principle, for normal frames, %fp holds the frame pointer,
444 which holds the base address for the current stack frame.
445 However, for functions that don't need it, the frame pointer is
446 optional. For these "frameless" functions the frame pointer is
447 actually the frame pointer of the calling frame. */
448
449 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
450 if (cache->base == 0)
451 return cache;
452
453 cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch);
454
455 cache->pc = get_frame_func (this_frame);
456 current_pc = get_frame_pc (this_frame);
457 if (cache->pc != 0)
458 h8300_analyze_prologue (gdbarch, cache->pc, current_pc, cache);
459
460 if (!cache->uses_fp)
461 {
462 /* We didn't find a valid frame, which means that CACHE->base
463 currently holds the frame pointer for our calling frame. If
464 we're at the start of a function, or somewhere half-way its
465 prologue, the function's frame probably hasn't been fully
466 setup yet. Try to reconstruct the base address for the stack
467 frame by looking at the stack pointer. For truly "frameless"
468 functions this might work too. */
469
470 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM)
471 + cache->sp_offset;
472 cache->saved_sp = cache->base + BINWORD (gdbarch);
473 cache->saved_regs[E_PC_REGNUM] = 0;
474 }
475 else
476 {
477 cache->saved_sp = cache->base + 2 * BINWORD (gdbarch);
478 cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch);
479 }
480
481 /* Adjust all the saved registers such that they contain addresses
482 instead of offsets. */
483 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
484 if (cache->saved_regs[i] != -1)
485 cache->saved_regs[i] = cache->base - cache->saved_regs[i];
486
487 return cache;
488 }
489
490 static void
491 h8300_frame_this_id (struct frame_info *this_frame, void **this_cache,
492 struct frame_id *this_id)
493 {
494 struct h8300_frame_cache *cache =
495 h8300_frame_cache (this_frame, this_cache);
496
497 /* This marks the outermost frame. */
498 if (cache->base == 0)
499 return;
500
501 *this_id = frame_id_build (cache->saved_sp, cache->pc);
502 }
503
504 static struct value *
505 h8300_frame_prev_register (struct frame_info *this_frame, void **this_cache,
506 int regnum)
507 {
508 struct gdbarch *gdbarch = get_frame_arch (this_frame);
509 struct h8300_frame_cache *cache =
510 h8300_frame_cache (this_frame, this_cache);
511
512 gdb_assert (regnum >= 0);
513
514 if (regnum == E_SP_REGNUM && cache->saved_sp)
515 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
516
517 if (regnum < gdbarch_num_regs (gdbarch)
518 && cache->saved_regs[regnum] != -1)
519 return frame_unwind_got_memory (this_frame, regnum,
520 cache->saved_regs[regnum]);
521
522 return frame_unwind_got_register (this_frame, regnum, regnum);
523 }
524
525 static const struct frame_unwind h8300_frame_unwind = {
526 NORMAL_FRAME,
527 default_frame_unwind_stop_reason,
528 h8300_frame_this_id,
529 h8300_frame_prev_register,
530 NULL,
531 default_frame_sniffer
532 };
533
534 static CORE_ADDR
535 h8300_frame_base_address (struct frame_info *this_frame, void **this_cache)
536 {
537 struct h8300_frame_cache *cache = h8300_frame_cache (this_frame, this_cache);
538 return cache->base;
539 }
540
541 static const struct frame_base h8300_frame_base = {
542 &h8300_frame_unwind,
543 h8300_frame_base_address,
544 h8300_frame_base_address,
545 h8300_frame_base_address
546 };
547
548 static CORE_ADDR
549 h8300_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
550 {
551 CORE_ADDR func_addr = 0 , func_end = 0;
552
553 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
554 {
555 struct symtab_and_line sal;
556 struct h8300_frame_cache cache;
557
558 /* Found a function. */
559 sal = find_pc_line (func_addr, 0);
560 if (sal.end && sal.end < func_end)
561 /* Found a line number, use it as end of prologue. */
562 return sal.end;
563
564 /* No useable line symbol. Use prologue parsing method. */
565 h8300_init_frame_cache (gdbarch, &cache);
566 return h8300_analyze_prologue (gdbarch, func_addr, func_end, &cache);
567 }
568
569 /* No function symbol -- just return the PC. */
570 return (CORE_ADDR) pc;
571 }
572
573 /* Function: push_dummy_call
574 Setup the function arguments for calling a function in the inferior.
575 In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits
576 on the H8/300H.
577
578 There are actually two ABI's here: -mquickcall (the default) and
579 -mno-quickcall. With -mno-quickcall, all arguments are passed on
580 the stack after the return address, word-aligned. With
581 -mquickcall, GCC tries to use r0 -- r2 to pass registers. Since
582 GCC doesn't indicate in the object file which ABI was used to
583 compile it, GDB only supports the default --- -mquickcall.
584
585 Here are the rules for -mquickcall, in detail:
586
587 Each argument, whether scalar or aggregate, is padded to occupy a
588 whole number of words. Arguments smaller than a word are padded at
589 the most significant end; those larger than a word are padded at
590 the least significant end.
591
592 The initial arguments are passed in r0 -- r2. Earlier arguments go in
593 lower-numbered registers. Multi-word arguments are passed in
594 consecutive registers, with the most significant end in the
595 lower-numbered register.
596
597 If an argument doesn't fit entirely in the remaining registers, it
598 is passed entirely on the stack. Stack arguments begin just after
599 the return address. Once an argument has overflowed onto the stack
600 this way, all subsequent arguments are passed on the stack.
601
602 The above rule has odd consequences. For example, on the h8/300s,
603 if a function takes two longs and an int as arguments:
604 - the first long will be passed in r0/r1,
605 - the second long will be passed entirely on the stack, since it
606 doesn't fit in r2,
607 - and the int will be passed on the stack, even though it could fit
608 in r2.
609
610 A weird exception: if an argument is larger than a word, but not a
611 whole number of words in length (before padding), it is passed on
612 the stack following the rules for stack arguments above, even if
613 there are sufficient registers available to hold it. Stranger
614 still, the argument registers are still `used up' --- even though
615 there's nothing in them.
616
617 So, for example, on the h8/300s, if a function expects a three-byte
618 structure and an int, the structure will go on the stack, and the
619 int will go in r2, not r0.
620
621 If the function returns an aggregate type (struct, union, or class)
622 by value, the caller must allocate space to hold the return value,
623 and pass the callee a pointer to this space as an invisible first
624 argument, in R0.
625
626 For varargs functions, the last fixed argument and all the variable
627 arguments are always passed on the stack. This means that calls to
628 varargs functions don't work properly unless there is a prototype
629 in scope.
630
631 Basically, this ABI is not good, for the following reasons:
632 - You can't call vararg functions properly unless a prototype is in scope.
633 - Structure passing is inconsistent, to no purpose I can see.
634 - It often wastes argument registers, of which there are only three
635 to begin with. */
636
637 static CORE_ADDR
638 h8300_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
639 struct regcache *regcache, CORE_ADDR bp_addr,
640 int nargs, struct value **args, CORE_ADDR sp,
641 int struct_return, CORE_ADDR struct_addr)
642 {
643 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
644 int stack_alloc = 0, stack_offset = 0;
645 int wordsize = BINWORD (gdbarch);
646 int reg = E_ARG0_REGNUM;
647 int argument;
648
649 /* First, make sure the stack is properly aligned. */
650 sp = align_down (sp, wordsize);
651
652 /* Now make sure there's space on the stack for the arguments. We
653 may over-allocate a little here, but that won't hurt anything. */
654 for (argument = 0; argument < nargs; argument++)
655 stack_alloc += align_up (TYPE_LENGTH (value_type (args[argument])),
656 wordsize);
657 sp -= stack_alloc;
658
659 /* Now load as many arguments as possible into registers, and push
660 the rest onto the stack.
661 If we're returning a structure by value, then we must pass a
662 pointer to the buffer for the return value as an invisible first
663 argument. */
664 if (struct_return)
665 regcache_cooked_write_unsigned (regcache, reg++, struct_addr);
666
667 for (argument = 0; argument < nargs; argument++)
668 {
669 struct type *type = value_type (args[argument]);
670 int len = TYPE_LENGTH (type);
671 char *contents = (char *) value_contents (args[argument]);
672
673 /* Pad the argument appropriately. */
674 int padded_len = align_up (len, wordsize);
675 gdb_byte *padded = alloca (padded_len);
676
677 memset (padded, 0, padded_len);
678 memcpy (len < wordsize ? padded + padded_len - len : padded,
679 contents, len);
680
681 /* Could the argument fit in the remaining registers? */
682 if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize)
683 {
684 /* Are we going to pass it on the stack anyway, for no good
685 reason? */
686 if (len > wordsize && len % wordsize)
687 {
688 /* I feel so unclean. */
689 write_memory (sp + stack_offset, padded, padded_len);
690 stack_offset += padded_len;
691
692 /* That's right --- even though we passed the argument
693 on the stack, we consume the registers anyway! Love
694 me, love my dog. */
695 reg += padded_len / wordsize;
696 }
697 else
698 {
699 /* Heavens to Betsy --- it's really going in registers!
700 Note that on the h8/300s, there are gaps between the
701 registers in the register file. */
702 int offset;
703
704 for (offset = 0; offset < padded_len; offset += wordsize)
705 {
706 ULONGEST word
707 = extract_unsigned_integer (padded + offset,
708 wordsize, byte_order);
709 regcache_cooked_write_unsigned (regcache, reg++, word);
710 }
711 }
712 }
713 else
714 {
715 /* It doesn't fit in registers! Onto the stack it goes. */
716 write_memory (sp + stack_offset, padded, padded_len);
717 stack_offset += padded_len;
718
719 /* Once one argument has spilled onto the stack, all
720 subsequent arguments go on the stack. */
721 reg = E_ARGLAST_REGNUM + 1;
722 }
723 }
724
725 /* Store return address. */
726 sp -= wordsize;
727 write_memory_unsigned_integer (sp, wordsize, byte_order, bp_addr);
728
729 /* Update stack pointer. */
730 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
731
732 /* Return the new stack pointer minus the return address slot since
733 that's what DWARF2/GCC uses as the frame's CFA. */
734 return sp + wordsize;
735 }
736
737 /* Function: extract_return_value
738 Figure out where in REGBUF the called function has left its return value.
739 Copy that into VALBUF. Be sure to account for CPU type. */
740
741 static void
742 h8300_extract_return_value (struct type *type, struct regcache *regcache,
743 void *valbuf)
744 {
745 struct gdbarch *gdbarch = get_regcache_arch (regcache);
746 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
747 int len = TYPE_LENGTH (type);
748 ULONGEST c, addr;
749
750 switch (len)
751 {
752 case 1:
753 case 2:
754 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
755 store_unsigned_integer (valbuf, len, byte_order, c);
756 break;
757 case 4: /* Needs two registers on plain H8/300 */
758 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
759 store_unsigned_integer (valbuf, 2, byte_order, c);
760 regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
761 store_unsigned_integer ((void *)((char *) valbuf + 2), 2, byte_order, c);
762 break;
763 case 8: /* long long is now 8 bytes. */
764 if (TYPE_CODE (type) == TYPE_CODE_INT)
765 {
766 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr);
767 c = read_memory_unsigned_integer ((CORE_ADDR) addr, len, byte_order);
768 store_unsigned_integer (valbuf, len, byte_order, c);
769 }
770 else
771 {
772 error (_("I don't know how this 8 byte value is returned."));
773 }
774 break;
775 }
776 }
777
778 static void
779 h8300h_extract_return_value (struct type *type, struct regcache *regcache,
780 void *valbuf)
781 {
782 struct gdbarch *gdbarch = get_regcache_arch (regcache);
783 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
784 int len = TYPE_LENGTH (type);
785 ULONGEST c;
786
787 switch (len)
788 {
789 case 1:
790 case 2:
791 case 4:
792 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
793 store_unsigned_integer (valbuf, len, byte_order, c);
794 break;
795 case 8: /* long long is now 8 bytes. */
796 if (TYPE_CODE (type) == TYPE_CODE_INT)
797 {
798 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
799 store_unsigned_integer (valbuf, 4, byte_order, c);
800 regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
801 store_unsigned_integer ((void *) ((char *) valbuf + 4), 4,
802 byte_order, c);
803 }
804 else
805 {
806 error (_("I don't know how this 8 byte value is returned."));
807 }
808 break;
809 }
810 }
811
812 static int
813 h8300_use_struct_convention (struct type *value_type)
814 {
815 /* Types of 1, 2 or 4 bytes are returned in R0/R1, everything else on the
816 stack. */
817
818 if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
819 || TYPE_CODE (value_type) == TYPE_CODE_UNION)
820 return 1;
821 return !(TYPE_LENGTH (value_type) == 1
822 || TYPE_LENGTH (value_type) == 2
823 || TYPE_LENGTH (value_type) == 4);
824 }
825
826 static int
827 h8300h_use_struct_convention (struct type *value_type)
828 {
829 /* Types of 1, 2 or 4 bytes are returned in R0, INT types of 8 bytes are
830 returned in R0/R1, everything else on the stack. */
831 if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
832 || TYPE_CODE (value_type) == TYPE_CODE_UNION)
833 return 1;
834 return !(TYPE_LENGTH (value_type) == 1
835 || TYPE_LENGTH (value_type) == 2
836 || TYPE_LENGTH (value_type) == 4
837 || (TYPE_LENGTH (value_type) == 8
838 && TYPE_CODE (value_type) == TYPE_CODE_INT));
839 }
840
841 /* Function: store_return_value
842 Place the appropriate value in the appropriate registers.
843 Primarily used by the RETURN command. */
844
845 static void
846 h8300_store_return_value (struct type *type, struct regcache *regcache,
847 const void *valbuf)
848 {
849 struct gdbarch *gdbarch = get_regcache_arch (regcache);
850 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
851 int len = TYPE_LENGTH (type);
852 ULONGEST val;
853
854 switch (len)
855 {
856 case 1:
857 case 2: /* short... */
858 val = extract_unsigned_integer (valbuf, len, byte_order);
859 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
860 break;
861 case 4: /* long, float */
862 val = extract_unsigned_integer (valbuf, len, byte_order);
863 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
864 (val >> 16) & 0xffff);
865 regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM, val & 0xffff);
866 break;
867 case 8: /* long long, double and long double
868 are all defined as 4 byte types so
869 far so this shouldn't happen. */
870 error (_("I don't know how to return an 8 byte value."));
871 break;
872 }
873 }
874
875 static void
876 h8300h_store_return_value (struct type *type, struct regcache *regcache,
877 const void *valbuf)
878 {
879 struct gdbarch *gdbarch = get_regcache_arch (regcache);
880 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
881 int len = TYPE_LENGTH (type);
882 ULONGEST val;
883
884 switch (len)
885 {
886 case 1:
887 case 2:
888 case 4: /* long, float */
889 val = extract_unsigned_integer (valbuf, len, byte_order);
890 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
891 break;
892 case 8:
893 val = extract_unsigned_integer (valbuf, len, byte_order);
894 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
895 (val >> 32) & 0xffffffff);
896 regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM,
897 val & 0xffffffff);
898 break;
899 }
900 }
901
902 static enum return_value_convention
903 h8300_return_value (struct gdbarch *gdbarch, struct value *function,
904 struct type *type, struct regcache *regcache,
905 gdb_byte *readbuf, const gdb_byte *writebuf)
906 {
907 if (h8300_use_struct_convention (type))
908 return RETURN_VALUE_STRUCT_CONVENTION;
909 if (writebuf)
910 h8300_store_return_value (type, regcache, writebuf);
911 else if (readbuf)
912 h8300_extract_return_value (type, regcache, readbuf);
913 return RETURN_VALUE_REGISTER_CONVENTION;
914 }
915
916 static enum return_value_convention
917 h8300h_return_value (struct gdbarch *gdbarch, struct value *function,
918 struct type *type, struct regcache *regcache,
919 gdb_byte *readbuf, const gdb_byte *writebuf)
920 {
921 if (h8300h_use_struct_convention (type))
922 {
923 if (readbuf)
924 {
925 ULONGEST addr;
926
927 regcache_raw_read_unsigned (regcache, E_R0_REGNUM, &addr);
928 read_memory (addr, readbuf, TYPE_LENGTH (type));
929 }
930
931 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
932 }
933 if (writebuf)
934 h8300h_store_return_value (type, regcache, writebuf);
935 else if (readbuf)
936 h8300h_extract_return_value (type, regcache, readbuf);
937 return RETURN_VALUE_REGISTER_CONVENTION;
938 }
939
940 static struct cmd_list_element *setmachinelist;
941
942 static const char *
943 h8300_register_name (struct gdbarch *gdbarch, int regno)
944 {
945 /* The register names change depending on which h8300 processor
946 type is selected. */
947 static char *register_names[] = {
948 "r0", "r1", "r2", "r3", "r4", "r5", "r6",
949 "sp", "", "pc", "cycles", "tick", "inst",
950 "ccr", /* pseudo register */
951 };
952 if (regno < 0
953 || regno >= (sizeof (register_names) / sizeof (*register_names)))
954 internal_error (__FILE__, __LINE__,
955 _("h8300_register_name: illegal register number %d"),
956 regno);
957 else
958 return register_names[regno];
959 }
960
961 static const char *
962 h8300s_register_name (struct gdbarch *gdbarch, int regno)
963 {
964 static char *register_names[] = {
965 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
966 "sp", "", "pc", "cycles", "", "tick", "inst",
967 "mach", "macl",
968 "ccr", "exr" /* pseudo registers */
969 };
970 if (regno < 0
971 || regno >= (sizeof (register_names) / sizeof (*register_names)))
972 internal_error (__FILE__, __LINE__,
973 _("h8300s_register_name: illegal register number %d"),
974 regno);
975 else
976 return register_names[regno];
977 }
978
979 static const char *
980 h8300sx_register_name (struct gdbarch *gdbarch, int regno)
981 {
982 static char *register_names[] = {
983 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
984 "sp", "", "pc", "cycles", "", "tick", "inst",
985 "mach", "macl", "sbr", "vbr",
986 "ccr", "exr" /* pseudo registers */
987 };
988 if (regno < 0
989 || regno >= (sizeof (register_names) / sizeof (*register_names)))
990 internal_error (__FILE__, __LINE__,
991 _("h8300sx_register_name: illegal register number %d"),
992 regno);
993 else
994 return register_names[regno];
995 }
996
997 static void
998 h8300_print_register (struct gdbarch *gdbarch, struct ui_file *file,
999 struct frame_info *frame, int regno)
1000 {
1001 LONGEST rval;
1002 const char *name = gdbarch_register_name (gdbarch, regno);
1003
1004 if (!name || !*name)
1005 return;
1006
1007 rval = get_frame_register_signed (frame, regno);
1008
1009 fprintf_filtered (file, "%-14s ", name);
1010 if ((regno == E_PSEUDO_CCR_REGNUM (gdbarch)) || \
1011 (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch)))
1012 {
1013 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1014 print_longest (file, 'u', 1, rval);
1015 }
1016 else
1017 {
1018 fprintf_filtered (file, "0x%s ", phex ((ULONGEST) rval,
1019 BINWORD (gdbarch)));
1020 print_longest (file, 'd', 1, rval);
1021 }
1022 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1023 {
1024 /* CCR register */
1025 int C, Z, N, V;
1026 unsigned char l = rval & 0xff;
1027 fprintf_filtered (file, "\t");
1028 fprintf_filtered (file, "I-%d ", (l & 0x80) != 0);
1029 fprintf_filtered (file, "UI-%d ", (l & 0x40) != 0);
1030 fprintf_filtered (file, "H-%d ", (l & 0x20) != 0);
1031 fprintf_filtered (file, "U-%d ", (l & 0x10) != 0);
1032 N = (l & 0x8) != 0;
1033 Z = (l & 0x4) != 0;
1034 V = (l & 0x2) != 0;
1035 C = (l & 0x1) != 0;
1036 fprintf_filtered (file, "N-%d ", N);
1037 fprintf_filtered (file, "Z-%d ", Z);
1038 fprintf_filtered (file, "V-%d ", V);
1039 fprintf_filtered (file, "C-%d ", C);
1040 if ((C | Z) == 0)
1041 fprintf_filtered (file, "u> ");
1042 if ((C | Z) == 1)
1043 fprintf_filtered (file, "u<= ");
1044 if ((C == 0))
1045 fprintf_filtered (file, "u>= ");
1046 if (C == 1)
1047 fprintf_filtered (file, "u< ");
1048 if (Z == 0)
1049 fprintf_filtered (file, "!= ");
1050 if (Z == 1)
1051 fprintf_filtered (file, "== ");
1052 if ((N ^ V) == 0)
1053 fprintf_filtered (file, ">= ");
1054 if ((N ^ V) == 1)
1055 fprintf_filtered (file, "< ");
1056 if ((Z | (N ^ V)) == 0)
1057 fprintf_filtered (file, "> ");
1058 if ((Z | (N ^ V)) == 1)
1059 fprintf_filtered (file, "<= ");
1060 }
1061 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch))
1062 {
1063 /* EXR register */
1064 unsigned char l = rval & 0xff;
1065 fprintf_filtered (file, "\t");
1066 fprintf_filtered (file, "T-%d - - - ", (l & 0x80) != 0);
1067 fprintf_filtered (file, "I2-%d ", (l & 4) != 0);
1068 fprintf_filtered (file, "I1-%d ", (l & 2) != 0);
1069 fprintf_filtered (file, "I0-%d", (l & 1) != 0);
1070 }
1071 fprintf_filtered (file, "\n");
1072 }
1073
1074 static void
1075 h8300_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1076 struct frame_info *frame, int regno, int cpregs)
1077 {
1078 if (regno < 0)
1079 {
1080 for (regno = E_R0_REGNUM; regno <= E_SP_REGNUM; ++regno)
1081 h8300_print_register (gdbarch, file, frame, regno);
1082 h8300_print_register (gdbarch, file, frame,
1083 E_PSEUDO_CCR_REGNUM (gdbarch));
1084 h8300_print_register (gdbarch, file, frame, E_PC_REGNUM);
1085 if (is_h8300smode (gdbarch))
1086 {
1087 h8300_print_register (gdbarch, file, frame,
1088 E_PSEUDO_EXR_REGNUM (gdbarch));
1089 if (is_h8300sxmode (gdbarch))
1090 {
1091 h8300_print_register (gdbarch, file, frame, E_SBR_REGNUM);
1092 h8300_print_register (gdbarch, file, frame, E_VBR_REGNUM);
1093 }
1094 h8300_print_register (gdbarch, file, frame, E_MACH_REGNUM);
1095 h8300_print_register (gdbarch, file, frame, E_MACL_REGNUM);
1096 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1097 h8300_print_register (gdbarch, file, frame, E_TICKS_REGNUM);
1098 h8300_print_register (gdbarch, file, frame, E_INSTS_REGNUM);
1099 }
1100 else
1101 {
1102 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1103 h8300_print_register (gdbarch, file, frame, E_TICK_REGNUM);
1104 h8300_print_register (gdbarch, file, frame, E_INST_REGNUM);
1105 }
1106 }
1107 else
1108 {
1109 if (regno == E_CCR_REGNUM)
1110 h8300_print_register (gdbarch, file, frame,
1111 E_PSEUDO_CCR_REGNUM (gdbarch));
1112 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch)
1113 && is_h8300smode (gdbarch))
1114 h8300_print_register (gdbarch, file, frame,
1115 E_PSEUDO_EXR_REGNUM (gdbarch));
1116 else
1117 h8300_print_register (gdbarch, file, frame, regno);
1118 }
1119 }
1120
1121 static struct type *
1122 h8300_register_type (struct gdbarch *gdbarch, int regno)
1123 {
1124 if (regno < 0 || regno >= gdbarch_num_regs (gdbarch)
1125 + gdbarch_num_pseudo_regs (gdbarch))
1126 internal_error (__FILE__, __LINE__,
1127 _("h8300_register_type: illegal register number %d"),
1128 regno);
1129 else
1130 {
1131 switch (regno)
1132 {
1133 case E_PC_REGNUM:
1134 return builtin_type (gdbarch)->builtin_func_ptr;
1135 case E_SP_REGNUM:
1136 case E_FP_REGNUM:
1137 return builtin_type (gdbarch)->builtin_data_ptr;
1138 default:
1139 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1140 return builtin_type (gdbarch)->builtin_uint8;
1141 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
1142 return builtin_type (gdbarch)->builtin_uint8;
1143 else if (is_h8300hmode (gdbarch))
1144 return builtin_type (gdbarch)->builtin_int32;
1145 else
1146 return builtin_type (gdbarch)->builtin_int16;
1147 }
1148 }
1149 }
1150
1151 static enum register_status
1152 h8300_pseudo_register_read (struct gdbarch *gdbarch,
1153 struct regcache *regcache, int regno,
1154 gdb_byte *buf)
1155 {
1156 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1157 return regcache_raw_read (regcache, E_CCR_REGNUM, buf);
1158 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
1159 return regcache_raw_read (regcache, E_EXR_REGNUM, buf);
1160 else
1161 return regcache_raw_read (regcache, regno, buf);
1162 }
1163
1164 static void
1165 h8300_pseudo_register_write (struct gdbarch *gdbarch,
1166 struct regcache *regcache, int regno,
1167 const gdb_byte *buf)
1168 {
1169 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1170 regcache_raw_write (regcache, E_CCR_REGNUM, buf);
1171 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
1172 regcache_raw_write (regcache, E_EXR_REGNUM, buf);
1173 else
1174 regcache_raw_write (regcache, regno, buf);
1175 }
1176
1177 static int
1178 h8300_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno)
1179 {
1180 if (regno == E_CCR_REGNUM)
1181 return E_PSEUDO_CCR_REGNUM (gdbarch);
1182 return regno;
1183 }
1184
1185 static int
1186 h8300s_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno)
1187 {
1188 if (regno == E_CCR_REGNUM)
1189 return E_PSEUDO_CCR_REGNUM (gdbarch);
1190 if (regno == E_EXR_REGNUM)
1191 return E_PSEUDO_EXR_REGNUM (gdbarch);
1192 return regno;
1193 }
1194
1195 const static unsigned char *
1196 h8300_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
1197 int *lenptr)
1198 {
1199 /*static unsigned char breakpoint[] = { 0x7A, 0xFF }; *//* ??? */
1200 static unsigned char breakpoint[] = { 0x01, 0x80 }; /* Sleep */
1201
1202 *lenptr = sizeof (breakpoint);
1203 return breakpoint;
1204 }
1205
1206 static void
1207 h8300_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1208 struct frame_info *frame, const char *args)
1209 {
1210 fprintf_filtered (file, "\
1211 No floating-point info available for this processor.\n");
1212 }
1213
1214 static struct gdbarch *
1215 h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1216 {
1217 struct gdbarch_tdep *tdep = NULL;
1218 struct gdbarch *gdbarch;
1219
1220 arches = gdbarch_list_lookup_by_info (arches, &info);
1221 if (arches != NULL)
1222 return arches->gdbarch;
1223
1224 #if 0
1225 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1226 #endif
1227
1228 if (info.bfd_arch_info->arch != bfd_arch_h8300)
1229 return NULL;
1230
1231 gdbarch = gdbarch_alloc (&info, 0);
1232
1233 switch (info.bfd_arch_info->mach)
1234 {
1235 case bfd_mach_h8300:
1236 set_gdbarch_num_regs (gdbarch, 13);
1237 set_gdbarch_num_pseudo_regs (gdbarch, 1);
1238 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1239 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1240 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1241 set_gdbarch_register_name (gdbarch, h8300_register_name);
1242 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1243 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1244 set_gdbarch_return_value (gdbarch, h8300_return_value);
1245 set_gdbarch_print_insn (gdbarch, print_insn_h8300);
1246 break;
1247 case bfd_mach_h8300h:
1248 case bfd_mach_h8300hn:
1249 set_gdbarch_num_regs (gdbarch, 13);
1250 set_gdbarch_num_pseudo_regs (gdbarch, 1);
1251 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1252 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1253 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1254 set_gdbarch_register_name (gdbarch, h8300_register_name);
1255 if (info.bfd_arch_info->mach != bfd_mach_h8300hn)
1256 {
1257 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1258 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1259 }
1260 else
1261 {
1262 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1263 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1264 }
1265 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1266 set_gdbarch_print_insn (gdbarch, print_insn_h8300h);
1267 break;
1268 case bfd_mach_h8300s:
1269 case bfd_mach_h8300sn:
1270 set_gdbarch_num_regs (gdbarch, 16);
1271 set_gdbarch_num_pseudo_regs (gdbarch, 2);
1272 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1273 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1274 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1275 set_gdbarch_register_name (gdbarch, h8300s_register_name);
1276 if (info.bfd_arch_info->mach != bfd_mach_h8300sn)
1277 {
1278 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1279 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1280 }
1281 else
1282 {
1283 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1284 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1285 }
1286 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1287 set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
1288 break;
1289 case bfd_mach_h8300sx:
1290 case bfd_mach_h8300sxn:
1291 set_gdbarch_num_regs (gdbarch, 18);
1292 set_gdbarch_num_pseudo_regs (gdbarch, 2);
1293 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1294 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1295 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1296 set_gdbarch_register_name (gdbarch, h8300sx_register_name);
1297 if (info.bfd_arch_info->mach != bfd_mach_h8300sxn)
1298 {
1299 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1300 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1301 }
1302 else
1303 {
1304 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1305 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1306 }
1307 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1308 set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
1309 break;
1310 }
1311
1312 set_gdbarch_pseudo_register_read (gdbarch, h8300_pseudo_register_read);
1313 set_gdbarch_pseudo_register_write (gdbarch, h8300_pseudo_register_write);
1314
1315 /*
1316 * Basic register fields and methods.
1317 */
1318
1319 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1320 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1321 set_gdbarch_register_type (gdbarch, h8300_register_type);
1322 set_gdbarch_print_registers_info (gdbarch, h8300_print_registers_info);
1323 set_gdbarch_print_float_info (gdbarch, h8300_print_float_info);
1324
1325 /*
1326 * Frame Info
1327 */
1328 set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue);
1329
1330 /* Frame unwinder. */
1331 set_gdbarch_unwind_pc (gdbarch, h8300_unwind_pc);
1332 set_gdbarch_unwind_sp (gdbarch, h8300_unwind_sp);
1333 set_gdbarch_dummy_id (gdbarch, h8300_dummy_id);
1334 frame_base_set_default (gdbarch, &h8300_frame_base);
1335
1336 /*
1337 * Miscelany
1338 */
1339 /* Stack grows up. */
1340 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1341
1342 set_gdbarch_breakpoint_from_pc (gdbarch, h8300_breakpoint_from_pc);
1343 set_gdbarch_push_dummy_call (gdbarch, h8300_push_dummy_call);
1344
1345 set_gdbarch_char_signed (gdbarch, 0);
1346 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1347 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1348 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1349 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1350 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1351
1352 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1353
1354 /* Hook in the DWARF CFI frame unwinder. */
1355 dwarf2_append_unwinders (gdbarch);
1356 frame_unwind_append_unwinder (gdbarch, &h8300_frame_unwind);
1357
1358 return gdbarch;
1359
1360 }
1361
1362 extern initialize_file_ftype _initialize_h8300_tdep; /* -Wmissing-prototypes */
1363
1364 void
1365 _initialize_h8300_tdep (void)
1366 {
1367 register_gdbarch_init (bfd_arch_h8300, h8300_gdbarch_init);
1368 }
1369
1370 static int
1371 is_h8300hmode (struct gdbarch *gdbarch)
1372 {
1373 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1374 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1375 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
1376 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
1377 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300h
1378 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
1379 }
1380
1381 static int
1382 is_h8300smode (struct gdbarch *gdbarch)
1383 {
1384 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1385 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1386 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
1387 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn;
1388 }
1389
1390 static int
1391 is_h8300sxmode (struct gdbarch *gdbarch)
1392 {
1393 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1394 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn;
1395 }
1396
1397 static int
1398 is_h8300_normal_mode (struct gdbarch *gdbarch)
1399 {
1400 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1401 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
1402 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
1403 }
This page took 0.059414 seconds and 5 git commands to generate.