2005-02-10 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software
5 Foundation, Inc.
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "inferior.h"
30 #include "regcache.h"
31 #include "completer.h"
32 #include "osabi.h"
33 #include "gdb_assert.h"
34 #include "arch-utils.h"
35 /* For argument passing to the inferior */
36 #include "symtab.h"
37 #include "dis-asm.h"
38 #include "trad-frame.h"
39 #include "frame-unwind.h"
40 #include "frame-base.h"
41
42 #include "gdbcore.h"
43 #include "gdbcmd.h"
44 #include "objfiles.h"
45 #include "hppa-tdep.h"
46
47 static int hppa_debug = 0;
48
49 /* Some local constants. */
50 static const int hppa32_num_regs = 128;
51 static const int hppa64_num_regs = 96;
52
53 /* hppa-specific object data -- unwind and solib info.
54 TODO/maybe: think about splitting this into two parts; the unwind data is
55 common to all hppa targets, but is only used in this file; we can register
56 that separately and make this static. The solib data is probably hpux-
57 specific, so we can create a separate extern objfile_data that is registered
58 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
59 const struct objfile_data *hppa_objfile_priv_data = NULL;
60
61 /* Get at various relevent fields of an instruction word. */
62 #define MASK_5 0x1f
63 #define MASK_11 0x7ff
64 #define MASK_14 0x3fff
65 #define MASK_21 0x1fffff
66
67 /* Sizes (in bytes) of the native unwind entries. */
68 #define UNWIND_ENTRY_SIZE 16
69 #define STUB_UNWIND_ENTRY_SIZE 8
70
71 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
72 following functions static, once we hppa is partially multiarched. */
73 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
74
75 /* Routines to extract various sized constants out of hppa
76 instructions. */
77
78 /* This assumes that no garbage lies outside of the lower bits of
79 value. */
80
81 int
82 hppa_sign_extend (unsigned val, unsigned bits)
83 {
84 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
85 }
86
87 /* For many immediate values the sign bit is the low bit! */
88
89 int
90 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
91 {
92 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
93 }
94
95 /* Extract the bits at positions between FROM and TO, using HP's numbering
96 (MSB = 0). */
97
98 int
99 hppa_get_field (unsigned word, int from, int to)
100 {
101 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
102 }
103
104 /* extract the immediate field from a ld{bhw}s instruction */
105
106 int
107 hppa_extract_5_load (unsigned word)
108 {
109 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
110 }
111
112 /* extract the immediate field from a break instruction */
113
114 unsigned
115 hppa_extract_5r_store (unsigned word)
116 {
117 return (word & MASK_5);
118 }
119
120 /* extract the immediate field from a {sr}sm instruction */
121
122 unsigned
123 hppa_extract_5R_store (unsigned word)
124 {
125 return (word >> 16 & MASK_5);
126 }
127
128 /* extract a 14 bit immediate field */
129
130 int
131 hppa_extract_14 (unsigned word)
132 {
133 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
134 }
135
136 /* extract a 21 bit constant */
137
138 int
139 hppa_extract_21 (unsigned word)
140 {
141 int val;
142
143 word &= MASK_21;
144 word <<= 11;
145 val = hppa_get_field (word, 20, 20);
146 val <<= 11;
147 val |= hppa_get_field (word, 9, 19);
148 val <<= 2;
149 val |= hppa_get_field (word, 5, 6);
150 val <<= 5;
151 val |= hppa_get_field (word, 0, 4);
152 val <<= 2;
153 val |= hppa_get_field (word, 7, 8);
154 return hppa_sign_extend (val, 21) << 11;
155 }
156
157 /* extract a 17 bit constant from branch instructions, returning the
158 19 bit signed value. */
159
160 int
161 hppa_extract_17 (unsigned word)
162 {
163 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
164 hppa_get_field (word, 29, 29) << 10 |
165 hppa_get_field (word, 11, 15) << 11 |
166 (word & 0x1) << 16, 17) << 2;
167 }
168
169 CORE_ADDR
170 hppa_symbol_address(const char *sym)
171 {
172 struct minimal_symbol *minsym;
173
174 minsym = lookup_minimal_symbol (sym, NULL, NULL);
175 if (minsym)
176 return SYMBOL_VALUE_ADDRESS (minsym);
177 else
178 return (CORE_ADDR)-1;
179 }
180
181 struct hppa_objfile_private *
182 hppa_init_objfile_priv_data (struct objfile *objfile)
183 {
184 struct hppa_objfile_private *priv;
185
186 priv = (struct hppa_objfile_private *)
187 obstack_alloc (&objfile->objfile_obstack,
188 sizeof (struct hppa_objfile_private));
189 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
190 memset (priv, 0, sizeof (*priv));
191
192 return priv;
193 }
194 \f
195
196 /* Compare the start address for two unwind entries returning 1 if
197 the first address is larger than the second, -1 if the second is
198 larger than the first, and zero if they are equal. */
199
200 static int
201 compare_unwind_entries (const void *arg1, const void *arg2)
202 {
203 const struct unwind_table_entry *a = arg1;
204 const struct unwind_table_entry *b = arg2;
205
206 if (a->region_start > b->region_start)
207 return 1;
208 else if (a->region_start < b->region_start)
209 return -1;
210 else
211 return 0;
212 }
213
214 static void
215 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
216 {
217 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
218 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
219 {
220 bfd_vma value = section->vma - section->filepos;
221 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
222
223 if (value < *low_text_segment_address)
224 *low_text_segment_address = value;
225 }
226 }
227
228 static void
229 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
230 asection *section, unsigned int entries, unsigned int size,
231 CORE_ADDR text_offset)
232 {
233 /* We will read the unwind entries into temporary memory, then
234 fill in the actual unwind table. */
235
236 if (size > 0)
237 {
238 unsigned long tmp;
239 unsigned i;
240 char *buf = alloca (size);
241 CORE_ADDR low_text_segment_address;
242
243 /* For ELF targets, then unwinds are supposed to
244 be segment relative offsets instead of absolute addresses.
245
246 Note that when loading a shared library (text_offset != 0) the
247 unwinds are already relative to the text_offset that will be
248 passed in. */
249 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
250 {
251 low_text_segment_address = -1;
252
253 bfd_map_over_sections (objfile->obfd,
254 record_text_segment_lowaddr,
255 &low_text_segment_address);
256
257 text_offset = low_text_segment_address;
258 }
259 else if (gdbarch_tdep (current_gdbarch)->solib_get_text_base)
260 {
261 text_offset = gdbarch_tdep (current_gdbarch)->solib_get_text_base (objfile);
262 }
263
264 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
265
266 /* Now internalize the information being careful to handle host/target
267 endian issues. */
268 for (i = 0; i < entries; i++)
269 {
270 table[i].region_start = bfd_get_32 (objfile->obfd,
271 (bfd_byte *) buf);
272 table[i].region_start += text_offset;
273 buf += 4;
274 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
275 table[i].region_end += text_offset;
276 buf += 4;
277 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
278 buf += 4;
279 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
280 table[i].Millicode = (tmp >> 30) & 0x1;
281 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
282 table[i].Region_description = (tmp >> 27) & 0x3;
283 table[i].reserved1 = (tmp >> 26) & 0x1;
284 table[i].Entry_SR = (tmp >> 25) & 0x1;
285 table[i].Entry_FR = (tmp >> 21) & 0xf;
286 table[i].Entry_GR = (tmp >> 16) & 0x1f;
287 table[i].Args_stored = (tmp >> 15) & 0x1;
288 table[i].Variable_Frame = (tmp >> 14) & 0x1;
289 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
290 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
291 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
292 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
293 table[i].Ada_Region = (tmp >> 9) & 0x1;
294 table[i].cxx_info = (tmp >> 8) & 0x1;
295 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
296 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
297 table[i].reserved2 = (tmp >> 5) & 0x1;
298 table[i].Save_SP = (tmp >> 4) & 0x1;
299 table[i].Save_RP = (tmp >> 3) & 0x1;
300 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
301 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
302 table[i].Cleanup_defined = tmp & 0x1;
303 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
304 buf += 4;
305 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
306 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
307 table[i].Large_frame = (tmp >> 29) & 0x1;
308 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
309 table[i].reserved4 = (tmp >> 27) & 0x1;
310 table[i].Total_frame_size = tmp & 0x7ffffff;
311
312 /* Stub unwinds are handled elsewhere. */
313 table[i].stub_unwind.stub_type = 0;
314 table[i].stub_unwind.padding = 0;
315 }
316 }
317 }
318
319 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
320 the object file. This info is used mainly by find_unwind_entry() to find
321 out the stack frame size and frame pointer used by procedures. We put
322 everything on the psymbol obstack in the objfile so that it automatically
323 gets freed when the objfile is destroyed. */
324
325 static void
326 read_unwind_info (struct objfile *objfile)
327 {
328 asection *unwind_sec, *stub_unwind_sec;
329 unsigned unwind_size, stub_unwind_size, total_size;
330 unsigned index, unwind_entries;
331 unsigned stub_entries, total_entries;
332 CORE_ADDR text_offset;
333 struct hppa_unwind_info *ui;
334 struct hppa_objfile_private *obj_private;
335
336 text_offset = ANOFFSET (objfile->section_offsets, 0);
337 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
338 sizeof (struct hppa_unwind_info));
339
340 ui->table = NULL;
341 ui->cache = NULL;
342 ui->last = -1;
343
344 /* For reasons unknown the HP PA64 tools generate multiple unwinder
345 sections in a single executable. So we just iterate over every
346 section in the BFD looking for unwinder sections intead of trying
347 to do a lookup with bfd_get_section_by_name.
348
349 First determine the total size of the unwind tables so that we
350 can allocate memory in a nice big hunk. */
351 total_entries = 0;
352 for (unwind_sec = objfile->obfd->sections;
353 unwind_sec;
354 unwind_sec = unwind_sec->next)
355 {
356 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
357 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
358 {
359 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
360 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
361
362 total_entries += unwind_entries;
363 }
364 }
365
366 /* Now compute the size of the stub unwinds. Note the ELF tools do not
367 use stub unwinds at the curren time. */
368 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
369
370 if (stub_unwind_sec)
371 {
372 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
373 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
374 }
375 else
376 {
377 stub_unwind_size = 0;
378 stub_entries = 0;
379 }
380
381 /* Compute total number of unwind entries and their total size. */
382 total_entries += stub_entries;
383 total_size = total_entries * sizeof (struct unwind_table_entry);
384
385 /* Allocate memory for the unwind table. */
386 ui->table = (struct unwind_table_entry *)
387 obstack_alloc (&objfile->objfile_obstack, total_size);
388 ui->last = total_entries - 1;
389
390 /* Now read in each unwind section and internalize the standard unwind
391 entries. */
392 index = 0;
393 for (unwind_sec = objfile->obfd->sections;
394 unwind_sec;
395 unwind_sec = unwind_sec->next)
396 {
397 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
398 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
399 {
400 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
401 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
402
403 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
404 unwind_entries, unwind_size, text_offset);
405 index += unwind_entries;
406 }
407 }
408
409 /* Now read in and internalize the stub unwind entries. */
410 if (stub_unwind_size > 0)
411 {
412 unsigned int i;
413 char *buf = alloca (stub_unwind_size);
414
415 /* Read in the stub unwind entries. */
416 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
417 0, stub_unwind_size);
418
419 /* Now convert them into regular unwind entries. */
420 for (i = 0; i < stub_entries; i++, index++)
421 {
422 /* Clear out the next unwind entry. */
423 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
424
425 /* Convert offset & size into region_start and region_end.
426 Stuff away the stub type into "reserved" fields. */
427 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
428 (bfd_byte *) buf);
429 ui->table[index].region_start += text_offset;
430 buf += 4;
431 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
432 (bfd_byte *) buf);
433 buf += 2;
434 ui->table[index].region_end
435 = ui->table[index].region_start + 4 *
436 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
437 buf += 2;
438 }
439
440 }
441
442 /* Unwind table needs to be kept sorted. */
443 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
444 compare_unwind_entries);
445
446 /* Keep a pointer to the unwind information. */
447 obj_private = (struct hppa_objfile_private *)
448 objfile_data (objfile, hppa_objfile_priv_data);
449 if (obj_private == NULL)
450 obj_private = hppa_init_objfile_priv_data (objfile);
451
452 obj_private->unwind_info = ui;
453 }
454
455 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
456 of the objfiles seeking the unwind table entry for this PC. Each objfile
457 contains a sorted list of struct unwind_table_entry. Since we do a binary
458 search of the unwind tables, we depend upon them to be sorted. */
459
460 struct unwind_table_entry *
461 find_unwind_entry (CORE_ADDR pc)
462 {
463 int first, middle, last;
464 struct objfile *objfile;
465 struct hppa_objfile_private *priv;
466
467 if (hppa_debug)
468 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
469 paddr_nz (pc));
470
471 /* A function at address 0? Not in HP-UX! */
472 if (pc == (CORE_ADDR) 0)
473 {
474 if (hppa_debug)
475 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
476 return NULL;
477 }
478
479 ALL_OBJFILES (objfile)
480 {
481 struct hppa_unwind_info *ui;
482 ui = NULL;
483 priv = objfile_data (objfile, hppa_objfile_priv_data);
484 if (priv)
485 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
486
487 if (!ui)
488 {
489 read_unwind_info (objfile);
490 priv = objfile_data (objfile, hppa_objfile_priv_data);
491 if (priv == NULL)
492 error (_("Internal error reading unwind information."));
493 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
494 }
495
496 /* First, check the cache */
497
498 if (ui->cache
499 && pc >= ui->cache->region_start
500 && pc <= ui->cache->region_end)
501 {
502 if (hppa_debug)
503 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
504 paddr_nz ((CORE_ADDR) ui->cache));
505 return ui->cache;
506 }
507
508 /* Not in the cache, do a binary search */
509
510 first = 0;
511 last = ui->last;
512
513 while (first <= last)
514 {
515 middle = (first + last) / 2;
516 if (pc >= ui->table[middle].region_start
517 && pc <= ui->table[middle].region_end)
518 {
519 ui->cache = &ui->table[middle];
520 if (hppa_debug)
521 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
522 paddr_nz ((CORE_ADDR) ui->cache));
523 return &ui->table[middle];
524 }
525
526 if (pc < ui->table[middle].region_start)
527 last = middle - 1;
528 else
529 first = middle + 1;
530 }
531 } /* ALL_OBJFILES() */
532
533 if (hppa_debug)
534 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
535
536 return NULL;
537 }
538
539 /* The epilogue is defined here as the area either on the `bv' instruction
540 itself or an instruction which destroys the function's stack frame.
541
542 We do not assume that the epilogue is at the end of a function as we can
543 also have return sequences in the middle of a function. */
544 static int
545 hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
546 {
547 unsigned long status;
548 unsigned int inst;
549 char buf[4];
550 int off;
551
552 status = deprecated_read_memory_nobpt (pc, buf, 4);
553 if (status != 0)
554 return 0;
555
556 inst = extract_unsigned_integer (buf, 4);
557
558 /* The most common way to perform a stack adjustment ldo X(sp),sp
559 We are destroying a stack frame if the offset is negative. */
560 if ((inst & 0xffffc000) == 0x37de0000
561 && hppa_extract_14 (inst) < 0)
562 return 1;
563
564 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
565 if (((inst & 0x0fc010e0) == 0x0fc010e0
566 || (inst & 0x0fc010e0) == 0x0fc010e0)
567 && hppa_extract_14 (inst) < 0)
568 return 1;
569
570 /* bv %r0(%rp) or bv,n %r0(%rp) */
571 if (inst == 0xe840c000 || inst == 0xe840c002)
572 return 1;
573
574 return 0;
575 }
576
577 static const unsigned char *
578 hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
579 {
580 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
581 (*len) = sizeof (breakpoint);
582 return breakpoint;
583 }
584
585 /* Return the name of a register. */
586
587 static const char *
588 hppa32_register_name (int i)
589 {
590 static char *names[] = {
591 "flags", "r1", "rp", "r3",
592 "r4", "r5", "r6", "r7",
593 "r8", "r9", "r10", "r11",
594 "r12", "r13", "r14", "r15",
595 "r16", "r17", "r18", "r19",
596 "r20", "r21", "r22", "r23",
597 "r24", "r25", "r26", "dp",
598 "ret0", "ret1", "sp", "r31",
599 "sar", "pcoqh", "pcsqh", "pcoqt",
600 "pcsqt", "eiem", "iir", "isr",
601 "ior", "ipsw", "goto", "sr4",
602 "sr0", "sr1", "sr2", "sr3",
603 "sr5", "sr6", "sr7", "cr0",
604 "cr8", "cr9", "ccr", "cr12",
605 "cr13", "cr24", "cr25", "cr26",
606 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
607 "fpsr", "fpe1", "fpe2", "fpe3",
608 "fpe4", "fpe5", "fpe6", "fpe7",
609 "fr4", "fr4R", "fr5", "fr5R",
610 "fr6", "fr6R", "fr7", "fr7R",
611 "fr8", "fr8R", "fr9", "fr9R",
612 "fr10", "fr10R", "fr11", "fr11R",
613 "fr12", "fr12R", "fr13", "fr13R",
614 "fr14", "fr14R", "fr15", "fr15R",
615 "fr16", "fr16R", "fr17", "fr17R",
616 "fr18", "fr18R", "fr19", "fr19R",
617 "fr20", "fr20R", "fr21", "fr21R",
618 "fr22", "fr22R", "fr23", "fr23R",
619 "fr24", "fr24R", "fr25", "fr25R",
620 "fr26", "fr26R", "fr27", "fr27R",
621 "fr28", "fr28R", "fr29", "fr29R",
622 "fr30", "fr30R", "fr31", "fr31R"
623 };
624 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
625 return NULL;
626 else
627 return names[i];
628 }
629
630 static const char *
631 hppa64_register_name (int i)
632 {
633 static char *names[] = {
634 "flags", "r1", "rp", "r3",
635 "r4", "r5", "r6", "r7",
636 "r8", "r9", "r10", "r11",
637 "r12", "r13", "r14", "r15",
638 "r16", "r17", "r18", "r19",
639 "r20", "r21", "r22", "r23",
640 "r24", "r25", "r26", "dp",
641 "ret0", "ret1", "sp", "r31",
642 "sar", "pcoqh", "pcsqh", "pcoqt",
643 "pcsqt", "eiem", "iir", "isr",
644 "ior", "ipsw", "goto", "sr4",
645 "sr0", "sr1", "sr2", "sr3",
646 "sr5", "sr6", "sr7", "cr0",
647 "cr8", "cr9", "ccr", "cr12",
648 "cr13", "cr24", "cr25", "cr26",
649 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
650 "fpsr", "fpe1", "fpe2", "fpe3",
651 "fr4", "fr5", "fr6", "fr7",
652 "fr8", "fr9", "fr10", "fr11",
653 "fr12", "fr13", "fr14", "fr15",
654 "fr16", "fr17", "fr18", "fr19",
655 "fr20", "fr21", "fr22", "fr23",
656 "fr24", "fr25", "fr26", "fr27",
657 "fr28", "fr29", "fr30", "fr31"
658 };
659 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
660 return NULL;
661 else
662 return names[i];
663 }
664
665 /* This function pushes a stack frame with arguments as part of the
666 inferior function calling mechanism.
667
668 This is the version of the function for the 32-bit PA machines, in
669 which later arguments appear at lower addresses. (The stack always
670 grows towards higher addresses.)
671
672 We simply allocate the appropriate amount of stack space and put
673 arguments into their proper slots. */
674
675 static CORE_ADDR
676 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
677 struct regcache *regcache, CORE_ADDR bp_addr,
678 int nargs, struct value **args, CORE_ADDR sp,
679 int struct_return, CORE_ADDR struct_addr)
680 {
681 /* Stack base address at which any pass-by-reference parameters are
682 stored. */
683 CORE_ADDR struct_end = 0;
684 /* Stack base address at which the first parameter is stored. */
685 CORE_ADDR param_end = 0;
686
687 /* The inner most end of the stack after all the parameters have
688 been pushed. */
689 CORE_ADDR new_sp = 0;
690
691 /* Two passes. First pass computes the location of everything,
692 second pass writes the bytes out. */
693 int write_pass;
694
695 /* Global pointer (r19) of the function we are trying to call. */
696 CORE_ADDR gp;
697
698 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
699
700 for (write_pass = 0; write_pass < 2; write_pass++)
701 {
702 CORE_ADDR struct_ptr = 0;
703 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
704 struct_ptr is adjusted for each argument below, so the first
705 argument will end up at sp-36. */
706 CORE_ADDR param_ptr = 32;
707 int i;
708 int small_struct = 0;
709
710 for (i = 0; i < nargs; i++)
711 {
712 struct value *arg = args[i];
713 struct type *type = check_typedef (value_type (arg));
714 /* The corresponding parameter that is pushed onto the
715 stack, and [possibly] passed in a register. */
716 char param_val[8];
717 int param_len;
718 memset (param_val, 0, sizeof param_val);
719 if (TYPE_LENGTH (type) > 8)
720 {
721 /* Large parameter, pass by reference. Store the value
722 in "struct" area and then pass its address. */
723 param_len = 4;
724 struct_ptr += align_up (TYPE_LENGTH (type), 8);
725 if (write_pass)
726 write_memory (struct_end - struct_ptr, value_contents (arg),
727 TYPE_LENGTH (type));
728 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
729 }
730 else if (TYPE_CODE (type) == TYPE_CODE_INT
731 || TYPE_CODE (type) == TYPE_CODE_ENUM)
732 {
733 /* Integer value store, right aligned. "unpack_long"
734 takes care of any sign-extension problems. */
735 param_len = align_up (TYPE_LENGTH (type), 4);
736 store_unsigned_integer (param_val, param_len,
737 unpack_long (type,
738 value_contents (arg)));
739 }
740 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
741 {
742 /* Floating point value store, right aligned. */
743 param_len = align_up (TYPE_LENGTH (type), 4);
744 memcpy (param_val, value_contents (arg), param_len);
745 }
746 else
747 {
748 param_len = align_up (TYPE_LENGTH (type), 4);
749
750 /* Small struct value are stored right-aligned. */
751 memcpy (param_val + param_len - TYPE_LENGTH (type),
752 value_contents (arg), TYPE_LENGTH (type));
753
754 /* Structures of size 5, 6 and 7 bytes are special in that
755 the higher-ordered word is stored in the lower-ordered
756 argument, and even though it is a 8-byte quantity the
757 registers need not be 8-byte aligned. */
758 if (param_len > 4 && param_len < 8)
759 small_struct = 1;
760 }
761
762 param_ptr += param_len;
763 if (param_len == 8 && !small_struct)
764 param_ptr = align_up (param_ptr, 8);
765
766 /* First 4 non-FP arguments are passed in gr26-gr23.
767 First 4 32-bit FP arguments are passed in fr4L-fr7L.
768 First 2 64-bit FP arguments are passed in fr5 and fr7.
769
770 The rest go on the stack, starting at sp-36, towards lower
771 addresses. 8-byte arguments must be aligned to a 8-byte
772 stack boundary. */
773 if (write_pass)
774 {
775 write_memory (param_end - param_ptr, param_val, param_len);
776
777 /* There are some cases when we don't know the type
778 expected by the callee (e.g. for variadic functions), so
779 pass the parameters in both general and fp regs. */
780 if (param_ptr <= 48)
781 {
782 int grreg = 26 - (param_ptr - 36) / 4;
783 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
784 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
785
786 regcache_cooked_write (regcache, grreg, param_val);
787 regcache_cooked_write (regcache, fpLreg, param_val);
788
789 if (param_len > 4)
790 {
791 regcache_cooked_write (regcache, grreg + 1,
792 param_val + 4);
793
794 regcache_cooked_write (regcache, fpreg, param_val);
795 regcache_cooked_write (regcache, fpreg + 1,
796 param_val + 4);
797 }
798 }
799 }
800 }
801
802 /* Update the various stack pointers. */
803 if (!write_pass)
804 {
805 struct_end = sp + align_up (struct_ptr, 64);
806 /* PARAM_PTR already accounts for all the arguments passed
807 by the user. However, the ABI mandates minimum stack
808 space allocations for outgoing arguments. The ABI also
809 mandates minimum stack alignments which we must
810 preserve. */
811 param_end = struct_end + align_up (param_ptr, 64);
812 }
813 }
814
815 /* If a structure has to be returned, set up register 28 to hold its
816 address */
817 if (struct_return)
818 write_register (28, struct_addr);
819
820 gp = tdep->find_global_pointer (function);
821
822 if (gp != 0)
823 write_register (19, gp);
824
825 /* Set the return address. */
826 if (!gdbarch_push_dummy_code_p (gdbarch))
827 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
828
829 /* Update the Stack Pointer. */
830 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
831
832 return param_end;
833 }
834
835 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit
836 Runtime Architecture for PA-RISC 2.0", which is distributed as part
837 as of the HP-UX Software Transition Kit (STK). This implementation
838 is based on version 3.3, dated October 6, 1997. */
839
840 /* Check whether TYPE is an "Integral or Pointer Scalar Type". */
841
842 static int
843 hppa64_integral_or_pointer_p (const struct type *type)
844 {
845 switch (TYPE_CODE (type))
846 {
847 case TYPE_CODE_INT:
848 case TYPE_CODE_BOOL:
849 case TYPE_CODE_CHAR:
850 case TYPE_CODE_ENUM:
851 case TYPE_CODE_RANGE:
852 {
853 int len = TYPE_LENGTH (type);
854 return (len == 1 || len == 2 || len == 4 || len == 8);
855 }
856 case TYPE_CODE_PTR:
857 case TYPE_CODE_REF:
858 return (TYPE_LENGTH (type) == 8);
859 default:
860 break;
861 }
862
863 return 0;
864 }
865
866 /* Check whether TYPE is a "Floating Scalar Type". */
867
868 static int
869 hppa64_floating_p (const struct type *type)
870 {
871 switch (TYPE_CODE (type))
872 {
873 case TYPE_CODE_FLT:
874 {
875 int len = TYPE_LENGTH (type);
876 return (len == 4 || len == 8 || len == 16);
877 }
878 default:
879 break;
880 }
881
882 return 0;
883 }
884
885 static CORE_ADDR
886 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
887 struct regcache *regcache, CORE_ADDR bp_addr,
888 int nargs, struct value **args, CORE_ADDR sp,
889 int struct_return, CORE_ADDR struct_addr)
890 {
891 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
892 int i, offset = 0;
893 CORE_ADDR gp;
894
895 /* "The outgoing parameter area [...] must be aligned at a 16-byte
896 boundary." */
897 sp = align_up (sp, 16);
898
899 for (i = 0; i < nargs; i++)
900 {
901 struct value *arg = args[i];
902 struct type *type = value_type (arg);
903 int len = TYPE_LENGTH (type);
904 const bfd_byte *valbuf;
905 int regnum;
906
907 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
908 offset = align_up (offset, 8);
909
910 if (hppa64_integral_or_pointer_p (type))
911 {
912 /* "Integral scalar parameters smaller than 64 bits are
913 padded on the left (i.e., the value is in the
914 least-significant bits of the 64-bit storage unit, and
915 the high-order bits are undefined)." Therefore we can
916 safely sign-extend them. */
917 if (len < 8)
918 {
919 arg = value_cast (builtin_type_int64, arg);
920 len = 8;
921 }
922 }
923 else if (hppa64_floating_p (type))
924 {
925 if (len > 8)
926 {
927 /* "Quad-precision (128-bit) floating-point scalar
928 parameters are aligned on a 16-byte boundary." */
929 offset = align_up (offset, 16);
930
931 /* "Double-extended- and quad-precision floating-point
932 parameters within the first 64 bytes of the parameter
933 list are always passed in general registers." */
934 }
935 else
936 {
937 if (len == 4)
938 {
939 /* "Single-precision (32-bit) floating-point scalar
940 parameters are padded on the left with 32 bits of
941 garbage (i.e., the floating-point value is in the
942 least-significant 32 bits of a 64-bit storage
943 unit)." */
944 offset += 4;
945 }
946
947 /* "Single- and double-precision floating-point
948 parameters in this area are passed according to the
949 available formal parameter information in a function
950 prototype. [...] If no prototype is in scope,
951 floating-point parameters must be passed both in the
952 corresponding general registers and in the
953 corresponding floating-point registers." */
954 regnum = HPPA64_FP4_REGNUM + offset / 8;
955
956 if (regnum < HPPA64_FP4_REGNUM + 8)
957 {
958 /* "Single-precision floating-point parameters, when
959 passed in floating-point registers, are passed in
960 the right halves of the floating point registers;
961 the left halves are unused." */
962 regcache_cooked_write_part (regcache, regnum, offset % 8,
963 len, value_contents (arg));
964 }
965 }
966 }
967 else
968 {
969 if (len > 8)
970 {
971 /* "Aggregates larger than 8 bytes are aligned on a
972 16-byte boundary, possibly leaving an unused argument
973 slot, which is filled with garbage. If necessary,
974 they are padded on the right (with garbage), to a
975 multiple of 8 bytes." */
976 offset = align_up (offset, 16);
977 }
978 }
979
980 /* Always store the argument in memory. */
981 write_memory (sp + offset, value_contents (arg), len);
982
983 valbuf = value_contents (arg);
984 regnum = HPPA_ARG0_REGNUM - offset / 8;
985 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
986 {
987 regcache_cooked_write_part (regcache, regnum,
988 offset % 8, min (len, 8), valbuf);
989 offset += min (len, 8);
990 valbuf += min (len, 8);
991 len -= min (len, 8);
992 regnum--;
993 }
994
995 offset += len;
996 }
997
998 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
999 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1000
1001 /* Allocate the outgoing parameter area. Make sure the outgoing
1002 parameter area is multiple of 16 bytes in length. */
1003 sp += max (align_up (offset, 16), 64);
1004
1005 /* Allocate 32-bytes of scratch space. The documentation doesn't
1006 mention this, but it seems to be needed. */
1007 sp += 32;
1008
1009 /* Allocate the frame marker area. */
1010 sp += 16;
1011
1012 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1013 its address. */
1014 if (struct_return)
1015 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1016
1017 /* Set up GR27 (%dp) to hold the global pointer (gp). */
1018 gp = tdep->find_global_pointer (function);
1019 if (gp != 0)
1020 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1021
1022 /* Set up GR2 (%rp) to hold the return pointer (rp). */
1023 if (!gdbarch_push_dummy_code_p (gdbarch))
1024 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1025
1026 /* Set up GR30 to hold the stack pointer (sp). */
1027 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1028
1029 return sp;
1030 }
1031 \f
1032
1033 /* Handle 32/64-bit struct return conventions. */
1034
1035 static enum return_value_convention
1036 hppa32_return_value (struct gdbarch *gdbarch,
1037 struct type *type, struct regcache *regcache,
1038 void *readbuf, const void *writebuf)
1039 {
1040 if (TYPE_LENGTH (type) <= 2 * 4)
1041 {
1042 /* The value always lives in the right hand end of the register
1043 (or register pair)? */
1044 int b;
1045 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1046 int part = TYPE_LENGTH (type) % 4;
1047 /* The left hand register contains only part of the value,
1048 transfer that first so that the rest can be xfered as entire
1049 4-byte registers. */
1050 if (part > 0)
1051 {
1052 if (readbuf != NULL)
1053 regcache_cooked_read_part (regcache, reg, 4 - part,
1054 part, readbuf);
1055 if (writebuf != NULL)
1056 regcache_cooked_write_part (regcache, reg, 4 - part,
1057 part, writebuf);
1058 reg++;
1059 }
1060 /* Now transfer the remaining register values. */
1061 for (b = part; b < TYPE_LENGTH (type); b += 4)
1062 {
1063 if (readbuf != NULL)
1064 regcache_cooked_read (regcache, reg, (char *) readbuf + b);
1065 if (writebuf != NULL)
1066 regcache_cooked_write (regcache, reg, (const char *) writebuf + b);
1067 reg++;
1068 }
1069 return RETURN_VALUE_REGISTER_CONVENTION;
1070 }
1071 else
1072 return RETURN_VALUE_STRUCT_CONVENTION;
1073 }
1074
1075 static enum return_value_convention
1076 hppa64_return_value (struct gdbarch *gdbarch,
1077 struct type *type, struct regcache *regcache,
1078 void *readbuf, const void *writebuf)
1079 {
1080 int len = TYPE_LENGTH (type);
1081 int regnum, offset;
1082
1083 if (len > 16)
1084 {
1085 /* All return values larget than 128 bits must be aggregate
1086 return values. */
1087 gdb_assert (!hppa64_integral_or_pointer_p (type));
1088 gdb_assert (!hppa64_floating_p (type));
1089
1090 /* "Aggregate return values larger than 128 bits are returned in
1091 a buffer allocated by the caller. The address of the buffer
1092 must be passed in GR 28." */
1093 return RETURN_VALUE_STRUCT_CONVENTION;
1094 }
1095
1096 if (hppa64_integral_or_pointer_p (type))
1097 {
1098 /* "Integral return values are returned in GR 28. Values
1099 smaller than 64 bits are padded on the left (with garbage)." */
1100 regnum = HPPA_RET0_REGNUM;
1101 offset = 8 - len;
1102 }
1103 else if (hppa64_floating_p (type))
1104 {
1105 if (len > 8)
1106 {
1107 /* "Double-extended- and quad-precision floating-point
1108 values are returned in GRs 28 and 29. The sign,
1109 exponent, and most-significant bits of the mantissa are
1110 returned in GR 28; the least-significant bits of the
1111 mantissa are passed in GR 29. For double-extended
1112 precision values, GR 29 is padded on the right with 48
1113 bits of garbage." */
1114 regnum = HPPA_RET0_REGNUM;
1115 offset = 0;
1116 }
1117 else
1118 {
1119 /* "Single-precision and double-precision floating-point
1120 return values are returned in FR 4R (single precision) or
1121 FR 4 (double-precision)." */
1122 regnum = HPPA64_FP4_REGNUM;
1123 offset = 8 - len;
1124 }
1125 }
1126 else
1127 {
1128 /* "Aggregate return values up to 64 bits in size are returned
1129 in GR 28. Aggregates smaller than 64 bits are left aligned
1130 in the register; the pad bits on the right are undefined."
1131
1132 "Aggregate return values between 65 and 128 bits are returned
1133 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1134 the remaining bits are placed, left aligned, in GR 29. The
1135 pad bits on the right of GR 29 (if any) are undefined." */
1136 regnum = HPPA_RET0_REGNUM;
1137 offset = 0;
1138 }
1139
1140 if (readbuf)
1141 {
1142 char *buf = readbuf;
1143 while (len > 0)
1144 {
1145 regcache_cooked_read_part (regcache, regnum, offset,
1146 min (len, 8), buf);
1147 buf += min (len, 8);
1148 len -= min (len, 8);
1149 regnum++;
1150 }
1151 }
1152
1153 if (writebuf)
1154 {
1155 const char *buf = writebuf;
1156 while (len > 0)
1157 {
1158 regcache_cooked_write_part (regcache, regnum, offset,
1159 min (len, 8), buf);
1160 buf += min (len, 8);
1161 len -= min (len, 8);
1162 regnum++;
1163 }
1164 }
1165
1166 return RETURN_VALUE_REGISTER_CONVENTION;
1167 }
1168 \f
1169
1170 static CORE_ADDR
1171 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
1172 CORE_ADDR addr,
1173 struct target_ops *targ)
1174 {
1175 if (addr & 2)
1176 {
1177 CORE_ADDR plabel;
1178
1179 plabel = addr & ~3;
1180 target_read_memory(plabel, (char *)&addr, 4);
1181 }
1182
1183 return addr;
1184 }
1185
1186 static CORE_ADDR
1187 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1188 {
1189 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1190 and not _bit_)! */
1191 return align_up (addr, 64);
1192 }
1193
1194 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1195
1196 static CORE_ADDR
1197 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1198 {
1199 /* Just always 16-byte align. */
1200 return align_up (addr, 16);
1201 }
1202
1203 CORE_ADDR
1204 hppa_read_pc (ptid_t ptid)
1205 {
1206 ULONGEST ipsw;
1207 CORE_ADDR pc;
1208
1209 ipsw = read_register_pid (HPPA_IPSW_REGNUM, ptid);
1210 pc = read_register_pid (HPPA_PCOQ_HEAD_REGNUM, ptid);
1211
1212 /* If the current instruction is nullified, then we are effectively
1213 still executing the previous instruction. Pretend we are still
1214 there. This is needed when single stepping; if the nullified
1215 instruction is on a different line, we don't want GDB to think
1216 we've stepped onto that line. */
1217 if (ipsw & 0x00200000)
1218 pc -= 4;
1219
1220 return pc & ~0x3;
1221 }
1222
1223 void
1224 hppa_write_pc (CORE_ADDR pc, ptid_t ptid)
1225 {
1226 write_register_pid (HPPA_PCOQ_HEAD_REGNUM, pc, ptid);
1227 write_register_pid (HPPA_PCOQ_TAIL_REGNUM, pc + 4, ptid);
1228 }
1229
1230 /* return the alignment of a type in bytes. Structures have the maximum
1231 alignment required by their fields. */
1232
1233 static int
1234 hppa_alignof (struct type *type)
1235 {
1236 int max_align, align, i;
1237 CHECK_TYPEDEF (type);
1238 switch (TYPE_CODE (type))
1239 {
1240 case TYPE_CODE_PTR:
1241 case TYPE_CODE_INT:
1242 case TYPE_CODE_FLT:
1243 return TYPE_LENGTH (type);
1244 case TYPE_CODE_ARRAY:
1245 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1246 case TYPE_CODE_STRUCT:
1247 case TYPE_CODE_UNION:
1248 max_align = 1;
1249 for (i = 0; i < TYPE_NFIELDS (type); i++)
1250 {
1251 /* Bit fields have no real alignment. */
1252 /* if (!TYPE_FIELD_BITPOS (type, i)) */
1253 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
1254 {
1255 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1256 max_align = max (max_align, align);
1257 }
1258 }
1259 return max_align;
1260 default:
1261 return 4;
1262 }
1263 }
1264
1265 /* For the given instruction (INST), return any adjustment it makes
1266 to the stack pointer or zero for no adjustment.
1267
1268 This only handles instructions commonly found in prologues. */
1269
1270 static int
1271 prologue_inst_adjust_sp (unsigned long inst)
1272 {
1273 /* This must persist across calls. */
1274 static int save_high21;
1275
1276 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1277 if ((inst & 0xffffc000) == 0x37de0000)
1278 return hppa_extract_14 (inst);
1279
1280 /* stwm X,D(sp) */
1281 if ((inst & 0xffe00000) == 0x6fc00000)
1282 return hppa_extract_14 (inst);
1283
1284 /* std,ma X,D(sp) */
1285 if ((inst & 0xffe00008) == 0x73c00008)
1286 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1287
1288 /* addil high21,%r30; ldo low11,(%r1),%r30)
1289 save high bits in save_high21 for later use. */
1290 if ((inst & 0xffe00000) == 0x2bc00000)
1291 {
1292 save_high21 = hppa_extract_21 (inst);
1293 return 0;
1294 }
1295
1296 if ((inst & 0xffff0000) == 0x343e0000)
1297 return save_high21 + hppa_extract_14 (inst);
1298
1299 /* fstws as used by the HP compilers. */
1300 if ((inst & 0xffffffe0) == 0x2fd01220)
1301 return hppa_extract_5_load (inst);
1302
1303 /* No adjustment. */
1304 return 0;
1305 }
1306
1307 /* Return nonzero if INST is a branch of some kind, else return zero. */
1308
1309 static int
1310 is_branch (unsigned long inst)
1311 {
1312 switch (inst >> 26)
1313 {
1314 case 0x20:
1315 case 0x21:
1316 case 0x22:
1317 case 0x23:
1318 case 0x27:
1319 case 0x28:
1320 case 0x29:
1321 case 0x2a:
1322 case 0x2b:
1323 case 0x2f:
1324 case 0x30:
1325 case 0x31:
1326 case 0x32:
1327 case 0x33:
1328 case 0x38:
1329 case 0x39:
1330 case 0x3a:
1331 case 0x3b:
1332 return 1;
1333
1334 default:
1335 return 0;
1336 }
1337 }
1338
1339 /* Return the register number for a GR which is saved by INST or
1340 zero it INST does not save a GR. */
1341
1342 static int
1343 inst_saves_gr (unsigned long inst)
1344 {
1345 /* Does it look like a stw? */
1346 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1347 || (inst >> 26) == 0x1f
1348 || ((inst >> 26) == 0x1f
1349 && ((inst >> 6) == 0xa)))
1350 return hppa_extract_5R_store (inst);
1351
1352 /* Does it look like a std? */
1353 if ((inst >> 26) == 0x1c
1354 || ((inst >> 26) == 0x03
1355 && ((inst >> 6) & 0xf) == 0xb))
1356 return hppa_extract_5R_store (inst);
1357
1358 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1359 if ((inst >> 26) == 0x1b)
1360 return hppa_extract_5R_store (inst);
1361
1362 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1363 too. */
1364 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1365 || ((inst >> 26) == 0x3
1366 && (((inst >> 6) & 0xf) == 0x8
1367 || (inst >> 6) & 0xf) == 0x9))
1368 return hppa_extract_5R_store (inst);
1369
1370 return 0;
1371 }
1372
1373 /* Return the register number for a FR which is saved by INST or
1374 zero it INST does not save a FR.
1375
1376 Note we only care about full 64bit register stores (that's the only
1377 kind of stores the prologue will use).
1378
1379 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1380
1381 static int
1382 inst_saves_fr (unsigned long inst)
1383 {
1384 /* is this an FSTD ? */
1385 if ((inst & 0xfc00dfc0) == 0x2c001200)
1386 return hppa_extract_5r_store (inst);
1387 if ((inst & 0xfc000002) == 0x70000002)
1388 return hppa_extract_5R_store (inst);
1389 /* is this an FSTW ? */
1390 if ((inst & 0xfc00df80) == 0x24001200)
1391 return hppa_extract_5r_store (inst);
1392 if ((inst & 0xfc000002) == 0x7c000000)
1393 return hppa_extract_5R_store (inst);
1394 return 0;
1395 }
1396
1397 /* Advance PC across any function entry prologue instructions
1398 to reach some "real" code.
1399
1400 Use information in the unwind table to determine what exactly should
1401 be in the prologue. */
1402
1403
1404 static CORE_ADDR
1405 skip_prologue_hard_way (CORE_ADDR pc, int stop_before_branch)
1406 {
1407 char buf[4];
1408 CORE_ADDR orig_pc = pc;
1409 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1410 unsigned long args_stored, status, i, restart_gr, restart_fr;
1411 struct unwind_table_entry *u;
1412 int final_iteration;
1413
1414 restart_gr = 0;
1415 restart_fr = 0;
1416
1417 restart:
1418 u = find_unwind_entry (pc);
1419 if (!u)
1420 return pc;
1421
1422 /* If we are not at the beginning of a function, then return now. */
1423 if ((pc & ~0x3) != u->region_start)
1424 return pc;
1425
1426 /* This is how much of a frame adjustment we need to account for. */
1427 stack_remaining = u->Total_frame_size << 3;
1428
1429 /* Magic register saves we want to know about. */
1430 save_rp = u->Save_RP;
1431 save_sp = u->Save_SP;
1432
1433 /* An indication that args may be stored into the stack. Unfortunately
1434 the HPUX compilers tend to set this in cases where no args were
1435 stored too!. */
1436 args_stored = 1;
1437
1438 /* Turn the Entry_GR field into a bitmask. */
1439 save_gr = 0;
1440 for (i = 3; i < u->Entry_GR + 3; i++)
1441 {
1442 /* Frame pointer gets saved into a special location. */
1443 if (u->Save_SP && i == HPPA_FP_REGNUM)
1444 continue;
1445
1446 save_gr |= (1 << i);
1447 }
1448 save_gr &= ~restart_gr;
1449
1450 /* Turn the Entry_FR field into a bitmask too. */
1451 save_fr = 0;
1452 for (i = 12; i < u->Entry_FR + 12; i++)
1453 save_fr |= (1 << i);
1454 save_fr &= ~restart_fr;
1455
1456 final_iteration = 0;
1457
1458 /* Loop until we find everything of interest or hit a branch.
1459
1460 For unoptimized GCC code and for any HP CC code this will never ever
1461 examine any user instructions.
1462
1463 For optimzied GCC code we're faced with problems. GCC will schedule
1464 its prologue and make prologue instructions available for delay slot
1465 filling. The end result is user code gets mixed in with the prologue
1466 and a prologue instruction may be in the delay slot of the first branch
1467 or call.
1468
1469 Some unexpected things are expected with debugging optimized code, so
1470 we allow this routine to walk past user instructions in optimized
1471 GCC code. */
1472 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1473 || args_stored)
1474 {
1475 unsigned int reg_num;
1476 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1477 unsigned long old_save_rp, old_save_sp, next_inst;
1478
1479 /* Save copies of all the triggers so we can compare them later
1480 (only for HPC). */
1481 old_save_gr = save_gr;
1482 old_save_fr = save_fr;
1483 old_save_rp = save_rp;
1484 old_save_sp = save_sp;
1485 old_stack_remaining = stack_remaining;
1486
1487 status = deprecated_read_memory_nobpt (pc, buf, 4);
1488 inst = extract_unsigned_integer (buf, 4);
1489
1490 /* Yow! */
1491 if (status != 0)
1492 return pc;
1493
1494 /* Note the interesting effects of this instruction. */
1495 stack_remaining -= prologue_inst_adjust_sp (inst);
1496
1497 /* There are limited ways to store the return pointer into the
1498 stack. */
1499 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
1500 save_rp = 0;
1501
1502 /* These are the only ways we save SP into the stack. At this time
1503 the HP compilers never bother to save SP into the stack. */
1504 if ((inst & 0xffffc000) == 0x6fc10000
1505 || (inst & 0xffffc00c) == 0x73c10008)
1506 save_sp = 0;
1507
1508 /* Are we loading some register with an offset from the argument
1509 pointer? */
1510 if ((inst & 0xffe00000) == 0x37a00000
1511 || (inst & 0xffffffe0) == 0x081d0240)
1512 {
1513 pc += 4;
1514 continue;
1515 }
1516
1517 /* Account for general and floating-point register saves. */
1518 reg_num = inst_saves_gr (inst);
1519 save_gr &= ~(1 << reg_num);
1520
1521 /* Ugh. Also account for argument stores into the stack.
1522 Unfortunately args_stored only tells us that some arguments
1523 where stored into the stack. Not how many or what kind!
1524
1525 This is a kludge as on the HP compiler sets this bit and it
1526 never does prologue scheduling. So once we see one, skip past
1527 all of them. We have similar code for the fp arg stores below.
1528
1529 FIXME. Can still die if we have a mix of GR and FR argument
1530 stores! */
1531 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1532 {
1533 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1534 {
1535 pc += 4;
1536 status = deprecated_read_memory_nobpt (pc, buf, 4);
1537 inst = extract_unsigned_integer (buf, 4);
1538 if (status != 0)
1539 return pc;
1540 reg_num = inst_saves_gr (inst);
1541 }
1542 args_stored = 0;
1543 continue;
1544 }
1545
1546 reg_num = inst_saves_fr (inst);
1547 save_fr &= ~(1 << reg_num);
1548
1549 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
1550 next_inst = extract_unsigned_integer (buf, 4);
1551
1552 /* Yow! */
1553 if (status != 0)
1554 return pc;
1555
1556 /* We've got to be read to handle the ldo before the fp register
1557 save. */
1558 if ((inst & 0xfc000000) == 0x34000000
1559 && inst_saves_fr (next_inst) >= 4
1560 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1561 {
1562 /* So we drop into the code below in a reasonable state. */
1563 reg_num = inst_saves_fr (next_inst);
1564 pc -= 4;
1565 }
1566
1567 /* Ugh. Also account for argument stores into the stack.
1568 This is a kludge as on the HP compiler sets this bit and it
1569 never does prologue scheduling. So once we see one, skip past
1570 all of them. */
1571 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1572 {
1573 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1574 {
1575 pc += 8;
1576 status = deprecated_read_memory_nobpt (pc, buf, 4);
1577 inst = extract_unsigned_integer (buf, 4);
1578 if (status != 0)
1579 return pc;
1580 if ((inst & 0xfc000000) != 0x34000000)
1581 break;
1582 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
1583 next_inst = extract_unsigned_integer (buf, 4);
1584 if (status != 0)
1585 return pc;
1586 reg_num = inst_saves_fr (next_inst);
1587 }
1588 args_stored = 0;
1589 continue;
1590 }
1591
1592 /* Quit if we hit any kind of branch. This can happen if a prologue
1593 instruction is in the delay slot of the first call/branch. */
1594 if (is_branch (inst) && stop_before_branch)
1595 break;
1596
1597 /* What a crock. The HP compilers set args_stored even if no
1598 arguments were stored into the stack (boo hiss). This could
1599 cause this code to then skip a bunch of user insns (up to the
1600 first branch).
1601
1602 To combat this we try to identify when args_stored was bogusly
1603 set and clear it. We only do this when args_stored is nonzero,
1604 all other resources are accounted for, and nothing changed on
1605 this pass. */
1606 if (args_stored
1607 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1608 && old_save_gr == save_gr && old_save_fr == save_fr
1609 && old_save_rp == save_rp && old_save_sp == save_sp
1610 && old_stack_remaining == stack_remaining)
1611 break;
1612
1613 /* Bump the PC. */
1614 pc += 4;
1615
1616 /* !stop_before_branch, so also look at the insn in the delay slot
1617 of the branch. */
1618 if (final_iteration)
1619 break;
1620 if (is_branch (inst))
1621 final_iteration = 1;
1622 }
1623
1624 /* We've got a tenative location for the end of the prologue. However
1625 because of limitations in the unwind descriptor mechanism we may
1626 have went too far into user code looking for the save of a register
1627 that does not exist. So, if there registers we expected to be saved
1628 but never were, mask them out and restart.
1629
1630 This should only happen in optimized code, and should be very rare. */
1631 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1632 {
1633 pc = orig_pc;
1634 restart_gr = save_gr;
1635 restart_fr = save_fr;
1636 goto restart;
1637 }
1638
1639 return pc;
1640 }
1641
1642
1643 /* Return the address of the PC after the last prologue instruction if
1644 we can determine it from the debug symbols. Else return zero. */
1645
1646 static CORE_ADDR
1647 after_prologue (CORE_ADDR pc)
1648 {
1649 struct symtab_and_line sal;
1650 CORE_ADDR func_addr, func_end;
1651 struct symbol *f;
1652
1653 /* If we can not find the symbol in the partial symbol table, then
1654 there is no hope we can determine the function's start address
1655 with this code. */
1656 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1657 return 0;
1658
1659 /* Get the line associated with FUNC_ADDR. */
1660 sal = find_pc_line (func_addr, 0);
1661
1662 /* There are only two cases to consider. First, the end of the source line
1663 is within the function bounds. In that case we return the end of the
1664 source line. Second is the end of the source line extends beyond the
1665 bounds of the current function. We need to use the slow code to
1666 examine instructions in that case.
1667
1668 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1669 the wrong thing to do. In fact, it should be entirely possible for this
1670 function to always return zero since the slow instruction scanning code
1671 is supposed to *always* work. If it does not, then it is a bug. */
1672 if (sal.end < func_end)
1673 return sal.end;
1674 else
1675 return 0;
1676 }
1677
1678 /* To skip prologues, I use this predicate. Returns either PC itself
1679 if the code at PC does not look like a function prologue; otherwise
1680 returns an address that (if we're lucky) follows the prologue.
1681
1682 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1683 It doesn't necessarily skips all the insns in the prologue. In fact
1684 we might not want to skip all the insns because a prologue insn may
1685 appear in the delay slot of the first branch, and we don't want to
1686 skip over the branch in that case. */
1687
1688 static CORE_ADDR
1689 hppa_skip_prologue (CORE_ADDR pc)
1690 {
1691 unsigned long inst;
1692 int offset;
1693 CORE_ADDR post_prologue_pc;
1694 char buf[4];
1695
1696 /* See if we can determine the end of the prologue via the symbol table.
1697 If so, then return either PC, or the PC after the prologue, whichever
1698 is greater. */
1699
1700 post_prologue_pc = after_prologue (pc);
1701
1702 /* If after_prologue returned a useful address, then use it. Else
1703 fall back on the instruction skipping code.
1704
1705 Some folks have claimed this causes problems because the breakpoint
1706 may be the first instruction of the prologue. If that happens, then
1707 the instruction skipping code has a bug that needs to be fixed. */
1708 if (post_prologue_pc != 0)
1709 return max (pc, post_prologue_pc);
1710 else
1711 return (skip_prologue_hard_way (pc, 1));
1712 }
1713
1714 struct hppa_frame_cache
1715 {
1716 CORE_ADDR base;
1717 struct trad_frame_saved_reg *saved_regs;
1718 };
1719
1720 static struct hppa_frame_cache *
1721 hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
1722 {
1723 struct hppa_frame_cache *cache;
1724 long saved_gr_mask;
1725 long saved_fr_mask;
1726 CORE_ADDR this_sp;
1727 long frame_size;
1728 struct unwind_table_entry *u;
1729 CORE_ADDR prologue_end;
1730 int fp_in_r1 = 0;
1731 int i;
1732
1733 if (hppa_debug)
1734 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1735 frame_relative_level(next_frame));
1736
1737 if ((*this_cache) != NULL)
1738 {
1739 if (hppa_debug)
1740 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1741 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1742 return (*this_cache);
1743 }
1744 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1745 (*this_cache) = cache;
1746 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1747
1748 /* Yow! */
1749 u = find_unwind_entry (frame_pc_unwind (next_frame));
1750 if (!u)
1751 {
1752 if (hppa_debug)
1753 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1754 return (*this_cache);
1755 }
1756
1757 /* Turn the Entry_GR field into a bitmask. */
1758 saved_gr_mask = 0;
1759 for (i = 3; i < u->Entry_GR + 3; i++)
1760 {
1761 /* Frame pointer gets saved into a special location. */
1762 if (u->Save_SP && i == HPPA_FP_REGNUM)
1763 continue;
1764
1765 saved_gr_mask |= (1 << i);
1766 }
1767
1768 /* Turn the Entry_FR field into a bitmask too. */
1769 saved_fr_mask = 0;
1770 for (i = 12; i < u->Entry_FR + 12; i++)
1771 saved_fr_mask |= (1 << i);
1772
1773 /* Loop until we find everything of interest or hit a branch.
1774
1775 For unoptimized GCC code and for any HP CC code this will never ever
1776 examine any user instructions.
1777
1778 For optimized GCC code we're faced with problems. GCC will schedule
1779 its prologue and make prologue instructions available for delay slot
1780 filling. The end result is user code gets mixed in with the prologue
1781 and a prologue instruction may be in the delay slot of the first branch
1782 or call.
1783
1784 Some unexpected things are expected with debugging optimized code, so
1785 we allow this routine to walk past user instructions in optimized
1786 GCC code. */
1787 {
1788 int final_iteration = 0;
1789 CORE_ADDR pc, end_pc;
1790 int looking_for_sp = u->Save_SP;
1791 int looking_for_rp = u->Save_RP;
1792 int fp_loc = -1;
1793
1794 /* We have to use skip_prologue_hard_way instead of just
1795 skip_prologue_using_sal, in case we stepped into a function without
1796 symbol information. hppa_skip_prologue also bounds the returned
1797 pc by the passed in pc, so it will not return a pc in the next
1798 function.
1799
1800 We used to call hppa_skip_prologue to find the end of the prologue,
1801 but if some non-prologue instructions get scheduled into the prologue,
1802 and the program is compiled with debug information, the "easy" way
1803 in hppa_skip_prologue will return a prologue end that is too early
1804 for us to notice any potential frame adjustments. */
1805
1806 /* We used to use frame_func_unwind () to locate the beginning of the
1807 function to pass to skip_prologue (). However, when objects are
1808 compiled without debug symbols, frame_func_unwind can return the wrong
1809 function (or 0). We can do better than that by using unwind records. */
1810
1811 prologue_end = skip_prologue_hard_way (u->region_start, 0);
1812 end_pc = frame_pc_unwind (next_frame);
1813
1814 if (prologue_end != 0 && end_pc > prologue_end)
1815 end_pc = prologue_end;
1816
1817 frame_size = 0;
1818
1819 for (pc = u->region_start;
1820 ((saved_gr_mask || saved_fr_mask
1821 || looking_for_sp || looking_for_rp
1822 || frame_size < (u->Total_frame_size << 3))
1823 && pc < end_pc);
1824 pc += 4)
1825 {
1826 int reg;
1827 char buf4[4];
1828 long inst;
1829
1830 if (!safe_frame_unwind_memory (next_frame, pc, buf4,
1831 sizeof buf4))
1832 {
1833 error (_("Cannot read instruction at 0x%s."), paddr_nz (pc));
1834 return (*this_cache);
1835 }
1836
1837 inst = extract_unsigned_integer (buf4, sizeof buf4);
1838
1839 /* Note the interesting effects of this instruction. */
1840 frame_size += prologue_inst_adjust_sp (inst);
1841
1842 /* There are limited ways to store the return pointer into the
1843 stack. */
1844 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1845 {
1846 looking_for_rp = 0;
1847 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1848 }
1849 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1850 {
1851 looking_for_rp = 0;
1852 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1853 }
1854 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
1855 {
1856 looking_for_rp = 0;
1857 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1858 }
1859
1860 /* Check to see if we saved SP into the stack. This also
1861 happens to indicate the location of the saved frame
1862 pointer. */
1863 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1864 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1865 {
1866 looking_for_sp = 0;
1867 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
1868 }
1869 else if (inst == 0x08030241) /* copy %r3, %r1 */
1870 {
1871 fp_in_r1 = 1;
1872 }
1873
1874 /* Account for general and floating-point register saves. */
1875 reg = inst_saves_gr (inst);
1876 if (reg >= 3 && reg <= 18
1877 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
1878 {
1879 saved_gr_mask &= ~(1 << reg);
1880 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
1881 /* stwm with a positive displacement is a _post_
1882 _modify_. */
1883 cache->saved_regs[reg].addr = 0;
1884 else if ((inst & 0xfc00000c) == 0x70000008)
1885 /* A std has explicit post_modify forms. */
1886 cache->saved_regs[reg].addr = 0;
1887 else
1888 {
1889 CORE_ADDR offset;
1890
1891 if ((inst >> 26) == 0x1c)
1892 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1893 else if ((inst >> 26) == 0x03)
1894 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
1895 else
1896 offset = hppa_extract_14 (inst);
1897
1898 /* Handle code with and without frame pointers. */
1899 if (u->Save_SP)
1900 cache->saved_regs[reg].addr = offset;
1901 else
1902 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
1903 }
1904 }
1905
1906 /* GCC handles callee saved FP regs a little differently.
1907
1908 It emits an instruction to put the value of the start of
1909 the FP store area into %r1. It then uses fstds,ma with a
1910 basereg of %r1 for the stores.
1911
1912 HP CC emits them at the current stack pointer modifying the
1913 stack pointer as it stores each register. */
1914
1915 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
1916 if ((inst & 0xffffc000) == 0x34610000
1917 || (inst & 0xffffc000) == 0x37c10000)
1918 fp_loc = hppa_extract_14 (inst);
1919
1920 reg = inst_saves_fr (inst);
1921 if (reg >= 12 && reg <= 21)
1922 {
1923 /* Note +4 braindamage below is necessary because the FP
1924 status registers are internally 8 registers rather than
1925 the expected 4 registers. */
1926 saved_fr_mask &= ~(1 << reg);
1927 if (fp_loc == -1)
1928 {
1929 /* 1st HP CC FP register store. After this
1930 instruction we've set enough state that the GCC and
1931 HPCC code are both handled in the same manner. */
1932 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
1933 fp_loc = 8;
1934 }
1935 else
1936 {
1937 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
1938 fp_loc += 8;
1939 }
1940 }
1941
1942 /* Quit if we hit any kind of branch the previous iteration. */
1943 if (final_iteration)
1944 break;
1945 /* We want to look precisely one instruction beyond the branch
1946 if we have not found everything yet. */
1947 if (is_branch (inst))
1948 final_iteration = 1;
1949 }
1950 }
1951
1952 {
1953 /* The frame base always represents the value of %sp at entry to
1954 the current function (and is thus equivalent to the "saved"
1955 stack pointer. */
1956 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
1957 CORE_ADDR fp;
1958
1959 if (hppa_debug)
1960 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
1961 "prologue_end=0x%s) ",
1962 paddr_nz (this_sp),
1963 paddr_nz (frame_pc_unwind (next_frame)),
1964 paddr_nz (prologue_end));
1965
1966 /* Check to see if a frame pointer is available, and use it for
1967 frame unwinding if it is.
1968
1969 There are some situations where we need to rely on the frame
1970 pointer to do stack unwinding. For example, if a function calls
1971 alloca (), the stack pointer can get adjusted inside the body of
1972 the function. In this case, the ABI requires that the compiler
1973 maintain a frame pointer for the function.
1974
1975 The unwind record has a flag (alloca_frame) that indicates that
1976 a function has a variable frame; unfortunately, gcc/binutils
1977 does not set this flag. Instead, whenever a frame pointer is used
1978 and saved on the stack, the Save_SP flag is set. We use this to
1979 decide whether to use the frame pointer for unwinding.
1980
1981 TODO: For the HP compiler, maybe we should use the alloca_frame flag
1982 instead of Save_SP. */
1983
1984 fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM);
1985
1986 if (frame_pc_unwind (next_frame) >= prologue_end
1987 && u->Save_SP && fp != 0)
1988 {
1989 cache->base = fp;
1990
1991 if (hppa_debug)
1992 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer] }",
1993 paddr_nz (cache->base));
1994 }
1995 else if (u->Save_SP
1996 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
1997 {
1998 /* Both we're expecting the SP to be saved and the SP has been
1999 saved. The entry SP value is saved at this frame's SP
2000 address. */
2001 cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8);
2002
2003 if (hppa_debug)
2004 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved] }",
2005 paddr_nz (cache->base));
2006 }
2007 else
2008 {
2009 /* The prologue has been slowly allocating stack space. Adjust
2010 the SP back. */
2011 cache->base = this_sp - frame_size;
2012 if (hppa_debug)
2013 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust] } ",
2014 paddr_nz (cache->base));
2015
2016 }
2017 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2018 }
2019
2020 /* The PC is found in the "return register", "Millicode" uses "r31"
2021 as the return register while normal code uses "rp". */
2022 if (u->Millicode)
2023 {
2024 if (trad_frame_addr_p (cache->saved_regs, 31))
2025 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2026 else
2027 {
2028 ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
2029 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
2030 }
2031 }
2032 else
2033 {
2034 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2035 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
2036 else
2037 {
2038 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2039 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2040 }
2041 }
2042
2043 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2044 frame. However, there is a one-insn window where we haven't saved it
2045 yet, but we've already clobbered it. Detect this case and fix it up.
2046
2047 The prologue sequence for frame-pointer functions is:
2048 0: stw %rp, -20(%sp)
2049 4: copy %r3, %r1
2050 8: copy %sp, %r3
2051 c: stw,ma %r1, XX(%sp)
2052
2053 So if we are at offset c, the r3 value that we want is not yet saved
2054 on the stack, but it's been overwritten. The prologue analyzer will
2055 set fp_in_r1 when it sees the copy insn so we know to get the value
2056 from r1 instead. */
2057 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2058 && fp_in_r1)
2059 {
2060 ULONGEST r1 = frame_unwind_register_unsigned (next_frame, 1);
2061 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2062 }
2063
2064 {
2065 /* Convert all the offsets into addresses. */
2066 int reg;
2067 for (reg = 0; reg < NUM_REGS; reg++)
2068 {
2069 if (trad_frame_addr_p (cache->saved_regs, reg))
2070 cache->saved_regs[reg].addr += cache->base;
2071 }
2072 }
2073
2074 {
2075 struct gdbarch *gdbarch;
2076 struct gdbarch_tdep *tdep;
2077
2078 gdbarch = get_frame_arch (next_frame);
2079 tdep = gdbarch_tdep (gdbarch);
2080
2081 if (tdep->unwind_adjust_stub)
2082 {
2083 tdep->unwind_adjust_stub (next_frame, cache->base, cache->saved_regs);
2084 }
2085 }
2086
2087 if (hppa_debug)
2088 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
2089 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
2090 return (*this_cache);
2091 }
2092
2093 static void
2094 hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
2095 struct frame_id *this_id)
2096 {
2097 struct hppa_frame_cache *info;
2098 CORE_ADDR pc = frame_pc_unwind (next_frame);
2099 struct unwind_table_entry *u;
2100
2101 info = hppa_frame_cache (next_frame, this_cache);
2102 u = find_unwind_entry (pc);
2103
2104 (*this_id) = frame_id_build (info->base, u->region_start);
2105 }
2106
2107 static void
2108 hppa_frame_prev_register (struct frame_info *next_frame,
2109 void **this_cache,
2110 int regnum, int *optimizedp,
2111 enum lval_type *lvalp, CORE_ADDR *addrp,
2112 int *realnump, void *valuep)
2113 {
2114 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
2115 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2116 optimizedp, lvalp, addrp, realnump, valuep);
2117 }
2118
2119 static const struct frame_unwind hppa_frame_unwind =
2120 {
2121 NORMAL_FRAME,
2122 hppa_frame_this_id,
2123 hppa_frame_prev_register
2124 };
2125
2126 static const struct frame_unwind *
2127 hppa_frame_unwind_sniffer (struct frame_info *next_frame)
2128 {
2129 CORE_ADDR pc = frame_pc_unwind (next_frame);
2130
2131 if (find_unwind_entry (pc))
2132 return &hppa_frame_unwind;
2133
2134 return NULL;
2135 }
2136
2137 /* This is a generic fallback frame unwinder that kicks in if we fail all
2138 the other ones. Normally we would expect the stub and regular unwinder
2139 to work, but in some cases we might hit a function that just doesn't
2140 have any unwind information available. In this case we try to do
2141 unwinding solely based on code reading. This is obviously going to be
2142 slow, so only use this as a last resort. Currently this will only
2143 identify the stack and pc for the frame. */
2144
2145 static struct hppa_frame_cache *
2146 hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
2147 {
2148 struct hppa_frame_cache *cache;
2149 unsigned int frame_size;
2150 int found_rp;
2151 CORE_ADDR pc, start_pc, end_pc, cur_pc;
2152
2153 if (hppa_debug)
2154 fprintf_unfiltered (gdb_stdlog, "{ hppa_fallback_frame_cache (frame=%d)-> ",
2155 frame_relative_level(next_frame));
2156
2157 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2158 (*this_cache) = cache;
2159 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2160
2161 pc = frame_func_unwind (next_frame);
2162 cur_pc = frame_pc_unwind (next_frame);
2163 frame_size = 0;
2164 found_rp = 0;
2165
2166 find_pc_partial_function (pc, NULL, &start_pc, &end_pc);
2167
2168 if (start_pc == 0 || end_pc == 0)
2169 {
2170 error (_("Cannot find bounds of current function (@0x%s), unwinding will "
2171 "fail."), paddr_nz (pc));
2172 return cache;
2173 }
2174
2175 if (end_pc > cur_pc)
2176 end_pc = cur_pc;
2177
2178 for (pc = start_pc; pc < end_pc; pc += 4)
2179 {
2180 unsigned int insn;
2181
2182 insn = read_memory_unsigned_integer (pc, 4);
2183
2184 frame_size += prologue_inst_adjust_sp (insn);
2185
2186 /* There are limited ways to store the return pointer into the
2187 stack. */
2188 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2189 {
2190 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2191 found_rp = 1;
2192 }
2193 else if (insn == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
2194 {
2195 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2196 found_rp = 1;
2197 }
2198 }
2199
2200 if (hppa_debug)
2201 fprintf_unfiltered (gdb_stdlog, " frame_size = %d, found_rp = %d }\n",
2202 frame_size, found_rp);
2203
2204 cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM) - frame_size;
2205 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2206
2207 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2208 {
2209 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2210 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
2211 }
2212 else
2213 {
2214 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2215 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2216 }
2217
2218 return cache;
2219 }
2220
2221 static void
2222 hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
2223 struct frame_id *this_id)
2224 {
2225 struct hppa_frame_cache *info =
2226 hppa_fallback_frame_cache (next_frame, this_cache);
2227 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2228 }
2229
2230 static void
2231 hppa_fallback_frame_prev_register (struct frame_info *next_frame,
2232 void **this_cache,
2233 int regnum, int *optimizedp,
2234 enum lval_type *lvalp, CORE_ADDR *addrp,
2235 int *realnump, void *valuep)
2236 {
2237 struct hppa_frame_cache *info =
2238 hppa_fallback_frame_cache (next_frame, this_cache);
2239 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2240 optimizedp, lvalp, addrp, realnump, valuep);
2241 }
2242
2243 static const struct frame_unwind hppa_fallback_frame_unwind =
2244 {
2245 NORMAL_FRAME,
2246 hppa_fallback_frame_this_id,
2247 hppa_fallback_frame_prev_register
2248 };
2249
2250 static const struct frame_unwind *
2251 hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
2252 {
2253 return &hppa_fallback_frame_unwind;
2254 }
2255
2256 /* Stub frames, used for all kinds of call stubs. */
2257 struct hppa_stub_unwind_cache
2258 {
2259 CORE_ADDR base;
2260 struct trad_frame_saved_reg *saved_regs;
2261 };
2262
2263 static struct hppa_stub_unwind_cache *
2264 hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
2265 void **this_cache)
2266 {
2267 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2268 struct hppa_stub_unwind_cache *info;
2269 struct unwind_table_entry *u;
2270
2271 if (*this_cache)
2272 return *this_cache;
2273
2274 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2275 *this_cache = info;
2276 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2277
2278 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2279
2280 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2281 {
2282 /* HPUX uses export stubs in function calls; the export stub clobbers
2283 the return value of the caller, and, later restores it from the
2284 stack. */
2285 u = find_unwind_entry (frame_pc_unwind (next_frame));
2286
2287 if (u && u->stub_unwind.stub_type == EXPORT)
2288 {
2289 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2290
2291 return info;
2292 }
2293 }
2294
2295 /* By default we assume that stubs do not change the rp. */
2296 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2297
2298 return info;
2299 }
2300
2301 static void
2302 hppa_stub_frame_this_id (struct frame_info *next_frame,
2303 void **this_prologue_cache,
2304 struct frame_id *this_id)
2305 {
2306 struct hppa_stub_unwind_cache *info
2307 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2308
2309 if (info)
2310 *this_id = frame_id_build (info->base, frame_func_unwind (next_frame));
2311 else
2312 *this_id = null_frame_id;
2313 }
2314
2315 static void
2316 hppa_stub_frame_prev_register (struct frame_info *next_frame,
2317 void **this_prologue_cache,
2318 int regnum, int *optimizedp,
2319 enum lval_type *lvalp, CORE_ADDR *addrp,
2320 int *realnump, void *valuep)
2321 {
2322 struct hppa_stub_unwind_cache *info
2323 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2324
2325 if (info)
2326 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2327 optimizedp, lvalp, addrp, realnump,
2328 valuep);
2329 else
2330 error (_("Requesting registers from null frame."));
2331 }
2332
2333 static const struct frame_unwind hppa_stub_frame_unwind = {
2334 NORMAL_FRAME,
2335 hppa_stub_frame_this_id,
2336 hppa_stub_frame_prev_register
2337 };
2338
2339 static const struct frame_unwind *
2340 hppa_stub_unwind_sniffer (struct frame_info *next_frame)
2341 {
2342 CORE_ADDR pc = frame_pc_unwind (next_frame);
2343 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2344 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2345
2346 if (pc == 0
2347 || (tdep->in_solib_call_trampoline != NULL
2348 && tdep->in_solib_call_trampoline (pc, NULL))
2349 || IN_SOLIB_RETURN_TRAMPOLINE (pc, NULL))
2350 return &hppa_stub_frame_unwind;
2351 return NULL;
2352 }
2353
2354 static struct frame_id
2355 hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2356 {
2357 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2358 HPPA_SP_REGNUM),
2359 frame_pc_unwind (next_frame));
2360 }
2361
2362 CORE_ADDR
2363 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2364 {
2365 ULONGEST ipsw;
2366 CORE_ADDR pc;
2367
2368 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2369 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2370
2371 /* If the current instruction is nullified, then we are effectively
2372 still executing the previous instruction. Pretend we are still
2373 there. This is needed when single stepping; if the nullified
2374 instruction is on a different line, we don't want GDB to think
2375 we've stepped onto that line. */
2376 if (ipsw & 0x00200000)
2377 pc -= 4;
2378
2379 return pc & ~0x3;
2380 }
2381
2382 /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2383 Return NULL if no such symbol was found. */
2384
2385 struct minimal_symbol *
2386 hppa_lookup_stub_minimal_symbol (const char *name,
2387 enum unwind_stub_types stub_type)
2388 {
2389 struct objfile *objfile;
2390 struct minimal_symbol *msym;
2391
2392 ALL_MSYMBOLS (objfile, msym)
2393 {
2394 if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
2395 {
2396 struct unwind_table_entry *u;
2397
2398 u = find_unwind_entry (SYMBOL_VALUE (msym));
2399 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2400 return msym;
2401 }
2402 }
2403
2404 return NULL;
2405 }
2406
2407 /* Instead of this nasty cast, add a method pvoid() that prints out a
2408 host VOID data type (remember %p isn't portable). */
2409
2410 static CORE_ADDR
2411 hppa_pointer_to_address_hack (void *ptr)
2412 {
2413 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
2414 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
2415 }
2416
2417 static void
2418 unwind_command (char *exp, int from_tty)
2419 {
2420 CORE_ADDR address;
2421 struct unwind_table_entry *u;
2422
2423 /* If we have an expression, evaluate it and use it as the address. */
2424
2425 if (exp != 0 && *exp != 0)
2426 address = parse_and_eval_address (exp);
2427 else
2428 return;
2429
2430 u = find_unwind_entry (address);
2431
2432 if (!u)
2433 {
2434 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2435 return;
2436 }
2437
2438 printf_unfiltered ("unwind_table_entry (0x%s):\n",
2439 paddr_nz (hppa_pointer_to_address_hack (u)));
2440
2441 printf_unfiltered ("\tregion_start = ");
2442 print_address (u->region_start, gdb_stdout);
2443 gdb_flush (gdb_stdout);
2444
2445 printf_unfiltered ("\n\tregion_end = ");
2446 print_address (u->region_end, gdb_stdout);
2447 gdb_flush (gdb_stdout);
2448
2449 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2450
2451 printf_unfiltered ("\n\tflags =");
2452 pif (Cannot_unwind);
2453 pif (Millicode);
2454 pif (Millicode_save_sr0);
2455 pif (Entry_SR);
2456 pif (Args_stored);
2457 pif (Variable_Frame);
2458 pif (Separate_Package_Body);
2459 pif (Frame_Extension_Millicode);
2460 pif (Stack_Overflow_Check);
2461 pif (Two_Instruction_SP_Increment);
2462 pif (Ada_Region);
2463 pif (Save_SP);
2464 pif (Save_RP);
2465 pif (Save_MRP_in_frame);
2466 pif (extn_ptr_defined);
2467 pif (Cleanup_defined);
2468 pif (MPE_XL_interrupt_marker);
2469 pif (HP_UX_interrupt_marker);
2470 pif (Large_frame);
2471
2472 putchar_unfiltered ('\n');
2473
2474 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2475
2476 pin (Region_description);
2477 pin (Entry_FR);
2478 pin (Entry_GR);
2479 pin (Total_frame_size);
2480
2481 if (u->stub_unwind.stub_type)
2482 {
2483 printf_unfiltered ("\tstub type = ");
2484 switch (u->stub_unwind.stub_type)
2485 {
2486 case LONG_BRANCH:
2487 printf_unfiltered ("long branch\n");
2488 break;
2489 case PARAMETER_RELOCATION:
2490 printf_unfiltered ("parameter relocation\n");
2491 break;
2492 case EXPORT:
2493 printf_unfiltered ("export\n");
2494 break;
2495 case IMPORT:
2496 printf_unfiltered ("import\n");
2497 break;
2498 case IMPORT_SHLIB:
2499 printf_unfiltered ("import shlib\n");
2500 break;
2501 default:
2502 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2503 }
2504 }
2505 }
2506
2507 int
2508 hppa_pc_requires_run_before_use (CORE_ADDR pc)
2509 {
2510 /* Sometimes we may pluck out a minimal symbol that has a negative address.
2511
2512 An example of this occurs when an a.out is linked against a foo.sl.
2513 The foo.sl defines a global bar(), and the a.out declares a signature
2514 for bar(). However, the a.out doesn't directly call bar(), but passes
2515 its address in another call.
2516
2517 If you have this scenario and attempt to "break bar" before running,
2518 gdb will find a minimal symbol for bar() in the a.out. But that
2519 symbol's address will be negative. What this appears to denote is
2520 an index backwards from the base of the procedure linkage table (PLT)
2521 into the data linkage table (DLT), the end of which is contiguous
2522 with the start of the PLT. This is clearly not a valid address for
2523 us to set a breakpoint on.
2524
2525 Note that one must be careful in how one checks for a negative address.
2526 0xc0000000 is a legitimate address of something in a shared text
2527 segment, for example. Since I don't know what the possible range
2528 is of these "really, truly negative" addresses that come from the
2529 minimal symbols, I'm resorting to the gross hack of checking the
2530 top byte of the address for all 1's. Sigh. */
2531
2532 return (!target_has_stack && (pc & 0xFF000000));
2533 }
2534
2535 /* Return the GDB type object for the "standard" data type of data in
2536 register REGNUM. */
2537
2538 static struct type *
2539 hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2540 {
2541 if (regnum < HPPA_FP4_REGNUM)
2542 return builtin_type_uint32;
2543 else
2544 return builtin_type_ieee_single_big;
2545 }
2546
2547 static struct type *
2548 hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2549 {
2550 if (regnum < HPPA64_FP4_REGNUM)
2551 return builtin_type_uint64;
2552 else
2553 return builtin_type_ieee_double_big;
2554 }
2555
2556 /* Return non-zero if REGNUM is not a register available to the user
2557 through ptrace/ttrace. */
2558
2559 static int
2560 hppa32_cannot_store_register (int regnum)
2561 {
2562 return (regnum == 0
2563 || regnum == HPPA_PCSQ_HEAD_REGNUM
2564 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2565 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2566 }
2567
2568 static int
2569 hppa64_cannot_store_register (int regnum)
2570 {
2571 return (regnum == 0
2572 || regnum == HPPA_PCSQ_HEAD_REGNUM
2573 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2574 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2575 }
2576
2577 static CORE_ADDR
2578 hppa_smash_text_address (CORE_ADDR addr)
2579 {
2580 /* The low two bits of the PC on the PA contain the privilege level.
2581 Some genius implementing a (non-GCC) compiler apparently decided
2582 this means that "addresses" in a text section therefore include a
2583 privilege level, and thus symbol tables should contain these bits.
2584 This seems like a bonehead thing to do--anyway, it seems to work
2585 for our purposes to just ignore those bits. */
2586
2587 return (addr &= ~0x3);
2588 }
2589
2590 /* Get the ith function argument for the current function. */
2591 static CORE_ADDR
2592 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2593 struct type *type)
2594 {
2595 CORE_ADDR addr;
2596 get_frame_register (frame, HPPA_R0_REGNUM + 26 - argi, &addr);
2597 return addr;
2598 }
2599
2600 static void
2601 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2602 int regnum, void *buf)
2603 {
2604 ULONGEST tmp;
2605
2606 regcache_raw_read_unsigned (regcache, regnum, &tmp);
2607 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2608 tmp &= ~0x3;
2609 store_unsigned_integer (buf, sizeof(tmp), tmp);
2610 }
2611
2612 static CORE_ADDR
2613 hppa_find_global_pointer (struct value *function)
2614 {
2615 return 0;
2616 }
2617
2618 void
2619 hppa_frame_prev_register_helper (struct frame_info *next_frame,
2620 struct trad_frame_saved_reg saved_regs[],
2621 int regnum, int *optimizedp,
2622 enum lval_type *lvalp, CORE_ADDR *addrp,
2623 int *realnump, void *valuep)
2624 {
2625 struct gdbarch *arch = get_frame_arch (next_frame);
2626
2627 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2628 {
2629 if (valuep)
2630 {
2631 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2632 CORE_ADDR pc;
2633
2634 trad_frame_get_prev_register (next_frame, saved_regs,
2635 HPPA_PCOQ_HEAD_REGNUM, optimizedp,
2636 lvalp, addrp, realnump, valuep);
2637
2638 pc = extract_unsigned_integer (valuep, size);
2639 store_unsigned_integer (valuep, size, pc + 4);
2640 }
2641
2642 /* It's a computed value. */
2643 *optimizedp = 0;
2644 *lvalp = not_lval;
2645 *addrp = 0;
2646 *realnump = -1;
2647 return;
2648 }
2649
2650 /* Make sure the "flags" register is zero in all unwound frames.
2651 The "flags" registers is a HP-UX specific wart, and only the code
2652 in hppa-hpux-tdep.c depends on it. However, it is easier to deal
2653 with it here. This shouldn't affect other systems since those
2654 should provide zero for the "flags" register anyway. */
2655 if (regnum == HPPA_FLAGS_REGNUM)
2656 {
2657 if (valuep)
2658 store_unsigned_integer (valuep, register_size (arch, regnum), 0);
2659
2660 /* It's a computed value. */
2661 *optimizedp = 0;
2662 *lvalp = not_lval;
2663 *addrp = 0;
2664 *realnump = -1;
2665 return;
2666 }
2667
2668 trad_frame_get_prev_register (next_frame, saved_regs, regnum,
2669 optimizedp, lvalp, addrp, realnump, valuep);
2670 }
2671 \f
2672
2673 /* Here is a table of C type sizes on hppa with various compiles
2674 and options. I measured this on PA 9000/800 with HP-UX 11.11
2675 and these compilers:
2676
2677 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2678 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2679 /opt/aCC/bin/aCC B3910B A.03.45
2680 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2681
2682 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2683 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2684 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2685 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2686 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2687 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2688 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2689 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2690
2691 Each line is:
2692
2693 compiler and options
2694 char, short, int, long, long long
2695 float, double, long double
2696 char *, void (*)()
2697
2698 So all these compilers use either ILP32 or LP64 model.
2699 TODO: gcc has more options so it needs more investigation.
2700
2701 For floating point types, see:
2702
2703 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2704 HP-UX floating-point guide, hpux 11.00
2705
2706 -- chastain 2003-12-18 */
2707
2708 static struct gdbarch *
2709 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2710 {
2711 struct gdbarch_tdep *tdep;
2712 struct gdbarch *gdbarch;
2713
2714 /* Try to determine the ABI of the object we are loading. */
2715 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
2716 {
2717 /* If it's a SOM file, assume it's HP/UX SOM. */
2718 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
2719 info.osabi = GDB_OSABI_HPUX_SOM;
2720 }
2721
2722 /* find a candidate among the list of pre-declared architectures. */
2723 arches = gdbarch_list_lookup_by_info (arches, &info);
2724 if (arches != NULL)
2725 return (arches->gdbarch);
2726
2727 /* If none found, then allocate and initialize one. */
2728 tdep = XZALLOC (struct gdbarch_tdep);
2729 gdbarch = gdbarch_alloc (&info, tdep);
2730
2731 /* Determine from the bfd_arch_info structure if we are dealing with
2732 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
2733 then default to a 32bit machine. */
2734 if (info.bfd_arch_info != NULL)
2735 tdep->bytes_per_address =
2736 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
2737 else
2738 tdep->bytes_per_address = 4;
2739
2740 tdep->find_global_pointer = hppa_find_global_pointer;
2741
2742 /* Some parts of the gdbarch vector depend on whether we are running
2743 on a 32 bits or 64 bits target. */
2744 switch (tdep->bytes_per_address)
2745 {
2746 case 4:
2747 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
2748 set_gdbarch_register_name (gdbarch, hppa32_register_name);
2749 set_gdbarch_register_type (gdbarch, hppa32_register_type);
2750 set_gdbarch_cannot_store_register (gdbarch,
2751 hppa32_cannot_store_register);
2752 set_gdbarch_cannot_fetch_register (gdbarch,
2753 hppa32_cannot_store_register);
2754 break;
2755 case 8:
2756 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
2757 set_gdbarch_register_name (gdbarch, hppa64_register_name);
2758 set_gdbarch_register_type (gdbarch, hppa64_register_type);
2759 set_gdbarch_cannot_store_register (gdbarch,
2760 hppa64_cannot_store_register);
2761 set_gdbarch_cannot_fetch_register (gdbarch,
2762 hppa64_cannot_store_register);
2763 break;
2764 default:
2765 internal_error (__FILE__, __LINE__, "Unsupported address size: %d",
2766 tdep->bytes_per_address);
2767 }
2768
2769 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
2770 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
2771
2772 /* The following gdbarch vector elements are the same in both ILP32
2773 and LP64, but might show differences some day. */
2774 set_gdbarch_long_long_bit (gdbarch, 64);
2775 set_gdbarch_long_double_bit (gdbarch, 128);
2776 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
2777
2778 /* The following gdbarch vector elements do not depend on the address
2779 size, or in any other gdbarch element previously set. */
2780 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
2781 set_gdbarch_in_function_epilogue_p (gdbarch,
2782 hppa_in_function_epilogue_p);
2783 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
2784 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
2785 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
2786 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
2787 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
2788 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2789 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
2790 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
2791
2792 /* Helper for function argument information. */
2793 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
2794
2795 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
2796
2797 /* When a hardware watchpoint triggers, we'll move the inferior past
2798 it by removing all eventpoints; stepping past the instruction
2799 that caused the trigger; reinserting eventpoints; and checking
2800 whether any watched location changed. */
2801 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2802
2803 /* Inferior function call methods. */
2804 switch (tdep->bytes_per_address)
2805 {
2806 case 4:
2807 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
2808 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
2809 set_gdbarch_convert_from_func_ptr_addr
2810 (gdbarch, hppa32_convert_from_func_ptr_addr);
2811 break;
2812 case 8:
2813 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
2814 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
2815 break;
2816 default:
2817 internal_error (__FILE__, __LINE__, "bad switch");
2818 }
2819
2820 /* Struct return methods. */
2821 switch (tdep->bytes_per_address)
2822 {
2823 case 4:
2824 set_gdbarch_return_value (gdbarch, hppa32_return_value);
2825 break;
2826 case 8:
2827 set_gdbarch_return_value (gdbarch, hppa64_return_value);
2828 break;
2829 default:
2830 internal_error (__FILE__, __LINE__, "bad switch");
2831 }
2832
2833 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
2834 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
2835
2836 /* Frame unwind methods. */
2837 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
2838 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
2839
2840 /* Hook in ABI-specific overrides, if they have been registered. */
2841 gdbarch_init_osabi (info, gdbarch);
2842
2843 /* Hook in the default unwinders. */
2844 frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
2845 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
2846 frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
2847
2848 return gdbarch;
2849 }
2850
2851 static void
2852 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2853 {
2854 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2855
2856 fprintf_unfiltered (file, "bytes_per_address = %d\n",
2857 tdep->bytes_per_address);
2858 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
2859 }
2860
2861 void
2862 _initialize_hppa_tdep (void)
2863 {
2864 struct cmd_list_element *c;
2865
2866 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
2867
2868 hppa_objfile_priv_data = register_objfile_data ();
2869
2870 add_cmd ("unwind", class_maintenance, unwind_command,
2871 "Print unwind table entry at given address.",
2872 &maintenanceprintlist);
2873
2874 /* Debug this files internals. */
2875 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, "\
2876 Set whether hppa target specific debugging information should be displayed.", "\
2877 Show whether hppa target specific debugging information is displayed.", "\
2878 This flag controls whether hppa target specific debugging information is\n\
2879 displayed. This information is particularly useful for debugging frame\n\
2880 unwinding problems.",
2881 NULL, /* PRINT hppa debug flag is %s. */
2882 NULL, NULL, &setdebuglist, &showdebuglist);
2883 }
This page took 0.114692 seconds and 4 git commands to generate.