2004-06-06 Randolph Chung <tausq@debian.org>
[deliverable/binutils-gdb.git] / gdb / hppa-linux-tdep.c
1 /* Target-dependent code for Linux running on PA-RISC, for GDB.
2
3 Copyright 2004 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "gdbcore.h"
23 #include "osabi.h"
24 #include "target.h"
25 #include "objfiles.h"
26 #include "solib-svr4.h"
27 #include "glibc-tdep.h"
28 #include "frame-unwind.h"
29 #include "trad-frame.h"
30 #include "dwarf2-frame.h"
31 #include "value.h"
32 #include "hppa-tdep.h"
33
34 #include "elf/common.h"
35
36 #if 0
37 /* Convert DWARF register number REG to the appropriate register
38 number used by GDB. */
39 static int
40 hppa_dwarf_reg_to_regnum (int reg)
41 {
42 /* registers 0 - 31 are the same in both sets */
43 if (reg < 32)
44 return reg;
45
46 /* dwarf regs 32 to 85 are fpregs 4 - 31 */
47 if (reg >= 32 && reg <= 85)
48 return HPPA_FP4_REGNUM + (reg - 32);
49
50 warning ("Unmapped DWARF Register #%d encountered\n", reg);
51 return -1;
52 }
53 #endif
54
55 static void
56 hppa_linux_target_write_pc (CORE_ADDR v, ptid_t ptid)
57 {
58 /* Probably this should be done by the kernel, but it isn't. */
59 write_register_pid (HPPA_PCOQ_HEAD_REGNUM, v | 0x3, ptid);
60 write_register_pid (HPPA_PCOQ_TAIL_REGNUM, (v + 4) | 0x3, ptid);
61 }
62
63 /* An instruction to match. */
64 struct insn_pattern
65 {
66 unsigned int data; /* See if it matches this.... */
67 unsigned int mask; /* ... with this mask. */
68 };
69
70 /* See bfd/elf32-hppa.c */
71 static struct insn_pattern hppa_long_branch_stub[] = {
72 /* ldil LR'xxx,%r1 */
73 { 0x20200000, 0xffe00000 },
74 /* be,n RR'xxx(%sr4,%r1) */
75 { 0xe0202002, 0xffe02002 },
76 { 0, 0 }
77 };
78
79 static struct insn_pattern hppa_long_branch_pic_stub[] = {
80 /* b,l .+8, %r1 */
81 { 0xe8200000, 0xffe00000 },
82 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
83 { 0x28200000, 0xffe00000 },
84 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
85 { 0xe0202002, 0xffe02002 },
86 { 0, 0 }
87 };
88
89 static struct insn_pattern hppa_import_stub[] = {
90 /* addil LR'xxx, %dp */
91 { 0x2b600000, 0xffe00000 },
92 /* ldw RR'xxx(%r1), %r21 */
93 { 0x48350000, 0xffffb000 },
94 /* bv %r0(%r21) */
95 { 0xeaa0c000, 0xffffffff },
96 /* ldw RR'xxx+4(%r1), %r19 */
97 { 0x48330000, 0xffffb000 },
98 { 0, 0 }
99 };
100
101 static struct insn_pattern hppa_import_pic_stub[] = {
102 /* addil LR'xxx,%r19 */
103 { 0x2a600000, 0xffe00000 },
104 /* ldw RR'xxx(%r1),%r21 */
105 { 0x48350000, 0xffffb000 },
106 /* bv %r0(%r21) */
107 { 0xeaa0c000, 0xffffffff },
108 /* ldw RR'xxx+4(%r1),%r19 */
109 { 0x48330000, 0xffffb000 },
110 { 0, 0 },
111 };
112
113 static struct insn_pattern hppa_plt_stub[] = {
114 /* b,l 1b, %r20 - 1b is 3 insns before here */
115 { 0xea9f1fdd, 0xffffffff },
116 /* depi 0,31,2,%r20 */
117 { 0xd6801c1e, 0xffffffff },
118 { 0, 0 }
119 };
120
121 static struct insn_pattern hppa_sigtramp[] = {
122 /* ldi 0, %r25 or ldi 1, %r25 */
123 { 0x34190000, 0xfffffffd },
124 /* ldi __NR_rt_sigreturn, %r20 */
125 { 0x3414015a, 0xffffffff },
126 /* be,l 0x100(%sr2, %r0), %sr0, %r31 */
127 { 0xe4008200, 0xffffffff },
128 /* nop */
129 { 0x08000240, 0xffffffff },
130 { 0, 0 }
131 };
132
133 #define HPPA_MAX_INSN_PATTERN_LEN (4)
134
135 /* Return non-zero if the instructions at PC match the series
136 described in PATTERN, or zero otherwise. PATTERN is an array of
137 'struct insn_pattern' objects, terminated by an entry whose mask is
138 zero.
139
140 When the match is successful, fill INSN[i] with what PATTERN[i]
141 matched. */
142 static int
143 insns_match_pattern (CORE_ADDR pc,
144 struct insn_pattern *pattern,
145 unsigned int *insn)
146 {
147 int i;
148 CORE_ADDR npc = pc;
149
150 for (i = 0; pattern[i].mask; i++)
151 {
152 char buf[4];
153
154 read_memory_nobpt (npc, buf, 4);
155 insn[i] = extract_unsigned_integer (buf, 4);
156 if ((insn[i] & pattern[i].mask) == pattern[i].data)
157 npc += 4;
158 else
159 return 0;
160 }
161 return 1;
162 }
163
164 static int
165 hppa_linux_in_dyncall (CORE_ADDR pc)
166 {
167 static CORE_ADDR dyncall = 0;
168
169 /* FIXME: if we switch exec files, dyncall should be reinitialized */
170 if (!dyncall)
171 {
172 struct minimal_symbol *minsym;
173
174 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
175 if (minsym)
176 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
177 else
178 dyncall = -1;
179 }
180
181 return pc == dyncall;
182 }
183
184 /* There are several kinds of "trampolines" that we need to deal with:
185 - long branch stubs: these are inserted by the linker when a branch
186 target is too far away for a branch insn to reach
187 - plt stubs: these should go into the .plt section, so are easy to find
188 - import stubs: used to call from object to shared lib or shared lib to
189 shared lib; these go in regular text sections. In fact the linker tries
190 to put them throughout the code because branches have limited reachability.
191 We use the same mechanism as ppc64 to recognize the stub insn patterns.
192 - $$dyncall: similar to hpux, hppa-linux uses $$dyncall for indirect function
193 calls. $$dyncall is exported by libgcc.a */
194 static int
195 hppa_linux_in_solib_call_trampoline (CORE_ADDR pc, char *name)
196 {
197 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
198 int r;
199
200 r = in_plt_section (pc, name)
201 || hppa_linux_in_dyncall (pc)
202 || insns_match_pattern (pc, hppa_import_stub, insn)
203 || insns_match_pattern (pc, hppa_import_pic_stub, insn)
204 || insns_match_pattern (pc, hppa_long_branch_stub, insn)
205 || insns_match_pattern (pc, hppa_long_branch_pic_stub, insn);
206
207 return r;
208 }
209
210 static CORE_ADDR
211 hppa_linux_skip_trampoline_code (CORE_ADDR pc)
212 {
213 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
214 int dp_rel, pic_rel;
215
216 /* dyncall handles both PLABELs and direct addresses */
217 if (hppa_linux_in_dyncall (pc))
218 {
219 pc = (CORE_ADDR) read_register (22);
220
221 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it */
222 if (pc & 0x2)
223 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
224
225 return pc;
226 }
227
228 dp_rel = pic_rel = 0;
229 if ((dp_rel = insns_match_pattern (pc, hppa_import_stub, insn))
230 || (pic_rel = insns_match_pattern (pc, hppa_import_pic_stub, insn)))
231 {
232 /* Extract the target address from the addil/ldw sequence. */
233 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
234
235 if (dp_rel)
236 pc += (CORE_ADDR) read_register (27);
237 else
238 pc += (CORE_ADDR) read_register (19);
239
240 /* fallthrough */
241 }
242
243 if (in_plt_section (pc, NULL))
244 {
245 pc = (CORE_ADDR) read_memory_integer (pc, TARGET_PTR_BIT / 8);
246
247 /* if the plt slot has not yet been resolved, the target will
248 be the plt stub */
249 if (in_plt_section (pc, NULL))
250 {
251 /* Sanity check: are we pointing to the plt stub? */
252 if (insns_match_pattern (pc, hppa_plt_stub, insn))
253 {
254 /* this should point to the fixup routine */
255 pc = (CORE_ADDR) read_memory_integer (pc + 8, TARGET_PTR_BIT / 8);
256 }
257 else
258 {
259 error ("Cannot resolve plt stub at 0x%s\n",
260 paddr_nz (pc));
261 pc = 0;
262 }
263 }
264 }
265
266 return pc;
267 }
268
269 /* Signal frames. */
270
271 /* (This is derived from MD_FALLBACK_FRAME_STATE_FOR in gcc.)
272
273 Unfortunately, because of various bugs and changes to the kernel,
274 we have several cases to deal with.
275
276 In 2.4, the signal trampoline is 4 bytes, and pc should point directly at
277 the beginning of the trampoline and struct rt_sigframe.
278
279 In <= 2.6.5-rc2-pa3, the signal trampoline is 9 bytes, and pc points at
280 the 4th word in the trampoline structure. This is wrong, it should point
281 at the 5th word. This is fixed in 2.6.5-rc2-pa4.
282
283 To detect these cases, we first take pc, align it to 64-bytes
284 to get the beginning of the signal frame, and then check offsets 0, 4
285 and 5 to see if we found the beginning of the trampoline. This will
286 tell us how to locate the sigcontext structure.
287
288 Note that with a 2.4 64-bit kernel, the signal context is not properly
289 passed back to userspace so the unwind will not work correctly. */
290 static CORE_ADDR
291 hppa_linux_sigtramp_find_sigcontext (CORE_ADDR pc)
292 {
293 unsigned int dummy[HPPA_MAX_INSN_PATTERN_LEN];
294 int offs = 0;
295 int try;
296 /* offsets to try to find the trampoline */
297 static int pcoffs[] = { 0, 4*4, 5*4 };
298 /* offsets to the rt_sigframe structure */
299 static int sfoffs[] = { 4*4, 10*4, 10*4 };
300 CORE_ADDR sp;
301
302 /* Most of the time, this will be correct. The one case when this will
303 fail is if the user defined an alternate stack, in which case the
304 beginning of the stack will not be align_down (pc, 64). */
305 sp = align_down (pc, 64);
306
307 /* rt_sigreturn trampoline:
308 3419000x ldi 0, %r25 or ldi 1, %r25 (x = 0 or 2)
309 3414015a ldi __NR_rt_sigreturn, %r20
310 e4008200 be,l 0x100(%sr2, %r0), %sr0, %r31
311 08000240 nop */
312
313 for (try = 0; try < ARRAY_SIZE (pcoffs); try++)
314 {
315 if (insns_match_pattern (sp + pcoffs[try], hppa_sigtramp, dummy))
316 {
317 offs = sfoffs[try];
318 break;
319 }
320 }
321
322 if (offs == 0)
323 {
324 if (insns_match_pattern (pc, hppa_sigtramp, dummy))
325 {
326 /* sigaltstack case: we have no way of knowing which offset to
327 use in this case; default to new kernel handling. If this is
328 wrong the unwinding will fail. */
329 try = 2;
330 sp = pc - pcoffs[try];
331 }
332 else
333 {
334 return 0;
335 }
336 }
337
338 /* sp + sfoffs[try] points to a struct rt_sigframe, which contains
339 a struct siginfo and a struct ucontext. struct ucontext contains
340 a struct sigcontext. Return an offset to this sigcontext here. Too
341 bad we cannot include system specific headers :-(.
342 sizeof(struct siginfo) == 128
343 offsetof(struct ucontext, uc_mcontext) == 24. */
344 return sp + sfoffs[try] + 128 + 24;
345 }
346
347 struct hppa_linux_sigtramp_unwind_cache
348 {
349 CORE_ADDR base;
350 struct trad_frame_saved_reg *saved_regs;
351 };
352
353 static struct hppa_linux_sigtramp_unwind_cache *
354 hppa_linux_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
355 void **this_cache)
356 {
357 struct gdbarch *gdbarch = get_frame_arch (next_frame);
358 struct hppa_linux_sigtramp_unwind_cache *info;
359 CORE_ADDR pc, scptr;
360 int i;
361
362 if (*this_cache)
363 return *this_cache;
364
365 info = FRAME_OBSTACK_ZALLOC (struct hppa_linux_sigtramp_unwind_cache);
366 *this_cache = info;
367 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
368
369 pc = frame_pc_unwind (next_frame);
370 scptr = hppa_linux_sigtramp_find_sigcontext (pc);
371
372 /* structure of struct sigcontext:
373
374 struct sigcontext {
375 unsigned long sc_flags;
376 unsigned long sc_gr[32];
377 unsigned long long sc_fr[32];
378 unsigned long sc_iasq[2];
379 unsigned long sc_iaoq[2];
380 unsigned long sc_sar; */
381
382 /* Skip sc_flags. */
383 scptr += 4;
384
385 /* GR[0] is the psw, we don't restore that. */
386 scptr += 4;
387
388 /* General registers. */
389 for (i = 1; i < 32; i++)
390 {
391 info->saved_regs[HPPA_R0_REGNUM + i].addr = scptr;
392 scptr += 4;
393 }
394
395 /* Pad. */
396 scptr += 4;
397
398 /* FP regs; FP0-3 are not restored. */
399 scptr += (8 * 4);
400
401 for (i = 4; i < 32; i++)
402 {
403 info->saved_regs[HPPA_FP0_REGNUM + (i * 2)].addr = scptr;
404 scptr += 4;
405 info->saved_regs[HPPA_FP0_REGNUM + (i * 2) + 1].addr = scptr;
406 scptr += 4;
407 }
408
409 /* IASQ/IAOQ. */
410 info->saved_regs[HPPA_PCSQ_HEAD_REGNUM].addr = scptr;
411 scptr += 4;
412 info->saved_regs[HPPA_PCSQ_TAIL_REGNUM].addr = scptr;
413 scptr += 4;
414
415 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = scptr;
416 scptr += 4;
417 info->saved_regs[HPPA_PCOQ_TAIL_REGNUM].addr = scptr;
418 scptr += 4;
419
420 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
421
422 return info;
423 }
424
425 static void
426 hppa_linux_sigtramp_frame_this_id (struct frame_info *next_frame,
427 void **this_prologue_cache,
428 struct frame_id *this_id)
429 {
430 struct hppa_linux_sigtramp_unwind_cache *info
431 = hppa_linux_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
432 *this_id = frame_id_build (info->base, frame_pc_unwind (next_frame));
433 }
434
435 static void
436 hppa_linux_sigtramp_frame_prev_register (struct frame_info *next_frame,
437 void **this_prologue_cache,
438 int regnum, int *optimizedp,
439 enum lval_type *lvalp,
440 CORE_ADDR *addrp,
441 int *realnump, void *valuep)
442 {
443 struct hppa_linux_sigtramp_unwind_cache *info
444 = hppa_linux_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
445 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
446 optimizedp, lvalp, addrp, realnump, valuep);
447 }
448
449 static const struct frame_unwind hppa_linux_sigtramp_frame_unwind = {
450 SIGTRAMP_FRAME,
451 hppa_linux_sigtramp_frame_this_id,
452 hppa_linux_sigtramp_frame_prev_register
453 };
454
455 /* hppa-linux always uses "new-style" rt-signals. The signal handler's return
456 address should point to a signal trampoline on the stack. The signal
457 trampoline is embedded in a rt_sigframe structure that is aligned on
458 the stack. We take advantage of the fact that sp must be 64-byte aligned,
459 and the trampoline is small, so by rounding down the trampoline address
460 we can find the beginning of the struct rt_sigframe. */
461 static const struct frame_unwind *
462 hppa_linux_sigtramp_unwind_sniffer (struct frame_info *next_frame)
463 {
464 CORE_ADDR pc = frame_pc_unwind (next_frame);
465
466 if (hppa_linux_sigtramp_find_sigcontext (pc))
467 return &hppa_linux_sigtramp_frame_unwind;
468
469 return NULL;
470 }
471
472 /* Attempt to find (and return) the global pointer for the given
473 function.
474
475 This is a rather nasty bit of code searchs for the .dynamic section
476 in the objfile corresponding to the pc of the function we're trying
477 to call. Once it finds the addresses at which the .dynamic section
478 lives in the child process, it scans the Elf32_Dyn entries for a
479 DT_PLTGOT tag. If it finds one of these, the corresponding
480 d_un.d_ptr value is the global pointer. */
481
482 static CORE_ADDR
483 hppa_linux_find_global_pointer (struct value *function)
484 {
485 struct obj_section *faddr_sect;
486 CORE_ADDR faddr;
487
488 faddr = value_as_address (function);
489
490 /* Is this a plabel? If so, dereference it to get the gp value. */
491 if (faddr & 2)
492 {
493 int status;
494 char buf[4];
495
496 faddr &= ~3;
497
498 status = target_read_memory (faddr + 4, buf, sizeof (buf));
499 if (status == 0)
500 return extract_unsigned_integer (buf, sizeof (buf));
501 }
502
503 /* If the address is in the plt section, then the real function hasn't
504 yet been fixed up by the linker so we cannot determine the gp of
505 that function. */
506 if (in_plt_section (faddr, NULL))
507 return 0;
508
509 faddr_sect = find_pc_section (faddr);
510 if (faddr_sect != NULL)
511 {
512 struct obj_section *osect;
513
514 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
515 {
516 if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0)
517 break;
518 }
519
520 if (osect < faddr_sect->objfile->sections_end)
521 {
522 CORE_ADDR addr;
523
524 addr = osect->addr;
525 while (addr < osect->endaddr)
526 {
527 int status;
528 LONGEST tag;
529 char buf[4];
530
531 status = target_read_memory (addr, buf, sizeof (buf));
532 if (status != 0)
533 break;
534 tag = extract_signed_integer (buf, sizeof (buf));
535
536 if (tag == DT_PLTGOT)
537 {
538 CORE_ADDR global_pointer;
539
540 status = target_read_memory (addr + 4, buf, sizeof (buf));
541 if (status != 0)
542 break;
543 global_pointer = extract_unsigned_integer (buf, sizeof (buf));
544
545 /* The payoff... */
546 return global_pointer;
547 }
548
549 if (tag == DT_NULL)
550 break;
551
552 addr += 8;
553 }
554 }
555 }
556 return 0;
557 }
558
559 /* Forward declarations. */
560 extern initialize_file_ftype _initialize_hppa_linux_tdep;
561
562 static void
563 hppa_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
564 {
565 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
566
567 /* Linux is always ELF. */
568 tdep->is_elf = 1;
569
570 tdep->find_global_pointer = hppa_linux_find_global_pointer;
571
572 set_gdbarch_write_pc (gdbarch, hppa_linux_target_write_pc);
573
574 frame_unwind_append_sniffer (gdbarch, hppa_linux_sigtramp_unwind_sniffer);
575
576 /* GNU/Linux uses SVR4-style shared libraries. */
577 set_solib_svr4_fetch_link_map_offsets
578 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
579
580 set_gdbarch_in_solib_call_trampoline
581 (gdbarch, hppa_linux_in_solib_call_trampoline);
582 set_gdbarch_skip_trampoline_code
583 (gdbarch, hppa_linux_skip_trampoline_code);
584
585 /* GNU/Linux uses the dynamic linker included in the GNU C Library. */
586 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
587
588 /* On hppa-linux, currently, sizeof(long double) == 8. There has been
589 some discussions to support 128-bit long double, but it requires some
590 more work in gcc and glibc first. */
591 set_gdbarch_long_double_bit (gdbarch, 64);
592
593 #if 0
594 /* Dwarf-2 unwinding support. Not yet working. */
595 set_gdbarch_dwarf_reg_to_regnum (gdbarch, hppa_dwarf_reg_to_regnum);
596 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa_dwarf_reg_to_regnum);
597 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
598 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
599 #endif
600 }
601
602 void
603 _initialize_hppa_linux_tdep (void)
604 {
605 gdbarch_register_osabi (bfd_arch_hppa, 0, GDB_OSABI_LINUX, hppa_linux_init_abi);
606 }
This page took 0.049133 seconds and 5 git commands to generate.