Pass return_method to _push_dummy_call
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA-RISC architecture.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "bfd.h"
25 #include "inferior.h"
26 #include "regcache.h"
27 #include "completer.h"
28 #include "osabi.h"
29 #include "arch-utils.h"
30 /* For argument passing to the inferior. */
31 #include "symtab.h"
32 #include "dis-asm.h"
33 #include "trad-frame.h"
34 #include "frame-unwind.h"
35 #include "frame-base.h"
36
37 #include "gdbcore.h"
38 #include "gdbcmd.h"
39 #include "gdbtypes.h"
40 #include "objfiles.h"
41 #include "hppa-tdep.h"
42 #include <algorithm>
43
44 static int hppa_debug = 0;
45
46 /* Some local constants. */
47 static const int hppa32_num_regs = 128;
48 static const int hppa64_num_regs = 96;
49
50 /* We use the objfile->obj_private pointer for two things:
51 * 1. An unwind table;
52 *
53 * 2. A pointer to any associated shared library object.
54 *
55 * #defines are used to help refer to these objects.
56 */
57
58 /* Info about the unwind table associated with an object file.
59 * This is hung off of the "objfile->obj_private" pointer, and
60 * is allocated in the objfile's psymbol obstack. This allows
61 * us to have unique unwind info for each executable and shared
62 * library that we are debugging.
63 */
64 struct hppa_unwind_info
65 {
66 struct unwind_table_entry *table; /* Pointer to unwind info */
67 struct unwind_table_entry *cache; /* Pointer to last entry we found */
68 int last; /* Index of last entry */
69 };
70
71 struct hppa_objfile_private
72 {
73 struct hppa_unwind_info *unwind_info; /* a pointer */
74 struct so_list *so_info; /* a pointer */
75 CORE_ADDR dp;
76
77 int dummy_call_sequence_reg;
78 CORE_ADDR dummy_call_sequence_addr;
79 };
80
81 /* hppa-specific object data -- unwind and solib info.
82 TODO/maybe: think about splitting this into two parts; the unwind data is
83 common to all hppa targets, but is only used in this file; we can register
84 that separately and make this static. The solib data is probably hpux-
85 specific, so we can create a separate extern objfile_data that is registered
86 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
87 static const struct objfile_data *hppa_objfile_priv_data = NULL;
88
89 /* Get at various relevent fields of an instruction word. */
90 #define MASK_5 0x1f
91 #define MASK_11 0x7ff
92 #define MASK_14 0x3fff
93 #define MASK_21 0x1fffff
94
95 /* Sizes (in bytes) of the native unwind entries. */
96 #define UNWIND_ENTRY_SIZE 16
97 #define STUB_UNWIND_ENTRY_SIZE 8
98
99 /* Routines to extract various sized constants out of hppa
100 instructions. */
101
102 /* This assumes that no garbage lies outside of the lower bits of
103 value. */
104
105 static int
106 hppa_sign_extend (unsigned val, unsigned bits)
107 {
108 return (int) (val >> (bits - 1) ? (-(1 << bits)) | val : val);
109 }
110
111 /* For many immediate values the sign bit is the low bit! */
112
113 static int
114 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
115 {
116 return (int) ((val & 0x1 ? (-(1 << (bits - 1))) : 0) | val >> 1);
117 }
118
119 /* Extract the bits at positions between FROM and TO, using HP's numbering
120 (MSB = 0). */
121
122 int
123 hppa_get_field (unsigned word, int from, int to)
124 {
125 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
126 }
127
128 /* Extract the immediate field from a ld{bhw}s instruction. */
129
130 int
131 hppa_extract_5_load (unsigned word)
132 {
133 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
134 }
135
136 /* Extract the immediate field from a break instruction. */
137
138 unsigned
139 hppa_extract_5r_store (unsigned word)
140 {
141 return (word & MASK_5);
142 }
143
144 /* Extract the immediate field from a {sr}sm instruction. */
145
146 unsigned
147 hppa_extract_5R_store (unsigned word)
148 {
149 return (word >> 16 & MASK_5);
150 }
151
152 /* Extract a 14 bit immediate field. */
153
154 int
155 hppa_extract_14 (unsigned word)
156 {
157 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
158 }
159
160 /* Extract a 21 bit constant. */
161
162 int
163 hppa_extract_21 (unsigned word)
164 {
165 int val;
166
167 word &= MASK_21;
168 word <<= 11;
169 val = hppa_get_field (word, 20, 20);
170 val <<= 11;
171 val |= hppa_get_field (word, 9, 19);
172 val <<= 2;
173 val |= hppa_get_field (word, 5, 6);
174 val <<= 5;
175 val |= hppa_get_field (word, 0, 4);
176 val <<= 2;
177 val |= hppa_get_field (word, 7, 8);
178 return hppa_sign_extend (val, 21) << 11;
179 }
180
181 /* extract a 17 bit constant from branch instructions, returning the
182 19 bit signed value. */
183
184 int
185 hppa_extract_17 (unsigned word)
186 {
187 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
188 hppa_get_field (word, 29, 29) << 10 |
189 hppa_get_field (word, 11, 15) << 11 |
190 (word & 0x1) << 16, 17) << 2;
191 }
192
193 CORE_ADDR
194 hppa_symbol_address(const char *sym)
195 {
196 struct bound_minimal_symbol minsym;
197
198 minsym = lookup_minimal_symbol (sym, NULL, NULL);
199 if (minsym.minsym)
200 return BMSYMBOL_VALUE_ADDRESS (minsym);
201 else
202 return (CORE_ADDR)-1;
203 }
204
205 static struct hppa_objfile_private *
206 hppa_init_objfile_priv_data (struct objfile *objfile)
207 {
208 hppa_objfile_private *priv
209 = OBSTACK_ZALLOC (&objfile->objfile_obstack, hppa_objfile_private);
210
211 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
212
213 return priv;
214 }
215 \f
216
217 /* Compare the start address for two unwind entries returning 1 if
218 the first address is larger than the second, -1 if the second is
219 larger than the first, and zero if they are equal. */
220
221 static int
222 compare_unwind_entries (const void *arg1, const void *arg2)
223 {
224 const struct unwind_table_entry *a = (const struct unwind_table_entry *) arg1;
225 const struct unwind_table_entry *b = (const struct unwind_table_entry *) arg2;
226
227 if (a->region_start > b->region_start)
228 return 1;
229 else if (a->region_start < b->region_start)
230 return -1;
231 else
232 return 0;
233 }
234
235 static void
236 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
237 {
238 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
239 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
240 {
241 bfd_vma value = section->vma - section->filepos;
242 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
243
244 if (value < *low_text_segment_address)
245 *low_text_segment_address = value;
246 }
247 }
248
249 static void
250 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
251 asection *section, unsigned int entries,
252 size_t size, CORE_ADDR text_offset)
253 {
254 /* We will read the unwind entries into temporary memory, then
255 fill in the actual unwind table. */
256
257 if (size > 0)
258 {
259 struct gdbarch *gdbarch = get_objfile_arch (objfile);
260 unsigned long tmp;
261 unsigned i;
262 char *buf = (char *) alloca (size);
263 CORE_ADDR low_text_segment_address;
264
265 /* For ELF targets, then unwinds are supposed to
266 be segment relative offsets instead of absolute addresses.
267
268 Note that when loading a shared library (text_offset != 0) the
269 unwinds are already relative to the text_offset that will be
270 passed in. */
271 if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0)
272 {
273 low_text_segment_address = -1;
274
275 bfd_map_over_sections (objfile->obfd,
276 record_text_segment_lowaddr,
277 &low_text_segment_address);
278
279 text_offset = low_text_segment_address;
280 }
281 else if (gdbarch_tdep (gdbarch)->solib_get_text_base)
282 {
283 text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile);
284 }
285
286 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
287
288 /* Now internalize the information being careful to handle host/target
289 endian issues. */
290 for (i = 0; i < entries; i++)
291 {
292 table[i].region_start = bfd_get_32 (objfile->obfd,
293 (bfd_byte *) buf);
294 table[i].region_start += text_offset;
295 buf += 4;
296 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
297 table[i].region_end += text_offset;
298 buf += 4;
299 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
300 buf += 4;
301 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
302 table[i].Millicode = (tmp >> 30) & 0x1;
303 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
304 table[i].Region_description = (tmp >> 27) & 0x3;
305 table[i].reserved = (tmp >> 26) & 0x1;
306 table[i].Entry_SR = (tmp >> 25) & 0x1;
307 table[i].Entry_FR = (tmp >> 21) & 0xf;
308 table[i].Entry_GR = (tmp >> 16) & 0x1f;
309 table[i].Args_stored = (tmp >> 15) & 0x1;
310 table[i].Variable_Frame = (tmp >> 14) & 0x1;
311 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
312 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
313 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
314 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
315 table[i].sr4export = (tmp >> 9) & 0x1;
316 table[i].cxx_info = (tmp >> 8) & 0x1;
317 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
318 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
319 table[i].reserved1 = (tmp >> 5) & 0x1;
320 table[i].Save_SP = (tmp >> 4) & 0x1;
321 table[i].Save_RP = (tmp >> 3) & 0x1;
322 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
323 table[i].save_r19 = (tmp >> 1) & 0x1;
324 table[i].Cleanup_defined = tmp & 0x1;
325 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
326 buf += 4;
327 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
328 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
329 table[i].Large_frame = (tmp >> 29) & 0x1;
330 table[i].alloca_frame = (tmp >> 28) & 0x1;
331 table[i].reserved2 = (tmp >> 27) & 0x1;
332 table[i].Total_frame_size = tmp & 0x7ffffff;
333
334 /* Stub unwinds are handled elsewhere. */
335 table[i].stub_unwind.stub_type = 0;
336 table[i].stub_unwind.padding = 0;
337 }
338 }
339 }
340
341 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
342 the object file. This info is used mainly by find_unwind_entry() to find
343 out the stack frame size and frame pointer used by procedures. We put
344 everything on the psymbol obstack in the objfile so that it automatically
345 gets freed when the objfile is destroyed. */
346
347 static void
348 read_unwind_info (struct objfile *objfile)
349 {
350 asection *unwind_sec, *stub_unwind_sec;
351 size_t unwind_size, stub_unwind_size, total_size;
352 unsigned index, unwind_entries;
353 unsigned stub_entries, total_entries;
354 CORE_ADDR text_offset;
355 struct hppa_unwind_info *ui;
356 struct hppa_objfile_private *obj_private;
357
358 text_offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
359 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
360 sizeof (struct hppa_unwind_info));
361
362 ui->table = NULL;
363 ui->cache = NULL;
364 ui->last = -1;
365
366 /* For reasons unknown the HP PA64 tools generate multiple unwinder
367 sections in a single executable. So we just iterate over every
368 section in the BFD looking for unwinder sections intead of trying
369 to do a lookup with bfd_get_section_by_name.
370
371 First determine the total size of the unwind tables so that we
372 can allocate memory in a nice big hunk. */
373 total_entries = 0;
374 for (unwind_sec = objfile->obfd->sections;
375 unwind_sec;
376 unwind_sec = unwind_sec->next)
377 {
378 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
379 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
380 {
381 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
382 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
383
384 total_entries += unwind_entries;
385 }
386 }
387
388 /* Now compute the size of the stub unwinds. Note the ELF tools do not
389 use stub unwinds at the current time. */
390 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
391
392 if (stub_unwind_sec)
393 {
394 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
395 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
396 }
397 else
398 {
399 stub_unwind_size = 0;
400 stub_entries = 0;
401 }
402
403 /* Compute total number of unwind entries and their total size. */
404 total_entries += stub_entries;
405 total_size = total_entries * sizeof (struct unwind_table_entry);
406
407 /* Allocate memory for the unwind table. */
408 ui->table = (struct unwind_table_entry *)
409 obstack_alloc (&objfile->objfile_obstack, total_size);
410 ui->last = total_entries - 1;
411
412 /* Now read in each unwind section and internalize the standard unwind
413 entries. */
414 index = 0;
415 for (unwind_sec = objfile->obfd->sections;
416 unwind_sec;
417 unwind_sec = unwind_sec->next)
418 {
419 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
420 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
421 {
422 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
423 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
424
425 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
426 unwind_entries, unwind_size, text_offset);
427 index += unwind_entries;
428 }
429 }
430
431 /* Now read in and internalize the stub unwind entries. */
432 if (stub_unwind_size > 0)
433 {
434 unsigned int i;
435 char *buf = (char *) alloca (stub_unwind_size);
436
437 /* Read in the stub unwind entries. */
438 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
439 0, stub_unwind_size);
440
441 /* Now convert them into regular unwind entries. */
442 for (i = 0; i < stub_entries; i++, index++)
443 {
444 /* Clear out the next unwind entry. */
445 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
446
447 /* Convert offset & size into region_start and region_end.
448 Stuff away the stub type into "reserved" fields. */
449 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
450 (bfd_byte *) buf);
451 ui->table[index].region_start += text_offset;
452 buf += 4;
453 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
454 (bfd_byte *) buf);
455 buf += 2;
456 ui->table[index].region_end
457 = ui->table[index].region_start + 4 *
458 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
459 buf += 2;
460 }
461
462 }
463
464 /* Unwind table needs to be kept sorted. */
465 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
466 compare_unwind_entries);
467
468 /* Keep a pointer to the unwind information. */
469 obj_private = (struct hppa_objfile_private *)
470 objfile_data (objfile, hppa_objfile_priv_data);
471 if (obj_private == NULL)
472 obj_private = hppa_init_objfile_priv_data (objfile);
473
474 obj_private->unwind_info = ui;
475 }
476
477 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
478 of the objfiles seeking the unwind table entry for this PC. Each objfile
479 contains a sorted list of struct unwind_table_entry. Since we do a binary
480 search of the unwind tables, we depend upon them to be sorted. */
481
482 struct unwind_table_entry *
483 find_unwind_entry (CORE_ADDR pc)
484 {
485 int first, middle, last;
486 struct objfile *objfile;
487 struct hppa_objfile_private *priv;
488
489 if (hppa_debug)
490 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry %s -> ",
491 hex_string (pc));
492
493 /* A function at address 0? Not in HP-UX! */
494 if (pc == (CORE_ADDR) 0)
495 {
496 if (hppa_debug)
497 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
498 return NULL;
499 }
500
501 ALL_OBJFILES (objfile)
502 {
503 struct hppa_unwind_info *ui;
504 ui = NULL;
505 priv = ((struct hppa_objfile_private *)
506 objfile_data (objfile, hppa_objfile_priv_data));
507 if (priv)
508 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
509
510 if (!ui)
511 {
512 read_unwind_info (objfile);
513 priv = ((struct hppa_objfile_private *)
514 objfile_data (objfile, hppa_objfile_priv_data));
515 if (priv == NULL)
516 error (_("Internal error reading unwind information."));
517 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
518 }
519
520 /* First, check the cache. */
521
522 if (ui->cache
523 && pc >= ui->cache->region_start
524 && pc <= ui->cache->region_end)
525 {
526 if (hppa_debug)
527 fprintf_unfiltered (gdb_stdlog, "%s (cached) }\n",
528 hex_string ((uintptr_t) ui->cache));
529 return ui->cache;
530 }
531
532 /* Not in the cache, do a binary search. */
533
534 first = 0;
535 last = ui->last;
536
537 while (first <= last)
538 {
539 middle = (first + last) / 2;
540 if (pc >= ui->table[middle].region_start
541 && pc <= ui->table[middle].region_end)
542 {
543 ui->cache = &ui->table[middle];
544 if (hppa_debug)
545 fprintf_unfiltered (gdb_stdlog, "%s }\n",
546 hex_string ((uintptr_t) ui->cache));
547 return &ui->table[middle];
548 }
549
550 if (pc < ui->table[middle].region_start)
551 last = middle - 1;
552 else
553 first = middle + 1;
554 }
555 } /* ALL_OBJFILES() */
556
557 if (hppa_debug)
558 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
559
560 return NULL;
561 }
562
563 /* Implement the stack_frame_destroyed_p gdbarch method.
564
565 The epilogue is defined here as the area either on the `bv' instruction
566 itself or an instruction which destroys the function's stack frame.
567
568 We do not assume that the epilogue is at the end of a function as we can
569 also have return sequences in the middle of a function. */
570
571 static int
572 hppa_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
573 {
574 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
575 unsigned long status;
576 unsigned int inst;
577 gdb_byte buf[4];
578
579 status = target_read_memory (pc, buf, 4);
580 if (status != 0)
581 return 0;
582
583 inst = extract_unsigned_integer (buf, 4, byte_order);
584
585 /* The most common way to perform a stack adjustment ldo X(sp),sp
586 We are destroying a stack frame if the offset is negative. */
587 if ((inst & 0xffffc000) == 0x37de0000
588 && hppa_extract_14 (inst) < 0)
589 return 1;
590
591 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
592 if (((inst & 0x0fc010e0) == 0x0fc010e0
593 || (inst & 0x0fc010e0) == 0x0fc010e0)
594 && hppa_extract_14 (inst) < 0)
595 return 1;
596
597 /* bv %r0(%rp) or bv,n %r0(%rp) */
598 if (inst == 0xe840c000 || inst == 0xe840c002)
599 return 1;
600
601 return 0;
602 }
603
604 constexpr gdb_byte hppa_break_insn[] = {0x00, 0x01, 0x00, 0x04};
605
606 typedef BP_MANIPULATION (hppa_break_insn) hppa_breakpoint;
607
608 /* Return the name of a register. */
609
610 static const char *
611 hppa32_register_name (struct gdbarch *gdbarch, int i)
612 {
613 static const char *names[] = {
614 "flags", "r1", "rp", "r3",
615 "r4", "r5", "r6", "r7",
616 "r8", "r9", "r10", "r11",
617 "r12", "r13", "r14", "r15",
618 "r16", "r17", "r18", "r19",
619 "r20", "r21", "r22", "r23",
620 "r24", "r25", "r26", "dp",
621 "ret0", "ret1", "sp", "r31",
622 "sar", "pcoqh", "pcsqh", "pcoqt",
623 "pcsqt", "eiem", "iir", "isr",
624 "ior", "ipsw", "goto", "sr4",
625 "sr0", "sr1", "sr2", "sr3",
626 "sr5", "sr6", "sr7", "cr0",
627 "cr8", "cr9", "ccr", "cr12",
628 "cr13", "cr24", "cr25", "cr26",
629 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
630 "fpsr", "fpe1", "fpe2", "fpe3",
631 "fpe4", "fpe5", "fpe6", "fpe7",
632 "fr4", "fr4R", "fr5", "fr5R",
633 "fr6", "fr6R", "fr7", "fr7R",
634 "fr8", "fr8R", "fr9", "fr9R",
635 "fr10", "fr10R", "fr11", "fr11R",
636 "fr12", "fr12R", "fr13", "fr13R",
637 "fr14", "fr14R", "fr15", "fr15R",
638 "fr16", "fr16R", "fr17", "fr17R",
639 "fr18", "fr18R", "fr19", "fr19R",
640 "fr20", "fr20R", "fr21", "fr21R",
641 "fr22", "fr22R", "fr23", "fr23R",
642 "fr24", "fr24R", "fr25", "fr25R",
643 "fr26", "fr26R", "fr27", "fr27R",
644 "fr28", "fr28R", "fr29", "fr29R",
645 "fr30", "fr30R", "fr31", "fr31R"
646 };
647 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
648 return NULL;
649 else
650 return names[i];
651 }
652
653 static const char *
654 hppa64_register_name (struct gdbarch *gdbarch, int i)
655 {
656 static const char *names[] = {
657 "flags", "r1", "rp", "r3",
658 "r4", "r5", "r6", "r7",
659 "r8", "r9", "r10", "r11",
660 "r12", "r13", "r14", "r15",
661 "r16", "r17", "r18", "r19",
662 "r20", "r21", "r22", "r23",
663 "r24", "r25", "r26", "dp",
664 "ret0", "ret1", "sp", "r31",
665 "sar", "pcoqh", "pcsqh", "pcoqt",
666 "pcsqt", "eiem", "iir", "isr",
667 "ior", "ipsw", "goto", "sr4",
668 "sr0", "sr1", "sr2", "sr3",
669 "sr5", "sr6", "sr7", "cr0",
670 "cr8", "cr9", "ccr", "cr12",
671 "cr13", "cr24", "cr25", "cr26",
672 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
673 "fpsr", "fpe1", "fpe2", "fpe3",
674 "fr4", "fr5", "fr6", "fr7",
675 "fr8", "fr9", "fr10", "fr11",
676 "fr12", "fr13", "fr14", "fr15",
677 "fr16", "fr17", "fr18", "fr19",
678 "fr20", "fr21", "fr22", "fr23",
679 "fr24", "fr25", "fr26", "fr27",
680 "fr28", "fr29", "fr30", "fr31"
681 };
682 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
683 return NULL;
684 else
685 return names[i];
686 }
687
688 /* Map dwarf DBX register numbers to GDB register numbers. */
689 static int
690 hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
691 {
692 /* The general registers and the sar are the same in both sets. */
693 if (reg >= 0 && reg <= 32)
694 return reg;
695
696 /* fr4-fr31 are mapped from 72 in steps of 2. */
697 if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1))
698 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
699
700 return -1;
701 }
702
703 /* This function pushes a stack frame with arguments as part of the
704 inferior function calling mechanism.
705
706 This is the version of the function for the 32-bit PA machines, in
707 which later arguments appear at lower addresses. (The stack always
708 grows towards higher addresses.)
709
710 We simply allocate the appropriate amount of stack space and put
711 arguments into their proper slots. */
712
713 static CORE_ADDR
714 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
715 struct regcache *regcache, CORE_ADDR bp_addr,
716 int nargs, struct value **args, CORE_ADDR sp,
717 function_call_return_method return_method,
718 CORE_ADDR struct_addr)
719 {
720 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
721
722 /* Stack base address at which any pass-by-reference parameters are
723 stored. */
724 CORE_ADDR struct_end = 0;
725 /* Stack base address at which the first parameter is stored. */
726 CORE_ADDR param_end = 0;
727
728 /* Two passes. First pass computes the location of everything,
729 second pass writes the bytes out. */
730 int write_pass;
731
732 /* Global pointer (r19) of the function we are trying to call. */
733 CORE_ADDR gp;
734
735 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
736
737 for (write_pass = 0; write_pass < 2; write_pass++)
738 {
739 CORE_ADDR struct_ptr = 0;
740 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
741 struct_ptr is adjusted for each argument below, so the first
742 argument will end up at sp-36. */
743 CORE_ADDR param_ptr = 32;
744 int i;
745 int small_struct = 0;
746
747 for (i = 0; i < nargs; i++)
748 {
749 struct value *arg = args[i];
750 struct type *type = check_typedef (value_type (arg));
751 /* The corresponding parameter that is pushed onto the
752 stack, and [possibly] passed in a register. */
753 gdb_byte param_val[8];
754 int param_len;
755 memset (param_val, 0, sizeof param_val);
756 if (TYPE_LENGTH (type) > 8)
757 {
758 /* Large parameter, pass by reference. Store the value
759 in "struct" area and then pass its address. */
760 param_len = 4;
761 struct_ptr += align_up (TYPE_LENGTH (type), 8);
762 if (write_pass)
763 write_memory (struct_end - struct_ptr, value_contents (arg),
764 TYPE_LENGTH (type));
765 store_unsigned_integer (param_val, 4, byte_order,
766 struct_end - struct_ptr);
767 }
768 else if (TYPE_CODE (type) == TYPE_CODE_INT
769 || TYPE_CODE (type) == TYPE_CODE_ENUM)
770 {
771 /* Integer value store, right aligned. "unpack_long"
772 takes care of any sign-extension problems. */
773 param_len = align_up (TYPE_LENGTH (type), 4);
774 store_unsigned_integer (param_val, param_len, byte_order,
775 unpack_long (type,
776 value_contents (arg)));
777 }
778 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
779 {
780 /* Floating point value store, right aligned. */
781 param_len = align_up (TYPE_LENGTH (type), 4);
782 memcpy (param_val, value_contents (arg), param_len);
783 }
784 else
785 {
786 param_len = align_up (TYPE_LENGTH (type), 4);
787
788 /* Small struct value are stored right-aligned. */
789 memcpy (param_val + param_len - TYPE_LENGTH (type),
790 value_contents (arg), TYPE_LENGTH (type));
791
792 /* Structures of size 5, 6 and 7 bytes are special in that
793 the higher-ordered word is stored in the lower-ordered
794 argument, and even though it is a 8-byte quantity the
795 registers need not be 8-byte aligned. */
796 if (param_len > 4 && param_len < 8)
797 small_struct = 1;
798 }
799
800 param_ptr += param_len;
801 if (param_len == 8 && !small_struct)
802 param_ptr = align_up (param_ptr, 8);
803
804 /* First 4 non-FP arguments are passed in gr26-gr23.
805 First 4 32-bit FP arguments are passed in fr4L-fr7L.
806 First 2 64-bit FP arguments are passed in fr5 and fr7.
807
808 The rest go on the stack, starting at sp-36, towards lower
809 addresses. 8-byte arguments must be aligned to a 8-byte
810 stack boundary. */
811 if (write_pass)
812 {
813 write_memory (param_end - param_ptr, param_val, param_len);
814
815 /* There are some cases when we don't know the type
816 expected by the callee (e.g. for variadic functions), so
817 pass the parameters in both general and fp regs. */
818 if (param_ptr <= 48)
819 {
820 int grreg = 26 - (param_ptr - 36) / 4;
821 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
822 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
823
824 regcache->cooked_write (grreg, param_val);
825 regcache->cooked_write (fpLreg, param_val);
826
827 if (param_len > 4)
828 {
829 regcache->cooked_write (grreg + 1, param_val + 4);
830
831 regcache->cooked_write (fpreg, param_val);
832 regcache->cooked_write (fpreg + 1, param_val + 4);
833 }
834 }
835 }
836 }
837
838 /* Update the various stack pointers. */
839 if (!write_pass)
840 {
841 struct_end = sp + align_up (struct_ptr, 64);
842 /* PARAM_PTR already accounts for all the arguments passed
843 by the user. However, the ABI mandates minimum stack
844 space allocations for outgoing arguments. The ABI also
845 mandates minimum stack alignments which we must
846 preserve. */
847 param_end = struct_end + align_up (param_ptr, 64);
848 }
849 }
850
851 /* If a structure has to be returned, set up register 28 to hold its
852 address. */
853 if (return_method == return_method_struct)
854 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
855
856 gp = tdep->find_global_pointer (gdbarch, function);
857
858 if (gp != 0)
859 regcache_cooked_write_unsigned (regcache, 19, gp);
860
861 /* Set the return address. */
862 if (!gdbarch_push_dummy_code_p (gdbarch))
863 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
864
865 /* Update the Stack Pointer. */
866 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
867
868 return param_end;
869 }
870
871 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit
872 Runtime Architecture for PA-RISC 2.0", which is distributed as part
873 as of the HP-UX Software Transition Kit (STK). This implementation
874 is based on version 3.3, dated October 6, 1997. */
875
876 /* Check whether TYPE is an "Integral or Pointer Scalar Type". */
877
878 static int
879 hppa64_integral_or_pointer_p (const struct type *type)
880 {
881 switch (TYPE_CODE (type))
882 {
883 case TYPE_CODE_INT:
884 case TYPE_CODE_BOOL:
885 case TYPE_CODE_CHAR:
886 case TYPE_CODE_ENUM:
887 case TYPE_CODE_RANGE:
888 {
889 int len = TYPE_LENGTH (type);
890 return (len == 1 || len == 2 || len == 4 || len == 8);
891 }
892 case TYPE_CODE_PTR:
893 case TYPE_CODE_REF:
894 case TYPE_CODE_RVALUE_REF:
895 return (TYPE_LENGTH (type) == 8);
896 default:
897 break;
898 }
899
900 return 0;
901 }
902
903 /* Check whether TYPE is a "Floating Scalar Type". */
904
905 static int
906 hppa64_floating_p (const struct type *type)
907 {
908 switch (TYPE_CODE (type))
909 {
910 case TYPE_CODE_FLT:
911 {
912 int len = TYPE_LENGTH (type);
913 return (len == 4 || len == 8 || len == 16);
914 }
915 default:
916 break;
917 }
918
919 return 0;
920 }
921
922 /* If CODE points to a function entry address, try to look up the corresponding
923 function descriptor and return its address instead. If CODE is not a
924 function entry address, then just return it unchanged. */
925 static CORE_ADDR
926 hppa64_convert_code_addr_to_fptr (struct gdbarch *gdbarch, CORE_ADDR code)
927 {
928 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
929 struct obj_section *sec, *opd;
930
931 sec = find_pc_section (code);
932
933 if (!sec)
934 return code;
935
936 /* If CODE is in a data section, assume it's already a fptr. */
937 if (!(sec->the_bfd_section->flags & SEC_CODE))
938 return code;
939
940 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
941 {
942 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
943 break;
944 }
945
946 if (opd < sec->objfile->sections_end)
947 {
948 CORE_ADDR addr;
949
950 for (addr = obj_section_addr (opd);
951 addr < obj_section_endaddr (opd);
952 addr += 2 * 8)
953 {
954 ULONGEST opdaddr;
955 gdb_byte tmp[8];
956
957 if (target_read_memory (addr, tmp, sizeof (tmp)))
958 break;
959 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp), byte_order);
960
961 if (opdaddr == code)
962 return addr - 16;
963 }
964 }
965
966 return code;
967 }
968
969 static CORE_ADDR
970 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
971 struct regcache *regcache, CORE_ADDR bp_addr,
972 int nargs, struct value **args, CORE_ADDR sp,
973 function_call_return_method return_method,
974 CORE_ADDR struct_addr)
975 {
976 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
977 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
978 int i, offset = 0;
979 CORE_ADDR gp;
980
981 /* "The outgoing parameter area [...] must be aligned at a 16-byte
982 boundary." */
983 sp = align_up (sp, 16);
984
985 for (i = 0; i < nargs; i++)
986 {
987 struct value *arg = args[i];
988 struct type *type = value_type (arg);
989 int len = TYPE_LENGTH (type);
990 const bfd_byte *valbuf;
991 bfd_byte fptrbuf[8];
992 int regnum;
993
994 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
995 offset = align_up (offset, 8);
996
997 if (hppa64_integral_or_pointer_p (type))
998 {
999 /* "Integral scalar parameters smaller than 64 bits are
1000 padded on the left (i.e., the value is in the
1001 least-significant bits of the 64-bit storage unit, and
1002 the high-order bits are undefined)." Therefore we can
1003 safely sign-extend them. */
1004 if (len < 8)
1005 {
1006 arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg);
1007 len = 8;
1008 }
1009 }
1010 else if (hppa64_floating_p (type))
1011 {
1012 if (len > 8)
1013 {
1014 /* "Quad-precision (128-bit) floating-point scalar
1015 parameters are aligned on a 16-byte boundary." */
1016 offset = align_up (offset, 16);
1017
1018 /* "Double-extended- and quad-precision floating-point
1019 parameters within the first 64 bytes of the parameter
1020 list are always passed in general registers." */
1021 }
1022 else
1023 {
1024 if (len == 4)
1025 {
1026 /* "Single-precision (32-bit) floating-point scalar
1027 parameters are padded on the left with 32 bits of
1028 garbage (i.e., the floating-point value is in the
1029 least-significant 32 bits of a 64-bit storage
1030 unit)." */
1031 offset += 4;
1032 }
1033
1034 /* "Single- and double-precision floating-point
1035 parameters in this area are passed according to the
1036 available formal parameter information in a function
1037 prototype. [...] If no prototype is in scope,
1038 floating-point parameters must be passed both in the
1039 corresponding general registers and in the
1040 corresponding floating-point registers." */
1041 regnum = HPPA64_FP4_REGNUM + offset / 8;
1042
1043 if (regnum < HPPA64_FP4_REGNUM + 8)
1044 {
1045 /* "Single-precision floating-point parameters, when
1046 passed in floating-point registers, are passed in
1047 the right halves of the floating point registers;
1048 the left halves are unused." */
1049 regcache->cooked_write_part (regnum, offset % 8, len,
1050 value_contents (arg));
1051 }
1052 }
1053 }
1054 else
1055 {
1056 if (len > 8)
1057 {
1058 /* "Aggregates larger than 8 bytes are aligned on a
1059 16-byte boundary, possibly leaving an unused argument
1060 slot, which is filled with garbage. If necessary,
1061 they are padded on the right (with garbage), to a
1062 multiple of 8 bytes." */
1063 offset = align_up (offset, 16);
1064 }
1065 }
1066
1067 /* If we are passing a function pointer, make sure we pass a function
1068 descriptor instead of the function entry address. */
1069 if (TYPE_CODE (type) == TYPE_CODE_PTR
1070 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1071 {
1072 ULONGEST codeptr, fptr;
1073
1074 codeptr = unpack_long (type, value_contents (arg));
1075 fptr = hppa64_convert_code_addr_to_fptr (gdbarch, codeptr);
1076 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), byte_order,
1077 fptr);
1078 valbuf = fptrbuf;
1079 }
1080 else
1081 {
1082 valbuf = value_contents (arg);
1083 }
1084
1085 /* Always store the argument in memory. */
1086 write_memory (sp + offset, valbuf, len);
1087
1088 regnum = HPPA_ARG0_REGNUM - offset / 8;
1089 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1090 {
1091 regcache->cooked_write_part (regnum, offset % 8, std::min (len, 8),
1092 valbuf);
1093 offset += std::min (len, 8);
1094 valbuf += std::min (len, 8);
1095 len -= std::min (len, 8);
1096 regnum--;
1097 }
1098
1099 offset += len;
1100 }
1101
1102 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1103 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1104
1105 /* Allocate the outgoing parameter area. Make sure the outgoing
1106 parameter area is multiple of 16 bytes in length. */
1107 sp += std::max (align_up (offset, 16), (ULONGEST) 64);
1108
1109 /* Allocate 32-bytes of scratch space. The documentation doesn't
1110 mention this, but it seems to be needed. */
1111 sp += 32;
1112
1113 /* Allocate the frame marker area. */
1114 sp += 16;
1115
1116 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1117 its address. */
1118 if (return_method == return_method_struct)
1119 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1120
1121 /* Set up GR27 (%dp) to hold the global pointer (gp). */
1122 gp = tdep->find_global_pointer (gdbarch, function);
1123 if (gp != 0)
1124 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1125
1126 /* Set up GR2 (%rp) to hold the return pointer (rp). */
1127 if (!gdbarch_push_dummy_code_p (gdbarch))
1128 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1129
1130 /* Set up GR30 to hold the stack pointer (sp). */
1131 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1132
1133 return sp;
1134 }
1135 \f
1136
1137 /* Handle 32/64-bit struct return conventions. */
1138
1139 static enum return_value_convention
1140 hppa32_return_value (struct gdbarch *gdbarch, struct value *function,
1141 struct type *type, struct regcache *regcache,
1142 gdb_byte *readbuf, const gdb_byte *writebuf)
1143 {
1144 if (TYPE_LENGTH (type) <= 2 * 4)
1145 {
1146 /* The value always lives in the right hand end of the register
1147 (or register pair)? */
1148 int b;
1149 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1150 int part = TYPE_LENGTH (type) % 4;
1151 /* The left hand register contains only part of the value,
1152 transfer that first so that the rest can be xfered as entire
1153 4-byte registers. */
1154 if (part > 0)
1155 {
1156 if (readbuf != NULL)
1157 regcache->cooked_read_part (reg, 4 - part, part, readbuf);
1158 if (writebuf != NULL)
1159 regcache->cooked_write_part (reg, 4 - part, part, writebuf);
1160 reg++;
1161 }
1162 /* Now transfer the remaining register values. */
1163 for (b = part; b < TYPE_LENGTH (type); b += 4)
1164 {
1165 if (readbuf != NULL)
1166 regcache->cooked_read (reg, readbuf + b);
1167 if (writebuf != NULL)
1168 regcache->cooked_write (reg, writebuf + b);
1169 reg++;
1170 }
1171 return RETURN_VALUE_REGISTER_CONVENTION;
1172 }
1173 else
1174 return RETURN_VALUE_STRUCT_CONVENTION;
1175 }
1176
1177 static enum return_value_convention
1178 hppa64_return_value (struct gdbarch *gdbarch, struct value *function,
1179 struct type *type, struct regcache *regcache,
1180 gdb_byte *readbuf, const gdb_byte *writebuf)
1181 {
1182 int len = TYPE_LENGTH (type);
1183 int regnum, offset;
1184
1185 if (len > 16)
1186 {
1187 /* All return values larget than 128 bits must be aggregate
1188 return values. */
1189 gdb_assert (!hppa64_integral_or_pointer_p (type));
1190 gdb_assert (!hppa64_floating_p (type));
1191
1192 /* "Aggregate return values larger than 128 bits are returned in
1193 a buffer allocated by the caller. The address of the buffer
1194 must be passed in GR 28." */
1195 return RETURN_VALUE_STRUCT_CONVENTION;
1196 }
1197
1198 if (hppa64_integral_or_pointer_p (type))
1199 {
1200 /* "Integral return values are returned in GR 28. Values
1201 smaller than 64 bits are padded on the left (with garbage)." */
1202 regnum = HPPA_RET0_REGNUM;
1203 offset = 8 - len;
1204 }
1205 else if (hppa64_floating_p (type))
1206 {
1207 if (len > 8)
1208 {
1209 /* "Double-extended- and quad-precision floating-point
1210 values are returned in GRs 28 and 29. The sign,
1211 exponent, and most-significant bits of the mantissa are
1212 returned in GR 28; the least-significant bits of the
1213 mantissa are passed in GR 29. For double-extended
1214 precision values, GR 29 is padded on the right with 48
1215 bits of garbage." */
1216 regnum = HPPA_RET0_REGNUM;
1217 offset = 0;
1218 }
1219 else
1220 {
1221 /* "Single-precision and double-precision floating-point
1222 return values are returned in FR 4R (single precision) or
1223 FR 4 (double-precision)." */
1224 regnum = HPPA64_FP4_REGNUM;
1225 offset = 8 - len;
1226 }
1227 }
1228 else
1229 {
1230 /* "Aggregate return values up to 64 bits in size are returned
1231 in GR 28. Aggregates smaller than 64 bits are left aligned
1232 in the register; the pad bits on the right are undefined."
1233
1234 "Aggregate return values between 65 and 128 bits are returned
1235 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1236 the remaining bits are placed, left aligned, in GR 29. The
1237 pad bits on the right of GR 29 (if any) are undefined." */
1238 regnum = HPPA_RET0_REGNUM;
1239 offset = 0;
1240 }
1241
1242 if (readbuf)
1243 {
1244 while (len > 0)
1245 {
1246 regcache->cooked_read_part (regnum, offset, std::min (len, 8),
1247 readbuf);
1248 readbuf += std::min (len, 8);
1249 len -= std::min (len, 8);
1250 regnum++;
1251 }
1252 }
1253
1254 if (writebuf)
1255 {
1256 while (len > 0)
1257 {
1258 regcache->cooked_write_part (regnum, offset, std::min (len, 8),
1259 writebuf);
1260 writebuf += std::min (len, 8);
1261 len -= std::min (len, 8);
1262 regnum++;
1263 }
1264 }
1265
1266 return RETURN_VALUE_REGISTER_CONVENTION;
1267 }
1268 \f
1269
1270 static CORE_ADDR
1271 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1272 struct target_ops *targ)
1273 {
1274 if (addr & 2)
1275 {
1276 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
1277 CORE_ADDR plabel = addr & ~3;
1278 return read_memory_typed_address (plabel, func_ptr_type);
1279 }
1280
1281 return addr;
1282 }
1283
1284 static CORE_ADDR
1285 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1286 {
1287 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1288 and not _bit_)! */
1289 return align_up (addr, 64);
1290 }
1291
1292 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1293
1294 static CORE_ADDR
1295 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1296 {
1297 /* Just always 16-byte align. */
1298 return align_up (addr, 16);
1299 }
1300
1301 CORE_ADDR
1302 hppa_read_pc (readable_regcache *regcache)
1303 {
1304 ULONGEST ipsw;
1305 ULONGEST pc;
1306
1307 regcache->cooked_read (HPPA_IPSW_REGNUM, &ipsw);
1308 regcache->cooked_read (HPPA_PCOQ_HEAD_REGNUM, &pc);
1309
1310 /* If the current instruction is nullified, then we are effectively
1311 still executing the previous instruction. Pretend we are still
1312 there. This is needed when single stepping; if the nullified
1313 instruction is on a different line, we don't want GDB to think
1314 we've stepped onto that line. */
1315 if (ipsw & 0x00200000)
1316 pc -= 4;
1317
1318 return pc & ~0x3;
1319 }
1320
1321 void
1322 hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
1323 {
1324 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1325 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
1326 }
1327
1328 /* For the given instruction (INST), return any adjustment it makes
1329 to the stack pointer or zero for no adjustment.
1330
1331 This only handles instructions commonly found in prologues. */
1332
1333 static int
1334 prologue_inst_adjust_sp (unsigned long inst)
1335 {
1336 /* This must persist across calls. */
1337 static int save_high21;
1338
1339 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1340 if ((inst & 0xffffc000) == 0x37de0000)
1341 return hppa_extract_14 (inst);
1342
1343 /* stwm X,D(sp) */
1344 if ((inst & 0xffe00000) == 0x6fc00000)
1345 return hppa_extract_14 (inst);
1346
1347 /* std,ma X,D(sp) */
1348 if ((inst & 0xffe00008) == 0x73c00008)
1349 return (inst & 0x1 ? -(1 << 13) : 0) | (((inst >> 4) & 0x3ff) << 3);
1350
1351 /* addil high21,%r30; ldo low11,(%r1),%r30)
1352 save high bits in save_high21 for later use. */
1353 if ((inst & 0xffe00000) == 0x2bc00000)
1354 {
1355 save_high21 = hppa_extract_21 (inst);
1356 return 0;
1357 }
1358
1359 if ((inst & 0xffff0000) == 0x343e0000)
1360 return save_high21 + hppa_extract_14 (inst);
1361
1362 /* fstws as used by the HP compilers. */
1363 if ((inst & 0xffffffe0) == 0x2fd01220)
1364 return hppa_extract_5_load (inst);
1365
1366 /* No adjustment. */
1367 return 0;
1368 }
1369
1370 /* Return nonzero if INST is a branch of some kind, else return zero. */
1371
1372 static int
1373 is_branch (unsigned long inst)
1374 {
1375 switch (inst >> 26)
1376 {
1377 case 0x20:
1378 case 0x21:
1379 case 0x22:
1380 case 0x23:
1381 case 0x27:
1382 case 0x28:
1383 case 0x29:
1384 case 0x2a:
1385 case 0x2b:
1386 case 0x2f:
1387 case 0x30:
1388 case 0x31:
1389 case 0x32:
1390 case 0x33:
1391 case 0x38:
1392 case 0x39:
1393 case 0x3a:
1394 case 0x3b:
1395 return 1;
1396
1397 default:
1398 return 0;
1399 }
1400 }
1401
1402 /* Return the register number for a GR which is saved by INST or
1403 zero if INST does not save a GR.
1404
1405 Referenced from:
1406
1407 parisc 1.1:
1408 https://parisc.wiki.kernel.org/images-parisc/6/68/Pa11_acd.pdf
1409
1410 parisc 2.0:
1411 https://parisc.wiki.kernel.org/images-parisc/7/73/Parisc2.0.pdf
1412
1413 According to Table 6-5 of Chapter 6 (Memory Reference Instructions)
1414 on page 106 in parisc 2.0, all instructions for storing values from
1415 the general registers are:
1416
1417 Store: stb, sth, stw, std (according to Chapter 7, they
1418 are only in both "inst >> 26" and "inst >> 6".
1419 Store Absolute: stwa, stda (according to Chapter 7, they are only
1420 in "inst >> 6".
1421 Store Bytes: stby, stdby (according to Chapter 7, they are
1422 only in "inst >> 6").
1423
1424 For (inst >> 26), according to Chapter 7:
1425
1426 The effective memory reference address is formed by the addition
1427 of an immediate displacement to a base value.
1428
1429 - stb: 0x18, store a byte from a general register.
1430
1431 - sth: 0x19, store a halfword from a general register.
1432
1433 - stw: 0x1a, store a word from a general register.
1434
1435 - stwm: 0x1b, store a word from a general register and perform base
1436 register modification (2.0 will still treate it as stw).
1437
1438 - std: 0x1c, store a doubleword from a general register (2.0 only).
1439
1440 - stw: 0x1f, store a word from a general register (2.0 only).
1441
1442 For (inst >> 6) when ((inst >> 26) == 0x03), according to Chapter 7:
1443
1444 The effective memory reference address is formed by the addition
1445 of an index value to a base value specified in the instruction.
1446
1447 - stb: 0x08, store a byte from a general register (1.1 calls stbs).
1448
1449 - sth: 0x09, store a halfword from a general register (1.1 calls
1450 sths).
1451
1452 - stw: 0x0a, store a word from a general register (1.1 calls stws).
1453
1454 - std: 0x0b: store a doubleword from a general register (2.0 only)
1455
1456 Implement fast byte moves (stores) to unaligned word or doubleword
1457 destination.
1458
1459 - stby: 0x0c, for unaligned word (1.1 calls stbys).
1460
1461 - stdby: 0x0d for unaligned doubleword (2.0 only).
1462
1463 Store a word or doubleword using an absolute memory address formed
1464 using short or long displacement or indexed
1465
1466 - stwa: 0x0e, store a word from a general register to an absolute
1467 address (1.0 calls stwas).
1468
1469 - stda: 0x0f, store a doubleword from a general register to an
1470 absolute address (2.0 only). */
1471
1472 static int
1473 inst_saves_gr (unsigned long inst)
1474 {
1475 switch ((inst >> 26) & 0x0f)
1476 {
1477 case 0x03:
1478 switch ((inst >> 6) & 0x0f)
1479 {
1480 case 0x08:
1481 case 0x09:
1482 case 0x0a:
1483 case 0x0b:
1484 case 0x0c:
1485 case 0x0d:
1486 case 0x0e:
1487 case 0x0f:
1488 return hppa_extract_5R_store (inst);
1489 default:
1490 return 0;
1491 }
1492 case 0x18:
1493 case 0x19:
1494 case 0x1a:
1495 case 0x1b:
1496 case 0x1c:
1497 /* no 0x1d or 0x1e -- according to parisc 2.0 document */
1498 case 0x1f:
1499 return hppa_extract_5R_store (inst);
1500 default:
1501 return 0;
1502 }
1503 }
1504
1505 /* Return the register number for a FR which is saved by INST or
1506 zero it INST does not save a FR.
1507
1508 Note we only care about full 64bit register stores (that's the only
1509 kind of stores the prologue will use).
1510
1511 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1512
1513 static int
1514 inst_saves_fr (unsigned long inst)
1515 {
1516 /* Is this an FSTD? */
1517 if ((inst & 0xfc00dfc0) == 0x2c001200)
1518 return hppa_extract_5r_store (inst);
1519 if ((inst & 0xfc000002) == 0x70000002)
1520 return hppa_extract_5R_store (inst);
1521 /* Is this an FSTW? */
1522 if ((inst & 0xfc00df80) == 0x24001200)
1523 return hppa_extract_5r_store (inst);
1524 if ((inst & 0xfc000002) == 0x7c000000)
1525 return hppa_extract_5R_store (inst);
1526 return 0;
1527 }
1528
1529 /* Advance PC across any function entry prologue instructions
1530 to reach some "real" code.
1531
1532 Use information in the unwind table to determine what exactly should
1533 be in the prologue. */
1534
1535
1536 static CORE_ADDR
1537 skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
1538 int stop_before_branch)
1539 {
1540 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1541 gdb_byte buf[4];
1542 CORE_ADDR orig_pc = pc;
1543 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1544 unsigned long args_stored, status, i, restart_gr, restart_fr;
1545 struct unwind_table_entry *u;
1546 int final_iteration;
1547
1548 restart_gr = 0;
1549 restart_fr = 0;
1550
1551 restart:
1552 u = find_unwind_entry (pc);
1553 if (!u)
1554 return pc;
1555
1556 /* If we are not at the beginning of a function, then return now. */
1557 if ((pc & ~0x3) != u->region_start)
1558 return pc;
1559
1560 /* This is how much of a frame adjustment we need to account for. */
1561 stack_remaining = u->Total_frame_size << 3;
1562
1563 /* Magic register saves we want to know about. */
1564 save_rp = u->Save_RP;
1565 save_sp = u->Save_SP;
1566
1567 /* An indication that args may be stored into the stack. Unfortunately
1568 the HPUX compilers tend to set this in cases where no args were
1569 stored too!. */
1570 args_stored = 1;
1571
1572 /* Turn the Entry_GR field into a bitmask. */
1573 save_gr = 0;
1574 for (i = 3; i < u->Entry_GR + 3; i++)
1575 {
1576 /* Frame pointer gets saved into a special location. */
1577 if (u->Save_SP && i == HPPA_FP_REGNUM)
1578 continue;
1579
1580 save_gr |= (1 << i);
1581 }
1582 save_gr &= ~restart_gr;
1583
1584 /* Turn the Entry_FR field into a bitmask too. */
1585 save_fr = 0;
1586 for (i = 12; i < u->Entry_FR + 12; i++)
1587 save_fr |= (1 << i);
1588 save_fr &= ~restart_fr;
1589
1590 final_iteration = 0;
1591
1592 /* Loop until we find everything of interest or hit a branch.
1593
1594 For unoptimized GCC code and for any HP CC code this will never ever
1595 examine any user instructions.
1596
1597 For optimzied GCC code we're faced with problems. GCC will schedule
1598 its prologue and make prologue instructions available for delay slot
1599 filling. The end result is user code gets mixed in with the prologue
1600 and a prologue instruction may be in the delay slot of the first branch
1601 or call.
1602
1603 Some unexpected things are expected with debugging optimized code, so
1604 we allow this routine to walk past user instructions in optimized
1605 GCC code. */
1606 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1607 || args_stored)
1608 {
1609 unsigned int reg_num;
1610 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1611 unsigned long old_save_rp, old_save_sp, next_inst;
1612
1613 /* Save copies of all the triggers so we can compare them later
1614 (only for HPC). */
1615 old_save_gr = save_gr;
1616 old_save_fr = save_fr;
1617 old_save_rp = save_rp;
1618 old_save_sp = save_sp;
1619 old_stack_remaining = stack_remaining;
1620
1621 status = target_read_memory (pc, buf, 4);
1622 inst = extract_unsigned_integer (buf, 4, byte_order);
1623
1624 /* Yow! */
1625 if (status != 0)
1626 return pc;
1627
1628 /* Note the interesting effects of this instruction. */
1629 stack_remaining -= prologue_inst_adjust_sp (inst);
1630
1631 /* There are limited ways to store the return pointer into the
1632 stack. */
1633 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
1634 save_rp = 0;
1635
1636 /* These are the only ways we save SP into the stack. At this time
1637 the HP compilers never bother to save SP into the stack. */
1638 if ((inst & 0xffffc000) == 0x6fc10000
1639 || (inst & 0xffffc00c) == 0x73c10008)
1640 save_sp = 0;
1641
1642 /* Are we loading some register with an offset from the argument
1643 pointer? */
1644 if ((inst & 0xffe00000) == 0x37a00000
1645 || (inst & 0xffffffe0) == 0x081d0240)
1646 {
1647 pc += 4;
1648 continue;
1649 }
1650
1651 /* Account for general and floating-point register saves. */
1652 reg_num = inst_saves_gr (inst);
1653 save_gr &= ~(1 << reg_num);
1654
1655 /* Ugh. Also account for argument stores into the stack.
1656 Unfortunately args_stored only tells us that some arguments
1657 where stored into the stack. Not how many or what kind!
1658
1659 This is a kludge as on the HP compiler sets this bit and it
1660 never does prologue scheduling. So once we see one, skip past
1661 all of them. We have similar code for the fp arg stores below.
1662
1663 FIXME. Can still die if we have a mix of GR and FR argument
1664 stores! */
1665 if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1666 && reg_num <= 26)
1667 {
1668 while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1669 && reg_num <= 26)
1670 {
1671 pc += 4;
1672 status = target_read_memory (pc, buf, 4);
1673 inst = extract_unsigned_integer (buf, 4, byte_order);
1674 if (status != 0)
1675 return pc;
1676 reg_num = inst_saves_gr (inst);
1677 }
1678 args_stored = 0;
1679 continue;
1680 }
1681
1682 reg_num = inst_saves_fr (inst);
1683 save_fr &= ~(1 << reg_num);
1684
1685 status = target_read_memory (pc + 4, buf, 4);
1686 next_inst = extract_unsigned_integer (buf, 4, byte_order);
1687
1688 /* Yow! */
1689 if (status != 0)
1690 return pc;
1691
1692 /* We've got to be read to handle the ldo before the fp register
1693 save. */
1694 if ((inst & 0xfc000000) == 0x34000000
1695 && inst_saves_fr (next_inst) >= 4
1696 && inst_saves_fr (next_inst)
1697 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1698 {
1699 /* So we drop into the code below in a reasonable state. */
1700 reg_num = inst_saves_fr (next_inst);
1701 pc -= 4;
1702 }
1703
1704 /* Ugh. Also account for argument stores into the stack.
1705 This is a kludge as on the HP compiler sets this bit and it
1706 never does prologue scheduling. So once we see one, skip past
1707 all of them. */
1708 if (reg_num >= 4
1709 && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1710 {
1711 while (reg_num >= 4
1712 && reg_num
1713 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1714 {
1715 pc += 8;
1716 status = target_read_memory (pc, buf, 4);
1717 inst = extract_unsigned_integer (buf, 4, byte_order);
1718 if (status != 0)
1719 return pc;
1720 if ((inst & 0xfc000000) != 0x34000000)
1721 break;
1722 status = target_read_memory (pc + 4, buf, 4);
1723 next_inst = extract_unsigned_integer (buf, 4, byte_order);
1724 if (status != 0)
1725 return pc;
1726 reg_num = inst_saves_fr (next_inst);
1727 }
1728 args_stored = 0;
1729 continue;
1730 }
1731
1732 /* Quit if we hit any kind of branch. This can happen if a prologue
1733 instruction is in the delay slot of the first call/branch. */
1734 if (is_branch (inst) && stop_before_branch)
1735 break;
1736
1737 /* What a crock. The HP compilers set args_stored even if no
1738 arguments were stored into the stack (boo hiss). This could
1739 cause this code to then skip a bunch of user insns (up to the
1740 first branch).
1741
1742 To combat this we try to identify when args_stored was bogusly
1743 set and clear it. We only do this when args_stored is nonzero,
1744 all other resources are accounted for, and nothing changed on
1745 this pass. */
1746 if (args_stored
1747 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1748 && old_save_gr == save_gr && old_save_fr == save_fr
1749 && old_save_rp == save_rp && old_save_sp == save_sp
1750 && old_stack_remaining == stack_remaining)
1751 break;
1752
1753 /* Bump the PC. */
1754 pc += 4;
1755
1756 /* !stop_before_branch, so also look at the insn in the delay slot
1757 of the branch. */
1758 if (final_iteration)
1759 break;
1760 if (is_branch (inst))
1761 final_iteration = 1;
1762 }
1763
1764 /* We've got a tenative location for the end of the prologue. However
1765 because of limitations in the unwind descriptor mechanism we may
1766 have went too far into user code looking for the save of a register
1767 that does not exist. So, if there registers we expected to be saved
1768 but never were, mask them out and restart.
1769
1770 This should only happen in optimized code, and should be very rare. */
1771 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1772 {
1773 pc = orig_pc;
1774 restart_gr = save_gr;
1775 restart_fr = save_fr;
1776 goto restart;
1777 }
1778
1779 return pc;
1780 }
1781
1782
1783 /* Return the address of the PC after the last prologue instruction if
1784 we can determine it from the debug symbols. Else return zero. */
1785
1786 static CORE_ADDR
1787 after_prologue (CORE_ADDR pc)
1788 {
1789 struct symtab_and_line sal;
1790 CORE_ADDR func_addr, func_end;
1791
1792 /* If we can not find the symbol in the partial symbol table, then
1793 there is no hope we can determine the function's start address
1794 with this code. */
1795 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1796 return 0;
1797
1798 /* Get the line associated with FUNC_ADDR. */
1799 sal = find_pc_line (func_addr, 0);
1800
1801 /* There are only two cases to consider. First, the end of the source line
1802 is within the function bounds. In that case we return the end of the
1803 source line. Second is the end of the source line extends beyond the
1804 bounds of the current function. We need to use the slow code to
1805 examine instructions in that case.
1806
1807 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1808 the wrong thing to do. In fact, it should be entirely possible for this
1809 function to always return zero since the slow instruction scanning code
1810 is supposed to *always* work. If it does not, then it is a bug. */
1811 if (sal.end < func_end)
1812 return sal.end;
1813 else
1814 return 0;
1815 }
1816
1817 /* To skip prologues, I use this predicate. Returns either PC itself
1818 if the code at PC does not look like a function prologue; otherwise
1819 returns an address that (if we're lucky) follows the prologue.
1820
1821 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1822 It doesn't necessarily skips all the insns in the prologue. In fact
1823 we might not want to skip all the insns because a prologue insn may
1824 appear in the delay slot of the first branch, and we don't want to
1825 skip over the branch in that case. */
1826
1827 static CORE_ADDR
1828 hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1829 {
1830 CORE_ADDR post_prologue_pc;
1831
1832 /* See if we can determine the end of the prologue via the symbol table.
1833 If so, then return either PC, or the PC after the prologue, whichever
1834 is greater. */
1835
1836 post_prologue_pc = after_prologue (pc);
1837
1838 /* If after_prologue returned a useful address, then use it. Else
1839 fall back on the instruction skipping code.
1840
1841 Some folks have claimed this causes problems because the breakpoint
1842 may be the first instruction of the prologue. If that happens, then
1843 the instruction skipping code has a bug that needs to be fixed. */
1844 if (post_prologue_pc != 0)
1845 return std::max (pc, post_prologue_pc);
1846 else
1847 return (skip_prologue_hard_way (gdbarch, pc, 1));
1848 }
1849
1850 /* Return an unwind entry that falls within the frame's code block. */
1851
1852 static struct unwind_table_entry *
1853 hppa_find_unwind_entry_in_block (struct frame_info *this_frame)
1854 {
1855 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1856
1857 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
1858 result of get_frame_address_in_block implies a problem.
1859 The bits should have been removed earlier, before the return
1860 value of gdbarch_unwind_pc. That might be happening already;
1861 if it isn't, it should be fixed. Then this call can be
1862 removed. */
1863 pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc);
1864 return find_unwind_entry (pc);
1865 }
1866
1867 struct hppa_frame_cache
1868 {
1869 CORE_ADDR base;
1870 struct trad_frame_saved_reg *saved_regs;
1871 };
1872
1873 static struct hppa_frame_cache *
1874 hppa_frame_cache (struct frame_info *this_frame, void **this_cache)
1875 {
1876 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1877 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1878 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1879 struct hppa_frame_cache *cache;
1880 long saved_gr_mask;
1881 long saved_fr_mask;
1882 long frame_size;
1883 struct unwind_table_entry *u;
1884 CORE_ADDR prologue_end;
1885 int fp_in_r1 = 0;
1886 int i;
1887
1888 if (hppa_debug)
1889 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1890 frame_relative_level(this_frame));
1891
1892 if ((*this_cache) != NULL)
1893 {
1894 if (hppa_debug)
1895 fprintf_unfiltered (gdb_stdlog, "base=%s (cached) }",
1896 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
1897 return (struct hppa_frame_cache *) (*this_cache);
1898 }
1899 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1900 (*this_cache) = cache;
1901 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1902
1903 /* Yow! */
1904 u = hppa_find_unwind_entry_in_block (this_frame);
1905 if (!u)
1906 {
1907 if (hppa_debug)
1908 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1909 return (struct hppa_frame_cache *) (*this_cache);
1910 }
1911
1912 /* Turn the Entry_GR field into a bitmask. */
1913 saved_gr_mask = 0;
1914 for (i = 3; i < u->Entry_GR + 3; i++)
1915 {
1916 /* Frame pointer gets saved into a special location. */
1917 if (u->Save_SP && i == HPPA_FP_REGNUM)
1918 continue;
1919
1920 saved_gr_mask |= (1 << i);
1921 }
1922
1923 /* Turn the Entry_FR field into a bitmask too. */
1924 saved_fr_mask = 0;
1925 for (i = 12; i < u->Entry_FR + 12; i++)
1926 saved_fr_mask |= (1 << i);
1927
1928 /* Loop until we find everything of interest or hit a branch.
1929
1930 For unoptimized GCC code and for any HP CC code this will never ever
1931 examine any user instructions.
1932
1933 For optimized GCC code we're faced with problems. GCC will schedule
1934 its prologue and make prologue instructions available for delay slot
1935 filling. The end result is user code gets mixed in with the prologue
1936 and a prologue instruction may be in the delay slot of the first branch
1937 or call.
1938
1939 Some unexpected things are expected with debugging optimized code, so
1940 we allow this routine to walk past user instructions in optimized
1941 GCC code. */
1942 {
1943 int final_iteration = 0;
1944 CORE_ADDR pc, start_pc, end_pc;
1945 int looking_for_sp = u->Save_SP;
1946 int looking_for_rp = u->Save_RP;
1947 int fp_loc = -1;
1948
1949 /* We have to use skip_prologue_hard_way instead of just
1950 skip_prologue_using_sal, in case we stepped into a function without
1951 symbol information. hppa_skip_prologue also bounds the returned
1952 pc by the passed in pc, so it will not return a pc in the next
1953 function.
1954
1955 We used to call hppa_skip_prologue to find the end of the prologue,
1956 but if some non-prologue instructions get scheduled into the prologue,
1957 and the program is compiled with debug information, the "easy" way
1958 in hppa_skip_prologue will return a prologue end that is too early
1959 for us to notice any potential frame adjustments. */
1960
1961 /* We used to use get_frame_func to locate the beginning of the
1962 function to pass to skip_prologue. However, when objects are
1963 compiled without debug symbols, get_frame_func can return the wrong
1964 function (or 0). We can do better than that by using unwind records.
1965 This only works if the Region_description of the unwind record
1966 indicates that it includes the entry point of the function.
1967 HP compilers sometimes generate unwind records for regions that
1968 do not include the entry or exit point of a function. GNU tools
1969 do not do this. */
1970
1971 if ((u->Region_description & 0x2) == 0)
1972 start_pc = u->region_start;
1973 else
1974 start_pc = get_frame_func (this_frame);
1975
1976 prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
1977 end_pc = get_frame_pc (this_frame);
1978
1979 if (prologue_end != 0 && end_pc > prologue_end)
1980 end_pc = prologue_end;
1981
1982 frame_size = 0;
1983
1984 for (pc = start_pc;
1985 ((saved_gr_mask || saved_fr_mask
1986 || looking_for_sp || looking_for_rp
1987 || frame_size < (u->Total_frame_size << 3))
1988 && pc < end_pc);
1989 pc += 4)
1990 {
1991 int reg;
1992 gdb_byte buf4[4];
1993 long inst;
1994
1995 if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4))
1996 {
1997 error (_("Cannot read instruction at %s."),
1998 paddress (gdbarch, pc));
1999 return (struct hppa_frame_cache *) (*this_cache);
2000 }
2001
2002 inst = extract_unsigned_integer (buf4, sizeof buf4, byte_order);
2003
2004 /* Note the interesting effects of this instruction. */
2005 frame_size += prologue_inst_adjust_sp (inst);
2006
2007 /* There are limited ways to store the return pointer into the
2008 stack. */
2009 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2010 {
2011 looking_for_rp = 0;
2012 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2013 }
2014 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
2015 {
2016 looking_for_rp = 0;
2017 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
2018 }
2019 else if (inst == 0x0fc212c1
2020 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2021 {
2022 looking_for_rp = 0;
2023 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2024 }
2025
2026 /* Check to see if we saved SP into the stack. This also
2027 happens to indicate the location of the saved frame
2028 pointer. */
2029 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
2030 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
2031 {
2032 looking_for_sp = 0;
2033 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
2034 }
2035 else if (inst == 0x08030241) /* copy %r3, %r1 */
2036 {
2037 fp_in_r1 = 1;
2038 }
2039
2040 /* Account for general and floating-point register saves. */
2041 reg = inst_saves_gr (inst);
2042 if (reg >= 3 && reg <= 18
2043 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
2044 {
2045 saved_gr_mask &= ~(1 << reg);
2046 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
2047 /* stwm with a positive displacement is a _post_
2048 _modify_. */
2049 cache->saved_regs[reg].addr = 0;
2050 else if ((inst & 0xfc00000c) == 0x70000008)
2051 /* A std has explicit post_modify forms. */
2052 cache->saved_regs[reg].addr = 0;
2053 else
2054 {
2055 CORE_ADDR offset;
2056
2057 if ((inst >> 26) == 0x1c)
2058 offset = (inst & 0x1 ? -(1 << 13) : 0)
2059 | (((inst >> 4) & 0x3ff) << 3);
2060 else if ((inst >> 26) == 0x03)
2061 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
2062 else
2063 offset = hppa_extract_14 (inst);
2064
2065 /* Handle code with and without frame pointers. */
2066 if (u->Save_SP)
2067 cache->saved_regs[reg].addr = offset;
2068 else
2069 cache->saved_regs[reg].addr
2070 = (u->Total_frame_size << 3) + offset;
2071 }
2072 }
2073
2074 /* GCC handles callee saved FP regs a little differently.
2075
2076 It emits an instruction to put the value of the start of
2077 the FP store area into %r1. It then uses fstds,ma with a
2078 basereg of %r1 for the stores.
2079
2080 HP CC emits them at the current stack pointer modifying the
2081 stack pointer as it stores each register. */
2082
2083 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2084 if ((inst & 0xffffc000) == 0x34610000
2085 || (inst & 0xffffc000) == 0x37c10000)
2086 fp_loc = hppa_extract_14 (inst);
2087
2088 reg = inst_saves_fr (inst);
2089 if (reg >= 12 && reg <= 21)
2090 {
2091 /* Note +4 braindamage below is necessary because the FP
2092 status registers are internally 8 registers rather than
2093 the expected 4 registers. */
2094 saved_fr_mask &= ~(1 << reg);
2095 if (fp_loc == -1)
2096 {
2097 /* 1st HP CC FP register store. After this
2098 instruction we've set enough state that the GCC and
2099 HPCC code are both handled in the same manner. */
2100 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
2101 fp_loc = 8;
2102 }
2103 else
2104 {
2105 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
2106 fp_loc += 8;
2107 }
2108 }
2109
2110 /* Quit if we hit any kind of branch the previous iteration. */
2111 if (final_iteration)
2112 break;
2113 /* We want to look precisely one instruction beyond the branch
2114 if we have not found everything yet. */
2115 if (is_branch (inst))
2116 final_iteration = 1;
2117 }
2118 }
2119
2120 {
2121 /* The frame base always represents the value of %sp at entry to
2122 the current function (and is thus equivalent to the "saved"
2123 stack pointer. */
2124 CORE_ADDR this_sp = get_frame_register_unsigned (this_frame,
2125 HPPA_SP_REGNUM);
2126 CORE_ADDR fp;
2127
2128 if (hppa_debug)
2129 fprintf_unfiltered (gdb_stdlog, " (this_sp=%s, pc=%s, "
2130 "prologue_end=%s) ",
2131 paddress (gdbarch, this_sp),
2132 paddress (gdbarch, get_frame_pc (this_frame)),
2133 paddress (gdbarch, prologue_end));
2134
2135 /* Check to see if a frame pointer is available, and use it for
2136 frame unwinding if it is.
2137
2138 There are some situations where we need to rely on the frame
2139 pointer to do stack unwinding. For example, if a function calls
2140 alloca (), the stack pointer can get adjusted inside the body of
2141 the function. In this case, the ABI requires that the compiler
2142 maintain a frame pointer for the function.
2143
2144 The unwind record has a flag (alloca_frame) that indicates that
2145 a function has a variable frame; unfortunately, gcc/binutils
2146 does not set this flag. Instead, whenever a frame pointer is used
2147 and saved on the stack, the Save_SP flag is set. We use this to
2148 decide whether to use the frame pointer for unwinding.
2149
2150 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2151 instead of Save_SP. */
2152
2153 fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM);
2154
2155 if (u->alloca_frame)
2156 fp -= u->Total_frame_size << 3;
2157
2158 if (get_frame_pc (this_frame) >= prologue_end
2159 && (u->Save_SP || u->alloca_frame) && fp != 0)
2160 {
2161 cache->base = fp;
2162
2163 if (hppa_debug)
2164 fprintf_unfiltered (gdb_stdlog, " (base=%s) [frame pointer]",
2165 paddress (gdbarch, cache->base));
2166 }
2167 else if (u->Save_SP
2168 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
2169 {
2170 /* Both we're expecting the SP to be saved and the SP has been
2171 saved. The entry SP value is saved at this frame's SP
2172 address. */
2173 cache->base = read_memory_integer (this_sp, word_size, byte_order);
2174
2175 if (hppa_debug)
2176 fprintf_unfiltered (gdb_stdlog, " (base=%s) [saved]",
2177 paddress (gdbarch, cache->base));
2178 }
2179 else
2180 {
2181 /* The prologue has been slowly allocating stack space. Adjust
2182 the SP back. */
2183 cache->base = this_sp - frame_size;
2184 if (hppa_debug)
2185 fprintf_unfiltered (gdb_stdlog, " (base=%s) [unwind adjust]",
2186 paddress (gdbarch, cache->base));
2187
2188 }
2189 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2190 }
2191
2192 /* The PC is found in the "return register", "Millicode" uses "r31"
2193 as the return register while normal code uses "rp". */
2194 if (u->Millicode)
2195 {
2196 if (trad_frame_addr_p (cache->saved_regs, 31))
2197 {
2198 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2199 if (hppa_debug)
2200 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2201 }
2202 else
2203 {
2204 ULONGEST r31 = get_frame_register_unsigned (this_frame, 31);
2205 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
2206 if (hppa_debug)
2207 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
2208 }
2209 }
2210 else
2211 {
2212 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2213 {
2214 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2215 cache->saved_regs[HPPA_RP_REGNUM];
2216 if (hppa_debug)
2217 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2218 }
2219 else
2220 {
2221 ULONGEST rp = get_frame_register_unsigned (this_frame,
2222 HPPA_RP_REGNUM);
2223 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2224 if (hppa_debug)
2225 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
2226 }
2227 }
2228
2229 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2230 frame. However, there is a one-insn window where we haven't saved it
2231 yet, but we've already clobbered it. Detect this case and fix it up.
2232
2233 The prologue sequence for frame-pointer functions is:
2234 0: stw %rp, -20(%sp)
2235 4: copy %r3, %r1
2236 8: copy %sp, %r3
2237 c: stw,ma %r1, XX(%sp)
2238
2239 So if we are at offset c, the r3 value that we want is not yet saved
2240 on the stack, but it's been overwritten. The prologue analyzer will
2241 set fp_in_r1 when it sees the copy insn so we know to get the value
2242 from r1 instead. */
2243 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2244 && fp_in_r1)
2245 {
2246 ULONGEST r1 = get_frame_register_unsigned (this_frame, 1);
2247 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2248 }
2249
2250 {
2251 /* Convert all the offsets into addresses. */
2252 int reg;
2253 for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
2254 {
2255 if (trad_frame_addr_p (cache->saved_regs, reg))
2256 cache->saved_regs[reg].addr += cache->base;
2257 }
2258 }
2259
2260 {
2261 struct gdbarch_tdep *tdep;
2262
2263 tdep = gdbarch_tdep (gdbarch);
2264
2265 if (tdep->unwind_adjust_stub)
2266 tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs);
2267 }
2268
2269 if (hppa_debug)
2270 fprintf_unfiltered (gdb_stdlog, "base=%s }",
2271 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
2272 return (struct hppa_frame_cache *) (*this_cache);
2273 }
2274
2275 static void
2276 hppa_frame_this_id (struct frame_info *this_frame, void **this_cache,
2277 struct frame_id *this_id)
2278 {
2279 struct hppa_frame_cache *info;
2280 struct unwind_table_entry *u;
2281
2282 info = hppa_frame_cache (this_frame, this_cache);
2283 u = hppa_find_unwind_entry_in_block (this_frame);
2284
2285 (*this_id) = frame_id_build (info->base, u->region_start);
2286 }
2287
2288 static struct value *
2289 hppa_frame_prev_register (struct frame_info *this_frame,
2290 void **this_cache, int regnum)
2291 {
2292 struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache);
2293
2294 return hppa_frame_prev_register_helper (this_frame,
2295 info->saved_regs, regnum);
2296 }
2297
2298 static int
2299 hppa_frame_unwind_sniffer (const struct frame_unwind *self,
2300 struct frame_info *this_frame, void **this_cache)
2301 {
2302 if (hppa_find_unwind_entry_in_block (this_frame))
2303 return 1;
2304
2305 return 0;
2306 }
2307
2308 static const struct frame_unwind hppa_frame_unwind =
2309 {
2310 NORMAL_FRAME,
2311 default_frame_unwind_stop_reason,
2312 hppa_frame_this_id,
2313 hppa_frame_prev_register,
2314 NULL,
2315 hppa_frame_unwind_sniffer
2316 };
2317
2318 /* This is a generic fallback frame unwinder that kicks in if we fail all
2319 the other ones. Normally we would expect the stub and regular unwinder
2320 to work, but in some cases we might hit a function that just doesn't
2321 have any unwind information available. In this case we try to do
2322 unwinding solely based on code reading. This is obviously going to be
2323 slow, so only use this as a last resort. Currently this will only
2324 identify the stack and pc for the frame. */
2325
2326 static struct hppa_frame_cache *
2327 hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache)
2328 {
2329 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2330 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2331 struct hppa_frame_cache *cache;
2332 unsigned int frame_size = 0;
2333 int found_rp = 0;
2334 CORE_ADDR start_pc;
2335
2336 if (hppa_debug)
2337 fprintf_unfiltered (gdb_stdlog,
2338 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2339 frame_relative_level (this_frame));
2340
2341 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2342 (*this_cache) = cache;
2343 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2344
2345 start_pc = get_frame_func (this_frame);
2346 if (start_pc)
2347 {
2348 CORE_ADDR cur_pc = get_frame_pc (this_frame);
2349 CORE_ADDR pc;
2350
2351 for (pc = start_pc; pc < cur_pc; pc += 4)
2352 {
2353 unsigned int insn;
2354
2355 insn = read_memory_unsigned_integer (pc, 4, byte_order);
2356 frame_size += prologue_inst_adjust_sp (insn);
2357
2358 /* There are limited ways to store the return pointer into the
2359 stack. */
2360 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2361 {
2362 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2363 found_rp = 1;
2364 }
2365 else if (insn == 0x0fc212c1
2366 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2367 {
2368 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2369 found_rp = 1;
2370 }
2371 }
2372 }
2373
2374 if (hppa_debug)
2375 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2376 frame_size, found_rp);
2377
2378 cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2379 cache->base -= frame_size;
2380 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2381
2382 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2383 {
2384 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2385 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2386 cache->saved_regs[HPPA_RP_REGNUM];
2387 }
2388 else
2389 {
2390 ULONGEST rp;
2391 rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM);
2392 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2393 }
2394
2395 return cache;
2396 }
2397
2398 static void
2399 hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache,
2400 struct frame_id *this_id)
2401 {
2402 struct hppa_frame_cache *info =
2403 hppa_fallback_frame_cache (this_frame, this_cache);
2404
2405 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2406 }
2407
2408 static struct value *
2409 hppa_fallback_frame_prev_register (struct frame_info *this_frame,
2410 void **this_cache, int regnum)
2411 {
2412 struct hppa_frame_cache *info
2413 = hppa_fallback_frame_cache (this_frame, this_cache);
2414
2415 return hppa_frame_prev_register_helper (this_frame,
2416 info->saved_regs, regnum);
2417 }
2418
2419 static const struct frame_unwind hppa_fallback_frame_unwind =
2420 {
2421 NORMAL_FRAME,
2422 default_frame_unwind_stop_reason,
2423 hppa_fallback_frame_this_id,
2424 hppa_fallback_frame_prev_register,
2425 NULL,
2426 default_frame_sniffer
2427 };
2428
2429 /* Stub frames, used for all kinds of call stubs. */
2430 struct hppa_stub_unwind_cache
2431 {
2432 CORE_ADDR base;
2433 struct trad_frame_saved_reg *saved_regs;
2434 };
2435
2436 static struct hppa_stub_unwind_cache *
2437 hppa_stub_frame_unwind_cache (struct frame_info *this_frame,
2438 void **this_cache)
2439 {
2440 struct hppa_stub_unwind_cache *info;
2441
2442 if (*this_cache)
2443 return (struct hppa_stub_unwind_cache *) *this_cache;
2444
2445 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2446 *this_cache = info;
2447 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2448
2449 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2450
2451 /* By default we assume that stubs do not change the rp. */
2452 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2453
2454 return info;
2455 }
2456
2457 static void
2458 hppa_stub_frame_this_id (struct frame_info *this_frame,
2459 void **this_prologue_cache,
2460 struct frame_id *this_id)
2461 {
2462 struct hppa_stub_unwind_cache *info
2463 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2464
2465 if (info)
2466 *this_id = frame_id_build (info->base, get_frame_func (this_frame));
2467 }
2468
2469 static struct value *
2470 hppa_stub_frame_prev_register (struct frame_info *this_frame,
2471 void **this_prologue_cache, int regnum)
2472 {
2473 struct hppa_stub_unwind_cache *info
2474 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2475
2476 if (info == NULL)
2477 error (_("Requesting registers from null frame."));
2478
2479 return hppa_frame_prev_register_helper (this_frame,
2480 info->saved_regs, regnum);
2481 }
2482
2483 static int
2484 hppa_stub_unwind_sniffer (const struct frame_unwind *self,
2485 struct frame_info *this_frame,
2486 void **this_cache)
2487 {
2488 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2489 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2490 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2491
2492 if (pc == 0
2493 || (tdep->in_solib_call_trampoline != NULL
2494 && tdep->in_solib_call_trampoline (gdbarch, pc))
2495 || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
2496 return 1;
2497 return 0;
2498 }
2499
2500 static const struct frame_unwind hppa_stub_frame_unwind = {
2501 NORMAL_FRAME,
2502 default_frame_unwind_stop_reason,
2503 hppa_stub_frame_this_id,
2504 hppa_stub_frame_prev_register,
2505 NULL,
2506 hppa_stub_unwind_sniffer
2507 };
2508
2509 static struct frame_id
2510 hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2511 {
2512 return frame_id_build (get_frame_register_unsigned (this_frame,
2513 HPPA_SP_REGNUM),
2514 get_frame_pc (this_frame));
2515 }
2516
2517 CORE_ADDR
2518 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2519 {
2520 ULONGEST ipsw;
2521 CORE_ADDR pc;
2522
2523 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2524 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2525
2526 /* If the current instruction is nullified, then we are effectively
2527 still executing the previous instruction. Pretend we are still
2528 there. This is needed when single stepping; if the nullified
2529 instruction is on a different line, we don't want GDB to think
2530 we've stepped onto that line. */
2531 if (ipsw & 0x00200000)
2532 pc -= 4;
2533
2534 return pc & ~0x3;
2535 }
2536
2537 /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2538 Return NULL if no such symbol was found. */
2539
2540 struct bound_minimal_symbol
2541 hppa_lookup_stub_minimal_symbol (const char *name,
2542 enum unwind_stub_types stub_type)
2543 {
2544 struct objfile *objfile;
2545 struct minimal_symbol *msym;
2546 struct bound_minimal_symbol result = { NULL, NULL };
2547
2548 ALL_MSYMBOLS (objfile, msym)
2549 {
2550 if (strcmp (MSYMBOL_LINKAGE_NAME (msym), name) == 0)
2551 {
2552 struct unwind_table_entry *u;
2553
2554 u = find_unwind_entry (MSYMBOL_VALUE (msym));
2555 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2556 {
2557 result.objfile = objfile;
2558 result.minsym = msym;
2559 return result;
2560 }
2561 }
2562 }
2563
2564 return result;
2565 }
2566
2567 static void
2568 unwind_command (const char *exp, int from_tty)
2569 {
2570 CORE_ADDR address;
2571 struct unwind_table_entry *u;
2572
2573 /* If we have an expression, evaluate it and use it as the address. */
2574
2575 if (exp != 0 && *exp != 0)
2576 address = parse_and_eval_address (exp);
2577 else
2578 return;
2579
2580 u = find_unwind_entry (address);
2581
2582 if (!u)
2583 {
2584 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2585 return;
2586 }
2587
2588 printf_unfiltered ("unwind_table_entry (%s):\n", host_address_to_string (u));
2589
2590 printf_unfiltered ("\tregion_start = %s\n", hex_string (u->region_start));
2591 gdb_flush (gdb_stdout);
2592
2593 printf_unfiltered ("\tregion_end = %s\n", hex_string (u->region_end));
2594 gdb_flush (gdb_stdout);
2595
2596 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2597
2598 printf_unfiltered ("\n\tflags =");
2599 pif (Cannot_unwind);
2600 pif (Millicode);
2601 pif (Millicode_save_sr0);
2602 pif (Entry_SR);
2603 pif (Args_stored);
2604 pif (Variable_Frame);
2605 pif (Separate_Package_Body);
2606 pif (Frame_Extension_Millicode);
2607 pif (Stack_Overflow_Check);
2608 pif (Two_Instruction_SP_Increment);
2609 pif (sr4export);
2610 pif (cxx_info);
2611 pif (cxx_try_catch);
2612 pif (sched_entry_seq);
2613 pif (Save_SP);
2614 pif (Save_RP);
2615 pif (Save_MRP_in_frame);
2616 pif (save_r19);
2617 pif (Cleanup_defined);
2618 pif (MPE_XL_interrupt_marker);
2619 pif (HP_UX_interrupt_marker);
2620 pif (Large_frame);
2621 pif (alloca_frame);
2622
2623 putchar_unfiltered ('\n');
2624
2625 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2626
2627 pin (Region_description);
2628 pin (Entry_FR);
2629 pin (Entry_GR);
2630 pin (Total_frame_size);
2631
2632 if (u->stub_unwind.stub_type)
2633 {
2634 printf_unfiltered ("\tstub type = ");
2635 switch (u->stub_unwind.stub_type)
2636 {
2637 case LONG_BRANCH:
2638 printf_unfiltered ("long branch\n");
2639 break;
2640 case PARAMETER_RELOCATION:
2641 printf_unfiltered ("parameter relocation\n");
2642 break;
2643 case EXPORT:
2644 printf_unfiltered ("export\n");
2645 break;
2646 case IMPORT:
2647 printf_unfiltered ("import\n");
2648 break;
2649 case IMPORT_SHLIB:
2650 printf_unfiltered ("import shlib\n");
2651 break;
2652 default:
2653 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2654 }
2655 }
2656 }
2657
2658 /* Return the GDB type object for the "standard" data type of data in
2659 register REGNUM. */
2660
2661 static struct type *
2662 hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2663 {
2664 if (regnum < HPPA_FP4_REGNUM)
2665 return builtin_type (gdbarch)->builtin_uint32;
2666 else
2667 return builtin_type (gdbarch)->builtin_float;
2668 }
2669
2670 static struct type *
2671 hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2672 {
2673 if (regnum < HPPA64_FP4_REGNUM)
2674 return builtin_type (gdbarch)->builtin_uint64;
2675 else
2676 return builtin_type (gdbarch)->builtin_double;
2677 }
2678
2679 /* Return non-zero if REGNUM is not a register available to the user
2680 through ptrace/ttrace. */
2681
2682 static int
2683 hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2684 {
2685 return (regnum == 0
2686 || regnum == HPPA_PCSQ_HEAD_REGNUM
2687 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2688 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2689 }
2690
2691 static int
2692 hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2693 {
2694 /* cr26 and cr27 are readable (but not writable) from userspace. */
2695 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2696 return 0;
2697 else
2698 return hppa32_cannot_store_register (gdbarch, regnum);
2699 }
2700
2701 static int
2702 hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2703 {
2704 return (regnum == 0
2705 || regnum == HPPA_PCSQ_HEAD_REGNUM
2706 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2707 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2708 }
2709
2710 static int
2711 hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2712 {
2713 /* cr26 and cr27 are readable (but not writable) from userspace. */
2714 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2715 return 0;
2716 else
2717 return hppa64_cannot_store_register (gdbarch, regnum);
2718 }
2719
2720 static CORE_ADDR
2721 hppa_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
2722 {
2723 /* The low two bits of the PC on the PA contain the privilege level.
2724 Some genius implementing a (non-GCC) compiler apparently decided
2725 this means that "addresses" in a text section therefore include a
2726 privilege level, and thus symbol tables should contain these bits.
2727 This seems like a bonehead thing to do--anyway, it seems to work
2728 for our purposes to just ignore those bits. */
2729
2730 return (addr &= ~0x3);
2731 }
2732
2733 /* Get the ARGIth function argument for the current function. */
2734
2735 static CORE_ADDR
2736 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2737 struct type *type)
2738 {
2739 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
2740 }
2741
2742 static enum register_status
2743 hppa_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2744 int regnum, gdb_byte *buf)
2745 {
2746 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2747 ULONGEST tmp;
2748 enum register_status status;
2749
2750 status = regcache->raw_read (regnum, &tmp);
2751 if (status == REG_VALID)
2752 {
2753 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2754 tmp &= ~0x3;
2755 store_unsigned_integer (buf, sizeof tmp, byte_order, tmp);
2756 }
2757 return status;
2758 }
2759
2760 static CORE_ADDR
2761 hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
2762 {
2763 return 0;
2764 }
2765
2766 struct value *
2767 hppa_frame_prev_register_helper (struct frame_info *this_frame,
2768 struct trad_frame_saved_reg saved_regs[],
2769 int regnum)
2770 {
2771 struct gdbarch *arch = get_frame_arch (this_frame);
2772 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2773
2774 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2775 {
2776 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2777 CORE_ADDR pc;
2778 struct value *pcoq_val =
2779 trad_frame_get_prev_register (this_frame, saved_regs,
2780 HPPA_PCOQ_HEAD_REGNUM);
2781
2782 pc = extract_unsigned_integer (value_contents_all (pcoq_val),
2783 size, byte_order);
2784 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
2785 }
2786
2787 return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
2788 }
2789 \f
2790
2791 /* An instruction to match. */
2792 struct insn_pattern
2793 {
2794 unsigned int data; /* See if it matches this.... */
2795 unsigned int mask; /* ... with this mask. */
2796 };
2797
2798 /* See bfd/elf32-hppa.c */
2799 static struct insn_pattern hppa_long_branch_stub[] = {
2800 /* ldil LR'xxx,%r1 */
2801 { 0x20200000, 0xffe00000 },
2802 /* be,n RR'xxx(%sr4,%r1) */
2803 { 0xe0202002, 0xffe02002 },
2804 { 0, 0 }
2805 };
2806
2807 static struct insn_pattern hppa_long_branch_pic_stub[] = {
2808 /* b,l .+8, %r1 */
2809 { 0xe8200000, 0xffe00000 },
2810 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2811 { 0x28200000, 0xffe00000 },
2812 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2813 { 0xe0202002, 0xffe02002 },
2814 { 0, 0 }
2815 };
2816
2817 static struct insn_pattern hppa_import_stub[] = {
2818 /* addil LR'xxx, %dp */
2819 { 0x2b600000, 0xffe00000 },
2820 /* ldw RR'xxx(%r1), %r21 */
2821 { 0x48350000, 0xffffb000 },
2822 /* bv %r0(%r21) */
2823 { 0xeaa0c000, 0xffffffff },
2824 /* ldw RR'xxx+4(%r1), %r19 */
2825 { 0x48330000, 0xffffb000 },
2826 { 0, 0 }
2827 };
2828
2829 static struct insn_pattern hppa_import_pic_stub[] = {
2830 /* addil LR'xxx,%r19 */
2831 { 0x2a600000, 0xffe00000 },
2832 /* ldw RR'xxx(%r1),%r21 */
2833 { 0x48350000, 0xffffb000 },
2834 /* bv %r0(%r21) */
2835 { 0xeaa0c000, 0xffffffff },
2836 /* ldw RR'xxx+4(%r1),%r19 */
2837 { 0x48330000, 0xffffb000 },
2838 { 0, 0 },
2839 };
2840
2841 static struct insn_pattern hppa_plt_stub[] = {
2842 /* b,l 1b, %r20 - 1b is 3 insns before here */
2843 { 0xea9f1fdd, 0xffffffff },
2844 /* depi 0,31,2,%r20 */
2845 { 0xd6801c1e, 0xffffffff },
2846 { 0, 0 }
2847 };
2848
2849 /* Maximum number of instructions on the patterns above. */
2850 #define HPPA_MAX_INSN_PATTERN_LEN 4
2851
2852 /* Return non-zero if the instructions at PC match the series
2853 described in PATTERN, or zero otherwise. PATTERN is an array of
2854 'struct insn_pattern' objects, terminated by an entry whose mask is
2855 zero.
2856
2857 When the match is successful, fill INSN[i] with what PATTERN[i]
2858 matched. */
2859
2860 static int
2861 hppa_match_insns (struct gdbarch *gdbarch, CORE_ADDR pc,
2862 struct insn_pattern *pattern, unsigned int *insn)
2863 {
2864 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2865 CORE_ADDR npc = pc;
2866 int i;
2867
2868 for (i = 0; pattern[i].mask; i++)
2869 {
2870 gdb_byte buf[HPPA_INSN_SIZE];
2871
2872 target_read_memory (npc, buf, HPPA_INSN_SIZE);
2873 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order);
2874 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2875 npc += 4;
2876 else
2877 return 0;
2878 }
2879
2880 return 1;
2881 }
2882
2883 /* This relaxed version of the insstruction matcher allows us to match
2884 from somewhere inside the pattern, by looking backwards in the
2885 instruction scheme. */
2886
2887 static int
2888 hppa_match_insns_relaxed (struct gdbarch *gdbarch, CORE_ADDR pc,
2889 struct insn_pattern *pattern, unsigned int *insn)
2890 {
2891 int offset, len = 0;
2892
2893 while (pattern[len].mask)
2894 len++;
2895
2896 for (offset = 0; offset < len; offset++)
2897 if (hppa_match_insns (gdbarch, pc - offset * HPPA_INSN_SIZE,
2898 pattern, insn))
2899 return 1;
2900
2901 return 0;
2902 }
2903
2904 static int
2905 hppa_in_dyncall (CORE_ADDR pc)
2906 {
2907 struct unwind_table_entry *u;
2908
2909 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2910 if (!u)
2911 return 0;
2912
2913 return (pc >= u->region_start && pc <= u->region_end);
2914 }
2915
2916 int
2917 hppa_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc)
2918 {
2919 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2920 struct unwind_table_entry *u;
2921
2922 if (in_plt_section (pc) || hppa_in_dyncall (pc))
2923 return 1;
2924
2925 /* The GNU toolchain produces linker stubs without unwind
2926 information. Since the pattern matching for linker stubs can be
2927 quite slow, so bail out if we do have an unwind entry. */
2928
2929 u = find_unwind_entry (pc);
2930 if (u != NULL)
2931 return 0;
2932
2933 return
2934 (hppa_match_insns_relaxed (gdbarch, pc, hppa_import_stub, insn)
2935 || hppa_match_insns_relaxed (gdbarch, pc, hppa_import_pic_stub, insn)
2936 || hppa_match_insns_relaxed (gdbarch, pc, hppa_long_branch_stub, insn)
2937 || hppa_match_insns_relaxed (gdbarch, pc,
2938 hppa_long_branch_pic_stub, insn));
2939 }
2940
2941 /* This code skips several kind of "trampolines" used on PA-RISC
2942 systems: $$dyncall, import stubs and PLT stubs. */
2943
2944 CORE_ADDR
2945 hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2946 {
2947 struct gdbarch *gdbarch = get_frame_arch (frame);
2948 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
2949
2950 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2951 int dp_rel;
2952
2953 /* $$dyncall handles both PLABELs and direct addresses. */
2954 if (hppa_in_dyncall (pc))
2955 {
2956 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
2957
2958 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2959 if (pc & 0x2)
2960 pc = read_memory_typed_address (pc & ~0x3, func_ptr_type);
2961
2962 return pc;
2963 }
2964
2965 dp_rel = hppa_match_insns (gdbarch, pc, hppa_import_stub, insn);
2966 if (dp_rel || hppa_match_insns (gdbarch, pc, hppa_import_pic_stub, insn))
2967 {
2968 /* Extract the target address from the addil/ldw sequence. */
2969 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2970
2971 if (dp_rel)
2972 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
2973 else
2974 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
2975
2976 /* fallthrough */
2977 }
2978
2979 if (in_plt_section (pc))
2980 {
2981 pc = read_memory_typed_address (pc, func_ptr_type);
2982
2983 /* If the PLT slot has not yet been resolved, the target will be
2984 the PLT stub. */
2985 if (in_plt_section (pc))
2986 {
2987 /* Sanity check: are we pointing to the PLT stub? */
2988 if (!hppa_match_insns (gdbarch, pc, hppa_plt_stub, insn))
2989 {
2990 warning (_("Cannot resolve PLT stub at %s."),
2991 paddress (gdbarch, pc));
2992 return 0;
2993 }
2994
2995 /* This should point to the fixup routine. */
2996 pc = read_memory_typed_address (pc + 8, func_ptr_type);
2997 }
2998 }
2999
3000 return pc;
3001 }
3002 \f
3003
3004 /* Here is a table of C type sizes on hppa with various compiles
3005 and options. I measured this on PA 9000/800 with HP-UX 11.11
3006 and these compilers:
3007
3008 /usr/ccs/bin/cc HP92453-01 A.11.01.21
3009 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
3010 /opt/aCC/bin/aCC B3910B A.03.45
3011 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
3012
3013 cc : 1 2 4 4 8 : 4 8 -- : 4 4
3014 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3015 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3016 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3017 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3018 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3019 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3020 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
3021
3022 Each line is:
3023
3024 compiler and options
3025 char, short, int, long, long long
3026 float, double, long double
3027 char *, void (*)()
3028
3029 So all these compilers use either ILP32 or LP64 model.
3030 TODO: gcc has more options so it needs more investigation.
3031
3032 For floating point types, see:
3033
3034 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
3035 HP-UX floating-point guide, hpux 11.00
3036
3037 -- chastain 2003-12-18 */
3038
3039 static struct gdbarch *
3040 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3041 {
3042 struct gdbarch_tdep *tdep;
3043 struct gdbarch *gdbarch;
3044
3045 /* find a candidate among the list of pre-declared architectures. */
3046 arches = gdbarch_list_lookup_by_info (arches, &info);
3047 if (arches != NULL)
3048 return (arches->gdbarch);
3049
3050 /* If none found, then allocate and initialize one. */
3051 tdep = XCNEW (struct gdbarch_tdep);
3052 gdbarch = gdbarch_alloc (&info, tdep);
3053
3054 /* Determine from the bfd_arch_info structure if we are dealing with
3055 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3056 then default to a 32bit machine. */
3057 if (info.bfd_arch_info != NULL)
3058 tdep->bytes_per_address =
3059 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3060 else
3061 tdep->bytes_per_address = 4;
3062
3063 tdep->find_global_pointer = hppa_find_global_pointer;
3064
3065 /* Some parts of the gdbarch vector depend on whether we are running
3066 on a 32 bits or 64 bits target. */
3067 switch (tdep->bytes_per_address)
3068 {
3069 case 4:
3070 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3071 set_gdbarch_register_name (gdbarch, hppa32_register_name);
3072 set_gdbarch_register_type (gdbarch, hppa32_register_type);
3073 set_gdbarch_cannot_store_register (gdbarch,
3074 hppa32_cannot_store_register);
3075 set_gdbarch_cannot_fetch_register (gdbarch,
3076 hppa32_cannot_fetch_register);
3077 break;
3078 case 8:
3079 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3080 set_gdbarch_register_name (gdbarch, hppa64_register_name);
3081 set_gdbarch_register_type (gdbarch, hppa64_register_type);
3082 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3083 set_gdbarch_cannot_store_register (gdbarch,
3084 hppa64_cannot_store_register);
3085 set_gdbarch_cannot_fetch_register (gdbarch,
3086 hppa64_cannot_fetch_register);
3087 break;
3088 default:
3089 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3090 tdep->bytes_per_address);
3091 }
3092
3093 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3094 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3095
3096 /* The following gdbarch vector elements are the same in both ILP32
3097 and LP64, but might show differences some day. */
3098 set_gdbarch_long_long_bit (gdbarch, 64);
3099 set_gdbarch_long_double_bit (gdbarch, 128);
3100 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3101
3102 /* The following gdbarch vector elements do not depend on the address
3103 size, or in any other gdbarch element previously set. */
3104 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
3105 set_gdbarch_stack_frame_destroyed_p (gdbarch,
3106 hppa_stack_frame_destroyed_p);
3107 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
3108 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3109 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
3110 set_gdbarch_addr_bits_remove (gdbarch, hppa_addr_bits_remove);
3111 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3112 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3113 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
3114
3115 /* Helper for function argument information. */
3116 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3117
3118 /* When a hardware watchpoint triggers, we'll move the inferior past
3119 it by removing all eventpoints; stepping past the instruction
3120 that caused the trigger; reinserting eventpoints; and checking
3121 whether any watched location changed. */
3122 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3123
3124 /* Inferior function call methods. */
3125 switch (tdep->bytes_per_address)
3126 {
3127 case 4:
3128 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3129 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
3130 set_gdbarch_convert_from_func_ptr_addr
3131 (gdbarch, hppa32_convert_from_func_ptr_addr);
3132 break;
3133 case 8:
3134 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3135 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
3136 break;
3137 default:
3138 internal_error (__FILE__, __LINE__, _("bad switch"));
3139 }
3140
3141 /* Struct return methods. */
3142 switch (tdep->bytes_per_address)
3143 {
3144 case 4:
3145 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3146 break;
3147 case 8:
3148 set_gdbarch_return_value (gdbarch, hppa64_return_value);
3149 break;
3150 default:
3151 internal_error (__FILE__, __LINE__, _("bad switch"));
3152 }
3153
3154 set_gdbarch_breakpoint_kind_from_pc (gdbarch, hppa_breakpoint::kind_from_pc);
3155 set_gdbarch_sw_breakpoint_from_kind (gdbarch, hppa_breakpoint::bp_from_kind);
3156 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
3157
3158 /* Frame unwind methods. */
3159 set_gdbarch_dummy_id (gdbarch, hppa_dummy_id);
3160 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
3161
3162 /* Hook in ABI-specific overrides, if they have been registered. */
3163 gdbarch_init_osabi (info, gdbarch);
3164
3165 /* Hook in the default unwinders. */
3166 frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind);
3167 frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind);
3168 frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind);
3169
3170 return gdbarch;
3171 }
3172
3173 static void
3174 hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3175 {
3176 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3177
3178 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3179 tdep->bytes_per_address);
3180 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
3181 }
3182
3183 void
3184 _initialize_hppa_tdep (void)
3185 {
3186 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
3187
3188 hppa_objfile_priv_data = register_objfile_data ();
3189
3190 add_cmd ("unwind", class_maintenance, unwind_command,
3191 _("Print unwind table entry at given address."),
3192 &maintenanceprintlist);
3193
3194 /* Debug this files internals. */
3195 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3196 Set whether hppa target specific debugging information should be displayed."),
3197 _("\
3198 Show whether hppa target specific debugging information is displayed."), _("\
3199 This flag controls whether hppa target specific debugging information is\n\
3200 displayed. This information is particularly useful for debugging frame\n\
3201 unwinding problems."),
3202 NULL,
3203 NULL, /* FIXME: i18n: hppa debug flag is %s. */
3204 &setdebuglist, &showdebuglist);
3205 }
This page took 0.14687 seconds and 5 git commands to generate.