Index: ChangeLog
[deliverable/binutils-gdb.git] / gdb / hppa-linux-tdep.c
1 /* Target-dependent code for GNU/Linux running on PA-RISC, for GDB.
2
3 Copyright (C) 2004, 2006 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include "defs.h"
23 #include "gdbcore.h"
24 #include "osabi.h"
25 #include "target.h"
26 #include "objfiles.h"
27 #include "solib-svr4.h"
28 #include "glibc-tdep.h"
29 #include "frame-unwind.h"
30 #include "trad-frame.h"
31 #include "dwarf2-frame.h"
32 #include "value.h"
33 #include "regset.h"
34 #include "hppa-tdep.h"
35
36 #include "elf/common.h"
37
38 #if 0
39 /* Convert DWARF register number REG to the appropriate register
40 number used by GDB. */
41 static int
42 hppa_dwarf_reg_to_regnum (int reg)
43 {
44 /* registers 0 - 31 are the same in both sets */
45 if (reg < 32)
46 return reg;
47
48 /* dwarf regs 32 to 85 are fpregs 4 - 31 */
49 if (reg >= 32 && reg <= 85)
50 return HPPA_FP4_REGNUM + (reg - 32);
51
52 warning (_("Unmapped DWARF Register #%d encountered."), reg);
53 return -1;
54 }
55 #endif
56
57 static void
58 hppa_linux_target_write_pc (CORE_ADDR v, ptid_t ptid)
59 {
60 /* Probably this should be done by the kernel, but it isn't. */
61 write_register_pid (HPPA_PCOQ_HEAD_REGNUM, v | 0x3, ptid);
62 write_register_pid (HPPA_PCOQ_TAIL_REGNUM, (v + 4) | 0x3, ptid);
63 }
64
65 /* An instruction to match. */
66 struct insn_pattern
67 {
68 unsigned int data; /* See if it matches this.... */
69 unsigned int mask; /* ... with this mask. */
70 };
71
72 static struct insn_pattern hppa_sigtramp[] = {
73 /* ldi 0, %r25 or ldi 1, %r25 */
74 { 0x34190000, 0xfffffffd },
75 /* ldi __NR_rt_sigreturn, %r20 */
76 { 0x3414015a, 0xffffffff },
77 /* be,l 0x100(%sr2, %r0), %sr0, %r31 */
78 { 0xe4008200, 0xffffffff },
79 /* nop */
80 { 0x08000240, 0xffffffff },
81 { 0, 0 }
82 };
83
84 #define HPPA_MAX_INSN_PATTERN_LEN (4)
85
86 /* Return non-zero if the instructions at PC match the series
87 described in PATTERN, or zero otherwise. PATTERN is an array of
88 'struct insn_pattern' objects, terminated by an entry whose mask is
89 zero.
90
91 When the match is successful, fill INSN[i] with what PATTERN[i]
92 matched. */
93 static int
94 insns_match_pattern (CORE_ADDR pc,
95 struct insn_pattern *pattern,
96 unsigned int *insn)
97 {
98 int i;
99 CORE_ADDR npc = pc;
100
101 for (i = 0; pattern[i].mask; i++)
102 {
103 char buf[4];
104
105 read_memory_nobpt (npc, buf, 4);
106 insn[i] = extract_unsigned_integer (buf, 4);
107 if ((insn[i] & pattern[i].mask) == pattern[i].data)
108 npc += 4;
109 else
110 return 0;
111 }
112 return 1;
113 }
114
115 /* Signal frames. */
116
117 /* (This is derived from MD_FALLBACK_FRAME_STATE_FOR in gcc.)
118
119 Unfortunately, because of various bugs and changes to the kernel,
120 we have several cases to deal with.
121
122 In 2.4, the signal trampoline is 4 bytes, and pc should point directly at
123 the beginning of the trampoline and struct rt_sigframe.
124
125 In <= 2.6.5-rc2-pa3, the signal trampoline is 9 bytes, and pc points at
126 the 4th word in the trampoline structure. This is wrong, it should point
127 at the 5th word. This is fixed in 2.6.5-rc2-pa4.
128
129 To detect these cases, we first take pc, align it to 64-bytes
130 to get the beginning of the signal frame, and then check offsets 0, 4
131 and 5 to see if we found the beginning of the trampoline. This will
132 tell us how to locate the sigcontext structure.
133
134 Note that with a 2.4 64-bit kernel, the signal context is not properly
135 passed back to userspace so the unwind will not work correctly. */
136 static CORE_ADDR
137 hppa_linux_sigtramp_find_sigcontext (CORE_ADDR pc)
138 {
139 unsigned int dummy[HPPA_MAX_INSN_PATTERN_LEN];
140 int offs = 0;
141 int try;
142 /* offsets to try to find the trampoline */
143 static int pcoffs[] = { 0, 4*4, 5*4 };
144 /* offsets to the rt_sigframe structure */
145 static int sfoffs[] = { 4*4, 10*4, 10*4 };
146 CORE_ADDR sp;
147
148 /* Most of the time, this will be correct. The one case when this will
149 fail is if the user defined an alternate stack, in which case the
150 beginning of the stack will not be align_down (pc, 64). */
151 sp = align_down (pc, 64);
152
153 /* rt_sigreturn trampoline:
154 3419000x ldi 0, %r25 or ldi 1, %r25 (x = 0 or 2)
155 3414015a ldi __NR_rt_sigreturn, %r20
156 e4008200 be,l 0x100(%sr2, %r0), %sr0, %r31
157 08000240 nop */
158
159 for (try = 0; try < ARRAY_SIZE (pcoffs); try++)
160 {
161 if (insns_match_pattern (sp + pcoffs[try], hppa_sigtramp, dummy))
162 {
163 offs = sfoffs[try];
164 break;
165 }
166 }
167
168 if (offs == 0)
169 {
170 if (insns_match_pattern (pc, hppa_sigtramp, dummy))
171 {
172 /* sigaltstack case: we have no way of knowing which offset to
173 use in this case; default to new kernel handling. If this is
174 wrong the unwinding will fail. */
175 try = 2;
176 sp = pc - pcoffs[try];
177 }
178 else
179 {
180 return 0;
181 }
182 }
183
184 /* sp + sfoffs[try] points to a struct rt_sigframe, which contains
185 a struct siginfo and a struct ucontext. struct ucontext contains
186 a struct sigcontext. Return an offset to this sigcontext here. Too
187 bad we cannot include system specific headers :-(.
188 sizeof(struct siginfo) == 128
189 offsetof(struct ucontext, uc_mcontext) == 24. */
190 return sp + sfoffs[try] + 128 + 24;
191 }
192
193 struct hppa_linux_sigtramp_unwind_cache
194 {
195 CORE_ADDR base;
196 struct trad_frame_saved_reg *saved_regs;
197 };
198
199 static struct hppa_linux_sigtramp_unwind_cache *
200 hppa_linux_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
201 void **this_cache)
202 {
203 struct gdbarch *gdbarch = get_frame_arch (next_frame);
204 struct hppa_linux_sigtramp_unwind_cache *info;
205 CORE_ADDR pc, scptr;
206 int i;
207
208 if (*this_cache)
209 return *this_cache;
210
211 info = FRAME_OBSTACK_ZALLOC (struct hppa_linux_sigtramp_unwind_cache);
212 *this_cache = info;
213 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
214
215 pc = frame_pc_unwind (next_frame);
216 scptr = hppa_linux_sigtramp_find_sigcontext (pc);
217
218 /* structure of struct sigcontext:
219
220 struct sigcontext {
221 unsigned long sc_flags;
222 unsigned long sc_gr[32];
223 unsigned long long sc_fr[32];
224 unsigned long sc_iasq[2];
225 unsigned long sc_iaoq[2];
226 unsigned long sc_sar; */
227
228 /* Skip sc_flags. */
229 scptr += 4;
230
231 /* GR[0] is the psw, we don't restore that. */
232 scptr += 4;
233
234 /* General registers. */
235 for (i = 1; i < 32; i++)
236 {
237 info->saved_regs[HPPA_R0_REGNUM + i].addr = scptr;
238 scptr += 4;
239 }
240
241 /* Pad. */
242 scptr += 4;
243
244 /* FP regs; FP0-3 are not restored. */
245 scptr += (8 * 4);
246
247 for (i = 4; i < 32; i++)
248 {
249 info->saved_regs[HPPA_FP0_REGNUM + (i * 2)].addr = scptr;
250 scptr += 4;
251 info->saved_regs[HPPA_FP0_REGNUM + (i * 2) + 1].addr = scptr;
252 scptr += 4;
253 }
254
255 /* IASQ/IAOQ. */
256 info->saved_regs[HPPA_PCSQ_HEAD_REGNUM].addr = scptr;
257 scptr += 4;
258 info->saved_regs[HPPA_PCSQ_TAIL_REGNUM].addr = scptr;
259 scptr += 4;
260
261 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = scptr;
262 scptr += 4;
263 info->saved_regs[HPPA_PCOQ_TAIL_REGNUM].addr = scptr;
264 scptr += 4;
265
266 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
267
268 return info;
269 }
270
271 static void
272 hppa_linux_sigtramp_frame_this_id (struct frame_info *next_frame,
273 void **this_prologue_cache,
274 struct frame_id *this_id)
275 {
276 struct hppa_linux_sigtramp_unwind_cache *info
277 = hppa_linux_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
278 *this_id = frame_id_build (info->base, frame_pc_unwind (next_frame));
279 }
280
281 static void
282 hppa_linux_sigtramp_frame_prev_register (struct frame_info *next_frame,
283 void **this_prologue_cache,
284 int regnum, int *optimizedp,
285 enum lval_type *lvalp,
286 CORE_ADDR *addrp,
287 int *realnump, gdb_byte *valuep)
288 {
289 struct hppa_linux_sigtramp_unwind_cache *info
290 = hppa_linux_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
291 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
292 optimizedp, lvalp, addrp, realnump, valuep);
293 }
294
295 static const struct frame_unwind hppa_linux_sigtramp_frame_unwind = {
296 SIGTRAMP_FRAME,
297 hppa_linux_sigtramp_frame_this_id,
298 hppa_linux_sigtramp_frame_prev_register
299 };
300
301 /* hppa-linux always uses "new-style" rt-signals. The signal handler's return
302 address should point to a signal trampoline on the stack. The signal
303 trampoline is embedded in a rt_sigframe structure that is aligned on
304 the stack. We take advantage of the fact that sp must be 64-byte aligned,
305 and the trampoline is small, so by rounding down the trampoline address
306 we can find the beginning of the struct rt_sigframe. */
307 static const struct frame_unwind *
308 hppa_linux_sigtramp_unwind_sniffer (struct frame_info *next_frame)
309 {
310 CORE_ADDR pc = frame_pc_unwind (next_frame);
311
312 if (hppa_linux_sigtramp_find_sigcontext (pc))
313 return &hppa_linux_sigtramp_frame_unwind;
314
315 return NULL;
316 }
317
318 /* Attempt to find (and return) the global pointer for the given
319 function.
320
321 This is a rather nasty bit of code searchs for the .dynamic section
322 in the objfile corresponding to the pc of the function we're trying
323 to call. Once it finds the addresses at which the .dynamic section
324 lives in the child process, it scans the Elf32_Dyn entries for a
325 DT_PLTGOT tag. If it finds one of these, the corresponding
326 d_un.d_ptr value is the global pointer. */
327
328 static CORE_ADDR
329 hppa_linux_find_global_pointer (struct value *function)
330 {
331 struct obj_section *faddr_sect;
332 CORE_ADDR faddr;
333
334 faddr = value_as_address (function);
335
336 /* Is this a plabel? If so, dereference it to get the gp value. */
337 if (faddr & 2)
338 {
339 int status;
340 char buf[4];
341
342 faddr &= ~3;
343
344 status = target_read_memory (faddr + 4, buf, sizeof (buf));
345 if (status == 0)
346 return extract_unsigned_integer (buf, sizeof (buf));
347 }
348
349 /* If the address is in the plt section, then the real function hasn't
350 yet been fixed up by the linker so we cannot determine the gp of
351 that function. */
352 if (in_plt_section (faddr, NULL))
353 return 0;
354
355 faddr_sect = find_pc_section (faddr);
356 if (faddr_sect != NULL)
357 {
358 struct obj_section *osect;
359
360 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
361 {
362 if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0)
363 break;
364 }
365
366 if (osect < faddr_sect->objfile->sections_end)
367 {
368 CORE_ADDR addr;
369
370 addr = osect->addr;
371 while (addr < osect->endaddr)
372 {
373 int status;
374 LONGEST tag;
375 char buf[4];
376
377 status = target_read_memory (addr, buf, sizeof (buf));
378 if (status != 0)
379 break;
380 tag = extract_signed_integer (buf, sizeof (buf));
381
382 if (tag == DT_PLTGOT)
383 {
384 CORE_ADDR global_pointer;
385
386 status = target_read_memory (addr + 4, buf, sizeof (buf));
387 if (status != 0)
388 break;
389 global_pointer = extract_unsigned_integer (buf, sizeof (buf));
390
391 /* The payoff... */
392 return global_pointer;
393 }
394
395 if (tag == DT_NULL)
396 break;
397
398 addr += 8;
399 }
400 }
401 }
402 return 0;
403 }
404 \f
405 /*
406 * Registers saved in a coredump:
407 * gr0..gr31
408 * sr0..sr7
409 * iaoq0..iaoq1
410 * iasq0..iasq1
411 * sar, iir, isr, ior, ipsw
412 * cr0, cr24..cr31
413 * cr8,9,12,13
414 * cr10, cr15
415 */
416
417 #define GR_REGNUM(_n) (HPPA_R0_REGNUM+_n)
418 #define TR_REGNUM(_n) (HPPA_TR0_REGNUM+_n)
419 static const int greg_map[] =
420 {
421 GR_REGNUM(0), GR_REGNUM(1), GR_REGNUM(2), GR_REGNUM(3),
422 GR_REGNUM(4), GR_REGNUM(5), GR_REGNUM(6), GR_REGNUM(7),
423 GR_REGNUM(8), GR_REGNUM(9), GR_REGNUM(10), GR_REGNUM(11),
424 GR_REGNUM(12), GR_REGNUM(13), GR_REGNUM(14), GR_REGNUM(15),
425 GR_REGNUM(16), GR_REGNUM(17), GR_REGNUM(18), GR_REGNUM(19),
426 GR_REGNUM(20), GR_REGNUM(21), GR_REGNUM(22), GR_REGNUM(23),
427 GR_REGNUM(24), GR_REGNUM(25), GR_REGNUM(26), GR_REGNUM(27),
428 GR_REGNUM(28), GR_REGNUM(29), GR_REGNUM(30), GR_REGNUM(31),
429
430 HPPA_SR4_REGNUM+1, HPPA_SR4_REGNUM+2, HPPA_SR4_REGNUM+3, HPPA_SR4_REGNUM+4,
431 HPPA_SR4_REGNUM, HPPA_SR4_REGNUM+5, HPPA_SR4_REGNUM+6, HPPA_SR4_REGNUM+7,
432
433 HPPA_PCOQ_HEAD_REGNUM, HPPA_PCOQ_TAIL_REGNUM,
434 HPPA_PCSQ_HEAD_REGNUM, HPPA_PCSQ_TAIL_REGNUM,
435
436 HPPA_SAR_REGNUM, HPPA_IIR_REGNUM, HPPA_ISR_REGNUM, HPPA_IOR_REGNUM,
437 HPPA_IPSW_REGNUM, HPPA_RCR_REGNUM,
438
439 TR_REGNUM(0), TR_REGNUM(1), TR_REGNUM(2), TR_REGNUM(3),
440 TR_REGNUM(4), TR_REGNUM(5), TR_REGNUM(6), TR_REGNUM(7),
441
442 HPPA_PID0_REGNUM, HPPA_PID1_REGNUM, HPPA_PID2_REGNUM, HPPA_PID3_REGNUM,
443 HPPA_CCR_REGNUM, HPPA_EIEM_REGNUM,
444 };
445
446 static void
447 hppa_linux_supply_regset (const struct regset *regset,
448 struct regcache *regcache,
449 int regnum, const void *regs, size_t len)
450 {
451 struct gdbarch *arch = get_regcache_arch (regcache);
452 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
453 const char *buf = regs;
454 int i, offset;
455
456 offset = 0;
457 for (i = 0; i < ARRAY_SIZE (greg_map); i++)
458 {
459 if (regnum == greg_map[i] || regnum == -1)
460 regcache_raw_supply (regcache, greg_map[i], buf + offset);
461
462 offset += tdep->bytes_per_address;
463 }
464 }
465
466 static void
467 hppa_linux_supply_fpregset (const struct regset *regset,
468 struct regcache *regcache,
469 int regnum, const void *regs, size_t len)
470 {
471 const char *buf = regs;
472 int i, offset;
473
474 offset = 0;
475 for (i = 0; i < 31; i++)
476 {
477 if (regnum == HPPA_FP0_REGNUM + i || regnum == -1)
478 regcache_raw_supply (regcache, HPPA_FP0_REGNUM + i,
479 buf + offset);
480 offset += 8;
481 }
482 }
483
484 /* HPPA Linux kernel register set. */
485 static struct regset hppa_linux_regset =
486 {
487 NULL,
488 hppa_linux_supply_regset
489 };
490
491 static struct regset hppa_linux_fpregset =
492 {
493 NULL,
494 hppa_linux_supply_fpregset
495 };
496
497 static const struct regset *
498 hppa_linux_regset_from_core_section (struct gdbarch *gdbarch,
499 const char *sect_name,
500 size_t sect_size)
501 {
502 if (strcmp (sect_name, ".reg") == 0)
503 return &hppa_linux_regset;
504 else if (strcmp (sect_name, ".reg2") == 0)
505 return &hppa_linux_fpregset;
506
507 return NULL;
508 }
509 \f
510
511 /* Forward declarations. */
512 extern initialize_file_ftype _initialize_hppa_linux_tdep;
513
514 static void
515 hppa_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
516 {
517 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
518
519 /* GNU/Linux is always ELF. */
520 tdep->is_elf = 1;
521
522 tdep->find_global_pointer = hppa_linux_find_global_pointer;
523
524 set_gdbarch_write_pc (gdbarch, hppa_linux_target_write_pc);
525
526 frame_unwind_append_sniffer (gdbarch, hppa_linux_sigtramp_unwind_sniffer);
527
528 /* GNU/Linux uses SVR4-style shared libraries. */
529 set_solib_svr4_fetch_link_map_offsets
530 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
531
532 tdep->in_solib_call_trampoline = hppa_in_solib_call_trampoline;
533 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
534
535 /* GNU/Linux uses the dynamic linker included in the GNU C Library. */
536 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
537
538 /* On hppa-linux, currently, sizeof(long double) == 8. There has been
539 some discussions to support 128-bit long double, but it requires some
540 more work in gcc and glibc first. */
541 set_gdbarch_long_double_bit (gdbarch, 64);
542
543 set_gdbarch_regset_from_core_section
544 (gdbarch, hppa_linux_regset_from_core_section);
545
546 #if 0
547 /* Dwarf-2 unwinding support. Not yet working. */
548 set_gdbarch_dwarf_reg_to_regnum (gdbarch, hppa_dwarf_reg_to_regnum);
549 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa_dwarf_reg_to_regnum);
550 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
551 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
552 #endif
553
554 /* Enable TLS support. */
555 set_gdbarch_fetch_tls_load_module_address (gdbarch,
556 svr4_fetch_objfile_link_map);
557 }
558
559 void
560 _initialize_hppa_linux_tdep (void)
561 {
562 gdbarch_register_osabi (bfd_arch_hppa, 0, GDB_OSABI_LINUX, hppa_linux_init_abi);
563 gdbarch_register_osabi (bfd_arch_hppa, bfd_mach_hppa20w, GDB_OSABI_LINUX, hppa_linux_init_abi);
564 }
This page took 0.05099 seconds and 5 git commands to generate.