Pass return_method to _push_dummy_call
[deliverable/binutils-gdb.git] / gdb / h8300-tdep.c
1 /* Target-machine dependent code for Renesas H8/300, for GDB.
2
3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /*
21 Contributed by Steve Chamberlain
22 sac@cygnus.com
23 */
24
25 #include "defs.h"
26 #include "value.h"
27 #include "arch-utils.h"
28 #include "regcache.h"
29 #include "gdbcore.h"
30 #include "objfiles.h"
31 #include "dis-asm.h"
32 #include "dwarf2-frame.h"
33 #include "frame-base.h"
34 #include "frame-unwind.h"
35
36 enum gdb_regnum
37 {
38 E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM,
39 E_RET0_REGNUM = E_R0_REGNUM,
40 E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM, E_RET1_REGNUM = E_R1_REGNUM,
41 E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM,
42 E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM,
43 E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM,
44 E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM,
45 E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM,
46 E_SP_REGNUM,
47 E_CCR_REGNUM,
48 E_PC_REGNUM,
49 E_CYCLES_REGNUM,
50 E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM,
51 E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM,
52 E_INSTS_REGNUM,
53 E_MACH_REGNUM,
54 E_MACL_REGNUM,
55 E_SBR_REGNUM,
56 E_VBR_REGNUM
57 };
58
59 #define H8300_MAX_NUM_REGS 18
60
61 #define E_PSEUDO_CCR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch))
62 #define E_PSEUDO_EXR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch)+1)
63
64 struct h8300_frame_cache
65 {
66 /* Base address. */
67 CORE_ADDR base;
68 CORE_ADDR sp_offset;
69 CORE_ADDR pc;
70
71 /* Flag showing that a frame has been created in the prologue code. */
72 int uses_fp;
73
74 /* Saved registers. */
75 CORE_ADDR saved_regs[H8300_MAX_NUM_REGS];
76 CORE_ADDR saved_sp;
77 };
78
79 enum
80 {
81 h8300_reg_size = 2,
82 h8300h_reg_size = 4,
83 h8300_max_reg_size = 4,
84 };
85
86 static int is_h8300hmode (struct gdbarch *gdbarch);
87 static int is_h8300smode (struct gdbarch *gdbarch);
88 static int is_h8300sxmode (struct gdbarch *gdbarch);
89 static int is_h8300_normal_mode (struct gdbarch *gdbarch);
90
91 #define BINWORD(gdbarch) ((is_h8300hmode (gdbarch) \
92 && !is_h8300_normal_mode (gdbarch)) \
93 ? h8300h_reg_size : h8300_reg_size)
94
95 static CORE_ADDR
96 h8300_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
97 {
98 return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
99 }
100
101 static CORE_ADDR
102 h8300_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
103 {
104 return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
105 }
106
107 static struct frame_id
108 h8300_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
109 {
110 CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
111 return frame_id_build (sp, get_frame_pc (this_frame));
112 }
113
114 /* Normal frames. */
115
116 /* Allocate and initialize a frame cache. */
117
118 static void
119 h8300_init_frame_cache (struct gdbarch *gdbarch,
120 struct h8300_frame_cache *cache)
121 {
122 int i;
123
124 /* Base address. */
125 cache->base = 0;
126 cache->sp_offset = 0;
127 cache->pc = 0;
128
129 /* Frameless until proven otherwise. */
130 cache->uses_fp = 0;
131
132 /* Saved registers. We initialize these to -1 since zero is a valid
133 offset (that's where %fp is supposed to be stored). */
134 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
135 cache->saved_regs[i] = -1;
136 }
137
138 #define IS_MOVB_RnRm(x) (((x) & 0xff88) == 0x0c88)
139 #define IS_MOVW_RnRm(x) (((x) & 0xff88) == 0x0d00)
140 #define IS_MOVL_RnRm(x) (((x) & 0xff88) == 0x0f80)
141 #define IS_MOVB_Rn16_SP(x) (((x) & 0xfff0) == 0x6ee0)
142 #define IS_MOVB_EXT(x) ((x) == 0x7860)
143 #define IS_MOVB_Rn24_SP(x) (((x) & 0xfff0) == 0x6aa0)
144 #define IS_MOVW_Rn16_SP(x) (((x) & 0xfff0) == 0x6fe0)
145 #define IS_MOVW_EXT(x) ((x) == 0x78e0)
146 #define IS_MOVW_Rn24_SP(x) (((x) & 0xfff0) == 0x6ba0)
147 /* Same instructions as mov.w, just prefixed with 0x0100. */
148 #define IS_MOVL_PRE(x) ((x) == 0x0100)
149 #define IS_MOVL_Rn16_SP(x) (((x) & 0xfff0) == 0x6fe0)
150 #define IS_MOVL_EXT(x) ((x) == 0x78e0)
151 #define IS_MOVL_Rn24_SP(x) (((x) & 0xfff0) == 0x6ba0)
152
153 #define IS_PUSHFP_MOVESPFP(x) ((x) == 0x6df60d76)
154 #define IS_PUSH_FP(x) ((x) == 0x01006df6)
155 #define IS_MOV_SP_FP(x) ((x) == 0x0ff6)
156 #define IS_SUB2_SP(x) ((x) == 0x1b87)
157 #define IS_SUB4_SP(x) ((x) == 0x1b97)
158 #define IS_ADD_IMM_SP(x) ((x) == 0x7a1f)
159 #define IS_SUB_IMM_SP(x) ((x) == 0x7a3f)
160 #define IS_SUBL4_SP(x) ((x) == 0x1acf)
161 #define IS_MOV_IMM_Rn(x) (((x) & 0xfff0) == 0x7905)
162 #define IS_SUB_RnSP(x) (((x) & 0xff0f) == 0x1907)
163 #define IS_ADD_RnSP(x) (((x) & 0xff0f) == 0x0907)
164 #define IS_PUSH(x) (((x) & 0xfff0) == 0x6df0)
165
166 /* If the instruction at PC is an argument register spill, return its
167 length. Otherwise, return zero.
168
169 An argument register spill is an instruction that moves an argument
170 from the register in which it was passed to the stack slot in which
171 it really lives. It is a byte, word, or longword move from an
172 argument register to a negative offset from the frame pointer.
173
174 CV, 2003-06-16: Or, in optimized code or when the `register' qualifier
175 is used, it could be a byte, word or long move to registers r3-r5. */
176
177 static int
178 h8300_is_argument_spill (struct gdbarch *gdbarch, CORE_ADDR pc)
179 {
180 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
181 int w = read_memory_unsigned_integer (pc, 2, byte_order);
182
183 if ((IS_MOVB_RnRm (w) || IS_MOVW_RnRm (w) || IS_MOVL_RnRm (w))
184 && (w & 0x70) <= 0x20 /* Rs is R0, R1 or R2 */
185 && (w & 0x7) >= 0x3 && (w & 0x7) <= 0x5) /* Rd is R3, R4 or R5 */
186 return 2;
187
188 if (IS_MOVB_Rn16_SP (w)
189 && 8 <= (w & 0xf) && (w & 0xf) <= 10) /* Rs is R0L, R1L, or R2L */
190 {
191 /* ... and d:16 is negative. */
192 if (read_memory_integer (pc + 2, 2, byte_order) < 0)
193 return 4;
194 }
195 else if (IS_MOVB_EXT (w))
196 {
197 if (IS_MOVB_Rn24_SP (read_memory_unsigned_integer (pc + 2,
198 2, byte_order)))
199 {
200 LONGEST disp = read_memory_integer (pc + 4, 4, byte_order);
201
202 /* ... and d:24 is negative. */
203 if (disp < 0 && disp > 0xffffff)
204 return 8;
205 }
206 }
207 else if (IS_MOVW_Rn16_SP (w)
208 && (w & 0xf) <= 2) /* Rs is R0, R1, or R2 */
209 {
210 /* ... and d:16 is negative. */
211 if (read_memory_integer (pc + 2, 2, byte_order) < 0)
212 return 4;
213 }
214 else if (IS_MOVW_EXT (w))
215 {
216 if (IS_MOVW_Rn24_SP (read_memory_unsigned_integer (pc + 2,
217 2, byte_order)))
218 {
219 LONGEST disp = read_memory_integer (pc + 4, 4, byte_order);
220
221 /* ... and d:24 is negative. */
222 if (disp < 0 && disp > 0xffffff)
223 return 8;
224 }
225 }
226 else if (IS_MOVL_PRE (w))
227 {
228 int w2 = read_memory_integer (pc + 2, 2, byte_order);
229
230 if (IS_MOVL_Rn16_SP (w2)
231 && (w2 & 0xf) <= 2) /* Rs is ER0, ER1, or ER2 */
232 {
233 /* ... and d:16 is negative. */
234 if (read_memory_integer (pc + 4, 2, byte_order) < 0)
235 return 6;
236 }
237 else if (IS_MOVL_EXT (w2))
238 {
239 if (IS_MOVL_Rn24_SP (read_memory_integer (pc + 4, 2, byte_order)))
240 {
241 LONGEST disp = read_memory_integer (pc + 6, 4, byte_order);
242
243 /* ... and d:24 is negative. */
244 if (disp < 0 && disp > 0xffffff)
245 return 10;
246 }
247 }
248 }
249
250 return 0;
251 }
252
253 /* Do a full analysis of the prologue at PC and update CACHE
254 accordingly. Bail out early if CURRENT_PC is reached. Return the
255 address where the analysis stopped.
256
257 We handle all cases that can be generated by gcc.
258
259 For allocating a stack frame:
260
261 mov.w r6,@-sp
262 mov.w sp,r6
263 mov.w #-n,rN
264 add.w rN,sp
265
266 mov.w r6,@-sp
267 mov.w sp,r6
268 subs #2,sp
269 (repeat)
270
271 mov.l er6,@-sp
272 mov.l sp,er6
273 add.l #-n,sp
274
275 mov.w r6,@-sp
276 mov.w sp,r6
277 subs #4,sp
278 (repeat)
279
280 For saving registers:
281
282 mov.w rN,@-sp
283 mov.l erN,@-sp
284 stm.l reglist,@-sp
285
286 */
287
288 static CORE_ADDR
289 h8300_analyze_prologue (struct gdbarch *gdbarch,
290 CORE_ADDR pc, CORE_ADDR current_pc,
291 struct h8300_frame_cache *cache)
292 {
293 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
294 unsigned int op;
295 int regno, i, spill_size;
296
297 cache->sp_offset = 0;
298
299 if (pc >= current_pc)
300 return current_pc;
301
302 op = read_memory_unsigned_integer (pc, 4, byte_order);
303
304 if (IS_PUSHFP_MOVESPFP (op))
305 {
306 cache->saved_regs[E_FP_REGNUM] = 0;
307 cache->uses_fp = 1;
308 pc += 4;
309 }
310 else if (IS_PUSH_FP (op))
311 {
312 cache->saved_regs[E_FP_REGNUM] = 0;
313 pc += 4;
314 if (pc >= current_pc)
315 return current_pc;
316 op = read_memory_unsigned_integer (pc, 2, byte_order);
317 if (IS_MOV_SP_FP (op))
318 {
319 cache->uses_fp = 1;
320 pc += 2;
321 }
322 }
323
324 while (pc < current_pc)
325 {
326 op = read_memory_unsigned_integer (pc, 2, byte_order);
327 if (IS_SUB2_SP (op))
328 {
329 cache->sp_offset += 2;
330 pc += 2;
331 }
332 else if (IS_SUB4_SP (op))
333 {
334 cache->sp_offset += 4;
335 pc += 2;
336 }
337 else if (IS_ADD_IMM_SP (op))
338 {
339 cache->sp_offset += -read_memory_integer (pc + 2, 2, byte_order);
340 pc += 4;
341 }
342 else if (IS_SUB_IMM_SP (op))
343 {
344 cache->sp_offset += read_memory_integer (pc + 2, 2, byte_order);
345 pc += 4;
346 }
347 else if (IS_SUBL4_SP (op))
348 {
349 cache->sp_offset += 4;
350 pc += 2;
351 }
352 else if (IS_MOV_IMM_Rn (op))
353 {
354 int offset = read_memory_integer (pc + 2, 2, byte_order);
355 regno = op & 0x000f;
356 op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
357 if (IS_ADD_RnSP (op) && (op & 0x00f0) == regno)
358 {
359 cache->sp_offset -= offset;
360 pc += 6;
361 }
362 else if (IS_SUB_RnSP (op) && (op & 0x00f0) == regno)
363 {
364 cache->sp_offset += offset;
365 pc += 6;
366 }
367 else
368 break;
369 }
370 else if (IS_PUSH (op))
371 {
372 regno = op & 0x000f;
373 cache->sp_offset += 2;
374 cache->saved_regs[regno] = cache->sp_offset;
375 pc += 2;
376 }
377 else if (op == 0x0100)
378 {
379 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
380 if (IS_PUSH (op))
381 {
382 regno = op & 0x000f;
383 cache->sp_offset += 4;
384 cache->saved_regs[regno] = cache->sp_offset;
385 pc += 4;
386 }
387 else
388 break;
389 }
390 else if ((op & 0xffcf) == 0x0100)
391 {
392 int op1;
393 op1 = read_memory_unsigned_integer (pc + 2, 2, byte_order);
394 if (IS_PUSH (op1))
395 {
396 /* Since the prefix is 0x01x0, this is not a simple pushm but a
397 stm.l reglist,@-sp */
398 i = ((op & 0x0030) >> 4) + 1;
399 regno = op1 & 0x000f;
400 for (; i > 0; regno++, --i)
401 {
402 cache->sp_offset += 4;
403 cache->saved_regs[regno] = cache->sp_offset;
404 }
405 pc += 4;
406 }
407 else
408 break;
409 }
410 else
411 break;
412 }
413
414 /* Check for spilling an argument register to the stack frame.
415 This could also be an initializing store from non-prologue code,
416 but I don't think there's any harm in skipping that. */
417 while ((spill_size = h8300_is_argument_spill (gdbarch, pc)) > 0
418 && pc + spill_size <= current_pc)
419 pc += spill_size;
420
421 return pc;
422 }
423
424 static struct h8300_frame_cache *
425 h8300_frame_cache (struct frame_info *this_frame, void **this_cache)
426 {
427 struct gdbarch *gdbarch = get_frame_arch (this_frame);
428 struct h8300_frame_cache *cache;
429 int i;
430 CORE_ADDR current_pc;
431
432 if (*this_cache)
433 return (struct h8300_frame_cache *) *this_cache;
434
435 cache = FRAME_OBSTACK_ZALLOC (struct h8300_frame_cache);
436 h8300_init_frame_cache (gdbarch, cache);
437 *this_cache = cache;
438
439 /* In principle, for normal frames, %fp holds the frame pointer,
440 which holds the base address for the current stack frame.
441 However, for functions that don't need it, the frame pointer is
442 optional. For these "frameless" functions the frame pointer is
443 actually the frame pointer of the calling frame. */
444
445 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
446 if (cache->base == 0)
447 return cache;
448
449 cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch);
450
451 cache->pc = get_frame_func (this_frame);
452 current_pc = get_frame_pc (this_frame);
453 if (cache->pc != 0)
454 h8300_analyze_prologue (gdbarch, cache->pc, current_pc, cache);
455
456 if (!cache->uses_fp)
457 {
458 /* We didn't find a valid frame, which means that CACHE->base
459 currently holds the frame pointer for our calling frame. If
460 we're at the start of a function, or somewhere half-way its
461 prologue, the function's frame probably hasn't been fully
462 setup yet. Try to reconstruct the base address for the stack
463 frame by looking at the stack pointer. For truly "frameless"
464 functions this might work too. */
465
466 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM)
467 + cache->sp_offset;
468 cache->saved_sp = cache->base + BINWORD (gdbarch);
469 cache->saved_regs[E_PC_REGNUM] = 0;
470 }
471 else
472 {
473 cache->saved_sp = cache->base + 2 * BINWORD (gdbarch);
474 cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch);
475 }
476
477 /* Adjust all the saved registers such that they contain addresses
478 instead of offsets. */
479 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
480 if (cache->saved_regs[i] != -1)
481 cache->saved_regs[i] = cache->base - cache->saved_regs[i];
482
483 return cache;
484 }
485
486 static void
487 h8300_frame_this_id (struct frame_info *this_frame, void **this_cache,
488 struct frame_id *this_id)
489 {
490 struct h8300_frame_cache *cache =
491 h8300_frame_cache (this_frame, this_cache);
492
493 /* This marks the outermost frame. */
494 if (cache->base == 0)
495 return;
496
497 *this_id = frame_id_build (cache->saved_sp, cache->pc);
498 }
499
500 static struct value *
501 h8300_frame_prev_register (struct frame_info *this_frame, void **this_cache,
502 int regnum)
503 {
504 struct gdbarch *gdbarch = get_frame_arch (this_frame);
505 struct h8300_frame_cache *cache =
506 h8300_frame_cache (this_frame, this_cache);
507
508 gdb_assert (regnum >= 0);
509
510 if (regnum == E_SP_REGNUM && cache->saved_sp)
511 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
512
513 if (regnum < gdbarch_num_regs (gdbarch)
514 && cache->saved_regs[regnum] != -1)
515 return frame_unwind_got_memory (this_frame, regnum,
516 cache->saved_regs[regnum]);
517
518 return frame_unwind_got_register (this_frame, regnum, regnum);
519 }
520
521 static const struct frame_unwind h8300_frame_unwind = {
522 NORMAL_FRAME,
523 default_frame_unwind_stop_reason,
524 h8300_frame_this_id,
525 h8300_frame_prev_register,
526 NULL,
527 default_frame_sniffer
528 };
529
530 static CORE_ADDR
531 h8300_frame_base_address (struct frame_info *this_frame, void **this_cache)
532 {
533 struct h8300_frame_cache *cache = h8300_frame_cache (this_frame, this_cache);
534 return cache->base;
535 }
536
537 static const struct frame_base h8300_frame_base = {
538 &h8300_frame_unwind,
539 h8300_frame_base_address,
540 h8300_frame_base_address,
541 h8300_frame_base_address
542 };
543
544 static CORE_ADDR
545 h8300_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
546 {
547 CORE_ADDR func_addr = 0 , func_end = 0;
548
549 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
550 {
551 struct symtab_and_line sal;
552 struct h8300_frame_cache cache;
553
554 /* Found a function. */
555 sal = find_pc_line (func_addr, 0);
556 if (sal.end && sal.end < func_end)
557 /* Found a line number, use it as end of prologue. */
558 return sal.end;
559
560 /* No useable line symbol. Use prologue parsing method. */
561 h8300_init_frame_cache (gdbarch, &cache);
562 return h8300_analyze_prologue (gdbarch, func_addr, func_end, &cache);
563 }
564
565 /* No function symbol -- just return the PC. */
566 return (CORE_ADDR) pc;
567 }
568
569 /* Function: push_dummy_call
570 Setup the function arguments for calling a function in the inferior.
571 In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits
572 on the H8/300H.
573
574 There are actually two ABI's here: -mquickcall (the default) and
575 -mno-quickcall. With -mno-quickcall, all arguments are passed on
576 the stack after the return address, word-aligned. With
577 -mquickcall, GCC tries to use r0 -- r2 to pass registers. Since
578 GCC doesn't indicate in the object file which ABI was used to
579 compile it, GDB only supports the default --- -mquickcall.
580
581 Here are the rules for -mquickcall, in detail:
582
583 Each argument, whether scalar or aggregate, is padded to occupy a
584 whole number of words. Arguments smaller than a word are padded at
585 the most significant end; those larger than a word are padded at
586 the least significant end.
587
588 The initial arguments are passed in r0 -- r2. Earlier arguments go in
589 lower-numbered registers. Multi-word arguments are passed in
590 consecutive registers, with the most significant end in the
591 lower-numbered register.
592
593 If an argument doesn't fit entirely in the remaining registers, it
594 is passed entirely on the stack. Stack arguments begin just after
595 the return address. Once an argument has overflowed onto the stack
596 this way, all subsequent arguments are passed on the stack.
597
598 The above rule has odd consequences. For example, on the h8/300s,
599 if a function takes two longs and an int as arguments:
600 - the first long will be passed in r0/r1,
601 - the second long will be passed entirely on the stack, since it
602 doesn't fit in r2,
603 - and the int will be passed on the stack, even though it could fit
604 in r2.
605
606 A weird exception: if an argument is larger than a word, but not a
607 whole number of words in length (before padding), it is passed on
608 the stack following the rules for stack arguments above, even if
609 there are sufficient registers available to hold it. Stranger
610 still, the argument registers are still `used up' --- even though
611 there's nothing in them.
612
613 So, for example, on the h8/300s, if a function expects a three-byte
614 structure and an int, the structure will go on the stack, and the
615 int will go in r2, not r0.
616
617 If the function returns an aggregate type (struct, union, or class)
618 by value, the caller must allocate space to hold the return value,
619 and pass the callee a pointer to this space as an invisible first
620 argument, in R0.
621
622 For varargs functions, the last fixed argument and all the variable
623 arguments are always passed on the stack. This means that calls to
624 varargs functions don't work properly unless there is a prototype
625 in scope.
626
627 Basically, this ABI is not good, for the following reasons:
628 - You can't call vararg functions properly unless a prototype is in scope.
629 - Structure passing is inconsistent, to no purpose I can see.
630 - It often wastes argument registers, of which there are only three
631 to begin with. */
632
633 static CORE_ADDR
634 h8300_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
635 struct regcache *regcache, CORE_ADDR bp_addr,
636 int nargs, struct value **args, CORE_ADDR sp,
637 function_call_return_method return_method,
638 CORE_ADDR struct_addr)
639 {
640 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
641 int stack_alloc = 0, stack_offset = 0;
642 int wordsize = BINWORD (gdbarch);
643 int reg = E_ARG0_REGNUM;
644 int argument;
645
646 /* First, make sure the stack is properly aligned. */
647 sp = align_down (sp, wordsize);
648
649 /* Now make sure there's space on the stack for the arguments. We
650 may over-allocate a little here, but that won't hurt anything. */
651 for (argument = 0; argument < nargs; argument++)
652 stack_alloc += align_up (TYPE_LENGTH (value_type (args[argument])),
653 wordsize);
654 sp -= stack_alloc;
655
656 /* Now load as many arguments as possible into registers, and push
657 the rest onto the stack.
658 If we're returning a structure by value, then we must pass a
659 pointer to the buffer for the return value as an invisible first
660 argument. */
661 if (return_method == return_method_struct)
662 regcache_cooked_write_unsigned (regcache, reg++, struct_addr);
663
664 for (argument = 0; argument < nargs; argument++)
665 {
666 struct type *type = value_type (args[argument]);
667 int len = TYPE_LENGTH (type);
668 char *contents = (char *) value_contents (args[argument]);
669
670 /* Pad the argument appropriately. */
671 int padded_len = align_up (len, wordsize);
672 /* Use std::vector here to get zero initialization. */
673 std::vector<gdb_byte> padded (padded_len);
674
675 memcpy ((len < wordsize ? padded.data () + padded_len - len
676 : padded.data ()),
677 contents, len);
678
679 /* Could the argument fit in the remaining registers? */
680 if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize)
681 {
682 /* Are we going to pass it on the stack anyway, for no good
683 reason? */
684 if (len > wordsize && len % wordsize)
685 {
686 /* I feel so unclean. */
687 write_memory (sp + stack_offset, padded.data (), padded_len);
688 stack_offset += padded_len;
689
690 /* That's right --- even though we passed the argument
691 on the stack, we consume the registers anyway! Love
692 me, love my dog. */
693 reg += padded_len / wordsize;
694 }
695 else
696 {
697 /* Heavens to Betsy --- it's really going in registers!
698 Note that on the h8/300s, there are gaps between the
699 registers in the register file. */
700 int offset;
701
702 for (offset = 0; offset < padded_len; offset += wordsize)
703 {
704 ULONGEST word
705 = extract_unsigned_integer (&padded[offset],
706 wordsize, byte_order);
707 regcache_cooked_write_unsigned (regcache, reg++, word);
708 }
709 }
710 }
711 else
712 {
713 /* It doesn't fit in registers! Onto the stack it goes. */
714 write_memory (sp + stack_offset, padded.data (), padded_len);
715 stack_offset += padded_len;
716
717 /* Once one argument has spilled onto the stack, all
718 subsequent arguments go on the stack. */
719 reg = E_ARGLAST_REGNUM + 1;
720 }
721 }
722
723 /* Store return address. */
724 sp -= wordsize;
725 write_memory_unsigned_integer (sp, wordsize, byte_order, bp_addr);
726
727 /* Update stack pointer. */
728 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
729
730 /* Return the new stack pointer minus the return address slot since
731 that's what DWARF2/GCC uses as the frame's CFA. */
732 return sp + wordsize;
733 }
734
735 /* Function: extract_return_value
736 Figure out where in REGBUF the called function has left its return value.
737 Copy that into VALBUF. Be sure to account for CPU type. */
738
739 static void
740 h8300_extract_return_value (struct type *type, struct regcache *regcache,
741 gdb_byte *valbuf)
742 {
743 struct gdbarch *gdbarch = regcache->arch ();
744 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
745 int len = TYPE_LENGTH (type);
746 ULONGEST c, addr;
747
748 switch (len)
749 {
750 case 1:
751 case 2:
752 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
753 store_unsigned_integer (valbuf, len, byte_order, c);
754 break;
755 case 4: /* Needs two registers on plain H8/300 */
756 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
757 store_unsigned_integer (valbuf, 2, byte_order, c);
758 regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
759 store_unsigned_integer (valbuf + 2, 2, byte_order, c);
760 break;
761 case 8: /* long long is now 8 bytes. */
762 if (TYPE_CODE (type) == TYPE_CODE_INT)
763 {
764 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr);
765 c = read_memory_unsigned_integer ((CORE_ADDR) addr, len, byte_order);
766 store_unsigned_integer (valbuf, len, byte_order, c);
767 }
768 else
769 {
770 error (_("I don't know how this 8 byte value is returned."));
771 }
772 break;
773 }
774 }
775
776 static void
777 h8300h_extract_return_value (struct type *type, struct regcache *regcache,
778 gdb_byte *valbuf)
779 {
780 struct gdbarch *gdbarch = regcache->arch ();
781 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
782 ULONGEST c;
783
784 switch (TYPE_LENGTH (type))
785 {
786 case 1:
787 case 2:
788 case 4:
789 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
790 store_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order, c);
791 break;
792 case 8: /* long long is now 8 bytes. */
793 if (TYPE_CODE (type) == TYPE_CODE_INT)
794 {
795 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
796 store_unsigned_integer (valbuf, 4, byte_order, c);
797 regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
798 store_unsigned_integer (valbuf + 4, 4, byte_order, c);
799 }
800 else
801 {
802 error (_("I don't know how this 8 byte value is returned."));
803 }
804 break;
805 }
806 }
807
808 static int
809 h8300_use_struct_convention (struct type *value_type)
810 {
811 /* Types of 1, 2 or 4 bytes are returned in R0/R1, everything else on the
812 stack. */
813
814 if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
815 || TYPE_CODE (value_type) == TYPE_CODE_UNION)
816 return 1;
817 return !(TYPE_LENGTH (value_type) == 1
818 || TYPE_LENGTH (value_type) == 2
819 || TYPE_LENGTH (value_type) == 4);
820 }
821
822 static int
823 h8300h_use_struct_convention (struct type *value_type)
824 {
825 /* Types of 1, 2 or 4 bytes are returned in R0, INT types of 8 bytes are
826 returned in R0/R1, everything else on the stack. */
827 if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
828 || TYPE_CODE (value_type) == TYPE_CODE_UNION)
829 return 1;
830 return !(TYPE_LENGTH (value_type) == 1
831 || TYPE_LENGTH (value_type) == 2
832 || TYPE_LENGTH (value_type) == 4
833 || (TYPE_LENGTH (value_type) == 8
834 && TYPE_CODE (value_type) == TYPE_CODE_INT));
835 }
836
837 /* Function: store_return_value
838 Place the appropriate value in the appropriate registers.
839 Primarily used by the RETURN command. */
840
841 static void
842 h8300_store_return_value (struct type *type, struct regcache *regcache,
843 const gdb_byte *valbuf)
844 {
845 struct gdbarch *gdbarch = regcache->arch ();
846 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
847 ULONGEST val;
848
849 switch (TYPE_LENGTH (type))
850 {
851 case 1:
852 case 2: /* short... */
853 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
854 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
855 break;
856 case 4: /* long, float */
857 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
858 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
859 (val >> 16) & 0xffff);
860 regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM, val & 0xffff);
861 break;
862 case 8: /* long long, double and long double
863 are all defined as 4 byte types so
864 far so this shouldn't happen. */
865 error (_("I don't know how to return an 8 byte value."));
866 break;
867 }
868 }
869
870 static void
871 h8300h_store_return_value (struct type *type, struct regcache *regcache,
872 const gdb_byte *valbuf)
873 {
874 struct gdbarch *gdbarch = regcache->arch ();
875 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
876 ULONGEST val;
877
878 switch (TYPE_LENGTH (type))
879 {
880 case 1:
881 case 2:
882 case 4: /* long, float */
883 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
884 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
885 break;
886 case 8:
887 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
888 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
889 (val >> 32) & 0xffffffff);
890 regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM,
891 val & 0xffffffff);
892 break;
893 }
894 }
895
896 static enum return_value_convention
897 h8300_return_value (struct gdbarch *gdbarch, struct value *function,
898 struct type *type, struct regcache *regcache,
899 gdb_byte *readbuf, const gdb_byte *writebuf)
900 {
901 if (h8300_use_struct_convention (type))
902 return RETURN_VALUE_STRUCT_CONVENTION;
903 if (writebuf)
904 h8300_store_return_value (type, regcache, writebuf);
905 else if (readbuf)
906 h8300_extract_return_value (type, regcache, readbuf);
907 return RETURN_VALUE_REGISTER_CONVENTION;
908 }
909
910 static enum return_value_convention
911 h8300h_return_value (struct gdbarch *gdbarch, struct value *function,
912 struct type *type, struct regcache *regcache,
913 gdb_byte *readbuf, const gdb_byte *writebuf)
914 {
915 if (h8300h_use_struct_convention (type))
916 {
917 if (readbuf)
918 {
919 ULONGEST addr;
920
921 regcache_raw_read_unsigned (regcache, E_R0_REGNUM, &addr);
922 read_memory (addr, readbuf, TYPE_LENGTH (type));
923 }
924
925 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
926 }
927 if (writebuf)
928 h8300h_store_return_value (type, regcache, writebuf);
929 else if (readbuf)
930 h8300h_extract_return_value (type, regcache, readbuf);
931 return RETURN_VALUE_REGISTER_CONVENTION;
932 }
933
934 /* Implementation of 'register_sim_regno' gdbarch method. */
935
936 static int
937 h8300_register_sim_regno (struct gdbarch *gdbarch, int regnum)
938 {
939 /* Only makes sense to supply raw registers. */
940 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
941
942 /* We hide the raw ccr from the user by making it nameless. Because
943 the default register_sim_regno hook returns
944 LEGACY_SIM_REGNO_IGNORE for unnamed registers, we need to
945 override it. The sim register numbering is compatible with
946 gdb's. */
947 return regnum;
948 }
949
950 static const char *
951 h8300_register_name (struct gdbarch *gdbarch, int regno)
952 {
953 /* The register names change depending on which h8300 processor
954 type is selected. */
955 static const char *register_names[] = {
956 "r0", "r1", "r2", "r3", "r4", "r5", "r6",
957 "sp", "", "pc", "cycles", "tick", "inst",
958 "ccr", /* pseudo register */
959 };
960 if (regno < 0
961 || regno >= (sizeof (register_names) / sizeof (*register_names)))
962 internal_error (__FILE__, __LINE__,
963 _("h8300_register_name: illegal register number %d"),
964 regno);
965 else
966 return register_names[regno];
967 }
968
969 static const char *
970 h8300s_register_name (struct gdbarch *gdbarch, int regno)
971 {
972 static const char *register_names[] = {
973 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
974 "sp", "", "pc", "cycles", "", "tick", "inst",
975 "mach", "macl",
976 "ccr", "exr" /* pseudo registers */
977 };
978 if (regno < 0
979 || regno >= (sizeof (register_names) / sizeof (*register_names)))
980 internal_error (__FILE__, __LINE__,
981 _("h8300s_register_name: illegal register number %d"),
982 regno);
983 else
984 return register_names[regno];
985 }
986
987 static const char *
988 h8300sx_register_name (struct gdbarch *gdbarch, int regno)
989 {
990 static const char *register_names[] = {
991 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
992 "sp", "", "pc", "cycles", "", "tick", "inst",
993 "mach", "macl", "sbr", "vbr",
994 "ccr", "exr" /* pseudo registers */
995 };
996 if (regno < 0
997 || regno >= (sizeof (register_names) / sizeof (*register_names)))
998 internal_error (__FILE__, __LINE__,
999 _("h8300sx_register_name: illegal register number %d"),
1000 regno);
1001 else
1002 return register_names[regno];
1003 }
1004
1005 static void
1006 h8300_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1007 struct frame_info *frame, int regno)
1008 {
1009 LONGEST rval;
1010 const char *name = gdbarch_register_name (gdbarch, regno);
1011
1012 if (!name || !*name)
1013 return;
1014
1015 rval = get_frame_register_signed (frame, regno);
1016
1017 fprintf_filtered (file, "%-14s ", name);
1018 if ((regno == E_PSEUDO_CCR_REGNUM (gdbarch)) || \
1019 (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch)))
1020 {
1021 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1022 print_longest (file, 'u', 1, rval);
1023 }
1024 else
1025 {
1026 fprintf_filtered (file, "0x%s ", phex ((ULONGEST) rval,
1027 BINWORD (gdbarch)));
1028 print_longest (file, 'd', 1, rval);
1029 }
1030 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1031 {
1032 /* CCR register */
1033 int C, Z, N, V;
1034 unsigned char l = rval & 0xff;
1035 fprintf_filtered (file, "\t");
1036 fprintf_filtered (file, "I-%d ", (l & 0x80) != 0);
1037 fprintf_filtered (file, "UI-%d ", (l & 0x40) != 0);
1038 fprintf_filtered (file, "H-%d ", (l & 0x20) != 0);
1039 fprintf_filtered (file, "U-%d ", (l & 0x10) != 0);
1040 N = (l & 0x8) != 0;
1041 Z = (l & 0x4) != 0;
1042 V = (l & 0x2) != 0;
1043 C = (l & 0x1) != 0;
1044 fprintf_filtered (file, "N-%d ", N);
1045 fprintf_filtered (file, "Z-%d ", Z);
1046 fprintf_filtered (file, "V-%d ", V);
1047 fprintf_filtered (file, "C-%d ", C);
1048 if ((C | Z) == 0)
1049 fprintf_filtered (file, "u> ");
1050 if ((C | Z) == 1)
1051 fprintf_filtered (file, "u<= ");
1052 if (C == 0)
1053 fprintf_filtered (file, "u>= ");
1054 if (C == 1)
1055 fprintf_filtered (file, "u< ");
1056 if (Z == 0)
1057 fprintf_filtered (file, "!= ");
1058 if (Z == 1)
1059 fprintf_filtered (file, "== ");
1060 if ((N ^ V) == 0)
1061 fprintf_filtered (file, ">= ");
1062 if ((N ^ V) == 1)
1063 fprintf_filtered (file, "< ");
1064 if ((Z | (N ^ V)) == 0)
1065 fprintf_filtered (file, "> ");
1066 if ((Z | (N ^ V)) == 1)
1067 fprintf_filtered (file, "<= ");
1068 }
1069 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch))
1070 {
1071 /* EXR register */
1072 unsigned char l = rval & 0xff;
1073 fprintf_filtered (file, "\t");
1074 fprintf_filtered (file, "T-%d - - - ", (l & 0x80) != 0);
1075 fprintf_filtered (file, "I2-%d ", (l & 4) != 0);
1076 fprintf_filtered (file, "I1-%d ", (l & 2) != 0);
1077 fprintf_filtered (file, "I0-%d", (l & 1) != 0);
1078 }
1079 fprintf_filtered (file, "\n");
1080 }
1081
1082 static void
1083 h8300_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1084 struct frame_info *frame, int regno, int cpregs)
1085 {
1086 if (regno < 0)
1087 {
1088 for (regno = E_R0_REGNUM; regno <= E_SP_REGNUM; ++regno)
1089 h8300_print_register (gdbarch, file, frame, regno);
1090 h8300_print_register (gdbarch, file, frame,
1091 E_PSEUDO_CCR_REGNUM (gdbarch));
1092 h8300_print_register (gdbarch, file, frame, E_PC_REGNUM);
1093 if (is_h8300smode (gdbarch))
1094 {
1095 h8300_print_register (gdbarch, file, frame,
1096 E_PSEUDO_EXR_REGNUM (gdbarch));
1097 if (is_h8300sxmode (gdbarch))
1098 {
1099 h8300_print_register (gdbarch, file, frame, E_SBR_REGNUM);
1100 h8300_print_register (gdbarch, file, frame, E_VBR_REGNUM);
1101 }
1102 h8300_print_register (gdbarch, file, frame, E_MACH_REGNUM);
1103 h8300_print_register (gdbarch, file, frame, E_MACL_REGNUM);
1104 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1105 h8300_print_register (gdbarch, file, frame, E_TICKS_REGNUM);
1106 h8300_print_register (gdbarch, file, frame, E_INSTS_REGNUM);
1107 }
1108 else
1109 {
1110 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1111 h8300_print_register (gdbarch, file, frame, E_TICK_REGNUM);
1112 h8300_print_register (gdbarch, file, frame, E_INST_REGNUM);
1113 }
1114 }
1115 else
1116 {
1117 if (regno == E_CCR_REGNUM)
1118 h8300_print_register (gdbarch, file, frame,
1119 E_PSEUDO_CCR_REGNUM (gdbarch));
1120 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch)
1121 && is_h8300smode (gdbarch))
1122 h8300_print_register (gdbarch, file, frame,
1123 E_PSEUDO_EXR_REGNUM (gdbarch));
1124 else
1125 h8300_print_register (gdbarch, file, frame, regno);
1126 }
1127 }
1128
1129 static struct type *
1130 h8300_register_type (struct gdbarch *gdbarch, int regno)
1131 {
1132 if (regno < 0 || regno >= gdbarch_num_cooked_regs (gdbarch))
1133 internal_error (__FILE__, __LINE__,
1134 _("h8300_register_type: illegal register number %d"),
1135 regno);
1136 else
1137 {
1138 switch (regno)
1139 {
1140 case E_PC_REGNUM:
1141 return builtin_type (gdbarch)->builtin_func_ptr;
1142 case E_SP_REGNUM:
1143 case E_FP_REGNUM:
1144 return builtin_type (gdbarch)->builtin_data_ptr;
1145 default:
1146 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1147 return builtin_type (gdbarch)->builtin_uint8;
1148 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
1149 return builtin_type (gdbarch)->builtin_uint8;
1150 else if (is_h8300hmode (gdbarch))
1151 return builtin_type (gdbarch)->builtin_int32;
1152 else
1153 return builtin_type (gdbarch)->builtin_int16;
1154 }
1155 }
1156 }
1157
1158 /* Helpers for h8300_pseudo_register_read. We expose ccr/exr as
1159 pseudo-registers to users with smaller sizes than the corresponding
1160 raw registers. These helpers extend/narrow the values. */
1161
1162 static enum register_status
1163 pseudo_from_raw_register (struct gdbarch *gdbarch, readable_regcache *regcache,
1164 gdb_byte *buf, int pseudo_regno, int raw_regno)
1165 {
1166 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1167 enum register_status status;
1168 ULONGEST val;
1169
1170 status = regcache->raw_read (raw_regno, &val);
1171 if (status == REG_VALID)
1172 store_unsigned_integer (buf,
1173 register_size (gdbarch, pseudo_regno),
1174 byte_order, val);
1175 return status;
1176 }
1177
1178 /* See pseudo_from_raw_register. */
1179
1180 static void
1181 raw_from_pseudo_register (struct gdbarch *gdbarch, struct regcache *regcache,
1182 const gdb_byte *buf, int raw_regno, int pseudo_regno)
1183 {
1184 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1185 ULONGEST val;
1186
1187 val = extract_unsigned_integer (buf, register_size (gdbarch, pseudo_regno),
1188 byte_order);
1189 regcache_raw_write_unsigned (regcache, raw_regno, val);
1190 }
1191
1192 static enum register_status
1193 h8300_pseudo_register_read (struct gdbarch *gdbarch,
1194 readable_regcache *regcache, int regno,
1195 gdb_byte *buf)
1196 {
1197 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1198 {
1199 return pseudo_from_raw_register (gdbarch, regcache, buf,
1200 regno, E_CCR_REGNUM);
1201 }
1202 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
1203 {
1204 return pseudo_from_raw_register (gdbarch, regcache, buf,
1205 regno, E_EXR_REGNUM);
1206 }
1207 else
1208 return regcache->raw_read (regno, buf);
1209 }
1210
1211 static void
1212 h8300_pseudo_register_write (struct gdbarch *gdbarch,
1213 struct regcache *regcache, int regno,
1214 const gdb_byte *buf)
1215 {
1216 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1217 raw_from_pseudo_register (gdbarch, regcache, buf, E_CCR_REGNUM, regno);
1218 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
1219 raw_from_pseudo_register (gdbarch, regcache, buf, E_EXR_REGNUM, regno);
1220 else
1221 regcache->raw_write (regno, buf);
1222 }
1223
1224 static int
1225 h8300_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno)
1226 {
1227 if (regno == E_CCR_REGNUM)
1228 return E_PSEUDO_CCR_REGNUM (gdbarch);
1229 return regno;
1230 }
1231
1232 static int
1233 h8300s_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno)
1234 {
1235 if (regno == E_CCR_REGNUM)
1236 return E_PSEUDO_CCR_REGNUM (gdbarch);
1237 if (regno == E_EXR_REGNUM)
1238 return E_PSEUDO_EXR_REGNUM (gdbarch);
1239 return regno;
1240 }
1241
1242 /*static unsigned char breakpoint[] = { 0x7A, 0xFF }; *//* ??? */
1243 constexpr gdb_byte h8300_break_insn[] = { 0x01, 0x80 }; /* Sleep */
1244
1245 typedef BP_MANIPULATION (h8300_break_insn) h8300_breakpoint;
1246
1247 static struct gdbarch *
1248 h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1249 {
1250 struct gdbarch *gdbarch;
1251
1252 arches = gdbarch_list_lookup_by_info (arches, &info);
1253 if (arches != NULL)
1254 return arches->gdbarch;
1255
1256 if (info.bfd_arch_info->arch != bfd_arch_h8300)
1257 return NULL;
1258
1259 gdbarch = gdbarch_alloc (&info, 0);
1260
1261 set_gdbarch_register_sim_regno (gdbarch, h8300_register_sim_regno);
1262
1263 switch (info.bfd_arch_info->mach)
1264 {
1265 case bfd_mach_h8300:
1266 set_gdbarch_num_regs (gdbarch, 13);
1267 set_gdbarch_num_pseudo_regs (gdbarch, 1);
1268 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1269 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1270 set_gdbarch_register_name (gdbarch, h8300_register_name);
1271 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1272 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1273 set_gdbarch_return_value (gdbarch, h8300_return_value);
1274 break;
1275 case bfd_mach_h8300h:
1276 case bfd_mach_h8300hn:
1277 set_gdbarch_num_regs (gdbarch, 13);
1278 set_gdbarch_num_pseudo_regs (gdbarch, 1);
1279 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1280 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1281 set_gdbarch_register_name (gdbarch, h8300_register_name);
1282 if (info.bfd_arch_info->mach != bfd_mach_h8300hn)
1283 {
1284 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1285 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1286 }
1287 else
1288 {
1289 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1290 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1291 }
1292 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1293 break;
1294 case bfd_mach_h8300s:
1295 case bfd_mach_h8300sn:
1296 set_gdbarch_num_regs (gdbarch, 16);
1297 set_gdbarch_num_pseudo_regs (gdbarch, 2);
1298 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1299 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1300 set_gdbarch_register_name (gdbarch, h8300s_register_name);
1301 if (info.bfd_arch_info->mach != bfd_mach_h8300sn)
1302 {
1303 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1304 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1305 }
1306 else
1307 {
1308 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1309 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1310 }
1311 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1312 break;
1313 case bfd_mach_h8300sx:
1314 case bfd_mach_h8300sxn:
1315 set_gdbarch_num_regs (gdbarch, 18);
1316 set_gdbarch_num_pseudo_regs (gdbarch, 2);
1317 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1318 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1319 set_gdbarch_register_name (gdbarch, h8300sx_register_name);
1320 if (info.bfd_arch_info->mach != bfd_mach_h8300sxn)
1321 {
1322 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1323 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1324 }
1325 else
1326 {
1327 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1328 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1329 }
1330 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1331 break;
1332 }
1333
1334 set_gdbarch_pseudo_register_read (gdbarch, h8300_pseudo_register_read);
1335 set_gdbarch_pseudo_register_write (gdbarch, h8300_pseudo_register_write);
1336
1337 /*
1338 * Basic register fields and methods.
1339 */
1340
1341 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1342 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1343 set_gdbarch_register_type (gdbarch, h8300_register_type);
1344 set_gdbarch_print_registers_info (gdbarch, h8300_print_registers_info);
1345
1346 /*
1347 * Frame Info
1348 */
1349 set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue);
1350
1351 /* Frame unwinder. */
1352 set_gdbarch_unwind_pc (gdbarch, h8300_unwind_pc);
1353 set_gdbarch_unwind_sp (gdbarch, h8300_unwind_sp);
1354 set_gdbarch_dummy_id (gdbarch, h8300_dummy_id);
1355 frame_base_set_default (gdbarch, &h8300_frame_base);
1356
1357 /*
1358 * Miscelany
1359 */
1360 /* Stack grows up. */
1361 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1362
1363 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1364 h8300_breakpoint::kind_from_pc);
1365 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1366 h8300_breakpoint::bp_from_kind);
1367 set_gdbarch_push_dummy_call (gdbarch, h8300_push_dummy_call);
1368
1369 set_gdbarch_char_signed (gdbarch, 0);
1370 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1371 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1372 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1373
1374 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1375 set_gdbarch_wchar_signed (gdbarch, 0);
1376
1377 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1378 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1379 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1380 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1381
1382 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1383
1384 /* Hook in the DWARF CFI frame unwinder. */
1385 dwarf2_append_unwinders (gdbarch);
1386 frame_unwind_append_unwinder (gdbarch, &h8300_frame_unwind);
1387
1388 return gdbarch;
1389
1390 }
1391
1392 void
1393 _initialize_h8300_tdep (void)
1394 {
1395 register_gdbarch_init (bfd_arch_h8300, h8300_gdbarch_init);
1396 }
1397
1398 static int
1399 is_h8300hmode (struct gdbarch *gdbarch)
1400 {
1401 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1402 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1403 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
1404 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
1405 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300h
1406 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
1407 }
1408
1409 static int
1410 is_h8300smode (struct gdbarch *gdbarch)
1411 {
1412 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1413 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1414 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
1415 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn;
1416 }
1417
1418 static int
1419 is_h8300sxmode (struct gdbarch *gdbarch)
1420 {
1421 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1422 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn;
1423 }
1424
1425 static int
1426 is_h8300_normal_mode (struct gdbarch *gdbarch)
1427 {
1428 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1429 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
1430 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
1431 }
This page took 0.072509 seconds and 5 git commands to generate.