Add casts to memory allocation related calls
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA-RISC architecture.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "bfd.h"
25 #include "inferior.h"
26 #include "regcache.h"
27 #include "completer.h"
28 #include "osabi.h"
29 #include "arch-utils.h"
30 /* For argument passing to the inferior. */
31 #include "symtab.h"
32 #include "dis-asm.h"
33 #include "trad-frame.h"
34 #include "frame-unwind.h"
35 #include "frame-base.h"
36
37 #include "gdbcore.h"
38 #include "gdbcmd.h"
39 #include "gdbtypes.h"
40 #include "objfiles.h"
41 #include "hppa-tdep.h"
42
43 static int hppa_debug = 0;
44
45 /* Some local constants. */
46 static const int hppa32_num_regs = 128;
47 static const int hppa64_num_regs = 96;
48
49 /* We use the objfile->obj_private pointer for two things:
50 * 1. An unwind table;
51 *
52 * 2. A pointer to any associated shared library object.
53 *
54 * #defines are used to help refer to these objects.
55 */
56
57 /* Info about the unwind table associated with an object file.
58 * This is hung off of the "objfile->obj_private" pointer, and
59 * is allocated in the objfile's psymbol obstack. This allows
60 * us to have unique unwind info for each executable and shared
61 * library that we are debugging.
62 */
63 struct hppa_unwind_info
64 {
65 struct unwind_table_entry *table; /* Pointer to unwind info */
66 struct unwind_table_entry *cache; /* Pointer to last entry we found */
67 int last; /* Index of last entry */
68 };
69
70 struct hppa_objfile_private
71 {
72 struct hppa_unwind_info *unwind_info; /* a pointer */
73 struct so_list *so_info; /* a pointer */
74 CORE_ADDR dp;
75
76 int dummy_call_sequence_reg;
77 CORE_ADDR dummy_call_sequence_addr;
78 };
79
80 /* hppa-specific object data -- unwind and solib info.
81 TODO/maybe: think about splitting this into two parts; the unwind data is
82 common to all hppa targets, but is only used in this file; we can register
83 that separately and make this static. The solib data is probably hpux-
84 specific, so we can create a separate extern objfile_data that is registered
85 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
86 static const struct objfile_data *hppa_objfile_priv_data = NULL;
87
88 /* Get at various relevent fields of an instruction word. */
89 #define MASK_5 0x1f
90 #define MASK_11 0x7ff
91 #define MASK_14 0x3fff
92 #define MASK_21 0x1fffff
93
94 /* Sizes (in bytes) of the native unwind entries. */
95 #define UNWIND_ENTRY_SIZE 16
96 #define STUB_UNWIND_ENTRY_SIZE 8
97
98 /* Routines to extract various sized constants out of hppa
99 instructions. */
100
101 /* This assumes that no garbage lies outside of the lower bits of
102 value. */
103
104 static int
105 hppa_sign_extend (unsigned val, unsigned bits)
106 {
107 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
108 }
109
110 /* For many immediate values the sign bit is the low bit! */
111
112 static int
113 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
114 {
115 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
116 }
117
118 /* Extract the bits at positions between FROM and TO, using HP's numbering
119 (MSB = 0). */
120
121 int
122 hppa_get_field (unsigned word, int from, int to)
123 {
124 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
125 }
126
127 /* Extract the immediate field from a ld{bhw}s instruction. */
128
129 int
130 hppa_extract_5_load (unsigned word)
131 {
132 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
133 }
134
135 /* Extract the immediate field from a break instruction. */
136
137 unsigned
138 hppa_extract_5r_store (unsigned word)
139 {
140 return (word & MASK_5);
141 }
142
143 /* Extract the immediate field from a {sr}sm instruction. */
144
145 unsigned
146 hppa_extract_5R_store (unsigned word)
147 {
148 return (word >> 16 & MASK_5);
149 }
150
151 /* Extract a 14 bit immediate field. */
152
153 int
154 hppa_extract_14 (unsigned word)
155 {
156 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
157 }
158
159 /* Extract a 21 bit constant. */
160
161 int
162 hppa_extract_21 (unsigned word)
163 {
164 int val;
165
166 word &= MASK_21;
167 word <<= 11;
168 val = hppa_get_field (word, 20, 20);
169 val <<= 11;
170 val |= hppa_get_field (word, 9, 19);
171 val <<= 2;
172 val |= hppa_get_field (word, 5, 6);
173 val <<= 5;
174 val |= hppa_get_field (word, 0, 4);
175 val <<= 2;
176 val |= hppa_get_field (word, 7, 8);
177 return hppa_sign_extend (val, 21) << 11;
178 }
179
180 /* extract a 17 bit constant from branch instructions, returning the
181 19 bit signed value. */
182
183 int
184 hppa_extract_17 (unsigned word)
185 {
186 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
187 hppa_get_field (word, 29, 29) << 10 |
188 hppa_get_field (word, 11, 15) << 11 |
189 (word & 0x1) << 16, 17) << 2;
190 }
191
192 CORE_ADDR
193 hppa_symbol_address(const char *sym)
194 {
195 struct bound_minimal_symbol minsym;
196
197 minsym = lookup_minimal_symbol (sym, NULL, NULL);
198 if (minsym.minsym)
199 return BMSYMBOL_VALUE_ADDRESS (minsym);
200 else
201 return (CORE_ADDR)-1;
202 }
203
204 static struct hppa_objfile_private *
205 hppa_init_objfile_priv_data (struct objfile *objfile)
206 {
207 struct hppa_objfile_private *priv;
208
209 priv = (struct hppa_objfile_private *)
210 obstack_alloc (&objfile->objfile_obstack,
211 sizeof (struct hppa_objfile_private));
212 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
213 memset (priv, 0, sizeof (*priv));
214
215 return priv;
216 }
217 \f
218
219 /* Compare the start address for two unwind entries returning 1 if
220 the first address is larger than the second, -1 if the second is
221 larger than the first, and zero if they are equal. */
222
223 static int
224 compare_unwind_entries (const void *arg1, const void *arg2)
225 {
226 const struct unwind_table_entry *a = arg1;
227 const struct unwind_table_entry *b = arg2;
228
229 if (a->region_start > b->region_start)
230 return 1;
231 else if (a->region_start < b->region_start)
232 return -1;
233 else
234 return 0;
235 }
236
237 static void
238 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
239 {
240 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
241 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
242 {
243 bfd_vma value = section->vma - section->filepos;
244 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
245
246 if (value < *low_text_segment_address)
247 *low_text_segment_address = value;
248 }
249 }
250
251 static void
252 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
253 asection *section, unsigned int entries,
254 size_t size, CORE_ADDR text_offset)
255 {
256 /* We will read the unwind entries into temporary memory, then
257 fill in the actual unwind table. */
258
259 if (size > 0)
260 {
261 struct gdbarch *gdbarch = get_objfile_arch (objfile);
262 unsigned long tmp;
263 unsigned i;
264 char *buf = (char *) alloca (size);
265 CORE_ADDR low_text_segment_address;
266
267 /* For ELF targets, then unwinds are supposed to
268 be segment relative offsets instead of absolute addresses.
269
270 Note that when loading a shared library (text_offset != 0) the
271 unwinds are already relative to the text_offset that will be
272 passed in. */
273 if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0)
274 {
275 low_text_segment_address = -1;
276
277 bfd_map_over_sections (objfile->obfd,
278 record_text_segment_lowaddr,
279 &low_text_segment_address);
280
281 text_offset = low_text_segment_address;
282 }
283 else if (gdbarch_tdep (gdbarch)->solib_get_text_base)
284 {
285 text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile);
286 }
287
288 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
289
290 /* Now internalize the information being careful to handle host/target
291 endian issues. */
292 for (i = 0; i < entries; i++)
293 {
294 table[i].region_start = bfd_get_32 (objfile->obfd,
295 (bfd_byte *) buf);
296 table[i].region_start += text_offset;
297 buf += 4;
298 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
299 table[i].region_end += text_offset;
300 buf += 4;
301 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
302 buf += 4;
303 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
304 table[i].Millicode = (tmp >> 30) & 0x1;
305 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
306 table[i].Region_description = (tmp >> 27) & 0x3;
307 table[i].reserved = (tmp >> 26) & 0x1;
308 table[i].Entry_SR = (tmp >> 25) & 0x1;
309 table[i].Entry_FR = (tmp >> 21) & 0xf;
310 table[i].Entry_GR = (tmp >> 16) & 0x1f;
311 table[i].Args_stored = (tmp >> 15) & 0x1;
312 table[i].Variable_Frame = (tmp >> 14) & 0x1;
313 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
314 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
315 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
316 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
317 table[i].sr4export = (tmp >> 9) & 0x1;
318 table[i].cxx_info = (tmp >> 8) & 0x1;
319 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
320 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
321 table[i].reserved1 = (tmp >> 5) & 0x1;
322 table[i].Save_SP = (tmp >> 4) & 0x1;
323 table[i].Save_RP = (tmp >> 3) & 0x1;
324 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
325 table[i].save_r19 = (tmp >> 1) & 0x1;
326 table[i].Cleanup_defined = tmp & 0x1;
327 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
328 buf += 4;
329 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
330 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
331 table[i].Large_frame = (tmp >> 29) & 0x1;
332 table[i].alloca_frame = (tmp >> 28) & 0x1;
333 table[i].reserved2 = (tmp >> 27) & 0x1;
334 table[i].Total_frame_size = tmp & 0x7ffffff;
335
336 /* Stub unwinds are handled elsewhere. */
337 table[i].stub_unwind.stub_type = 0;
338 table[i].stub_unwind.padding = 0;
339 }
340 }
341 }
342
343 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
344 the object file. This info is used mainly by find_unwind_entry() to find
345 out the stack frame size and frame pointer used by procedures. We put
346 everything on the psymbol obstack in the objfile so that it automatically
347 gets freed when the objfile is destroyed. */
348
349 static void
350 read_unwind_info (struct objfile *objfile)
351 {
352 asection *unwind_sec, *stub_unwind_sec;
353 size_t unwind_size, stub_unwind_size, total_size;
354 unsigned index, unwind_entries;
355 unsigned stub_entries, total_entries;
356 CORE_ADDR text_offset;
357 struct hppa_unwind_info *ui;
358 struct hppa_objfile_private *obj_private;
359
360 text_offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
361 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
362 sizeof (struct hppa_unwind_info));
363
364 ui->table = NULL;
365 ui->cache = NULL;
366 ui->last = -1;
367
368 /* For reasons unknown the HP PA64 tools generate multiple unwinder
369 sections in a single executable. So we just iterate over every
370 section in the BFD looking for unwinder sections intead of trying
371 to do a lookup with bfd_get_section_by_name.
372
373 First determine the total size of the unwind tables so that we
374 can allocate memory in a nice big hunk. */
375 total_entries = 0;
376 for (unwind_sec = objfile->obfd->sections;
377 unwind_sec;
378 unwind_sec = unwind_sec->next)
379 {
380 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
381 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
382 {
383 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
384 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
385
386 total_entries += unwind_entries;
387 }
388 }
389
390 /* Now compute the size of the stub unwinds. Note the ELF tools do not
391 use stub unwinds at the current time. */
392 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
393
394 if (stub_unwind_sec)
395 {
396 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
397 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
398 }
399 else
400 {
401 stub_unwind_size = 0;
402 stub_entries = 0;
403 }
404
405 /* Compute total number of unwind entries and their total size. */
406 total_entries += stub_entries;
407 total_size = total_entries * sizeof (struct unwind_table_entry);
408
409 /* Allocate memory for the unwind table. */
410 ui->table = (struct unwind_table_entry *)
411 obstack_alloc (&objfile->objfile_obstack, total_size);
412 ui->last = total_entries - 1;
413
414 /* Now read in each unwind section and internalize the standard unwind
415 entries. */
416 index = 0;
417 for (unwind_sec = objfile->obfd->sections;
418 unwind_sec;
419 unwind_sec = unwind_sec->next)
420 {
421 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
422 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
423 {
424 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
425 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
426
427 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
428 unwind_entries, unwind_size, text_offset);
429 index += unwind_entries;
430 }
431 }
432
433 /* Now read in and internalize the stub unwind entries. */
434 if (stub_unwind_size > 0)
435 {
436 unsigned int i;
437 char *buf = (char *) alloca (stub_unwind_size);
438
439 /* Read in the stub unwind entries. */
440 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
441 0, stub_unwind_size);
442
443 /* Now convert them into regular unwind entries. */
444 for (i = 0; i < stub_entries; i++, index++)
445 {
446 /* Clear out the next unwind entry. */
447 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
448
449 /* Convert offset & size into region_start and region_end.
450 Stuff away the stub type into "reserved" fields. */
451 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
452 (bfd_byte *) buf);
453 ui->table[index].region_start += text_offset;
454 buf += 4;
455 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
456 (bfd_byte *) buf);
457 buf += 2;
458 ui->table[index].region_end
459 = ui->table[index].region_start + 4 *
460 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
461 buf += 2;
462 }
463
464 }
465
466 /* Unwind table needs to be kept sorted. */
467 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
468 compare_unwind_entries);
469
470 /* Keep a pointer to the unwind information. */
471 obj_private = (struct hppa_objfile_private *)
472 objfile_data (objfile, hppa_objfile_priv_data);
473 if (obj_private == NULL)
474 obj_private = hppa_init_objfile_priv_data (objfile);
475
476 obj_private->unwind_info = ui;
477 }
478
479 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
480 of the objfiles seeking the unwind table entry for this PC. Each objfile
481 contains a sorted list of struct unwind_table_entry. Since we do a binary
482 search of the unwind tables, we depend upon them to be sorted. */
483
484 struct unwind_table_entry *
485 find_unwind_entry (CORE_ADDR pc)
486 {
487 int first, middle, last;
488 struct objfile *objfile;
489 struct hppa_objfile_private *priv;
490
491 if (hppa_debug)
492 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry %s -> ",
493 hex_string (pc));
494
495 /* A function at address 0? Not in HP-UX! */
496 if (pc == (CORE_ADDR) 0)
497 {
498 if (hppa_debug)
499 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
500 return NULL;
501 }
502
503 ALL_OBJFILES (objfile)
504 {
505 struct hppa_unwind_info *ui;
506 ui = NULL;
507 priv = objfile_data (objfile, hppa_objfile_priv_data);
508 if (priv)
509 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
510
511 if (!ui)
512 {
513 read_unwind_info (objfile);
514 priv = objfile_data (objfile, hppa_objfile_priv_data);
515 if (priv == NULL)
516 error (_("Internal error reading unwind information."));
517 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
518 }
519
520 /* First, check the cache. */
521
522 if (ui->cache
523 && pc >= ui->cache->region_start
524 && pc <= ui->cache->region_end)
525 {
526 if (hppa_debug)
527 fprintf_unfiltered (gdb_stdlog, "%s (cached) }\n",
528 hex_string ((uintptr_t) ui->cache));
529 return ui->cache;
530 }
531
532 /* Not in the cache, do a binary search. */
533
534 first = 0;
535 last = ui->last;
536
537 while (first <= last)
538 {
539 middle = (first + last) / 2;
540 if (pc >= ui->table[middle].region_start
541 && pc <= ui->table[middle].region_end)
542 {
543 ui->cache = &ui->table[middle];
544 if (hppa_debug)
545 fprintf_unfiltered (gdb_stdlog, "%s }\n",
546 hex_string ((uintptr_t) ui->cache));
547 return &ui->table[middle];
548 }
549
550 if (pc < ui->table[middle].region_start)
551 last = middle - 1;
552 else
553 first = middle + 1;
554 }
555 } /* ALL_OBJFILES() */
556
557 if (hppa_debug)
558 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
559
560 return NULL;
561 }
562
563 /* Implement the stack_frame_destroyed_p gdbarch method.
564
565 The epilogue is defined here as the area either on the `bv' instruction
566 itself or an instruction which destroys the function's stack frame.
567
568 We do not assume that the epilogue is at the end of a function as we can
569 also have return sequences in the middle of a function. */
570
571 static int
572 hppa_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
573 {
574 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
575 unsigned long status;
576 unsigned int inst;
577 gdb_byte buf[4];
578
579 status = target_read_memory (pc, buf, 4);
580 if (status != 0)
581 return 0;
582
583 inst = extract_unsigned_integer (buf, 4, byte_order);
584
585 /* The most common way to perform a stack adjustment ldo X(sp),sp
586 We are destroying a stack frame if the offset is negative. */
587 if ((inst & 0xffffc000) == 0x37de0000
588 && hppa_extract_14 (inst) < 0)
589 return 1;
590
591 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
592 if (((inst & 0x0fc010e0) == 0x0fc010e0
593 || (inst & 0x0fc010e0) == 0x0fc010e0)
594 && hppa_extract_14 (inst) < 0)
595 return 1;
596
597 /* bv %r0(%rp) or bv,n %r0(%rp) */
598 if (inst == 0xe840c000 || inst == 0xe840c002)
599 return 1;
600
601 return 0;
602 }
603
604 static const unsigned char *
605 hppa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
606 {
607 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
608 (*len) = sizeof (breakpoint);
609 return breakpoint;
610 }
611
612 /* Return the name of a register. */
613
614 static const char *
615 hppa32_register_name (struct gdbarch *gdbarch, int i)
616 {
617 static char *names[] = {
618 "flags", "r1", "rp", "r3",
619 "r4", "r5", "r6", "r7",
620 "r8", "r9", "r10", "r11",
621 "r12", "r13", "r14", "r15",
622 "r16", "r17", "r18", "r19",
623 "r20", "r21", "r22", "r23",
624 "r24", "r25", "r26", "dp",
625 "ret0", "ret1", "sp", "r31",
626 "sar", "pcoqh", "pcsqh", "pcoqt",
627 "pcsqt", "eiem", "iir", "isr",
628 "ior", "ipsw", "goto", "sr4",
629 "sr0", "sr1", "sr2", "sr3",
630 "sr5", "sr6", "sr7", "cr0",
631 "cr8", "cr9", "ccr", "cr12",
632 "cr13", "cr24", "cr25", "cr26",
633 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
634 "fpsr", "fpe1", "fpe2", "fpe3",
635 "fpe4", "fpe5", "fpe6", "fpe7",
636 "fr4", "fr4R", "fr5", "fr5R",
637 "fr6", "fr6R", "fr7", "fr7R",
638 "fr8", "fr8R", "fr9", "fr9R",
639 "fr10", "fr10R", "fr11", "fr11R",
640 "fr12", "fr12R", "fr13", "fr13R",
641 "fr14", "fr14R", "fr15", "fr15R",
642 "fr16", "fr16R", "fr17", "fr17R",
643 "fr18", "fr18R", "fr19", "fr19R",
644 "fr20", "fr20R", "fr21", "fr21R",
645 "fr22", "fr22R", "fr23", "fr23R",
646 "fr24", "fr24R", "fr25", "fr25R",
647 "fr26", "fr26R", "fr27", "fr27R",
648 "fr28", "fr28R", "fr29", "fr29R",
649 "fr30", "fr30R", "fr31", "fr31R"
650 };
651 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
652 return NULL;
653 else
654 return names[i];
655 }
656
657 static const char *
658 hppa64_register_name (struct gdbarch *gdbarch, int i)
659 {
660 static char *names[] = {
661 "flags", "r1", "rp", "r3",
662 "r4", "r5", "r6", "r7",
663 "r8", "r9", "r10", "r11",
664 "r12", "r13", "r14", "r15",
665 "r16", "r17", "r18", "r19",
666 "r20", "r21", "r22", "r23",
667 "r24", "r25", "r26", "dp",
668 "ret0", "ret1", "sp", "r31",
669 "sar", "pcoqh", "pcsqh", "pcoqt",
670 "pcsqt", "eiem", "iir", "isr",
671 "ior", "ipsw", "goto", "sr4",
672 "sr0", "sr1", "sr2", "sr3",
673 "sr5", "sr6", "sr7", "cr0",
674 "cr8", "cr9", "ccr", "cr12",
675 "cr13", "cr24", "cr25", "cr26",
676 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
677 "fpsr", "fpe1", "fpe2", "fpe3",
678 "fr4", "fr5", "fr6", "fr7",
679 "fr8", "fr9", "fr10", "fr11",
680 "fr12", "fr13", "fr14", "fr15",
681 "fr16", "fr17", "fr18", "fr19",
682 "fr20", "fr21", "fr22", "fr23",
683 "fr24", "fr25", "fr26", "fr27",
684 "fr28", "fr29", "fr30", "fr31"
685 };
686 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
687 return NULL;
688 else
689 return names[i];
690 }
691
692 /* Map dwarf DBX register numbers to GDB register numbers. */
693 static int
694 hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
695 {
696 /* The general registers and the sar are the same in both sets. */
697 if (reg <= 32)
698 return reg;
699
700 /* fr4-fr31 are mapped from 72 in steps of 2. */
701 if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1))
702 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
703
704 warning (_("Unmapped DWARF DBX Register #%d encountered."), reg);
705 return -1;
706 }
707
708 /* This function pushes a stack frame with arguments as part of the
709 inferior function calling mechanism.
710
711 This is the version of the function for the 32-bit PA machines, in
712 which later arguments appear at lower addresses. (The stack always
713 grows towards higher addresses.)
714
715 We simply allocate the appropriate amount of stack space and put
716 arguments into their proper slots. */
717
718 static CORE_ADDR
719 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
720 struct regcache *regcache, CORE_ADDR bp_addr,
721 int nargs, struct value **args, CORE_ADDR sp,
722 int struct_return, CORE_ADDR struct_addr)
723 {
724 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
725
726 /* Stack base address at which any pass-by-reference parameters are
727 stored. */
728 CORE_ADDR struct_end = 0;
729 /* Stack base address at which the first parameter is stored. */
730 CORE_ADDR param_end = 0;
731
732 /* The inner most end of the stack after all the parameters have
733 been pushed. */
734 CORE_ADDR new_sp = 0;
735
736 /* Two passes. First pass computes the location of everything,
737 second pass writes the bytes out. */
738 int write_pass;
739
740 /* Global pointer (r19) of the function we are trying to call. */
741 CORE_ADDR gp;
742
743 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
744
745 for (write_pass = 0; write_pass < 2; write_pass++)
746 {
747 CORE_ADDR struct_ptr = 0;
748 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
749 struct_ptr is adjusted for each argument below, so the first
750 argument will end up at sp-36. */
751 CORE_ADDR param_ptr = 32;
752 int i;
753 int small_struct = 0;
754
755 for (i = 0; i < nargs; i++)
756 {
757 struct value *arg = args[i];
758 struct type *type = check_typedef (value_type (arg));
759 /* The corresponding parameter that is pushed onto the
760 stack, and [possibly] passed in a register. */
761 gdb_byte param_val[8];
762 int param_len;
763 memset (param_val, 0, sizeof param_val);
764 if (TYPE_LENGTH (type) > 8)
765 {
766 /* Large parameter, pass by reference. Store the value
767 in "struct" area and then pass its address. */
768 param_len = 4;
769 struct_ptr += align_up (TYPE_LENGTH (type), 8);
770 if (write_pass)
771 write_memory (struct_end - struct_ptr, value_contents (arg),
772 TYPE_LENGTH (type));
773 store_unsigned_integer (param_val, 4, byte_order,
774 struct_end - struct_ptr);
775 }
776 else if (TYPE_CODE (type) == TYPE_CODE_INT
777 || TYPE_CODE (type) == TYPE_CODE_ENUM)
778 {
779 /* Integer value store, right aligned. "unpack_long"
780 takes care of any sign-extension problems. */
781 param_len = align_up (TYPE_LENGTH (type), 4);
782 store_unsigned_integer (param_val, param_len, byte_order,
783 unpack_long (type,
784 value_contents (arg)));
785 }
786 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
787 {
788 /* Floating point value store, right aligned. */
789 param_len = align_up (TYPE_LENGTH (type), 4);
790 memcpy (param_val, value_contents (arg), param_len);
791 }
792 else
793 {
794 param_len = align_up (TYPE_LENGTH (type), 4);
795
796 /* Small struct value are stored right-aligned. */
797 memcpy (param_val + param_len - TYPE_LENGTH (type),
798 value_contents (arg), TYPE_LENGTH (type));
799
800 /* Structures of size 5, 6 and 7 bytes are special in that
801 the higher-ordered word is stored in the lower-ordered
802 argument, and even though it is a 8-byte quantity the
803 registers need not be 8-byte aligned. */
804 if (param_len > 4 && param_len < 8)
805 small_struct = 1;
806 }
807
808 param_ptr += param_len;
809 if (param_len == 8 && !small_struct)
810 param_ptr = align_up (param_ptr, 8);
811
812 /* First 4 non-FP arguments are passed in gr26-gr23.
813 First 4 32-bit FP arguments are passed in fr4L-fr7L.
814 First 2 64-bit FP arguments are passed in fr5 and fr7.
815
816 The rest go on the stack, starting at sp-36, towards lower
817 addresses. 8-byte arguments must be aligned to a 8-byte
818 stack boundary. */
819 if (write_pass)
820 {
821 write_memory (param_end - param_ptr, param_val, param_len);
822
823 /* There are some cases when we don't know the type
824 expected by the callee (e.g. for variadic functions), so
825 pass the parameters in both general and fp regs. */
826 if (param_ptr <= 48)
827 {
828 int grreg = 26 - (param_ptr - 36) / 4;
829 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
830 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
831
832 regcache_cooked_write (regcache, grreg, param_val);
833 regcache_cooked_write (regcache, fpLreg, param_val);
834
835 if (param_len > 4)
836 {
837 regcache_cooked_write (regcache, grreg + 1,
838 param_val + 4);
839
840 regcache_cooked_write (regcache, fpreg, param_val);
841 regcache_cooked_write (regcache, fpreg + 1,
842 param_val + 4);
843 }
844 }
845 }
846 }
847
848 /* Update the various stack pointers. */
849 if (!write_pass)
850 {
851 struct_end = sp + align_up (struct_ptr, 64);
852 /* PARAM_PTR already accounts for all the arguments passed
853 by the user. However, the ABI mandates minimum stack
854 space allocations for outgoing arguments. The ABI also
855 mandates minimum stack alignments which we must
856 preserve. */
857 param_end = struct_end + align_up (param_ptr, 64);
858 }
859 }
860
861 /* If a structure has to be returned, set up register 28 to hold its
862 address. */
863 if (struct_return)
864 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
865
866 gp = tdep->find_global_pointer (gdbarch, function);
867
868 if (gp != 0)
869 regcache_cooked_write_unsigned (regcache, 19, gp);
870
871 /* Set the return address. */
872 if (!gdbarch_push_dummy_code_p (gdbarch))
873 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
874
875 /* Update the Stack Pointer. */
876 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
877
878 return param_end;
879 }
880
881 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit
882 Runtime Architecture for PA-RISC 2.0", which is distributed as part
883 as of the HP-UX Software Transition Kit (STK). This implementation
884 is based on version 3.3, dated October 6, 1997. */
885
886 /* Check whether TYPE is an "Integral or Pointer Scalar Type". */
887
888 static int
889 hppa64_integral_or_pointer_p (const struct type *type)
890 {
891 switch (TYPE_CODE (type))
892 {
893 case TYPE_CODE_INT:
894 case TYPE_CODE_BOOL:
895 case TYPE_CODE_CHAR:
896 case TYPE_CODE_ENUM:
897 case TYPE_CODE_RANGE:
898 {
899 int len = TYPE_LENGTH (type);
900 return (len == 1 || len == 2 || len == 4 || len == 8);
901 }
902 case TYPE_CODE_PTR:
903 case TYPE_CODE_REF:
904 return (TYPE_LENGTH (type) == 8);
905 default:
906 break;
907 }
908
909 return 0;
910 }
911
912 /* Check whether TYPE is a "Floating Scalar Type". */
913
914 static int
915 hppa64_floating_p (const struct type *type)
916 {
917 switch (TYPE_CODE (type))
918 {
919 case TYPE_CODE_FLT:
920 {
921 int len = TYPE_LENGTH (type);
922 return (len == 4 || len == 8 || len == 16);
923 }
924 default:
925 break;
926 }
927
928 return 0;
929 }
930
931 /* If CODE points to a function entry address, try to look up the corresponding
932 function descriptor and return its address instead. If CODE is not a
933 function entry address, then just return it unchanged. */
934 static CORE_ADDR
935 hppa64_convert_code_addr_to_fptr (struct gdbarch *gdbarch, CORE_ADDR code)
936 {
937 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
938 struct obj_section *sec, *opd;
939
940 sec = find_pc_section (code);
941
942 if (!sec)
943 return code;
944
945 /* If CODE is in a data section, assume it's already a fptr. */
946 if (!(sec->the_bfd_section->flags & SEC_CODE))
947 return code;
948
949 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
950 {
951 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
952 break;
953 }
954
955 if (opd < sec->objfile->sections_end)
956 {
957 CORE_ADDR addr;
958
959 for (addr = obj_section_addr (opd);
960 addr < obj_section_endaddr (opd);
961 addr += 2 * 8)
962 {
963 ULONGEST opdaddr;
964 gdb_byte tmp[8];
965
966 if (target_read_memory (addr, tmp, sizeof (tmp)))
967 break;
968 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp), byte_order);
969
970 if (opdaddr == code)
971 return addr - 16;
972 }
973 }
974
975 return code;
976 }
977
978 static CORE_ADDR
979 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
980 struct regcache *regcache, CORE_ADDR bp_addr,
981 int nargs, struct value **args, CORE_ADDR sp,
982 int struct_return, CORE_ADDR struct_addr)
983 {
984 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
985 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
986 int i, offset = 0;
987 CORE_ADDR gp;
988
989 /* "The outgoing parameter area [...] must be aligned at a 16-byte
990 boundary." */
991 sp = align_up (sp, 16);
992
993 for (i = 0; i < nargs; i++)
994 {
995 struct value *arg = args[i];
996 struct type *type = value_type (arg);
997 int len = TYPE_LENGTH (type);
998 const bfd_byte *valbuf;
999 bfd_byte fptrbuf[8];
1000 int regnum;
1001
1002 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
1003 offset = align_up (offset, 8);
1004
1005 if (hppa64_integral_or_pointer_p (type))
1006 {
1007 /* "Integral scalar parameters smaller than 64 bits are
1008 padded on the left (i.e., the value is in the
1009 least-significant bits of the 64-bit storage unit, and
1010 the high-order bits are undefined)." Therefore we can
1011 safely sign-extend them. */
1012 if (len < 8)
1013 {
1014 arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg);
1015 len = 8;
1016 }
1017 }
1018 else if (hppa64_floating_p (type))
1019 {
1020 if (len > 8)
1021 {
1022 /* "Quad-precision (128-bit) floating-point scalar
1023 parameters are aligned on a 16-byte boundary." */
1024 offset = align_up (offset, 16);
1025
1026 /* "Double-extended- and quad-precision floating-point
1027 parameters within the first 64 bytes of the parameter
1028 list are always passed in general registers." */
1029 }
1030 else
1031 {
1032 if (len == 4)
1033 {
1034 /* "Single-precision (32-bit) floating-point scalar
1035 parameters are padded on the left with 32 bits of
1036 garbage (i.e., the floating-point value is in the
1037 least-significant 32 bits of a 64-bit storage
1038 unit)." */
1039 offset += 4;
1040 }
1041
1042 /* "Single- and double-precision floating-point
1043 parameters in this area are passed according to the
1044 available formal parameter information in a function
1045 prototype. [...] If no prototype is in scope,
1046 floating-point parameters must be passed both in the
1047 corresponding general registers and in the
1048 corresponding floating-point registers." */
1049 regnum = HPPA64_FP4_REGNUM + offset / 8;
1050
1051 if (regnum < HPPA64_FP4_REGNUM + 8)
1052 {
1053 /* "Single-precision floating-point parameters, when
1054 passed in floating-point registers, are passed in
1055 the right halves of the floating point registers;
1056 the left halves are unused." */
1057 regcache_cooked_write_part (regcache, regnum, offset % 8,
1058 len, value_contents (arg));
1059 }
1060 }
1061 }
1062 else
1063 {
1064 if (len > 8)
1065 {
1066 /* "Aggregates larger than 8 bytes are aligned on a
1067 16-byte boundary, possibly leaving an unused argument
1068 slot, which is filled with garbage. If necessary,
1069 they are padded on the right (with garbage), to a
1070 multiple of 8 bytes." */
1071 offset = align_up (offset, 16);
1072 }
1073 }
1074
1075 /* If we are passing a function pointer, make sure we pass a function
1076 descriptor instead of the function entry address. */
1077 if (TYPE_CODE (type) == TYPE_CODE_PTR
1078 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1079 {
1080 ULONGEST codeptr, fptr;
1081
1082 codeptr = unpack_long (type, value_contents (arg));
1083 fptr = hppa64_convert_code_addr_to_fptr (gdbarch, codeptr);
1084 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), byte_order,
1085 fptr);
1086 valbuf = fptrbuf;
1087 }
1088 else
1089 {
1090 valbuf = value_contents (arg);
1091 }
1092
1093 /* Always store the argument in memory. */
1094 write_memory (sp + offset, valbuf, len);
1095
1096 regnum = HPPA_ARG0_REGNUM - offset / 8;
1097 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1098 {
1099 regcache_cooked_write_part (regcache, regnum,
1100 offset % 8, min (len, 8), valbuf);
1101 offset += min (len, 8);
1102 valbuf += min (len, 8);
1103 len -= min (len, 8);
1104 regnum--;
1105 }
1106
1107 offset += len;
1108 }
1109
1110 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1111 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1112
1113 /* Allocate the outgoing parameter area. Make sure the outgoing
1114 parameter area is multiple of 16 bytes in length. */
1115 sp += max (align_up (offset, 16), 64);
1116
1117 /* Allocate 32-bytes of scratch space. The documentation doesn't
1118 mention this, but it seems to be needed. */
1119 sp += 32;
1120
1121 /* Allocate the frame marker area. */
1122 sp += 16;
1123
1124 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1125 its address. */
1126 if (struct_return)
1127 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1128
1129 /* Set up GR27 (%dp) to hold the global pointer (gp). */
1130 gp = tdep->find_global_pointer (gdbarch, function);
1131 if (gp != 0)
1132 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1133
1134 /* Set up GR2 (%rp) to hold the return pointer (rp). */
1135 if (!gdbarch_push_dummy_code_p (gdbarch))
1136 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1137
1138 /* Set up GR30 to hold the stack pointer (sp). */
1139 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1140
1141 return sp;
1142 }
1143 \f
1144
1145 /* Handle 32/64-bit struct return conventions. */
1146
1147 static enum return_value_convention
1148 hppa32_return_value (struct gdbarch *gdbarch, struct value *function,
1149 struct type *type, struct regcache *regcache,
1150 gdb_byte *readbuf, const gdb_byte *writebuf)
1151 {
1152 if (TYPE_LENGTH (type) <= 2 * 4)
1153 {
1154 /* The value always lives in the right hand end of the register
1155 (or register pair)? */
1156 int b;
1157 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1158 int part = TYPE_LENGTH (type) % 4;
1159 /* The left hand register contains only part of the value,
1160 transfer that first so that the rest can be xfered as entire
1161 4-byte registers. */
1162 if (part > 0)
1163 {
1164 if (readbuf != NULL)
1165 regcache_cooked_read_part (regcache, reg, 4 - part,
1166 part, readbuf);
1167 if (writebuf != NULL)
1168 regcache_cooked_write_part (regcache, reg, 4 - part,
1169 part, writebuf);
1170 reg++;
1171 }
1172 /* Now transfer the remaining register values. */
1173 for (b = part; b < TYPE_LENGTH (type); b += 4)
1174 {
1175 if (readbuf != NULL)
1176 regcache_cooked_read (regcache, reg, readbuf + b);
1177 if (writebuf != NULL)
1178 regcache_cooked_write (regcache, reg, writebuf + b);
1179 reg++;
1180 }
1181 return RETURN_VALUE_REGISTER_CONVENTION;
1182 }
1183 else
1184 return RETURN_VALUE_STRUCT_CONVENTION;
1185 }
1186
1187 static enum return_value_convention
1188 hppa64_return_value (struct gdbarch *gdbarch, struct value *function,
1189 struct type *type, struct regcache *regcache,
1190 gdb_byte *readbuf, const gdb_byte *writebuf)
1191 {
1192 int len = TYPE_LENGTH (type);
1193 int regnum, offset;
1194
1195 if (len > 16)
1196 {
1197 /* All return values larget than 128 bits must be aggregate
1198 return values. */
1199 gdb_assert (!hppa64_integral_or_pointer_p (type));
1200 gdb_assert (!hppa64_floating_p (type));
1201
1202 /* "Aggregate return values larger than 128 bits are returned in
1203 a buffer allocated by the caller. The address of the buffer
1204 must be passed in GR 28." */
1205 return RETURN_VALUE_STRUCT_CONVENTION;
1206 }
1207
1208 if (hppa64_integral_or_pointer_p (type))
1209 {
1210 /* "Integral return values are returned in GR 28. Values
1211 smaller than 64 bits are padded on the left (with garbage)." */
1212 regnum = HPPA_RET0_REGNUM;
1213 offset = 8 - len;
1214 }
1215 else if (hppa64_floating_p (type))
1216 {
1217 if (len > 8)
1218 {
1219 /* "Double-extended- and quad-precision floating-point
1220 values are returned in GRs 28 and 29. The sign,
1221 exponent, and most-significant bits of the mantissa are
1222 returned in GR 28; the least-significant bits of the
1223 mantissa are passed in GR 29. For double-extended
1224 precision values, GR 29 is padded on the right with 48
1225 bits of garbage." */
1226 regnum = HPPA_RET0_REGNUM;
1227 offset = 0;
1228 }
1229 else
1230 {
1231 /* "Single-precision and double-precision floating-point
1232 return values are returned in FR 4R (single precision) or
1233 FR 4 (double-precision)." */
1234 regnum = HPPA64_FP4_REGNUM;
1235 offset = 8 - len;
1236 }
1237 }
1238 else
1239 {
1240 /* "Aggregate return values up to 64 bits in size are returned
1241 in GR 28. Aggregates smaller than 64 bits are left aligned
1242 in the register; the pad bits on the right are undefined."
1243
1244 "Aggregate return values between 65 and 128 bits are returned
1245 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1246 the remaining bits are placed, left aligned, in GR 29. The
1247 pad bits on the right of GR 29 (if any) are undefined." */
1248 regnum = HPPA_RET0_REGNUM;
1249 offset = 0;
1250 }
1251
1252 if (readbuf)
1253 {
1254 while (len > 0)
1255 {
1256 regcache_cooked_read_part (regcache, regnum, offset,
1257 min (len, 8), readbuf);
1258 readbuf += min (len, 8);
1259 len -= min (len, 8);
1260 regnum++;
1261 }
1262 }
1263
1264 if (writebuf)
1265 {
1266 while (len > 0)
1267 {
1268 regcache_cooked_write_part (regcache, regnum, offset,
1269 min (len, 8), writebuf);
1270 writebuf += min (len, 8);
1271 len -= min (len, 8);
1272 regnum++;
1273 }
1274 }
1275
1276 return RETURN_VALUE_REGISTER_CONVENTION;
1277 }
1278 \f
1279
1280 static CORE_ADDR
1281 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1282 struct target_ops *targ)
1283 {
1284 if (addr & 2)
1285 {
1286 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
1287 CORE_ADDR plabel = addr & ~3;
1288 return read_memory_typed_address (plabel, func_ptr_type);
1289 }
1290
1291 return addr;
1292 }
1293
1294 static CORE_ADDR
1295 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1296 {
1297 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1298 and not _bit_)! */
1299 return align_up (addr, 64);
1300 }
1301
1302 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1303
1304 static CORE_ADDR
1305 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1306 {
1307 /* Just always 16-byte align. */
1308 return align_up (addr, 16);
1309 }
1310
1311 CORE_ADDR
1312 hppa_read_pc (struct regcache *regcache)
1313 {
1314 ULONGEST ipsw;
1315 ULONGEST pc;
1316
1317 regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw);
1318 regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc);
1319
1320 /* If the current instruction is nullified, then we are effectively
1321 still executing the previous instruction. Pretend we are still
1322 there. This is needed when single stepping; if the nullified
1323 instruction is on a different line, we don't want GDB to think
1324 we've stepped onto that line. */
1325 if (ipsw & 0x00200000)
1326 pc -= 4;
1327
1328 return pc & ~0x3;
1329 }
1330
1331 void
1332 hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
1333 {
1334 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1335 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
1336 }
1337
1338 /* For the given instruction (INST), return any adjustment it makes
1339 to the stack pointer or zero for no adjustment.
1340
1341 This only handles instructions commonly found in prologues. */
1342
1343 static int
1344 prologue_inst_adjust_sp (unsigned long inst)
1345 {
1346 /* This must persist across calls. */
1347 static int save_high21;
1348
1349 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1350 if ((inst & 0xffffc000) == 0x37de0000)
1351 return hppa_extract_14 (inst);
1352
1353 /* stwm X,D(sp) */
1354 if ((inst & 0xffe00000) == 0x6fc00000)
1355 return hppa_extract_14 (inst);
1356
1357 /* std,ma X,D(sp) */
1358 if ((inst & 0xffe00008) == 0x73c00008)
1359 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1360
1361 /* addil high21,%r30; ldo low11,(%r1),%r30)
1362 save high bits in save_high21 for later use. */
1363 if ((inst & 0xffe00000) == 0x2bc00000)
1364 {
1365 save_high21 = hppa_extract_21 (inst);
1366 return 0;
1367 }
1368
1369 if ((inst & 0xffff0000) == 0x343e0000)
1370 return save_high21 + hppa_extract_14 (inst);
1371
1372 /* fstws as used by the HP compilers. */
1373 if ((inst & 0xffffffe0) == 0x2fd01220)
1374 return hppa_extract_5_load (inst);
1375
1376 /* No adjustment. */
1377 return 0;
1378 }
1379
1380 /* Return nonzero if INST is a branch of some kind, else return zero. */
1381
1382 static int
1383 is_branch (unsigned long inst)
1384 {
1385 switch (inst >> 26)
1386 {
1387 case 0x20:
1388 case 0x21:
1389 case 0x22:
1390 case 0x23:
1391 case 0x27:
1392 case 0x28:
1393 case 0x29:
1394 case 0x2a:
1395 case 0x2b:
1396 case 0x2f:
1397 case 0x30:
1398 case 0x31:
1399 case 0x32:
1400 case 0x33:
1401 case 0x38:
1402 case 0x39:
1403 case 0x3a:
1404 case 0x3b:
1405 return 1;
1406
1407 default:
1408 return 0;
1409 }
1410 }
1411
1412 /* Return the register number for a GR which is saved by INST or
1413 zero if INST does not save a GR.
1414
1415 Referenced from:
1416
1417 parisc 1.1:
1418 https://parisc.wiki.kernel.org/images-parisc/6/68/Pa11_acd.pdf
1419
1420 parisc 2.0:
1421 https://parisc.wiki.kernel.org/images-parisc/7/73/Parisc2.0.pdf
1422
1423 According to Table 6-5 of Chapter 6 (Memory Reference Instructions)
1424 on page 106 in parisc 2.0, all instructions for storing values from
1425 the general registers are:
1426
1427 Store: stb, sth, stw, std (according to Chapter 7, they
1428 are only in both "inst >> 26" and "inst >> 6".
1429 Store Absolute: stwa, stda (according to Chapter 7, they are only
1430 in "inst >> 6".
1431 Store Bytes: stby, stdby (according to Chapter 7, they are
1432 only in "inst >> 6").
1433
1434 For (inst >> 26), according to Chapter 7:
1435
1436 The effective memory reference address is formed by the addition
1437 of an immediate displacement to a base value.
1438
1439 - stb: 0x18, store a byte from a general register.
1440
1441 - sth: 0x19, store a halfword from a general register.
1442
1443 - stw: 0x1a, store a word from a general register.
1444
1445 - stwm: 0x1b, store a word from a general register and perform base
1446 register modification (2.0 will still treate it as stw).
1447
1448 - std: 0x1c, store a doubleword from a general register (2.0 only).
1449
1450 - stw: 0x1f, store a word from a general register (2.0 only).
1451
1452 For (inst >> 6) when ((inst >> 26) == 0x03), according to Chapter 7:
1453
1454 The effective memory reference address is formed by the addition
1455 of an index value to a base value specified in the instruction.
1456
1457 - stb: 0x08, store a byte from a general register (1.1 calls stbs).
1458
1459 - sth: 0x09, store a halfword from a general register (1.1 calls
1460 sths).
1461
1462 - stw: 0x0a, store a word from a general register (1.1 calls stws).
1463
1464 - std: 0x0b: store a doubleword from a general register (2.0 only)
1465
1466 Implement fast byte moves (stores) to unaligned word or doubleword
1467 destination.
1468
1469 - stby: 0x0c, for unaligned word (1.1 calls stbys).
1470
1471 - stdby: 0x0d for unaligned doubleword (2.0 only).
1472
1473 Store a word or doubleword using an absolute memory address formed
1474 using short or long displacement or indexed
1475
1476 - stwa: 0x0e, store a word from a general register to an absolute
1477 address (1.0 calls stwas).
1478
1479 - stda: 0x0f, store a doubleword from a general register to an
1480 absolute address (2.0 only). */
1481
1482 static int
1483 inst_saves_gr (unsigned long inst)
1484 {
1485 switch ((inst >> 26) & 0x0f)
1486 {
1487 case 0x03:
1488 switch ((inst >> 6) & 0x0f)
1489 {
1490 case 0x08:
1491 case 0x09:
1492 case 0x0a:
1493 case 0x0b:
1494 case 0x0c:
1495 case 0x0d:
1496 case 0x0e:
1497 case 0x0f:
1498 return hppa_extract_5R_store (inst);
1499 default:
1500 return 0;
1501 }
1502 case 0x18:
1503 case 0x19:
1504 case 0x1a:
1505 case 0x1b:
1506 case 0x1c:
1507 /* no 0x1d or 0x1e -- according to parisc 2.0 document */
1508 case 0x1f:
1509 return hppa_extract_5R_store (inst);
1510 default:
1511 return 0;
1512 }
1513 }
1514
1515 /* Return the register number for a FR which is saved by INST or
1516 zero it INST does not save a FR.
1517
1518 Note we only care about full 64bit register stores (that's the only
1519 kind of stores the prologue will use).
1520
1521 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1522
1523 static int
1524 inst_saves_fr (unsigned long inst)
1525 {
1526 /* Is this an FSTD? */
1527 if ((inst & 0xfc00dfc0) == 0x2c001200)
1528 return hppa_extract_5r_store (inst);
1529 if ((inst & 0xfc000002) == 0x70000002)
1530 return hppa_extract_5R_store (inst);
1531 /* Is this an FSTW? */
1532 if ((inst & 0xfc00df80) == 0x24001200)
1533 return hppa_extract_5r_store (inst);
1534 if ((inst & 0xfc000002) == 0x7c000000)
1535 return hppa_extract_5R_store (inst);
1536 return 0;
1537 }
1538
1539 /* Advance PC across any function entry prologue instructions
1540 to reach some "real" code.
1541
1542 Use information in the unwind table to determine what exactly should
1543 be in the prologue. */
1544
1545
1546 static CORE_ADDR
1547 skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
1548 int stop_before_branch)
1549 {
1550 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1551 gdb_byte buf[4];
1552 CORE_ADDR orig_pc = pc;
1553 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1554 unsigned long args_stored, status, i, restart_gr, restart_fr;
1555 struct unwind_table_entry *u;
1556 int final_iteration;
1557
1558 restart_gr = 0;
1559 restart_fr = 0;
1560
1561 restart:
1562 u = find_unwind_entry (pc);
1563 if (!u)
1564 return pc;
1565
1566 /* If we are not at the beginning of a function, then return now. */
1567 if ((pc & ~0x3) != u->region_start)
1568 return pc;
1569
1570 /* This is how much of a frame adjustment we need to account for. */
1571 stack_remaining = u->Total_frame_size << 3;
1572
1573 /* Magic register saves we want to know about. */
1574 save_rp = u->Save_RP;
1575 save_sp = u->Save_SP;
1576
1577 /* An indication that args may be stored into the stack. Unfortunately
1578 the HPUX compilers tend to set this in cases where no args were
1579 stored too!. */
1580 args_stored = 1;
1581
1582 /* Turn the Entry_GR field into a bitmask. */
1583 save_gr = 0;
1584 for (i = 3; i < u->Entry_GR + 3; i++)
1585 {
1586 /* Frame pointer gets saved into a special location. */
1587 if (u->Save_SP && i == HPPA_FP_REGNUM)
1588 continue;
1589
1590 save_gr |= (1 << i);
1591 }
1592 save_gr &= ~restart_gr;
1593
1594 /* Turn the Entry_FR field into a bitmask too. */
1595 save_fr = 0;
1596 for (i = 12; i < u->Entry_FR + 12; i++)
1597 save_fr |= (1 << i);
1598 save_fr &= ~restart_fr;
1599
1600 final_iteration = 0;
1601
1602 /* Loop until we find everything of interest or hit a branch.
1603
1604 For unoptimized GCC code and for any HP CC code this will never ever
1605 examine any user instructions.
1606
1607 For optimzied GCC code we're faced with problems. GCC will schedule
1608 its prologue and make prologue instructions available for delay slot
1609 filling. The end result is user code gets mixed in with the prologue
1610 and a prologue instruction may be in the delay slot of the first branch
1611 or call.
1612
1613 Some unexpected things are expected with debugging optimized code, so
1614 we allow this routine to walk past user instructions in optimized
1615 GCC code. */
1616 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1617 || args_stored)
1618 {
1619 unsigned int reg_num;
1620 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1621 unsigned long old_save_rp, old_save_sp, next_inst;
1622
1623 /* Save copies of all the triggers so we can compare them later
1624 (only for HPC). */
1625 old_save_gr = save_gr;
1626 old_save_fr = save_fr;
1627 old_save_rp = save_rp;
1628 old_save_sp = save_sp;
1629 old_stack_remaining = stack_remaining;
1630
1631 status = target_read_memory (pc, buf, 4);
1632 inst = extract_unsigned_integer (buf, 4, byte_order);
1633
1634 /* Yow! */
1635 if (status != 0)
1636 return pc;
1637
1638 /* Note the interesting effects of this instruction. */
1639 stack_remaining -= prologue_inst_adjust_sp (inst);
1640
1641 /* There are limited ways to store the return pointer into the
1642 stack. */
1643 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
1644 save_rp = 0;
1645
1646 /* These are the only ways we save SP into the stack. At this time
1647 the HP compilers never bother to save SP into the stack. */
1648 if ((inst & 0xffffc000) == 0x6fc10000
1649 || (inst & 0xffffc00c) == 0x73c10008)
1650 save_sp = 0;
1651
1652 /* Are we loading some register with an offset from the argument
1653 pointer? */
1654 if ((inst & 0xffe00000) == 0x37a00000
1655 || (inst & 0xffffffe0) == 0x081d0240)
1656 {
1657 pc += 4;
1658 continue;
1659 }
1660
1661 /* Account for general and floating-point register saves. */
1662 reg_num = inst_saves_gr (inst);
1663 save_gr &= ~(1 << reg_num);
1664
1665 /* Ugh. Also account for argument stores into the stack.
1666 Unfortunately args_stored only tells us that some arguments
1667 where stored into the stack. Not how many or what kind!
1668
1669 This is a kludge as on the HP compiler sets this bit and it
1670 never does prologue scheduling. So once we see one, skip past
1671 all of them. We have similar code for the fp arg stores below.
1672
1673 FIXME. Can still die if we have a mix of GR and FR argument
1674 stores! */
1675 if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1676 && reg_num <= 26)
1677 {
1678 while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1679 && reg_num <= 26)
1680 {
1681 pc += 4;
1682 status = target_read_memory (pc, buf, 4);
1683 inst = extract_unsigned_integer (buf, 4, byte_order);
1684 if (status != 0)
1685 return pc;
1686 reg_num = inst_saves_gr (inst);
1687 }
1688 args_stored = 0;
1689 continue;
1690 }
1691
1692 reg_num = inst_saves_fr (inst);
1693 save_fr &= ~(1 << reg_num);
1694
1695 status = target_read_memory (pc + 4, buf, 4);
1696 next_inst = extract_unsigned_integer (buf, 4, byte_order);
1697
1698 /* Yow! */
1699 if (status != 0)
1700 return pc;
1701
1702 /* We've got to be read to handle the ldo before the fp register
1703 save. */
1704 if ((inst & 0xfc000000) == 0x34000000
1705 && inst_saves_fr (next_inst) >= 4
1706 && inst_saves_fr (next_inst)
1707 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1708 {
1709 /* So we drop into the code below in a reasonable state. */
1710 reg_num = inst_saves_fr (next_inst);
1711 pc -= 4;
1712 }
1713
1714 /* Ugh. Also account for argument stores into the stack.
1715 This is a kludge as on the HP compiler sets this bit and it
1716 never does prologue scheduling. So once we see one, skip past
1717 all of them. */
1718 if (reg_num >= 4
1719 && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1720 {
1721 while (reg_num >= 4
1722 && reg_num
1723 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1724 {
1725 pc += 8;
1726 status = target_read_memory (pc, buf, 4);
1727 inst = extract_unsigned_integer (buf, 4, byte_order);
1728 if (status != 0)
1729 return pc;
1730 if ((inst & 0xfc000000) != 0x34000000)
1731 break;
1732 status = target_read_memory (pc + 4, buf, 4);
1733 next_inst = extract_unsigned_integer (buf, 4, byte_order);
1734 if (status != 0)
1735 return pc;
1736 reg_num = inst_saves_fr (next_inst);
1737 }
1738 args_stored = 0;
1739 continue;
1740 }
1741
1742 /* Quit if we hit any kind of branch. This can happen if a prologue
1743 instruction is in the delay slot of the first call/branch. */
1744 if (is_branch (inst) && stop_before_branch)
1745 break;
1746
1747 /* What a crock. The HP compilers set args_stored even if no
1748 arguments were stored into the stack (boo hiss). This could
1749 cause this code to then skip a bunch of user insns (up to the
1750 first branch).
1751
1752 To combat this we try to identify when args_stored was bogusly
1753 set and clear it. We only do this when args_stored is nonzero,
1754 all other resources are accounted for, and nothing changed on
1755 this pass. */
1756 if (args_stored
1757 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1758 && old_save_gr == save_gr && old_save_fr == save_fr
1759 && old_save_rp == save_rp && old_save_sp == save_sp
1760 && old_stack_remaining == stack_remaining)
1761 break;
1762
1763 /* Bump the PC. */
1764 pc += 4;
1765
1766 /* !stop_before_branch, so also look at the insn in the delay slot
1767 of the branch. */
1768 if (final_iteration)
1769 break;
1770 if (is_branch (inst))
1771 final_iteration = 1;
1772 }
1773
1774 /* We've got a tenative location for the end of the prologue. However
1775 because of limitations in the unwind descriptor mechanism we may
1776 have went too far into user code looking for the save of a register
1777 that does not exist. So, if there registers we expected to be saved
1778 but never were, mask them out and restart.
1779
1780 This should only happen in optimized code, and should be very rare. */
1781 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1782 {
1783 pc = orig_pc;
1784 restart_gr = save_gr;
1785 restart_fr = save_fr;
1786 goto restart;
1787 }
1788
1789 return pc;
1790 }
1791
1792
1793 /* Return the address of the PC after the last prologue instruction if
1794 we can determine it from the debug symbols. Else return zero. */
1795
1796 static CORE_ADDR
1797 after_prologue (CORE_ADDR pc)
1798 {
1799 struct symtab_and_line sal;
1800 CORE_ADDR func_addr, func_end;
1801
1802 /* If we can not find the symbol in the partial symbol table, then
1803 there is no hope we can determine the function's start address
1804 with this code. */
1805 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1806 return 0;
1807
1808 /* Get the line associated with FUNC_ADDR. */
1809 sal = find_pc_line (func_addr, 0);
1810
1811 /* There are only two cases to consider. First, the end of the source line
1812 is within the function bounds. In that case we return the end of the
1813 source line. Second is the end of the source line extends beyond the
1814 bounds of the current function. We need to use the slow code to
1815 examine instructions in that case.
1816
1817 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1818 the wrong thing to do. In fact, it should be entirely possible for this
1819 function to always return zero since the slow instruction scanning code
1820 is supposed to *always* work. If it does not, then it is a bug. */
1821 if (sal.end < func_end)
1822 return sal.end;
1823 else
1824 return 0;
1825 }
1826
1827 /* To skip prologues, I use this predicate. Returns either PC itself
1828 if the code at PC does not look like a function prologue; otherwise
1829 returns an address that (if we're lucky) follows the prologue.
1830
1831 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1832 It doesn't necessarily skips all the insns in the prologue. In fact
1833 we might not want to skip all the insns because a prologue insn may
1834 appear in the delay slot of the first branch, and we don't want to
1835 skip over the branch in that case. */
1836
1837 static CORE_ADDR
1838 hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1839 {
1840 CORE_ADDR post_prologue_pc;
1841
1842 /* See if we can determine the end of the prologue via the symbol table.
1843 If so, then return either PC, or the PC after the prologue, whichever
1844 is greater. */
1845
1846 post_prologue_pc = after_prologue (pc);
1847
1848 /* If after_prologue returned a useful address, then use it. Else
1849 fall back on the instruction skipping code.
1850
1851 Some folks have claimed this causes problems because the breakpoint
1852 may be the first instruction of the prologue. If that happens, then
1853 the instruction skipping code has a bug that needs to be fixed. */
1854 if (post_prologue_pc != 0)
1855 return max (pc, post_prologue_pc);
1856 else
1857 return (skip_prologue_hard_way (gdbarch, pc, 1));
1858 }
1859
1860 /* Return an unwind entry that falls within the frame's code block. */
1861
1862 static struct unwind_table_entry *
1863 hppa_find_unwind_entry_in_block (struct frame_info *this_frame)
1864 {
1865 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1866
1867 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
1868 result of get_frame_address_in_block implies a problem.
1869 The bits should have been removed earlier, before the return
1870 value of gdbarch_unwind_pc. That might be happening already;
1871 if it isn't, it should be fixed. Then this call can be
1872 removed. */
1873 pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc);
1874 return find_unwind_entry (pc);
1875 }
1876
1877 struct hppa_frame_cache
1878 {
1879 CORE_ADDR base;
1880 struct trad_frame_saved_reg *saved_regs;
1881 };
1882
1883 static struct hppa_frame_cache *
1884 hppa_frame_cache (struct frame_info *this_frame, void **this_cache)
1885 {
1886 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1887 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1888 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1889 struct hppa_frame_cache *cache;
1890 long saved_gr_mask;
1891 long saved_fr_mask;
1892 long frame_size;
1893 struct unwind_table_entry *u;
1894 CORE_ADDR prologue_end;
1895 int fp_in_r1 = 0;
1896 int i;
1897
1898 if (hppa_debug)
1899 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1900 frame_relative_level(this_frame));
1901
1902 if ((*this_cache) != NULL)
1903 {
1904 if (hppa_debug)
1905 fprintf_unfiltered (gdb_stdlog, "base=%s (cached) }",
1906 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
1907 return (*this_cache);
1908 }
1909 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1910 (*this_cache) = cache;
1911 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1912
1913 /* Yow! */
1914 u = hppa_find_unwind_entry_in_block (this_frame);
1915 if (!u)
1916 {
1917 if (hppa_debug)
1918 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1919 return (*this_cache);
1920 }
1921
1922 /* Turn the Entry_GR field into a bitmask. */
1923 saved_gr_mask = 0;
1924 for (i = 3; i < u->Entry_GR + 3; i++)
1925 {
1926 /* Frame pointer gets saved into a special location. */
1927 if (u->Save_SP && i == HPPA_FP_REGNUM)
1928 continue;
1929
1930 saved_gr_mask |= (1 << i);
1931 }
1932
1933 /* Turn the Entry_FR field into a bitmask too. */
1934 saved_fr_mask = 0;
1935 for (i = 12; i < u->Entry_FR + 12; i++)
1936 saved_fr_mask |= (1 << i);
1937
1938 /* Loop until we find everything of interest or hit a branch.
1939
1940 For unoptimized GCC code and for any HP CC code this will never ever
1941 examine any user instructions.
1942
1943 For optimized GCC code we're faced with problems. GCC will schedule
1944 its prologue and make prologue instructions available for delay slot
1945 filling. The end result is user code gets mixed in with the prologue
1946 and a prologue instruction may be in the delay slot of the first branch
1947 or call.
1948
1949 Some unexpected things are expected with debugging optimized code, so
1950 we allow this routine to walk past user instructions in optimized
1951 GCC code. */
1952 {
1953 int final_iteration = 0;
1954 CORE_ADDR pc, start_pc, end_pc;
1955 int looking_for_sp = u->Save_SP;
1956 int looking_for_rp = u->Save_RP;
1957 int fp_loc = -1;
1958
1959 /* We have to use skip_prologue_hard_way instead of just
1960 skip_prologue_using_sal, in case we stepped into a function without
1961 symbol information. hppa_skip_prologue also bounds the returned
1962 pc by the passed in pc, so it will not return a pc in the next
1963 function.
1964
1965 We used to call hppa_skip_prologue to find the end of the prologue,
1966 but if some non-prologue instructions get scheduled into the prologue,
1967 and the program is compiled with debug information, the "easy" way
1968 in hppa_skip_prologue will return a prologue end that is too early
1969 for us to notice any potential frame adjustments. */
1970
1971 /* We used to use get_frame_func to locate the beginning of the
1972 function to pass to skip_prologue. However, when objects are
1973 compiled without debug symbols, get_frame_func can return the wrong
1974 function (or 0). We can do better than that by using unwind records.
1975 This only works if the Region_description of the unwind record
1976 indicates that it includes the entry point of the function.
1977 HP compilers sometimes generate unwind records for regions that
1978 do not include the entry or exit point of a function. GNU tools
1979 do not do this. */
1980
1981 if ((u->Region_description & 0x2) == 0)
1982 start_pc = u->region_start;
1983 else
1984 start_pc = get_frame_func (this_frame);
1985
1986 prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
1987 end_pc = get_frame_pc (this_frame);
1988
1989 if (prologue_end != 0 && end_pc > prologue_end)
1990 end_pc = prologue_end;
1991
1992 frame_size = 0;
1993
1994 for (pc = start_pc;
1995 ((saved_gr_mask || saved_fr_mask
1996 || looking_for_sp || looking_for_rp
1997 || frame_size < (u->Total_frame_size << 3))
1998 && pc < end_pc);
1999 pc += 4)
2000 {
2001 int reg;
2002 gdb_byte buf4[4];
2003 long inst;
2004
2005 if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4))
2006 {
2007 error (_("Cannot read instruction at %s."),
2008 paddress (gdbarch, pc));
2009 return (*this_cache);
2010 }
2011
2012 inst = extract_unsigned_integer (buf4, sizeof buf4, byte_order);
2013
2014 /* Note the interesting effects of this instruction. */
2015 frame_size += prologue_inst_adjust_sp (inst);
2016
2017 /* There are limited ways to store the return pointer into the
2018 stack. */
2019 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2020 {
2021 looking_for_rp = 0;
2022 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2023 }
2024 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
2025 {
2026 looking_for_rp = 0;
2027 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
2028 }
2029 else if (inst == 0x0fc212c1
2030 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2031 {
2032 looking_for_rp = 0;
2033 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2034 }
2035
2036 /* Check to see if we saved SP into the stack. This also
2037 happens to indicate the location of the saved frame
2038 pointer. */
2039 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
2040 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
2041 {
2042 looking_for_sp = 0;
2043 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
2044 }
2045 else if (inst == 0x08030241) /* copy %r3, %r1 */
2046 {
2047 fp_in_r1 = 1;
2048 }
2049
2050 /* Account for general and floating-point register saves. */
2051 reg = inst_saves_gr (inst);
2052 if (reg >= 3 && reg <= 18
2053 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
2054 {
2055 saved_gr_mask &= ~(1 << reg);
2056 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
2057 /* stwm with a positive displacement is a _post_
2058 _modify_. */
2059 cache->saved_regs[reg].addr = 0;
2060 else if ((inst & 0xfc00000c) == 0x70000008)
2061 /* A std has explicit post_modify forms. */
2062 cache->saved_regs[reg].addr = 0;
2063 else
2064 {
2065 CORE_ADDR offset;
2066
2067 if ((inst >> 26) == 0x1c)
2068 offset = (inst & 0x1 ? -1 << 13 : 0)
2069 | (((inst >> 4) & 0x3ff) << 3);
2070 else if ((inst >> 26) == 0x03)
2071 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
2072 else
2073 offset = hppa_extract_14 (inst);
2074
2075 /* Handle code with and without frame pointers. */
2076 if (u->Save_SP)
2077 cache->saved_regs[reg].addr = offset;
2078 else
2079 cache->saved_regs[reg].addr
2080 = (u->Total_frame_size << 3) + offset;
2081 }
2082 }
2083
2084 /* GCC handles callee saved FP regs a little differently.
2085
2086 It emits an instruction to put the value of the start of
2087 the FP store area into %r1. It then uses fstds,ma with a
2088 basereg of %r1 for the stores.
2089
2090 HP CC emits them at the current stack pointer modifying the
2091 stack pointer as it stores each register. */
2092
2093 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2094 if ((inst & 0xffffc000) == 0x34610000
2095 || (inst & 0xffffc000) == 0x37c10000)
2096 fp_loc = hppa_extract_14 (inst);
2097
2098 reg = inst_saves_fr (inst);
2099 if (reg >= 12 && reg <= 21)
2100 {
2101 /* Note +4 braindamage below is necessary because the FP
2102 status registers are internally 8 registers rather than
2103 the expected 4 registers. */
2104 saved_fr_mask &= ~(1 << reg);
2105 if (fp_loc == -1)
2106 {
2107 /* 1st HP CC FP register store. After this
2108 instruction we've set enough state that the GCC and
2109 HPCC code are both handled in the same manner. */
2110 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
2111 fp_loc = 8;
2112 }
2113 else
2114 {
2115 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
2116 fp_loc += 8;
2117 }
2118 }
2119
2120 /* Quit if we hit any kind of branch the previous iteration. */
2121 if (final_iteration)
2122 break;
2123 /* We want to look precisely one instruction beyond the branch
2124 if we have not found everything yet. */
2125 if (is_branch (inst))
2126 final_iteration = 1;
2127 }
2128 }
2129
2130 {
2131 /* The frame base always represents the value of %sp at entry to
2132 the current function (and is thus equivalent to the "saved"
2133 stack pointer. */
2134 CORE_ADDR this_sp = get_frame_register_unsigned (this_frame,
2135 HPPA_SP_REGNUM);
2136 CORE_ADDR fp;
2137
2138 if (hppa_debug)
2139 fprintf_unfiltered (gdb_stdlog, " (this_sp=%s, pc=%s, "
2140 "prologue_end=%s) ",
2141 paddress (gdbarch, this_sp),
2142 paddress (gdbarch, get_frame_pc (this_frame)),
2143 paddress (gdbarch, prologue_end));
2144
2145 /* Check to see if a frame pointer is available, and use it for
2146 frame unwinding if it is.
2147
2148 There are some situations where we need to rely on the frame
2149 pointer to do stack unwinding. For example, if a function calls
2150 alloca (), the stack pointer can get adjusted inside the body of
2151 the function. In this case, the ABI requires that the compiler
2152 maintain a frame pointer for the function.
2153
2154 The unwind record has a flag (alloca_frame) that indicates that
2155 a function has a variable frame; unfortunately, gcc/binutils
2156 does not set this flag. Instead, whenever a frame pointer is used
2157 and saved on the stack, the Save_SP flag is set. We use this to
2158 decide whether to use the frame pointer for unwinding.
2159
2160 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2161 instead of Save_SP. */
2162
2163 fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM);
2164
2165 if (u->alloca_frame)
2166 fp -= u->Total_frame_size << 3;
2167
2168 if (get_frame_pc (this_frame) >= prologue_end
2169 && (u->Save_SP || u->alloca_frame) && fp != 0)
2170 {
2171 cache->base = fp;
2172
2173 if (hppa_debug)
2174 fprintf_unfiltered (gdb_stdlog, " (base=%s) [frame pointer]",
2175 paddress (gdbarch, cache->base));
2176 }
2177 else if (u->Save_SP
2178 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
2179 {
2180 /* Both we're expecting the SP to be saved and the SP has been
2181 saved. The entry SP value is saved at this frame's SP
2182 address. */
2183 cache->base = read_memory_integer (this_sp, word_size, byte_order);
2184
2185 if (hppa_debug)
2186 fprintf_unfiltered (gdb_stdlog, " (base=%s) [saved]",
2187 paddress (gdbarch, cache->base));
2188 }
2189 else
2190 {
2191 /* The prologue has been slowly allocating stack space. Adjust
2192 the SP back. */
2193 cache->base = this_sp - frame_size;
2194 if (hppa_debug)
2195 fprintf_unfiltered (gdb_stdlog, " (base=%s) [unwind adjust]",
2196 paddress (gdbarch, cache->base));
2197
2198 }
2199 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2200 }
2201
2202 /* The PC is found in the "return register", "Millicode" uses "r31"
2203 as the return register while normal code uses "rp". */
2204 if (u->Millicode)
2205 {
2206 if (trad_frame_addr_p (cache->saved_regs, 31))
2207 {
2208 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2209 if (hppa_debug)
2210 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2211 }
2212 else
2213 {
2214 ULONGEST r31 = get_frame_register_unsigned (this_frame, 31);
2215 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
2216 if (hppa_debug)
2217 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
2218 }
2219 }
2220 else
2221 {
2222 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2223 {
2224 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2225 cache->saved_regs[HPPA_RP_REGNUM];
2226 if (hppa_debug)
2227 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2228 }
2229 else
2230 {
2231 ULONGEST rp = get_frame_register_unsigned (this_frame,
2232 HPPA_RP_REGNUM);
2233 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2234 if (hppa_debug)
2235 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
2236 }
2237 }
2238
2239 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2240 frame. However, there is a one-insn window where we haven't saved it
2241 yet, but we've already clobbered it. Detect this case and fix it up.
2242
2243 The prologue sequence for frame-pointer functions is:
2244 0: stw %rp, -20(%sp)
2245 4: copy %r3, %r1
2246 8: copy %sp, %r3
2247 c: stw,ma %r1, XX(%sp)
2248
2249 So if we are at offset c, the r3 value that we want is not yet saved
2250 on the stack, but it's been overwritten. The prologue analyzer will
2251 set fp_in_r1 when it sees the copy insn so we know to get the value
2252 from r1 instead. */
2253 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2254 && fp_in_r1)
2255 {
2256 ULONGEST r1 = get_frame_register_unsigned (this_frame, 1);
2257 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2258 }
2259
2260 {
2261 /* Convert all the offsets into addresses. */
2262 int reg;
2263 for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
2264 {
2265 if (trad_frame_addr_p (cache->saved_regs, reg))
2266 cache->saved_regs[reg].addr += cache->base;
2267 }
2268 }
2269
2270 {
2271 struct gdbarch_tdep *tdep;
2272
2273 tdep = gdbarch_tdep (gdbarch);
2274
2275 if (tdep->unwind_adjust_stub)
2276 tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs);
2277 }
2278
2279 if (hppa_debug)
2280 fprintf_unfiltered (gdb_stdlog, "base=%s }",
2281 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
2282 return (*this_cache);
2283 }
2284
2285 static void
2286 hppa_frame_this_id (struct frame_info *this_frame, void **this_cache,
2287 struct frame_id *this_id)
2288 {
2289 struct hppa_frame_cache *info;
2290 CORE_ADDR pc = get_frame_pc (this_frame);
2291 struct unwind_table_entry *u;
2292
2293 info = hppa_frame_cache (this_frame, this_cache);
2294 u = hppa_find_unwind_entry_in_block (this_frame);
2295
2296 (*this_id) = frame_id_build (info->base, u->region_start);
2297 }
2298
2299 static struct value *
2300 hppa_frame_prev_register (struct frame_info *this_frame,
2301 void **this_cache, int regnum)
2302 {
2303 struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache);
2304
2305 return hppa_frame_prev_register_helper (this_frame,
2306 info->saved_regs, regnum);
2307 }
2308
2309 static int
2310 hppa_frame_unwind_sniffer (const struct frame_unwind *self,
2311 struct frame_info *this_frame, void **this_cache)
2312 {
2313 if (hppa_find_unwind_entry_in_block (this_frame))
2314 return 1;
2315
2316 return 0;
2317 }
2318
2319 static const struct frame_unwind hppa_frame_unwind =
2320 {
2321 NORMAL_FRAME,
2322 default_frame_unwind_stop_reason,
2323 hppa_frame_this_id,
2324 hppa_frame_prev_register,
2325 NULL,
2326 hppa_frame_unwind_sniffer
2327 };
2328
2329 /* This is a generic fallback frame unwinder that kicks in if we fail all
2330 the other ones. Normally we would expect the stub and regular unwinder
2331 to work, but in some cases we might hit a function that just doesn't
2332 have any unwind information available. In this case we try to do
2333 unwinding solely based on code reading. This is obviously going to be
2334 slow, so only use this as a last resort. Currently this will only
2335 identify the stack and pc for the frame. */
2336
2337 static struct hppa_frame_cache *
2338 hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache)
2339 {
2340 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2341 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2342 struct hppa_frame_cache *cache;
2343 unsigned int frame_size = 0;
2344 int found_rp = 0;
2345 CORE_ADDR start_pc;
2346
2347 if (hppa_debug)
2348 fprintf_unfiltered (gdb_stdlog,
2349 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2350 frame_relative_level (this_frame));
2351
2352 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2353 (*this_cache) = cache;
2354 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2355
2356 start_pc = get_frame_func (this_frame);
2357 if (start_pc)
2358 {
2359 CORE_ADDR cur_pc = get_frame_pc (this_frame);
2360 CORE_ADDR pc;
2361
2362 for (pc = start_pc; pc < cur_pc; pc += 4)
2363 {
2364 unsigned int insn;
2365
2366 insn = read_memory_unsigned_integer (pc, 4, byte_order);
2367 frame_size += prologue_inst_adjust_sp (insn);
2368
2369 /* There are limited ways to store the return pointer into the
2370 stack. */
2371 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2372 {
2373 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2374 found_rp = 1;
2375 }
2376 else if (insn == 0x0fc212c1
2377 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2378 {
2379 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2380 found_rp = 1;
2381 }
2382 }
2383 }
2384
2385 if (hppa_debug)
2386 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2387 frame_size, found_rp);
2388
2389 cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2390 cache->base -= frame_size;
2391 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2392
2393 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2394 {
2395 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2396 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2397 cache->saved_regs[HPPA_RP_REGNUM];
2398 }
2399 else
2400 {
2401 ULONGEST rp;
2402 rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM);
2403 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2404 }
2405
2406 return cache;
2407 }
2408
2409 static void
2410 hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache,
2411 struct frame_id *this_id)
2412 {
2413 struct hppa_frame_cache *info =
2414 hppa_fallback_frame_cache (this_frame, this_cache);
2415
2416 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2417 }
2418
2419 static struct value *
2420 hppa_fallback_frame_prev_register (struct frame_info *this_frame,
2421 void **this_cache, int regnum)
2422 {
2423 struct hppa_frame_cache *info
2424 = hppa_fallback_frame_cache (this_frame, this_cache);
2425
2426 return hppa_frame_prev_register_helper (this_frame,
2427 info->saved_regs, regnum);
2428 }
2429
2430 static const struct frame_unwind hppa_fallback_frame_unwind =
2431 {
2432 NORMAL_FRAME,
2433 default_frame_unwind_stop_reason,
2434 hppa_fallback_frame_this_id,
2435 hppa_fallback_frame_prev_register,
2436 NULL,
2437 default_frame_sniffer
2438 };
2439
2440 /* Stub frames, used for all kinds of call stubs. */
2441 struct hppa_stub_unwind_cache
2442 {
2443 CORE_ADDR base;
2444 struct trad_frame_saved_reg *saved_regs;
2445 };
2446
2447 static struct hppa_stub_unwind_cache *
2448 hppa_stub_frame_unwind_cache (struct frame_info *this_frame,
2449 void **this_cache)
2450 {
2451 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2452 struct hppa_stub_unwind_cache *info;
2453 struct unwind_table_entry *u;
2454
2455 if (*this_cache)
2456 return *this_cache;
2457
2458 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2459 *this_cache = info;
2460 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2461
2462 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2463
2464 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2465 {
2466 /* HPUX uses export stubs in function calls; the export stub clobbers
2467 the return value of the caller, and, later restores it from the
2468 stack. */
2469 u = find_unwind_entry (get_frame_pc (this_frame));
2470
2471 if (u && u->stub_unwind.stub_type == EXPORT)
2472 {
2473 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2474
2475 return info;
2476 }
2477 }
2478
2479 /* By default we assume that stubs do not change the rp. */
2480 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2481
2482 return info;
2483 }
2484
2485 static void
2486 hppa_stub_frame_this_id (struct frame_info *this_frame,
2487 void **this_prologue_cache,
2488 struct frame_id *this_id)
2489 {
2490 struct hppa_stub_unwind_cache *info
2491 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2492
2493 if (info)
2494 *this_id = frame_id_build (info->base, get_frame_func (this_frame));
2495 }
2496
2497 static struct value *
2498 hppa_stub_frame_prev_register (struct frame_info *this_frame,
2499 void **this_prologue_cache, int regnum)
2500 {
2501 struct hppa_stub_unwind_cache *info
2502 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2503
2504 if (info == NULL)
2505 error (_("Requesting registers from null frame."));
2506
2507 return hppa_frame_prev_register_helper (this_frame,
2508 info->saved_regs, regnum);
2509 }
2510
2511 static int
2512 hppa_stub_unwind_sniffer (const struct frame_unwind *self,
2513 struct frame_info *this_frame,
2514 void **this_cache)
2515 {
2516 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2517 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2518 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2519
2520 if (pc == 0
2521 || (tdep->in_solib_call_trampoline != NULL
2522 && tdep->in_solib_call_trampoline (gdbarch, pc))
2523 || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
2524 return 1;
2525 return 0;
2526 }
2527
2528 static const struct frame_unwind hppa_stub_frame_unwind = {
2529 NORMAL_FRAME,
2530 default_frame_unwind_stop_reason,
2531 hppa_stub_frame_this_id,
2532 hppa_stub_frame_prev_register,
2533 NULL,
2534 hppa_stub_unwind_sniffer
2535 };
2536
2537 static struct frame_id
2538 hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2539 {
2540 return frame_id_build (get_frame_register_unsigned (this_frame,
2541 HPPA_SP_REGNUM),
2542 get_frame_pc (this_frame));
2543 }
2544
2545 CORE_ADDR
2546 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2547 {
2548 ULONGEST ipsw;
2549 CORE_ADDR pc;
2550
2551 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2552 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2553
2554 /* If the current instruction is nullified, then we are effectively
2555 still executing the previous instruction. Pretend we are still
2556 there. This is needed when single stepping; if the nullified
2557 instruction is on a different line, we don't want GDB to think
2558 we've stepped onto that line. */
2559 if (ipsw & 0x00200000)
2560 pc -= 4;
2561
2562 return pc & ~0x3;
2563 }
2564
2565 /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2566 Return NULL if no such symbol was found. */
2567
2568 struct bound_minimal_symbol
2569 hppa_lookup_stub_minimal_symbol (const char *name,
2570 enum unwind_stub_types stub_type)
2571 {
2572 struct objfile *objfile;
2573 struct minimal_symbol *msym;
2574 struct bound_minimal_symbol result = { NULL, NULL };
2575
2576 ALL_MSYMBOLS (objfile, msym)
2577 {
2578 if (strcmp (MSYMBOL_LINKAGE_NAME (msym), name) == 0)
2579 {
2580 struct unwind_table_entry *u;
2581
2582 u = find_unwind_entry (MSYMBOL_VALUE (msym));
2583 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2584 {
2585 result.objfile = objfile;
2586 result.minsym = msym;
2587 return result;
2588 }
2589 }
2590 }
2591
2592 return result;
2593 }
2594
2595 static void
2596 unwind_command (char *exp, int from_tty)
2597 {
2598 CORE_ADDR address;
2599 struct unwind_table_entry *u;
2600
2601 /* If we have an expression, evaluate it and use it as the address. */
2602
2603 if (exp != 0 && *exp != 0)
2604 address = parse_and_eval_address (exp);
2605 else
2606 return;
2607
2608 u = find_unwind_entry (address);
2609
2610 if (!u)
2611 {
2612 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2613 return;
2614 }
2615
2616 printf_unfiltered ("unwind_table_entry (%s):\n", host_address_to_string (u));
2617
2618 printf_unfiltered ("\tregion_start = %s\n", hex_string (u->region_start));
2619 gdb_flush (gdb_stdout);
2620
2621 printf_unfiltered ("\tregion_end = %s\n", hex_string (u->region_end));
2622 gdb_flush (gdb_stdout);
2623
2624 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2625
2626 printf_unfiltered ("\n\tflags =");
2627 pif (Cannot_unwind);
2628 pif (Millicode);
2629 pif (Millicode_save_sr0);
2630 pif (Entry_SR);
2631 pif (Args_stored);
2632 pif (Variable_Frame);
2633 pif (Separate_Package_Body);
2634 pif (Frame_Extension_Millicode);
2635 pif (Stack_Overflow_Check);
2636 pif (Two_Instruction_SP_Increment);
2637 pif (sr4export);
2638 pif (cxx_info);
2639 pif (cxx_try_catch);
2640 pif (sched_entry_seq);
2641 pif (Save_SP);
2642 pif (Save_RP);
2643 pif (Save_MRP_in_frame);
2644 pif (save_r19);
2645 pif (Cleanup_defined);
2646 pif (MPE_XL_interrupt_marker);
2647 pif (HP_UX_interrupt_marker);
2648 pif (Large_frame);
2649 pif (alloca_frame);
2650
2651 putchar_unfiltered ('\n');
2652
2653 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2654
2655 pin (Region_description);
2656 pin (Entry_FR);
2657 pin (Entry_GR);
2658 pin (Total_frame_size);
2659
2660 if (u->stub_unwind.stub_type)
2661 {
2662 printf_unfiltered ("\tstub type = ");
2663 switch (u->stub_unwind.stub_type)
2664 {
2665 case LONG_BRANCH:
2666 printf_unfiltered ("long branch\n");
2667 break;
2668 case PARAMETER_RELOCATION:
2669 printf_unfiltered ("parameter relocation\n");
2670 break;
2671 case EXPORT:
2672 printf_unfiltered ("export\n");
2673 break;
2674 case IMPORT:
2675 printf_unfiltered ("import\n");
2676 break;
2677 case IMPORT_SHLIB:
2678 printf_unfiltered ("import shlib\n");
2679 break;
2680 default:
2681 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2682 }
2683 }
2684 }
2685
2686 /* Return the GDB type object for the "standard" data type of data in
2687 register REGNUM. */
2688
2689 static struct type *
2690 hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2691 {
2692 if (regnum < HPPA_FP4_REGNUM)
2693 return builtin_type (gdbarch)->builtin_uint32;
2694 else
2695 return builtin_type (gdbarch)->builtin_float;
2696 }
2697
2698 static struct type *
2699 hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2700 {
2701 if (regnum < HPPA64_FP4_REGNUM)
2702 return builtin_type (gdbarch)->builtin_uint64;
2703 else
2704 return builtin_type (gdbarch)->builtin_double;
2705 }
2706
2707 /* Return non-zero if REGNUM is not a register available to the user
2708 through ptrace/ttrace. */
2709
2710 static int
2711 hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2712 {
2713 return (regnum == 0
2714 || regnum == HPPA_PCSQ_HEAD_REGNUM
2715 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2716 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2717 }
2718
2719 static int
2720 hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2721 {
2722 /* cr26 and cr27 are readable (but not writable) from userspace. */
2723 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2724 return 0;
2725 else
2726 return hppa32_cannot_store_register (gdbarch, regnum);
2727 }
2728
2729 static int
2730 hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2731 {
2732 return (regnum == 0
2733 || regnum == HPPA_PCSQ_HEAD_REGNUM
2734 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2735 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2736 }
2737
2738 static int
2739 hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2740 {
2741 /* cr26 and cr27 are readable (but not writable) from userspace. */
2742 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2743 return 0;
2744 else
2745 return hppa64_cannot_store_register (gdbarch, regnum);
2746 }
2747
2748 static CORE_ADDR
2749 hppa_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
2750 {
2751 /* The low two bits of the PC on the PA contain the privilege level.
2752 Some genius implementing a (non-GCC) compiler apparently decided
2753 this means that "addresses" in a text section therefore include a
2754 privilege level, and thus symbol tables should contain these bits.
2755 This seems like a bonehead thing to do--anyway, it seems to work
2756 for our purposes to just ignore those bits. */
2757
2758 return (addr &= ~0x3);
2759 }
2760
2761 /* Get the ARGIth function argument for the current function. */
2762
2763 static CORE_ADDR
2764 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2765 struct type *type)
2766 {
2767 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
2768 }
2769
2770 static enum register_status
2771 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2772 int regnum, gdb_byte *buf)
2773 {
2774 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2775 ULONGEST tmp;
2776 enum register_status status;
2777
2778 status = regcache_raw_read_unsigned (regcache, regnum, &tmp);
2779 if (status == REG_VALID)
2780 {
2781 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2782 tmp &= ~0x3;
2783 store_unsigned_integer (buf, sizeof tmp, byte_order, tmp);
2784 }
2785 return status;
2786 }
2787
2788 static CORE_ADDR
2789 hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
2790 {
2791 return 0;
2792 }
2793
2794 struct value *
2795 hppa_frame_prev_register_helper (struct frame_info *this_frame,
2796 struct trad_frame_saved_reg saved_regs[],
2797 int regnum)
2798 {
2799 struct gdbarch *arch = get_frame_arch (this_frame);
2800 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2801
2802 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2803 {
2804 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2805 CORE_ADDR pc;
2806 struct value *pcoq_val =
2807 trad_frame_get_prev_register (this_frame, saved_regs,
2808 HPPA_PCOQ_HEAD_REGNUM);
2809
2810 pc = extract_unsigned_integer (value_contents_all (pcoq_val),
2811 size, byte_order);
2812 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
2813 }
2814
2815 return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
2816 }
2817 \f
2818
2819 /* An instruction to match. */
2820 struct insn_pattern
2821 {
2822 unsigned int data; /* See if it matches this.... */
2823 unsigned int mask; /* ... with this mask. */
2824 };
2825
2826 /* See bfd/elf32-hppa.c */
2827 static struct insn_pattern hppa_long_branch_stub[] = {
2828 /* ldil LR'xxx,%r1 */
2829 { 0x20200000, 0xffe00000 },
2830 /* be,n RR'xxx(%sr4,%r1) */
2831 { 0xe0202002, 0xffe02002 },
2832 { 0, 0 }
2833 };
2834
2835 static struct insn_pattern hppa_long_branch_pic_stub[] = {
2836 /* b,l .+8, %r1 */
2837 { 0xe8200000, 0xffe00000 },
2838 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2839 { 0x28200000, 0xffe00000 },
2840 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2841 { 0xe0202002, 0xffe02002 },
2842 { 0, 0 }
2843 };
2844
2845 static struct insn_pattern hppa_import_stub[] = {
2846 /* addil LR'xxx, %dp */
2847 { 0x2b600000, 0xffe00000 },
2848 /* ldw RR'xxx(%r1), %r21 */
2849 { 0x48350000, 0xffffb000 },
2850 /* bv %r0(%r21) */
2851 { 0xeaa0c000, 0xffffffff },
2852 /* ldw RR'xxx+4(%r1), %r19 */
2853 { 0x48330000, 0xffffb000 },
2854 { 0, 0 }
2855 };
2856
2857 static struct insn_pattern hppa_import_pic_stub[] = {
2858 /* addil LR'xxx,%r19 */
2859 { 0x2a600000, 0xffe00000 },
2860 /* ldw RR'xxx(%r1),%r21 */
2861 { 0x48350000, 0xffffb000 },
2862 /* bv %r0(%r21) */
2863 { 0xeaa0c000, 0xffffffff },
2864 /* ldw RR'xxx+4(%r1),%r19 */
2865 { 0x48330000, 0xffffb000 },
2866 { 0, 0 },
2867 };
2868
2869 static struct insn_pattern hppa_plt_stub[] = {
2870 /* b,l 1b, %r20 - 1b is 3 insns before here */
2871 { 0xea9f1fdd, 0xffffffff },
2872 /* depi 0,31,2,%r20 */
2873 { 0xd6801c1e, 0xffffffff },
2874 { 0, 0 }
2875 };
2876
2877 /* Maximum number of instructions on the patterns above. */
2878 #define HPPA_MAX_INSN_PATTERN_LEN 4
2879
2880 /* Return non-zero if the instructions at PC match the series
2881 described in PATTERN, or zero otherwise. PATTERN is an array of
2882 'struct insn_pattern' objects, terminated by an entry whose mask is
2883 zero.
2884
2885 When the match is successful, fill INSN[i] with what PATTERN[i]
2886 matched. */
2887
2888 static int
2889 hppa_match_insns (struct gdbarch *gdbarch, CORE_ADDR pc,
2890 struct insn_pattern *pattern, unsigned int *insn)
2891 {
2892 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2893 CORE_ADDR npc = pc;
2894 int i;
2895
2896 for (i = 0; pattern[i].mask; i++)
2897 {
2898 gdb_byte buf[HPPA_INSN_SIZE];
2899
2900 target_read_memory (npc, buf, HPPA_INSN_SIZE);
2901 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order);
2902 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2903 npc += 4;
2904 else
2905 return 0;
2906 }
2907
2908 return 1;
2909 }
2910
2911 /* This relaxed version of the insstruction matcher allows us to match
2912 from somewhere inside the pattern, by looking backwards in the
2913 instruction scheme. */
2914
2915 static int
2916 hppa_match_insns_relaxed (struct gdbarch *gdbarch, CORE_ADDR pc,
2917 struct insn_pattern *pattern, unsigned int *insn)
2918 {
2919 int offset, len = 0;
2920
2921 while (pattern[len].mask)
2922 len++;
2923
2924 for (offset = 0; offset < len; offset++)
2925 if (hppa_match_insns (gdbarch, pc - offset * HPPA_INSN_SIZE,
2926 pattern, insn))
2927 return 1;
2928
2929 return 0;
2930 }
2931
2932 static int
2933 hppa_in_dyncall (CORE_ADDR pc)
2934 {
2935 struct unwind_table_entry *u;
2936
2937 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2938 if (!u)
2939 return 0;
2940
2941 return (pc >= u->region_start && pc <= u->region_end);
2942 }
2943
2944 int
2945 hppa_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc)
2946 {
2947 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2948 struct unwind_table_entry *u;
2949
2950 if (in_plt_section (pc) || hppa_in_dyncall (pc))
2951 return 1;
2952
2953 /* The GNU toolchain produces linker stubs without unwind
2954 information. Since the pattern matching for linker stubs can be
2955 quite slow, so bail out if we do have an unwind entry. */
2956
2957 u = find_unwind_entry (pc);
2958 if (u != NULL)
2959 return 0;
2960
2961 return
2962 (hppa_match_insns_relaxed (gdbarch, pc, hppa_import_stub, insn)
2963 || hppa_match_insns_relaxed (gdbarch, pc, hppa_import_pic_stub, insn)
2964 || hppa_match_insns_relaxed (gdbarch, pc, hppa_long_branch_stub, insn)
2965 || hppa_match_insns_relaxed (gdbarch, pc,
2966 hppa_long_branch_pic_stub, insn));
2967 }
2968
2969 /* This code skips several kind of "trampolines" used on PA-RISC
2970 systems: $$dyncall, import stubs and PLT stubs. */
2971
2972 CORE_ADDR
2973 hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2974 {
2975 struct gdbarch *gdbarch = get_frame_arch (frame);
2976 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
2977
2978 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2979 int dp_rel;
2980
2981 /* $$dyncall handles both PLABELs and direct addresses. */
2982 if (hppa_in_dyncall (pc))
2983 {
2984 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
2985
2986 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2987 if (pc & 0x2)
2988 pc = read_memory_typed_address (pc & ~0x3, func_ptr_type);
2989
2990 return pc;
2991 }
2992
2993 dp_rel = hppa_match_insns (gdbarch, pc, hppa_import_stub, insn);
2994 if (dp_rel || hppa_match_insns (gdbarch, pc, hppa_import_pic_stub, insn))
2995 {
2996 /* Extract the target address from the addil/ldw sequence. */
2997 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2998
2999 if (dp_rel)
3000 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
3001 else
3002 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
3003
3004 /* fallthrough */
3005 }
3006
3007 if (in_plt_section (pc))
3008 {
3009 pc = read_memory_typed_address (pc, func_ptr_type);
3010
3011 /* If the PLT slot has not yet been resolved, the target will be
3012 the PLT stub. */
3013 if (in_plt_section (pc))
3014 {
3015 /* Sanity check: are we pointing to the PLT stub? */
3016 if (!hppa_match_insns (gdbarch, pc, hppa_plt_stub, insn))
3017 {
3018 warning (_("Cannot resolve PLT stub at %s."),
3019 paddress (gdbarch, pc));
3020 return 0;
3021 }
3022
3023 /* This should point to the fixup routine. */
3024 pc = read_memory_typed_address (pc + 8, func_ptr_type);
3025 }
3026 }
3027
3028 return pc;
3029 }
3030 \f
3031
3032 /* Here is a table of C type sizes on hppa with various compiles
3033 and options. I measured this on PA 9000/800 with HP-UX 11.11
3034 and these compilers:
3035
3036 /usr/ccs/bin/cc HP92453-01 A.11.01.21
3037 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
3038 /opt/aCC/bin/aCC B3910B A.03.45
3039 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
3040
3041 cc : 1 2 4 4 8 : 4 8 -- : 4 4
3042 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3043 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3044 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3045 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3046 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3047 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3048 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
3049
3050 Each line is:
3051
3052 compiler and options
3053 char, short, int, long, long long
3054 float, double, long double
3055 char *, void (*)()
3056
3057 So all these compilers use either ILP32 or LP64 model.
3058 TODO: gcc has more options so it needs more investigation.
3059
3060 For floating point types, see:
3061
3062 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
3063 HP-UX floating-point guide, hpux 11.00
3064
3065 -- chastain 2003-12-18 */
3066
3067 static struct gdbarch *
3068 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3069 {
3070 struct gdbarch_tdep *tdep;
3071 struct gdbarch *gdbarch;
3072
3073 /* Try to determine the ABI of the object we are loading. */
3074 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
3075 {
3076 /* If it's a SOM file, assume it's HP/UX SOM. */
3077 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
3078 info.osabi = GDB_OSABI_HPUX_SOM;
3079 }
3080
3081 /* find a candidate among the list of pre-declared architectures. */
3082 arches = gdbarch_list_lookup_by_info (arches, &info);
3083 if (arches != NULL)
3084 return (arches->gdbarch);
3085
3086 /* If none found, then allocate and initialize one. */
3087 tdep = XCNEW (struct gdbarch_tdep);
3088 gdbarch = gdbarch_alloc (&info, tdep);
3089
3090 /* Determine from the bfd_arch_info structure if we are dealing with
3091 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3092 then default to a 32bit machine. */
3093 if (info.bfd_arch_info != NULL)
3094 tdep->bytes_per_address =
3095 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3096 else
3097 tdep->bytes_per_address = 4;
3098
3099 tdep->find_global_pointer = hppa_find_global_pointer;
3100
3101 /* Some parts of the gdbarch vector depend on whether we are running
3102 on a 32 bits or 64 bits target. */
3103 switch (tdep->bytes_per_address)
3104 {
3105 case 4:
3106 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3107 set_gdbarch_register_name (gdbarch, hppa32_register_name);
3108 set_gdbarch_register_type (gdbarch, hppa32_register_type);
3109 set_gdbarch_cannot_store_register (gdbarch,
3110 hppa32_cannot_store_register);
3111 set_gdbarch_cannot_fetch_register (gdbarch,
3112 hppa32_cannot_fetch_register);
3113 break;
3114 case 8:
3115 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3116 set_gdbarch_register_name (gdbarch, hppa64_register_name);
3117 set_gdbarch_register_type (gdbarch, hppa64_register_type);
3118 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3119 set_gdbarch_cannot_store_register (gdbarch,
3120 hppa64_cannot_store_register);
3121 set_gdbarch_cannot_fetch_register (gdbarch,
3122 hppa64_cannot_fetch_register);
3123 break;
3124 default:
3125 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3126 tdep->bytes_per_address);
3127 }
3128
3129 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3130 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3131
3132 /* The following gdbarch vector elements are the same in both ILP32
3133 and LP64, but might show differences some day. */
3134 set_gdbarch_long_long_bit (gdbarch, 64);
3135 set_gdbarch_long_double_bit (gdbarch, 128);
3136 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3137
3138 /* The following gdbarch vector elements do not depend on the address
3139 size, or in any other gdbarch element previously set. */
3140 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
3141 set_gdbarch_stack_frame_destroyed_p (gdbarch,
3142 hppa_stack_frame_destroyed_p);
3143 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
3144 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3145 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
3146 set_gdbarch_addr_bits_remove (gdbarch, hppa_addr_bits_remove);
3147 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3148 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3149 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
3150
3151 /* Helper for function argument information. */
3152 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3153
3154 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
3155
3156 /* When a hardware watchpoint triggers, we'll move the inferior past
3157 it by removing all eventpoints; stepping past the instruction
3158 that caused the trigger; reinserting eventpoints; and checking
3159 whether any watched location changed. */
3160 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3161
3162 /* Inferior function call methods. */
3163 switch (tdep->bytes_per_address)
3164 {
3165 case 4:
3166 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3167 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
3168 set_gdbarch_convert_from_func_ptr_addr
3169 (gdbarch, hppa32_convert_from_func_ptr_addr);
3170 break;
3171 case 8:
3172 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3173 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
3174 break;
3175 default:
3176 internal_error (__FILE__, __LINE__, _("bad switch"));
3177 }
3178
3179 /* Struct return methods. */
3180 switch (tdep->bytes_per_address)
3181 {
3182 case 4:
3183 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3184 break;
3185 case 8:
3186 set_gdbarch_return_value (gdbarch, hppa64_return_value);
3187 break;
3188 default:
3189 internal_error (__FILE__, __LINE__, _("bad switch"));
3190 }
3191
3192 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
3193 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
3194
3195 /* Frame unwind methods. */
3196 set_gdbarch_dummy_id (gdbarch, hppa_dummy_id);
3197 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
3198
3199 /* Hook in ABI-specific overrides, if they have been registered. */
3200 gdbarch_init_osabi (info, gdbarch);
3201
3202 /* Hook in the default unwinders. */
3203 frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind);
3204 frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind);
3205 frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind);
3206
3207 return gdbarch;
3208 }
3209
3210 static void
3211 hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3212 {
3213 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3214
3215 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3216 tdep->bytes_per_address);
3217 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
3218 }
3219
3220 /* Provide a prototype to silence -Wmissing-prototypes. */
3221 extern initialize_file_ftype _initialize_hppa_tdep;
3222
3223 void
3224 _initialize_hppa_tdep (void)
3225 {
3226 struct cmd_list_element *c;
3227
3228 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
3229
3230 hppa_objfile_priv_data = register_objfile_data ();
3231
3232 add_cmd ("unwind", class_maintenance, unwind_command,
3233 _("Print unwind table entry at given address."),
3234 &maintenanceprintlist);
3235
3236 /* Debug this files internals. */
3237 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3238 Set whether hppa target specific debugging information should be displayed."),
3239 _("\
3240 Show whether hppa target specific debugging information is displayed."), _("\
3241 This flag controls whether hppa target specific debugging information is\n\
3242 displayed. This information is particularly useful for debugging frame\n\
3243 unwinding problems."),
3244 NULL,
3245 NULL, /* FIXME: i18n: hppa debug flag is %s. */
3246 &setdebuglist, &showdebuglist);
3247 }
This page took 0.144139 seconds and 5 git commands to generate.