Switch the license of all .c files to GPLv3.
[deliverable/binutils-gdb.git] / gdb / h8300-tdep.c
1 /* Target-machine dependent code for Renesas H8/300, for GDB.
2
3 Copyright (C) 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999,
4 2000, 2001, 2002, 2003, 2005, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /*
22 Contributed by Steve Chamberlain
23 sac@cygnus.com
24 */
25
26 #include "defs.h"
27 #include "value.h"
28 #include "arch-utils.h"
29 #include "regcache.h"
30 #include "gdbcore.h"
31 #include "objfiles.h"
32 #include "gdb_assert.h"
33 #include "dis-asm.h"
34 #include "dwarf2-frame.h"
35 #include "frame-base.h"
36 #include "frame-unwind.h"
37
38 enum gdb_regnum
39 {
40 E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM,
41 E_RET0_REGNUM = E_R0_REGNUM,
42 E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM, E_RET1_REGNUM = E_R1_REGNUM,
43 E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM,
44 E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM,
45 E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM,
46 E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM,
47 E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM,
48 E_SP_REGNUM,
49 E_CCR_REGNUM,
50 E_PC_REGNUM,
51 E_CYCLES_REGNUM,
52 E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM,
53 E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM,
54 E_INSTS_REGNUM,
55 E_MACH_REGNUM,
56 E_MACL_REGNUM,
57 E_SBR_REGNUM,
58 E_VBR_REGNUM
59 };
60
61 #define H8300_MAX_NUM_REGS 18
62
63 #define E_PSEUDO_CCR_REGNUM (gdbarch_num_regs (current_gdbarch))
64 #define E_PSEUDO_EXR_REGNUM (gdbarch_num_regs (current_gdbarch)+1)
65
66 struct h8300_frame_cache
67 {
68 /* Base address. */
69 CORE_ADDR base;
70 CORE_ADDR sp_offset;
71 CORE_ADDR pc;
72
73 /* Flag showing that a frame has been created in the prologue code. */
74 int uses_fp;
75
76 /* Saved registers. */
77 CORE_ADDR saved_regs[H8300_MAX_NUM_REGS];
78 CORE_ADDR saved_sp;
79 };
80
81 enum
82 {
83 h8300_reg_size = 2,
84 h8300h_reg_size = 4,
85 h8300_max_reg_size = 4,
86 };
87
88 static int is_h8300hmode (struct gdbarch *gdbarch);
89 static int is_h8300smode (struct gdbarch *gdbarch);
90 static int is_h8300sxmode (struct gdbarch *gdbarch);
91 static int is_h8300_normal_mode (struct gdbarch *gdbarch);
92
93 #define BINWORD ((is_h8300hmode (current_gdbarch) \
94 && !is_h8300_normal_mode (current_gdbarch)) \
95 ? h8300h_reg_size : h8300_reg_size)
96
97 static CORE_ADDR
98 h8300_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
99 {
100 return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
101 }
102
103 static CORE_ADDR
104 h8300_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
105 {
106 return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
107 }
108
109 static struct frame_id
110 h8300_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
111 {
112 return frame_id_build (h8300_unwind_sp (gdbarch, next_frame),
113 frame_pc_unwind (next_frame));
114 }
115
116 /* Normal frames. */
117
118 /* Allocate and initialize a frame cache. */
119
120 static void
121 h8300_init_frame_cache (struct h8300_frame_cache *cache)
122 {
123 int i;
124
125 /* Base address. */
126 cache->base = 0;
127 cache->sp_offset = 0;
128 cache->pc = 0;
129
130 /* Frameless until proven otherwise. */
131 cache->uses_fp = 0;
132
133 /* Saved registers. We initialize these to -1 since zero is a valid
134 offset (that's where %fp is supposed to be stored). */
135 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
136 cache->saved_regs[i] = -1;
137 }
138
139 #define IS_MOVB_RnRm(x) (((x) & 0xff88) == 0x0c88)
140 #define IS_MOVW_RnRm(x) (((x) & 0xff88) == 0x0d00)
141 #define IS_MOVL_RnRm(x) (((x) & 0xff88) == 0x0f80)
142 #define IS_MOVB_Rn16_SP(x) (((x) & 0xfff0) == 0x6ee0)
143 #define IS_MOVB_EXT(x) ((x) == 0x7860)
144 #define IS_MOVB_Rn24_SP(x) (((x) & 0xfff0) == 0x6aa0)
145 #define IS_MOVW_Rn16_SP(x) (((x) & 0xfff0) == 0x6fe0)
146 #define IS_MOVW_EXT(x) ((x) == 0x78e0)
147 #define IS_MOVW_Rn24_SP(x) (((x) & 0xfff0) == 0x6ba0)
148 /* Same instructions as mov.w, just prefixed with 0x0100 */
149 #define IS_MOVL_PRE(x) ((x) == 0x0100)
150 #define IS_MOVL_Rn16_SP(x) (((x) & 0xfff0) == 0x6fe0)
151 #define IS_MOVL_EXT(x) ((x) == 0x78e0)
152 #define IS_MOVL_Rn24_SP(x) (((x) & 0xfff0) == 0x6ba0)
153
154 #define IS_PUSHFP_MOVESPFP(x) ((x) == 0x6df60d76)
155 #define IS_PUSH_FP(x) ((x) == 0x01006df6)
156 #define IS_MOV_SP_FP(x) ((x) == 0x0ff6)
157 #define IS_SUB2_SP(x) ((x) == 0x1b87)
158 #define IS_SUB4_SP(x) ((x) == 0x1b97)
159 #define IS_ADD_IMM_SP(x) ((x) == 0x7a1f)
160 #define IS_SUB_IMM_SP(x) ((x) == 0x7a3f)
161 #define IS_SUBL4_SP(x) ((x) == 0x1acf)
162 #define IS_MOV_IMM_Rn(x) (((x) & 0xfff0) == 0x7905)
163 #define IS_SUB_RnSP(x) (((x) & 0xff0f) == 0x1907)
164 #define IS_ADD_RnSP(x) (((x) & 0xff0f) == 0x0907)
165 #define IS_PUSH(x) (((x) & 0xfff0) == 0x6df0)
166
167 /* If the instruction at PC is an argument register spill, return its
168 length. Otherwise, return zero.
169
170 An argument register spill is an instruction that moves an argument
171 from the register in which it was passed to the stack slot in which
172 it really lives. It is a byte, word, or longword move from an
173 argument register to a negative offset from the frame pointer.
174
175 CV, 2003-06-16: Or, in optimized code or when the `register' qualifier
176 is used, it could be a byte, word or long move to registers r3-r5. */
177
178 static int
179 h8300_is_argument_spill (CORE_ADDR pc)
180 {
181 int w = read_memory_unsigned_integer (pc, 2);
182
183 if ((IS_MOVB_RnRm (w) || IS_MOVW_RnRm (w) || IS_MOVL_RnRm (w))
184 && (w & 0x70) <= 0x20 /* Rs is R0, R1 or R2 */
185 && (w & 0x7) >= 0x3 && (w & 0x7) <= 0x5) /* Rd is R3, R4 or R5 */
186 return 2;
187
188 if (IS_MOVB_Rn16_SP (w)
189 && 8 <= (w & 0xf) && (w & 0xf) <= 10) /* Rs is R0L, R1L, or R2L */
190 {
191 if (read_memory_integer (pc + 2, 2) < 0) /* ... and d:16 is negative. */
192 return 4;
193 }
194 else if (IS_MOVB_EXT (w))
195 {
196 if (IS_MOVB_Rn24_SP (read_memory_unsigned_integer (pc + 2, 2)))
197 {
198 LONGEST disp = read_memory_integer (pc + 4, 4);
199
200 /* ... and d:24 is negative. */
201 if (disp < 0 && disp > 0xffffff)
202 return 8;
203 }
204 }
205 else if (IS_MOVW_Rn16_SP (w)
206 && (w & 0xf) <= 2) /* Rs is R0, R1, or R2 */
207 {
208 /* ... and d:16 is negative. */
209 if (read_memory_integer (pc + 2, 2) < 0)
210 return 4;
211 }
212 else if (IS_MOVW_EXT (w))
213 {
214 if (IS_MOVW_Rn24_SP (read_memory_unsigned_integer (pc + 2, 2)))
215 {
216 LONGEST disp = read_memory_integer (pc + 4, 4);
217
218 /* ... and d:24 is negative. */
219 if (disp < 0 && disp > 0xffffff)
220 return 8;
221 }
222 }
223 else if (IS_MOVL_PRE (w))
224 {
225 int w2 = read_memory_integer (pc + 2, 2);
226
227 if (IS_MOVL_Rn16_SP (w2)
228 && (w2 & 0xf) <= 2) /* Rs is ER0, ER1, or ER2 */
229 {
230 /* ... and d:16 is negative. */
231 if (read_memory_integer (pc + 4, 2) < 0)
232 return 6;
233 }
234 else if (IS_MOVL_EXT (w2))
235 {
236 int w3 = read_memory_integer (pc + 4, 2);
237
238 if (IS_MOVL_Rn24_SP (read_memory_integer (pc + 4, 2)))
239 {
240 LONGEST disp = read_memory_integer (pc + 6, 4);
241
242 /* ... and d:24 is negative. */
243 if (disp < 0 && disp > 0xffffff)
244 return 10;
245 }
246 }
247 }
248
249 return 0;
250 }
251
252 /* Do a full analysis of the prologue at PC and update CACHE
253 accordingly. Bail out early if CURRENT_PC is reached. Return the
254 address where the analysis stopped.
255
256 We handle all cases that can be generated by gcc.
257
258 For allocating a stack frame:
259
260 mov.w r6,@-sp
261 mov.w sp,r6
262 mov.w #-n,rN
263 add.w rN,sp
264
265 mov.w r6,@-sp
266 mov.w sp,r6
267 subs #2,sp
268 (repeat)
269
270 mov.l er6,@-sp
271 mov.l sp,er6
272 add.l #-n,sp
273
274 mov.w r6,@-sp
275 mov.w sp,r6
276 subs #4,sp
277 (repeat)
278
279 For saving registers:
280
281 mov.w rN,@-sp
282 mov.l erN,@-sp
283 stm.l reglist,@-sp
284
285 */
286
287 static CORE_ADDR
288 h8300_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
289 struct h8300_frame_cache *cache)
290 {
291 unsigned int op;
292 int regno, i, spill_size;
293
294 cache->sp_offset = 0;
295
296 if (pc >= current_pc)
297 return current_pc;
298
299 op = read_memory_unsigned_integer (pc, 4);
300
301 if (IS_PUSHFP_MOVESPFP (op))
302 {
303 cache->saved_regs[E_FP_REGNUM] = 0;
304 cache->uses_fp = 1;
305 pc += 4;
306 }
307 else if (IS_PUSH_FP (op))
308 {
309 cache->saved_regs[E_FP_REGNUM] = 0;
310 pc += 4;
311 if (pc >= current_pc)
312 return current_pc;
313 op = read_memory_unsigned_integer (pc, 2);
314 if (IS_MOV_SP_FP (op))
315 {
316 cache->uses_fp = 1;
317 pc += 2;
318 }
319 }
320
321 while (pc < current_pc)
322 {
323 op = read_memory_unsigned_integer (pc, 2);
324 if (IS_SUB2_SP (op))
325 {
326 cache->sp_offset += 2;
327 pc += 2;
328 }
329 else if (IS_SUB4_SP (op))
330 {
331 cache->sp_offset += 4;
332 pc += 2;
333 }
334 else if (IS_ADD_IMM_SP (op))
335 {
336 cache->sp_offset += -read_memory_integer (pc + 2, 2);
337 pc += 4;
338 }
339 else if (IS_SUB_IMM_SP (op))
340 {
341 cache->sp_offset += read_memory_integer (pc + 2, 2);
342 pc += 4;
343 }
344 else if (IS_SUBL4_SP (op))
345 {
346 cache->sp_offset += 4;
347 pc += 2;
348 }
349 else if (IS_MOV_IMM_Rn (op))
350 {
351 int offset = read_memory_integer (pc + 2, 2);
352 regno = op & 0x000f;
353 op = read_memory_unsigned_integer (pc + 4, 2);
354 if (IS_ADD_RnSP (op) && (op & 0x00f0) == regno)
355 {
356 cache->sp_offset -= offset;
357 pc += 6;
358 }
359 else if (IS_SUB_RnSP (op) && (op & 0x00f0) == regno)
360 {
361 cache->sp_offset += offset;
362 pc += 6;
363 }
364 else
365 break;
366 }
367 else if (IS_PUSH (op))
368 {
369 regno = op & 0x000f;
370 cache->sp_offset += 2;
371 cache->saved_regs[regno] = cache->sp_offset;
372 pc += 2;
373 }
374 else if (op == 0x0100)
375 {
376 op = read_memory_unsigned_integer (pc + 2, 2);
377 if (IS_PUSH (op))
378 {
379 regno = op & 0x000f;
380 cache->sp_offset += 4;
381 cache->saved_regs[regno] = cache->sp_offset;
382 pc += 4;
383 }
384 else
385 break;
386 }
387 else if ((op & 0xffcf) == 0x0100)
388 {
389 int op1;
390 op1 = read_memory_unsigned_integer (pc + 2, 2);
391 if (IS_PUSH (op1))
392 {
393 /* Since the prefix is 0x01x0, this is not a simple pushm but a
394 stm.l reglist,@-sp */
395 i = ((op & 0x0030) >> 4) + 1;
396 regno = op1 & 0x000f;
397 for (; i > 0; regno++, --i)
398 {
399 cache->sp_offset += 4;
400 cache->saved_regs[regno] = cache->sp_offset;
401 }
402 pc += 4;
403 }
404 else
405 break;
406 }
407 else
408 break;
409 }
410
411 /* Check for spilling an argument register to the stack frame.
412 This could also be an initializing store from non-prologue code,
413 but I don't think there's any harm in skipping that. */
414 while ((spill_size = h8300_is_argument_spill (pc)) > 0
415 && pc + spill_size <= current_pc)
416 pc += spill_size;
417
418 return pc;
419 }
420
421 static struct h8300_frame_cache *
422 h8300_frame_cache (struct frame_info *next_frame, void **this_cache)
423 {
424 struct h8300_frame_cache *cache;
425 char buf[4];
426 int i;
427 CORE_ADDR current_pc;
428
429 if (*this_cache)
430 return *this_cache;
431
432 cache = FRAME_OBSTACK_ZALLOC (struct h8300_frame_cache);
433 h8300_init_frame_cache (cache);
434 *this_cache = cache;
435
436 /* In principle, for normal frames, %fp holds the frame pointer,
437 which holds the base address for the current stack frame.
438 However, for functions that don't need it, the frame pointer is
439 optional. For these "frameless" functions the frame pointer is
440 actually the frame pointer of the calling frame. */
441
442 cache->base = frame_unwind_register_unsigned (next_frame, E_FP_REGNUM);
443 if (cache->base == 0)
444 return cache;
445
446 cache->saved_regs[E_PC_REGNUM] = -BINWORD;
447
448 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
449 current_pc = frame_pc_unwind (next_frame);
450 if (cache->pc != 0)
451 h8300_analyze_prologue (cache->pc, current_pc, cache);
452
453 if (!cache->uses_fp)
454 {
455 /* We didn't find a valid frame, which means that CACHE->base
456 currently holds the frame pointer for our calling frame. If
457 we're at the start of a function, or somewhere half-way its
458 prologue, the function's frame probably hasn't been fully
459 setup yet. Try to reconstruct the base address for the stack
460 frame by looking at the stack pointer. For truly "frameless"
461 functions this might work too. */
462
463 cache->base = frame_unwind_register_unsigned (next_frame, E_SP_REGNUM)
464 + cache->sp_offset;
465 cache->saved_sp = cache->base + BINWORD;
466 cache->saved_regs[E_PC_REGNUM] = 0;
467 }
468 else
469 {
470 cache->saved_sp = cache->base + 2 * BINWORD;
471 cache->saved_regs[E_PC_REGNUM] = -BINWORD;
472 }
473
474 /* Adjust all the saved registers such that they contain addresses
475 instead of offsets. */
476 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
477 if (cache->saved_regs[i] != -1)
478 cache->saved_regs[i] = cache->base - cache->saved_regs[i];
479
480 return cache;
481 }
482
483 static void
484 h8300_frame_this_id (struct frame_info *next_frame, void **this_cache,
485 struct frame_id *this_id)
486 {
487 struct h8300_frame_cache *cache =
488 h8300_frame_cache (next_frame, this_cache);
489
490 /* This marks the outermost frame. */
491 if (cache->base == 0)
492 return;
493
494 *this_id = frame_id_build (cache->saved_sp, cache->pc);
495 }
496
497 static void
498 h8300_frame_prev_register (struct frame_info *next_frame, void **this_cache,
499 int regnum, int *optimizedp,
500 enum lval_type *lvalp, CORE_ADDR *addrp,
501 int *realnump, gdb_byte *valuep)
502 {
503 struct h8300_frame_cache *cache =
504 h8300_frame_cache (next_frame, this_cache);
505
506 gdb_assert (regnum >= 0);
507
508 if (regnum == E_SP_REGNUM && cache->saved_sp)
509 {
510 *optimizedp = 0;
511 *lvalp = not_lval;
512 *addrp = 0;
513 *realnump = -1;
514 if (valuep)
515 store_unsigned_integer (valuep, BINWORD, cache->saved_sp);
516 return;
517 }
518
519 if (regnum < gdbarch_num_regs (current_gdbarch)
520 && cache->saved_regs[regnum] != -1)
521 {
522 *optimizedp = 0;
523 *lvalp = lval_memory;
524 *addrp = cache->saved_regs[regnum];
525 *realnump = -1;
526 if (valuep)
527 read_memory (*addrp, valuep, register_size (current_gdbarch, regnum));
528 return;
529 }
530
531 *optimizedp = 0;
532 *lvalp = lval_register;
533 *addrp = 0;
534 *realnump = regnum;
535 if (valuep)
536 frame_unwind_register (next_frame, *realnump, valuep);
537 }
538
539 static const struct frame_unwind h8300_frame_unwind = {
540 NORMAL_FRAME,
541 h8300_frame_this_id,
542 h8300_frame_prev_register
543 };
544
545 static const struct frame_unwind *
546 h8300_frame_sniffer (struct frame_info *next_frame)
547 {
548 return &h8300_frame_unwind;
549 }
550
551 static CORE_ADDR
552 h8300_frame_base_address (struct frame_info *next_frame, void **this_cache)
553 {
554 struct h8300_frame_cache *cache = h8300_frame_cache (next_frame, this_cache);
555 return cache->base;
556 }
557
558 static const struct frame_base h8300_frame_base = {
559 &h8300_frame_unwind,
560 h8300_frame_base_address,
561 h8300_frame_base_address,
562 h8300_frame_base_address
563 };
564
565 static CORE_ADDR
566 h8300_skip_prologue (CORE_ADDR pc)
567 {
568 CORE_ADDR func_addr = 0 , func_end = 0;
569
570 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
571 {
572 struct symtab_and_line sal;
573 struct h8300_frame_cache cache;
574
575 /* Found a function. */
576 sal = find_pc_line (func_addr, 0);
577 if (sal.end && sal.end < func_end)
578 /* Found a line number, use it as end of prologue. */
579 return sal.end;
580
581 /* No useable line symbol. Use prologue parsing method. */
582 h8300_init_frame_cache (&cache);
583 return h8300_analyze_prologue (func_addr, func_end, &cache);
584 }
585
586 /* No function symbol -- just return the PC. */
587 return (CORE_ADDR) pc;
588 }
589
590 /* Function: push_dummy_call
591 Setup the function arguments for calling a function in the inferior.
592 In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits
593 on the H8/300H.
594
595 There are actually two ABI's here: -mquickcall (the default) and
596 -mno-quickcall. With -mno-quickcall, all arguments are passed on
597 the stack after the return address, word-aligned. With
598 -mquickcall, GCC tries to use r0 -- r2 to pass registers. Since
599 GCC doesn't indicate in the object file which ABI was used to
600 compile it, GDB only supports the default --- -mquickcall.
601
602 Here are the rules for -mquickcall, in detail:
603
604 Each argument, whether scalar or aggregate, is padded to occupy a
605 whole number of words. Arguments smaller than a word are padded at
606 the most significant end; those larger than a word are padded at
607 the least significant end.
608
609 The initial arguments are passed in r0 -- r2. Earlier arguments go in
610 lower-numbered registers. Multi-word arguments are passed in
611 consecutive registers, with the most significant end in the
612 lower-numbered register.
613
614 If an argument doesn't fit entirely in the remaining registers, it
615 is passed entirely on the stack. Stack arguments begin just after
616 the return address. Once an argument has overflowed onto the stack
617 this way, all subsequent arguments are passed on the stack.
618
619 The above rule has odd consequences. For example, on the h8/300s,
620 if a function takes two longs and an int as arguments:
621 - the first long will be passed in r0/r1,
622 - the second long will be passed entirely on the stack, since it
623 doesn't fit in r2,
624 - and the int will be passed on the stack, even though it could fit
625 in r2.
626
627 A weird exception: if an argument is larger than a word, but not a
628 whole number of words in length (before padding), it is passed on
629 the stack following the rules for stack arguments above, even if
630 there are sufficient registers available to hold it. Stranger
631 still, the argument registers are still `used up' --- even though
632 there's nothing in them.
633
634 So, for example, on the h8/300s, if a function expects a three-byte
635 structure and an int, the structure will go on the stack, and the
636 int will go in r2, not r0.
637
638 If the function returns an aggregate type (struct, union, or class)
639 by value, the caller must allocate space to hold the return value,
640 and pass the callee a pointer to this space as an invisible first
641 argument, in R0.
642
643 For varargs functions, the last fixed argument and all the variable
644 arguments are always passed on the stack. This means that calls to
645 varargs functions don't work properly unless there is a prototype
646 in scope.
647
648 Basically, this ABI is not good, for the following reasons:
649 - You can't call vararg functions properly unless a prototype is in scope.
650 - Structure passing is inconsistent, to no purpose I can see.
651 - It often wastes argument registers, of which there are only three
652 to begin with. */
653
654 static CORE_ADDR
655 h8300_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
656 struct regcache *regcache, CORE_ADDR bp_addr,
657 int nargs, struct value **args, CORE_ADDR sp,
658 int struct_return, CORE_ADDR struct_addr)
659 {
660 int stack_alloc = 0, stack_offset = 0;
661 int wordsize = BINWORD;
662 int reg = E_ARG0_REGNUM;
663 int argument;
664
665 /* First, make sure the stack is properly aligned. */
666 sp = align_down (sp, wordsize);
667
668 /* Now make sure there's space on the stack for the arguments. We
669 may over-allocate a little here, but that won't hurt anything. */
670 for (argument = 0; argument < nargs; argument++)
671 stack_alloc += align_up (TYPE_LENGTH (value_type (args[argument])),
672 wordsize);
673 sp -= stack_alloc;
674
675 /* Now load as many arguments as possible into registers, and push
676 the rest onto the stack.
677 If we're returning a structure by value, then we must pass a
678 pointer to the buffer for the return value as an invisible first
679 argument. */
680 if (struct_return)
681 regcache_cooked_write_unsigned (regcache, reg++, struct_addr);
682
683 for (argument = 0; argument < nargs; argument++)
684 {
685 struct type *type = value_type (args[argument]);
686 int len = TYPE_LENGTH (type);
687 char *contents = (char *) value_contents (args[argument]);
688
689 /* Pad the argument appropriately. */
690 int padded_len = align_up (len, wordsize);
691 gdb_byte *padded = alloca (padded_len);
692
693 memset (padded, 0, padded_len);
694 memcpy (len < wordsize ? padded + padded_len - len : padded,
695 contents, len);
696
697 /* Could the argument fit in the remaining registers? */
698 if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize)
699 {
700 /* Are we going to pass it on the stack anyway, for no good
701 reason? */
702 if (len > wordsize && len % wordsize)
703 {
704 /* I feel so unclean. */
705 write_memory (sp + stack_offset, padded, padded_len);
706 stack_offset += padded_len;
707
708 /* That's right --- even though we passed the argument
709 on the stack, we consume the registers anyway! Love
710 me, love my dog. */
711 reg += padded_len / wordsize;
712 }
713 else
714 {
715 /* Heavens to Betsy --- it's really going in registers!
716 It would be nice if we could use write_register_bytes
717 here, but on the h8/300s, there are gaps between
718 the registers in the register file. */
719 int offset;
720
721 for (offset = 0; offset < padded_len; offset += wordsize)
722 {
723 ULONGEST word = extract_unsigned_integer (padded + offset,
724 wordsize);
725 regcache_cooked_write_unsigned (regcache, reg++, word);
726 }
727 }
728 }
729 else
730 {
731 /* It doesn't fit in registers! Onto the stack it goes. */
732 write_memory (sp + stack_offset, padded, padded_len);
733 stack_offset += padded_len;
734
735 /* Once one argument has spilled onto the stack, all
736 subsequent arguments go on the stack. */
737 reg = E_ARGLAST_REGNUM + 1;
738 }
739 }
740
741 /* Store return address. */
742 sp -= wordsize;
743 write_memory_unsigned_integer (sp, wordsize, bp_addr);
744
745 /* Update stack pointer. */
746 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
747
748 /* Return the new stack pointer minus the return address slot since
749 that's what DWARF2/GCC uses as the frame's CFA. */
750 return sp + wordsize;
751 }
752
753 /* Function: extract_return_value
754 Figure out where in REGBUF the called function has left its return value.
755 Copy that into VALBUF. Be sure to account for CPU type. */
756
757 static void
758 h8300_extract_return_value (struct type *type, struct regcache *regcache,
759 void *valbuf)
760 {
761 int len = TYPE_LENGTH (type);
762 ULONGEST c, addr;
763
764 switch (len)
765 {
766 case 1:
767 case 2:
768 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
769 store_unsigned_integer (valbuf, len, c);
770 break;
771 case 4: /* Needs two registers on plain H8/300 */
772 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
773 store_unsigned_integer (valbuf, 2, c);
774 regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
775 store_unsigned_integer ((void *) ((char *) valbuf + 2), 2, c);
776 break;
777 case 8: /* long long is now 8 bytes. */
778 if (TYPE_CODE (type) == TYPE_CODE_INT)
779 {
780 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr);
781 c = read_memory_unsigned_integer ((CORE_ADDR) addr, len);
782 store_unsigned_integer (valbuf, len, c);
783 }
784 else
785 {
786 error ("I don't know how this 8 byte value is returned.");
787 }
788 break;
789 }
790 }
791
792 static void
793 h8300h_extract_return_value (struct type *type, struct regcache *regcache,
794 void *valbuf)
795 {
796 int len = TYPE_LENGTH (type);
797 ULONGEST c, addr;
798
799 switch (len)
800 {
801 case 1:
802 case 2:
803 case 4:
804 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
805 store_unsigned_integer (valbuf, len, c);
806 break;
807 case 8: /* long long is now 8 bytes. */
808 if (TYPE_CODE (type) == TYPE_CODE_INT)
809 {
810 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
811 store_unsigned_integer (valbuf, 4, c);
812 regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
813 store_unsigned_integer ((void *) ((char *) valbuf + 4), 4, c);
814 }
815 else
816 {
817 error ("I don't know how this 8 byte value is returned.");
818 }
819 break;
820 }
821 }
822
823 int
824 h8300_use_struct_convention (struct type *value_type)
825 {
826 /* Types of 1, 2 or 4 bytes are returned in R0/R1, everything else on the
827 stack. */
828
829 if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
830 || TYPE_CODE (value_type) == TYPE_CODE_UNION)
831 return 1;
832 return !(TYPE_LENGTH (value_type) == 1
833 || TYPE_LENGTH (value_type) == 2
834 || TYPE_LENGTH (value_type) == 4);
835 }
836
837 int
838 h8300h_use_struct_convention (struct type *value_type)
839 {
840 /* Types of 1, 2 or 4 bytes are returned in R0, INT types of 8 bytes are
841 returned in R0/R1, everything else on the stack. */
842 if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
843 || TYPE_CODE (value_type) == TYPE_CODE_UNION)
844 return 1;
845 return !(TYPE_LENGTH (value_type) == 1
846 || TYPE_LENGTH (value_type) == 2
847 || TYPE_LENGTH (value_type) == 4
848 || (TYPE_LENGTH (value_type) == 8
849 && TYPE_CODE (value_type) == TYPE_CODE_INT));
850 }
851
852 /* Function: store_return_value
853 Place the appropriate value in the appropriate registers.
854 Primarily used by the RETURN command. */
855
856 static void
857 h8300_store_return_value (struct type *type, struct regcache *regcache,
858 const void *valbuf)
859 {
860 int len = TYPE_LENGTH (type);
861 ULONGEST val;
862
863 switch (len)
864 {
865 case 1:
866 case 2: /* short... */
867 val = extract_unsigned_integer (valbuf, len);
868 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
869 break;
870 case 4: /* long, float */
871 val = extract_unsigned_integer (valbuf, len);
872 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
873 (val >> 16) & 0xffff);
874 regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM, val & 0xffff);
875 break;
876 case 8: /* long long, double and long double are all defined
877 as 4 byte types so far so this shouldn't happen. */
878 error ("I don't know how to return an 8 byte value.");
879 break;
880 }
881 }
882
883 static void
884 h8300h_store_return_value (struct type *type, struct regcache *regcache,
885 const void *valbuf)
886 {
887 int len = TYPE_LENGTH (type);
888 ULONGEST val;
889
890 switch (len)
891 {
892 case 1:
893 case 2:
894 case 4: /* long, float */
895 val = extract_unsigned_integer (valbuf, len);
896 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
897 break;
898 case 8:
899 val = extract_unsigned_integer (valbuf, len);
900 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
901 (val >> 32) & 0xffffffff);
902 regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM,
903 val & 0xffffffff);
904 break;
905 }
906 }
907
908 static enum return_value_convention
909 h8300_return_value (struct gdbarch *gdbarch, struct type *type,
910 struct regcache *regcache,
911 gdb_byte *readbuf, const gdb_byte *writebuf)
912 {
913 if (h8300_use_struct_convention (type))
914 return RETURN_VALUE_STRUCT_CONVENTION;
915 if (writebuf)
916 h8300_store_return_value (type, regcache, writebuf);
917 else if (readbuf)
918 h8300_extract_return_value (type, regcache, readbuf);
919 return RETURN_VALUE_REGISTER_CONVENTION;
920 }
921
922 static enum return_value_convention
923 h8300h_return_value (struct gdbarch *gdbarch, struct type *type,
924 struct regcache *regcache,
925 gdb_byte *readbuf, const gdb_byte *writebuf)
926 {
927 if (h8300h_use_struct_convention (type))
928 {
929 if (readbuf)
930 {
931 ULONGEST addr;
932
933 regcache_raw_read_unsigned (regcache, E_R0_REGNUM, &addr);
934 read_memory (addr, readbuf, TYPE_LENGTH (type));
935 }
936
937 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
938 }
939 if (writebuf)
940 h8300h_store_return_value (type, regcache, writebuf);
941 else if (readbuf)
942 h8300h_extract_return_value (type, regcache, readbuf);
943 return RETURN_VALUE_REGISTER_CONVENTION;
944 }
945
946 static struct cmd_list_element *setmachinelist;
947
948 static const char *
949 h8300_register_name (int regno)
950 {
951 /* The register names change depending on which h8300 processor
952 type is selected. */
953 static char *register_names[] = {
954 "r0", "r1", "r2", "r3", "r4", "r5", "r6",
955 "sp", "", "pc", "cycles", "tick", "inst",
956 "ccr", /* pseudo register */
957 };
958 if (regno < 0
959 || regno >= (sizeof (register_names) / sizeof (*register_names)))
960 internal_error (__FILE__, __LINE__,
961 "h8300_register_name: illegal register number %d", regno);
962 else
963 return register_names[regno];
964 }
965
966 static const char *
967 h8300s_register_name (int regno)
968 {
969 static char *register_names[] = {
970 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
971 "sp", "", "pc", "cycles", "", "tick", "inst",
972 "mach", "macl",
973 "ccr", "exr" /* pseudo registers */
974 };
975 if (regno < 0
976 || regno >= (sizeof (register_names) / sizeof (*register_names)))
977 internal_error (__FILE__, __LINE__,
978 "h8300s_register_name: illegal register number %d",
979 regno);
980 else
981 return register_names[regno];
982 }
983
984 static const char *
985 h8300sx_register_name (int regno)
986 {
987 static char *register_names[] = {
988 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
989 "sp", "", "pc", "cycles", "", "tick", "inst",
990 "mach", "macl", "sbr", "vbr",
991 "ccr", "exr" /* pseudo registers */
992 };
993 if (regno < 0
994 || regno >= (sizeof (register_names) / sizeof (*register_names)))
995 internal_error (__FILE__, __LINE__,
996 "h8300sx_register_name: illegal register number %d",
997 regno);
998 else
999 return register_names[regno];
1000 }
1001
1002 static void
1003 h8300_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1004 struct frame_info *frame, int regno)
1005 {
1006 LONGEST rval;
1007 const char *name = gdbarch_register_name (gdbarch, regno);
1008
1009 if (!name || !*name)
1010 return;
1011
1012 rval = get_frame_register_signed (frame, regno);
1013
1014 fprintf_filtered (file, "%-14s ", name);
1015 if ((regno == E_PSEUDO_CCR_REGNUM) || \
1016 (regno == E_PSEUDO_EXR_REGNUM && is_h8300smode (current_gdbarch)))
1017 {
1018 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1019 print_longest (file, 'u', 1, rval);
1020 }
1021 else
1022 {
1023 fprintf_filtered (file, "0x%s ", phex ((ULONGEST) rval, BINWORD));
1024 print_longest (file, 'd', 1, rval);
1025 }
1026 if (regno == E_PSEUDO_CCR_REGNUM)
1027 {
1028 /* CCR register */
1029 int C, Z, N, V;
1030 unsigned char l = rval & 0xff;
1031 fprintf_filtered (file, "\t");
1032 fprintf_filtered (file, "I-%d ", (l & 0x80) != 0);
1033 fprintf_filtered (file, "UI-%d ", (l & 0x40) != 0);
1034 fprintf_filtered (file, "H-%d ", (l & 0x20) != 0);
1035 fprintf_filtered (file, "U-%d ", (l & 0x10) != 0);
1036 N = (l & 0x8) != 0;
1037 Z = (l & 0x4) != 0;
1038 V = (l & 0x2) != 0;
1039 C = (l & 0x1) != 0;
1040 fprintf_filtered (file, "N-%d ", N);
1041 fprintf_filtered (file, "Z-%d ", Z);
1042 fprintf_filtered (file, "V-%d ", V);
1043 fprintf_filtered (file, "C-%d ", C);
1044 if ((C | Z) == 0)
1045 fprintf_filtered (file, "u> ");
1046 if ((C | Z) == 1)
1047 fprintf_filtered (file, "u<= ");
1048 if ((C == 0))
1049 fprintf_filtered (file, "u>= ");
1050 if (C == 1)
1051 fprintf_filtered (file, "u< ");
1052 if (Z == 0)
1053 fprintf_filtered (file, "!= ");
1054 if (Z == 1)
1055 fprintf_filtered (file, "== ");
1056 if ((N ^ V) == 0)
1057 fprintf_filtered (file, ">= ");
1058 if ((N ^ V) == 1)
1059 fprintf_filtered (file, "< ");
1060 if ((Z | (N ^ V)) == 0)
1061 fprintf_filtered (file, "> ");
1062 if ((Z | (N ^ V)) == 1)
1063 fprintf_filtered (file, "<= ");
1064 }
1065 else if (regno == E_PSEUDO_EXR_REGNUM && is_h8300smode (current_gdbarch))
1066 {
1067 /* EXR register */
1068 unsigned char l = rval & 0xff;
1069 fprintf_filtered (file, "\t");
1070 fprintf_filtered (file, "T-%d - - - ", (l & 0x80) != 0);
1071 fprintf_filtered (file, "I2-%d ", (l & 4) != 0);
1072 fprintf_filtered (file, "I1-%d ", (l & 2) != 0);
1073 fprintf_filtered (file, "I0-%d", (l & 1) != 0);
1074 }
1075 fprintf_filtered (file, "\n");
1076 }
1077
1078 static void
1079 h8300_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1080 struct frame_info *frame, int regno, int cpregs)
1081 {
1082 if (regno < 0)
1083 {
1084 for (regno = E_R0_REGNUM; regno <= E_SP_REGNUM; ++regno)
1085 h8300_print_register (gdbarch, file, frame, regno);
1086 h8300_print_register (gdbarch, file, frame, E_PSEUDO_CCR_REGNUM);
1087 h8300_print_register (gdbarch, file, frame, E_PC_REGNUM);
1088 if (is_h8300smode (current_gdbarch))
1089 {
1090 h8300_print_register (gdbarch, file, frame, E_PSEUDO_EXR_REGNUM);
1091 if (is_h8300sxmode (current_gdbarch))
1092 {
1093 h8300_print_register (gdbarch, file, frame, E_SBR_REGNUM);
1094 h8300_print_register (gdbarch, file, frame, E_VBR_REGNUM);
1095 }
1096 h8300_print_register (gdbarch, file, frame, E_MACH_REGNUM);
1097 h8300_print_register (gdbarch, file, frame, E_MACL_REGNUM);
1098 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1099 h8300_print_register (gdbarch, file, frame, E_TICKS_REGNUM);
1100 h8300_print_register (gdbarch, file, frame, E_INSTS_REGNUM);
1101 }
1102 else
1103 {
1104 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1105 h8300_print_register (gdbarch, file, frame, E_TICK_REGNUM);
1106 h8300_print_register (gdbarch, file, frame, E_INST_REGNUM);
1107 }
1108 }
1109 else
1110 {
1111 if (regno == E_CCR_REGNUM)
1112 h8300_print_register (gdbarch, file, frame, E_PSEUDO_CCR_REGNUM);
1113 else if (regno == E_PSEUDO_EXR_REGNUM
1114 && is_h8300smode (current_gdbarch))
1115 h8300_print_register (gdbarch, file, frame, E_PSEUDO_EXR_REGNUM);
1116 else
1117 h8300_print_register (gdbarch, file, frame, regno);
1118 }
1119 }
1120
1121 static struct type *
1122 h8300_register_type (struct gdbarch *gdbarch, int regno)
1123 {
1124 if (regno < 0 || regno >= gdbarch_num_regs (current_gdbarch)
1125 + gdbarch_num_pseudo_regs (current_gdbarch))
1126 internal_error (__FILE__, __LINE__,
1127 "h8300_register_type: illegal register number %d", regno);
1128 else
1129 {
1130 switch (regno)
1131 {
1132 case E_PC_REGNUM:
1133 return builtin_type_void_func_ptr;
1134 case E_SP_REGNUM:
1135 case E_FP_REGNUM:
1136 return builtin_type_void_data_ptr;
1137 default:
1138 if (regno == E_PSEUDO_CCR_REGNUM)
1139 return builtin_type_uint8;
1140 else if (regno == E_PSEUDO_EXR_REGNUM)
1141 return builtin_type_uint8;
1142 else if (is_h8300hmode (current_gdbarch))
1143 return builtin_type_int32;
1144 else
1145 return builtin_type_int16;
1146 }
1147 }
1148 }
1149
1150 static void
1151 h8300_pseudo_register_read (struct gdbarch *gdbarch,
1152 struct regcache *regcache, int regno,
1153 gdb_byte *buf)
1154 {
1155 if (regno == E_PSEUDO_CCR_REGNUM)
1156 regcache_raw_read (regcache, E_CCR_REGNUM, buf);
1157 else if (regno == E_PSEUDO_EXR_REGNUM)
1158 regcache_raw_read (regcache, E_EXR_REGNUM, buf);
1159 else
1160 regcache_raw_read (regcache, regno, buf);
1161 }
1162
1163 static void
1164 h8300_pseudo_register_write (struct gdbarch *gdbarch,
1165 struct regcache *regcache, int regno,
1166 const gdb_byte *buf)
1167 {
1168 if (regno == E_PSEUDO_CCR_REGNUM)
1169 regcache_raw_write (regcache, E_CCR_REGNUM, buf);
1170 else if (regno == E_PSEUDO_EXR_REGNUM)
1171 regcache_raw_write (regcache, E_EXR_REGNUM, buf);
1172 else
1173 regcache_raw_write (regcache, regno, buf);
1174 }
1175
1176 static int
1177 h8300_dbg_reg_to_regnum (int regno)
1178 {
1179 if (regno == E_CCR_REGNUM)
1180 return E_PSEUDO_CCR_REGNUM;
1181 return regno;
1182 }
1183
1184 static int
1185 h8300s_dbg_reg_to_regnum (int regno)
1186 {
1187 if (regno == E_CCR_REGNUM)
1188 return E_PSEUDO_CCR_REGNUM;
1189 if (regno == E_EXR_REGNUM)
1190 return E_PSEUDO_EXR_REGNUM;
1191 return regno;
1192 }
1193
1194 const static unsigned char *
1195 h8300_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1196 {
1197 /*static unsigned char breakpoint[] = { 0x7A, 0xFF }; *//* ??? */
1198 static unsigned char breakpoint[] = { 0x01, 0x80 }; /* Sleep */
1199
1200 *lenptr = sizeof (breakpoint);
1201 return breakpoint;
1202 }
1203
1204 static void
1205 h8300_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1206 struct frame_info *frame, const char *args)
1207 {
1208 fprintf_filtered (file, "\
1209 No floating-point info available for this processor.\n");
1210 }
1211
1212 static struct gdbarch *
1213 h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1214 {
1215 struct gdbarch_tdep *tdep = NULL;
1216 struct gdbarch *gdbarch;
1217
1218 arches = gdbarch_list_lookup_by_info (arches, &info);
1219 if (arches != NULL)
1220 return arches->gdbarch;
1221
1222 #if 0
1223 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1224 #endif
1225
1226 if (info.bfd_arch_info->arch != bfd_arch_h8300)
1227 return NULL;
1228
1229 gdbarch = gdbarch_alloc (&info, 0);
1230
1231 switch (info.bfd_arch_info->mach)
1232 {
1233 case bfd_mach_h8300:
1234 set_gdbarch_num_regs (gdbarch, 13);
1235 set_gdbarch_num_pseudo_regs (gdbarch, 1);
1236 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1237 set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1238 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1239 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1240 set_gdbarch_register_name (gdbarch, h8300_register_name);
1241 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1242 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1243 set_gdbarch_return_value (gdbarch, h8300_return_value);
1244 set_gdbarch_print_insn (gdbarch, print_insn_h8300);
1245 break;
1246 case bfd_mach_h8300h:
1247 case bfd_mach_h8300hn:
1248 set_gdbarch_num_regs (gdbarch, 13);
1249 set_gdbarch_num_pseudo_regs (gdbarch, 1);
1250 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1251 set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1252 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1253 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1254 set_gdbarch_register_name (gdbarch, h8300_register_name);
1255 if (info.bfd_arch_info->mach != bfd_mach_h8300hn)
1256 {
1257 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1258 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1259 }
1260 else
1261 {
1262 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1263 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1264 }
1265 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1266 set_gdbarch_print_insn (gdbarch, print_insn_h8300h);
1267 break;
1268 case bfd_mach_h8300s:
1269 case bfd_mach_h8300sn:
1270 set_gdbarch_num_regs (gdbarch, 16);
1271 set_gdbarch_num_pseudo_regs (gdbarch, 2);
1272 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1273 set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1274 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1275 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1276 set_gdbarch_register_name (gdbarch, h8300s_register_name);
1277 if (info.bfd_arch_info->mach != bfd_mach_h8300sn)
1278 {
1279 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1280 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1281 }
1282 else
1283 {
1284 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1285 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1286 }
1287 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1288 set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
1289 break;
1290 case bfd_mach_h8300sx:
1291 case bfd_mach_h8300sxn:
1292 set_gdbarch_num_regs (gdbarch, 18);
1293 set_gdbarch_num_pseudo_regs (gdbarch, 2);
1294 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1295 set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1296 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1297 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1298 set_gdbarch_register_name (gdbarch, h8300sx_register_name);
1299 if (info.bfd_arch_info->mach != bfd_mach_h8300sxn)
1300 {
1301 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1302 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1303 }
1304 else
1305 {
1306 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1307 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1308 }
1309 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1310 set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
1311 break;
1312 }
1313
1314 set_gdbarch_pseudo_register_read (gdbarch, h8300_pseudo_register_read);
1315 set_gdbarch_pseudo_register_write (gdbarch, h8300_pseudo_register_write);
1316
1317 /*
1318 * Basic register fields and methods.
1319 */
1320
1321 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1322 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1323 set_gdbarch_register_type (gdbarch, h8300_register_type);
1324 set_gdbarch_print_registers_info (gdbarch, h8300_print_registers_info);
1325 set_gdbarch_print_float_info (gdbarch, h8300_print_float_info);
1326
1327 /*
1328 * Frame Info
1329 */
1330 set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue);
1331
1332 /* Frame unwinder. */
1333 set_gdbarch_unwind_pc (gdbarch, h8300_unwind_pc);
1334 set_gdbarch_unwind_sp (gdbarch, h8300_unwind_sp);
1335 set_gdbarch_unwind_dummy_id (gdbarch, h8300_unwind_dummy_id);
1336 frame_base_set_default (gdbarch, &h8300_frame_base);
1337
1338 /*
1339 * Miscelany
1340 */
1341 /* Stack grows up. */
1342 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1343
1344 set_gdbarch_breakpoint_from_pc (gdbarch, h8300_breakpoint_from_pc);
1345 set_gdbarch_push_dummy_call (gdbarch, h8300_push_dummy_call);
1346
1347 set_gdbarch_char_signed (gdbarch, 0);
1348 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1349 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1350 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1351 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1352 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1353
1354 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1355
1356 /* Hook in the DWARF CFI frame unwinder. */
1357 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1358 frame_unwind_append_sniffer (gdbarch, h8300_frame_sniffer);
1359
1360 return gdbarch;
1361
1362 }
1363
1364 extern initialize_file_ftype _initialize_h8300_tdep; /* -Wmissing-prototypes */
1365
1366 void
1367 _initialize_h8300_tdep (void)
1368 {
1369 register_gdbarch_init (bfd_arch_h8300, h8300_gdbarch_init);
1370 }
1371
1372 static int
1373 is_h8300hmode (struct gdbarch *gdbarch)
1374 {
1375 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1376 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1377 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
1378 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
1379 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300h
1380 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
1381 }
1382
1383 static int
1384 is_h8300smode (struct gdbarch *gdbarch)
1385 {
1386 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1387 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1388 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
1389 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn;
1390 }
1391
1392 static int
1393 is_h8300sxmode (struct gdbarch *gdbarch)
1394 {
1395 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1396 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn;
1397 }
1398
1399 static int
1400 is_h8300_normal_mode (struct gdbarch *gdbarch)
1401 {
1402 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1403 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
1404 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
1405 }
This page took 0.058252 seconds and 5 git commands to generate.