2004-06-06 Randolph Chung <tausq@debian.org>
[deliverable/binutils-gdb.git] / gdb / h8300-tdep.c
1 /* Target-machine dependent code for Renesas H8/300, for GDB.
2
3 Copyright 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
4 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /*
24 Contributed by Steve Chamberlain
25 sac@cygnus.com
26 */
27
28 #include "defs.h"
29 #include "value.h"
30 #include "inferior.h"
31 #include "symfile.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "gdbcore.h"
35 #include "objfiles.h"
36 #include "gdbcmd.h"
37 #include "gdb_assert.h"
38 #include "dis-asm.h"
39
40 /* Extra info which is saved in each frame_info. */
41 struct frame_extra_info
42 {
43 CORE_ADDR from_pc;
44 };
45
46 enum
47 {
48 h8300_reg_size = 2,
49 h8300h_reg_size = 4,
50 h8300_max_reg_size = 4,
51 };
52
53 static int is_h8300hmode (struct gdbarch *gdbarch);
54 static int is_h8300smode (struct gdbarch *gdbarch);
55 static int is_h8300sxmode (struct gdbarch *gdbarch);
56 static int is_h8300_normal_mode (struct gdbarch *gdbarch);
57
58 #define BINWORD (is_h8300hmode (current_gdbarch) && \
59 !is_h8300_normal_mode (current_gdbarch) ? h8300h_reg_size : h8300_reg_size)
60
61 enum gdb_regnum
62 {
63 E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM,
64 E_RET0_REGNUM = E_R0_REGNUM,
65 E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM, E_RET1_REGNUM = E_R1_REGNUM,
66 E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM,
67 E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM,
68 E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM,
69 E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM,
70 E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM,
71 E_SP_REGNUM,
72 E_CCR_REGNUM,
73 E_PC_REGNUM,
74 E_CYCLES_REGNUM,
75 E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM,
76 E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM,
77 E_INSTS_REGNUM,
78 E_MACH_REGNUM,
79 E_MACL_REGNUM,
80 E_SBR_REGNUM,
81 E_VBR_REGNUM
82 };
83
84 #define E_PSEUDO_CCR_REGNUM (NUM_REGS)
85 #define E_PSEUDO_EXR_REGNUM (NUM_REGS+1)
86
87 #define UNSIGNED_SHORT(X) ((X) & 0xffff)
88
89 #define IS_PUSH(x) ((x & 0xfff0)==0x6df0)
90 #define IS_PUSH_FP(x) (x == 0x6df6)
91 #define IS_MOVE_FP(x) (x == 0x0d76 || x == 0x0ff6)
92 #define IS_MOV_SP_FP(x) (x == 0x0d76 || x == 0x0ff6)
93 #define IS_SUB2_SP(x) (x==0x1b87)
94 #define IS_SUB4_SP(x) (x==0x1b97)
95 #define IS_SUBL_SP(x) (x==0x7a37)
96 #define IS_MOVK_R5(x) (x==0x7905)
97 #define IS_SUB_R5SP(x) (x==0x1957)
98
99 /* If the instruction at PC is an argument register spill, return its
100 length. Otherwise, return zero.
101
102 An argument register spill is an instruction that moves an argument
103 from the register in which it was passed to the stack slot in which
104 it really lives. It is a byte, word, or longword move from an
105 argument register to a negative offset from the frame pointer.
106
107 CV, 2003-06-16: Or, in optimized code or when the `register' qualifier
108 is used, it could be a byte, word or long move to registers r3-r5. */
109
110 static int
111 h8300_is_argument_spill (CORE_ADDR pc)
112 {
113 int w = read_memory_unsigned_integer (pc, 2);
114
115 if (((w & 0xff88) == 0x0c88 /* mov.b Rsl, Rdl */
116 || (w & 0xff88) == 0x0d00 /* mov.w Rs, Rd */
117 || (w & 0xff88) == 0x0f80) /* mov.l Rs, Rd */
118 && (w & 0x70) <= 0x20 /* Rs is R0, R1 or R2 */
119 && (w & 0x7) >= 0x3 && (w & 0x7) <= 0x5)/* Rd is R3, R4 or R5 */
120 return 2;
121
122 if ((w & 0xfff0) == 0x6ee0 /* mov.b Rs,@(d:16,er6) */
123 && 8 <= (w & 0xf) && (w & 0xf) <= 10) /* Rs is R0L, R1L, or R2L */
124 {
125 int w2 = read_memory_integer (pc + 2, 2);
126
127 /* ... and d:16 is negative. */
128 if (w2 < 0)
129 return 4;
130 }
131 else if (w == 0x7860)
132 {
133 int w2 = read_memory_integer (pc + 2, 2);
134
135 if ((w2 & 0xfff0) == 0x6aa0) /* mov.b Rs, @(d:24,er6) */
136 {
137 LONGEST disp = read_memory_integer (pc + 4, 4);
138
139 /* ... and d:24 is negative. */
140 if (disp < 0 && disp > 0xffffff)
141 return 8;
142 }
143 }
144 else if ((w & 0xfff0) == 0x6fe0 /* mov.w Rs,@(d:16,er6) */
145 && (w & 0xf) <= 2) /* Rs is R0, R1, or R2 */
146 {
147 int w2 = read_memory_integer (pc + 2, 2);
148
149 /* ... and d:16 is negative. */
150 if (w2 < 0)
151 return 4;
152 }
153 else if (w == 0x78e0)
154 {
155 int w2 = read_memory_integer (pc + 2, 2);
156
157 if ((w2 & 0xfff0) == 0x6ba0) /* mov.b Rs, @(d:24,er6) */
158 {
159 LONGEST disp = read_memory_integer (pc + 4, 4);
160
161 /* ... and d:24 is negative. */
162 if (disp < 0 && disp > 0xffffff)
163 return 8;
164 }
165 }
166 else if (w == 0x0100)
167 {
168 int w2 = read_memory_integer (pc + 2, 2);
169
170 if ((w2 & 0xfff0) == 0x6fe0 /* mov.l Rs,@(d:16,er6) */
171 && (w2 & 0xf) <= 2) /* Rs is ER0, ER1, or ER2 */
172 {
173 int w3 = read_memory_integer (pc + 4, 2);
174
175 /* ... and d:16 is negative. */
176 if (w3 < 0)
177 return 6;
178 }
179 else if (w2 == 0x78e0)
180 {
181 int w3 = read_memory_integer (pc + 4, 2);
182
183 if ((w3 & 0xfff0) == 0x6ba0) /* mov.l Rs, @(d:24,er6) */
184 {
185 LONGEST disp = read_memory_integer (pc + 6, 4);
186
187 /* ... and d:24 is negative. */
188 if (disp < 0 && disp > 0xffffff)
189 return 10;
190 }
191 }
192 }
193
194 return 0;
195 }
196
197 static CORE_ADDR
198 h8300_skip_prologue (CORE_ADDR start_pc)
199 {
200 short int w;
201 int adjust = 0;
202
203 /* Skip past all push and stm insns. */
204 while (1)
205 {
206 w = read_memory_unsigned_integer (start_pc, 2);
207 /* First look for push insns. */
208 if (w == 0x0100 || w == 0x0110 || w == 0x0120 || w == 0x0130)
209 {
210 w = read_memory_unsigned_integer (start_pc + 2, 2);
211 adjust = 2;
212 }
213
214 if (IS_PUSH (w))
215 {
216 start_pc += 2 + adjust;
217 w = read_memory_unsigned_integer (start_pc, 2);
218 continue;
219 }
220 adjust = 0;
221 break;
222 }
223
224 /* Skip past a move to FP, either word or long sized */
225 w = read_memory_unsigned_integer (start_pc, 2);
226 if (w == 0x0100)
227 {
228 w = read_memory_unsigned_integer (start_pc + 2, 2);
229 adjust += 2;
230 }
231
232 if (IS_MOVE_FP (w))
233 {
234 start_pc += 2 + adjust;
235 w = read_memory_unsigned_integer (start_pc, 2);
236 }
237
238 /* Check for loading either a word constant into r5;
239 long versions are handled by the SUBL_SP below. */
240 if (IS_MOVK_R5 (w))
241 {
242 start_pc += 2;
243 w = read_memory_unsigned_integer (start_pc, 2);
244 }
245
246 /* Now check for subtracting r5 from sp, word sized only. */
247 if (IS_SUB_R5SP (w))
248 {
249 start_pc += 2 + adjust;
250 w = read_memory_unsigned_integer (start_pc, 2);
251 }
252
253 /* Check for subs #2 and subs #4. */
254 while (IS_SUB2_SP (w) || IS_SUB4_SP (w))
255 {
256 start_pc += 2 + adjust;
257 w = read_memory_unsigned_integer (start_pc, 2);
258 }
259
260 /* Check for a 32bit subtract. */
261 if (IS_SUBL_SP (w))
262 start_pc += 6 + adjust;
263
264 /* Skip past another possible stm insn for registers R3 to R5 (possibly used
265 for register qualified arguments. */
266 w = read_memory_unsigned_integer (start_pc, 2);
267 /* First look for push insns. */
268 if (w == 0x0110 || w == 0x0120 || w == 0x0130)
269 {
270 w = read_memory_unsigned_integer (start_pc + 2, 2);
271 if (IS_PUSH (w) && (w & 0xf) >= 0x3 && (w & 0xf) <= 0x5)
272 start_pc += 4;
273 }
274
275 /* Check for spilling an argument register to the stack frame.
276 This could also be an initializing store from non-prologue code,
277 but I don't think there's any harm in skipping that. */
278 for (;;)
279 {
280 int spill_size = h8300_is_argument_spill (start_pc);
281 if (spill_size == 0)
282 break;
283 start_pc += spill_size;
284 }
285
286 return start_pc;
287 }
288
289 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
290 is not the address of a valid instruction, the address of the next
291 instruction beyond ADDR otherwise. *PWORD1 receives the first word
292 of the instruction. */
293
294 static CORE_ADDR
295 h8300_next_prologue_insn (CORE_ADDR addr,
296 CORE_ADDR lim,
297 unsigned short* pword1)
298 {
299 char buf[2];
300 if (addr < lim + 8)
301 {
302 read_memory (addr, buf, 2);
303 *pword1 = extract_signed_integer (buf, 2);
304
305 return addr + 2;
306 }
307 return 0;
308 }
309
310 /* Examine the prologue of a function. `ip' points to the first instruction.
311 `limit' is the limit of the prologue (e.g. the addr of the first
312 linenumber, or perhaps the program counter if we're stepping through).
313 `frame_sp' is the stack pointer value in use in this frame.
314 `fsr' is a pointer to a frame_saved_regs structure into which we put
315 info about the registers saved by this frame.
316 `fi' is a struct frame_info pointer; we fill in various fields in it
317 to reflect the offsets of the arg pointer and the locals pointer. */
318
319 /* Any function with a frame looks like this
320 SECOND ARG
321 FIRST ARG
322 RET PC
323 SAVED R2
324 SAVED R3
325 SAVED FP <-FP POINTS HERE
326 LOCALS0
327 LOCALS1 <-SP POINTS HERE
328 */
329
330 static CORE_ADDR
331 h8300_examine_prologue (CORE_ADDR ip, CORE_ADDR limit,
332 CORE_ADDR after_prolog_fp, CORE_ADDR *fsr,
333 struct frame_info *fi)
334 {
335 CORE_ADDR next_ip;
336 int r;
337 int have_fp = 0;
338 unsigned short insn_word;
339 /* Number of things pushed onto stack, starts at 2/4, 'cause the
340 PC is already there */
341 unsigned int reg_save_depth = BINWORD;
342
343 unsigned int auto_depth = 0; /* Number of bytes of autos */
344
345 char in_frame[11]; /* One for each reg */
346
347 int adjust = 0;
348
349 memset (in_frame, 1, 11);
350 for (r = 0; r < 8; r++)
351 {
352 fsr[r] = 0;
353 }
354 if (after_prolog_fp == 0)
355 {
356 after_prolog_fp = read_register (E_SP_REGNUM);
357 }
358
359 /* If the PC isn't valid, quit now. */
360 if (ip == 0 || ip & (is_h8300hmode (current_gdbarch) &&
361 !is_h8300_normal_mode (current_gdbarch) ? ~0xffffff : ~0xffff))
362 return 0;
363
364 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
365
366 if (insn_word == 0x0100) /* mov.l */
367 {
368 insn_word = read_memory_unsigned_integer (ip + 2, 2);
369 adjust = 2;
370 }
371
372 /* Skip over any fp push instructions */
373 fsr[E_FP_REGNUM] = after_prolog_fp;
374 while (next_ip && IS_PUSH_FP (insn_word))
375 {
376 ip = next_ip + adjust;
377
378 in_frame[insn_word & 0x7] = reg_save_depth;
379 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
380 reg_save_depth += 2 + adjust;
381 }
382
383 /* Is this a move into the fp */
384 if (next_ip && IS_MOV_SP_FP (insn_word))
385 {
386 ip = next_ip;
387 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
388 have_fp = 1;
389 }
390
391 /* Skip over any stack adjustment, happens either with a number of
392 sub#2,sp or a mov #x,r5 sub r5,sp */
393
394 if (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
395 {
396 while (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
397 {
398 auto_depth += IS_SUB2_SP (insn_word) ? 2 : 4;
399 ip = next_ip;
400 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
401 }
402 }
403 else
404 {
405 if (next_ip && IS_MOVK_R5 (insn_word))
406 {
407 ip = next_ip;
408 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
409 auto_depth += insn_word;
410
411 next_ip = h8300_next_prologue_insn (next_ip, limit, &insn_word);
412 auto_depth += insn_word;
413 }
414 if (next_ip && IS_SUBL_SP (insn_word))
415 {
416 ip = next_ip;
417 auto_depth += read_memory_unsigned_integer (ip, 4);
418 ip += 4;
419
420 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
421 }
422 }
423
424 /* Now examine the push insns to determine where everything lives
425 on the stack. */
426 while (1)
427 {
428 adjust = 0;
429 if (!next_ip)
430 break;
431
432 if (insn_word == 0x0100)
433 {
434 ip = next_ip;
435 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
436 adjust = 2;
437 }
438
439 if (IS_PUSH (insn_word))
440 {
441 auto_depth += 2 + adjust;
442 fsr[insn_word & 0x7] = after_prolog_fp - auto_depth;
443 ip = next_ip;
444 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
445 continue;
446 }
447
448 /* Now check for push multiple insns. */
449 if (insn_word == 0x0110 || insn_word == 0x0120 || insn_word == 0x0130)
450 {
451 int count = ((insn_word >> 4) & 0xf) + 1;
452 int start, i;
453
454 ip = next_ip;
455 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
456 start = insn_word & 0x7;
457
458 for (i = start; i < start + count; i++)
459 {
460 auto_depth += 4;
461 fsr[i] = after_prolog_fp - auto_depth;
462 }
463 }
464 break;
465 }
466
467 /* The PC is at a known place */
468 get_frame_extra_info (fi)->from_pc =
469 read_memory_unsigned_integer (after_prolog_fp + BINWORD, BINWORD);
470
471 /* Rememeber any others too */
472 in_frame[E_PC_REGNUM] = 0;
473
474 if (have_fp)
475 /* We keep the old FP in the SP spot */
476 fsr[E_SP_REGNUM] = read_memory_unsigned_integer (fsr[E_FP_REGNUM],
477 BINWORD);
478 else
479 fsr[E_SP_REGNUM] = after_prolog_fp + auto_depth;
480
481 return (ip);
482 }
483
484 static void
485 h8300_frame_init_saved_regs (struct frame_info *fi)
486 {
487 CORE_ADDR func_addr, func_end;
488
489 if (!deprecated_get_frame_saved_regs (fi))
490 {
491 frame_saved_regs_zalloc (fi);
492
493 /* Find the beginning of this function, so we can analyze its
494 prologue. */
495 if (find_pc_partial_function (get_frame_pc (fi), NULL,
496 &func_addr, &func_end))
497 {
498 struct symtab_and_line sal = find_pc_line (func_addr, 0);
499 CORE_ADDR limit = (sal.end && sal.end < get_frame_pc (fi))
500 ? sal.end : get_frame_pc (fi);
501 /* This will fill in fields in fi. */
502 h8300_examine_prologue (func_addr, limit, get_frame_base (fi),
503 deprecated_get_frame_saved_regs (fi), fi);
504 }
505 /* Else we're out of luck (can't debug completely stripped code).
506 FIXME. */
507 }
508 }
509
510 /* Given a GDB frame, determine the address of the calling function's
511 frame. This will be used to create a new GDB frame struct, and
512 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
513 will be called for the new frame.
514
515 For us, the frame address is its stack pointer value, so we look up
516 the function prologue to determine the caller's sp value, and
517 return it. */
518
519 static CORE_ADDR
520 h8300_frame_chain (struct frame_info *thisframe)
521 {
522 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
523 get_frame_base (thisframe),
524 get_frame_base (thisframe)))
525 { /* initialize the from_pc now */
526 get_frame_extra_info (thisframe)->from_pc =
527 deprecated_read_register_dummy (get_frame_pc (thisframe),
528 get_frame_base (thisframe),
529 E_PC_REGNUM);
530 return get_frame_base (thisframe);
531 }
532 return deprecated_get_frame_saved_regs (thisframe)[E_SP_REGNUM];
533 }
534
535 /* Return the saved PC from this frame.
536
537 If the frame has a memory copy of SRP_REGNUM, use that. If not,
538 just use the register SRP_REGNUM itself. */
539
540 static CORE_ADDR
541 h8300_frame_saved_pc (struct frame_info *frame)
542 {
543 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
544 get_frame_base (frame),
545 get_frame_base (frame)))
546 return deprecated_read_register_dummy (get_frame_pc (frame),
547 get_frame_base (frame),
548 E_PC_REGNUM);
549 else
550 return get_frame_extra_info (frame)->from_pc;
551 }
552
553 static void
554 h8300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
555 {
556 if (!get_frame_extra_info (fi))
557 {
558 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
559 get_frame_extra_info (fi)->from_pc = 0;
560
561 if (!get_frame_pc (fi))
562 {
563 if (get_next_frame (fi))
564 deprecated_update_frame_pc_hack (fi, h8300_frame_saved_pc (get_next_frame (fi)));
565 }
566 h8300_frame_init_saved_regs (fi);
567 }
568 }
569
570 /* Function: push_dummy_call
571 Setup the function arguments for calling a function in the inferior.
572 In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits
573 on the H8/300H.
574
575 There are actually two ABI's here: -mquickcall (the default) and
576 -mno-quickcall. With -mno-quickcall, all arguments are passed on
577 the stack after the return address, word-aligned. With
578 -mquickcall, GCC tries to use r0 -- r2 to pass registers. Since
579 GCC doesn't indicate in the object file which ABI was used to
580 compile it, GDB only supports the default --- -mquickcall.
581
582 Here are the rules for -mquickcall, in detail:
583
584 Each argument, whether scalar or aggregate, is padded to occupy a
585 whole number of words. Arguments smaller than a word are padded at
586 the most significant end; those larger than a word are padded at
587 the least significant end.
588
589 The initial arguments are passed in r0 -- r2. Earlier arguments go in
590 lower-numbered registers. Multi-word arguments are passed in
591 consecutive registers, with the most significant end in the
592 lower-numbered register.
593
594 If an argument doesn't fit entirely in the remaining registers, it
595 is passed entirely on the stack. Stack arguments begin just after
596 the return address. Once an argument has overflowed onto the stack
597 this way, all subsequent arguments are passed on the stack.
598
599 The above rule has odd consequences. For example, on the h8/300s,
600 if a function takes two longs and an int as arguments:
601 - the first long will be passed in r0/r1,
602 - the second long will be passed entirely on the stack, since it
603 doesn't fit in r2,
604 - and the int will be passed on the stack, even though it could fit
605 in r2.
606
607 A weird exception: if an argument is larger than a word, but not a
608 whole number of words in length (before padding), it is passed on
609 the stack following the rules for stack arguments above, even if
610 there are sufficient registers available to hold it. Stranger
611 still, the argument registers are still `used up' --- even though
612 there's nothing in them.
613
614 So, for example, on the h8/300s, if a function expects a three-byte
615 structure and an int, the structure will go on the stack, and the
616 int will go in r2, not r0.
617
618 If the function returns an aggregate type (struct, union, or class)
619 by value, the caller must allocate space to hold the return value,
620 and pass the callee a pointer to this space as an invisible first
621 argument, in R0.
622
623 For varargs functions, the last fixed argument and all the variable
624 arguments are always passed on the stack. This means that calls to
625 varargs functions don't work properly unless there is a prototype
626 in scope.
627
628 Basically, this ABI is not good, for the following reasons:
629 - You can't call vararg functions properly unless a prototype is in scope.
630 - Structure passing is inconsistent, to no purpose I can see.
631 - It often wastes argument registers, of which there are only three
632 to begin with. */
633
634 static CORE_ADDR
635 h8300_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
636 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
637 struct value **args, CORE_ADDR sp, int struct_return,
638 CORE_ADDR struct_addr)
639 {
640 int stack_alloc = 0, stack_offset = 0;
641 int wordsize = BINWORD;
642 int reg = E_ARG0_REGNUM;
643 int argument;
644
645 /* First, make sure the stack is properly aligned. */
646 sp = align_down (sp, wordsize);
647
648 /* Now make sure there's space on the stack for the arguments. We
649 may over-allocate a little here, but that won't hurt anything. */
650 for (argument = 0; argument < nargs; argument++)
651 stack_alloc += align_up (TYPE_LENGTH (VALUE_TYPE (args[argument])),
652 wordsize);
653 sp -= stack_alloc;
654
655 /* Now load as many arguments as possible into registers, and push
656 the rest onto the stack.
657 If we're returning a structure by value, then we must pass a
658 pointer to the buffer for the return value as an invisible first
659 argument. */
660 if (struct_return)
661 regcache_cooked_write_unsigned (regcache, reg++, struct_addr);
662
663 for (argument = 0; argument < nargs; argument++)
664 {
665 struct type *type = VALUE_TYPE (args[argument]);
666 int len = TYPE_LENGTH (type);
667 char *contents = (char *) VALUE_CONTENTS (args[argument]);
668
669 /* Pad the argument appropriately. */
670 int padded_len = align_up (len, wordsize);
671 char *padded = alloca (padded_len);
672
673 memset (padded, 0, padded_len);
674 memcpy (len < wordsize ? padded + padded_len - len : padded,
675 contents, len);
676
677 /* Could the argument fit in the remaining registers? */
678 if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize)
679 {
680 /* Are we going to pass it on the stack anyway, for no good
681 reason? */
682 if (len > wordsize && len % wordsize)
683 {
684 /* I feel so unclean. */
685 write_memory (sp + stack_offset, padded, padded_len);
686 stack_offset += padded_len;
687
688 /* That's right --- even though we passed the argument
689 on the stack, we consume the registers anyway! Love
690 me, love my dog. */
691 reg += padded_len / wordsize;
692 }
693 else
694 {
695 /* Heavens to Betsy --- it's really going in registers!
696 It would be nice if we could use write_register_bytes
697 here, but on the h8/300s, there are gaps between
698 the registers in the register file. */
699 int offset;
700
701 for (offset = 0; offset < padded_len; offset += wordsize)
702 {
703 ULONGEST word = extract_unsigned_integer (padded + offset,
704 wordsize);
705 regcache_cooked_write_unsigned (regcache, reg++, word);
706 }
707 }
708 }
709 else
710 {
711 /* It doesn't fit in registers! Onto the stack it goes. */
712 write_memory (sp + stack_offset, padded, padded_len);
713 stack_offset += padded_len;
714
715 /* Once one argument has spilled onto the stack, all
716 subsequent arguments go on the stack. */
717 reg = E_ARGLAST_REGNUM + 1;
718 }
719 }
720
721 /* Store return address. */
722 sp -= wordsize;
723 write_memory_unsigned_integer (sp, wordsize, bp_addr);
724
725 /* Update stack pointer. */
726 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
727
728 return sp;
729 }
730
731 /* Function: h8300_pop_frame
732 Restore the machine to the state it had before the current frame
733 was created. Usually used either by the "RETURN" command, or by
734 call_function_by_hand after the dummy_frame is finished. */
735
736 static void
737 h8300_pop_frame (void)
738 {
739 unsigned regno;
740 struct frame_info *frame = get_current_frame ();
741
742 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
743 get_frame_base (frame),
744 get_frame_base (frame)))
745 {
746 deprecated_pop_dummy_frame ();
747 }
748 else
749 {
750 for (regno = 0; regno < 8; regno++)
751 {
752 /* Don't forget E_SP_REGNUM is a frame_saved_regs struct is the
753 actual value we want, not the address of the value we want. */
754 if (deprecated_get_frame_saved_regs (frame)[regno] && regno != E_SP_REGNUM)
755 write_register (regno,
756 read_memory_integer
757 (deprecated_get_frame_saved_regs (frame)[regno], BINWORD));
758 else if (deprecated_get_frame_saved_regs (frame)[regno] && regno == E_SP_REGNUM)
759 write_register (regno, get_frame_base (frame) + 2 * BINWORD);
760 }
761
762 /* Don't forget to update the PC too! */
763 write_register (E_PC_REGNUM, get_frame_extra_info (frame)->from_pc);
764 }
765 flush_cached_frames ();
766 }
767
768 /* Function: extract_return_value
769 Figure out where in REGBUF the called function has left its return value.
770 Copy that into VALBUF. Be sure to account for CPU type. */
771
772 static void
773 h8300_extract_return_value (struct type *type, struct regcache *regcache,
774 void *valbuf)
775 {
776 int len = TYPE_LENGTH (type);
777 ULONGEST c, addr;
778
779 switch (len)
780 {
781 case 1:
782 case 2:
783 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
784 store_unsigned_integer (valbuf, len, c);
785 break;
786 case 4: /* Needs two registers on plain H8/300 */
787 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
788 store_unsigned_integer (valbuf, 2, c);
789 regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
790 store_unsigned_integer ((void*)((char *)valbuf + 2), 2, c);
791 break;
792 case 8: /* long long is now 8 bytes. */
793 if (TYPE_CODE (type) == TYPE_CODE_INT)
794 {
795 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr);
796 c = read_memory_unsigned_integer ((CORE_ADDR) addr, len);
797 store_unsigned_integer (valbuf, len, c);
798 }
799 else
800 {
801 error ("I don't know how this 8 byte value is returned.");
802 }
803 break;
804 }
805 }
806
807 static void
808 h8300h_extract_return_value (struct type *type, struct regcache *regcache,
809 void *valbuf)
810 {
811 int len = TYPE_LENGTH (type);
812 ULONGEST c, addr;
813
814 switch (len)
815 {
816 case 1:
817 case 2:
818 case 4:
819 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
820 store_unsigned_integer (valbuf, len, c);
821 break;
822 case 8: /* long long is now 8 bytes. */
823 if (TYPE_CODE (type) == TYPE_CODE_INT)
824 {
825 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr);
826 c = read_memory_unsigned_integer ((CORE_ADDR) addr, len);
827 store_unsigned_integer (valbuf, len, c);
828 }
829 else
830 {
831 error ("I don't know how this 8 byte value is returned.");
832 }
833 break;
834 }
835 }
836
837
838 /* Function: store_return_value
839 Place the appropriate value in the appropriate registers.
840 Primarily used by the RETURN command. */
841
842 static void
843 h8300_store_return_value (struct type *type, struct regcache *regcache,
844 const void *valbuf)
845 {
846 int len = TYPE_LENGTH (type);
847 ULONGEST val;
848
849 switch (len)
850 {
851 case 1:
852 case 2: /* short... */
853 val = extract_unsigned_integer (valbuf, len);
854 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
855 break;
856 case 4: /* long, float */
857 val = extract_unsigned_integer (valbuf, len);
858 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
859 (val >> 16) &0xffff);
860 regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM, val & 0xffff);
861 break;
862 case 8: /* long long, double and long double are all defined
863 as 4 byte types so far so this shouldn't happen. */
864 error ("I don't know how to return an 8 byte value.");
865 break;
866 }
867 }
868
869 static void
870 h8300h_store_return_value (struct type *type, struct regcache *regcache,
871 const void *valbuf)
872 {
873 int len = TYPE_LENGTH (type);
874 ULONGEST val;
875
876 switch (len)
877 {
878 case 1:
879 case 2:
880 case 4: /* long, float */
881 val = extract_unsigned_integer (valbuf, len);
882 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
883 break;
884 case 8: /* long long, double and long double are all defined
885 as 4 byte types so far so this shouldn't happen. */
886 error ("I don't know how to return an 8 byte value.");
887 break;
888 }
889 }
890
891 static struct cmd_list_element *setmachinelist;
892
893 static const char *
894 h8300_register_name (int regno)
895 {
896 /* The register names change depending on which h8300 processor
897 type is selected. */
898 static char *register_names[] = {
899 "r0", "r1", "r2", "r3", "r4", "r5", "r6",
900 "sp", "","pc","cycles", "tick", "inst",
901 "ccr", /* pseudo register */
902 };
903 if (regno < 0
904 || regno >= (sizeof (register_names) / sizeof (*register_names)))
905 internal_error (__FILE__, __LINE__,
906 "h8300_register_name: illegal register number %d", regno);
907 else
908 return register_names[regno];
909 }
910
911 static const char *
912 h8300s_register_name (int regno)
913 {
914 static char *register_names[] = {
915 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
916 "sp", "", "pc", "cycles", "", "tick", "inst",
917 "mach", "macl",
918 "ccr", "exr" /* pseudo registers */
919 };
920 if (regno < 0
921 || regno >= (sizeof (register_names) / sizeof (*register_names)))
922 internal_error (__FILE__, __LINE__,
923 "h8300s_register_name: illegal register number %d", regno);
924 else
925 return register_names[regno];
926 }
927
928 static const char *
929 h8300sx_register_name (int regno)
930 {
931 static char *register_names[] = {
932 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
933 "sp", "", "pc", "cycles", "", "tick", "inst",
934 "mach", "macl", "sbr", "vbr",
935 "ccr", "exr" /* pseudo registers */
936 };
937 if (regno < 0
938 || regno >= (sizeof (register_names) / sizeof (*register_names)))
939 internal_error (__FILE__, __LINE__,
940 "h8300sx_register_name: illegal register number %d", regno);
941 else
942 return register_names[regno];
943 }
944
945 static void
946 h8300_print_register (struct gdbarch *gdbarch, struct ui_file *file,
947 struct frame_info *frame, int regno)
948 {
949 LONGEST rval;
950 const char *name = gdbarch_register_name (gdbarch, regno);
951
952 if (!name || !*name)
953 return;
954
955 rval = get_frame_register_signed (frame, regno);
956
957 fprintf_filtered (file, "%-14s ", name);
958 if (regno == E_PSEUDO_CCR_REGNUM ||
959 (regno == E_PSEUDO_EXR_REGNUM && is_h8300smode (current_gdbarch)))
960 {
961 fprintf_filtered (file, "0x%02x ", (unsigned char)rval);
962 print_longest (file, 'u', 1, rval);
963 }
964 else
965 {
966 fprintf_filtered (file, "0x%s ", phex ((ULONGEST)rval, BINWORD));
967 print_longest (file, 'd', 1, rval);
968 }
969 if (regno == E_PSEUDO_CCR_REGNUM)
970 {
971 /* CCR register */
972 int C, Z, N, V;
973 unsigned char l = rval & 0xff;
974 fprintf_filtered (file, "\t");
975 fprintf_filtered (file, "I-%d ", (l & 0x80) != 0);
976 fprintf_filtered (file, "UI-%d ", (l & 0x40) != 0);
977 fprintf_filtered (file, "H-%d ", (l & 0x20) != 0);
978 fprintf_filtered (file, "U-%d ", (l & 0x10) != 0);
979 N = (l & 0x8) != 0;
980 Z = (l & 0x4) != 0;
981 V = (l & 0x2) != 0;
982 C = (l & 0x1) != 0;
983 fprintf_filtered (file, "N-%d ", N);
984 fprintf_filtered (file, "Z-%d ", Z);
985 fprintf_filtered (file, "V-%d ", V);
986 fprintf_filtered (file, "C-%d ", C);
987 if ((C | Z) == 0)
988 fprintf_filtered (file, "u> ");
989 if ((C | Z) == 1)
990 fprintf_filtered (file, "u<= ");
991 if ((C == 0))
992 fprintf_filtered (file, "u>= ");
993 if (C == 1)
994 fprintf_filtered (file, "u< ");
995 if (Z == 0)
996 fprintf_filtered (file, "!= ");
997 if (Z == 1)
998 fprintf_filtered (file, "== ");
999 if ((N ^ V) == 0)
1000 fprintf_filtered (file, ">= ");
1001 if ((N ^ V) == 1)
1002 fprintf_filtered (file, "< ");
1003 if ((Z | (N ^ V)) == 0)
1004 fprintf_filtered (file, "> ");
1005 if ((Z | (N ^ V)) == 1)
1006 fprintf_filtered (file, "<= ");
1007 }
1008 else if (regno == E_PSEUDO_EXR_REGNUM && is_h8300smode (current_gdbarch))
1009 {
1010 /* EXR register */
1011 unsigned char l = rval & 0xff;
1012 fprintf_filtered (file, "\t");
1013 fprintf_filtered (file, "T-%d - - - ", (l & 0x80) != 0);
1014 fprintf_filtered (file, "I2-%d ", (l & 4) != 0);
1015 fprintf_filtered (file, "I1-%d ", (l & 2) != 0);
1016 fprintf_filtered (file, "I0-%d", (l & 1) != 0);
1017 }
1018 fprintf_filtered (file, "\n");
1019 }
1020
1021 static void
1022 h8300_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1023 struct frame_info *frame, int regno, int cpregs)
1024 {
1025 if (regno < 0)
1026 {
1027 for (regno = E_R0_REGNUM; regno <= E_SP_REGNUM; ++regno)
1028 h8300_print_register (gdbarch, file, frame, regno);
1029 h8300_print_register (gdbarch, file, frame, E_PSEUDO_CCR_REGNUM);
1030 h8300_print_register (gdbarch, file, frame, E_PC_REGNUM);
1031 if (is_h8300smode (current_gdbarch))
1032 {
1033 h8300_print_register (gdbarch, file, frame, E_PSEUDO_EXR_REGNUM);
1034 if (is_h8300sxmode (current_gdbarch))
1035 {
1036 h8300_print_register (gdbarch, file, frame, E_SBR_REGNUM);
1037 h8300_print_register (gdbarch, file, frame, E_VBR_REGNUM);
1038 }
1039 h8300_print_register (gdbarch, file, frame, E_MACH_REGNUM);
1040 h8300_print_register (gdbarch, file, frame, E_MACL_REGNUM);
1041 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1042 h8300_print_register (gdbarch, file, frame, E_TICKS_REGNUM);
1043 h8300_print_register (gdbarch, file, frame, E_INSTS_REGNUM);
1044 }
1045 else
1046 {
1047 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1048 h8300_print_register (gdbarch, file, frame, E_TICK_REGNUM);
1049 h8300_print_register (gdbarch, file, frame, E_INST_REGNUM);
1050 }
1051 }
1052 else
1053 {
1054 if (regno == E_CCR_REGNUM)
1055 h8300_print_register (gdbarch, file, frame, E_PSEUDO_CCR_REGNUM);
1056 else if (regno == E_PSEUDO_EXR_REGNUM && is_h8300smode (current_gdbarch))
1057 h8300_print_register (gdbarch, file, frame, E_PSEUDO_EXR_REGNUM);
1058 else
1059 h8300_print_register (gdbarch, file, frame, regno);
1060 }
1061 }
1062
1063 static CORE_ADDR
1064 h8300_saved_pc_after_call (struct frame_info *ignore)
1065 {
1066 return read_memory_unsigned_integer (read_register (E_SP_REGNUM), BINWORD);
1067 }
1068
1069 static struct type *
1070 h8300_register_type (struct gdbarch *gdbarch, int regno)
1071 {
1072 if (regno < 0 || regno >= NUM_REGS + NUM_PSEUDO_REGS)
1073 internal_error (__FILE__, __LINE__,
1074 "h8300_register_type: illegal register number %d",
1075 regno);
1076 else
1077 {
1078 switch (regno)
1079 {
1080 case E_PC_REGNUM:
1081 return builtin_type_void_func_ptr;
1082 case E_SP_REGNUM:
1083 case E_FP_REGNUM:
1084 return builtin_type_void_data_ptr;
1085 default:
1086 if (regno == E_PSEUDO_CCR_REGNUM)
1087 return builtin_type_uint8;
1088 else if (regno == E_PSEUDO_EXR_REGNUM)
1089 return builtin_type_uint8;
1090 else if (is_h8300hmode (current_gdbarch))
1091 return builtin_type_int32;
1092 else
1093 return builtin_type_int16;
1094 }
1095 }
1096 }
1097
1098 static void
1099 h8300_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1100 int regno, void *buf)
1101 {
1102 if (regno == E_PSEUDO_CCR_REGNUM)
1103 regcache_raw_read (regcache, E_CCR_REGNUM, buf);
1104 else if (regno == E_PSEUDO_EXR_REGNUM)
1105 regcache_raw_read (regcache, E_EXR_REGNUM, buf);
1106 else
1107 regcache_raw_read (regcache, regno, buf);
1108 }
1109
1110 static void
1111 h8300_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1112 int regno, const void *buf)
1113 {
1114 if (regno == E_PSEUDO_CCR_REGNUM)
1115 regcache_raw_write (regcache, E_CCR_REGNUM, buf);
1116 else if (regno == E_PSEUDO_EXR_REGNUM)
1117 regcache_raw_write (regcache, E_EXR_REGNUM, buf);
1118 else
1119 regcache_raw_write (regcache, regno, buf);
1120 }
1121
1122 static int
1123 h8300_dbg_reg_to_regnum (int regno)
1124 {
1125 if (regno == E_CCR_REGNUM)
1126 return E_PSEUDO_CCR_REGNUM;
1127 return regno;
1128 }
1129
1130 static int
1131 h8300s_dbg_reg_to_regnum (int regno)
1132 {
1133 if (regno == E_CCR_REGNUM)
1134 return E_PSEUDO_CCR_REGNUM;
1135 if (regno == E_EXR_REGNUM)
1136 return E_PSEUDO_EXR_REGNUM;
1137 return regno;
1138 }
1139
1140 static CORE_ADDR
1141 h8300_extract_struct_value_address (struct regcache *regcache)
1142 {
1143 ULONGEST addr;
1144 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr);
1145 return addr;
1146 }
1147
1148 const static unsigned char *
1149 h8300_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1150 {
1151 /*static unsigned char breakpoint[] = { 0x7A, 0xFF };*/ /* ??? */
1152 static unsigned char breakpoint[] = { 0x01, 0x80 }; /* Sleep */
1153
1154 *lenptr = sizeof (breakpoint);
1155 return breakpoint;
1156 }
1157
1158 static CORE_ADDR
1159 h8300_push_dummy_code (struct gdbarch *gdbarch,
1160 CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc,
1161 struct value **args, int nargs,
1162 struct type *value_type,
1163 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
1164 {
1165 /* Allocate space sufficient for a breakpoint. */
1166 sp = (sp - 2) & ~1;
1167 /* Store the address of that breakpoint */
1168 *bp_addr = sp;
1169 /* h8300 always starts the call at the callee's entry point. */
1170 *real_pc = funaddr;
1171 return sp;
1172 }
1173
1174 static void
1175 h8300_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1176 struct frame_info *frame, const char *args)
1177 {
1178 fprintf_filtered (file, "\
1179 No floating-point info available for this processor.\n");
1180 }
1181
1182 static struct gdbarch *
1183 h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1184 {
1185 struct gdbarch_tdep *tdep = NULL;
1186 struct gdbarch *gdbarch;
1187
1188 arches = gdbarch_list_lookup_by_info (arches, &info);
1189 if (arches != NULL)
1190 return arches->gdbarch;
1191
1192 #if 0
1193 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1194 #endif
1195
1196 if (info.bfd_arch_info->arch != bfd_arch_h8300)
1197 return NULL;
1198
1199 gdbarch = gdbarch_alloc (&info, 0);
1200
1201 switch (info.bfd_arch_info->mach)
1202 {
1203 case bfd_mach_h8300:
1204 set_gdbarch_num_regs (gdbarch, 13);
1205 set_gdbarch_num_pseudo_regs (gdbarch, 1);
1206 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1207 set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1208 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1209 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1210 set_gdbarch_register_name (gdbarch, h8300_register_name);
1211 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1212 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1213 set_gdbarch_extract_return_value (gdbarch, h8300_extract_return_value);
1214 set_gdbarch_store_return_value (gdbarch, h8300_store_return_value);
1215 set_gdbarch_print_insn (gdbarch, print_insn_h8300);
1216 break;
1217 case bfd_mach_h8300h:
1218 case bfd_mach_h8300hn:
1219 set_gdbarch_num_regs (gdbarch, 13);
1220 set_gdbarch_num_pseudo_regs (gdbarch, 1);
1221 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1222 set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1223 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1224 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1225 set_gdbarch_register_name (gdbarch, h8300_register_name);
1226 if(info.bfd_arch_info->mach != bfd_mach_h8300hn)
1227 {
1228 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1229 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1230 }
1231 else
1232 {
1233 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1234 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1235 }
1236 set_gdbarch_extract_return_value (gdbarch, h8300h_extract_return_value);
1237 set_gdbarch_store_return_value (gdbarch, h8300h_store_return_value);
1238 set_gdbarch_print_insn (gdbarch, print_insn_h8300h);
1239 break;
1240 case bfd_mach_h8300s:
1241 case bfd_mach_h8300sn:
1242 set_gdbarch_num_regs (gdbarch, 16);
1243 set_gdbarch_num_pseudo_regs (gdbarch, 2);
1244 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1245 set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1246 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1247 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1248 set_gdbarch_register_name (gdbarch, h8300s_register_name);
1249 if(info.bfd_arch_info->mach != bfd_mach_h8300sn)
1250 {
1251 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1252 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1253 }
1254 else
1255 {
1256 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1257 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1258 }
1259 set_gdbarch_extract_return_value (gdbarch, h8300h_extract_return_value);
1260 set_gdbarch_store_return_value (gdbarch, h8300h_store_return_value);
1261 set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
1262 break;
1263 case bfd_mach_h8300sx:
1264 case bfd_mach_h8300sxn:
1265 set_gdbarch_num_regs (gdbarch, 18);
1266 set_gdbarch_num_pseudo_regs (gdbarch, 2);
1267 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1268 set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1269 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1270 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1271 set_gdbarch_register_name (gdbarch, h8300sx_register_name);
1272 if(info.bfd_arch_info->mach != bfd_mach_h8300sxn)
1273 {
1274 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1275 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1276 }
1277 else
1278 {
1279 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1280 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1281 }
1282 set_gdbarch_extract_return_value (gdbarch, h8300h_extract_return_value);
1283 set_gdbarch_store_return_value (gdbarch, h8300h_store_return_value);
1284 set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
1285 break;
1286 }
1287
1288 set_gdbarch_pseudo_register_read (gdbarch, h8300_pseudo_register_read);
1289 set_gdbarch_pseudo_register_write (gdbarch, h8300_pseudo_register_write);
1290
1291 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
1292 ready to unwind the PC first (see frame.c:get_prev_frame()). */
1293 set_gdbarch_deprecated_init_frame_pc (gdbarch, deprecated_init_frame_pc_default);
1294
1295 /*
1296 * Basic register fields and methods.
1297 */
1298
1299 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1300 set_gdbarch_deprecated_fp_regnum (gdbarch, E_FP_REGNUM);
1301 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1302 set_gdbarch_register_type (gdbarch, h8300_register_type);
1303 set_gdbarch_print_registers_info (gdbarch, h8300_print_registers_info);
1304 set_gdbarch_print_float_info (gdbarch, h8300_print_float_info);
1305
1306 /*
1307 * Frame Info
1308 */
1309 set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue);
1310
1311 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch,
1312 h8300_frame_init_saved_regs);
1313 set_gdbarch_deprecated_init_extra_frame_info (gdbarch,
1314 h8300_init_extra_frame_info);
1315 set_gdbarch_deprecated_frame_chain (gdbarch, h8300_frame_chain);
1316 set_gdbarch_deprecated_saved_pc_after_call (gdbarch,
1317 h8300_saved_pc_after_call);
1318 set_gdbarch_deprecated_frame_saved_pc (gdbarch, h8300_frame_saved_pc);
1319 set_gdbarch_deprecated_pop_frame (gdbarch, h8300_pop_frame);
1320
1321 /*
1322 * Miscelany
1323 */
1324 /* Stack grows up. */
1325 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1326 set_gdbarch_deprecated_frameless_function_invocation (gdbarch, legacy_frameless_look_for_prologue);
1327
1328 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, h8300_extract_struct_value_address);
1329 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
1330 set_gdbarch_breakpoint_from_pc (gdbarch, h8300_breakpoint_from_pc);
1331 set_gdbarch_push_dummy_code (gdbarch, h8300_push_dummy_code);
1332 set_gdbarch_push_dummy_call (gdbarch, h8300_push_dummy_call);
1333
1334 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1335 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1336 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1337 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1338 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1339
1340 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1341
1342 /* Char is unsigned. */
1343 set_gdbarch_char_signed (gdbarch, 0);
1344
1345 return gdbarch;
1346 }
1347
1348 extern initialize_file_ftype _initialize_h8300_tdep; /* -Wmissing-prototypes */
1349
1350 void
1351 _initialize_h8300_tdep (void)
1352 {
1353 register_gdbarch_init (bfd_arch_h8300, h8300_gdbarch_init);
1354 }
1355
1356 static int
1357 is_h8300hmode (struct gdbarch *gdbarch)
1358 {
1359 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1360 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1361 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
1362 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
1363 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300h
1364 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
1365 }
1366
1367 static int
1368 is_h8300smode (struct gdbarch *gdbarch)
1369 {
1370 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1371 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1372 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
1373 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn;
1374 }
1375
1376 static int
1377 is_h8300sxmode (struct gdbarch *gdbarch)
1378 {
1379 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1380 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn;
1381 }
1382
1383 static int
1384 is_h8300_normal_mode (struct gdbarch *gdbarch)
1385 {
1386 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1387 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
1388 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
1389 }
1390
This page took 0.059875 seconds and 5 git commands to generate.