* alpha-tdep.c (alpha_heuristic_proc_start)
[deliverable/binutils-gdb.git] / gdb / h8300-tdep.c
1 /* Target-machine dependent code for Renesas H8/300, for GDB.
2
3 Copyright (C) 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999,
4 2000, 2001, 2002, 2003, 2005, 2007, 2008 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /*
22 Contributed by Steve Chamberlain
23 sac@cygnus.com
24 */
25
26 #include "defs.h"
27 #include "value.h"
28 #include "arch-utils.h"
29 #include "regcache.h"
30 #include "gdbcore.h"
31 #include "objfiles.h"
32 #include "gdb_assert.h"
33 #include "dis-asm.h"
34 #include "dwarf2-frame.h"
35 #include "frame-base.h"
36 #include "frame-unwind.h"
37
38 enum gdb_regnum
39 {
40 E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM,
41 E_RET0_REGNUM = E_R0_REGNUM,
42 E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM, E_RET1_REGNUM = E_R1_REGNUM,
43 E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM,
44 E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM,
45 E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM,
46 E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM,
47 E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM,
48 E_SP_REGNUM,
49 E_CCR_REGNUM,
50 E_PC_REGNUM,
51 E_CYCLES_REGNUM,
52 E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM,
53 E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM,
54 E_INSTS_REGNUM,
55 E_MACH_REGNUM,
56 E_MACL_REGNUM,
57 E_SBR_REGNUM,
58 E_VBR_REGNUM
59 };
60
61 #define H8300_MAX_NUM_REGS 18
62
63 #define E_PSEUDO_CCR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch))
64 #define E_PSEUDO_EXR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch)+1)
65
66 struct h8300_frame_cache
67 {
68 /* Base address. */
69 CORE_ADDR base;
70 CORE_ADDR sp_offset;
71 CORE_ADDR pc;
72
73 /* Flag showing that a frame has been created in the prologue code. */
74 int uses_fp;
75
76 /* Saved registers. */
77 CORE_ADDR saved_regs[H8300_MAX_NUM_REGS];
78 CORE_ADDR saved_sp;
79 };
80
81 enum
82 {
83 h8300_reg_size = 2,
84 h8300h_reg_size = 4,
85 h8300_max_reg_size = 4,
86 };
87
88 static int is_h8300hmode (struct gdbarch *gdbarch);
89 static int is_h8300smode (struct gdbarch *gdbarch);
90 static int is_h8300sxmode (struct gdbarch *gdbarch);
91 static int is_h8300_normal_mode (struct gdbarch *gdbarch);
92
93 #define BINWORD(gdbarch) ((is_h8300hmode (gdbarch) \
94 && !is_h8300_normal_mode (gdbarch)) \
95 ? h8300h_reg_size : h8300_reg_size)
96
97 static CORE_ADDR
98 h8300_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
99 {
100 return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
101 }
102
103 static CORE_ADDR
104 h8300_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
105 {
106 return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
107 }
108
109 static struct frame_id
110 h8300_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
111 {
112 return frame_id_build (h8300_unwind_sp (gdbarch, next_frame),
113 frame_pc_unwind (next_frame));
114 }
115
116 /* Normal frames. */
117
118 /* Allocate and initialize a frame cache. */
119
120 static void
121 h8300_init_frame_cache (struct gdbarch *gdbarch,
122 struct h8300_frame_cache *cache)
123 {
124 int i;
125
126 /* Base address. */
127 cache->base = 0;
128 cache->sp_offset = 0;
129 cache->pc = 0;
130
131 /* Frameless until proven otherwise. */
132 cache->uses_fp = 0;
133
134 /* Saved registers. We initialize these to -1 since zero is a valid
135 offset (that's where %fp is supposed to be stored). */
136 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
137 cache->saved_regs[i] = -1;
138 }
139
140 #define IS_MOVB_RnRm(x) (((x) & 0xff88) == 0x0c88)
141 #define IS_MOVW_RnRm(x) (((x) & 0xff88) == 0x0d00)
142 #define IS_MOVL_RnRm(x) (((x) & 0xff88) == 0x0f80)
143 #define IS_MOVB_Rn16_SP(x) (((x) & 0xfff0) == 0x6ee0)
144 #define IS_MOVB_EXT(x) ((x) == 0x7860)
145 #define IS_MOVB_Rn24_SP(x) (((x) & 0xfff0) == 0x6aa0)
146 #define IS_MOVW_Rn16_SP(x) (((x) & 0xfff0) == 0x6fe0)
147 #define IS_MOVW_EXT(x) ((x) == 0x78e0)
148 #define IS_MOVW_Rn24_SP(x) (((x) & 0xfff0) == 0x6ba0)
149 /* Same instructions as mov.w, just prefixed with 0x0100 */
150 #define IS_MOVL_PRE(x) ((x) == 0x0100)
151 #define IS_MOVL_Rn16_SP(x) (((x) & 0xfff0) == 0x6fe0)
152 #define IS_MOVL_EXT(x) ((x) == 0x78e0)
153 #define IS_MOVL_Rn24_SP(x) (((x) & 0xfff0) == 0x6ba0)
154
155 #define IS_PUSHFP_MOVESPFP(x) ((x) == 0x6df60d76)
156 #define IS_PUSH_FP(x) ((x) == 0x01006df6)
157 #define IS_MOV_SP_FP(x) ((x) == 0x0ff6)
158 #define IS_SUB2_SP(x) ((x) == 0x1b87)
159 #define IS_SUB4_SP(x) ((x) == 0x1b97)
160 #define IS_ADD_IMM_SP(x) ((x) == 0x7a1f)
161 #define IS_SUB_IMM_SP(x) ((x) == 0x7a3f)
162 #define IS_SUBL4_SP(x) ((x) == 0x1acf)
163 #define IS_MOV_IMM_Rn(x) (((x) & 0xfff0) == 0x7905)
164 #define IS_SUB_RnSP(x) (((x) & 0xff0f) == 0x1907)
165 #define IS_ADD_RnSP(x) (((x) & 0xff0f) == 0x0907)
166 #define IS_PUSH(x) (((x) & 0xfff0) == 0x6df0)
167
168 /* If the instruction at PC is an argument register spill, return its
169 length. Otherwise, return zero.
170
171 An argument register spill is an instruction that moves an argument
172 from the register in which it was passed to the stack slot in which
173 it really lives. It is a byte, word, or longword move from an
174 argument register to a negative offset from the frame pointer.
175
176 CV, 2003-06-16: Or, in optimized code or when the `register' qualifier
177 is used, it could be a byte, word or long move to registers r3-r5. */
178
179 static int
180 h8300_is_argument_spill (CORE_ADDR pc)
181 {
182 int w = read_memory_unsigned_integer (pc, 2);
183
184 if ((IS_MOVB_RnRm (w) || IS_MOVW_RnRm (w) || IS_MOVL_RnRm (w))
185 && (w & 0x70) <= 0x20 /* Rs is R0, R1 or R2 */
186 && (w & 0x7) >= 0x3 && (w & 0x7) <= 0x5) /* Rd is R3, R4 or R5 */
187 return 2;
188
189 if (IS_MOVB_Rn16_SP (w)
190 && 8 <= (w & 0xf) && (w & 0xf) <= 10) /* Rs is R0L, R1L, or R2L */
191 {
192 if (read_memory_integer (pc + 2, 2) < 0) /* ... and d:16 is negative. */
193 return 4;
194 }
195 else if (IS_MOVB_EXT (w))
196 {
197 if (IS_MOVB_Rn24_SP (read_memory_unsigned_integer (pc + 2, 2)))
198 {
199 LONGEST disp = read_memory_integer (pc + 4, 4);
200
201 /* ... and d:24 is negative. */
202 if (disp < 0 && disp > 0xffffff)
203 return 8;
204 }
205 }
206 else if (IS_MOVW_Rn16_SP (w)
207 && (w & 0xf) <= 2) /* Rs is R0, R1, or R2 */
208 {
209 /* ... and d:16 is negative. */
210 if (read_memory_integer (pc + 2, 2) < 0)
211 return 4;
212 }
213 else if (IS_MOVW_EXT (w))
214 {
215 if (IS_MOVW_Rn24_SP (read_memory_unsigned_integer (pc + 2, 2)))
216 {
217 LONGEST disp = read_memory_integer (pc + 4, 4);
218
219 /* ... and d:24 is negative. */
220 if (disp < 0 && disp > 0xffffff)
221 return 8;
222 }
223 }
224 else if (IS_MOVL_PRE (w))
225 {
226 int w2 = read_memory_integer (pc + 2, 2);
227
228 if (IS_MOVL_Rn16_SP (w2)
229 && (w2 & 0xf) <= 2) /* Rs is ER0, ER1, or ER2 */
230 {
231 /* ... and d:16 is negative. */
232 if (read_memory_integer (pc + 4, 2) < 0)
233 return 6;
234 }
235 else if (IS_MOVL_EXT (w2))
236 {
237 int w3 = read_memory_integer (pc + 4, 2);
238
239 if (IS_MOVL_Rn24_SP (read_memory_integer (pc + 4, 2)))
240 {
241 LONGEST disp = read_memory_integer (pc + 6, 4);
242
243 /* ... and d:24 is negative. */
244 if (disp < 0 && disp > 0xffffff)
245 return 10;
246 }
247 }
248 }
249
250 return 0;
251 }
252
253 /* Do a full analysis of the prologue at PC and update CACHE
254 accordingly. Bail out early if CURRENT_PC is reached. Return the
255 address where the analysis stopped.
256
257 We handle all cases that can be generated by gcc.
258
259 For allocating a stack frame:
260
261 mov.w r6,@-sp
262 mov.w sp,r6
263 mov.w #-n,rN
264 add.w rN,sp
265
266 mov.w r6,@-sp
267 mov.w sp,r6
268 subs #2,sp
269 (repeat)
270
271 mov.l er6,@-sp
272 mov.l sp,er6
273 add.l #-n,sp
274
275 mov.w r6,@-sp
276 mov.w sp,r6
277 subs #4,sp
278 (repeat)
279
280 For saving registers:
281
282 mov.w rN,@-sp
283 mov.l erN,@-sp
284 stm.l reglist,@-sp
285
286 */
287
288 static CORE_ADDR
289 h8300_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
290 struct h8300_frame_cache *cache)
291 {
292 unsigned int op;
293 int regno, i, spill_size;
294
295 cache->sp_offset = 0;
296
297 if (pc >= current_pc)
298 return current_pc;
299
300 op = read_memory_unsigned_integer (pc, 4);
301
302 if (IS_PUSHFP_MOVESPFP (op))
303 {
304 cache->saved_regs[E_FP_REGNUM] = 0;
305 cache->uses_fp = 1;
306 pc += 4;
307 }
308 else if (IS_PUSH_FP (op))
309 {
310 cache->saved_regs[E_FP_REGNUM] = 0;
311 pc += 4;
312 if (pc >= current_pc)
313 return current_pc;
314 op = read_memory_unsigned_integer (pc, 2);
315 if (IS_MOV_SP_FP (op))
316 {
317 cache->uses_fp = 1;
318 pc += 2;
319 }
320 }
321
322 while (pc < current_pc)
323 {
324 op = read_memory_unsigned_integer (pc, 2);
325 if (IS_SUB2_SP (op))
326 {
327 cache->sp_offset += 2;
328 pc += 2;
329 }
330 else if (IS_SUB4_SP (op))
331 {
332 cache->sp_offset += 4;
333 pc += 2;
334 }
335 else if (IS_ADD_IMM_SP (op))
336 {
337 cache->sp_offset += -read_memory_integer (pc + 2, 2);
338 pc += 4;
339 }
340 else if (IS_SUB_IMM_SP (op))
341 {
342 cache->sp_offset += read_memory_integer (pc + 2, 2);
343 pc += 4;
344 }
345 else if (IS_SUBL4_SP (op))
346 {
347 cache->sp_offset += 4;
348 pc += 2;
349 }
350 else if (IS_MOV_IMM_Rn (op))
351 {
352 int offset = read_memory_integer (pc + 2, 2);
353 regno = op & 0x000f;
354 op = read_memory_unsigned_integer (pc + 4, 2);
355 if (IS_ADD_RnSP (op) && (op & 0x00f0) == regno)
356 {
357 cache->sp_offset -= offset;
358 pc += 6;
359 }
360 else if (IS_SUB_RnSP (op) && (op & 0x00f0) == regno)
361 {
362 cache->sp_offset += offset;
363 pc += 6;
364 }
365 else
366 break;
367 }
368 else if (IS_PUSH (op))
369 {
370 regno = op & 0x000f;
371 cache->sp_offset += 2;
372 cache->saved_regs[regno] = cache->sp_offset;
373 pc += 2;
374 }
375 else if (op == 0x0100)
376 {
377 op = read_memory_unsigned_integer (pc + 2, 2);
378 if (IS_PUSH (op))
379 {
380 regno = op & 0x000f;
381 cache->sp_offset += 4;
382 cache->saved_regs[regno] = cache->sp_offset;
383 pc += 4;
384 }
385 else
386 break;
387 }
388 else if ((op & 0xffcf) == 0x0100)
389 {
390 int op1;
391 op1 = read_memory_unsigned_integer (pc + 2, 2);
392 if (IS_PUSH (op1))
393 {
394 /* Since the prefix is 0x01x0, this is not a simple pushm but a
395 stm.l reglist,@-sp */
396 i = ((op & 0x0030) >> 4) + 1;
397 regno = op1 & 0x000f;
398 for (; i > 0; regno++, --i)
399 {
400 cache->sp_offset += 4;
401 cache->saved_regs[regno] = cache->sp_offset;
402 }
403 pc += 4;
404 }
405 else
406 break;
407 }
408 else
409 break;
410 }
411
412 /* Check for spilling an argument register to the stack frame.
413 This could also be an initializing store from non-prologue code,
414 but I don't think there's any harm in skipping that. */
415 while ((spill_size = h8300_is_argument_spill (pc)) > 0
416 && pc + spill_size <= current_pc)
417 pc += spill_size;
418
419 return pc;
420 }
421
422 static struct h8300_frame_cache *
423 h8300_frame_cache (struct frame_info *next_frame, void **this_cache)
424 {
425 struct gdbarch *gdbarch = get_frame_arch (next_frame);
426 struct h8300_frame_cache *cache;
427 char buf[4];
428 int i;
429 CORE_ADDR current_pc;
430
431 if (*this_cache)
432 return *this_cache;
433
434 cache = FRAME_OBSTACK_ZALLOC (struct h8300_frame_cache);
435 h8300_init_frame_cache (gdbarch, cache);
436 *this_cache = cache;
437
438 /* In principle, for normal frames, %fp holds the frame pointer,
439 which holds the base address for the current stack frame.
440 However, for functions that don't need it, the frame pointer is
441 optional. For these "frameless" functions the frame pointer is
442 actually the frame pointer of the calling frame. */
443
444 cache->base = frame_unwind_register_unsigned (next_frame, E_FP_REGNUM);
445 if (cache->base == 0)
446 return cache;
447
448 cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch);
449
450 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
451 current_pc = frame_pc_unwind (next_frame);
452 if (cache->pc != 0)
453 h8300_analyze_prologue (cache->pc, current_pc, cache);
454
455 if (!cache->uses_fp)
456 {
457 /* We didn't find a valid frame, which means that CACHE->base
458 currently holds the frame pointer for our calling frame. If
459 we're at the start of a function, or somewhere half-way its
460 prologue, the function's frame probably hasn't been fully
461 setup yet. Try to reconstruct the base address for the stack
462 frame by looking at the stack pointer. For truly "frameless"
463 functions this might work too. */
464
465 cache->base = frame_unwind_register_unsigned (next_frame, E_SP_REGNUM)
466 + cache->sp_offset;
467 cache->saved_sp = cache->base + BINWORD (gdbarch);
468 cache->saved_regs[E_PC_REGNUM] = 0;
469 }
470 else
471 {
472 cache->saved_sp = cache->base + 2 * BINWORD (gdbarch);
473 cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch);
474 }
475
476 /* Adjust all the saved registers such that they contain addresses
477 instead of offsets. */
478 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
479 if (cache->saved_regs[i] != -1)
480 cache->saved_regs[i] = cache->base - cache->saved_regs[i];
481
482 return cache;
483 }
484
485 static void
486 h8300_frame_this_id (struct frame_info *next_frame, void **this_cache,
487 struct frame_id *this_id)
488 {
489 struct h8300_frame_cache *cache =
490 h8300_frame_cache (next_frame, this_cache);
491
492 /* This marks the outermost frame. */
493 if (cache->base == 0)
494 return;
495
496 *this_id = frame_id_build (cache->saved_sp, cache->pc);
497 }
498
499 static void
500 h8300_frame_prev_register (struct frame_info *next_frame, void **this_cache,
501 int regnum, int *optimizedp,
502 enum lval_type *lvalp, CORE_ADDR *addrp,
503 int *realnump, gdb_byte *valuep)
504 {
505 struct gdbarch *gdbarch = get_frame_arch (next_frame);
506 struct h8300_frame_cache *cache =
507 h8300_frame_cache (next_frame, this_cache);
508
509 gdb_assert (regnum >= 0);
510
511 if (regnum == E_SP_REGNUM && cache->saved_sp)
512 {
513 *optimizedp = 0;
514 *lvalp = not_lval;
515 *addrp = 0;
516 *realnump = -1;
517 if (valuep)
518 store_unsigned_integer (valuep, BINWORD (gdbarch), cache->saved_sp);
519 return;
520 }
521
522 if (regnum < gdbarch_num_regs (gdbarch)
523 && cache->saved_regs[regnum] != -1)
524 {
525 *optimizedp = 0;
526 *lvalp = lval_memory;
527 *addrp = cache->saved_regs[regnum];
528 *realnump = -1;
529 if (valuep)
530 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
531 return;
532 }
533
534 *optimizedp = 0;
535 *lvalp = lval_register;
536 *addrp = 0;
537 *realnump = regnum;
538 if (valuep)
539 frame_unwind_register (next_frame, *realnump, valuep);
540 }
541
542 static const struct frame_unwind h8300_frame_unwind = {
543 NORMAL_FRAME,
544 h8300_frame_this_id,
545 h8300_frame_prev_register
546 };
547
548 static const struct frame_unwind *
549 h8300_frame_sniffer (struct frame_info *next_frame)
550 {
551 return &h8300_frame_unwind;
552 }
553
554 static CORE_ADDR
555 h8300_frame_base_address (struct frame_info *next_frame, void **this_cache)
556 {
557 struct h8300_frame_cache *cache = h8300_frame_cache (next_frame, this_cache);
558 return cache->base;
559 }
560
561 static const struct frame_base h8300_frame_base = {
562 &h8300_frame_unwind,
563 h8300_frame_base_address,
564 h8300_frame_base_address,
565 h8300_frame_base_address
566 };
567
568 static CORE_ADDR
569 h8300_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
570 {
571 CORE_ADDR func_addr = 0 , func_end = 0;
572
573 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
574 {
575 struct symtab_and_line sal;
576 struct h8300_frame_cache cache;
577
578 /* Found a function. */
579 sal = find_pc_line (func_addr, 0);
580 if (sal.end && sal.end < func_end)
581 /* Found a line number, use it as end of prologue. */
582 return sal.end;
583
584 /* No useable line symbol. Use prologue parsing method. */
585 h8300_init_frame_cache (gdbarch, &cache);
586 return h8300_analyze_prologue (func_addr, func_end, &cache);
587 }
588
589 /* No function symbol -- just return the PC. */
590 return (CORE_ADDR) pc;
591 }
592
593 /* Function: push_dummy_call
594 Setup the function arguments for calling a function in the inferior.
595 In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits
596 on the H8/300H.
597
598 There are actually two ABI's here: -mquickcall (the default) and
599 -mno-quickcall. With -mno-quickcall, all arguments are passed on
600 the stack after the return address, word-aligned. With
601 -mquickcall, GCC tries to use r0 -- r2 to pass registers. Since
602 GCC doesn't indicate in the object file which ABI was used to
603 compile it, GDB only supports the default --- -mquickcall.
604
605 Here are the rules for -mquickcall, in detail:
606
607 Each argument, whether scalar or aggregate, is padded to occupy a
608 whole number of words. Arguments smaller than a word are padded at
609 the most significant end; those larger than a word are padded at
610 the least significant end.
611
612 The initial arguments are passed in r0 -- r2. Earlier arguments go in
613 lower-numbered registers. Multi-word arguments are passed in
614 consecutive registers, with the most significant end in the
615 lower-numbered register.
616
617 If an argument doesn't fit entirely in the remaining registers, it
618 is passed entirely on the stack. Stack arguments begin just after
619 the return address. Once an argument has overflowed onto the stack
620 this way, all subsequent arguments are passed on the stack.
621
622 The above rule has odd consequences. For example, on the h8/300s,
623 if a function takes two longs and an int as arguments:
624 - the first long will be passed in r0/r1,
625 - the second long will be passed entirely on the stack, since it
626 doesn't fit in r2,
627 - and the int will be passed on the stack, even though it could fit
628 in r2.
629
630 A weird exception: if an argument is larger than a word, but not a
631 whole number of words in length (before padding), it is passed on
632 the stack following the rules for stack arguments above, even if
633 there are sufficient registers available to hold it. Stranger
634 still, the argument registers are still `used up' --- even though
635 there's nothing in them.
636
637 So, for example, on the h8/300s, if a function expects a three-byte
638 structure and an int, the structure will go on the stack, and the
639 int will go in r2, not r0.
640
641 If the function returns an aggregate type (struct, union, or class)
642 by value, the caller must allocate space to hold the return value,
643 and pass the callee a pointer to this space as an invisible first
644 argument, in R0.
645
646 For varargs functions, the last fixed argument and all the variable
647 arguments are always passed on the stack. This means that calls to
648 varargs functions don't work properly unless there is a prototype
649 in scope.
650
651 Basically, this ABI is not good, for the following reasons:
652 - You can't call vararg functions properly unless a prototype is in scope.
653 - Structure passing is inconsistent, to no purpose I can see.
654 - It often wastes argument registers, of which there are only three
655 to begin with. */
656
657 static CORE_ADDR
658 h8300_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
659 struct regcache *regcache, CORE_ADDR bp_addr,
660 int nargs, struct value **args, CORE_ADDR sp,
661 int struct_return, CORE_ADDR struct_addr)
662 {
663 int stack_alloc = 0, stack_offset = 0;
664 int wordsize = BINWORD (gdbarch);
665 int reg = E_ARG0_REGNUM;
666 int argument;
667
668 /* First, make sure the stack is properly aligned. */
669 sp = align_down (sp, wordsize);
670
671 /* Now make sure there's space on the stack for the arguments. We
672 may over-allocate a little here, but that won't hurt anything. */
673 for (argument = 0; argument < nargs; argument++)
674 stack_alloc += align_up (TYPE_LENGTH (value_type (args[argument])),
675 wordsize);
676 sp -= stack_alloc;
677
678 /* Now load as many arguments as possible into registers, and push
679 the rest onto the stack.
680 If we're returning a structure by value, then we must pass a
681 pointer to the buffer for the return value as an invisible first
682 argument. */
683 if (struct_return)
684 regcache_cooked_write_unsigned (regcache, reg++, struct_addr);
685
686 for (argument = 0; argument < nargs; argument++)
687 {
688 struct type *type = value_type (args[argument]);
689 int len = TYPE_LENGTH (type);
690 char *contents = (char *) value_contents (args[argument]);
691
692 /* Pad the argument appropriately. */
693 int padded_len = align_up (len, wordsize);
694 gdb_byte *padded = alloca (padded_len);
695
696 memset (padded, 0, padded_len);
697 memcpy (len < wordsize ? padded + padded_len - len : padded,
698 contents, len);
699
700 /* Could the argument fit in the remaining registers? */
701 if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize)
702 {
703 /* Are we going to pass it on the stack anyway, for no good
704 reason? */
705 if (len > wordsize && len % wordsize)
706 {
707 /* I feel so unclean. */
708 write_memory (sp + stack_offset, padded, padded_len);
709 stack_offset += padded_len;
710
711 /* That's right --- even though we passed the argument
712 on the stack, we consume the registers anyway! Love
713 me, love my dog. */
714 reg += padded_len / wordsize;
715 }
716 else
717 {
718 /* Heavens to Betsy --- it's really going in registers!
719 It would be nice if we could use write_register_bytes
720 here, but on the h8/300s, there are gaps between
721 the registers in the register file. */
722 int offset;
723
724 for (offset = 0; offset < padded_len; offset += wordsize)
725 {
726 ULONGEST word = extract_unsigned_integer (padded + offset,
727 wordsize);
728 regcache_cooked_write_unsigned (regcache, reg++, word);
729 }
730 }
731 }
732 else
733 {
734 /* It doesn't fit in registers! Onto the stack it goes. */
735 write_memory (sp + stack_offset, padded, padded_len);
736 stack_offset += padded_len;
737
738 /* Once one argument has spilled onto the stack, all
739 subsequent arguments go on the stack. */
740 reg = E_ARGLAST_REGNUM + 1;
741 }
742 }
743
744 /* Store return address. */
745 sp -= wordsize;
746 write_memory_unsigned_integer (sp, wordsize, bp_addr);
747
748 /* Update stack pointer. */
749 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
750
751 /* Return the new stack pointer minus the return address slot since
752 that's what DWARF2/GCC uses as the frame's CFA. */
753 return sp + wordsize;
754 }
755
756 /* Function: extract_return_value
757 Figure out where in REGBUF the called function has left its return value.
758 Copy that into VALBUF. Be sure to account for CPU type. */
759
760 static void
761 h8300_extract_return_value (struct type *type, struct regcache *regcache,
762 void *valbuf)
763 {
764 int len = TYPE_LENGTH (type);
765 ULONGEST c, addr;
766
767 switch (len)
768 {
769 case 1:
770 case 2:
771 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
772 store_unsigned_integer (valbuf, len, c);
773 break;
774 case 4: /* Needs two registers on plain H8/300 */
775 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
776 store_unsigned_integer (valbuf, 2, c);
777 regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
778 store_unsigned_integer ((void *) ((char *) valbuf + 2), 2, c);
779 break;
780 case 8: /* long long is now 8 bytes. */
781 if (TYPE_CODE (type) == TYPE_CODE_INT)
782 {
783 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr);
784 c = read_memory_unsigned_integer ((CORE_ADDR) addr, len);
785 store_unsigned_integer (valbuf, len, c);
786 }
787 else
788 {
789 error ("I don't know how this 8 byte value is returned.");
790 }
791 break;
792 }
793 }
794
795 static void
796 h8300h_extract_return_value (struct type *type, struct regcache *regcache,
797 void *valbuf)
798 {
799 int len = TYPE_LENGTH (type);
800 ULONGEST c, addr;
801
802 switch (len)
803 {
804 case 1:
805 case 2:
806 case 4:
807 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
808 store_unsigned_integer (valbuf, len, c);
809 break;
810 case 8: /* long long is now 8 bytes. */
811 if (TYPE_CODE (type) == TYPE_CODE_INT)
812 {
813 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
814 store_unsigned_integer (valbuf, 4, c);
815 regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
816 store_unsigned_integer ((void *) ((char *) valbuf + 4), 4, c);
817 }
818 else
819 {
820 error ("I don't know how this 8 byte value is returned.");
821 }
822 break;
823 }
824 }
825
826 int
827 h8300_use_struct_convention (struct type *value_type)
828 {
829 /* Types of 1, 2 or 4 bytes are returned in R0/R1, everything else on the
830 stack. */
831
832 if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
833 || TYPE_CODE (value_type) == TYPE_CODE_UNION)
834 return 1;
835 return !(TYPE_LENGTH (value_type) == 1
836 || TYPE_LENGTH (value_type) == 2
837 || TYPE_LENGTH (value_type) == 4);
838 }
839
840 int
841 h8300h_use_struct_convention (struct type *value_type)
842 {
843 /* Types of 1, 2 or 4 bytes are returned in R0, INT types of 8 bytes are
844 returned in R0/R1, everything else on the stack. */
845 if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
846 || TYPE_CODE (value_type) == TYPE_CODE_UNION)
847 return 1;
848 return !(TYPE_LENGTH (value_type) == 1
849 || TYPE_LENGTH (value_type) == 2
850 || TYPE_LENGTH (value_type) == 4
851 || (TYPE_LENGTH (value_type) == 8
852 && TYPE_CODE (value_type) == TYPE_CODE_INT));
853 }
854
855 /* Function: store_return_value
856 Place the appropriate value in the appropriate registers.
857 Primarily used by the RETURN command. */
858
859 static void
860 h8300_store_return_value (struct type *type, struct regcache *regcache,
861 const void *valbuf)
862 {
863 int len = TYPE_LENGTH (type);
864 ULONGEST val;
865
866 switch (len)
867 {
868 case 1:
869 case 2: /* short... */
870 val = extract_unsigned_integer (valbuf, len);
871 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
872 break;
873 case 4: /* long, float */
874 val = extract_unsigned_integer (valbuf, len);
875 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
876 (val >> 16) & 0xffff);
877 regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM, val & 0xffff);
878 break;
879 case 8: /* long long, double and long double are all defined
880 as 4 byte types so far so this shouldn't happen. */
881 error ("I don't know how to return an 8 byte value.");
882 break;
883 }
884 }
885
886 static void
887 h8300h_store_return_value (struct type *type, struct regcache *regcache,
888 const void *valbuf)
889 {
890 int len = TYPE_LENGTH (type);
891 ULONGEST val;
892
893 switch (len)
894 {
895 case 1:
896 case 2:
897 case 4: /* long, float */
898 val = extract_unsigned_integer (valbuf, len);
899 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
900 break;
901 case 8:
902 val = extract_unsigned_integer (valbuf, len);
903 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
904 (val >> 32) & 0xffffffff);
905 regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM,
906 val & 0xffffffff);
907 break;
908 }
909 }
910
911 static enum return_value_convention
912 h8300_return_value (struct gdbarch *gdbarch, struct type *type,
913 struct regcache *regcache,
914 gdb_byte *readbuf, const gdb_byte *writebuf)
915 {
916 if (h8300_use_struct_convention (type))
917 return RETURN_VALUE_STRUCT_CONVENTION;
918 if (writebuf)
919 h8300_store_return_value (type, regcache, writebuf);
920 else if (readbuf)
921 h8300_extract_return_value (type, regcache, readbuf);
922 return RETURN_VALUE_REGISTER_CONVENTION;
923 }
924
925 static enum return_value_convention
926 h8300h_return_value (struct gdbarch *gdbarch, struct type *type,
927 struct regcache *regcache,
928 gdb_byte *readbuf, const gdb_byte *writebuf)
929 {
930 if (h8300h_use_struct_convention (type))
931 {
932 if (readbuf)
933 {
934 ULONGEST addr;
935
936 regcache_raw_read_unsigned (regcache, E_R0_REGNUM, &addr);
937 read_memory (addr, readbuf, TYPE_LENGTH (type));
938 }
939
940 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
941 }
942 if (writebuf)
943 h8300h_store_return_value (type, regcache, writebuf);
944 else if (readbuf)
945 h8300h_extract_return_value (type, regcache, readbuf);
946 return RETURN_VALUE_REGISTER_CONVENTION;
947 }
948
949 static struct cmd_list_element *setmachinelist;
950
951 static const char *
952 h8300_register_name (struct gdbarch *gdbarch, int regno)
953 {
954 /* The register names change depending on which h8300 processor
955 type is selected. */
956 static char *register_names[] = {
957 "r0", "r1", "r2", "r3", "r4", "r5", "r6",
958 "sp", "", "pc", "cycles", "tick", "inst",
959 "ccr", /* pseudo register */
960 };
961 if (regno < 0
962 || regno >= (sizeof (register_names) / sizeof (*register_names)))
963 internal_error (__FILE__, __LINE__,
964 "h8300_register_name: illegal register number %d", regno);
965 else
966 return register_names[regno];
967 }
968
969 static const char *
970 h8300s_register_name (struct gdbarch *gdbarch, int regno)
971 {
972 static char *register_names[] = {
973 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
974 "sp", "", "pc", "cycles", "", "tick", "inst",
975 "mach", "macl",
976 "ccr", "exr" /* pseudo registers */
977 };
978 if (regno < 0
979 || regno >= (sizeof (register_names) / sizeof (*register_names)))
980 internal_error (__FILE__, __LINE__,
981 "h8300s_register_name: illegal register number %d",
982 regno);
983 else
984 return register_names[regno];
985 }
986
987 static const char *
988 h8300sx_register_name (struct gdbarch *gdbarch, int regno)
989 {
990 static char *register_names[] = {
991 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
992 "sp", "", "pc", "cycles", "", "tick", "inst",
993 "mach", "macl", "sbr", "vbr",
994 "ccr", "exr" /* pseudo registers */
995 };
996 if (regno < 0
997 || regno >= (sizeof (register_names) / sizeof (*register_names)))
998 internal_error (__FILE__, __LINE__,
999 "h8300sx_register_name: illegal register number %d",
1000 regno);
1001 else
1002 return register_names[regno];
1003 }
1004
1005 static void
1006 h8300_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1007 struct frame_info *frame, int regno)
1008 {
1009 LONGEST rval;
1010 const char *name = gdbarch_register_name (gdbarch, regno);
1011
1012 if (!name || !*name)
1013 return;
1014
1015 rval = get_frame_register_signed (frame, regno);
1016
1017 fprintf_filtered (file, "%-14s ", name);
1018 if ((regno == E_PSEUDO_CCR_REGNUM (gdbarch)) || \
1019 (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch)))
1020 {
1021 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1022 print_longest (file, 'u', 1, rval);
1023 }
1024 else
1025 {
1026 fprintf_filtered (file, "0x%s ", phex ((ULONGEST) rval,
1027 BINWORD (gdbarch)));
1028 print_longest (file, 'd', 1, rval);
1029 }
1030 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1031 {
1032 /* CCR register */
1033 int C, Z, N, V;
1034 unsigned char l = rval & 0xff;
1035 fprintf_filtered (file, "\t");
1036 fprintf_filtered (file, "I-%d ", (l & 0x80) != 0);
1037 fprintf_filtered (file, "UI-%d ", (l & 0x40) != 0);
1038 fprintf_filtered (file, "H-%d ", (l & 0x20) != 0);
1039 fprintf_filtered (file, "U-%d ", (l & 0x10) != 0);
1040 N = (l & 0x8) != 0;
1041 Z = (l & 0x4) != 0;
1042 V = (l & 0x2) != 0;
1043 C = (l & 0x1) != 0;
1044 fprintf_filtered (file, "N-%d ", N);
1045 fprintf_filtered (file, "Z-%d ", Z);
1046 fprintf_filtered (file, "V-%d ", V);
1047 fprintf_filtered (file, "C-%d ", C);
1048 if ((C | Z) == 0)
1049 fprintf_filtered (file, "u> ");
1050 if ((C | Z) == 1)
1051 fprintf_filtered (file, "u<= ");
1052 if ((C == 0))
1053 fprintf_filtered (file, "u>= ");
1054 if (C == 1)
1055 fprintf_filtered (file, "u< ");
1056 if (Z == 0)
1057 fprintf_filtered (file, "!= ");
1058 if (Z == 1)
1059 fprintf_filtered (file, "== ");
1060 if ((N ^ V) == 0)
1061 fprintf_filtered (file, ">= ");
1062 if ((N ^ V) == 1)
1063 fprintf_filtered (file, "< ");
1064 if ((Z | (N ^ V)) == 0)
1065 fprintf_filtered (file, "> ");
1066 if ((Z | (N ^ V)) == 1)
1067 fprintf_filtered (file, "<= ");
1068 }
1069 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch))
1070 {
1071 /* EXR register */
1072 unsigned char l = rval & 0xff;
1073 fprintf_filtered (file, "\t");
1074 fprintf_filtered (file, "T-%d - - - ", (l & 0x80) != 0);
1075 fprintf_filtered (file, "I2-%d ", (l & 4) != 0);
1076 fprintf_filtered (file, "I1-%d ", (l & 2) != 0);
1077 fprintf_filtered (file, "I0-%d", (l & 1) != 0);
1078 }
1079 fprintf_filtered (file, "\n");
1080 }
1081
1082 static void
1083 h8300_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1084 struct frame_info *frame, int regno, int cpregs)
1085 {
1086 if (regno < 0)
1087 {
1088 for (regno = E_R0_REGNUM; regno <= E_SP_REGNUM; ++regno)
1089 h8300_print_register (gdbarch, file, frame, regno);
1090 h8300_print_register (gdbarch, file, frame,
1091 E_PSEUDO_CCR_REGNUM (gdbarch));
1092 h8300_print_register (gdbarch, file, frame, E_PC_REGNUM);
1093 if (is_h8300smode (gdbarch))
1094 {
1095 h8300_print_register (gdbarch, file, frame,
1096 E_PSEUDO_EXR_REGNUM (gdbarch));
1097 if (is_h8300sxmode (gdbarch))
1098 {
1099 h8300_print_register (gdbarch, file, frame, E_SBR_REGNUM);
1100 h8300_print_register (gdbarch, file, frame, E_VBR_REGNUM);
1101 }
1102 h8300_print_register (gdbarch, file, frame, E_MACH_REGNUM);
1103 h8300_print_register (gdbarch, file, frame, E_MACL_REGNUM);
1104 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1105 h8300_print_register (gdbarch, file, frame, E_TICKS_REGNUM);
1106 h8300_print_register (gdbarch, file, frame, E_INSTS_REGNUM);
1107 }
1108 else
1109 {
1110 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1111 h8300_print_register (gdbarch, file, frame, E_TICK_REGNUM);
1112 h8300_print_register (gdbarch, file, frame, E_INST_REGNUM);
1113 }
1114 }
1115 else
1116 {
1117 if (regno == E_CCR_REGNUM)
1118 h8300_print_register (gdbarch, file, frame,
1119 E_PSEUDO_CCR_REGNUM (gdbarch));
1120 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch)
1121 && is_h8300smode (gdbarch))
1122 h8300_print_register (gdbarch, file, frame,
1123 E_PSEUDO_EXR_REGNUM (gdbarch));
1124 else
1125 h8300_print_register (gdbarch, file, frame, regno);
1126 }
1127 }
1128
1129 static struct type *
1130 h8300_register_type (struct gdbarch *gdbarch, int regno)
1131 {
1132 if (regno < 0 || regno >= gdbarch_num_regs (gdbarch)
1133 + gdbarch_num_pseudo_regs (gdbarch))
1134 internal_error (__FILE__, __LINE__,
1135 "h8300_register_type: illegal register number %d", regno);
1136 else
1137 {
1138 switch (regno)
1139 {
1140 case E_PC_REGNUM:
1141 return builtin_type_void_func_ptr;
1142 case E_SP_REGNUM:
1143 case E_FP_REGNUM:
1144 return builtin_type_void_data_ptr;
1145 default:
1146 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1147 return builtin_type_uint8;
1148 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
1149 return builtin_type_uint8;
1150 else if (is_h8300hmode (gdbarch))
1151 return builtin_type_int32;
1152 else
1153 return builtin_type_int16;
1154 }
1155 }
1156 }
1157
1158 static void
1159 h8300_pseudo_register_read (struct gdbarch *gdbarch,
1160 struct regcache *regcache, int regno,
1161 gdb_byte *buf)
1162 {
1163 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1164 regcache_raw_read (regcache, E_CCR_REGNUM, buf);
1165 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
1166 regcache_raw_read (regcache, E_EXR_REGNUM, buf);
1167 else
1168 regcache_raw_read (regcache, regno, buf);
1169 }
1170
1171 static void
1172 h8300_pseudo_register_write (struct gdbarch *gdbarch,
1173 struct regcache *regcache, int regno,
1174 const gdb_byte *buf)
1175 {
1176 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1177 regcache_raw_write (regcache, E_CCR_REGNUM, buf);
1178 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
1179 regcache_raw_write (regcache, E_EXR_REGNUM, buf);
1180 else
1181 regcache_raw_write (regcache, regno, buf);
1182 }
1183
1184 static int
1185 h8300_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno)
1186 {
1187 if (regno == E_CCR_REGNUM)
1188 return E_PSEUDO_CCR_REGNUM (gdbarch);
1189 return regno;
1190 }
1191
1192 static int
1193 h8300s_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno)
1194 {
1195 if (regno == E_CCR_REGNUM)
1196 return E_PSEUDO_CCR_REGNUM (gdbarch);
1197 if (regno == E_EXR_REGNUM)
1198 return E_PSEUDO_EXR_REGNUM (gdbarch);
1199 return regno;
1200 }
1201
1202 const static unsigned char *
1203 h8300_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
1204 int *lenptr)
1205 {
1206 /*static unsigned char breakpoint[] = { 0x7A, 0xFF }; *//* ??? */
1207 static unsigned char breakpoint[] = { 0x01, 0x80 }; /* Sleep */
1208
1209 *lenptr = sizeof (breakpoint);
1210 return breakpoint;
1211 }
1212
1213 static void
1214 h8300_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1215 struct frame_info *frame, const char *args)
1216 {
1217 fprintf_filtered (file, "\
1218 No floating-point info available for this processor.\n");
1219 }
1220
1221 static struct gdbarch *
1222 h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1223 {
1224 struct gdbarch_tdep *tdep = NULL;
1225 struct gdbarch *gdbarch;
1226
1227 arches = gdbarch_list_lookup_by_info (arches, &info);
1228 if (arches != NULL)
1229 return arches->gdbarch;
1230
1231 #if 0
1232 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1233 #endif
1234
1235 if (info.bfd_arch_info->arch != bfd_arch_h8300)
1236 return NULL;
1237
1238 gdbarch = gdbarch_alloc (&info, 0);
1239
1240 switch (info.bfd_arch_info->mach)
1241 {
1242 case bfd_mach_h8300:
1243 set_gdbarch_num_regs (gdbarch, 13);
1244 set_gdbarch_num_pseudo_regs (gdbarch, 1);
1245 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1246 set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1247 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1248 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1249 set_gdbarch_register_name (gdbarch, h8300_register_name);
1250 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1251 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1252 set_gdbarch_return_value (gdbarch, h8300_return_value);
1253 set_gdbarch_print_insn (gdbarch, print_insn_h8300);
1254 break;
1255 case bfd_mach_h8300h:
1256 case bfd_mach_h8300hn:
1257 set_gdbarch_num_regs (gdbarch, 13);
1258 set_gdbarch_num_pseudo_regs (gdbarch, 1);
1259 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1260 set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1261 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1262 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1263 set_gdbarch_register_name (gdbarch, h8300_register_name);
1264 if (info.bfd_arch_info->mach != bfd_mach_h8300hn)
1265 {
1266 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1267 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1268 }
1269 else
1270 {
1271 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1272 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1273 }
1274 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1275 set_gdbarch_print_insn (gdbarch, print_insn_h8300h);
1276 break;
1277 case bfd_mach_h8300s:
1278 case bfd_mach_h8300sn:
1279 set_gdbarch_num_regs (gdbarch, 16);
1280 set_gdbarch_num_pseudo_regs (gdbarch, 2);
1281 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1282 set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1283 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1284 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1285 set_gdbarch_register_name (gdbarch, h8300s_register_name);
1286 if (info.bfd_arch_info->mach != bfd_mach_h8300sn)
1287 {
1288 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1289 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1290 }
1291 else
1292 {
1293 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1294 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1295 }
1296 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1297 set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
1298 break;
1299 case bfd_mach_h8300sx:
1300 case bfd_mach_h8300sxn:
1301 set_gdbarch_num_regs (gdbarch, 18);
1302 set_gdbarch_num_pseudo_regs (gdbarch, 2);
1303 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1304 set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1305 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1306 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1307 set_gdbarch_register_name (gdbarch, h8300sx_register_name);
1308 if (info.bfd_arch_info->mach != bfd_mach_h8300sxn)
1309 {
1310 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1311 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1312 }
1313 else
1314 {
1315 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1316 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1317 }
1318 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1319 set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
1320 break;
1321 }
1322
1323 set_gdbarch_pseudo_register_read (gdbarch, h8300_pseudo_register_read);
1324 set_gdbarch_pseudo_register_write (gdbarch, h8300_pseudo_register_write);
1325
1326 /*
1327 * Basic register fields and methods.
1328 */
1329
1330 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1331 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1332 set_gdbarch_register_type (gdbarch, h8300_register_type);
1333 set_gdbarch_print_registers_info (gdbarch, h8300_print_registers_info);
1334 set_gdbarch_print_float_info (gdbarch, h8300_print_float_info);
1335
1336 /*
1337 * Frame Info
1338 */
1339 set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue);
1340
1341 /* Frame unwinder. */
1342 set_gdbarch_unwind_pc (gdbarch, h8300_unwind_pc);
1343 set_gdbarch_unwind_sp (gdbarch, h8300_unwind_sp);
1344 set_gdbarch_unwind_dummy_id (gdbarch, h8300_unwind_dummy_id);
1345 frame_base_set_default (gdbarch, &h8300_frame_base);
1346
1347 /*
1348 * Miscelany
1349 */
1350 /* Stack grows up. */
1351 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1352
1353 set_gdbarch_breakpoint_from_pc (gdbarch, h8300_breakpoint_from_pc);
1354 set_gdbarch_push_dummy_call (gdbarch, h8300_push_dummy_call);
1355
1356 set_gdbarch_char_signed (gdbarch, 0);
1357 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1358 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1359 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1360 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1361 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1362
1363 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1364
1365 /* Hook in the DWARF CFI frame unwinder. */
1366 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1367 frame_unwind_append_sniffer (gdbarch, h8300_frame_sniffer);
1368
1369 return gdbarch;
1370
1371 }
1372
1373 extern initialize_file_ftype _initialize_h8300_tdep; /* -Wmissing-prototypes */
1374
1375 void
1376 _initialize_h8300_tdep (void)
1377 {
1378 register_gdbarch_init (bfd_arch_h8300, h8300_gdbarch_init);
1379 }
1380
1381 static int
1382 is_h8300hmode (struct gdbarch *gdbarch)
1383 {
1384 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1385 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1386 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
1387 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
1388 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300h
1389 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
1390 }
1391
1392 static int
1393 is_h8300smode (struct gdbarch *gdbarch)
1394 {
1395 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1396 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1397 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
1398 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn;
1399 }
1400
1401 static int
1402 is_h8300sxmode (struct gdbarch *gdbarch)
1403 {
1404 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1405 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn;
1406 }
1407
1408 static int
1409 is_h8300_normal_mode (struct gdbarch *gdbarch)
1410 {
1411 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1412 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
1413 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
1414 }
This page took 0.059299 seconds and 5 git commands to generate.