PR symtab/17391 gdb internal error: assertion fails in regcache.c:178
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA-RISC architecture.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "bfd.h"
25 #include "inferior.h"
26 #include "regcache.h"
27 #include "completer.h"
28 #include "osabi.h"
29 #include "arch-utils.h"
30 /* For argument passing to the inferior. */
31 #include "symtab.h"
32 #include "dis-asm.h"
33 #include "trad-frame.h"
34 #include "frame-unwind.h"
35 #include "frame-base.h"
36
37 #include "gdbcore.h"
38 #include "gdbcmd.h"
39 #include "gdbtypes.h"
40 #include "objfiles.h"
41 #include "hppa-tdep.h"
42
43 static int hppa_debug = 0;
44
45 /* Some local constants. */
46 static const int hppa32_num_regs = 128;
47 static const int hppa64_num_regs = 96;
48
49 /* We use the objfile->obj_private pointer for two things:
50 * 1. An unwind table;
51 *
52 * 2. A pointer to any associated shared library object.
53 *
54 * #defines are used to help refer to these objects.
55 */
56
57 /* Info about the unwind table associated with an object file.
58 * This is hung off of the "objfile->obj_private" pointer, and
59 * is allocated in the objfile's psymbol obstack. This allows
60 * us to have unique unwind info for each executable and shared
61 * library that we are debugging.
62 */
63 struct hppa_unwind_info
64 {
65 struct unwind_table_entry *table; /* Pointer to unwind info */
66 struct unwind_table_entry *cache; /* Pointer to last entry we found */
67 int last; /* Index of last entry */
68 };
69
70 struct hppa_objfile_private
71 {
72 struct hppa_unwind_info *unwind_info; /* a pointer */
73 struct so_list *so_info; /* a pointer */
74 CORE_ADDR dp;
75
76 int dummy_call_sequence_reg;
77 CORE_ADDR dummy_call_sequence_addr;
78 };
79
80 /* hppa-specific object data -- unwind and solib info.
81 TODO/maybe: think about splitting this into two parts; the unwind data is
82 common to all hppa targets, but is only used in this file; we can register
83 that separately and make this static. The solib data is probably hpux-
84 specific, so we can create a separate extern objfile_data that is registered
85 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
86 static const struct objfile_data *hppa_objfile_priv_data = NULL;
87
88 /* Get at various relevent fields of an instruction word. */
89 #define MASK_5 0x1f
90 #define MASK_11 0x7ff
91 #define MASK_14 0x3fff
92 #define MASK_21 0x1fffff
93
94 /* Sizes (in bytes) of the native unwind entries. */
95 #define UNWIND_ENTRY_SIZE 16
96 #define STUB_UNWIND_ENTRY_SIZE 8
97
98 /* Routines to extract various sized constants out of hppa
99 instructions. */
100
101 /* This assumes that no garbage lies outside of the lower bits of
102 value. */
103
104 static int
105 hppa_sign_extend (unsigned val, unsigned bits)
106 {
107 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
108 }
109
110 /* For many immediate values the sign bit is the low bit! */
111
112 static int
113 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
114 {
115 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
116 }
117
118 /* Extract the bits at positions between FROM and TO, using HP's numbering
119 (MSB = 0). */
120
121 int
122 hppa_get_field (unsigned word, int from, int to)
123 {
124 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
125 }
126
127 /* Extract the immediate field from a ld{bhw}s instruction. */
128
129 int
130 hppa_extract_5_load (unsigned word)
131 {
132 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
133 }
134
135 /* Extract the immediate field from a break instruction. */
136
137 unsigned
138 hppa_extract_5r_store (unsigned word)
139 {
140 return (word & MASK_5);
141 }
142
143 /* Extract the immediate field from a {sr}sm instruction. */
144
145 unsigned
146 hppa_extract_5R_store (unsigned word)
147 {
148 return (word >> 16 & MASK_5);
149 }
150
151 /* Extract a 14 bit immediate field. */
152
153 int
154 hppa_extract_14 (unsigned word)
155 {
156 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
157 }
158
159 /* Extract a 21 bit constant. */
160
161 int
162 hppa_extract_21 (unsigned word)
163 {
164 int val;
165
166 word &= MASK_21;
167 word <<= 11;
168 val = hppa_get_field (word, 20, 20);
169 val <<= 11;
170 val |= hppa_get_field (word, 9, 19);
171 val <<= 2;
172 val |= hppa_get_field (word, 5, 6);
173 val <<= 5;
174 val |= hppa_get_field (word, 0, 4);
175 val <<= 2;
176 val |= hppa_get_field (word, 7, 8);
177 return hppa_sign_extend (val, 21) << 11;
178 }
179
180 /* extract a 17 bit constant from branch instructions, returning the
181 19 bit signed value. */
182
183 int
184 hppa_extract_17 (unsigned word)
185 {
186 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
187 hppa_get_field (word, 29, 29) << 10 |
188 hppa_get_field (word, 11, 15) << 11 |
189 (word & 0x1) << 16, 17) << 2;
190 }
191
192 CORE_ADDR
193 hppa_symbol_address(const char *sym)
194 {
195 struct bound_minimal_symbol minsym;
196
197 minsym = lookup_minimal_symbol (sym, NULL, NULL);
198 if (minsym.minsym)
199 return BMSYMBOL_VALUE_ADDRESS (minsym);
200 else
201 return (CORE_ADDR)-1;
202 }
203
204 static struct hppa_objfile_private *
205 hppa_init_objfile_priv_data (struct objfile *objfile)
206 {
207 struct hppa_objfile_private *priv;
208
209 priv = (struct hppa_objfile_private *)
210 obstack_alloc (&objfile->objfile_obstack,
211 sizeof (struct hppa_objfile_private));
212 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
213 memset (priv, 0, sizeof (*priv));
214
215 return priv;
216 }
217 \f
218
219 /* Compare the start address for two unwind entries returning 1 if
220 the first address is larger than the second, -1 if the second is
221 larger than the first, and zero if they are equal. */
222
223 static int
224 compare_unwind_entries (const void *arg1, const void *arg2)
225 {
226 const struct unwind_table_entry *a = (const struct unwind_table_entry *) arg1;
227 const struct unwind_table_entry *b = (const struct unwind_table_entry *) arg2;
228
229 if (a->region_start > b->region_start)
230 return 1;
231 else if (a->region_start < b->region_start)
232 return -1;
233 else
234 return 0;
235 }
236
237 static void
238 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
239 {
240 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
241 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
242 {
243 bfd_vma value = section->vma - section->filepos;
244 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
245
246 if (value < *low_text_segment_address)
247 *low_text_segment_address = value;
248 }
249 }
250
251 static void
252 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
253 asection *section, unsigned int entries,
254 size_t size, CORE_ADDR text_offset)
255 {
256 /* We will read the unwind entries into temporary memory, then
257 fill in the actual unwind table. */
258
259 if (size > 0)
260 {
261 struct gdbarch *gdbarch = get_objfile_arch (objfile);
262 unsigned long tmp;
263 unsigned i;
264 char *buf = (char *) alloca (size);
265 CORE_ADDR low_text_segment_address;
266
267 /* For ELF targets, then unwinds are supposed to
268 be segment relative offsets instead of absolute addresses.
269
270 Note that when loading a shared library (text_offset != 0) the
271 unwinds are already relative to the text_offset that will be
272 passed in. */
273 if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0)
274 {
275 low_text_segment_address = -1;
276
277 bfd_map_over_sections (objfile->obfd,
278 record_text_segment_lowaddr,
279 &low_text_segment_address);
280
281 text_offset = low_text_segment_address;
282 }
283 else if (gdbarch_tdep (gdbarch)->solib_get_text_base)
284 {
285 text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile);
286 }
287
288 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
289
290 /* Now internalize the information being careful to handle host/target
291 endian issues. */
292 for (i = 0; i < entries; i++)
293 {
294 table[i].region_start = bfd_get_32 (objfile->obfd,
295 (bfd_byte *) buf);
296 table[i].region_start += text_offset;
297 buf += 4;
298 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
299 table[i].region_end += text_offset;
300 buf += 4;
301 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
302 buf += 4;
303 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
304 table[i].Millicode = (tmp >> 30) & 0x1;
305 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
306 table[i].Region_description = (tmp >> 27) & 0x3;
307 table[i].reserved = (tmp >> 26) & 0x1;
308 table[i].Entry_SR = (tmp >> 25) & 0x1;
309 table[i].Entry_FR = (tmp >> 21) & 0xf;
310 table[i].Entry_GR = (tmp >> 16) & 0x1f;
311 table[i].Args_stored = (tmp >> 15) & 0x1;
312 table[i].Variable_Frame = (tmp >> 14) & 0x1;
313 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
314 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
315 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
316 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
317 table[i].sr4export = (tmp >> 9) & 0x1;
318 table[i].cxx_info = (tmp >> 8) & 0x1;
319 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
320 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
321 table[i].reserved1 = (tmp >> 5) & 0x1;
322 table[i].Save_SP = (tmp >> 4) & 0x1;
323 table[i].Save_RP = (tmp >> 3) & 0x1;
324 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
325 table[i].save_r19 = (tmp >> 1) & 0x1;
326 table[i].Cleanup_defined = tmp & 0x1;
327 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
328 buf += 4;
329 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
330 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
331 table[i].Large_frame = (tmp >> 29) & 0x1;
332 table[i].alloca_frame = (tmp >> 28) & 0x1;
333 table[i].reserved2 = (tmp >> 27) & 0x1;
334 table[i].Total_frame_size = tmp & 0x7ffffff;
335
336 /* Stub unwinds are handled elsewhere. */
337 table[i].stub_unwind.stub_type = 0;
338 table[i].stub_unwind.padding = 0;
339 }
340 }
341 }
342
343 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
344 the object file. This info is used mainly by find_unwind_entry() to find
345 out the stack frame size and frame pointer used by procedures. We put
346 everything on the psymbol obstack in the objfile so that it automatically
347 gets freed when the objfile is destroyed. */
348
349 static void
350 read_unwind_info (struct objfile *objfile)
351 {
352 asection *unwind_sec, *stub_unwind_sec;
353 size_t unwind_size, stub_unwind_size, total_size;
354 unsigned index, unwind_entries;
355 unsigned stub_entries, total_entries;
356 CORE_ADDR text_offset;
357 struct hppa_unwind_info *ui;
358 struct hppa_objfile_private *obj_private;
359
360 text_offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
361 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
362 sizeof (struct hppa_unwind_info));
363
364 ui->table = NULL;
365 ui->cache = NULL;
366 ui->last = -1;
367
368 /* For reasons unknown the HP PA64 tools generate multiple unwinder
369 sections in a single executable. So we just iterate over every
370 section in the BFD looking for unwinder sections intead of trying
371 to do a lookup with bfd_get_section_by_name.
372
373 First determine the total size of the unwind tables so that we
374 can allocate memory in a nice big hunk. */
375 total_entries = 0;
376 for (unwind_sec = objfile->obfd->sections;
377 unwind_sec;
378 unwind_sec = unwind_sec->next)
379 {
380 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
381 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
382 {
383 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
384 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
385
386 total_entries += unwind_entries;
387 }
388 }
389
390 /* Now compute the size of the stub unwinds. Note the ELF tools do not
391 use stub unwinds at the current time. */
392 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
393
394 if (stub_unwind_sec)
395 {
396 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
397 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
398 }
399 else
400 {
401 stub_unwind_size = 0;
402 stub_entries = 0;
403 }
404
405 /* Compute total number of unwind entries and their total size. */
406 total_entries += stub_entries;
407 total_size = total_entries * sizeof (struct unwind_table_entry);
408
409 /* Allocate memory for the unwind table. */
410 ui->table = (struct unwind_table_entry *)
411 obstack_alloc (&objfile->objfile_obstack, total_size);
412 ui->last = total_entries - 1;
413
414 /* Now read in each unwind section and internalize the standard unwind
415 entries. */
416 index = 0;
417 for (unwind_sec = objfile->obfd->sections;
418 unwind_sec;
419 unwind_sec = unwind_sec->next)
420 {
421 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
422 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
423 {
424 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
425 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
426
427 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
428 unwind_entries, unwind_size, text_offset);
429 index += unwind_entries;
430 }
431 }
432
433 /* Now read in and internalize the stub unwind entries. */
434 if (stub_unwind_size > 0)
435 {
436 unsigned int i;
437 char *buf = (char *) alloca (stub_unwind_size);
438
439 /* Read in the stub unwind entries. */
440 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
441 0, stub_unwind_size);
442
443 /* Now convert them into regular unwind entries. */
444 for (i = 0; i < stub_entries; i++, index++)
445 {
446 /* Clear out the next unwind entry. */
447 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
448
449 /* Convert offset & size into region_start and region_end.
450 Stuff away the stub type into "reserved" fields. */
451 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
452 (bfd_byte *) buf);
453 ui->table[index].region_start += text_offset;
454 buf += 4;
455 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
456 (bfd_byte *) buf);
457 buf += 2;
458 ui->table[index].region_end
459 = ui->table[index].region_start + 4 *
460 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
461 buf += 2;
462 }
463
464 }
465
466 /* Unwind table needs to be kept sorted. */
467 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
468 compare_unwind_entries);
469
470 /* Keep a pointer to the unwind information. */
471 obj_private = (struct hppa_objfile_private *)
472 objfile_data (objfile, hppa_objfile_priv_data);
473 if (obj_private == NULL)
474 obj_private = hppa_init_objfile_priv_data (objfile);
475
476 obj_private->unwind_info = ui;
477 }
478
479 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
480 of the objfiles seeking the unwind table entry for this PC. Each objfile
481 contains a sorted list of struct unwind_table_entry. Since we do a binary
482 search of the unwind tables, we depend upon them to be sorted. */
483
484 struct unwind_table_entry *
485 find_unwind_entry (CORE_ADDR pc)
486 {
487 int first, middle, last;
488 struct objfile *objfile;
489 struct hppa_objfile_private *priv;
490
491 if (hppa_debug)
492 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry %s -> ",
493 hex_string (pc));
494
495 /* A function at address 0? Not in HP-UX! */
496 if (pc == (CORE_ADDR) 0)
497 {
498 if (hppa_debug)
499 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
500 return NULL;
501 }
502
503 ALL_OBJFILES (objfile)
504 {
505 struct hppa_unwind_info *ui;
506 ui = NULL;
507 priv = ((struct hppa_objfile_private *)
508 objfile_data (objfile, hppa_objfile_priv_data));
509 if (priv)
510 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
511
512 if (!ui)
513 {
514 read_unwind_info (objfile);
515 priv = ((struct hppa_objfile_private *)
516 objfile_data (objfile, hppa_objfile_priv_data));
517 if (priv == NULL)
518 error (_("Internal error reading unwind information."));
519 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
520 }
521
522 /* First, check the cache. */
523
524 if (ui->cache
525 && pc >= ui->cache->region_start
526 && pc <= ui->cache->region_end)
527 {
528 if (hppa_debug)
529 fprintf_unfiltered (gdb_stdlog, "%s (cached) }\n",
530 hex_string ((uintptr_t) ui->cache));
531 return ui->cache;
532 }
533
534 /* Not in the cache, do a binary search. */
535
536 first = 0;
537 last = ui->last;
538
539 while (first <= last)
540 {
541 middle = (first + last) / 2;
542 if (pc >= ui->table[middle].region_start
543 && pc <= ui->table[middle].region_end)
544 {
545 ui->cache = &ui->table[middle];
546 if (hppa_debug)
547 fprintf_unfiltered (gdb_stdlog, "%s }\n",
548 hex_string ((uintptr_t) ui->cache));
549 return &ui->table[middle];
550 }
551
552 if (pc < ui->table[middle].region_start)
553 last = middle - 1;
554 else
555 first = middle + 1;
556 }
557 } /* ALL_OBJFILES() */
558
559 if (hppa_debug)
560 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
561
562 return NULL;
563 }
564
565 /* Implement the stack_frame_destroyed_p gdbarch method.
566
567 The epilogue is defined here as the area either on the `bv' instruction
568 itself or an instruction which destroys the function's stack frame.
569
570 We do not assume that the epilogue is at the end of a function as we can
571 also have return sequences in the middle of a function. */
572
573 static int
574 hppa_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
575 {
576 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
577 unsigned long status;
578 unsigned int inst;
579 gdb_byte buf[4];
580
581 status = target_read_memory (pc, buf, 4);
582 if (status != 0)
583 return 0;
584
585 inst = extract_unsigned_integer (buf, 4, byte_order);
586
587 /* The most common way to perform a stack adjustment ldo X(sp),sp
588 We are destroying a stack frame if the offset is negative. */
589 if ((inst & 0xffffc000) == 0x37de0000
590 && hppa_extract_14 (inst) < 0)
591 return 1;
592
593 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
594 if (((inst & 0x0fc010e0) == 0x0fc010e0
595 || (inst & 0x0fc010e0) == 0x0fc010e0)
596 && hppa_extract_14 (inst) < 0)
597 return 1;
598
599 /* bv %r0(%rp) or bv,n %r0(%rp) */
600 if (inst == 0xe840c000 || inst == 0xe840c002)
601 return 1;
602
603 return 0;
604 }
605
606 static const unsigned char *
607 hppa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
608 {
609 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
610 (*len) = sizeof (breakpoint);
611 return breakpoint;
612 }
613
614 /* Return the name of a register. */
615
616 static const char *
617 hppa32_register_name (struct gdbarch *gdbarch, int i)
618 {
619 static char *names[] = {
620 "flags", "r1", "rp", "r3",
621 "r4", "r5", "r6", "r7",
622 "r8", "r9", "r10", "r11",
623 "r12", "r13", "r14", "r15",
624 "r16", "r17", "r18", "r19",
625 "r20", "r21", "r22", "r23",
626 "r24", "r25", "r26", "dp",
627 "ret0", "ret1", "sp", "r31",
628 "sar", "pcoqh", "pcsqh", "pcoqt",
629 "pcsqt", "eiem", "iir", "isr",
630 "ior", "ipsw", "goto", "sr4",
631 "sr0", "sr1", "sr2", "sr3",
632 "sr5", "sr6", "sr7", "cr0",
633 "cr8", "cr9", "ccr", "cr12",
634 "cr13", "cr24", "cr25", "cr26",
635 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
636 "fpsr", "fpe1", "fpe2", "fpe3",
637 "fpe4", "fpe5", "fpe6", "fpe7",
638 "fr4", "fr4R", "fr5", "fr5R",
639 "fr6", "fr6R", "fr7", "fr7R",
640 "fr8", "fr8R", "fr9", "fr9R",
641 "fr10", "fr10R", "fr11", "fr11R",
642 "fr12", "fr12R", "fr13", "fr13R",
643 "fr14", "fr14R", "fr15", "fr15R",
644 "fr16", "fr16R", "fr17", "fr17R",
645 "fr18", "fr18R", "fr19", "fr19R",
646 "fr20", "fr20R", "fr21", "fr21R",
647 "fr22", "fr22R", "fr23", "fr23R",
648 "fr24", "fr24R", "fr25", "fr25R",
649 "fr26", "fr26R", "fr27", "fr27R",
650 "fr28", "fr28R", "fr29", "fr29R",
651 "fr30", "fr30R", "fr31", "fr31R"
652 };
653 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
654 return NULL;
655 else
656 return names[i];
657 }
658
659 static const char *
660 hppa64_register_name (struct gdbarch *gdbarch, int i)
661 {
662 static char *names[] = {
663 "flags", "r1", "rp", "r3",
664 "r4", "r5", "r6", "r7",
665 "r8", "r9", "r10", "r11",
666 "r12", "r13", "r14", "r15",
667 "r16", "r17", "r18", "r19",
668 "r20", "r21", "r22", "r23",
669 "r24", "r25", "r26", "dp",
670 "ret0", "ret1", "sp", "r31",
671 "sar", "pcoqh", "pcsqh", "pcoqt",
672 "pcsqt", "eiem", "iir", "isr",
673 "ior", "ipsw", "goto", "sr4",
674 "sr0", "sr1", "sr2", "sr3",
675 "sr5", "sr6", "sr7", "cr0",
676 "cr8", "cr9", "ccr", "cr12",
677 "cr13", "cr24", "cr25", "cr26",
678 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
679 "fpsr", "fpe1", "fpe2", "fpe3",
680 "fr4", "fr5", "fr6", "fr7",
681 "fr8", "fr9", "fr10", "fr11",
682 "fr12", "fr13", "fr14", "fr15",
683 "fr16", "fr17", "fr18", "fr19",
684 "fr20", "fr21", "fr22", "fr23",
685 "fr24", "fr25", "fr26", "fr27",
686 "fr28", "fr29", "fr30", "fr31"
687 };
688 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
689 return NULL;
690 else
691 return names[i];
692 }
693
694 /* Map dwarf DBX register numbers to GDB register numbers. */
695 static int
696 hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
697 {
698 /* The general registers and the sar are the same in both sets. */
699 if (reg >= 0 && reg <= 32)
700 return reg;
701
702 /* fr4-fr31 are mapped from 72 in steps of 2. */
703 if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1))
704 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
705
706 return -1;
707 }
708
709 /* This function pushes a stack frame with arguments as part of the
710 inferior function calling mechanism.
711
712 This is the version of the function for the 32-bit PA machines, in
713 which later arguments appear at lower addresses. (The stack always
714 grows towards higher addresses.)
715
716 We simply allocate the appropriate amount of stack space and put
717 arguments into their proper slots. */
718
719 static CORE_ADDR
720 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
721 struct regcache *regcache, CORE_ADDR bp_addr,
722 int nargs, struct value **args, CORE_ADDR sp,
723 int struct_return, CORE_ADDR struct_addr)
724 {
725 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
726
727 /* Stack base address at which any pass-by-reference parameters are
728 stored. */
729 CORE_ADDR struct_end = 0;
730 /* Stack base address at which the first parameter is stored. */
731 CORE_ADDR param_end = 0;
732
733 /* The inner most end of the stack after all the parameters have
734 been pushed. */
735 CORE_ADDR new_sp = 0;
736
737 /* Two passes. First pass computes the location of everything,
738 second pass writes the bytes out. */
739 int write_pass;
740
741 /* Global pointer (r19) of the function we are trying to call. */
742 CORE_ADDR gp;
743
744 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
745
746 for (write_pass = 0; write_pass < 2; write_pass++)
747 {
748 CORE_ADDR struct_ptr = 0;
749 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
750 struct_ptr is adjusted for each argument below, so the first
751 argument will end up at sp-36. */
752 CORE_ADDR param_ptr = 32;
753 int i;
754 int small_struct = 0;
755
756 for (i = 0; i < nargs; i++)
757 {
758 struct value *arg = args[i];
759 struct type *type = check_typedef (value_type (arg));
760 /* The corresponding parameter that is pushed onto the
761 stack, and [possibly] passed in a register. */
762 gdb_byte param_val[8];
763 int param_len;
764 memset (param_val, 0, sizeof param_val);
765 if (TYPE_LENGTH (type) > 8)
766 {
767 /* Large parameter, pass by reference. Store the value
768 in "struct" area and then pass its address. */
769 param_len = 4;
770 struct_ptr += align_up (TYPE_LENGTH (type), 8);
771 if (write_pass)
772 write_memory (struct_end - struct_ptr, value_contents (arg),
773 TYPE_LENGTH (type));
774 store_unsigned_integer (param_val, 4, byte_order,
775 struct_end - struct_ptr);
776 }
777 else if (TYPE_CODE (type) == TYPE_CODE_INT
778 || TYPE_CODE (type) == TYPE_CODE_ENUM)
779 {
780 /* Integer value store, right aligned. "unpack_long"
781 takes care of any sign-extension problems. */
782 param_len = align_up (TYPE_LENGTH (type), 4);
783 store_unsigned_integer (param_val, param_len, byte_order,
784 unpack_long (type,
785 value_contents (arg)));
786 }
787 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
788 {
789 /* Floating point value store, right aligned. */
790 param_len = align_up (TYPE_LENGTH (type), 4);
791 memcpy (param_val, value_contents (arg), param_len);
792 }
793 else
794 {
795 param_len = align_up (TYPE_LENGTH (type), 4);
796
797 /* Small struct value are stored right-aligned. */
798 memcpy (param_val + param_len - TYPE_LENGTH (type),
799 value_contents (arg), TYPE_LENGTH (type));
800
801 /* Structures of size 5, 6 and 7 bytes are special in that
802 the higher-ordered word is stored in the lower-ordered
803 argument, and even though it is a 8-byte quantity the
804 registers need not be 8-byte aligned. */
805 if (param_len > 4 && param_len < 8)
806 small_struct = 1;
807 }
808
809 param_ptr += param_len;
810 if (param_len == 8 && !small_struct)
811 param_ptr = align_up (param_ptr, 8);
812
813 /* First 4 non-FP arguments are passed in gr26-gr23.
814 First 4 32-bit FP arguments are passed in fr4L-fr7L.
815 First 2 64-bit FP arguments are passed in fr5 and fr7.
816
817 The rest go on the stack, starting at sp-36, towards lower
818 addresses. 8-byte arguments must be aligned to a 8-byte
819 stack boundary. */
820 if (write_pass)
821 {
822 write_memory (param_end - param_ptr, param_val, param_len);
823
824 /* There are some cases when we don't know the type
825 expected by the callee (e.g. for variadic functions), so
826 pass the parameters in both general and fp regs. */
827 if (param_ptr <= 48)
828 {
829 int grreg = 26 - (param_ptr - 36) / 4;
830 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
831 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
832
833 regcache_cooked_write (regcache, grreg, param_val);
834 regcache_cooked_write (regcache, fpLreg, param_val);
835
836 if (param_len > 4)
837 {
838 regcache_cooked_write (regcache, grreg + 1,
839 param_val + 4);
840
841 regcache_cooked_write (regcache, fpreg, param_val);
842 regcache_cooked_write (regcache, fpreg + 1,
843 param_val + 4);
844 }
845 }
846 }
847 }
848
849 /* Update the various stack pointers. */
850 if (!write_pass)
851 {
852 struct_end = sp + align_up (struct_ptr, 64);
853 /* PARAM_PTR already accounts for all the arguments passed
854 by the user. However, the ABI mandates minimum stack
855 space allocations for outgoing arguments. The ABI also
856 mandates minimum stack alignments which we must
857 preserve. */
858 param_end = struct_end + align_up (param_ptr, 64);
859 }
860 }
861
862 /* If a structure has to be returned, set up register 28 to hold its
863 address. */
864 if (struct_return)
865 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
866
867 gp = tdep->find_global_pointer (gdbarch, function);
868
869 if (gp != 0)
870 regcache_cooked_write_unsigned (regcache, 19, gp);
871
872 /* Set the return address. */
873 if (!gdbarch_push_dummy_code_p (gdbarch))
874 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
875
876 /* Update the Stack Pointer. */
877 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
878
879 return param_end;
880 }
881
882 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit
883 Runtime Architecture for PA-RISC 2.0", which is distributed as part
884 as of the HP-UX Software Transition Kit (STK). This implementation
885 is based on version 3.3, dated October 6, 1997. */
886
887 /* Check whether TYPE is an "Integral or Pointer Scalar Type". */
888
889 static int
890 hppa64_integral_or_pointer_p (const struct type *type)
891 {
892 switch (TYPE_CODE (type))
893 {
894 case TYPE_CODE_INT:
895 case TYPE_CODE_BOOL:
896 case TYPE_CODE_CHAR:
897 case TYPE_CODE_ENUM:
898 case TYPE_CODE_RANGE:
899 {
900 int len = TYPE_LENGTH (type);
901 return (len == 1 || len == 2 || len == 4 || len == 8);
902 }
903 case TYPE_CODE_PTR:
904 case TYPE_CODE_REF:
905 return (TYPE_LENGTH (type) == 8);
906 default:
907 break;
908 }
909
910 return 0;
911 }
912
913 /* Check whether TYPE is a "Floating Scalar Type". */
914
915 static int
916 hppa64_floating_p (const struct type *type)
917 {
918 switch (TYPE_CODE (type))
919 {
920 case TYPE_CODE_FLT:
921 {
922 int len = TYPE_LENGTH (type);
923 return (len == 4 || len == 8 || len == 16);
924 }
925 default:
926 break;
927 }
928
929 return 0;
930 }
931
932 /* If CODE points to a function entry address, try to look up the corresponding
933 function descriptor and return its address instead. If CODE is not a
934 function entry address, then just return it unchanged. */
935 static CORE_ADDR
936 hppa64_convert_code_addr_to_fptr (struct gdbarch *gdbarch, CORE_ADDR code)
937 {
938 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
939 struct obj_section *sec, *opd;
940
941 sec = find_pc_section (code);
942
943 if (!sec)
944 return code;
945
946 /* If CODE is in a data section, assume it's already a fptr. */
947 if (!(sec->the_bfd_section->flags & SEC_CODE))
948 return code;
949
950 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
951 {
952 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
953 break;
954 }
955
956 if (opd < sec->objfile->sections_end)
957 {
958 CORE_ADDR addr;
959
960 for (addr = obj_section_addr (opd);
961 addr < obj_section_endaddr (opd);
962 addr += 2 * 8)
963 {
964 ULONGEST opdaddr;
965 gdb_byte tmp[8];
966
967 if (target_read_memory (addr, tmp, sizeof (tmp)))
968 break;
969 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp), byte_order);
970
971 if (opdaddr == code)
972 return addr - 16;
973 }
974 }
975
976 return code;
977 }
978
979 static CORE_ADDR
980 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
981 struct regcache *regcache, CORE_ADDR bp_addr,
982 int nargs, struct value **args, CORE_ADDR sp,
983 int struct_return, CORE_ADDR struct_addr)
984 {
985 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
986 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
987 int i, offset = 0;
988 CORE_ADDR gp;
989
990 /* "The outgoing parameter area [...] must be aligned at a 16-byte
991 boundary." */
992 sp = align_up (sp, 16);
993
994 for (i = 0; i < nargs; i++)
995 {
996 struct value *arg = args[i];
997 struct type *type = value_type (arg);
998 int len = TYPE_LENGTH (type);
999 const bfd_byte *valbuf;
1000 bfd_byte fptrbuf[8];
1001 int regnum;
1002
1003 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
1004 offset = align_up (offset, 8);
1005
1006 if (hppa64_integral_or_pointer_p (type))
1007 {
1008 /* "Integral scalar parameters smaller than 64 bits are
1009 padded on the left (i.e., the value is in the
1010 least-significant bits of the 64-bit storage unit, and
1011 the high-order bits are undefined)." Therefore we can
1012 safely sign-extend them. */
1013 if (len < 8)
1014 {
1015 arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg);
1016 len = 8;
1017 }
1018 }
1019 else if (hppa64_floating_p (type))
1020 {
1021 if (len > 8)
1022 {
1023 /* "Quad-precision (128-bit) floating-point scalar
1024 parameters are aligned on a 16-byte boundary." */
1025 offset = align_up (offset, 16);
1026
1027 /* "Double-extended- and quad-precision floating-point
1028 parameters within the first 64 bytes of the parameter
1029 list are always passed in general registers." */
1030 }
1031 else
1032 {
1033 if (len == 4)
1034 {
1035 /* "Single-precision (32-bit) floating-point scalar
1036 parameters are padded on the left with 32 bits of
1037 garbage (i.e., the floating-point value is in the
1038 least-significant 32 bits of a 64-bit storage
1039 unit)." */
1040 offset += 4;
1041 }
1042
1043 /* "Single- and double-precision floating-point
1044 parameters in this area are passed according to the
1045 available formal parameter information in a function
1046 prototype. [...] If no prototype is in scope,
1047 floating-point parameters must be passed both in the
1048 corresponding general registers and in the
1049 corresponding floating-point registers." */
1050 regnum = HPPA64_FP4_REGNUM + offset / 8;
1051
1052 if (regnum < HPPA64_FP4_REGNUM + 8)
1053 {
1054 /* "Single-precision floating-point parameters, when
1055 passed in floating-point registers, are passed in
1056 the right halves of the floating point registers;
1057 the left halves are unused." */
1058 regcache_cooked_write_part (regcache, regnum, offset % 8,
1059 len, value_contents (arg));
1060 }
1061 }
1062 }
1063 else
1064 {
1065 if (len > 8)
1066 {
1067 /* "Aggregates larger than 8 bytes are aligned on a
1068 16-byte boundary, possibly leaving an unused argument
1069 slot, which is filled with garbage. If necessary,
1070 they are padded on the right (with garbage), to a
1071 multiple of 8 bytes." */
1072 offset = align_up (offset, 16);
1073 }
1074 }
1075
1076 /* If we are passing a function pointer, make sure we pass a function
1077 descriptor instead of the function entry address. */
1078 if (TYPE_CODE (type) == TYPE_CODE_PTR
1079 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1080 {
1081 ULONGEST codeptr, fptr;
1082
1083 codeptr = unpack_long (type, value_contents (arg));
1084 fptr = hppa64_convert_code_addr_to_fptr (gdbarch, codeptr);
1085 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), byte_order,
1086 fptr);
1087 valbuf = fptrbuf;
1088 }
1089 else
1090 {
1091 valbuf = value_contents (arg);
1092 }
1093
1094 /* Always store the argument in memory. */
1095 write_memory (sp + offset, valbuf, len);
1096
1097 regnum = HPPA_ARG0_REGNUM - offset / 8;
1098 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1099 {
1100 regcache_cooked_write_part (regcache, regnum,
1101 offset % 8, min (len, 8), valbuf);
1102 offset += min (len, 8);
1103 valbuf += min (len, 8);
1104 len -= min (len, 8);
1105 regnum--;
1106 }
1107
1108 offset += len;
1109 }
1110
1111 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1112 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1113
1114 /* Allocate the outgoing parameter area. Make sure the outgoing
1115 parameter area is multiple of 16 bytes in length. */
1116 sp += max (align_up (offset, 16), 64);
1117
1118 /* Allocate 32-bytes of scratch space. The documentation doesn't
1119 mention this, but it seems to be needed. */
1120 sp += 32;
1121
1122 /* Allocate the frame marker area. */
1123 sp += 16;
1124
1125 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1126 its address. */
1127 if (struct_return)
1128 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1129
1130 /* Set up GR27 (%dp) to hold the global pointer (gp). */
1131 gp = tdep->find_global_pointer (gdbarch, function);
1132 if (gp != 0)
1133 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1134
1135 /* Set up GR2 (%rp) to hold the return pointer (rp). */
1136 if (!gdbarch_push_dummy_code_p (gdbarch))
1137 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1138
1139 /* Set up GR30 to hold the stack pointer (sp). */
1140 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1141
1142 return sp;
1143 }
1144 \f
1145
1146 /* Handle 32/64-bit struct return conventions. */
1147
1148 static enum return_value_convention
1149 hppa32_return_value (struct gdbarch *gdbarch, struct value *function,
1150 struct type *type, struct regcache *regcache,
1151 gdb_byte *readbuf, const gdb_byte *writebuf)
1152 {
1153 if (TYPE_LENGTH (type) <= 2 * 4)
1154 {
1155 /* The value always lives in the right hand end of the register
1156 (or register pair)? */
1157 int b;
1158 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1159 int part = TYPE_LENGTH (type) % 4;
1160 /* The left hand register contains only part of the value,
1161 transfer that first so that the rest can be xfered as entire
1162 4-byte registers. */
1163 if (part > 0)
1164 {
1165 if (readbuf != NULL)
1166 regcache_cooked_read_part (regcache, reg, 4 - part,
1167 part, readbuf);
1168 if (writebuf != NULL)
1169 regcache_cooked_write_part (regcache, reg, 4 - part,
1170 part, writebuf);
1171 reg++;
1172 }
1173 /* Now transfer the remaining register values. */
1174 for (b = part; b < TYPE_LENGTH (type); b += 4)
1175 {
1176 if (readbuf != NULL)
1177 regcache_cooked_read (regcache, reg, readbuf + b);
1178 if (writebuf != NULL)
1179 regcache_cooked_write (regcache, reg, writebuf + b);
1180 reg++;
1181 }
1182 return RETURN_VALUE_REGISTER_CONVENTION;
1183 }
1184 else
1185 return RETURN_VALUE_STRUCT_CONVENTION;
1186 }
1187
1188 static enum return_value_convention
1189 hppa64_return_value (struct gdbarch *gdbarch, struct value *function,
1190 struct type *type, struct regcache *regcache,
1191 gdb_byte *readbuf, const gdb_byte *writebuf)
1192 {
1193 int len = TYPE_LENGTH (type);
1194 int regnum, offset;
1195
1196 if (len > 16)
1197 {
1198 /* All return values larget than 128 bits must be aggregate
1199 return values. */
1200 gdb_assert (!hppa64_integral_or_pointer_p (type));
1201 gdb_assert (!hppa64_floating_p (type));
1202
1203 /* "Aggregate return values larger than 128 bits are returned in
1204 a buffer allocated by the caller. The address of the buffer
1205 must be passed in GR 28." */
1206 return RETURN_VALUE_STRUCT_CONVENTION;
1207 }
1208
1209 if (hppa64_integral_or_pointer_p (type))
1210 {
1211 /* "Integral return values are returned in GR 28. Values
1212 smaller than 64 bits are padded on the left (with garbage)." */
1213 regnum = HPPA_RET0_REGNUM;
1214 offset = 8 - len;
1215 }
1216 else if (hppa64_floating_p (type))
1217 {
1218 if (len > 8)
1219 {
1220 /* "Double-extended- and quad-precision floating-point
1221 values are returned in GRs 28 and 29. The sign,
1222 exponent, and most-significant bits of the mantissa are
1223 returned in GR 28; the least-significant bits of the
1224 mantissa are passed in GR 29. For double-extended
1225 precision values, GR 29 is padded on the right with 48
1226 bits of garbage." */
1227 regnum = HPPA_RET0_REGNUM;
1228 offset = 0;
1229 }
1230 else
1231 {
1232 /* "Single-precision and double-precision floating-point
1233 return values are returned in FR 4R (single precision) or
1234 FR 4 (double-precision)." */
1235 regnum = HPPA64_FP4_REGNUM;
1236 offset = 8 - len;
1237 }
1238 }
1239 else
1240 {
1241 /* "Aggregate return values up to 64 bits in size are returned
1242 in GR 28. Aggregates smaller than 64 bits are left aligned
1243 in the register; the pad bits on the right are undefined."
1244
1245 "Aggregate return values between 65 and 128 bits are returned
1246 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1247 the remaining bits are placed, left aligned, in GR 29. The
1248 pad bits on the right of GR 29 (if any) are undefined." */
1249 regnum = HPPA_RET0_REGNUM;
1250 offset = 0;
1251 }
1252
1253 if (readbuf)
1254 {
1255 while (len > 0)
1256 {
1257 regcache_cooked_read_part (regcache, regnum, offset,
1258 min (len, 8), readbuf);
1259 readbuf += min (len, 8);
1260 len -= min (len, 8);
1261 regnum++;
1262 }
1263 }
1264
1265 if (writebuf)
1266 {
1267 while (len > 0)
1268 {
1269 regcache_cooked_write_part (regcache, regnum, offset,
1270 min (len, 8), writebuf);
1271 writebuf += min (len, 8);
1272 len -= min (len, 8);
1273 regnum++;
1274 }
1275 }
1276
1277 return RETURN_VALUE_REGISTER_CONVENTION;
1278 }
1279 \f
1280
1281 static CORE_ADDR
1282 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1283 struct target_ops *targ)
1284 {
1285 if (addr & 2)
1286 {
1287 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
1288 CORE_ADDR plabel = addr & ~3;
1289 return read_memory_typed_address (plabel, func_ptr_type);
1290 }
1291
1292 return addr;
1293 }
1294
1295 static CORE_ADDR
1296 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1297 {
1298 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1299 and not _bit_)! */
1300 return align_up (addr, 64);
1301 }
1302
1303 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1304
1305 static CORE_ADDR
1306 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1307 {
1308 /* Just always 16-byte align. */
1309 return align_up (addr, 16);
1310 }
1311
1312 CORE_ADDR
1313 hppa_read_pc (struct regcache *regcache)
1314 {
1315 ULONGEST ipsw;
1316 ULONGEST pc;
1317
1318 regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw);
1319 regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc);
1320
1321 /* If the current instruction is nullified, then we are effectively
1322 still executing the previous instruction. Pretend we are still
1323 there. This is needed when single stepping; if the nullified
1324 instruction is on a different line, we don't want GDB to think
1325 we've stepped onto that line. */
1326 if (ipsw & 0x00200000)
1327 pc -= 4;
1328
1329 return pc & ~0x3;
1330 }
1331
1332 void
1333 hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
1334 {
1335 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1336 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
1337 }
1338
1339 /* For the given instruction (INST), return any adjustment it makes
1340 to the stack pointer or zero for no adjustment.
1341
1342 This only handles instructions commonly found in prologues. */
1343
1344 static int
1345 prologue_inst_adjust_sp (unsigned long inst)
1346 {
1347 /* This must persist across calls. */
1348 static int save_high21;
1349
1350 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1351 if ((inst & 0xffffc000) == 0x37de0000)
1352 return hppa_extract_14 (inst);
1353
1354 /* stwm X,D(sp) */
1355 if ((inst & 0xffe00000) == 0x6fc00000)
1356 return hppa_extract_14 (inst);
1357
1358 /* std,ma X,D(sp) */
1359 if ((inst & 0xffe00008) == 0x73c00008)
1360 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1361
1362 /* addil high21,%r30; ldo low11,(%r1),%r30)
1363 save high bits in save_high21 for later use. */
1364 if ((inst & 0xffe00000) == 0x2bc00000)
1365 {
1366 save_high21 = hppa_extract_21 (inst);
1367 return 0;
1368 }
1369
1370 if ((inst & 0xffff0000) == 0x343e0000)
1371 return save_high21 + hppa_extract_14 (inst);
1372
1373 /* fstws as used by the HP compilers. */
1374 if ((inst & 0xffffffe0) == 0x2fd01220)
1375 return hppa_extract_5_load (inst);
1376
1377 /* No adjustment. */
1378 return 0;
1379 }
1380
1381 /* Return nonzero if INST is a branch of some kind, else return zero. */
1382
1383 static int
1384 is_branch (unsigned long inst)
1385 {
1386 switch (inst >> 26)
1387 {
1388 case 0x20:
1389 case 0x21:
1390 case 0x22:
1391 case 0x23:
1392 case 0x27:
1393 case 0x28:
1394 case 0x29:
1395 case 0x2a:
1396 case 0x2b:
1397 case 0x2f:
1398 case 0x30:
1399 case 0x31:
1400 case 0x32:
1401 case 0x33:
1402 case 0x38:
1403 case 0x39:
1404 case 0x3a:
1405 case 0x3b:
1406 return 1;
1407
1408 default:
1409 return 0;
1410 }
1411 }
1412
1413 /* Return the register number for a GR which is saved by INST or
1414 zero if INST does not save a GR.
1415
1416 Referenced from:
1417
1418 parisc 1.1:
1419 https://parisc.wiki.kernel.org/images-parisc/6/68/Pa11_acd.pdf
1420
1421 parisc 2.0:
1422 https://parisc.wiki.kernel.org/images-parisc/7/73/Parisc2.0.pdf
1423
1424 According to Table 6-5 of Chapter 6 (Memory Reference Instructions)
1425 on page 106 in parisc 2.0, all instructions for storing values from
1426 the general registers are:
1427
1428 Store: stb, sth, stw, std (according to Chapter 7, they
1429 are only in both "inst >> 26" and "inst >> 6".
1430 Store Absolute: stwa, stda (according to Chapter 7, they are only
1431 in "inst >> 6".
1432 Store Bytes: stby, stdby (according to Chapter 7, they are
1433 only in "inst >> 6").
1434
1435 For (inst >> 26), according to Chapter 7:
1436
1437 The effective memory reference address is formed by the addition
1438 of an immediate displacement to a base value.
1439
1440 - stb: 0x18, store a byte from a general register.
1441
1442 - sth: 0x19, store a halfword from a general register.
1443
1444 - stw: 0x1a, store a word from a general register.
1445
1446 - stwm: 0x1b, store a word from a general register and perform base
1447 register modification (2.0 will still treate it as stw).
1448
1449 - std: 0x1c, store a doubleword from a general register (2.0 only).
1450
1451 - stw: 0x1f, store a word from a general register (2.0 only).
1452
1453 For (inst >> 6) when ((inst >> 26) == 0x03), according to Chapter 7:
1454
1455 The effective memory reference address is formed by the addition
1456 of an index value to a base value specified in the instruction.
1457
1458 - stb: 0x08, store a byte from a general register (1.1 calls stbs).
1459
1460 - sth: 0x09, store a halfword from a general register (1.1 calls
1461 sths).
1462
1463 - stw: 0x0a, store a word from a general register (1.1 calls stws).
1464
1465 - std: 0x0b: store a doubleword from a general register (2.0 only)
1466
1467 Implement fast byte moves (stores) to unaligned word or doubleword
1468 destination.
1469
1470 - stby: 0x0c, for unaligned word (1.1 calls stbys).
1471
1472 - stdby: 0x0d for unaligned doubleword (2.0 only).
1473
1474 Store a word or doubleword using an absolute memory address formed
1475 using short or long displacement or indexed
1476
1477 - stwa: 0x0e, store a word from a general register to an absolute
1478 address (1.0 calls stwas).
1479
1480 - stda: 0x0f, store a doubleword from a general register to an
1481 absolute address (2.0 only). */
1482
1483 static int
1484 inst_saves_gr (unsigned long inst)
1485 {
1486 switch ((inst >> 26) & 0x0f)
1487 {
1488 case 0x03:
1489 switch ((inst >> 6) & 0x0f)
1490 {
1491 case 0x08:
1492 case 0x09:
1493 case 0x0a:
1494 case 0x0b:
1495 case 0x0c:
1496 case 0x0d:
1497 case 0x0e:
1498 case 0x0f:
1499 return hppa_extract_5R_store (inst);
1500 default:
1501 return 0;
1502 }
1503 case 0x18:
1504 case 0x19:
1505 case 0x1a:
1506 case 0x1b:
1507 case 0x1c:
1508 /* no 0x1d or 0x1e -- according to parisc 2.0 document */
1509 case 0x1f:
1510 return hppa_extract_5R_store (inst);
1511 default:
1512 return 0;
1513 }
1514 }
1515
1516 /* Return the register number for a FR which is saved by INST or
1517 zero it INST does not save a FR.
1518
1519 Note we only care about full 64bit register stores (that's the only
1520 kind of stores the prologue will use).
1521
1522 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1523
1524 static int
1525 inst_saves_fr (unsigned long inst)
1526 {
1527 /* Is this an FSTD? */
1528 if ((inst & 0xfc00dfc0) == 0x2c001200)
1529 return hppa_extract_5r_store (inst);
1530 if ((inst & 0xfc000002) == 0x70000002)
1531 return hppa_extract_5R_store (inst);
1532 /* Is this an FSTW? */
1533 if ((inst & 0xfc00df80) == 0x24001200)
1534 return hppa_extract_5r_store (inst);
1535 if ((inst & 0xfc000002) == 0x7c000000)
1536 return hppa_extract_5R_store (inst);
1537 return 0;
1538 }
1539
1540 /* Advance PC across any function entry prologue instructions
1541 to reach some "real" code.
1542
1543 Use information in the unwind table to determine what exactly should
1544 be in the prologue. */
1545
1546
1547 static CORE_ADDR
1548 skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
1549 int stop_before_branch)
1550 {
1551 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1552 gdb_byte buf[4];
1553 CORE_ADDR orig_pc = pc;
1554 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1555 unsigned long args_stored, status, i, restart_gr, restart_fr;
1556 struct unwind_table_entry *u;
1557 int final_iteration;
1558
1559 restart_gr = 0;
1560 restart_fr = 0;
1561
1562 restart:
1563 u = find_unwind_entry (pc);
1564 if (!u)
1565 return pc;
1566
1567 /* If we are not at the beginning of a function, then return now. */
1568 if ((pc & ~0x3) != u->region_start)
1569 return pc;
1570
1571 /* This is how much of a frame adjustment we need to account for. */
1572 stack_remaining = u->Total_frame_size << 3;
1573
1574 /* Magic register saves we want to know about. */
1575 save_rp = u->Save_RP;
1576 save_sp = u->Save_SP;
1577
1578 /* An indication that args may be stored into the stack. Unfortunately
1579 the HPUX compilers tend to set this in cases where no args were
1580 stored too!. */
1581 args_stored = 1;
1582
1583 /* Turn the Entry_GR field into a bitmask. */
1584 save_gr = 0;
1585 for (i = 3; i < u->Entry_GR + 3; i++)
1586 {
1587 /* Frame pointer gets saved into a special location. */
1588 if (u->Save_SP && i == HPPA_FP_REGNUM)
1589 continue;
1590
1591 save_gr |= (1 << i);
1592 }
1593 save_gr &= ~restart_gr;
1594
1595 /* Turn the Entry_FR field into a bitmask too. */
1596 save_fr = 0;
1597 for (i = 12; i < u->Entry_FR + 12; i++)
1598 save_fr |= (1 << i);
1599 save_fr &= ~restart_fr;
1600
1601 final_iteration = 0;
1602
1603 /* Loop until we find everything of interest or hit a branch.
1604
1605 For unoptimized GCC code and for any HP CC code this will never ever
1606 examine any user instructions.
1607
1608 For optimzied GCC code we're faced with problems. GCC will schedule
1609 its prologue and make prologue instructions available for delay slot
1610 filling. The end result is user code gets mixed in with the prologue
1611 and a prologue instruction may be in the delay slot of the first branch
1612 or call.
1613
1614 Some unexpected things are expected with debugging optimized code, so
1615 we allow this routine to walk past user instructions in optimized
1616 GCC code. */
1617 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1618 || args_stored)
1619 {
1620 unsigned int reg_num;
1621 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1622 unsigned long old_save_rp, old_save_sp, next_inst;
1623
1624 /* Save copies of all the triggers so we can compare them later
1625 (only for HPC). */
1626 old_save_gr = save_gr;
1627 old_save_fr = save_fr;
1628 old_save_rp = save_rp;
1629 old_save_sp = save_sp;
1630 old_stack_remaining = stack_remaining;
1631
1632 status = target_read_memory (pc, buf, 4);
1633 inst = extract_unsigned_integer (buf, 4, byte_order);
1634
1635 /* Yow! */
1636 if (status != 0)
1637 return pc;
1638
1639 /* Note the interesting effects of this instruction. */
1640 stack_remaining -= prologue_inst_adjust_sp (inst);
1641
1642 /* There are limited ways to store the return pointer into the
1643 stack. */
1644 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
1645 save_rp = 0;
1646
1647 /* These are the only ways we save SP into the stack. At this time
1648 the HP compilers never bother to save SP into the stack. */
1649 if ((inst & 0xffffc000) == 0x6fc10000
1650 || (inst & 0xffffc00c) == 0x73c10008)
1651 save_sp = 0;
1652
1653 /* Are we loading some register with an offset from the argument
1654 pointer? */
1655 if ((inst & 0xffe00000) == 0x37a00000
1656 || (inst & 0xffffffe0) == 0x081d0240)
1657 {
1658 pc += 4;
1659 continue;
1660 }
1661
1662 /* Account for general and floating-point register saves. */
1663 reg_num = inst_saves_gr (inst);
1664 save_gr &= ~(1 << reg_num);
1665
1666 /* Ugh. Also account for argument stores into the stack.
1667 Unfortunately args_stored only tells us that some arguments
1668 where stored into the stack. Not how many or what kind!
1669
1670 This is a kludge as on the HP compiler sets this bit and it
1671 never does prologue scheduling. So once we see one, skip past
1672 all of them. We have similar code for the fp arg stores below.
1673
1674 FIXME. Can still die if we have a mix of GR and FR argument
1675 stores! */
1676 if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1677 && reg_num <= 26)
1678 {
1679 while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1680 && reg_num <= 26)
1681 {
1682 pc += 4;
1683 status = target_read_memory (pc, buf, 4);
1684 inst = extract_unsigned_integer (buf, 4, byte_order);
1685 if (status != 0)
1686 return pc;
1687 reg_num = inst_saves_gr (inst);
1688 }
1689 args_stored = 0;
1690 continue;
1691 }
1692
1693 reg_num = inst_saves_fr (inst);
1694 save_fr &= ~(1 << reg_num);
1695
1696 status = target_read_memory (pc + 4, buf, 4);
1697 next_inst = extract_unsigned_integer (buf, 4, byte_order);
1698
1699 /* Yow! */
1700 if (status != 0)
1701 return pc;
1702
1703 /* We've got to be read to handle the ldo before the fp register
1704 save. */
1705 if ((inst & 0xfc000000) == 0x34000000
1706 && inst_saves_fr (next_inst) >= 4
1707 && inst_saves_fr (next_inst)
1708 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1709 {
1710 /* So we drop into the code below in a reasonable state. */
1711 reg_num = inst_saves_fr (next_inst);
1712 pc -= 4;
1713 }
1714
1715 /* Ugh. Also account for argument stores into the stack.
1716 This is a kludge as on the HP compiler sets this bit and it
1717 never does prologue scheduling. So once we see one, skip past
1718 all of them. */
1719 if (reg_num >= 4
1720 && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1721 {
1722 while (reg_num >= 4
1723 && reg_num
1724 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1725 {
1726 pc += 8;
1727 status = target_read_memory (pc, buf, 4);
1728 inst = extract_unsigned_integer (buf, 4, byte_order);
1729 if (status != 0)
1730 return pc;
1731 if ((inst & 0xfc000000) != 0x34000000)
1732 break;
1733 status = target_read_memory (pc + 4, buf, 4);
1734 next_inst = extract_unsigned_integer (buf, 4, byte_order);
1735 if (status != 0)
1736 return pc;
1737 reg_num = inst_saves_fr (next_inst);
1738 }
1739 args_stored = 0;
1740 continue;
1741 }
1742
1743 /* Quit if we hit any kind of branch. This can happen if a prologue
1744 instruction is in the delay slot of the first call/branch. */
1745 if (is_branch (inst) && stop_before_branch)
1746 break;
1747
1748 /* What a crock. The HP compilers set args_stored even if no
1749 arguments were stored into the stack (boo hiss). This could
1750 cause this code to then skip a bunch of user insns (up to the
1751 first branch).
1752
1753 To combat this we try to identify when args_stored was bogusly
1754 set and clear it. We only do this when args_stored is nonzero,
1755 all other resources are accounted for, and nothing changed on
1756 this pass. */
1757 if (args_stored
1758 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1759 && old_save_gr == save_gr && old_save_fr == save_fr
1760 && old_save_rp == save_rp && old_save_sp == save_sp
1761 && old_stack_remaining == stack_remaining)
1762 break;
1763
1764 /* Bump the PC. */
1765 pc += 4;
1766
1767 /* !stop_before_branch, so also look at the insn in the delay slot
1768 of the branch. */
1769 if (final_iteration)
1770 break;
1771 if (is_branch (inst))
1772 final_iteration = 1;
1773 }
1774
1775 /* We've got a tenative location for the end of the prologue. However
1776 because of limitations in the unwind descriptor mechanism we may
1777 have went too far into user code looking for the save of a register
1778 that does not exist. So, if there registers we expected to be saved
1779 but never were, mask them out and restart.
1780
1781 This should only happen in optimized code, and should be very rare. */
1782 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1783 {
1784 pc = orig_pc;
1785 restart_gr = save_gr;
1786 restart_fr = save_fr;
1787 goto restart;
1788 }
1789
1790 return pc;
1791 }
1792
1793
1794 /* Return the address of the PC after the last prologue instruction if
1795 we can determine it from the debug symbols. Else return zero. */
1796
1797 static CORE_ADDR
1798 after_prologue (CORE_ADDR pc)
1799 {
1800 struct symtab_and_line sal;
1801 CORE_ADDR func_addr, func_end;
1802
1803 /* If we can not find the symbol in the partial symbol table, then
1804 there is no hope we can determine the function's start address
1805 with this code. */
1806 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1807 return 0;
1808
1809 /* Get the line associated with FUNC_ADDR. */
1810 sal = find_pc_line (func_addr, 0);
1811
1812 /* There are only two cases to consider. First, the end of the source line
1813 is within the function bounds. In that case we return the end of the
1814 source line. Second is the end of the source line extends beyond the
1815 bounds of the current function. We need to use the slow code to
1816 examine instructions in that case.
1817
1818 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1819 the wrong thing to do. In fact, it should be entirely possible for this
1820 function to always return zero since the slow instruction scanning code
1821 is supposed to *always* work. If it does not, then it is a bug. */
1822 if (sal.end < func_end)
1823 return sal.end;
1824 else
1825 return 0;
1826 }
1827
1828 /* To skip prologues, I use this predicate. Returns either PC itself
1829 if the code at PC does not look like a function prologue; otherwise
1830 returns an address that (if we're lucky) follows the prologue.
1831
1832 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1833 It doesn't necessarily skips all the insns in the prologue. In fact
1834 we might not want to skip all the insns because a prologue insn may
1835 appear in the delay slot of the first branch, and we don't want to
1836 skip over the branch in that case. */
1837
1838 static CORE_ADDR
1839 hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1840 {
1841 CORE_ADDR post_prologue_pc;
1842
1843 /* See if we can determine the end of the prologue via the symbol table.
1844 If so, then return either PC, or the PC after the prologue, whichever
1845 is greater. */
1846
1847 post_prologue_pc = after_prologue (pc);
1848
1849 /* If after_prologue returned a useful address, then use it. Else
1850 fall back on the instruction skipping code.
1851
1852 Some folks have claimed this causes problems because the breakpoint
1853 may be the first instruction of the prologue. If that happens, then
1854 the instruction skipping code has a bug that needs to be fixed. */
1855 if (post_prologue_pc != 0)
1856 return max (pc, post_prologue_pc);
1857 else
1858 return (skip_prologue_hard_way (gdbarch, pc, 1));
1859 }
1860
1861 /* Return an unwind entry that falls within the frame's code block. */
1862
1863 static struct unwind_table_entry *
1864 hppa_find_unwind_entry_in_block (struct frame_info *this_frame)
1865 {
1866 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1867
1868 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
1869 result of get_frame_address_in_block implies a problem.
1870 The bits should have been removed earlier, before the return
1871 value of gdbarch_unwind_pc. That might be happening already;
1872 if it isn't, it should be fixed. Then this call can be
1873 removed. */
1874 pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc);
1875 return find_unwind_entry (pc);
1876 }
1877
1878 struct hppa_frame_cache
1879 {
1880 CORE_ADDR base;
1881 struct trad_frame_saved_reg *saved_regs;
1882 };
1883
1884 static struct hppa_frame_cache *
1885 hppa_frame_cache (struct frame_info *this_frame, void **this_cache)
1886 {
1887 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1888 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1889 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1890 struct hppa_frame_cache *cache;
1891 long saved_gr_mask;
1892 long saved_fr_mask;
1893 long frame_size;
1894 struct unwind_table_entry *u;
1895 CORE_ADDR prologue_end;
1896 int fp_in_r1 = 0;
1897 int i;
1898
1899 if (hppa_debug)
1900 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1901 frame_relative_level(this_frame));
1902
1903 if ((*this_cache) != NULL)
1904 {
1905 if (hppa_debug)
1906 fprintf_unfiltered (gdb_stdlog, "base=%s (cached) }",
1907 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
1908 return (struct hppa_frame_cache *) (*this_cache);
1909 }
1910 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1911 (*this_cache) = cache;
1912 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1913
1914 /* Yow! */
1915 u = hppa_find_unwind_entry_in_block (this_frame);
1916 if (!u)
1917 {
1918 if (hppa_debug)
1919 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1920 return (struct hppa_frame_cache *) (*this_cache);
1921 }
1922
1923 /* Turn the Entry_GR field into a bitmask. */
1924 saved_gr_mask = 0;
1925 for (i = 3; i < u->Entry_GR + 3; i++)
1926 {
1927 /* Frame pointer gets saved into a special location. */
1928 if (u->Save_SP && i == HPPA_FP_REGNUM)
1929 continue;
1930
1931 saved_gr_mask |= (1 << i);
1932 }
1933
1934 /* Turn the Entry_FR field into a bitmask too. */
1935 saved_fr_mask = 0;
1936 for (i = 12; i < u->Entry_FR + 12; i++)
1937 saved_fr_mask |= (1 << i);
1938
1939 /* Loop until we find everything of interest or hit a branch.
1940
1941 For unoptimized GCC code and for any HP CC code this will never ever
1942 examine any user instructions.
1943
1944 For optimized GCC code we're faced with problems. GCC will schedule
1945 its prologue and make prologue instructions available for delay slot
1946 filling. The end result is user code gets mixed in with the prologue
1947 and a prologue instruction may be in the delay slot of the first branch
1948 or call.
1949
1950 Some unexpected things are expected with debugging optimized code, so
1951 we allow this routine to walk past user instructions in optimized
1952 GCC code. */
1953 {
1954 int final_iteration = 0;
1955 CORE_ADDR pc, start_pc, end_pc;
1956 int looking_for_sp = u->Save_SP;
1957 int looking_for_rp = u->Save_RP;
1958 int fp_loc = -1;
1959
1960 /* We have to use skip_prologue_hard_way instead of just
1961 skip_prologue_using_sal, in case we stepped into a function without
1962 symbol information. hppa_skip_prologue also bounds the returned
1963 pc by the passed in pc, so it will not return a pc in the next
1964 function.
1965
1966 We used to call hppa_skip_prologue to find the end of the prologue,
1967 but if some non-prologue instructions get scheduled into the prologue,
1968 and the program is compiled with debug information, the "easy" way
1969 in hppa_skip_prologue will return a prologue end that is too early
1970 for us to notice any potential frame adjustments. */
1971
1972 /* We used to use get_frame_func to locate the beginning of the
1973 function to pass to skip_prologue. However, when objects are
1974 compiled without debug symbols, get_frame_func can return the wrong
1975 function (or 0). We can do better than that by using unwind records.
1976 This only works if the Region_description of the unwind record
1977 indicates that it includes the entry point of the function.
1978 HP compilers sometimes generate unwind records for regions that
1979 do not include the entry or exit point of a function. GNU tools
1980 do not do this. */
1981
1982 if ((u->Region_description & 0x2) == 0)
1983 start_pc = u->region_start;
1984 else
1985 start_pc = get_frame_func (this_frame);
1986
1987 prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
1988 end_pc = get_frame_pc (this_frame);
1989
1990 if (prologue_end != 0 && end_pc > prologue_end)
1991 end_pc = prologue_end;
1992
1993 frame_size = 0;
1994
1995 for (pc = start_pc;
1996 ((saved_gr_mask || saved_fr_mask
1997 || looking_for_sp || looking_for_rp
1998 || frame_size < (u->Total_frame_size << 3))
1999 && pc < end_pc);
2000 pc += 4)
2001 {
2002 int reg;
2003 gdb_byte buf4[4];
2004 long inst;
2005
2006 if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4))
2007 {
2008 error (_("Cannot read instruction at %s."),
2009 paddress (gdbarch, pc));
2010 return (struct hppa_frame_cache *) (*this_cache);
2011 }
2012
2013 inst = extract_unsigned_integer (buf4, sizeof buf4, byte_order);
2014
2015 /* Note the interesting effects of this instruction. */
2016 frame_size += prologue_inst_adjust_sp (inst);
2017
2018 /* There are limited ways to store the return pointer into the
2019 stack. */
2020 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2021 {
2022 looking_for_rp = 0;
2023 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2024 }
2025 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
2026 {
2027 looking_for_rp = 0;
2028 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
2029 }
2030 else if (inst == 0x0fc212c1
2031 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2032 {
2033 looking_for_rp = 0;
2034 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2035 }
2036
2037 /* Check to see if we saved SP into the stack. This also
2038 happens to indicate the location of the saved frame
2039 pointer. */
2040 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
2041 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
2042 {
2043 looking_for_sp = 0;
2044 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
2045 }
2046 else if (inst == 0x08030241) /* copy %r3, %r1 */
2047 {
2048 fp_in_r1 = 1;
2049 }
2050
2051 /* Account for general and floating-point register saves. */
2052 reg = inst_saves_gr (inst);
2053 if (reg >= 3 && reg <= 18
2054 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
2055 {
2056 saved_gr_mask &= ~(1 << reg);
2057 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
2058 /* stwm with a positive displacement is a _post_
2059 _modify_. */
2060 cache->saved_regs[reg].addr = 0;
2061 else if ((inst & 0xfc00000c) == 0x70000008)
2062 /* A std has explicit post_modify forms. */
2063 cache->saved_regs[reg].addr = 0;
2064 else
2065 {
2066 CORE_ADDR offset;
2067
2068 if ((inst >> 26) == 0x1c)
2069 offset = (inst & 0x1 ? -1 << 13 : 0)
2070 | (((inst >> 4) & 0x3ff) << 3);
2071 else if ((inst >> 26) == 0x03)
2072 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
2073 else
2074 offset = hppa_extract_14 (inst);
2075
2076 /* Handle code with and without frame pointers. */
2077 if (u->Save_SP)
2078 cache->saved_regs[reg].addr = offset;
2079 else
2080 cache->saved_regs[reg].addr
2081 = (u->Total_frame_size << 3) + offset;
2082 }
2083 }
2084
2085 /* GCC handles callee saved FP regs a little differently.
2086
2087 It emits an instruction to put the value of the start of
2088 the FP store area into %r1. It then uses fstds,ma with a
2089 basereg of %r1 for the stores.
2090
2091 HP CC emits them at the current stack pointer modifying the
2092 stack pointer as it stores each register. */
2093
2094 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2095 if ((inst & 0xffffc000) == 0x34610000
2096 || (inst & 0xffffc000) == 0x37c10000)
2097 fp_loc = hppa_extract_14 (inst);
2098
2099 reg = inst_saves_fr (inst);
2100 if (reg >= 12 && reg <= 21)
2101 {
2102 /* Note +4 braindamage below is necessary because the FP
2103 status registers are internally 8 registers rather than
2104 the expected 4 registers. */
2105 saved_fr_mask &= ~(1 << reg);
2106 if (fp_loc == -1)
2107 {
2108 /* 1st HP CC FP register store. After this
2109 instruction we've set enough state that the GCC and
2110 HPCC code are both handled in the same manner. */
2111 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
2112 fp_loc = 8;
2113 }
2114 else
2115 {
2116 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
2117 fp_loc += 8;
2118 }
2119 }
2120
2121 /* Quit if we hit any kind of branch the previous iteration. */
2122 if (final_iteration)
2123 break;
2124 /* We want to look precisely one instruction beyond the branch
2125 if we have not found everything yet. */
2126 if (is_branch (inst))
2127 final_iteration = 1;
2128 }
2129 }
2130
2131 {
2132 /* The frame base always represents the value of %sp at entry to
2133 the current function (and is thus equivalent to the "saved"
2134 stack pointer. */
2135 CORE_ADDR this_sp = get_frame_register_unsigned (this_frame,
2136 HPPA_SP_REGNUM);
2137 CORE_ADDR fp;
2138
2139 if (hppa_debug)
2140 fprintf_unfiltered (gdb_stdlog, " (this_sp=%s, pc=%s, "
2141 "prologue_end=%s) ",
2142 paddress (gdbarch, this_sp),
2143 paddress (gdbarch, get_frame_pc (this_frame)),
2144 paddress (gdbarch, prologue_end));
2145
2146 /* Check to see if a frame pointer is available, and use it for
2147 frame unwinding if it is.
2148
2149 There are some situations where we need to rely on the frame
2150 pointer to do stack unwinding. For example, if a function calls
2151 alloca (), the stack pointer can get adjusted inside the body of
2152 the function. In this case, the ABI requires that the compiler
2153 maintain a frame pointer for the function.
2154
2155 The unwind record has a flag (alloca_frame) that indicates that
2156 a function has a variable frame; unfortunately, gcc/binutils
2157 does not set this flag. Instead, whenever a frame pointer is used
2158 and saved on the stack, the Save_SP flag is set. We use this to
2159 decide whether to use the frame pointer for unwinding.
2160
2161 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2162 instead of Save_SP. */
2163
2164 fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM);
2165
2166 if (u->alloca_frame)
2167 fp -= u->Total_frame_size << 3;
2168
2169 if (get_frame_pc (this_frame) >= prologue_end
2170 && (u->Save_SP || u->alloca_frame) && fp != 0)
2171 {
2172 cache->base = fp;
2173
2174 if (hppa_debug)
2175 fprintf_unfiltered (gdb_stdlog, " (base=%s) [frame pointer]",
2176 paddress (gdbarch, cache->base));
2177 }
2178 else if (u->Save_SP
2179 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
2180 {
2181 /* Both we're expecting the SP to be saved and the SP has been
2182 saved. The entry SP value is saved at this frame's SP
2183 address. */
2184 cache->base = read_memory_integer (this_sp, word_size, byte_order);
2185
2186 if (hppa_debug)
2187 fprintf_unfiltered (gdb_stdlog, " (base=%s) [saved]",
2188 paddress (gdbarch, cache->base));
2189 }
2190 else
2191 {
2192 /* The prologue has been slowly allocating stack space. Adjust
2193 the SP back. */
2194 cache->base = this_sp - frame_size;
2195 if (hppa_debug)
2196 fprintf_unfiltered (gdb_stdlog, " (base=%s) [unwind adjust]",
2197 paddress (gdbarch, cache->base));
2198
2199 }
2200 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2201 }
2202
2203 /* The PC is found in the "return register", "Millicode" uses "r31"
2204 as the return register while normal code uses "rp". */
2205 if (u->Millicode)
2206 {
2207 if (trad_frame_addr_p (cache->saved_regs, 31))
2208 {
2209 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2210 if (hppa_debug)
2211 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2212 }
2213 else
2214 {
2215 ULONGEST r31 = get_frame_register_unsigned (this_frame, 31);
2216 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
2217 if (hppa_debug)
2218 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
2219 }
2220 }
2221 else
2222 {
2223 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2224 {
2225 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2226 cache->saved_regs[HPPA_RP_REGNUM];
2227 if (hppa_debug)
2228 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2229 }
2230 else
2231 {
2232 ULONGEST rp = get_frame_register_unsigned (this_frame,
2233 HPPA_RP_REGNUM);
2234 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2235 if (hppa_debug)
2236 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
2237 }
2238 }
2239
2240 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2241 frame. However, there is a one-insn window where we haven't saved it
2242 yet, but we've already clobbered it. Detect this case and fix it up.
2243
2244 The prologue sequence for frame-pointer functions is:
2245 0: stw %rp, -20(%sp)
2246 4: copy %r3, %r1
2247 8: copy %sp, %r3
2248 c: stw,ma %r1, XX(%sp)
2249
2250 So if we are at offset c, the r3 value that we want is not yet saved
2251 on the stack, but it's been overwritten. The prologue analyzer will
2252 set fp_in_r1 when it sees the copy insn so we know to get the value
2253 from r1 instead. */
2254 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2255 && fp_in_r1)
2256 {
2257 ULONGEST r1 = get_frame_register_unsigned (this_frame, 1);
2258 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2259 }
2260
2261 {
2262 /* Convert all the offsets into addresses. */
2263 int reg;
2264 for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
2265 {
2266 if (trad_frame_addr_p (cache->saved_regs, reg))
2267 cache->saved_regs[reg].addr += cache->base;
2268 }
2269 }
2270
2271 {
2272 struct gdbarch_tdep *tdep;
2273
2274 tdep = gdbarch_tdep (gdbarch);
2275
2276 if (tdep->unwind_adjust_stub)
2277 tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs);
2278 }
2279
2280 if (hppa_debug)
2281 fprintf_unfiltered (gdb_stdlog, "base=%s }",
2282 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
2283 return (struct hppa_frame_cache *) (*this_cache);
2284 }
2285
2286 static void
2287 hppa_frame_this_id (struct frame_info *this_frame, void **this_cache,
2288 struct frame_id *this_id)
2289 {
2290 struct hppa_frame_cache *info;
2291 CORE_ADDR pc = get_frame_pc (this_frame);
2292 struct unwind_table_entry *u;
2293
2294 info = hppa_frame_cache (this_frame, this_cache);
2295 u = hppa_find_unwind_entry_in_block (this_frame);
2296
2297 (*this_id) = frame_id_build (info->base, u->region_start);
2298 }
2299
2300 static struct value *
2301 hppa_frame_prev_register (struct frame_info *this_frame,
2302 void **this_cache, int regnum)
2303 {
2304 struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache);
2305
2306 return hppa_frame_prev_register_helper (this_frame,
2307 info->saved_regs, regnum);
2308 }
2309
2310 static int
2311 hppa_frame_unwind_sniffer (const struct frame_unwind *self,
2312 struct frame_info *this_frame, void **this_cache)
2313 {
2314 if (hppa_find_unwind_entry_in_block (this_frame))
2315 return 1;
2316
2317 return 0;
2318 }
2319
2320 static const struct frame_unwind hppa_frame_unwind =
2321 {
2322 NORMAL_FRAME,
2323 default_frame_unwind_stop_reason,
2324 hppa_frame_this_id,
2325 hppa_frame_prev_register,
2326 NULL,
2327 hppa_frame_unwind_sniffer
2328 };
2329
2330 /* This is a generic fallback frame unwinder that kicks in if we fail all
2331 the other ones. Normally we would expect the stub and regular unwinder
2332 to work, but in some cases we might hit a function that just doesn't
2333 have any unwind information available. In this case we try to do
2334 unwinding solely based on code reading. This is obviously going to be
2335 slow, so only use this as a last resort. Currently this will only
2336 identify the stack and pc for the frame. */
2337
2338 static struct hppa_frame_cache *
2339 hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache)
2340 {
2341 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2342 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2343 struct hppa_frame_cache *cache;
2344 unsigned int frame_size = 0;
2345 int found_rp = 0;
2346 CORE_ADDR start_pc;
2347
2348 if (hppa_debug)
2349 fprintf_unfiltered (gdb_stdlog,
2350 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2351 frame_relative_level (this_frame));
2352
2353 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2354 (*this_cache) = cache;
2355 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2356
2357 start_pc = get_frame_func (this_frame);
2358 if (start_pc)
2359 {
2360 CORE_ADDR cur_pc = get_frame_pc (this_frame);
2361 CORE_ADDR pc;
2362
2363 for (pc = start_pc; pc < cur_pc; pc += 4)
2364 {
2365 unsigned int insn;
2366
2367 insn = read_memory_unsigned_integer (pc, 4, byte_order);
2368 frame_size += prologue_inst_adjust_sp (insn);
2369
2370 /* There are limited ways to store the return pointer into the
2371 stack. */
2372 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2373 {
2374 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2375 found_rp = 1;
2376 }
2377 else if (insn == 0x0fc212c1
2378 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2379 {
2380 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2381 found_rp = 1;
2382 }
2383 }
2384 }
2385
2386 if (hppa_debug)
2387 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2388 frame_size, found_rp);
2389
2390 cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2391 cache->base -= frame_size;
2392 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2393
2394 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2395 {
2396 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2397 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2398 cache->saved_regs[HPPA_RP_REGNUM];
2399 }
2400 else
2401 {
2402 ULONGEST rp;
2403 rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM);
2404 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2405 }
2406
2407 return cache;
2408 }
2409
2410 static void
2411 hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache,
2412 struct frame_id *this_id)
2413 {
2414 struct hppa_frame_cache *info =
2415 hppa_fallback_frame_cache (this_frame, this_cache);
2416
2417 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2418 }
2419
2420 static struct value *
2421 hppa_fallback_frame_prev_register (struct frame_info *this_frame,
2422 void **this_cache, int regnum)
2423 {
2424 struct hppa_frame_cache *info
2425 = hppa_fallback_frame_cache (this_frame, this_cache);
2426
2427 return hppa_frame_prev_register_helper (this_frame,
2428 info->saved_regs, regnum);
2429 }
2430
2431 static const struct frame_unwind hppa_fallback_frame_unwind =
2432 {
2433 NORMAL_FRAME,
2434 default_frame_unwind_stop_reason,
2435 hppa_fallback_frame_this_id,
2436 hppa_fallback_frame_prev_register,
2437 NULL,
2438 default_frame_sniffer
2439 };
2440
2441 /* Stub frames, used for all kinds of call stubs. */
2442 struct hppa_stub_unwind_cache
2443 {
2444 CORE_ADDR base;
2445 struct trad_frame_saved_reg *saved_regs;
2446 };
2447
2448 static struct hppa_stub_unwind_cache *
2449 hppa_stub_frame_unwind_cache (struct frame_info *this_frame,
2450 void **this_cache)
2451 {
2452 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2453 struct hppa_stub_unwind_cache *info;
2454 struct unwind_table_entry *u;
2455
2456 if (*this_cache)
2457 return (struct hppa_stub_unwind_cache *) *this_cache;
2458
2459 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2460 *this_cache = info;
2461 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2462
2463 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2464
2465 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2466 {
2467 /* HPUX uses export stubs in function calls; the export stub clobbers
2468 the return value of the caller, and, later restores it from the
2469 stack. */
2470 u = find_unwind_entry (get_frame_pc (this_frame));
2471
2472 if (u && u->stub_unwind.stub_type == EXPORT)
2473 {
2474 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2475
2476 return info;
2477 }
2478 }
2479
2480 /* By default we assume that stubs do not change the rp. */
2481 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2482
2483 return info;
2484 }
2485
2486 static void
2487 hppa_stub_frame_this_id (struct frame_info *this_frame,
2488 void **this_prologue_cache,
2489 struct frame_id *this_id)
2490 {
2491 struct hppa_stub_unwind_cache *info
2492 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2493
2494 if (info)
2495 *this_id = frame_id_build (info->base, get_frame_func (this_frame));
2496 }
2497
2498 static struct value *
2499 hppa_stub_frame_prev_register (struct frame_info *this_frame,
2500 void **this_prologue_cache, int regnum)
2501 {
2502 struct hppa_stub_unwind_cache *info
2503 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2504
2505 if (info == NULL)
2506 error (_("Requesting registers from null frame."));
2507
2508 return hppa_frame_prev_register_helper (this_frame,
2509 info->saved_regs, regnum);
2510 }
2511
2512 static int
2513 hppa_stub_unwind_sniffer (const struct frame_unwind *self,
2514 struct frame_info *this_frame,
2515 void **this_cache)
2516 {
2517 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2518 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2519 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2520
2521 if (pc == 0
2522 || (tdep->in_solib_call_trampoline != NULL
2523 && tdep->in_solib_call_trampoline (gdbarch, pc))
2524 || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
2525 return 1;
2526 return 0;
2527 }
2528
2529 static const struct frame_unwind hppa_stub_frame_unwind = {
2530 NORMAL_FRAME,
2531 default_frame_unwind_stop_reason,
2532 hppa_stub_frame_this_id,
2533 hppa_stub_frame_prev_register,
2534 NULL,
2535 hppa_stub_unwind_sniffer
2536 };
2537
2538 static struct frame_id
2539 hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2540 {
2541 return frame_id_build (get_frame_register_unsigned (this_frame,
2542 HPPA_SP_REGNUM),
2543 get_frame_pc (this_frame));
2544 }
2545
2546 CORE_ADDR
2547 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2548 {
2549 ULONGEST ipsw;
2550 CORE_ADDR pc;
2551
2552 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2553 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2554
2555 /* If the current instruction is nullified, then we are effectively
2556 still executing the previous instruction. Pretend we are still
2557 there. This is needed when single stepping; if the nullified
2558 instruction is on a different line, we don't want GDB to think
2559 we've stepped onto that line. */
2560 if (ipsw & 0x00200000)
2561 pc -= 4;
2562
2563 return pc & ~0x3;
2564 }
2565
2566 /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2567 Return NULL if no such symbol was found. */
2568
2569 struct bound_minimal_symbol
2570 hppa_lookup_stub_minimal_symbol (const char *name,
2571 enum unwind_stub_types stub_type)
2572 {
2573 struct objfile *objfile;
2574 struct minimal_symbol *msym;
2575 struct bound_minimal_symbol result = { NULL, NULL };
2576
2577 ALL_MSYMBOLS (objfile, msym)
2578 {
2579 if (strcmp (MSYMBOL_LINKAGE_NAME (msym), name) == 0)
2580 {
2581 struct unwind_table_entry *u;
2582
2583 u = find_unwind_entry (MSYMBOL_VALUE (msym));
2584 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2585 {
2586 result.objfile = objfile;
2587 result.minsym = msym;
2588 return result;
2589 }
2590 }
2591 }
2592
2593 return result;
2594 }
2595
2596 static void
2597 unwind_command (char *exp, int from_tty)
2598 {
2599 CORE_ADDR address;
2600 struct unwind_table_entry *u;
2601
2602 /* If we have an expression, evaluate it and use it as the address. */
2603
2604 if (exp != 0 && *exp != 0)
2605 address = parse_and_eval_address (exp);
2606 else
2607 return;
2608
2609 u = find_unwind_entry (address);
2610
2611 if (!u)
2612 {
2613 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2614 return;
2615 }
2616
2617 printf_unfiltered ("unwind_table_entry (%s):\n", host_address_to_string (u));
2618
2619 printf_unfiltered ("\tregion_start = %s\n", hex_string (u->region_start));
2620 gdb_flush (gdb_stdout);
2621
2622 printf_unfiltered ("\tregion_end = %s\n", hex_string (u->region_end));
2623 gdb_flush (gdb_stdout);
2624
2625 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2626
2627 printf_unfiltered ("\n\tflags =");
2628 pif (Cannot_unwind);
2629 pif (Millicode);
2630 pif (Millicode_save_sr0);
2631 pif (Entry_SR);
2632 pif (Args_stored);
2633 pif (Variable_Frame);
2634 pif (Separate_Package_Body);
2635 pif (Frame_Extension_Millicode);
2636 pif (Stack_Overflow_Check);
2637 pif (Two_Instruction_SP_Increment);
2638 pif (sr4export);
2639 pif (cxx_info);
2640 pif (cxx_try_catch);
2641 pif (sched_entry_seq);
2642 pif (Save_SP);
2643 pif (Save_RP);
2644 pif (Save_MRP_in_frame);
2645 pif (save_r19);
2646 pif (Cleanup_defined);
2647 pif (MPE_XL_interrupt_marker);
2648 pif (HP_UX_interrupt_marker);
2649 pif (Large_frame);
2650 pif (alloca_frame);
2651
2652 putchar_unfiltered ('\n');
2653
2654 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2655
2656 pin (Region_description);
2657 pin (Entry_FR);
2658 pin (Entry_GR);
2659 pin (Total_frame_size);
2660
2661 if (u->stub_unwind.stub_type)
2662 {
2663 printf_unfiltered ("\tstub type = ");
2664 switch (u->stub_unwind.stub_type)
2665 {
2666 case LONG_BRANCH:
2667 printf_unfiltered ("long branch\n");
2668 break;
2669 case PARAMETER_RELOCATION:
2670 printf_unfiltered ("parameter relocation\n");
2671 break;
2672 case EXPORT:
2673 printf_unfiltered ("export\n");
2674 break;
2675 case IMPORT:
2676 printf_unfiltered ("import\n");
2677 break;
2678 case IMPORT_SHLIB:
2679 printf_unfiltered ("import shlib\n");
2680 break;
2681 default:
2682 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2683 }
2684 }
2685 }
2686
2687 /* Return the GDB type object for the "standard" data type of data in
2688 register REGNUM. */
2689
2690 static struct type *
2691 hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2692 {
2693 if (regnum < HPPA_FP4_REGNUM)
2694 return builtin_type (gdbarch)->builtin_uint32;
2695 else
2696 return builtin_type (gdbarch)->builtin_float;
2697 }
2698
2699 static struct type *
2700 hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2701 {
2702 if (regnum < HPPA64_FP4_REGNUM)
2703 return builtin_type (gdbarch)->builtin_uint64;
2704 else
2705 return builtin_type (gdbarch)->builtin_double;
2706 }
2707
2708 /* Return non-zero if REGNUM is not a register available to the user
2709 through ptrace/ttrace. */
2710
2711 static int
2712 hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2713 {
2714 return (regnum == 0
2715 || regnum == HPPA_PCSQ_HEAD_REGNUM
2716 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2717 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2718 }
2719
2720 static int
2721 hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2722 {
2723 /* cr26 and cr27 are readable (but not writable) from userspace. */
2724 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2725 return 0;
2726 else
2727 return hppa32_cannot_store_register (gdbarch, regnum);
2728 }
2729
2730 static int
2731 hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2732 {
2733 return (regnum == 0
2734 || regnum == HPPA_PCSQ_HEAD_REGNUM
2735 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2736 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2737 }
2738
2739 static int
2740 hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2741 {
2742 /* cr26 and cr27 are readable (but not writable) from userspace. */
2743 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2744 return 0;
2745 else
2746 return hppa64_cannot_store_register (gdbarch, regnum);
2747 }
2748
2749 static CORE_ADDR
2750 hppa_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
2751 {
2752 /* The low two bits of the PC on the PA contain the privilege level.
2753 Some genius implementing a (non-GCC) compiler apparently decided
2754 this means that "addresses" in a text section therefore include a
2755 privilege level, and thus symbol tables should contain these bits.
2756 This seems like a bonehead thing to do--anyway, it seems to work
2757 for our purposes to just ignore those bits. */
2758
2759 return (addr &= ~0x3);
2760 }
2761
2762 /* Get the ARGIth function argument for the current function. */
2763
2764 static CORE_ADDR
2765 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2766 struct type *type)
2767 {
2768 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
2769 }
2770
2771 static enum register_status
2772 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2773 int regnum, gdb_byte *buf)
2774 {
2775 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2776 ULONGEST tmp;
2777 enum register_status status;
2778
2779 status = regcache_raw_read_unsigned (regcache, regnum, &tmp);
2780 if (status == REG_VALID)
2781 {
2782 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2783 tmp &= ~0x3;
2784 store_unsigned_integer (buf, sizeof tmp, byte_order, tmp);
2785 }
2786 return status;
2787 }
2788
2789 static CORE_ADDR
2790 hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
2791 {
2792 return 0;
2793 }
2794
2795 struct value *
2796 hppa_frame_prev_register_helper (struct frame_info *this_frame,
2797 struct trad_frame_saved_reg saved_regs[],
2798 int regnum)
2799 {
2800 struct gdbarch *arch = get_frame_arch (this_frame);
2801 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2802
2803 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2804 {
2805 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2806 CORE_ADDR pc;
2807 struct value *pcoq_val =
2808 trad_frame_get_prev_register (this_frame, saved_regs,
2809 HPPA_PCOQ_HEAD_REGNUM);
2810
2811 pc = extract_unsigned_integer (value_contents_all (pcoq_val),
2812 size, byte_order);
2813 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
2814 }
2815
2816 return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
2817 }
2818 \f
2819
2820 /* An instruction to match. */
2821 struct insn_pattern
2822 {
2823 unsigned int data; /* See if it matches this.... */
2824 unsigned int mask; /* ... with this mask. */
2825 };
2826
2827 /* See bfd/elf32-hppa.c */
2828 static struct insn_pattern hppa_long_branch_stub[] = {
2829 /* ldil LR'xxx,%r1 */
2830 { 0x20200000, 0xffe00000 },
2831 /* be,n RR'xxx(%sr4,%r1) */
2832 { 0xe0202002, 0xffe02002 },
2833 { 0, 0 }
2834 };
2835
2836 static struct insn_pattern hppa_long_branch_pic_stub[] = {
2837 /* b,l .+8, %r1 */
2838 { 0xe8200000, 0xffe00000 },
2839 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2840 { 0x28200000, 0xffe00000 },
2841 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2842 { 0xe0202002, 0xffe02002 },
2843 { 0, 0 }
2844 };
2845
2846 static struct insn_pattern hppa_import_stub[] = {
2847 /* addil LR'xxx, %dp */
2848 { 0x2b600000, 0xffe00000 },
2849 /* ldw RR'xxx(%r1), %r21 */
2850 { 0x48350000, 0xffffb000 },
2851 /* bv %r0(%r21) */
2852 { 0xeaa0c000, 0xffffffff },
2853 /* ldw RR'xxx+4(%r1), %r19 */
2854 { 0x48330000, 0xffffb000 },
2855 { 0, 0 }
2856 };
2857
2858 static struct insn_pattern hppa_import_pic_stub[] = {
2859 /* addil LR'xxx,%r19 */
2860 { 0x2a600000, 0xffe00000 },
2861 /* ldw RR'xxx(%r1),%r21 */
2862 { 0x48350000, 0xffffb000 },
2863 /* bv %r0(%r21) */
2864 { 0xeaa0c000, 0xffffffff },
2865 /* ldw RR'xxx+4(%r1),%r19 */
2866 { 0x48330000, 0xffffb000 },
2867 { 0, 0 },
2868 };
2869
2870 static struct insn_pattern hppa_plt_stub[] = {
2871 /* b,l 1b, %r20 - 1b is 3 insns before here */
2872 { 0xea9f1fdd, 0xffffffff },
2873 /* depi 0,31,2,%r20 */
2874 { 0xd6801c1e, 0xffffffff },
2875 { 0, 0 }
2876 };
2877
2878 /* Maximum number of instructions on the patterns above. */
2879 #define HPPA_MAX_INSN_PATTERN_LEN 4
2880
2881 /* Return non-zero if the instructions at PC match the series
2882 described in PATTERN, or zero otherwise. PATTERN is an array of
2883 'struct insn_pattern' objects, terminated by an entry whose mask is
2884 zero.
2885
2886 When the match is successful, fill INSN[i] with what PATTERN[i]
2887 matched. */
2888
2889 static int
2890 hppa_match_insns (struct gdbarch *gdbarch, CORE_ADDR pc,
2891 struct insn_pattern *pattern, unsigned int *insn)
2892 {
2893 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2894 CORE_ADDR npc = pc;
2895 int i;
2896
2897 for (i = 0; pattern[i].mask; i++)
2898 {
2899 gdb_byte buf[HPPA_INSN_SIZE];
2900
2901 target_read_memory (npc, buf, HPPA_INSN_SIZE);
2902 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order);
2903 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2904 npc += 4;
2905 else
2906 return 0;
2907 }
2908
2909 return 1;
2910 }
2911
2912 /* This relaxed version of the insstruction matcher allows us to match
2913 from somewhere inside the pattern, by looking backwards in the
2914 instruction scheme. */
2915
2916 static int
2917 hppa_match_insns_relaxed (struct gdbarch *gdbarch, CORE_ADDR pc,
2918 struct insn_pattern *pattern, unsigned int *insn)
2919 {
2920 int offset, len = 0;
2921
2922 while (pattern[len].mask)
2923 len++;
2924
2925 for (offset = 0; offset < len; offset++)
2926 if (hppa_match_insns (gdbarch, pc - offset * HPPA_INSN_SIZE,
2927 pattern, insn))
2928 return 1;
2929
2930 return 0;
2931 }
2932
2933 static int
2934 hppa_in_dyncall (CORE_ADDR pc)
2935 {
2936 struct unwind_table_entry *u;
2937
2938 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2939 if (!u)
2940 return 0;
2941
2942 return (pc >= u->region_start && pc <= u->region_end);
2943 }
2944
2945 int
2946 hppa_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc)
2947 {
2948 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2949 struct unwind_table_entry *u;
2950
2951 if (in_plt_section (pc) || hppa_in_dyncall (pc))
2952 return 1;
2953
2954 /* The GNU toolchain produces linker stubs without unwind
2955 information. Since the pattern matching for linker stubs can be
2956 quite slow, so bail out if we do have an unwind entry. */
2957
2958 u = find_unwind_entry (pc);
2959 if (u != NULL)
2960 return 0;
2961
2962 return
2963 (hppa_match_insns_relaxed (gdbarch, pc, hppa_import_stub, insn)
2964 || hppa_match_insns_relaxed (gdbarch, pc, hppa_import_pic_stub, insn)
2965 || hppa_match_insns_relaxed (gdbarch, pc, hppa_long_branch_stub, insn)
2966 || hppa_match_insns_relaxed (gdbarch, pc,
2967 hppa_long_branch_pic_stub, insn));
2968 }
2969
2970 /* This code skips several kind of "trampolines" used on PA-RISC
2971 systems: $$dyncall, import stubs and PLT stubs. */
2972
2973 CORE_ADDR
2974 hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2975 {
2976 struct gdbarch *gdbarch = get_frame_arch (frame);
2977 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
2978
2979 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2980 int dp_rel;
2981
2982 /* $$dyncall handles both PLABELs and direct addresses. */
2983 if (hppa_in_dyncall (pc))
2984 {
2985 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
2986
2987 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2988 if (pc & 0x2)
2989 pc = read_memory_typed_address (pc & ~0x3, func_ptr_type);
2990
2991 return pc;
2992 }
2993
2994 dp_rel = hppa_match_insns (gdbarch, pc, hppa_import_stub, insn);
2995 if (dp_rel || hppa_match_insns (gdbarch, pc, hppa_import_pic_stub, insn))
2996 {
2997 /* Extract the target address from the addil/ldw sequence. */
2998 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2999
3000 if (dp_rel)
3001 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
3002 else
3003 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
3004
3005 /* fallthrough */
3006 }
3007
3008 if (in_plt_section (pc))
3009 {
3010 pc = read_memory_typed_address (pc, func_ptr_type);
3011
3012 /* If the PLT slot has not yet been resolved, the target will be
3013 the PLT stub. */
3014 if (in_plt_section (pc))
3015 {
3016 /* Sanity check: are we pointing to the PLT stub? */
3017 if (!hppa_match_insns (gdbarch, pc, hppa_plt_stub, insn))
3018 {
3019 warning (_("Cannot resolve PLT stub at %s."),
3020 paddress (gdbarch, pc));
3021 return 0;
3022 }
3023
3024 /* This should point to the fixup routine. */
3025 pc = read_memory_typed_address (pc + 8, func_ptr_type);
3026 }
3027 }
3028
3029 return pc;
3030 }
3031 \f
3032
3033 /* Here is a table of C type sizes on hppa with various compiles
3034 and options. I measured this on PA 9000/800 with HP-UX 11.11
3035 and these compilers:
3036
3037 /usr/ccs/bin/cc HP92453-01 A.11.01.21
3038 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
3039 /opt/aCC/bin/aCC B3910B A.03.45
3040 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
3041
3042 cc : 1 2 4 4 8 : 4 8 -- : 4 4
3043 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3044 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3045 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3046 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3047 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3048 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3049 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
3050
3051 Each line is:
3052
3053 compiler and options
3054 char, short, int, long, long long
3055 float, double, long double
3056 char *, void (*)()
3057
3058 So all these compilers use either ILP32 or LP64 model.
3059 TODO: gcc has more options so it needs more investigation.
3060
3061 For floating point types, see:
3062
3063 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
3064 HP-UX floating-point guide, hpux 11.00
3065
3066 -- chastain 2003-12-18 */
3067
3068 static struct gdbarch *
3069 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3070 {
3071 struct gdbarch_tdep *tdep;
3072 struct gdbarch *gdbarch;
3073
3074 /* Try to determine the ABI of the object we are loading. */
3075 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
3076 {
3077 /* If it's a SOM file, assume it's HP/UX SOM. */
3078 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
3079 info.osabi = GDB_OSABI_HPUX_SOM;
3080 }
3081
3082 /* find a candidate among the list of pre-declared architectures. */
3083 arches = gdbarch_list_lookup_by_info (arches, &info);
3084 if (arches != NULL)
3085 return (arches->gdbarch);
3086
3087 /* If none found, then allocate and initialize one. */
3088 tdep = XCNEW (struct gdbarch_tdep);
3089 gdbarch = gdbarch_alloc (&info, tdep);
3090
3091 /* Determine from the bfd_arch_info structure if we are dealing with
3092 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3093 then default to a 32bit machine. */
3094 if (info.bfd_arch_info != NULL)
3095 tdep->bytes_per_address =
3096 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3097 else
3098 tdep->bytes_per_address = 4;
3099
3100 tdep->find_global_pointer = hppa_find_global_pointer;
3101
3102 /* Some parts of the gdbarch vector depend on whether we are running
3103 on a 32 bits or 64 bits target. */
3104 switch (tdep->bytes_per_address)
3105 {
3106 case 4:
3107 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3108 set_gdbarch_register_name (gdbarch, hppa32_register_name);
3109 set_gdbarch_register_type (gdbarch, hppa32_register_type);
3110 set_gdbarch_cannot_store_register (gdbarch,
3111 hppa32_cannot_store_register);
3112 set_gdbarch_cannot_fetch_register (gdbarch,
3113 hppa32_cannot_fetch_register);
3114 break;
3115 case 8:
3116 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3117 set_gdbarch_register_name (gdbarch, hppa64_register_name);
3118 set_gdbarch_register_type (gdbarch, hppa64_register_type);
3119 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3120 set_gdbarch_cannot_store_register (gdbarch,
3121 hppa64_cannot_store_register);
3122 set_gdbarch_cannot_fetch_register (gdbarch,
3123 hppa64_cannot_fetch_register);
3124 break;
3125 default:
3126 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3127 tdep->bytes_per_address);
3128 }
3129
3130 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3131 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3132
3133 /* The following gdbarch vector elements are the same in both ILP32
3134 and LP64, but might show differences some day. */
3135 set_gdbarch_long_long_bit (gdbarch, 64);
3136 set_gdbarch_long_double_bit (gdbarch, 128);
3137 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3138
3139 /* The following gdbarch vector elements do not depend on the address
3140 size, or in any other gdbarch element previously set. */
3141 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
3142 set_gdbarch_stack_frame_destroyed_p (gdbarch,
3143 hppa_stack_frame_destroyed_p);
3144 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
3145 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3146 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
3147 set_gdbarch_addr_bits_remove (gdbarch, hppa_addr_bits_remove);
3148 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3149 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3150 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
3151
3152 /* Helper for function argument information. */
3153 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3154
3155 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
3156
3157 /* When a hardware watchpoint triggers, we'll move the inferior past
3158 it by removing all eventpoints; stepping past the instruction
3159 that caused the trigger; reinserting eventpoints; and checking
3160 whether any watched location changed. */
3161 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3162
3163 /* Inferior function call methods. */
3164 switch (tdep->bytes_per_address)
3165 {
3166 case 4:
3167 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3168 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
3169 set_gdbarch_convert_from_func_ptr_addr
3170 (gdbarch, hppa32_convert_from_func_ptr_addr);
3171 break;
3172 case 8:
3173 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3174 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
3175 break;
3176 default:
3177 internal_error (__FILE__, __LINE__, _("bad switch"));
3178 }
3179
3180 /* Struct return methods. */
3181 switch (tdep->bytes_per_address)
3182 {
3183 case 4:
3184 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3185 break;
3186 case 8:
3187 set_gdbarch_return_value (gdbarch, hppa64_return_value);
3188 break;
3189 default:
3190 internal_error (__FILE__, __LINE__, _("bad switch"));
3191 }
3192
3193 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
3194 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
3195
3196 /* Frame unwind methods. */
3197 set_gdbarch_dummy_id (gdbarch, hppa_dummy_id);
3198 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
3199
3200 /* Hook in ABI-specific overrides, if they have been registered. */
3201 gdbarch_init_osabi (info, gdbarch);
3202
3203 /* Hook in the default unwinders. */
3204 frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind);
3205 frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind);
3206 frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind);
3207
3208 return gdbarch;
3209 }
3210
3211 static void
3212 hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3213 {
3214 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3215
3216 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3217 tdep->bytes_per_address);
3218 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
3219 }
3220
3221 /* Provide a prototype to silence -Wmissing-prototypes. */
3222 extern initialize_file_ftype _initialize_hppa_tdep;
3223
3224 void
3225 _initialize_hppa_tdep (void)
3226 {
3227 struct cmd_list_element *c;
3228
3229 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
3230
3231 hppa_objfile_priv_data = register_objfile_data ();
3232
3233 add_cmd ("unwind", class_maintenance, unwind_command,
3234 _("Print unwind table entry at given address."),
3235 &maintenanceprintlist);
3236
3237 /* Debug this files internals. */
3238 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3239 Set whether hppa target specific debugging information should be displayed."),
3240 _("\
3241 Show whether hppa target specific debugging information is displayed."), _("\
3242 This flag controls whether hppa target specific debugging information is\n\
3243 displayed. This information is particularly useful for debugging frame\n\
3244 unwinding problems."),
3245 NULL,
3246 NULL, /* FIXME: i18n: hppa debug flag is %s. */
3247 &setdebuglist, &showdebuglist);
3248 }
This page took 0.138445 seconds and 5 git commands to generate.