windows-nat: Don't change current_event.dwThreadId in handle_output_debug_string()
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA-RISC architecture.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "bfd.h"
25 #include "inferior.h"
26 #include "regcache.h"
27 #include "completer.h"
28 #include "osabi.h"
29 #include "arch-utils.h"
30 /* For argument passing to the inferior. */
31 #include "symtab.h"
32 #include "dis-asm.h"
33 #include "trad-frame.h"
34 #include "frame-unwind.h"
35 #include "frame-base.h"
36
37 #include "gdbcore.h"
38 #include "gdbcmd.h"
39 #include "gdbtypes.h"
40 #include "objfiles.h"
41 #include "hppa-tdep.h"
42
43 static int hppa_debug = 0;
44
45 /* Some local constants. */
46 static const int hppa32_num_regs = 128;
47 static const int hppa64_num_regs = 96;
48
49 /* We use the objfile->obj_private pointer for two things:
50 * 1. An unwind table;
51 *
52 * 2. A pointer to any associated shared library object.
53 *
54 * #defines are used to help refer to these objects.
55 */
56
57 /* Info about the unwind table associated with an object file.
58 * This is hung off of the "objfile->obj_private" pointer, and
59 * is allocated in the objfile's psymbol obstack. This allows
60 * us to have unique unwind info for each executable and shared
61 * library that we are debugging.
62 */
63 struct hppa_unwind_info
64 {
65 struct unwind_table_entry *table; /* Pointer to unwind info */
66 struct unwind_table_entry *cache; /* Pointer to last entry we found */
67 int last; /* Index of last entry */
68 };
69
70 struct hppa_objfile_private
71 {
72 struct hppa_unwind_info *unwind_info; /* a pointer */
73 struct so_list *so_info; /* a pointer */
74 CORE_ADDR dp;
75
76 int dummy_call_sequence_reg;
77 CORE_ADDR dummy_call_sequence_addr;
78 };
79
80 /* hppa-specific object data -- unwind and solib info.
81 TODO/maybe: think about splitting this into two parts; the unwind data is
82 common to all hppa targets, but is only used in this file; we can register
83 that separately and make this static. The solib data is probably hpux-
84 specific, so we can create a separate extern objfile_data that is registered
85 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
86 static const struct objfile_data *hppa_objfile_priv_data = NULL;
87
88 /* Get at various relevent fields of an instruction word. */
89 #define MASK_5 0x1f
90 #define MASK_11 0x7ff
91 #define MASK_14 0x3fff
92 #define MASK_21 0x1fffff
93
94 /* Sizes (in bytes) of the native unwind entries. */
95 #define UNWIND_ENTRY_SIZE 16
96 #define STUB_UNWIND_ENTRY_SIZE 8
97
98 /* Routines to extract various sized constants out of hppa
99 instructions. */
100
101 /* This assumes that no garbage lies outside of the lower bits of
102 value. */
103
104 static int
105 hppa_sign_extend (unsigned val, unsigned bits)
106 {
107 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
108 }
109
110 /* For many immediate values the sign bit is the low bit! */
111
112 static int
113 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
114 {
115 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
116 }
117
118 /* Extract the bits at positions between FROM and TO, using HP's numbering
119 (MSB = 0). */
120
121 int
122 hppa_get_field (unsigned word, int from, int to)
123 {
124 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
125 }
126
127 /* Extract the immediate field from a ld{bhw}s instruction. */
128
129 int
130 hppa_extract_5_load (unsigned word)
131 {
132 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
133 }
134
135 /* Extract the immediate field from a break instruction. */
136
137 unsigned
138 hppa_extract_5r_store (unsigned word)
139 {
140 return (word & MASK_5);
141 }
142
143 /* Extract the immediate field from a {sr}sm instruction. */
144
145 unsigned
146 hppa_extract_5R_store (unsigned word)
147 {
148 return (word >> 16 & MASK_5);
149 }
150
151 /* Extract a 14 bit immediate field. */
152
153 int
154 hppa_extract_14 (unsigned word)
155 {
156 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
157 }
158
159 /* Extract a 21 bit constant. */
160
161 int
162 hppa_extract_21 (unsigned word)
163 {
164 int val;
165
166 word &= MASK_21;
167 word <<= 11;
168 val = hppa_get_field (word, 20, 20);
169 val <<= 11;
170 val |= hppa_get_field (word, 9, 19);
171 val <<= 2;
172 val |= hppa_get_field (word, 5, 6);
173 val <<= 5;
174 val |= hppa_get_field (word, 0, 4);
175 val <<= 2;
176 val |= hppa_get_field (word, 7, 8);
177 return hppa_sign_extend (val, 21) << 11;
178 }
179
180 /* extract a 17 bit constant from branch instructions, returning the
181 19 bit signed value. */
182
183 int
184 hppa_extract_17 (unsigned word)
185 {
186 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
187 hppa_get_field (word, 29, 29) << 10 |
188 hppa_get_field (word, 11, 15) << 11 |
189 (word & 0x1) << 16, 17) << 2;
190 }
191
192 CORE_ADDR
193 hppa_symbol_address(const char *sym)
194 {
195 struct bound_minimal_symbol minsym;
196
197 minsym = lookup_minimal_symbol (sym, NULL, NULL);
198 if (minsym.minsym)
199 return BMSYMBOL_VALUE_ADDRESS (minsym);
200 else
201 return (CORE_ADDR)-1;
202 }
203
204 static struct hppa_objfile_private *
205 hppa_init_objfile_priv_data (struct objfile *objfile)
206 {
207 struct hppa_objfile_private *priv;
208
209 priv = (struct hppa_objfile_private *)
210 obstack_alloc (&objfile->objfile_obstack,
211 sizeof (struct hppa_objfile_private));
212 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
213 memset (priv, 0, sizeof (*priv));
214
215 return priv;
216 }
217 \f
218
219 /* Compare the start address for two unwind entries returning 1 if
220 the first address is larger than the second, -1 if the second is
221 larger than the first, and zero if they are equal. */
222
223 static int
224 compare_unwind_entries (const void *arg1, const void *arg2)
225 {
226 const struct unwind_table_entry *a = arg1;
227 const struct unwind_table_entry *b = arg2;
228
229 if (a->region_start > b->region_start)
230 return 1;
231 else if (a->region_start < b->region_start)
232 return -1;
233 else
234 return 0;
235 }
236
237 static void
238 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
239 {
240 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
241 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
242 {
243 bfd_vma value = section->vma - section->filepos;
244 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
245
246 if (value < *low_text_segment_address)
247 *low_text_segment_address = value;
248 }
249 }
250
251 static void
252 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
253 asection *section, unsigned int entries,
254 size_t size, CORE_ADDR text_offset)
255 {
256 /* We will read the unwind entries into temporary memory, then
257 fill in the actual unwind table. */
258
259 if (size > 0)
260 {
261 struct gdbarch *gdbarch = get_objfile_arch (objfile);
262 unsigned long tmp;
263 unsigned i;
264 char *buf = alloca (size);
265 CORE_ADDR low_text_segment_address;
266
267 /* For ELF targets, then unwinds are supposed to
268 be segment relative offsets instead of absolute addresses.
269
270 Note that when loading a shared library (text_offset != 0) the
271 unwinds are already relative to the text_offset that will be
272 passed in. */
273 if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0)
274 {
275 low_text_segment_address = -1;
276
277 bfd_map_over_sections (objfile->obfd,
278 record_text_segment_lowaddr,
279 &low_text_segment_address);
280
281 text_offset = low_text_segment_address;
282 }
283 else if (gdbarch_tdep (gdbarch)->solib_get_text_base)
284 {
285 text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile);
286 }
287
288 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
289
290 /* Now internalize the information being careful to handle host/target
291 endian issues. */
292 for (i = 0; i < entries; i++)
293 {
294 table[i].region_start = bfd_get_32 (objfile->obfd,
295 (bfd_byte *) buf);
296 table[i].region_start += text_offset;
297 buf += 4;
298 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
299 table[i].region_end += text_offset;
300 buf += 4;
301 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
302 buf += 4;
303 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
304 table[i].Millicode = (tmp >> 30) & 0x1;
305 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
306 table[i].Region_description = (tmp >> 27) & 0x3;
307 table[i].reserved = (tmp >> 26) & 0x1;
308 table[i].Entry_SR = (tmp >> 25) & 0x1;
309 table[i].Entry_FR = (tmp >> 21) & 0xf;
310 table[i].Entry_GR = (tmp >> 16) & 0x1f;
311 table[i].Args_stored = (tmp >> 15) & 0x1;
312 table[i].Variable_Frame = (tmp >> 14) & 0x1;
313 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
314 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
315 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
316 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
317 table[i].sr4export = (tmp >> 9) & 0x1;
318 table[i].cxx_info = (tmp >> 8) & 0x1;
319 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
320 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
321 table[i].reserved1 = (tmp >> 5) & 0x1;
322 table[i].Save_SP = (tmp >> 4) & 0x1;
323 table[i].Save_RP = (tmp >> 3) & 0x1;
324 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
325 table[i].save_r19 = (tmp >> 1) & 0x1;
326 table[i].Cleanup_defined = tmp & 0x1;
327 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
328 buf += 4;
329 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
330 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
331 table[i].Large_frame = (tmp >> 29) & 0x1;
332 table[i].alloca_frame = (tmp >> 28) & 0x1;
333 table[i].reserved2 = (tmp >> 27) & 0x1;
334 table[i].Total_frame_size = tmp & 0x7ffffff;
335
336 /* Stub unwinds are handled elsewhere. */
337 table[i].stub_unwind.stub_type = 0;
338 table[i].stub_unwind.padding = 0;
339 }
340 }
341 }
342
343 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
344 the object file. This info is used mainly by find_unwind_entry() to find
345 out the stack frame size and frame pointer used by procedures. We put
346 everything on the psymbol obstack in the objfile so that it automatically
347 gets freed when the objfile is destroyed. */
348
349 static void
350 read_unwind_info (struct objfile *objfile)
351 {
352 asection *unwind_sec, *stub_unwind_sec;
353 size_t unwind_size, stub_unwind_size, total_size;
354 unsigned index, unwind_entries;
355 unsigned stub_entries, total_entries;
356 CORE_ADDR text_offset;
357 struct hppa_unwind_info *ui;
358 struct hppa_objfile_private *obj_private;
359
360 text_offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
361 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
362 sizeof (struct hppa_unwind_info));
363
364 ui->table = NULL;
365 ui->cache = NULL;
366 ui->last = -1;
367
368 /* For reasons unknown the HP PA64 tools generate multiple unwinder
369 sections in a single executable. So we just iterate over every
370 section in the BFD looking for unwinder sections intead of trying
371 to do a lookup with bfd_get_section_by_name.
372
373 First determine the total size of the unwind tables so that we
374 can allocate memory in a nice big hunk. */
375 total_entries = 0;
376 for (unwind_sec = objfile->obfd->sections;
377 unwind_sec;
378 unwind_sec = unwind_sec->next)
379 {
380 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
381 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
382 {
383 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
384 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
385
386 total_entries += unwind_entries;
387 }
388 }
389
390 /* Now compute the size of the stub unwinds. Note the ELF tools do not
391 use stub unwinds at the current time. */
392 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
393
394 if (stub_unwind_sec)
395 {
396 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
397 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
398 }
399 else
400 {
401 stub_unwind_size = 0;
402 stub_entries = 0;
403 }
404
405 /* Compute total number of unwind entries and their total size. */
406 total_entries += stub_entries;
407 total_size = total_entries * sizeof (struct unwind_table_entry);
408
409 /* Allocate memory for the unwind table. */
410 ui->table = (struct unwind_table_entry *)
411 obstack_alloc (&objfile->objfile_obstack, total_size);
412 ui->last = total_entries - 1;
413
414 /* Now read in each unwind section and internalize the standard unwind
415 entries. */
416 index = 0;
417 for (unwind_sec = objfile->obfd->sections;
418 unwind_sec;
419 unwind_sec = unwind_sec->next)
420 {
421 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
422 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
423 {
424 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
425 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
426
427 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
428 unwind_entries, unwind_size, text_offset);
429 index += unwind_entries;
430 }
431 }
432
433 /* Now read in and internalize the stub unwind entries. */
434 if (stub_unwind_size > 0)
435 {
436 unsigned int i;
437 char *buf = alloca (stub_unwind_size);
438
439 /* Read in the stub unwind entries. */
440 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
441 0, stub_unwind_size);
442
443 /* Now convert them into regular unwind entries. */
444 for (i = 0; i < stub_entries; i++, index++)
445 {
446 /* Clear out the next unwind entry. */
447 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
448
449 /* Convert offset & size into region_start and region_end.
450 Stuff away the stub type into "reserved" fields. */
451 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
452 (bfd_byte *) buf);
453 ui->table[index].region_start += text_offset;
454 buf += 4;
455 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
456 (bfd_byte *) buf);
457 buf += 2;
458 ui->table[index].region_end
459 = ui->table[index].region_start + 4 *
460 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
461 buf += 2;
462 }
463
464 }
465
466 /* Unwind table needs to be kept sorted. */
467 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
468 compare_unwind_entries);
469
470 /* Keep a pointer to the unwind information. */
471 obj_private = (struct hppa_objfile_private *)
472 objfile_data (objfile, hppa_objfile_priv_data);
473 if (obj_private == NULL)
474 obj_private = hppa_init_objfile_priv_data (objfile);
475
476 obj_private->unwind_info = ui;
477 }
478
479 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
480 of the objfiles seeking the unwind table entry for this PC. Each objfile
481 contains a sorted list of struct unwind_table_entry. Since we do a binary
482 search of the unwind tables, we depend upon them to be sorted. */
483
484 struct unwind_table_entry *
485 find_unwind_entry (CORE_ADDR pc)
486 {
487 int first, middle, last;
488 struct objfile *objfile;
489 struct hppa_objfile_private *priv;
490
491 if (hppa_debug)
492 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry %s -> ",
493 hex_string (pc));
494
495 /* A function at address 0? Not in HP-UX! */
496 if (pc == (CORE_ADDR) 0)
497 {
498 if (hppa_debug)
499 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
500 return NULL;
501 }
502
503 ALL_OBJFILES (objfile)
504 {
505 struct hppa_unwind_info *ui;
506 ui = NULL;
507 priv = objfile_data (objfile, hppa_objfile_priv_data);
508 if (priv)
509 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
510
511 if (!ui)
512 {
513 read_unwind_info (objfile);
514 priv = objfile_data (objfile, hppa_objfile_priv_data);
515 if (priv == NULL)
516 error (_("Internal error reading unwind information."));
517 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
518 }
519
520 /* First, check the cache. */
521
522 if (ui->cache
523 && pc >= ui->cache->region_start
524 && pc <= ui->cache->region_end)
525 {
526 if (hppa_debug)
527 fprintf_unfiltered (gdb_stdlog, "%s (cached) }\n",
528 hex_string ((uintptr_t) ui->cache));
529 return ui->cache;
530 }
531
532 /* Not in the cache, do a binary search. */
533
534 first = 0;
535 last = ui->last;
536
537 while (first <= last)
538 {
539 middle = (first + last) / 2;
540 if (pc >= ui->table[middle].region_start
541 && pc <= ui->table[middle].region_end)
542 {
543 ui->cache = &ui->table[middle];
544 if (hppa_debug)
545 fprintf_unfiltered (gdb_stdlog, "%s }\n",
546 hex_string ((uintptr_t) ui->cache));
547 return &ui->table[middle];
548 }
549
550 if (pc < ui->table[middle].region_start)
551 last = middle - 1;
552 else
553 first = middle + 1;
554 }
555 } /* ALL_OBJFILES() */
556
557 if (hppa_debug)
558 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
559
560 return NULL;
561 }
562
563 /* The epilogue is defined here as the area either on the `bv' instruction
564 itself or an instruction which destroys the function's stack frame.
565
566 We do not assume that the epilogue is at the end of a function as we can
567 also have return sequences in the middle of a function. */
568 static int
569 hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
570 {
571 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
572 unsigned long status;
573 unsigned int inst;
574 gdb_byte buf[4];
575
576 status = target_read_memory (pc, buf, 4);
577 if (status != 0)
578 return 0;
579
580 inst = extract_unsigned_integer (buf, 4, byte_order);
581
582 /* The most common way to perform a stack adjustment ldo X(sp),sp
583 We are destroying a stack frame if the offset is negative. */
584 if ((inst & 0xffffc000) == 0x37de0000
585 && hppa_extract_14 (inst) < 0)
586 return 1;
587
588 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
589 if (((inst & 0x0fc010e0) == 0x0fc010e0
590 || (inst & 0x0fc010e0) == 0x0fc010e0)
591 && hppa_extract_14 (inst) < 0)
592 return 1;
593
594 /* bv %r0(%rp) or bv,n %r0(%rp) */
595 if (inst == 0xe840c000 || inst == 0xe840c002)
596 return 1;
597
598 return 0;
599 }
600
601 static const unsigned char *
602 hppa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
603 {
604 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
605 (*len) = sizeof (breakpoint);
606 return breakpoint;
607 }
608
609 /* Return the name of a register. */
610
611 static const char *
612 hppa32_register_name (struct gdbarch *gdbarch, int i)
613 {
614 static char *names[] = {
615 "flags", "r1", "rp", "r3",
616 "r4", "r5", "r6", "r7",
617 "r8", "r9", "r10", "r11",
618 "r12", "r13", "r14", "r15",
619 "r16", "r17", "r18", "r19",
620 "r20", "r21", "r22", "r23",
621 "r24", "r25", "r26", "dp",
622 "ret0", "ret1", "sp", "r31",
623 "sar", "pcoqh", "pcsqh", "pcoqt",
624 "pcsqt", "eiem", "iir", "isr",
625 "ior", "ipsw", "goto", "sr4",
626 "sr0", "sr1", "sr2", "sr3",
627 "sr5", "sr6", "sr7", "cr0",
628 "cr8", "cr9", "ccr", "cr12",
629 "cr13", "cr24", "cr25", "cr26",
630 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
631 "fpsr", "fpe1", "fpe2", "fpe3",
632 "fpe4", "fpe5", "fpe6", "fpe7",
633 "fr4", "fr4R", "fr5", "fr5R",
634 "fr6", "fr6R", "fr7", "fr7R",
635 "fr8", "fr8R", "fr9", "fr9R",
636 "fr10", "fr10R", "fr11", "fr11R",
637 "fr12", "fr12R", "fr13", "fr13R",
638 "fr14", "fr14R", "fr15", "fr15R",
639 "fr16", "fr16R", "fr17", "fr17R",
640 "fr18", "fr18R", "fr19", "fr19R",
641 "fr20", "fr20R", "fr21", "fr21R",
642 "fr22", "fr22R", "fr23", "fr23R",
643 "fr24", "fr24R", "fr25", "fr25R",
644 "fr26", "fr26R", "fr27", "fr27R",
645 "fr28", "fr28R", "fr29", "fr29R",
646 "fr30", "fr30R", "fr31", "fr31R"
647 };
648 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
649 return NULL;
650 else
651 return names[i];
652 }
653
654 static const char *
655 hppa64_register_name (struct gdbarch *gdbarch, int i)
656 {
657 static char *names[] = {
658 "flags", "r1", "rp", "r3",
659 "r4", "r5", "r6", "r7",
660 "r8", "r9", "r10", "r11",
661 "r12", "r13", "r14", "r15",
662 "r16", "r17", "r18", "r19",
663 "r20", "r21", "r22", "r23",
664 "r24", "r25", "r26", "dp",
665 "ret0", "ret1", "sp", "r31",
666 "sar", "pcoqh", "pcsqh", "pcoqt",
667 "pcsqt", "eiem", "iir", "isr",
668 "ior", "ipsw", "goto", "sr4",
669 "sr0", "sr1", "sr2", "sr3",
670 "sr5", "sr6", "sr7", "cr0",
671 "cr8", "cr9", "ccr", "cr12",
672 "cr13", "cr24", "cr25", "cr26",
673 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
674 "fpsr", "fpe1", "fpe2", "fpe3",
675 "fr4", "fr5", "fr6", "fr7",
676 "fr8", "fr9", "fr10", "fr11",
677 "fr12", "fr13", "fr14", "fr15",
678 "fr16", "fr17", "fr18", "fr19",
679 "fr20", "fr21", "fr22", "fr23",
680 "fr24", "fr25", "fr26", "fr27",
681 "fr28", "fr29", "fr30", "fr31"
682 };
683 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
684 return NULL;
685 else
686 return names[i];
687 }
688
689 /* Map dwarf DBX register numbers to GDB register numbers. */
690 static int
691 hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
692 {
693 /* The general registers and the sar are the same in both sets. */
694 if (reg <= 32)
695 return reg;
696
697 /* fr4-fr31 are mapped from 72 in steps of 2. */
698 if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1))
699 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
700
701 warning (_("Unmapped DWARF DBX Register #%d encountered."), reg);
702 return -1;
703 }
704
705 /* This function pushes a stack frame with arguments as part of the
706 inferior function calling mechanism.
707
708 This is the version of the function for the 32-bit PA machines, in
709 which later arguments appear at lower addresses. (The stack always
710 grows towards higher addresses.)
711
712 We simply allocate the appropriate amount of stack space and put
713 arguments into their proper slots. */
714
715 static CORE_ADDR
716 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
717 struct regcache *regcache, CORE_ADDR bp_addr,
718 int nargs, struct value **args, CORE_ADDR sp,
719 int struct_return, CORE_ADDR struct_addr)
720 {
721 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
722
723 /* Stack base address at which any pass-by-reference parameters are
724 stored. */
725 CORE_ADDR struct_end = 0;
726 /* Stack base address at which the first parameter is stored. */
727 CORE_ADDR param_end = 0;
728
729 /* The inner most end of the stack after all the parameters have
730 been pushed. */
731 CORE_ADDR new_sp = 0;
732
733 /* Two passes. First pass computes the location of everything,
734 second pass writes the bytes out. */
735 int write_pass;
736
737 /* Global pointer (r19) of the function we are trying to call. */
738 CORE_ADDR gp;
739
740 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
741
742 for (write_pass = 0; write_pass < 2; write_pass++)
743 {
744 CORE_ADDR struct_ptr = 0;
745 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
746 struct_ptr is adjusted for each argument below, so the first
747 argument will end up at sp-36. */
748 CORE_ADDR param_ptr = 32;
749 int i;
750 int small_struct = 0;
751
752 for (i = 0; i < nargs; i++)
753 {
754 struct value *arg = args[i];
755 struct type *type = check_typedef (value_type (arg));
756 /* The corresponding parameter that is pushed onto the
757 stack, and [possibly] passed in a register. */
758 gdb_byte param_val[8];
759 int param_len;
760 memset (param_val, 0, sizeof param_val);
761 if (TYPE_LENGTH (type) > 8)
762 {
763 /* Large parameter, pass by reference. Store the value
764 in "struct" area and then pass its address. */
765 param_len = 4;
766 struct_ptr += align_up (TYPE_LENGTH (type), 8);
767 if (write_pass)
768 write_memory (struct_end - struct_ptr, value_contents (arg),
769 TYPE_LENGTH (type));
770 store_unsigned_integer (param_val, 4, byte_order,
771 struct_end - struct_ptr);
772 }
773 else if (TYPE_CODE (type) == TYPE_CODE_INT
774 || TYPE_CODE (type) == TYPE_CODE_ENUM)
775 {
776 /* Integer value store, right aligned. "unpack_long"
777 takes care of any sign-extension problems. */
778 param_len = align_up (TYPE_LENGTH (type), 4);
779 store_unsigned_integer (param_val, param_len, byte_order,
780 unpack_long (type,
781 value_contents (arg)));
782 }
783 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
784 {
785 /* Floating point value store, right aligned. */
786 param_len = align_up (TYPE_LENGTH (type), 4);
787 memcpy (param_val, value_contents (arg), param_len);
788 }
789 else
790 {
791 param_len = align_up (TYPE_LENGTH (type), 4);
792
793 /* Small struct value are stored right-aligned. */
794 memcpy (param_val + param_len - TYPE_LENGTH (type),
795 value_contents (arg), TYPE_LENGTH (type));
796
797 /* Structures of size 5, 6 and 7 bytes are special in that
798 the higher-ordered word is stored in the lower-ordered
799 argument, and even though it is a 8-byte quantity the
800 registers need not be 8-byte aligned. */
801 if (param_len > 4 && param_len < 8)
802 small_struct = 1;
803 }
804
805 param_ptr += param_len;
806 if (param_len == 8 && !small_struct)
807 param_ptr = align_up (param_ptr, 8);
808
809 /* First 4 non-FP arguments are passed in gr26-gr23.
810 First 4 32-bit FP arguments are passed in fr4L-fr7L.
811 First 2 64-bit FP arguments are passed in fr5 and fr7.
812
813 The rest go on the stack, starting at sp-36, towards lower
814 addresses. 8-byte arguments must be aligned to a 8-byte
815 stack boundary. */
816 if (write_pass)
817 {
818 write_memory (param_end - param_ptr, param_val, param_len);
819
820 /* There are some cases when we don't know the type
821 expected by the callee (e.g. for variadic functions), so
822 pass the parameters in both general and fp regs. */
823 if (param_ptr <= 48)
824 {
825 int grreg = 26 - (param_ptr - 36) / 4;
826 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
827 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
828
829 regcache_cooked_write (regcache, grreg, param_val);
830 regcache_cooked_write (regcache, fpLreg, param_val);
831
832 if (param_len > 4)
833 {
834 regcache_cooked_write (regcache, grreg + 1,
835 param_val + 4);
836
837 regcache_cooked_write (regcache, fpreg, param_val);
838 regcache_cooked_write (regcache, fpreg + 1,
839 param_val + 4);
840 }
841 }
842 }
843 }
844
845 /* Update the various stack pointers. */
846 if (!write_pass)
847 {
848 struct_end = sp + align_up (struct_ptr, 64);
849 /* PARAM_PTR already accounts for all the arguments passed
850 by the user. However, the ABI mandates minimum stack
851 space allocations for outgoing arguments. The ABI also
852 mandates minimum stack alignments which we must
853 preserve. */
854 param_end = struct_end + align_up (param_ptr, 64);
855 }
856 }
857
858 /* If a structure has to be returned, set up register 28 to hold its
859 address. */
860 if (struct_return)
861 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
862
863 gp = tdep->find_global_pointer (gdbarch, function);
864
865 if (gp != 0)
866 regcache_cooked_write_unsigned (regcache, 19, gp);
867
868 /* Set the return address. */
869 if (!gdbarch_push_dummy_code_p (gdbarch))
870 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
871
872 /* Update the Stack Pointer. */
873 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
874
875 return param_end;
876 }
877
878 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit
879 Runtime Architecture for PA-RISC 2.0", which is distributed as part
880 as of the HP-UX Software Transition Kit (STK). This implementation
881 is based on version 3.3, dated October 6, 1997. */
882
883 /* Check whether TYPE is an "Integral or Pointer Scalar Type". */
884
885 static int
886 hppa64_integral_or_pointer_p (const struct type *type)
887 {
888 switch (TYPE_CODE (type))
889 {
890 case TYPE_CODE_INT:
891 case TYPE_CODE_BOOL:
892 case TYPE_CODE_CHAR:
893 case TYPE_CODE_ENUM:
894 case TYPE_CODE_RANGE:
895 {
896 int len = TYPE_LENGTH (type);
897 return (len == 1 || len == 2 || len == 4 || len == 8);
898 }
899 case TYPE_CODE_PTR:
900 case TYPE_CODE_REF:
901 return (TYPE_LENGTH (type) == 8);
902 default:
903 break;
904 }
905
906 return 0;
907 }
908
909 /* Check whether TYPE is a "Floating Scalar Type". */
910
911 static int
912 hppa64_floating_p (const struct type *type)
913 {
914 switch (TYPE_CODE (type))
915 {
916 case TYPE_CODE_FLT:
917 {
918 int len = TYPE_LENGTH (type);
919 return (len == 4 || len == 8 || len == 16);
920 }
921 default:
922 break;
923 }
924
925 return 0;
926 }
927
928 /* If CODE points to a function entry address, try to look up the corresponding
929 function descriptor and return its address instead. If CODE is not a
930 function entry address, then just return it unchanged. */
931 static CORE_ADDR
932 hppa64_convert_code_addr_to_fptr (struct gdbarch *gdbarch, CORE_ADDR code)
933 {
934 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
935 struct obj_section *sec, *opd;
936
937 sec = find_pc_section (code);
938
939 if (!sec)
940 return code;
941
942 /* If CODE is in a data section, assume it's already a fptr. */
943 if (!(sec->the_bfd_section->flags & SEC_CODE))
944 return code;
945
946 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
947 {
948 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
949 break;
950 }
951
952 if (opd < sec->objfile->sections_end)
953 {
954 CORE_ADDR addr;
955
956 for (addr = obj_section_addr (opd);
957 addr < obj_section_endaddr (opd);
958 addr += 2 * 8)
959 {
960 ULONGEST opdaddr;
961 gdb_byte tmp[8];
962
963 if (target_read_memory (addr, tmp, sizeof (tmp)))
964 break;
965 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp), byte_order);
966
967 if (opdaddr == code)
968 return addr - 16;
969 }
970 }
971
972 return code;
973 }
974
975 static CORE_ADDR
976 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
977 struct regcache *regcache, CORE_ADDR bp_addr,
978 int nargs, struct value **args, CORE_ADDR sp,
979 int struct_return, CORE_ADDR struct_addr)
980 {
981 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
982 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
983 int i, offset = 0;
984 CORE_ADDR gp;
985
986 /* "The outgoing parameter area [...] must be aligned at a 16-byte
987 boundary." */
988 sp = align_up (sp, 16);
989
990 for (i = 0; i < nargs; i++)
991 {
992 struct value *arg = args[i];
993 struct type *type = value_type (arg);
994 int len = TYPE_LENGTH (type);
995 const bfd_byte *valbuf;
996 bfd_byte fptrbuf[8];
997 int regnum;
998
999 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
1000 offset = align_up (offset, 8);
1001
1002 if (hppa64_integral_or_pointer_p (type))
1003 {
1004 /* "Integral scalar parameters smaller than 64 bits are
1005 padded on the left (i.e., the value is in the
1006 least-significant bits of the 64-bit storage unit, and
1007 the high-order bits are undefined)." Therefore we can
1008 safely sign-extend them. */
1009 if (len < 8)
1010 {
1011 arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg);
1012 len = 8;
1013 }
1014 }
1015 else if (hppa64_floating_p (type))
1016 {
1017 if (len > 8)
1018 {
1019 /* "Quad-precision (128-bit) floating-point scalar
1020 parameters are aligned on a 16-byte boundary." */
1021 offset = align_up (offset, 16);
1022
1023 /* "Double-extended- and quad-precision floating-point
1024 parameters within the first 64 bytes of the parameter
1025 list are always passed in general registers." */
1026 }
1027 else
1028 {
1029 if (len == 4)
1030 {
1031 /* "Single-precision (32-bit) floating-point scalar
1032 parameters are padded on the left with 32 bits of
1033 garbage (i.e., the floating-point value is in the
1034 least-significant 32 bits of a 64-bit storage
1035 unit)." */
1036 offset += 4;
1037 }
1038
1039 /* "Single- and double-precision floating-point
1040 parameters in this area are passed according to the
1041 available formal parameter information in a function
1042 prototype. [...] If no prototype is in scope,
1043 floating-point parameters must be passed both in the
1044 corresponding general registers and in the
1045 corresponding floating-point registers." */
1046 regnum = HPPA64_FP4_REGNUM + offset / 8;
1047
1048 if (regnum < HPPA64_FP4_REGNUM + 8)
1049 {
1050 /* "Single-precision floating-point parameters, when
1051 passed in floating-point registers, are passed in
1052 the right halves of the floating point registers;
1053 the left halves are unused." */
1054 regcache_cooked_write_part (regcache, regnum, offset % 8,
1055 len, value_contents (arg));
1056 }
1057 }
1058 }
1059 else
1060 {
1061 if (len > 8)
1062 {
1063 /* "Aggregates larger than 8 bytes are aligned on a
1064 16-byte boundary, possibly leaving an unused argument
1065 slot, which is filled with garbage. If necessary,
1066 they are padded on the right (with garbage), to a
1067 multiple of 8 bytes." */
1068 offset = align_up (offset, 16);
1069 }
1070 }
1071
1072 /* If we are passing a function pointer, make sure we pass a function
1073 descriptor instead of the function entry address. */
1074 if (TYPE_CODE (type) == TYPE_CODE_PTR
1075 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1076 {
1077 ULONGEST codeptr, fptr;
1078
1079 codeptr = unpack_long (type, value_contents (arg));
1080 fptr = hppa64_convert_code_addr_to_fptr (gdbarch, codeptr);
1081 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), byte_order,
1082 fptr);
1083 valbuf = fptrbuf;
1084 }
1085 else
1086 {
1087 valbuf = value_contents (arg);
1088 }
1089
1090 /* Always store the argument in memory. */
1091 write_memory (sp + offset, valbuf, len);
1092
1093 regnum = HPPA_ARG0_REGNUM - offset / 8;
1094 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1095 {
1096 regcache_cooked_write_part (regcache, regnum,
1097 offset % 8, min (len, 8), valbuf);
1098 offset += min (len, 8);
1099 valbuf += min (len, 8);
1100 len -= min (len, 8);
1101 regnum--;
1102 }
1103
1104 offset += len;
1105 }
1106
1107 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1108 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1109
1110 /* Allocate the outgoing parameter area. Make sure the outgoing
1111 parameter area is multiple of 16 bytes in length. */
1112 sp += max (align_up (offset, 16), 64);
1113
1114 /* Allocate 32-bytes of scratch space. The documentation doesn't
1115 mention this, but it seems to be needed. */
1116 sp += 32;
1117
1118 /* Allocate the frame marker area. */
1119 sp += 16;
1120
1121 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1122 its address. */
1123 if (struct_return)
1124 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1125
1126 /* Set up GR27 (%dp) to hold the global pointer (gp). */
1127 gp = tdep->find_global_pointer (gdbarch, function);
1128 if (gp != 0)
1129 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1130
1131 /* Set up GR2 (%rp) to hold the return pointer (rp). */
1132 if (!gdbarch_push_dummy_code_p (gdbarch))
1133 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1134
1135 /* Set up GR30 to hold the stack pointer (sp). */
1136 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1137
1138 return sp;
1139 }
1140 \f
1141
1142 /* Handle 32/64-bit struct return conventions. */
1143
1144 static enum return_value_convention
1145 hppa32_return_value (struct gdbarch *gdbarch, struct value *function,
1146 struct type *type, struct regcache *regcache,
1147 gdb_byte *readbuf, const gdb_byte *writebuf)
1148 {
1149 if (TYPE_LENGTH (type) <= 2 * 4)
1150 {
1151 /* The value always lives in the right hand end of the register
1152 (or register pair)? */
1153 int b;
1154 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1155 int part = TYPE_LENGTH (type) % 4;
1156 /* The left hand register contains only part of the value,
1157 transfer that first so that the rest can be xfered as entire
1158 4-byte registers. */
1159 if (part > 0)
1160 {
1161 if (readbuf != NULL)
1162 regcache_cooked_read_part (regcache, reg, 4 - part,
1163 part, readbuf);
1164 if (writebuf != NULL)
1165 regcache_cooked_write_part (regcache, reg, 4 - part,
1166 part, writebuf);
1167 reg++;
1168 }
1169 /* Now transfer the remaining register values. */
1170 for (b = part; b < TYPE_LENGTH (type); b += 4)
1171 {
1172 if (readbuf != NULL)
1173 regcache_cooked_read (regcache, reg, readbuf + b);
1174 if (writebuf != NULL)
1175 regcache_cooked_write (regcache, reg, writebuf + b);
1176 reg++;
1177 }
1178 return RETURN_VALUE_REGISTER_CONVENTION;
1179 }
1180 else
1181 return RETURN_VALUE_STRUCT_CONVENTION;
1182 }
1183
1184 static enum return_value_convention
1185 hppa64_return_value (struct gdbarch *gdbarch, struct value *function,
1186 struct type *type, struct regcache *regcache,
1187 gdb_byte *readbuf, const gdb_byte *writebuf)
1188 {
1189 int len = TYPE_LENGTH (type);
1190 int regnum, offset;
1191
1192 if (len > 16)
1193 {
1194 /* All return values larget than 128 bits must be aggregate
1195 return values. */
1196 gdb_assert (!hppa64_integral_or_pointer_p (type));
1197 gdb_assert (!hppa64_floating_p (type));
1198
1199 /* "Aggregate return values larger than 128 bits are returned in
1200 a buffer allocated by the caller. The address of the buffer
1201 must be passed in GR 28." */
1202 return RETURN_VALUE_STRUCT_CONVENTION;
1203 }
1204
1205 if (hppa64_integral_or_pointer_p (type))
1206 {
1207 /* "Integral return values are returned in GR 28. Values
1208 smaller than 64 bits are padded on the left (with garbage)." */
1209 regnum = HPPA_RET0_REGNUM;
1210 offset = 8 - len;
1211 }
1212 else if (hppa64_floating_p (type))
1213 {
1214 if (len > 8)
1215 {
1216 /* "Double-extended- and quad-precision floating-point
1217 values are returned in GRs 28 and 29. The sign,
1218 exponent, and most-significant bits of the mantissa are
1219 returned in GR 28; the least-significant bits of the
1220 mantissa are passed in GR 29. For double-extended
1221 precision values, GR 29 is padded on the right with 48
1222 bits of garbage." */
1223 regnum = HPPA_RET0_REGNUM;
1224 offset = 0;
1225 }
1226 else
1227 {
1228 /* "Single-precision and double-precision floating-point
1229 return values are returned in FR 4R (single precision) or
1230 FR 4 (double-precision)." */
1231 regnum = HPPA64_FP4_REGNUM;
1232 offset = 8 - len;
1233 }
1234 }
1235 else
1236 {
1237 /* "Aggregate return values up to 64 bits in size are returned
1238 in GR 28. Aggregates smaller than 64 bits are left aligned
1239 in the register; the pad bits on the right are undefined."
1240
1241 "Aggregate return values between 65 and 128 bits are returned
1242 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1243 the remaining bits are placed, left aligned, in GR 29. The
1244 pad bits on the right of GR 29 (if any) are undefined." */
1245 regnum = HPPA_RET0_REGNUM;
1246 offset = 0;
1247 }
1248
1249 if (readbuf)
1250 {
1251 while (len > 0)
1252 {
1253 regcache_cooked_read_part (regcache, regnum, offset,
1254 min (len, 8), readbuf);
1255 readbuf += min (len, 8);
1256 len -= min (len, 8);
1257 regnum++;
1258 }
1259 }
1260
1261 if (writebuf)
1262 {
1263 while (len > 0)
1264 {
1265 regcache_cooked_write_part (regcache, regnum, offset,
1266 min (len, 8), writebuf);
1267 writebuf += min (len, 8);
1268 len -= min (len, 8);
1269 regnum++;
1270 }
1271 }
1272
1273 return RETURN_VALUE_REGISTER_CONVENTION;
1274 }
1275 \f
1276
1277 static CORE_ADDR
1278 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1279 struct target_ops *targ)
1280 {
1281 if (addr & 2)
1282 {
1283 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
1284 CORE_ADDR plabel = addr & ~3;
1285 return read_memory_typed_address (plabel, func_ptr_type);
1286 }
1287
1288 return addr;
1289 }
1290
1291 static CORE_ADDR
1292 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1293 {
1294 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1295 and not _bit_)! */
1296 return align_up (addr, 64);
1297 }
1298
1299 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1300
1301 static CORE_ADDR
1302 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1303 {
1304 /* Just always 16-byte align. */
1305 return align_up (addr, 16);
1306 }
1307
1308 CORE_ADDR
1309 hppa_read_pc (struct regcache *regcache)
1310 {
1311 ULONGEST ipsw;
1312 ULONGEST pc;
1313
1314 regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw);
1315 regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc);
1316
1317 /* If the current instruction is nullified, then we are effectively
1318 still executing the previous instruction. Pretend we are still
1319 there. This is needed when single stepping; if the nullified
1320 instruction is on a different line, we don't want GDB to think
1321 we've stepped onto that line. */
1322 if (ipsw & 0x00200000)
1323 pc -= 4;
1324
1325 return pc & ~0x3;
1326 }
1327
1328 void
1329 hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
1330 {
1331 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1332 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
1333 }
1334
1335 /* For the given instruction (INST), return any adjustment it makes
1336 to the stack pointer or zero for no adjustment.
1337
1338 This only handles instructions commonly found in prologues. */
1339
1340 static int
1341 prologue_inst_adjust_sp (unsigned long inst)
1342 {
1343 /* This must persist across calls. */
1344 static int save_high21;
1345
1346 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1347 if ((inst & 0xffffc000) == 0x37de0000)
1348 return hppa_extract_14 (inst);
1349
1350 /* stwm X,D(sp) */
1351 if ((inst & 0xffe00000) == 0x6fc00000)
1352 return hppa_extract_14 (inst);
1353
1354 /* std,ma X,D(sp) */
1355 if ((inst & 0xffe00008) == 0x73c00008)
1356 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1357
1358 /* addil high21,%r30; ldo low11,(%r1),%r30)
1359 save high bits in save_high21 for later use. */
1360 if ((inst & 0xffe00000) == 0x2bc00000)
1361 {
1362 save_high21 = hppa_extract_21 (inst);
1363 return 0;
1364 }
1365
1366 if ((inst & 0xffff0000) == 0x343e0000)
1367 return save_high21 + hppa_extract_14 (inst);
1368
1369 /* fstws as used by the HP compilers. */
1370 if ((inst & 0xffffffe0) == 0x2fd01220)
1371 return hppa_extract_5_load (inst);
1372
1373 /* No adjustment. */
1374 return 0;
1375 }
1376
1377 /* Return nonzero if INST is a branch of some kind, else return zero. */
1378
1379 static int
1380 is_branch (unsigned long inst)
1381 {
1382 switch (inst >> 26)
1383 {
1384 case 0x20:
1385 case 0x21:
1386 case 0x22:
1387 case 0x23:
1388 case 0x27:
1389 case 0x28:
1390 case 0x29:
1391 case 0x2a:
1392 case 0x2b:
1393 case 0x2f:
1394 case 0x30:
1395 case 0x31:
1396 case 0x32:
1397 case 0x33:
1398 case 0x38:
1399 case 0x39:
1400 case 0x3a:
1401 case 0x3b:
1402 return 1;
1403
1404 default:
1405 return 0;
1406 }
1407 }
1408
1409 /* Return the register number for a GR which is saved by INST or
1410 zero if INST does not save a GR.
1411
1412 Referenced from:
1413
1414 parisc 1.1:
1415 https://parisc.wiki.kernel.org/images-parisc/6/68/Pa11_acd.pdf
1416
1417 parisc 2.0:
1418 https://parisc.wiki.kernel.org/images-parisc/7/73/Parisc2.0.pdf
1419
1420 According to Table 6-5 of Chapter 6 (Memory Reference Instructions)
1421 on page 106 in parisc 2.0, all instructions for storing values from
1422 the general registers are:
1423
1424 Store: stb, sth, stw, std (according to Chapter 7, they
1425 are only in both "inst >> 26" and "inst >> 6".
1426 Store Absolute: stwa, stda (according to Chapter 7, they are only
1427 in "inst >> 6".
1428 Store Bytes: stby, stdby (according to Chapter 7, they are
1429 only in "inst >> 6").
1430
1431 For (inst >> 26), according to Chapter 7:
1432
1433 The effective memory reference address is formed by the addition
1434 of an immediate displacement to a base value.
1435
1436 - stb: 0x18, store a byte from a general register.
1437
1438 - sth: 0x19, store a halfword from a general register.
1439
1440 - stw: 0x1a, store a word from a general register.
1441
1442 - stwm: 0x1b, store a word from a general register and perform base
1443 register modification (2.0 will still treate it as stw).
1444
1445 - std: 0x1c, store a doubleword from a general register (2.0 only).
1446
1447 - stw: 0x1f, store a word from a general register (2.0 only).
1448
1449 For (inst >> 6) when ((inst >> 26) == 0x03), according to Chapter 7:
1450
1451 The effective memory reference address is formed by the addition
1452 of an index value to a base value specified in the instruction.
1453
1454 - stb: 0x08, store a byte from a general register (1.1 calls stbs).
1455
1456 - sth: 0x09, store a halfword from a general register (1.1 calls
1457 sths).
1458
1459 - stw: 0x0a, store a word from a general register (1.1 calls stws).
1460
1461 - std: 0x0b: store a doubleword from a general register (2.0 only)
1462
1463 Implement fast byte moves (stores) to unaligned word or doubleword
1464 destination.
1465
1466 - stby: 0x0c, for unaligned word (1.1 calls stbys).
1467
1468 - stdby: 0x0d for unaligned doubleword (2.0 only).
1469
1470 Store a word or doubleword using an absolute memory address formed
1471 using short or long displacement or indexed
1472
1473 - stwa: 0x0e, store a word from a general register to an absolute
1474 address (1.0 calls stwas).
1475
1476 - stda: 0x0f, store a doubleword from a general register to an
1477 absolute address (2.0 only). */
1478
1479 static int
1480 inst_saves_gr (unsigned long inst)
1481 {
1482 switch ((inst >> 26) & 0x0f)
1483 {
1484 case 0x03:
1485 switch ((inst >> 6) & 0x0f)
1486 {
1487 case 0x08:
1488 case 0x09:
1489 case 0x0a:
1490 case 0x0b:
1491 case 0x0c:
1492 case 0x0d:
1493 case 0x0e:
1494 case 0x0f:
1495 return hppa_extract_5R_store (inst);
1496 default:
1497 return 0;
1498 }
1499 case 0x18:
1500 case 0x19:
1501 case 0x1a:
1502 case 0x1b:
1503 case 0x1c:
1504 /* no 0x1d or 0x1e -- according to parisc 2.0 document */
1505 case 0x1f:
1506 return hppa_extract_5R_store (inst);
1507 default:
1508 return 0;
1509 }
1510 }
1511
1512 /* Return the register number for a FR which is saved by INST or
1513 zero it INST does not save a FR.
1514
1515 Note we only care about full 64bit register stores (that's the only
1516 kind of stores the prologue will use).
1517
1518 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1519
1520 static int
1521 inst_saves_fr (unsigned long inst)
1522 {
1523 /* Is this an FSTD? */
1524 if ((inst & 0xfc00dfc0) == 0x2c001200)
1525 return hppa_extract_5r_store (inst);
1526 if ((inst & 0xfc000002) == 0x70000002)
1527 return hppa_extract_5R_store (inst);
1528 /* Is this an FSTW? */
1529 if ((inst & 0xfc00df80) == 0x24001200)
1530 return hppa_extract_5r_store (inst);
1531 if ((inst & 0xfc000002) == 0x7c000000)
1532 return hppa_extract_5R_store (inst);
1533 return 0;
1534 }
1535
1536 /* Advance PC across any function entry prologue instructions
1537 to reach some "real" code.
1538
1539 Use information in the unwind table to determine what exactly should
1540 be in the prologue. */
1541
1542
1543 static CORE_ADDR
1544 skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
1545 int stop_before_branch)
1546 {
1547 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1548 gdb_byte buf[4];
1549 CORE_ADDR orig_pc = pc;
1550 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1551 unsigned long args_stored, status, i, restart_gr, restart_fr;
1552 struct unwind_table_entry *u;
1553 int final_iteration;
1554
1555 restart_gr = 0;
1556 restart_fr = 0;
1557
1558 restart:
1559 u = find_unwind_entry (pc);
1560 if (!u)
1561 return pc;
1562
1563 /* If we are not at the beginning of a function, then return now. */
1564 if ((pc & ~0x3) != u->region_start)
1565 return pc;
1566
1567 /* This is how much of a frame adjustment we need to account for. */
1568 stack_remaining = u->Total_frame_size << 3;
1569
1570 /* Magic register saves we want to know about. */
1571 save_rp = u->Save_RP;
1572 save_sp = u->Save_SP;
1573
1574 /* An indication that args may be stored into the stack. Unfortunately
1575 the HPUX compilers tend to set this in cases where no args were
1576 stored too!. */
1577 args_stored = 1;
1578
1579 /* Turn the Entry_GR field into a bitmask. */
1580 save_gr = 0;
1581 for (i = 3; i < u->Entry_GR + 3; i++)
1582 {
1583 /* Frame pointer gets saved into a special location. */
1584 if (u->Save_SP && i == HPPA_FP_REGNUM)
1585 continue;
1586
1587 save_gr |= (1 << i);
1588 }
1589 save_gr &= ~restart_gr;
1590
1591 /* Turn the Entry_FR field into a bitmask too. */
1592 save_fr = 0;
1593 for (i = 12; i < u->Entry_FR + 12; i++)
1594 save_fr |= (1 << i);
1595 save_fr &= ~restart_fr;
1596
1597 final_iteration = 0;
1598
1599 /* Loop until we find everything of interest or hit a branch.
1600
1601 For unoptimized GCC code and for any HP CC code this will never ever
1602 examine any user instructions.
1603
1604 For optimzied GCC code we're faced with problems. GCC will schedule
1605 its prologue and make prologue instructions available for delay slot
1606 filling. The end result is user code gets mixed in with the prologue
1607 and a prologue instruction may be in the delay slot of the first branch
1608 or call.
1609
1610 Some unexpected things are expected with debugging optimized code, so
1611 we allow this routine to walk past user instructions in optimized
1612 GCC code. */
1613 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1614 || args_stored)
1615 {
1616 unsigned int reg_num;
1617 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1618 unsigned long old_save_rp, old_save_sp, next_inst;
1619
1620 /* Save copies of all the triggers so we can compare them later
1621 (only for HPC). */
1622 old_save_gr = save_gr;
1623 old_save_fr = save_fr;
1624 old_save_rp = save_rp;
1625 old_save_sp = save_sp;
1626 old_stack_remaining = stack_remaining;
1627
1628 status = target_read_memory (pc, buf, 4);
1629 inst = extract_unsigned_integer (buf, 4, byte_order);
1630
1631 /* Yow! */
1632 if (status != 0)
1633 return pc;
1634
1635 /* Note the interesting effects of this instruction. */
1636 stack_remaining -= prologue_inst_adjust_sp (inst);
1637
1638 /* There are limited ways to store the return pointer into the
1639 stack. */
1640 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
1641 save_rp = 0;
1642
1643 /* These are the only ways we save SP into the stack. At this time
1644 the HP compilers never bother to save SP into the stack. */
1645 if ((inst & 0xffffc000) == 0x6fc10000
1646 || (inst & 0xffffc00c) == 0x73c10008)
1647 save_sp = 0;
1648
1649 /* Are we loading some register with an offset from the argument
1650 pointer? */
1651 if ((inst & 0xffe00000) == 0x37a00000
1652 || (inst & 0xffffffe0) == 0x081d0240)
1653 {
1654 pc += 4;
1655 continue;
1656 }
1657
1658 /* Account for general and floating-point register saves. */
1659 reg_num = inst_saves_gr (inst);
1660 save_gr &= ~(1 << reg_num);
1661
1662 /* Ugh. Also account for argument stores into the stack.
1663 Unfortunately args_stored only tells us that some arguments
1664 where stored into the stack. Not how many or what kind!
1665
1666 This is a kludge as on the HP compiler sets this bit and it
1667 never does prologue scheduling. So once we see one, skip past
1668 all of them. We have similar code for the fp arg stores below.
1669
1670 FIXME. Can still die if we have a mix of GR and FR argument
1671 stores! */
1672 if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1673 && reg_num <= 26)
1674 {
1675 while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1676 && reg_num <= 26)
1677 {
1678 pc += 4;
1679 status = target_read_memory (pc, buf, 4);
1680 inst = extract_unsigned_integer (buf, 4, byte_order);
1681 if (status != 0)
1682 return pc;
1683 reg_num = inst_saves_gr (inst);
1684 }
1685 args_stored = 0;
1686 continue;
1687 }
1688
1689 reg_num = inst_saves_fr (inst);
1690 save_fr &= ~(1 << reg_num);
1691
1692 status = target_read_memory (pc + 4, buf, 4);
1693 next_inst = extract_unsigned_integer (buf, 4, byte_order);
1694
1695 /* Yow! */
1696 if (status != 0)
1697 return pc;
1698
1699 /* We've got to be read to handle the ldo before the fp register
1700 save. */
1701 if ((inst & 0xfc000000) == 0x34000000
1702 && inst_saves_fr (next_inst) >= 4
1703 && inst_saves_fr (next_inst)
1704 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1705 {
1706 /* So we drop into the code below in a reasonable state. */
1707 reg_num = inst_saves_fr (next_inst);
1708 pc -= 4;
1709 }
1710
1711 /* Ugh. Also account for argument stores into the stack.
1712 This is a kludge as on the HP compiler sets this bit and it
1713 never does prologue scheduling. So once we see one, skip past
1714 all of them. */
1715 if (reg_num >= 4
1716 && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1717 {
1718 while (reg_num >= 4
1719 && reg_num
1720 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1721 {
1722 pc += 8;
1723 status = target_read_memory (pc, buf, 4);
1724 inst = extract_unsigned_integer (buf, 4, byte_order);
1725 if (status != 0)
1726 return pc;
1727 if ((inst & 0xfc000000) != 0x34000000)
1728 break;
1729 status = target_read_memory (pc + 4, buf, 4);
1730 next_inst = extract_unsigned_integer (buf, 4, byte_order);
1731 if (status != 0)
1732 return pc;
1733 reg_num = inst_saves_fr (next_inst);
1734 }
1735 args_stored = 0;
1736 continue;
1737 }
1738
1739 /* Quit if we hit any kind of branch. This can happen if a prologue
1740 instruction is in the delay slot of the first call/branch. */
1741 if (is_branch (inst) && stop_before_branch)
1742 break;
1743
1744 /* What a crock. The HP compilers set args_stored even if no
1745 arguments were stored into the stack (boo hiss). This could
1746 cause this code to then skip a bunch of user insns (up to the
1747 first branch).
1748
1749 To combat this we try to identify when args_stored was bogusly
1750 set and clear it. We only do this when args_stored is nonzero,
1751 all other resources are accounted for, and nothing changed on
1752 this pass. */
1753 if (args_stored
1754 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1755 && old_save_gr == save_gr && old_save_fr == save_fr
1756 && old_save_rp == save_rp && old_save_sp == save_sp
1757 && old_stack_remaining == stack_remaining)
1758 break;
1759
1760 /* Bump the PC. */
1761 pc += 4;
1762
1763 /* !stop_before_branch, so also look at the insn in the delay slot
1764 of the branch. */
1765 if (final_iteration)
1766 break;
1767 if (is_branch (inst))
1768 final_iteration = 1;
1769 }
1770
1771 /* We've got a tenative location for the end of the prologue. However
1772 because of limitations in the unwind descriptor mechanism we may
1773 have went too far into user code looking for the save of a register
1774 that does not exist. So, if there registers we expected to be saved
1775 but never were, mask them out and restart.
1776
1777 This should only happen in optimized code, and should be very rare. */
1778 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1779 {
1780 pc = orig_pc;
1781 restart_gr = save_gr;
1782 restart_fr = save_fr;
1783 goto restart;
1784 }
1785
1786 return pc;
1787 }
1788
1789
1790 /* Return the address of the PC after the last prologue instruction if
1791 we can determine it from the debug symbols. Else return zero. */
1792
1793 static CORE_ADDR
1794 after_prologue (CORE_ADDR pc)
1795 {
1796 struct symtab_and_line sal;
1797 CORE_ADDR func_addr, func_end;
1798
1799 /* If we can not find the symbol in the partial symbol table, then
1800 there is no hope we can determine the function's start address
1801 with this code. */
1802 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1803 return 0;
1804
1805 /* Get the line associated with FUNC_ADDR. */
1806 sal = find_pc_line (func_addr, 0);
1807
1808 /* There are only two cases to consider. First, the end of the source line
1809 is within the function bounds. In that case we return the end of the
1810 source line. Second is the end of the source line extends beyond the
1811 bounds of the current function. We need to use the slow code to
1812 examine instructions in that case.
1813
1814 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1815 the wrong thing to do. In fact, it should be entirely possible for this
1816 function to always return zero since the slow instruction scanning code
1817 is supposed to *always* work. If it does not, then it is a bug. */
1818 if (sal.end < func_end)
1819 return sal.end;
1820 else
1821 return 0;
1822 }
1823
1824 /* To skip prologues, I use this predicate. Returns either PC itself
1825 if the code at PC does not look like a function prologue; otherwise
1826 returns an address that (if we're lucky) follows the prologue.
1827
1828 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1829 It doesn't necessarily skips all the insns in the prologue. In fact
1830 we might not want to skip all the insns because a prologue insn may
1831 appear in the delay slot of the first branch, and we don't want to
1832 skip over the branch in that case. */
1833
1834 static CORE_ADDR
1835 hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1836 {
1837 CORE_ADDR post_prologue_pc;
1838
1839 /* See if we can determine the end of the prologue via the symbol table.
1840 If so, then return either PC, or the PC after the prologue, whichever
1841 is greater. */
1842
1843 post_prologue_pc = after_prologue (pc);
1844
1845 /* If after_prologue returned a useful address, then use it. Else
1846 fall back on the instruction skipping code.
1847
1848 Some folks have claimed this causes problems because the breakpoint
1849 may be the first instruction of the prologue. If that happens, then
1850 the instruction skipping code has a bug that needs to be fixed. */
1851 if (post_prologue_pc != 0)
1852 return max (pc, post_prologue_pc);
1853 else
1854 return (skip_prologue_hard_way (gdbarch, pc, 1));
1855 }
1856
1857 /* Return an unwind entry that falls within the frame's code block. */
1858
1859 static struct unwind_table_entry *
1860 hppa_find_unwind_entry_in_block (struct frame_info *this_frame)
1861 {
1862 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1863
1864 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
1865 result of get_frame_address_in_block implies a problem.
1866 The bits should have been removed earlier, before the return
1867 value of gdbarch_unwind_pc. That might be happening already;
1868 if it isn't, it should be fixed. Then this call can be
1869 removed. */
1870 pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc);
1871 return find_unwind_entry (pc);
1872 }
1873
1874 struct hppa_frame_cache
1875 {
1876 CORE_ADDR base;
1877 struct trad_frame_saved_reg *saved_regs;
1878 };
1879
1880 static struct hppa_frame_cache *
1881 hppa_frame_cache (struct frame_info *this_frame, void **this_cache)
1882 {
1883 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1884 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1885 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1886 struct hppa_frame_cache *cache;
1887 long saved_gr_mask;
1888 long saved_fr_mask;
1889 long frame_size;
1890 struct unwind_table_entry *u;
1891 CORE_ADDR prologue_end;
1892 int fp_in_r1 = 0;
1893 int i;
1894
1895 if (hppa_debug)
1896 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1897 frame_relative_level(this_frame));
1898
1899 if ((*this_cache) != NULL)
1900 {
1901 if (hppa_debug)
1902 fprintf_unfiltered (gdb_stdlog, "base=%s (cached) }",
1903 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
1904 return (*this_cache);
1905 }
1906 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1907 (*this_cache) = cache;
1908 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1909
1910 /* Yow! */
1911 u = hppa_find_unwind_entry_in_block (this_frame);
1912 if (!u)
1913 {
1914 if (hppa_debug)
1915 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1916 return (*this_cache);
1917 }
1918
1919 /* Turn the Entry_GR field into a bitmask. */
1920 saved_gr_mask = 0;
1921 for (i = 3; i < u->Entry_GR + 3; i++)
1922 {
1923 /* Frame pointer gets saved into a special location. */
1924 if (u->Save_SP && i == HPPA_FP_REGNUM)
1925 continue;
1926
1927 saved_gr_mask |= (1 << i);
1928 }
1929
1930 /* Turn the Entry_FR field into a bitmask too. */
1931 saved_fr_mask = 0;
1932 for (i = 12; i < u->Entry_FR + 12; i++)
1933 saved_fr_mask |= (1 << i);
1934
1935 /* Loop until we find everything of interest or hit a branch.
1936
1937 For unoptimized GCC code and for any HP CC code this will never ever
1938 examine any user instructions.
1939
1940 For optimized GCC code we're faced with problems. GCC will schedule
1941 its prologue and make prologue instructions available for delay slot
1942 filling. The end result is user code gets mixed in with the prologue
1943 and a prologue instruction may be in the delay slot of the first branch
1944 or call.
1945
1946 Some unexpected things are expected with debugging optimized code, so
1947 we allow this routine to walk past user instructions in optimized
1948 GCC code. */
1949 {
1950 int final_iteration = 0;
1951 CORE_ADDR pc, start_pc, end_pc;
1952 int looking_for_sp = u->Save_SP;
1953 int looking_for_rp = u->Save_RP;
1954 int fp_loc = -1;
1955
1956 /* We have to use skip_prologue_hard_way instead of just
1957 skip_prologue_using_sal, in case we stepped into a function without
1958 symbol information. hppa_skip_prologue also bounds the returned
1959 pc by the passed in pc, so it will not return a pc in the next
1960 function.
1961
1962 We used to call hppa_skip_prologue to find the end of the prologue,
1963 but if some non-prologue instructions get scheduled into the prologue,
1964 and the program is compiled with debug information, the "easy" way
1965 in hppa_skip_prologue will return a prologue end that is too early
1966 for us to notice any potential frame adjustments. */
1967
1968 /* We used to use get_frame_func to locate the beginning of the
1969 function to pass to skip_prologue. However, when objects are
1970 compiled without debug symbols, get_frame_func can return the wrong
1971 function (or 0). We can do better than that by using unwind records.
1972 This only works if the Region_description of the unwind record
1973 indicates that it includes the entry point of the function.
1974 HP compilers sometimes generate unwind records for regions that
1975 do not include the entry or exit point of a function. GNU tools
1976 do not do this. */
1977
1978 if ((u->Region_description & 0x2) == 0)
1979 start_pc = u->region_start;
1980 else
1981 start_pc = get_frame_func (this_frame);
1982
1983 prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
1984 end_pc = get_frame_pc (this_frame);
1985
1986 if (prologue_end != 0 && end_pc > prologue_end)
1987 end_pc = prologue_end;
1988
1989 frame_size = 0;
1990
1991 for (pc = start_pc;
1992 ((saved_gr_mask || saved_fr_mask
1993 || looking_for_sp || looking_for_rp
1994 || frame_size < (u->Total_frame_size << 3))
1995 && pc < end_pc);
1996 pc += 4)
1997 {
1998 int reg;
1999 gdb_byte buf4[4];
2000 long inst;
2001
2002 if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4))
2003 {
2004 error (_("Cannot read instruction at %s."),
2005 paddress (gdbarch, pc));
2006 return (*this_cache);
2007 }
2008
2009 inst = extract_unsigned_integer (buf4, sizeof buf4, byte_order);
2010
2011 /* Note the interesting effects of this instruction. */
2012 frame_size += prologue_inst_adjust_sp (inst);
2013
2014 /* There are limited ways to store the return pointer into the
2015 stack. */
2016 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2017 {
2018 looking_for_rp = 0;
2019 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2020 }
2021 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
2022 {
2023 looking_for_rp = 0;
2024 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
2025 }
2026 else if (inst == 0x0fc212c1
2027 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2028 {
2029 looking_for_rp = 0;
2030 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2031 }
2032
2033 /* Check to see if we saved SP into the stack. This also
2034 happens to indicate the location of the saved frame
2035 pointer. */
2036 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
2037 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
2038 {
2039 looking_for_sp = 0;
2040 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
2041 }
2042 else if (inst == 0x08030241) /* copy %r3, %r1 */
2043 {
2044 fp_in_r1 = 1;
2045 }
2046
2047 /* Account for general and floating-point register saves. */
2048 reg = inst_saves_gr (inst);
2049 if (reg >= 3 && reg <= 18
2050 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
2051 {
2052 saved_gr_mask &= ~(1 << reg);
2053 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
2054 /* stwm with a positive displacement is a _post_
2055 _modify_. */
2056 cache->saved_regs[reg].addr = 0;
2057 else if ((inst & 0xfc00000c) == 0x70000008)
2058 /* A std has explicit post_modify forms. */
2059 cache->saved_regs[reg].addr = 0;
2060 else
2061 {
2062 CORE_ADDR offset;
2063
2064 if ((inst >> 26) == 0x1c)
2065 offset = (inst & 0x1 ? -1 << 13 : 0)
2066 | (((inst >> 4) & 0x3ff) << 3);
2067 else if ((inst >> 26) == 0x03)
2068 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
2069 else
2070 offset = hppa_extract_14 (inst);
2071
2072 /* Handle code with and without frame pointers. */
2073 if (u->Save_SP)
2074 cache->saved_regs[reg].addr = offset;
2075 else
2076 cache->saved_regs[reg].addr
2077 = (u->Total_frame_size << 3) + offset;
2078 }
2079 }
2080
2081 /* GCC handles callee saved FP regs a little differently.
2082
2083 It emits an instruction to put the value of the start of
2084 the FP store area into %r1. It then uses fstds,ma with a
2085 basereg of %r1 for the stores.
2086
2087 HP CC emits them at the current stack pointer modifying the
2088 stack pointer as it stores each register. */
2089
2090 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2091 if ((inst & 0xffffc000) == 0x34610000
2092 || (inst & 0xffffc000) == 0x37c10000)
2093 fp_loc = hppa_extract_14 (inst);
2094
2095 reg = inst_saves_fr (inst);
2096 if (reg >= 12 && reg <= 21)
2097 {
2098 /* Note +4 braindamage below is necessary because the FP
2099 status registers are internally 8 registers rather than
2100 the expected 4 registers. */
2101 saved_fr_mask &= ~(1 << reg);
2102 if (fp_loc == -1)
2103 {
2104 /* 1st HP CC FP register store. After this
2105 instruction we've set enough state that the GCC and
2106 HPCC code are both handled in the same manner. */
2107 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
2108 fp_loc = 8;
2109 }
2110 else
2111 {
2112 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
2113 fp_loc += 8;
2114 }
2115 }
2116
2117 /* Quit if we hit any kind of branch the previous iteration. */
2118 if (final_iteration)
2119 break;
2120 /* We want to look precisely one instruction beyond the branch
2121 if we have not found everything yet. */
2122 if (is_branch (inst))
2123 final_iteration = 1;
2124 }
2125 }
2126
2127 {
2128 /* The frame base always represents the value of %sp at entry to
2129 the current function (and is thus equivalent to the "saved"
2130 stack pointer. */
2131 CORE_ADDR this_sp = get_frame_register_unsigned (this_frame,
2132 HPPA_SP_REGNUM);
2133 CORE_ADDR fp;
2134
2135 if (hppa_debug)
2136 fprintf_unfiltered (gdb_stdlog, " (this_sp=%s, pc=%s, "
2137 "prologue_end=%s) ",
2138 paddress (gdbarch, this_sp),
2139 paddress (gdbarch, get_frame_pc (this_frame)),
2140 paddress (gdbarch, prologue_end));
2141
2142 /* Check to see if a frame pointer is available, and use it for
2143 frame unwinding if it is.
2144
2145 There are some situations where we need to rely on the frame
2146 pointer to do stack unwinding. For example, if a function calls
2147 alloca (), the stack pointer can get adjusted inside the body of
2148 the function. In this case, the ABI requires that the compiler
2149 maintain a frame pointer for the function.
2150
2151 The unwind record has a flag (alloca_frame) that indicates that
2152 a function has a variable frame; unfortunately, gcc/binutils
2153 does not set this flag. Instead, whenever a frame pointer is used
2154 and saved on the stack, the Save_SP flag is set. We use this to
2155 decide whether to use the frame pointer for unwinding.
2156
2157 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2158 instead of Save_SP. */
2159
2160 fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM);
2161
2162 if (u->alloca_frame)
2163 fp -= u->Total_frame_size << 3;
2164
2165 if (get_frame_pc (this_frame) >= prologue_end
2166 && (u->Save_SP || u->alloca_frame) && fp != 0)
2167 {
2168 cache->base = fp;
2169
2170 if (hppa_debug)
2171 fprintf_unfiltered (gdb_stdlog, " (base=%s) [frame pointer]",
2172 paddress (gdbarch, cache->base));
2173 }
2174 else if (u->Save_SP
2175 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
2176 {
2177 /* Both we're expecting the SP to be saved and the SP has been
2178 saved. The entry SP value is saved at this frame's SP
2179 address. */
2180 cache->base = read_memory_integer (this_sp, word_size, byte_order);
2181
2182 if (hppa_debug)
2183 fprintf_unfiltered (gdb_stdlog, " (base=%s) [saved]",
2184 paddress (gdbarch, cache->base));
2185 }
2186 else
2187 {
2188 /* The prologue has been slowly allocating stack space. Adjust
2189 the SP back. */
2190 cache->base = this_sp - frame_size;
2191 if (hppa_debug)
2192 fprintf_unfiltered (gdb_stdlog, " (base=%s) [unwind adjust]",
2193 paddress (gdbarch, cache->base));
2194
2195 }
2196 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2197 }
2198
2199 /* The PC is found in the "return register", "Millicode" uses "r31"
2200 as the return register while normal code uses "rp". */
2201 if (u->Millicode)
2202 {
2203 if (trad_frame_addr_p (cache->saved_regs, 31))
2204 {
2205 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2206 if (hppa_debug)
2207 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2208 }
2209 else
2210 {
2211 ULONGEST r31 = get_frame_register_unsigned (this_frame, 31);
2212 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
2213 if (hppa_debug)
2214 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
2215 }
2216 }
2217 else
2218 {
2219 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2220 {
2221 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2222 cache->saved_regs[HPPA_RP_REGNUM];
2223 if (hppa_debug)
2224 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2225 }
2226 else
2227 {
2228 ULONGEST rp = get_frame_register_unsigned (this_frame,
2229 HPPA_RP_REGNUM);
2230 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2231 if (hppa_debug)
2232 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
2233 }
2234 }
2235
2236 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2237 frame. However, there is a one-insn window where we haven't saved it
2238 yet, but we've already clobbered it. Detect this case and fix it up.
2239
2240 The prologue sequence for frame-pointer functions is:
2241 0: stw %rp, -20(%sp)
2242 4: copy %r3, %r1
2243 8: copy %sp, %r3
2244 c: stw,ma %r1, XX(%sp)
2245
2246 So if we are at offset c, the r3 value that we want is not yet saved
2247 on the stack, but it's been overwritten. The prologue analyzer will
2248 set fp_in_r1 when it sees the copy insn so we know to get the value
2249 from r1 instead. */
2250 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2251 && fp_in_r1)
2252 {
2253 ULONGEST r1 = get_frame_register_unsigned (this_frame, 1);
2254 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2255 }
2256
2257 {
2258 /* Convert all the offsets into addresses. */
2259 int reg;
2260 for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
2261 {
2262 if (trad_frame_addr_p (cache->saved_regs, reg))
2263 cache->saved_regs[reg].addr += cache->base;
2264 }
2265 }
2266
2267 {
2268 struct gdbarch_tdep *tdep;
2269
2270 tdep = gdbarch_tdep (gdbarch);
2271
2272 if (tdep->unwind_adjust_stub)
2273 tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs);
2274 }
2275
2276 if (hppa_debug)
2277 fprintf_unfiltered (gdb_stdlog, "base=%s }",
2278 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
2279 return (*this_cache);
2280 }
2281
2282 static void
2283 hppa_frame_this_id (struct frame_info *this_frame, void **this_cache,
2284 struct frame_id *this_id)
2285 {
2286 struct hppa_frame_cache *info;
2287 CORE_ADDR pc = get_frame_pc (this_frame);
2288 struct unwind_table_entry *u;
2289
2290 info = hppa_frame_cache (this_frame, this_cache);
2291 u = hppa_find_unwind_entry_in_block (this_frame);
2292
2293 (*this_id) = frame_id_build (info->base, u->region_start);
2294 }
2295
2296 static struct value *
2297 hppa_frame_prev_register (struct frame_info *this_frame,
2298 void **this_cache, int regnum)
2299 {
2300 struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache);
2301
2302 return hppa_frame_prev_register_helper (this_frame,
2303 info->saved_regs, regnum);
2304 }
2305
2306 static int
2307 hppa_frame_unwind_sniffer (const struct frame_unwind *self,
2308 struct frame_info *this_frame, void **this_cache)
2309 {
2310 if (hppa_find_unwind_entry_in_block (this_frame))
2311 return 1;
2312
2313 return 0;
2314 }
2315
2316 static const struct frame_unwind hppa_frame_unwind =
2317 {
2318 NORMAL_FRAME,
2319 default_frame_unwind_stop_reason,
2320 hppa_frame_this_id,
2321 hppa_frame_prev_register,
2322 NULL,
2323 hppa_frame_unwind_sniffer
2324 };
2325
2326 /* This is a generic fallback frame unwinder that kicks in if we fail all
2327 the other ones. Normally we would expect the stub and regular unwinder
2328 to work, but in some cases we might hit a function that just doesn't
2329 have any unwind information available. In this case we try to do
2330 unwinding solely based on code reading. This is obviously going to be
2331 slow, so only use this as a last resort. Currently this will only
2332 identify the stack and pc for the frame. */
2333
2334 static struct hppa_frame_cache *
2335 hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache)
2336 {
2337 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2338 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2339 struct hppa_frame_cache *cache;
2340 unsigned int frame_size = 0;
2341 int found_rp = 0;
2342 CORE_ADDR start_pc;
2343
2344 if (hppa_debug)
2345 fprintf_unfiltered (gdb_stdlog,
2346 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2347 frame_relative_level (this_frame));
2348
2349 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2350 (*this_cache) = cache;
2351 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2352
2353 start_pc = get_frame_func (this_frame);
2354 if (start_pc)
2355 {
2356 CORE_ADDR cur_pc = get_frame_pc (this_frame);
2357 CORE_ADDR pc;
2358
2359 for (pc = start_pc; pc < cur_pc; pc += 4)
2360 {
2361 unsigned int insn;
2362
2363 insn = read_memory_unsigned_integer (pc, 4, byte_order);
2364 frame_size += prologue_inst_adjust_sp (insn);
2365
2366 /* There are limited ways to store the return pointer into the
2367 stack. */
2368 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2369 {
2370 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2371 found_rp = 1;
2372 }
2373 else if (insn == 0x0fc212c1
2374 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2375 {
2376 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2377 found_rp = 1;
2378 }
2379 }
2380 }
2381
2382 if (hppa_debug)
2383 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2384 frame_size, found_rp);
2385
2386 cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2387 cache->base -= frame_size;
2388 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2389
2390 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2391 {
2392 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2393 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2394 cache->saved_regs[HPPA_RP_REGNUM];
2395 }
2396 else
2397 {
2398 ULONGEST rp;
2399 rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM);
2400 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2401 }
2402
2403 return cache;
2404 }
2405
2406 static void
2407 hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache,
2408 struct frame_id *this_id)
2409 {
2410 struct hppa_frame_cache *info =
2411 hppa_fallback_frame_cache (this_frame, this_cache);
2412
2413 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2414 }
2415
2416 static struct value *
2417 hppa_fallback_frame_prev_register (struct frame_info *this_frame,
2418 void **this_cache, int regnum)
2419 {
2420 struct hppa_frame_cache *info
2421 = hppa_fallback_frame_cache (this_frame, this_cache);
2422
2423 return hppa_frame_prev_register_helper (this_frame,
2424 info->saved_regs, regnum);
2425 }
2426
2427 static const struct frame_unwind hppa_fallback_frame_unwind =
2428 {
2429 NORMAL_FRAME,
2430 default_frame_unwind_stop_reason,
2431 hppa_fallback_frame_this_id,
2432 hppa_fallback_frame_prev_register,
2433 NULL,
2434 default_frame_sniffer
2435 };
2436
2437 /* Stub frames, used for all kinds of call stubs. */
2438 struct hppa_stub_unwind_cache
2439 {
2440 CORE_ADDR base;
2441 struct trad_frame_saved_reg *saved_regs;
2442 };
2443
2444 static struct hppa_stub_unwind_cache *
2445 hppa_stub_frame_unwind_cache (struct frame_info *this_frame,
2446 void **this_cache)
2447 {
2448 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2449 struct hppa_stub_unwind_cache *info;
2450 struct unwind_table_entry *u;
2451
2452 if (*this_cache)
2453 return *this_cache;
2454
2455 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2456 *this_cache = info;
2457 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2458
2459 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2460
2461 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2462 {
2463 /* HPUX uses export stubs in function calls; the export stub clobbers
2464 the return value of the caller, and, later restores it from the
2465 stack. */
2466 u = find_unwind_entry (get_frame_pc (this_frame));
2467
2468 if (u && u->stub_unwind.stub_type == EXPORT)
2469 {
2470 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2471
2472 return info;
2473 }
2474 }
2475
2476 /* By default we assume that stubs do not change the rp. */
2477 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2478
2479 return info;
2480 }
2481
2482 static void
2483 hppa_stub_frame_this_id (struct frame_info *this_frame,
2484 void **this_prologue_cache,
2485 struct frame_id *this_id)
2486 {
2487 struct hppa_stub_unwind_cache *info
2488 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2489
2490 if (info)
2491 *this_id = frame_id_build (info->base, get_frame_func (this_frame));
2492 }
2493
2494 static struct value *
2495 hppa_stub_frame_prev_register (struct frame_info *this_frame,
2496 void **this_prologue_cache, int regnum)
2497 {
2498 struct hppa_stub_unwind_cache *info
2499 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2500
2501 if (info == NULL)
2502 error (_("Requesting registers from null frame."));
2503
2504 return hppa_frame_prev_register_helper (this_frame,
2505 info->saved_regs, regnum);
2506 }
2507
2508 static int
2509 hppa_stub_unwind_sniffer (const struct frame_unwind *self,
2510 struct frame_info *this_frame,
2511 void **this_cache)
2512 {
2513 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2514 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2515 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2516
2517 if (pc == 0
2518 || (tdep->in_solib_call_trampoline != NULL
2519 && tdep->in_solib_call_trampoline (gdbarch, pc))
2520 || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
2521 return 1;
2522 return 0;
2523 }
2524
2525 static const struct frame_unwind hppa_stub_frame_unwind = {
2526 NORMAL_FRAME,
2527 default_frame_unwind_stop_reason,
2528 hppa_stub_frame_this_id,
2529 hppa_stub_frame_prev_register,
2530 NULL,
2531 hppa_stub_unwind_sniffer
2532 };
2533
2534 static struct frame_id
2535 hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2536 {
2537 return frame_id_build (get_frame_register_unsigned (this_frame,
2538 HPPA_SP_REGNUM),
2539 get_frame_pc (this_frame));
2540 }
2541
2542 CORE_ADDR
2543 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2544 {
2545 ULONGEST ipsw;
2546 CORE_ADDR pc;
2547
2548 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2549 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2550
2551 /* If the current instruction is nullified, then we are effectively
2552 still executing the previous instruction. Pretend we are still
2553 there. This is needed when single stepping; if the nullified
2554 instruction is on a different line, we don't want GDB to think
2555 we've stepped onto that line. */
2556 if (ipsw & 0x00200000)
2557 pc -= 4;
2558
2559 return pc & ~0x3;
2560 }
2561
2562 /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2563 Return NULL if no such symbol was found. */
2564
2565 struct bound_minimal_symbol
2566 hppa_lookup_stub_minimal_symbol (const char *name,
2567 enum unwind_stub_types stub_type)
2568 {
2569 struct objfile *objfile;
2570 struct minimal_symbol *msym;
2571 struct bound_minimal_symbol result = { NULL, NULL };
2572
2573 ALL_MSYMBOLS (objfile, msym)
2574 {
2575 if (strcmp (MSYMBOL_LINKAGE_NAME (msym), name) == 0)
2576 {
2577 struct unwind_table_entry *u;
2578
2579 u = find_unwind_entry (MSYMBOL_VALUE (msym));
2580 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2581 {
2582 result.objfile = objfile;
2583 result.minsym = msym;
2584 return result;
2585 }
2586 }
2587 }
2588
2589 return result;
2590 }
2591
2592 static void
2593 unwind_command (char *exp, int from_tty)
2594 {
2595 CORE_ADDR address;
2596 struct unwind_table_entry *u;
2597
2598 /* If we have an expression, evaluate it and use it as the address. */
2599
2600 if (exp != 0 && *exp != 0)
2601 address = parse_and_eval_address (exp);
2602 else
2603 return;
2604
2605 u = find_unwind_entry (address);
2606
2607 if (!u)
2608 {
2609 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2610 return;
2611 }
2612
2613 printf_unfiltered ("unwind_table_entry (%s):\n", host_address_to_string (u));
2614
2615 printf_unfiltered ("\tregion_start = %s\n", hex_string (u->region_start));
2616 gdb_flush (gdb_stdout);
2617
2618 printf_unfiltered ("\tregion_end = %s\n", hex_string (u->region_end));
2619 gdb_flush (gdb_stdout);
2620
2621 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2622
2623 printf_unfiltered ("\n\tflags =");
2624 pif (Cannot_unwind);
2625 pif (Millicode);
2626 pif (Millicode_save_sr0);
2627 pif (Entry_SR);
2628 pif (Args_stored);
2629 pif (Variable_Frame);
2630 pif (Separate_Package_Body);
2631 pif (Frame_Extension_Millicode);
2632 pif (Stack_Overflow_Check);
2633 pif (Two_Instruction_SP_Increment);
2634 pif (sr4export);
2635 pif (cxx_info);
2636 pif (cxx_try_catch);
2637 pif (sched_entry_seq);
2638 pif (Save_SP);
2639 pif (Save_RP);
2640 pif (Save_MRP_in_frame);
2641 pif (save_r19);
2642 pif (Cleanup_defined);
2643 pif (MPE_XL_interrupt_marker);
2644 pif (HP_UX_interrupt_marker);
2645 pif (Large_frame);
2646 pif (alloca_frame);
2647
2648 putchar_unfiltered ('\n');
2649
2650 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2651
2652 pin (Region_description);
2653 pin (Entry_FR);
2654 pin (Entry_GR);
2655 pin (Total_frame_size);
2656
2657 if (u->stub_unwind.stub_type)
2658 {
2659 printf_unfiltered ("\tstub type = ");
2660 switch (u->stub_unwind.stub_type)
2661 {
2662 case LONG_BRANCH:
2663 printf_unfiltered ("long branch\n");
2664 break;
2665 case PARAMETER_RELOCATION:
2666 printf_unfiltered ("parameter relocation\n");
2667 break;
2668 case EXPORT:
2669 printf_unfiltered ("export\n");
2670 break;
2671 case IMPORT:
2672 printf_unfiltered ("import\n");
2673 break;
2674 case IMPORT_SHLIB:
2675 printf_unfiltered ("import shlib\n");
2676 break;
2677 default:
2678 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2679 }
2680 }
2681 }
2682
2683 /* Return the GDB type object for the "standard" data type of data in
2684 register REGNUM. */
2685
2686 static struct type *
2687 hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2688 {
2689 if (regnum < HPPA_FP4_REGNUM)
2690 return builtin_type (gdbarch)->builtin_uint32;
2691 else
2692 return builtin_type (gdbarch)->builtin_float;
2693 }
2694
2695 static struct type *
2696 hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2697 {
2698 if (regnum < HPPA64_FP4_REGNUM)
2699 return builtin_type (gdbarch)->builtin_uint64;
2700 else
2701 return builtin_type (gdbarch)->builtin_double;
2702 }
2703
2704 /* Return non-zero if REGNUM is not a register available to the user
2705 through ptrace/ttrace. */
2706
2707 static int
2708 hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2709 {
2710 return (regnum == 0
2711 || regnum == HPPA_PCSQ_HEAD_REGNUM
2712 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2713 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2714 }
2715
2716 static int
2717 hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2718 {
2719 /* cr26 and cr27 are readable (but not writable) from userspace. */
2720 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2721 return 0;
2722 else
2723 return hppa32_cannot_store_register (gdbarch, regnum);
2724 }
2725
2726 static int
2727 hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2728 {
2729 return (regnum == 0
2730 || regnum == HPPA_PCSQ_HEAD_REGNUM
2731 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2732 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2733 }
2734
2735 static int
2736 hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2737 {
2738 /* cr26 and cr27 are readable (but not writable) from userspace. */
2739 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2740 return 0;
2741 else
2742 return hppa64_cannot_store_register (gdbarch, regnum);
2743 }
2744
2745 static CORE_ADDR
2746 hppa_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
2747 {
2748 /* The low two bits of the PC on the PA contain the privilege level.
2749 Some genius implementing a (non-GCC) compiler apparently decided
2750 this means that "addresses" in a text section therefore include a
2751 privilege level, and thus symbol tables should contain these bits.
2752 This seems like a bonehead thing to do--anyway, it seems to work
2753 for our purposes to just ignore those bits. */
2754
2755 return (addr &= ~0x3);
2756 }
2757
2758 /* Get the ARGIth function argument for the current function. */
2759
2760 static CORE_ADDR
2761 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2762 struct type *type)
2763 {
2764 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
2765 }
2766
2767 static enum register_status
2768 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2769 int regnum, gdb_byte *buf)
2770 {
2771 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2772 ULONGEST tmp;
2773 enum register_status status;
2774
2775 status = regcache_raw_read_unsigned (regcache, regnum, &tmp);
2776 if (status == REG_VALID)
2777 {
2778 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2779 tmp &= ~0x3;
2780 store_unsigned_integer (buf, sizeof tmp, byte_order, tmp);
2781 }
2782 return status;
2783 }
2784
2785 static CORE_ADDR
2786 hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
2787 {
2788 return 0;
2789 }
2790
2791 struct value *
2792 hppa_frame_prev_register_helper (struct frame_info *this_frame,
2793 struct trad_frame_saved_reg saved_regs[],
2794 int regnum)
2795 {
2796 struct gdbarch *arch = get_frame_arch (this_frame);
2797 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2798
2799 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2800 {
2801 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2802 CORE_ADDR pc;
2803 struct value *pcoq_val =
2804 trad_frame_get_prev_register (this_frame, saved_regs,
2805 HPPA_PCOQ_HEAD_REGNUM);
2806
2807 pc = extract_unsigned_integer (value_contents_all (pcoq_val),
2808 size, byte_order);
2809 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
2810 }
2811
2812 return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
2813 }
2814 \f
2815
2816 /* An instruction to match. */
2817 struct insn_pattern
2818 {
2819 unsigned int data; /* See if it matches this.... */
2820 unsigned int mask; /* ... with this mask. */
2821 };
2822
2823 /* See bfd/elf32-hppa.c */
2824 static struct insn_pattern hppa_long_branch_stub[] = {
2825 /* ldil LR'xxx,%r1 */
2826 { 0x20200000, 0xffe00000 },
2827 /* be,n RR'xxx(%sr4,%r1) */
2828 { 0xe0202002, 0xffe02002 },
2829 { 0, 0 }
2830 };
2831
2832 static struct insn_pattern hppa_long_branch_pic_stub[] = {
2833 /* b,l .+8, %r1 */
2834 { 0xe8200000, 0xffe00000 },
2835 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2836 { 0x28200000, 0xffe00000 },
2837 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2838 { 0xe0202002, 0xffe02002 },
2839 { 0, 0 }
2840 };
2841
2842 static struct insn_pattern hppa_import_stub[] = {
2843 /* addil LR'xxx, %dp */
2844 { 0x2b600000, 0xffe00000 },
2845 /* ldw RR'xxx(%r1), %r21 */
2846 { 0x48350000, 0xffffb000 },
2847 /* bv %r0(%r21) */
2848 { 0xeaa0c000, 0xffffffff },
2849 /* ldw RR'xxx+4(%r1), %r19 */
2850 { 0x48330000, 0xffffb000 },
2851 { 0, 0 }
2852 };
2853
2854 static struct insn_pattern hppa_import_pic_stub[] = {
2855 /* addil LR'xxx,%r19 */
2856 { 0x2a600000, 0xffe00000 },
2857 /* ldw RR'xxx(%r1),%r21 */
2858 { 0x48350000, 0xffffb000 },
2859 /* bv %r0(%r21) */
2860 { 0xeaa0c000, 0xffffffff },
2861 /* ldw RR'xxx+4(%r1),%r19 */
2862 { 0x48330000, 0xffffb000 },
2863 { 0, 0 },
2864 };
2865
2866 static struct insn_pattern hppa_plt_stub[] = {
2867 /* b,l 1b, %r20 - 1b is 3 insns before here */
2868 { 0xea9f1fdd, 0xffffffff },
2869 /* depi 0,31,2,%r20 */
2870 { 0xd6801c1e, 0xffffffff },
2871 { 0, 0 }
2872 };
2873
2874 /* Maximum number of instructions on the patterns above. */
2875 #define HPPA_MAX_INSN_PATTERN_LEN 4
2876
2877 /* Return non-zero if the instructions at PC match the series
2878 described in PATTERN, or zero otherwise. PATTERN is an array of
2879 'struct insn_pattern' objects, terminated by an entry whose mask is
2880 zero.
2881
2882 When the match is successful, fill INSN[i] with what PATTERN[i]
2883 matched. */
2884
2885 static int
2886 hppa_match_insns (struct gdbarch *gdbarch, CORE_ADDR pc,
2887 struct insn_pattern *pattern, unsigned int *insn)
2888 {
2889 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2890 CORE_ADDR npc = pc;
2891 int i;
2892
2893 for (i = 0; pattern[i].mask; i++)
2894 {
2895 gdb_byte buf[HPPA_INSN_SIZE];
2896
2897 target_read_memory (npc, buf, HPPA_INSN_SIZE);
2898 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order);
2899 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2900 npc += 4;
2901 else
2902 return 0;
2903 }
2904
2905 return 1;
2906 }
2907
2908 /* This relaxed version of the insstruction matcher allows us to match
2909 from somewhere inside the pattern, by looking backwards in the
2910 instruction scheme. */
2911
2912 static int
2913 hppa_match_insns_relaxed (struct gdbarch *gdbarch, CORE_ADDR pc,
2914 struct insn_pattern *pattern, unsigned int *insn)
2915 {
2916 int offset, len = 0;
2917
2918 while (pattern[len].mask)
2919 len++;
2920
2921 for (offset = 0; offset < len; offset++)
2922 if (hppa_match_insns (gdbarch, pc - offset * HPPA_INSN_SIZE,
2923 pattern, insn))
2924 return 1;
2925
2926 return 0;
2927 }
2928
2929 static int
2930 hppa_in_dyncall (CORE_ADDR pc)
2931 {
2932 struct unwind_table_entry *u;
2933
2934 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2935 if (!u)
2936 return 0;
2937
2938 return (pc >= u->region_start && pc <= u->region_end);
2939 }
2940
2941 int
2942 hppa_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc)
2943 {
2944 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2945 struct unwind_table_entry *u;
2946
2947 if (in_plt_section (pc) || hppa_in_dyncall (pc))
2948 return 1;
2949
2950 /* The GNU toolchain produces linker stubs without unwind
2951 information. Since the pattern matching for linker stubs can be
2952 quite slow, so bail out if we do have an unwind entry. */
2953
2954 u = find_unwind_entry (pc);
2955 if (u != NULL)
2956 return 0;
2957
2958 return
2959 (hppa_match_insns_relaxed (gdbarch, pc, hppa_import_stub, insn)
2960 || hppa_match_insns_relaxed (gdbarch, pc, hppa_import_pic_stub, insn)
2961 || hppa_match_insns_relaxed (gdbarch, pc, hppa_long_branch_stub, insn)
2962 || hppa_match_insns_relaxed (gdbarch, pc,
2963 hppa_long_branch_pic_stub, insn));
2964 }
2965
2966 /* This code skips several kind of "trampolines" used on PA-RISC
2967 systems: $$dyncall, import stubs and PLT stubs. */
2968
2969 CORE_ADDR
2970 hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2971 {
2972 struct gdbarch *gdbarch = get_frame_arch (frame);
2973 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
2974
2975 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2976 int dp_rel;
2977
2978 /* $$dyncall handles both PLABELs and direct addresses. */
2979 if (hppa_in_dyncall (pc))
2980 {
2981 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
2982
2983 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2984 if (pc & 0x2)
2985 pc = read_memory_typed_address (pc & ~0x3, func_ptr_type);
2986
2987 return pc;
2988 }
2989
2990 dp_rel = hppa_match_insns (gdbarch, pc, hppa_import_stub, insn);
2991 if (dp_rel || hppa_match_insns (gdbarch, pc, hppa_import_pic_stub, insn))
2992 {
2993 /* Extract the target address from the addil/ldw sequence. */
2994 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2995
2996 if (dp_rel)
2997 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
2998 else
2999 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
3000
3001 /* fallthrough */
3002 }
3003
3004 if (in_plt_section (pc))
3005 {
3006 pc = read_memory_typed_address (pc, func_ptr_type);
3007
3008 /* If the PLT slot has not yet been resolved, the target will be
3009 the PLT stub. */
3010 if (in_plt_section (pc))
3011 {
3012 /* Sanity check: are we pointing to the PLT stub? */
3013 if (!hppa_match_insns (gdbarch, pc, hppa_plt_stub, insn))
3014 {
3015 warning (_("Cannot resolve PLT stub at %s."),
3016 paddress (gdbarch, pc));
3017 return 0;
3018 }
3019
3020 /* This should point to the fixup routine. */
3021 pc = read_memory_typed_address (pc + 8, func_ptr_type);
3022 }
3023 }
3024
3025 return pc;
3026 }
3027 \f
3028
3029 /* Here is a table of C type sizes on hppa with various compiles
3030 and options. I measured this on PA 9000/800 with HP-UX 11.11
3031 and these compilers:
3032
3033 /usr/ccs/bin/cc HP92453-01 A.11.01.21
3034 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
3035 /opt/aCC/bin/aCC B3910B A.03.45
3036 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
3037
3038 cc : 1 2 4 4 8 : 4 8 -- : 4 4
3039 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3040 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3041 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3042 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3043 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3044 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3045 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
3046
3047 Each line is:
3048
3049 compiler and options
3050 char, short, int, long, long long
3051 float, double, long double
3052 char *, void (*)()
3053
3054 So all these compilers use either ILP32 or LP64 model.
3055 TODO: gcc has more options so it needs more investigation.
3056
3057 For floating point types, see:
3058
3059 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
3060 HP-UX floating-point guide, hpux 11.00
3061
3062 -- chastain 2003-12-18 */
3063
3064 static struct gdbarch *
3065 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3066 {
3067 struct gdbarch_tdep *tdep;
3068 struct gdbarch *gdbarch;
3069
3070 /* Try to determine the ABI of the object we are loading. */
3071 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
3072 {
3073 /* If it's a SOM file, assume it's HP/UX SOM. */
3074 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
3075 info.osabi = GDB_OSABI_HPUX_SOM;
3076 }
3077
3078 /* find a candidate among the list of pre-declared architectures. */
3079 arches = gdbarch_list_lookup_by_info (arches, &info);
3080 if (arches != NULL)
3081 return (arches->gdbarch);
3082
3083 /* If none found, then allocate and initialize one. */
3084 tdep = XCNEW (struct gdbarch_tdep);
3085 gdbarch = gdbarch_alloc (&info, tdep);
3086
3087 /* Determine from the bfd_arch_info structure if we are dealing with
3088 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3089 then default to a 32bit machine. */
3090 if (info.bfd_arch_info != NULL)
3091 tdep->bytes_per_address =
3092 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3093 else
3094 tdep->bytes_per_address = 4;
3095
3096 tdep->find_global_pointer = hppa_find_global_pointer;
3097
3098 /* Some parts of the gdbarch vector depend on whether we are running
3099 on a 32 bits or 64 bits target. */
3100 switch (tdep->bytes_per_address)
3101 {
3102 case 4:
3103 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3104 set_gdbarch_register_name (gdbarch, hppa32_register_name);
3105 set_gdbarch_register_type (gdbarch, hppa32_register_type);
3106 set_gdbarch_cannot_store_register (gdbarch,
3107 hppa32_cannot_store_register);
3108 set_gdbarch_cannot_fetch_register (gdbarch,
3109 hppa32_cannot_fetch_register);
3110 break;
3111 case 8:
3112 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3113 set_gdbarch_register_name (gdbarch, hppa64_register_name);
3114 set_gdbarch_register_type (gdbarch, hppa64_register_type);
3115 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3116 set_gdbarch_cannot_store_register (gdbarch,
3117 hppa64_cannot_store_register);
3118 set_gdbarch_cannot_fetch_register (gdbarch,
3119 hppa64_cannot_fetch_register);
3120 break;
3121 default:
3122 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3123 tdep->bytes_per_address);
3124 }
3125
3126 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3127 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3128
3129 /* The following gdbarch vector elements are the same in both ILP32
3130 and LP64, but might show differences some day. */
3131 set_gdbarch_long_long_bit (gdbarch, 64);
3132 set_gdbarch_long_double_bit (gdbarch, 128);
3133 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3134
3135 /* The following gdbarch vector elements do not depend on the address
3136 size, or in any other gdbarch element previously set. */
3137 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
3138 set_gdbarch_in_function_epilogue_p (gdbarch,
3139 hppa_in_function_epilogue_p);
3140 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
3141 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3142 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
3143 set_gdbarch_addr_bits_remove (gdbarch, hppa_addr_bits_remove);
3144 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3145 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3146 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
3147
3148 /* Helper for function argument information. */
3149 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3150
3151 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
3152
3153 /* When a hardware watchpoint triggers, we'll move the inferior past
3154 it by removing all eventpoints; stepping past the instruction
3155 that caused the trigger; reinserting eventpoints; and checking
3156 whether any watched location changed. */
3157 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3158
3159 /* Inferior function call methods. */
3160 switch (tdep->bytes_per_address)
3161 {
3162 case 4:
3163 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3164 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
3165 set_gdbarch_convert_from_func_ptr_addr
3166 (gdbarch, hppa32_convert_from_func_ptr_addr);
3167 break;
3168 case 8:
3169 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3170 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
3171 break;
3172 default:
3173 internal_error (__FILE__, __LINE__, _("bad switch"));
3174 }
3175
3176 /* Struct return methods. */
3177 switch (tdep->bytes_per_address)
3178 {
3179 case 4:
3180 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3181 break;
3182 case 8:
3183 set_gdbarch_return_value (gdbarch, hppa64_return_value);
3184 break;
3185 default:
3186 internal_error (__FILE__, __LINE__, _("bad switch"));
3187 }
3188
3189 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
3190 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
3191
3192 /* Frame unwind methods. */
3193 set_gdbarch_dummy_id (gdbarch, hppa_dummy_id);
3194 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
3195
3196 /* Hook in ABI-specific overrides, if they have been registered. */
3197 gdbarch_init_osabi (info, gdbarch);
3198
3199 /* Hook in the default unwinders. */
3200 frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind);
3201 frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind);
3202 frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind);
3203
3204 return gdbarch;
3205 }
3206
3207 static void
3208 hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3209 {
3210 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3211
3212 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3213 tdep->bytes_per_address);
3214 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
3215 }
3216
3217 /* Provide a prototype to silence -Wmissing-prototypes. */
3218 extern initialize_file_ftype _initialize_hppa_tdep;
3219
3220 void
3221 _initialize_hppa_tdep (void)
3222 {
3223 struct cmd_list_element *c;
3224
3225 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
3226
3227 hppa_objfile_priv_data = register_objfile_data ();
3228
3229 add_cmd ("unwind", class_maintenance, unwind_command,
3230 _("Print unwind table entry at given address."),
3231 &maintenanceprintlist);
3232
3233 /* Debug this files internals. */
3234 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3235 Set whether hppa target specific debugging information should be displayed."),
3236 _("\
3237 Show whether hppa target specific debugging information is displayed."), _("\
3238 This flag controls whether hppa target specific debugging information is\n\
3239 displayed. This information is particularly useful for debugging frame\n\
3240 unwinding problems."),
3241 NULL,
3242 NULL, /* FIXME: i18n: hppa debug flag is %s. */
3243 &setdebuglist, &showdebuglist);
3244 }
This page took 0.100896 seconds and 4 git commands to generate.