Include gdb_assert.h in common-defs.h
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA-RISC architecture.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "bfd.h"
25 #include "inferior.h"
26 #include "regcache.h"
27 #include "completer.h"
28 #include "osabi.h"
29 #include "arch-utils.h"
30 /* For argument passing to the inferior. */
31 #include "symtab.h"
32 #include "dis-asm.h"
33 #include "trad-frame.h"
34 #include "frame-unwind.h"
35 #include "frame-base.h"
36
37 #include "gdbcore.h"
38 #include "gdbcmd.h"
39 #include "gdbtypes.h"
40 #include "objfiles.h"
41 #include "hppa-tdep.h"
42
43 static int hppa_debug = 0;
44
45 /* Some local constants. */
46 static const int hppa32_num_regs = 128;
47 static const int hppa64_num_regs = 96;
48
49 /* hppa-specific object data -- unwind and solib info.
50 TODO/maybe: think about splitting this into two parts; the unwind data is
51 common to all hppa targets, but is only used in this file; we can register
52 that separately and make this static. The solib data is probably hpux-
53 specific, so we can create a separate extern objfile_data that is registered
54 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
55 const struct objfile_data *hppa_objfile_priv_data = NULL;
56
57 /* Get at various relevent fields of an instruction word. */
58 #define MASK_5 0x1f
59 #define MASK_11 0x7ff
60 #define MASK_14 0x3fff
61 #define MASK_21 0x1fffff
62
63 /* Sizes (in bytes) of the native unwind entries. */
64 #define UNWIND_ENTRY_SIZE 16
65 #define STUB_UNWIND_ENTRY_SIZE 8
66
67 /* Routines to extract various sized constants out of hppa
68 instructions. */
69
70 /* This assumes that no garbage lies outside of the lower bits of
71 value. */
72
73 static int
74 hppa_sign_extend (unsigned val, unsigned bits)
75 {
76 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
77 }
78
79 /* For many immediate values the sign bit is the low bit! */
80
81 static int
82 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
83 {
84 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
85 }
86
87 /* Extract the bits at positions between FROM and TO, using HP's numbering
88 (MSB = 0). */
89
90 int
91 hppa_get_field (unsigned word, int from, int to)
92 {
93 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
94 }
95
96 /* Extract the immediate field from a ld{bhw}s instruction. */
97
98 int
99 hppa_extract_5_load (unsigned word)
100 {
101 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
102 }
103
104 /* Extract the immediate field from a break instruction. */
105
106 unsigned
107 hppa_extract_5r_store (unsigned word)
108 {
109 return (word & MASK_5);
110 }
111
112 /* Extract the immediate field from a {sr}sm instruction. */
113
114 unsigned
115 hppa_extract_5R_store (unsigned word)
116 {
117 return (word >> 16 & MASK_5);
118 }
119
120 /* Extract a 14 bit immediate field. */
121
122 int
123 hppa_extract_14 (unsigned word)
124 {
125 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
126 }
127
128 /* Extract a 21 bit constant. */
129
130 int
131 hppa_extract_21 (unsigned word)
132 {
133 int val;
134
135 word &= MASK_21;
136 word <<= 11;
137 val = hppa_get_field (word, 20, 20);
138 val <<= 11;
139 val |= hppa_get_field (word, 9, 19);
140 val <<= 2;
141 val |= hppa_get_field (word, 5, 6);
142 val <<= 5;
143 val |= hppa_get_field (word, 0, 4);
144 val <<= 2;
145 val |= hppa_get_field (word, 7, 8);
146 return hppa_sign_extend (val, 21) << 11;
147 }
148
149 /* extract a 17 bit constant from branch instructions, returning the
150 19 bit signed value. */
151
152 int
153 hppa_extract_17 (unsigned word)
154 {
155 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
156 hppa_get_field (word, 29, 29) << 10 |
157 hppa_get_field (word, 11, 15) << 11 |
158 (word & 0x1) << 16, 17) << 2;
159 }
160
161 CORE_ADDR
162 hppa_symbol_address(const char *sym)
163 {
164 struct bound_minimal_symbol minsym;
165
166 minsym = lookup_minimal_symbol (sym, NULL, NULL);
167 if (minsym.minsym)
168 return BMSYMBOL_VALUE_ADDRESS (minsym);
169 else
170 return (CORE_ADDR)-1;
171 }
172
173 struct hppa_objfile_private *
174 hppa_init_objfile_priv_data (struct objfile *objfile)
175 {
176 struct hppa_objfile_private *priv;
177
178 priv = (struct hppa_objfile_private *)
179 obstack_alloc (&objfile->objfile_obstack,
180 sizeof (struct hppa_objfile_private));
181 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
182 memset (priv, 0, sizeof (*priv));
183
184 return priv;
185 }
186 \f
187
188 /* Compare the start address for two unwind entries returning 1 if
189 the first address is larger than the second, -1 if the second is
190 larger than the first, and zero if they are equal. */
191
192 static int
193 compare_unwind_entries (const void *arg1, const void *arg2)
194 {
195 const struct unwind_table_entry *a = arg1;
196 const struct unwind_table_entry *b = arg2;
197
198 if (a->region_start > b->region_start)
199 return 1;
200 else if (a->region_start < b->region_start)
201 return -1;
202 else
203 return 0;
204 }
205
206 static void
207 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
208 {
209 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
210 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
211 {
212 bfd_vma value = section->vma - section->filepos;
213 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
214
215 if (value < *low_text_segment_address)
216 *low_text_segment_address = value;
217 }
218 }
219
220 static void
221 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
222 asection *section, unsigned int entries,
223 size_t size, CORE_ADDR text_offset)
224 {
225 /* We will read the unwind entries into temporary memory, then
226 fill in the actual unwind table. */
227
228 if (size > 0)
229 {
230 struct gdbarch *gdbarch = get_objfile_arch (objfile);
231 unsigned long tmp;
232 unsigned i;
233 char *buf = alloca (size);
234 CORE_ADDR low_text_segment_address;
235
236 /* For ELF targets, then unwinds are supposed to
237 be segment relative offsets instead of absolute addresses.
238
239 Note that when loading a shared library (text_offset != 0) the
240 unwinds are already relative to the text_offset that will be
241 passed in. */
242 if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0)
243 {
244 low_text_segment_address = -1;
245
246 bfd_map_over_sections (objfile->obfd,
247 record_text_segment_lowaddr,
248 &low_text_segment_address);
249
250 text_offset = low_text_segment_address;
251 }
252 else if (gdbarch_tdep (gdbarch)->solib_get_text_base)
253 {
254 text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile);
255 }
256
257 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
258
259 /* Now internalize the information being careful to handle host/target
260 endian issues. */
261 for (i = 0; i < entries; i++)
262 {
263 table[i].region_start = bfd_get_32 (objfile->obfd,
264 (bfd_byte *) buf);
265 table[i].region_start += text_offset;
266 buf += 4;
267 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
268 table[i].region_end += text_offset;
269 buf += 4;
270 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
271 buf += 4;
272 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
273 table[i].Millicode = (tmp >> 30) & 0x1;
274 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
275 table[i].Region_description = (tmp >> 27) & 0x3;
276 table[i].reserved = (tmp >> 26) & 0x1;
277 table[i].Entry_SR = (tmp >> 25) & 0x1;
278 table[i].Entry_FR = (tmp >> 21) & 0xf;
279 table[i].Entry_GR = (tmp >> 16) & 0x1f;
280 table[i].Args_stored = (tmp >> 15) & 0x1;
281 table[i].Variable_Frame = (tmp >> 14) & 0x1;
282 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
283 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
284 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
285 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
286 table[i].sr4export = (tmp >> 9) & 0x1;
287 table[i].cxx_info = (tmp >> 8) & 0x1;
288 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
289 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
290 table[i].reserved1 = (tmp >> 5) & 0x1;
291 table[i].Save_SP = (tmp >> 4) & 0x1;
292 table[i].Save_RP = (tmp >> 3) & 0x1;
293 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
294 table[i].save_r19 = (tmp >> 1) & 0x1;
295 table[i].Cleanup_defined = tmp & 0x1;
296 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
297 buf += 4;
298 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
299 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
300 table[i].Large_frame = (tmp >> 29) & 0x1;
301 table[i].alloca_frame = (tmp >> 28) & 0x1;
302 table[i].reserved2 = (tmp >> 27) & 0x1;
303 table[i].Total_frame_size = tmp & 0x7ffffff;
304
305 /* Stub unwinds are handled elsewhere. */
306 table[i].stub_unwind.stub_type = 0;
307 table[i].stub_unwind.padding = 0;
308 }
309 }
310 }
311
312 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
313 the object file. This info is used mainly by find_unwind_entry() to find
314 out the stack frame size and frame pointer used by procedures. We put
315 everything on the psymbol obstack in the objfile so that it automatically
316 gets freed when the objfile is destroyed. */
317
318 static void
319 read_unwind_info (struct objfile *objfile)
320 {
321 asection *unwind_sec, *stub_unwind_sec;
322 size_t unwind_size, stub_unwind_size, total_size;
323 unsigned index, unwind_entries;
324 unsigned stub_entries, total_entries;
325 CORE_ADDR text_offset;
326 struct hppa_unwind_info *ui;
327 struct hppa_objfile_private *obj_private;
328
329 text_offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
330 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
331 sizeof (struct hppa_unwind_info));
332
333 ui->table = NULL;
334 ui->cache = NULL;
335 ui->last = -1;
336
337 /* For reasons unknown the HP PA64 tools generate multiple unwinder
338 sections in a single executable. So we just iterate over every
339 section in the BFD looking for unwinder sections intead of trying
340 to do a lookup with bfd_get_section_by_name.
341
342 First determine the total size of the unwind tables so that we
343 can allocate memory in a nice big hunk. */
344 total_entries = 0;
345 for (unwind_sec = objfile->obfd->sections;
346 unwind_sec;
347 unwind_sec = unwind_sec->next)
348 {
349 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
350 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
351 {
352 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
353 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
354
355 total_entries += unwind_entries;
356 }
357 }
358
359 /* Now compute the size of the stub unwinds. Note the ELF tools do not
360 use stub unwinds at the current time. */
361 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
362
363 if (stub_unwind_sec)
364 {
365 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
366 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
367 }
368 else
369 {
370 stub_unwind_size = 0;
371 stub_entries = 0;
372 }
373
374 /* Compute total number of unwind entries and their total size. */
375 total_entries += stub_entries;
376 total_size = total_entries * sizeof (struct unwind_table_entry);
377
378 /* Allocate memory for the unwind table. */
379 ui->table = (struct unwind_table_entry *)
380 obstack_alloc (&objfile->objfile_obstack, total_size);
381 ui->last = total_entries - 1;
382
383 /* Now read in each unwind section and internalize the standard unwind
384 entries. */
385 index = 0;
386 for (unwind_sec = objfile->obfd->sections;
387 unwind_sec;
388 unwind_sec = unwind_sec->next)
389 {
390 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
391 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
392 {
393 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
394 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
395
396 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
397 unwind_entries, unwind_size, text_offset);
398 index += unwind_entries;
399 }
400 }
401
402 /* Now read in and internalize the stub unwind entries. */
403 if (stub_unwind_size > 0)
404 {
405 unsigned int i;
406 char *buf = alloca (stub_unwind_size);
407
408 /* Read in the stub unwind entries. */
409 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
410 0, stub_unwind_size);
411
412 /* Now convert them into regular unwind entries. */
413 for (i = 0; i < stub_entries; i++, index++)
414 {
415 /* Clear out the next unwind entry. */
416 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
417
418 /* Convert offset & size into region_start and region_end.
419 Stuff away the stub type into "reserved" fields. */
420 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
421 (bfd_byte *) buf);
422 ui->table[index].region_start += text_offset;
423 buf += 4;
424 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
425 (bfd_byte *) buf);
426 buf += 2;
427 ui->table[index].region_end
428 = ui->table[index].region_start + 4 *
429 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
430 buf += 2;
431 }
432
433 }
434
435 /* Unwind table needs to be kept sorted. */
436 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
437 compare_unwind_entries);
438
439 /* Keep a pointer to the unwind information. */
440 obj_private = (struct hppa_objfile_private *)
441 objfile_data (objfile, hppa_objfile_priv_data);
442 if (obj_private == NULL)
443 obj_private = hppa_init_objfile_priv_data (objfile);
444
445 obj_private->unwind_info = ui;
446 }
447
448 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
449 of the objfiles seeking the unwind table entry for this PC. Each objfile
450 contains a sorted list of struct unwind_table_entry. Since we do a binary
451 search of the unwind tables, we depend upon them to be sorted. */
452
453 struct unwind_table_entry *
454 find_unwind_entry (CORE_ADDR pc)
455 {
456 int first, middle, last;
457 struct objfile *objfile;
458 struct hppa_objfile_private *priv;
459
460 if (hppa_debug)
461 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry %s -> ",
462 hex_string (pc));
463
464 /* A function at address 0? Not in HP-UX! */
465 if (pc == (CORE_ADDR) 0)
466 {
467 if (hppa_debug)
468 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
469 return NULL;
470 }
471
472 ALL_OBJFILES (objfile)
473 {
474 struct hppa_unwind_info *ui;
475 ui = NULL;
476 priv = objfile_data (objfile, hppa_objfile_priv_data);
477 if (priv)
478 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
479
480 if (!ui)
481 {
482 read_unwind_info (objfile);
483 priv = objfile_data (objfile, hppa_objfile_priv_data);
484 if (priv == NULL)
485 error (_("Internal error reading unwind information."));
486 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
487 }
488
489 /* First, check the cache. */
490
491 if (ui->cache
492 && pc >= ui->cache->region_start
493 && pc <= ui->cache->region_end)
494 {
495 if (hppa_debug)
496 fprintf_unfiltered (gdb_stdlog, "%s (cached) }\n",
497 hex_string ((uintptr_t) ui->cache));
498 return ui->cache;
499 }
500
501 /* Not in the cache, do a binary search. */
502
503 first = 0;
504 last = ui->last;
505
506 while (first <= last)
507 {
508 middle = (first + last) / 2;
509 if (pc >= ui->table[middle].region_start
510 && pc <= ui->table[middle].region_end)
511 {
512 ui->cache = &ui->table[middle];
513 if (hppa_debug)
514 fprintf_unfiltered (gdb_stdlog, "%s }\n",
515 hex_string ((uintptr_t) ui->cache));
516 return &ui->table[middle];
517 }
518
519 if (pc < ui->table[middle].region_start)
520 last = middle - 1;
521 else
522 first = middle + 1;
523 }
524 } /* ALL_OBJFILES() */
525
526 if (hppa_debug)
527 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
528
529 return NULL;
530 }
531
532 /* The epilogue is defined here as the area either on the `bv' instruction
533 itself or an instruction which destroys the function's stack frame.
534
535 We do not assume that the epilogue is at the end of a function as we can
536 also have return sequences in the middle of a function. */
537 static int
538 hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
539 {
540 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
541 unsigned long status;
542 unsigned int inst;
543 gdb_byte buf[4];
544
545 status = target_read_memory (pc, buf, 4);
546 if (status != 0)
547 return 0;
548
549 inst = extract_unsigned_integer (buf, 4, byte_order);
550
551 /* The most common way to perform a stack adjustment ldo X(sp),sp
552 We are destroying a stack frame if the offset is negative. */
553 if ((inst & 0xffffc000) == 0x37de0000
554 && hppa_extract_14 (inst) < 0)
555 return 1;
556
557 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
558 if (((inst & 0x0fc010e0) == 0x0fc010e0
559 || (inst & 0x0fc010e0) == 0x0fc010e0)
560 && hppa_extract_14 (inst) < 0)
561 return 1;
562
563 /* bv %r0(%rp) or bv,n %r0(%rp) */
564 if (inst == 0xe840c000 || inst == 0xe840c002)
565 return 1;
566
567 return 0;
568 }
569
570 static const unsigned char *
571 hppa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
572 {
573 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
574 (*len) = sizeof (breakpoint);
575 return breakpoint;
576 }
577
578 /* Return the name of a register. */
579
580 static const char *
581 hppa32_register_name (struct gdbarch *gdbarch, int i)
582 {
583 static char *names[] = {
584 "flags", "r1", "rp", "r3",
585 "r4", "r5", "r6", "r7",
586 "r8", "r9", "r10", "r11",
587 "r12", "r13", "r14", "r15",
588 "r16", "r17", "r18", "r19",
589 "r20", "r21", "r22", "r23",
590 "r24", "r25", "r26", "dp",
591 "ret0", "ret1", "sp", "r31",
592 "sar", "pcoqh", "pcsqh", "pcoqt",
593 "pcsqt", "eiem", "iir", "isr",
594 "ior", "ipsw", "goto", "sr4",
595 "sr0", "sr1", "sr2", "sr3",
596 "sr5", "sr6", "sr7", "cr0",
597 "cr8", "cr9", "ccr", "cr12",
598 "cr13", "cr24", "cr25", "cr26",
599 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
600 "fpsr", "fpe1", "fpe2", "fpe3",
601 "fpe4", "fpe5", "fpe6", "fpe7",
602 "fr4", "fr4R", "fr5", "fr5R",
603 "fr6", "fr6R", "fr7", "fr7R",
604 "fr8", "fr8R", "fr9", "fr9R",
605 "fr10", "fr10R", "fr11", "fr11R",
606 "fr12", "fr12R", "fr13", "fr13R",
607 "fr14", "fr14R", "fr15", "fr15R",
608 "fr16", "fr16R", "fr17", "fr17R",
609 "fr18", "fr18R", "fr19", "fr19R",
610 "fr20", "fr20R", "fr21", "fr21R",
611 "fr22", "fr22R", "fr23", "fr23R",
612 "fr24", "fr24R", "fr25", "fr25R",
613 "fr26", "fr26R", "fr27", "fr27R",
614 "fr28", "fr28R", "fr29", "fr29R",
615 "fr30", "fr30R", "fr31", "fr31R"
616 };
617 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
618 return NULL;
619 else
620 return names[i];
621 }
622
623 static const char *
624 hppa64_register_name (struct gdbarch *gdbarch, int i)
625 {
626 static char *names[] = {
627 "flags", "r1", "rp", "r3",
628 "r4", "r5", "r6", "r7",
629 "r8", "r9", "r10", "r11",
630 "r12", "r13", "r14", "r15",
631 "r16", "r17", "r18", "r19",
632 "r20", "r21", "r22", "r23",
633 "r24", "r25", "r26", "dp",
634 "ret0", "ret1", "sp", "r31",
635 "sar", "pcoqh", "pcsqh", "pcoqt",
636 "pcsqt", "eiem", "iir", "isr",
637 "ior", "ipsw", "goto", "sr4",
638 "sr0", "sr1", "sr2", "sr3",
639 "sr5", "sr6", "sr7", "cr0",
640 "cr8", "cr9", "ccr", "cr12",
641 "cr13", "cr24", "cr25", "cr26",
642 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
643 "fpsr", "fpe1", "fpe2", "fpe3",
644 "fr4", "fr5", "fr6", "fr7",
645 "fr8", "fr9", "fr10", "fr11",
646 "fr12", "fr13", "fr14", "fr15",
647 "fr16", "fr17", "fr18", "fr19",
648 "fr20", "fr21", "fr22", "fr23",
649 "fr24", "fr25", "fr26", "fr27",
650 "fr28", "fr29", "fr30", "fr31"
651 };
652 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
653 return NULL;
654 else
655 return names[i];
656 }
657
658 /* Map dwarf DBX register numbers to GDB register numbers. */
659 static int
660 hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
661 {
662 /* The general registers and the sar are the same in both sets. */
663 if (reg <= 32)
664 return reg;
665
666 /* fr4-fr31 are mapped from 72 in steps of 2. */
667 if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1))
668 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
669
670 warning (_("Unmapped DWARF DBX Register #%d encountered."), reg);
671 return -1;
672 }
673
674 /* This function pushes a stack frame with arguments as part of the
675 inferior function calling mechanism.
676
677 This is the version of the function for the 32-bit PA machines, in
678 which later arguments appear at lower addresses. (The stack always
679 grows towards higher addresses.)
680
681 We simply allocate the appropriate amount of stack space and put
682 arguments into their proper slots. */
683
684 static CORE_ADDR
685 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
686 struct regcache *regcache, CORE_ADDR bp_addr,
687 int nargs, struct value **args, CORE_ADDR sp,
688 int struct_return, CORE_ADDR struct_addr)
689 {
690 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
691
692 /* Stack base address at which any pass-by-reference parameters are
693 stored. */
694 CORE_ADDR struct_end = 0;
695 /* Stack base address at which the first parameter is stored. */
696 CORE_ADDR param_end = 0;
697
698 /* The inner most end of the stack after all the parameters have
699 been pushed. */
700 CORE_ADDR new_sp = 0;
701
702 /* Two passes. First pass computes the location of everything,
703 second pass writes the bytes out. */
704 int write_pass;
705
706 /* Global pointer (r19) of the function we are trying to call. */
707 CORE_ADDR gp;
708
709 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
710
711 for (write_pass = 0; write_pass < 2; write_pass++)
712 {
713 CORE_ADDR struct_ptr = 0;
714 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
715 struct_ptr is adjusted for each argument below, so the first
716 argument will end up at sp-36. */
717 CORE_ADDR param_ptr = 32;
718 int i;
719 int small_struct = 0;
720
721 for (i = 0; i < nargs; i++)
722 {
723 struct value *arg = args[i];
724 struct type *type = check_typedef (value_type (arg));
725 /* The corresponding parameter that is pushed onto the
726 stack, and [possibly] passed in a register. */
727 gdb_byte param_val[8];
728 int param_len;
729 memset (param_val, 0, sizeof param_val);
730 if (TYPE_LENGTH (type) > 8)
731 {
732 /* Large parameter, pass by reference. Store the value
733 in "struct" area and then pass its address. */
734 param_len = 4;
735 struct_ptr += align_up (TYPE_LENGTH (type), 8);
736 if (write_pass)
737 write_memory (struct_end - struct_ptr, value_contents (arg),
738 TYPE_LENGTH (type));
739 store_unsigned_integer (param_val, 4, byte_order,
740 struct_end - struct_ptr);
741 }
742 else if (TYPE_CODE (type) == TYPE_CODE_INT
743 || TYPE_CODE (type) == TYPE_CODE_ENUM)
744 {
745 /* Integer value store, right aligned. "unpack_long"
746 takes care of any sign-extension problems. */
747 param_len = align_up (TYPE_LENGTH (type), 4);
748 store_unsigned_integer (param_val, param_len, byte_order,
749 unpack_long (type,
750 value_contents (arg)));
751 }
752 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
753 {
754 /* Floating point value store, right aligned. */
755 param_len = align_up (TYPE_LENGTH (type), 4);
756 memcpy (param_val, value_contents (arg), param_len);
757 }
758 else
759 {
760 param_len = align_up (TYPE_LENGTH (type), 4);
761
762 /* Small struct value are stored right-aligned. */
763 memcpy (param_val + param_len - TYPE_LENGTH (type),
764 value_contents (arg), TYPE_LENGTH (type));
765
766 /* Structures of size 5, 6 and 7 bytes are special in that
767 the higher-ordered word is stored in the lower-ordered
768 argument, and even though it is a 8-byte quantity the
769 registers need not be 8-byte aligned. */
770 if (param_len > 4 && param_len < 8)
771 small_struct = 1;
772 }
773
774 param_ptr += param_len;
775 if (param_len == 8 && !small_struct)
776 param_ptr = align_up (param_ptr, 8);
777
778 /* First 4 non-FP arguments are passed in gr26-gr23.
779 First 4 32-bit FP arguments are passed in fr4L-fr7L.
780 First 2 64-bit FP arguments are passed in fr5 and fr7.
781
782 The rest go on the stack, starting at sp-36, towards lower
783 addresses. 8-byte arguments must be aligned to a 8-byte
784 stack boundary. */
785 if (write_pass)
786 {
787 write_memory (param_end - param_ptr, param_val, param_len);
788
789 /* There are some cases when we don't know the type
790 expected by the callee (e.g. for variadic functions), so
791 pass the parameters in both general and fp regs. */
792 if (param_ptr <= 48)
793 {
794 int grreg = 26 - (param_ptr - 36) / 4;
795 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
796 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
797
798 regcache_cooked_write (regcache, grreg, param_val);
799 regcache_cooked_write (regcache, fpLreg, param_val);
800
801 if (param_len > 4)
802 {
803 regcache_cooked_write (regcache, grreg + 1,
804 param_val + 4);
805
806 regcache_cooked_write (regcache, fpreg, param_val);
807 regcache_cooked_write (regcache, fpreg + 1,
808 param_val + 4);
809 }
810 }
811 }
812 }
813
814 /* Update the various stack pointers. */
815 if (!write_pass)
816 {
817 struct_end = sp + align_up (struct_ptr, 64);
818 /* PARAM_PTR already accounts for all the arguments passed
819 by the user. However, the ABI mandates minimum stack
820 space allocations for outgoing arguments. The ABI also
821 mandates minimum stack alignments which we must
822 preserve. */
823 param_end = struct_end + align_up (param_ptr, 64);
824 }
825 }
826
827 /* If a structure has to be returned, set up register 28 to hold its
828 address. */
829 if (struct_return)
830 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
831
832 gp = tdep->find_global_pointer (gdbarch, function);
833
834 if (gp != 0)
835 regcache_cooked_write_unsigned (regcache, 19, gp);
836
837 /* Set the return address. */
838 if (!gdbarch_push_dummy_code_p (gdbarch))
839 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
840
841 /* Update the Stack Pointer. */
842 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
843
844 return param_end;
845 }
846
847 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit
848 Runtime Architecture for PA-RISC 2.0", which is distributed as part
849 as of the HP-UX Software Transition Kit (STK). This implementation
850 is based on version 3.3, dated October 6, 1997. */
851
852 /* Check whether TYPE is an "Integral or Pointer Scalar Type". */
853
854 static int
855 hppa64_integral_or_pointer_p (const struct type *type)
856 {
857 switch (TYPE_CODE (type))
858 {
859 case TYPE_CODE_INT:
860 case TYPE_CODE_BOOL:
861 case TYPE_CODE_CHAR:
862 case TYPE_CODE_ENUM:
863 case TYPE_CODE_RANGE:
864 {
865 int len = TYPE_LENGTH (type);
866 return (len == 1 || len == 2 || len == 4 || len == 8);
867 }
868 case TYPE_CODE_PTR:
869 case TYPE_CODE_REF:
870 return (TYPE_LENGTH (type) == 8);
871 default:
872 break;
873 }
874
875 return 0;
876 }
877
878 /* Check whether TYPE is a "Floating Scalar Type". */
879
880 static int
881 hppa64_floating_p (const struct type *type)
882 {
883 switch (TYPE_CODE (type))
884 {
885 case TYPE_CODE_FLT:
886 {
887 int len = TYPE_LENGTH (type);
888 return (len == 4 || len == 8 || len == 16);
889 }
890 default:
891 break;
892 }
893
894 return 0;
895 }
896
897 /* If CODE points to a function entry address, try to look up the corresponding
898 function descriptor and return its address instead. If CODE is not a
899 function entry address, then just return it unchanged. */
900 static CORE_ADDR
901 hppa64_convert_code_addr_to_fptr (struct gdbarch *gdbarch, CORE_ADDR code)
902 {
903 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
904 struct obj_section *sec, *opd;
905
906 sec = find_pc_section (code);
907
908 if (!sec)
909 return code;
910
911 /* If CODE is in a data section, assume it's already a fptr. */
912 if (!(sec->the_bfd_section->flags & SEC_CODE))
913 return code;
914
915 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
916 {
917 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
918 break;
919 }
920
921 if (opd < sec->objfile->sections_end)
922 {
923 CORE_ADDR addr;
924
925 for (addr = obj_section_addr (opd);
926 addr < obj_section_endaddr (opd);
927 addr += 2 * 8)
928 {
929 ULONGEST opdaddr;
930 gdb_byte tmp[8];
931
932 if (target_read_memory (addr, tmp, sizeof (tmp)))
933 break;
934 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp), byte_order);
935
936 if (opdaddr == code)
937 return addr - 16;
938 }
939 }
940
941 return code;
942 }
943
944 static CORE_ADDR
945 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
946 struct regcache *regcache, CORE_ADDR bp_addr,
947 int nargs, struct value **args, CORE_ADDR sp,
948 int struct_return, CORE_ADDR struct_addr)
949 {
950 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
951 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
952 int i, offset = 0;
953 CORE_ADDR gp;
954
955 /* "The outgoing parameter area [...] must be aligned at a 16-byte
956 boundary." */
957 sp = align_up (sp, 16);
958
959 for (i = 0; i < nargs; i++)
960 {
961 struct value *arg = args[i];
962 struct type *type = value_type (arg);
963 int len = TYPE_LENGTH (type);
964 const bfd_byte *valbuf;
965 bfd_byte fptrbuf[8];
966 int regnum;
967
968 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
969 offset = align_up (offset, 8);
970
971 if (hppa64_integral_or_pointer_p (type))
972 {
973 /* "Integral scalar parameters smaller than 64 bits are
974 padded on the left (i.e., the value is in the
975 least-significant bits of the 64-bit storage unit, and
976 the high-order bits are undefined)." Therefore we can
977 safely sign-extend them. */
978 if (len < 8)
979 {
980 arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg);
981 len = 8;
982 }
983 }
984 else if (hppa64_floating_p (type))
985 {
986 if (len > 8)
987 {
988 /* "Quad-precision (128-bit) floating-point scalar
989 parameters are aligned on a 16-byte boundary." */
990 offset = align_up (offset, 16);
991
992 /* "Double-extended- and quad-precision floating-point
993 parameters within the first 64 bytes of the parameter
994 list are always passed in general registers." */
995 }
996 else
997 {
998 if (len == 4)
999 {
1000 /* "Single-precision (32-bit) floating-point scalar
1001 parameters are padded on the left with 32 bits of
1002 garbage (i.e., the floating-point value is in the
1003 least-significant 32 bits of a 64-bit storage
1004 unit)." */
1005 offset += 4;
1006 }
1007
1008 /* "Single- and double-precision floating-point
1009 parameters in this area are passed according to the
1010 available formal parameter information in a function
1011 prototype. [...] If no prototype is in scope,
1012 floating-point parameters must be passed both in the
1013 corresponding general registers and in the
1014 corresponding floating-point registers." */
1015 regnum = HPPA64_FP4_REGNUM + offset / 8;
1016
1017 if (regnum < HPPA64_FP4_REGNUM + 8)
1018 {
1019 /* "Single-precision floating-point parameters, when
1020 passed in floating-point registers, are passed in
1021 the right halves of the floating point registers;
1022 the left halves are unused." */
1023 regcache_cooked_write_part (regcache, regnum, offset % 8,
1024 len, value_contents (arg));
1025 }
1026 }
1027 }
1028 else
1029 {
1030 if (len > 8)
1031 {
1032 /* "Aggregates larger than 8 bytes are aligned on a
1033 16-byte boundary, possibly leaving an unused argument
1034 slot, which is filled with garbage. If necessary,
1035 they are padded on the right (with garbage), to a
1036 multiple of 8 bytes." */
1037 offset = align_up (offset, 16);
1038 }
1039 }
1040
1041 /* If we are passing a function pointer, make sure we pass a function
1042 descriptor instead of the function entry address. */
1043 if (TYPE_CODE (type) == TYPE_CODE_PTR
1044 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1045 {
1046 ULONGEST codeptr, fptr;
1047
1048 codeptr = unpack_long (type, value_contents (arg));
1049 fptr = hppa64_convert_code_addr_to_fptr (gdbarch, codeptr);
1050 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), byte_order,
1051 fptr);
1052 valbuf = fptrbuf;
1053 }
1054 else
1055 {
1056 valbuf = value_contents (arg);
1057 }
1058
1059 /* Always store the argument in memory. */
1060 write_memory (sp + offset, valbuf, len);
1061
1062 regnum = HPPA_ARG0_REGNUM - offset / 8;
1063 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1064 {
1065 regcache_cooked_write_part (regcache, regnum,
1066 offset % 8, min (len, 8), valbuf);
1067 offset += min (len, 8);
1068 valbuf += min (len, 8);
1069 len -= min (len, 8);
1070 regnum--;
1071 }
1072
1073 offset += len;
1074 }
1075
1076 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1077 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1078
1079 /* Allocate the outgoing parameter area. Make sure the outgoing
1080 parameter area is multiple of 16 bytes in length. */
1081 sp += max (align_up (offset, 16), 64);
1082
1083 /* Allocate 32-bytes of scratch space. The documentation doesn't
1084 mention this, but it seems to be needed. */
1085 sp += 32;
1086
1087 /* Allocate the frame marker area. */
1088 sp += 16;
1089
1090 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1091 its address. */
1092 if (struct_return)
1093 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1094
1095 /* Set up GR27 (%dp) to hold the global pointer (gp). */
1096 gp = tdep->find_global_pointer (gdbarch, function);
1097 if (gp != 0)
1098 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1099
1100 /* Set up GR2 (%rp) to hold the return pointer (rp). */
1101 if (!gdbarch_push_dummy_code_p (gdbarch))
1102 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1103
1104 /* Set up GR30 to hold the stack pointer (sp). */
1105 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1106
1107 return sp;
1108 }
1109 \f
1110
1111 /* Handle 32/64-bit struct return conventions. */
1112
1113 static enum return_value_convention
1114 hppa32_return_value (struct gdbarch *gdbarch, struct value *function,
1115 struct type *type, struct regcache *regcache,
1116 gdb_byte *readbuf, const gdb_byte *writebuf)
1117 {
1118 if (TYPE_LENGTH (type) <= 2 * 4)
1119 {
1120 /* The value always lives in the right hand end of the register
1121 (or register pair)? */
1122 int b;
1123 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1124 int part = TYPE_LENGTH (type) % 4;
1125 /* The left hand register contains only part of the value,
1126 transfer that first so that the rest can be xfered as entire
1127 4-byte registers. */
1128 if (part > 0)
1129 {
1130 if (readbuf != NULL)
1131 regcache_cooked_read_part (regcache, reg, 4 - part,
1132 part, readbuf);
1133 if (writebuf != NULL)
1134 regcache_cooked_write_part (regcache, reg, 4 - part,
1135 part, writebuf);
1136 reg++;
1137 }
1138 /* Now transfer the remaining register values. */
1139 for (b = part; b < TYPE_LENGTH (type); b += 4)
1140 {
1141 if (readbuf != NULL)
1142 regcache_cooked_read (regcache, reg, readbuf + b);
1143 if (writebuf != NULL)
1144 regcache_cooked_write (regcache, reg, writebuf + b);
1145 reg++;
1146 }
1147 return RETURN_VALUE_REGISTER_CONVENTION;
1148 }
1149 else
1150 return RETURN_VALUE_STRUCT_CONVENTION;
1151 }
1152
1153 static enum return_value_convention
1154 hppa64_return_value (struct gdbarch *gdbarch, struct value *function,
1155 struct type *type, struct regcache *regcache,
1156 gdb_byte *readbuf, const gdb_byte *writebuf)
1157 {
1158 int len = TYPE_LENGTH (type);
1159 int regnum, offset;
1160
1161 if (len > 16)
1162 {
1163 /* All return values larget than 128 bits must be aggregate
1164 return values. */
1165 gdb_assert (!hppa64_integral_or_pointer_p (type));
1166 gdb_assert (!hppa64_floating_p (type));
1167
1168 /* "Aggregate return values larger than 128 bits are returned in
1169 a buffer allocated by the caller. The address of the buffer
1170 must be passed in GR 28." */
1171 return RETURN_VALUE_STRUCT_CONVENTION;
1172 }
1173
1174 if (hppa64_integral_or_pointer_p (type))
1175 {
1176 /* "Integral return values are returned in GR 28. Values
1177 smaller than 64 bits are padded on the left (with garbage)." */
1178 regnum = HPPA_RET0_REGNUM;
1179 offset = 8 - len;
1180 }
1181 else if (hppa64_floating_p (type))
1182 {
1183 if (len > 8)
1184 {
1185 /* "Double-extended- and quad-precision floating-point
1186 values are returned in GRs 28 and 29. The sign,
1187 exponent, and most-significant bits of the mantissa are
1188 returned in GR 28; the least-significant bits of the
1189 mantissa are passed in GR 29. For double-extended
1190 precision values, GR 29 is padded on the right with 48
1191 bits of garbage." */
1192 regnum = HPPA_RET0_REGNUM;
1193 offset = 0;
1194 }
1195 else
1196 {
1197 /* "Single-precision and double-precision floating-point
1198 return values are returned in FR 4R (single precision) or
1199 FR 4 (double-precision)." */
1200 regnum = HPPA64_FP4_REGNUM;
1201 offset = 8 - len;
1202 }
1203 }
1204 else
1205 {
1206 /* "Aggregate return values up to 64 bits in size are returned
1207 in GR 28. Aggregates smaller than 64 bits are left aligned
1208 in the register; the pad bits on the right are undefined."
1209
1210 "Aggregate return values between 65 and 128 bits are returned
1211 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1212 the remaining bits are placed, left aligned, in GR 29. The
1213 pad bits on the right of GR 29 (if any) are undefined." */
1214 regnum = HPPA_RET0_REGNUM;
1215 offset = 0;
1216 }
1217
1218 if (readbuf)
1219 {
1220 while (len > 0)
1221 {
1222 regcache_cooked_read_part (regcache, regnum, offset,
1223 min (len, 8), readbuf);
1224 readbuf += min (len, 8);
1225 len -= min (len, 8);
1226 regnum++;
1227 }
1228 }
1229
1230 if (writebuf)
1231 {
1232 while (len > 0)
1233 {
1234 regcache_cooked_write_part (regcache, regnum, offset,
1235 min (len, 8), writebuf);
1236 writebuf += min (len, 8);
1237 len -= min (len, 8);
1238 regnum++;
1239 }
1240 }
1241
1242 return RETURN_VALUE_REGISTER_CONVENTION;
1243 }
1244 \f
1245
1246 static CORE_ADDR
1247 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1248 struct target_ops *targ)
1249 {
1250 if (addr & 2)
1251 {
1252 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
1253 CORE_ADDR plabel = addr & ~3;
1254 return read_memory_typed_address (plabel, func_ptr_type);
1255 }
1256
1257 return addr;
1258 }
1259
1260 static CORE_ADDR
1261 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1262 {
1263 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1264 and not _bit_)! */
1265 return align_up (addr, 64);
1266 }
1267
1268 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1269
1270 static CORE_ADDR
1271 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1272 {
1273 /* Just always 16-byte align. */
1274 return align_up (addr, 16);
1275 }
1276
1277 CORE_ADDR
1278 hppa_read_pc (struct regcache *regcache)
1279 {
1280 ULONGEST ipsw;
1281 ULONGEST pc;
1282
1283 regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw);
1284 regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc);
1285
1286 /* If the current instruction is nullified, then we are effectively
1287 still executing the previous instruction. Pretend we are still
1288 there. This is needed when single stepping; if the nullified
1289 instruction is on a different line, we don't want GDB to think
1290 we've stepped onto that line. */
1291 if (ipsw & 0x00200000)
1292 pc -= 4;
1293
1294 return pc & ~0x3;
1295 }
1296
1297 void
1298 hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
1299 {
1300 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1301 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
1302 }
1303
1304 /* For the given instruction (INST), return any adjustment it makes
1305 to the stack pointer or zero for no adjustment.
1306
1307 This only handles instructions commonly found in prologues. */
1308
1309 static int
1310 prologue_inst_adjust_sp (unsigned long inst)
1311 {
1312 /* This must persist across calls. */
1313 static int save_high21;
1314
1315 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1316 if ((inst & 0xffffc000) == 0x37de0000)
1317 return hppa_extract_14 (inst);
1318
1319 /* stwm X,D(sp) */
1320 if ((inst & 0xffe00000) == 0x6fc00000)
1321 return hppa_extract_14 (inst);
1322
1323 /* std,ma X,D(sp) */
1324 if ((inst & 0xffe00008) == 0x73c00008)
1325 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1326
1327 /* addil high21,%r30; ldo low11,(%r1),%r30)
1328 save high bits in save_high21 for later use. */
1329 if ((inst & 0xffe00000) == 0x2bc00000)
1330 {
1331 save_high21 = hppa_extract_21 (inst);
1332 return 0;
1333 }
1334
1335 if ((inst & 0xffff0000) == 0x343e0000)
1336 return save_high21 + hppa_extract_14 (inst);
1337
1338 /* fstws as used by the HP compilers. */
1339 if ((inst & 0xffffffe0) == 0x2fd01220)
1340 return hppa_extract_5_load (inst);
1341
1342 /* No adjustment. */
1343 return 0;
1344 }
1345
1346 /* Return nonzero if INST is a branch of some kind, else return zero. */
1347
1348 static int
1349 is_branch (unsigned long inst)
1350 {
1351 switch (inst >> 26)
1352 {
1353 case 0x20:
1354 case 0x21:
1355 case 0x22:
1356 case 0x23:
1357 case 0x27:
1358 case 0x28:
1359 case 0x29:
1360 case 0x2a:
1361 case 0x2b:
1362 case 0x2f:
1363 case 0x30:
1364 case 0x31:
1365 case 0x32:
1366 case 0x33:
1367 case 0x38:
1368 case 0x39:
1369 case 0x3a:
1370 case 0x3b:
1371 return 1;
1372
1373 default:
1374 return 0;
1375 }
1376 }
1377
1378 /* Return the register number for a GR which is saved by INST or
1379 zero it INST does not save a GR. */
1380
1381 static int
1382 inst_saves_gr (unsigned long inst)
1383 {
1384 /* Does it look like a stw? */
1385 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1386 || (inst >> 26) == 0x1f
1387 || ((inst >> 26) == 0x1f
1388 && ((inst >> 6) == 0xa)))
1389 return hppa_extract_5R_store (inst);
1390
1391 /* Does it look like a std? */
1392 if ((inst >> 26) == 0x1c
1393 || ((inst >> 26) == 0x03
1394 && ((inst >> 6) & 0xf) == 0xb))
1395 return hppa_extract_5R_store (inst);
1396
1397 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1398 if ((inst >> 26) == 0x1b)
1399 return hppa_extract_5R_store (inst);
1400
1401 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1402 too. */
1403 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1404 || ((inst >> 26) == 0x3
1405 && (((inst >> 6) & 0xf) == 0x8
1406 || (inst >> 6) & 0xf) == 0x9))
1407 return hppa_extract_5R_store (inst);
1408
1409 return 0;
1410 }
1411
1412 /* Return the register number for a FR which is saved by INST or
1413 zero it INST does not save a FR.
1414
1415 Note we only care about full 64bit register stores (that's the only
1416 kind of stores the prologue will use).
1417
1418 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1419
1420 static int
1421 inst_saves_fr (unsigned long inst)
1422 {
1423 /* Is this an FSTD? */
1424 if ((inst & 0xfc00dfc0) == 0x2c001200)
1425 return hppa_extract_5r_store (inst);
1426 if ((inst & 0xfc000002) == 0x70000002)
1427 return hppa_extract_5R_store (inst);
1428 /* Is this an FSTW? */
1429 if ((inst & 0xfc00df80) == 0x24001200)
1430 return hppa_extract_5r_store (inst);
1431 if ((inst & 0xfc000002) == 0x7c000000)
1432 return hppa_extract_5R_store (inst);
1433 return 0;
1434 }
1435
1436 /* Advance PC across any function entry prologue instructions
1437 to reach some "real" code.
1438
1439 Use information in the unwind table to determine what exactly should
1440 be in the prologue. */
1441
1442
1443 static CORE_ADDR
1444 skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
1445 int stop_before_branch)
1446 {
1447 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1448 gdb_byte buf[4];
1449 CORE_ADDR orig_pc = pc;
1450 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1451 unsigned long args_stored, status, i, restart_gr, restart_fr;
1452 struct unwind_table_entry *u;
1453 int final_iteration;
1454
1455 restart_gr = 0;
1456 restart_fr = 0;
1457
1458 restart:
1459 u = find_unwind_entry (pc);
1460 if (!u)
1461 return pc;
1462
1463 /* If we are not at the beginning of a function, then return now. */
1464 if ((pc & ~0x3) != u->region_start)
1465 return pc;
1466
1467 /* This is how much of a frame adjustment we need to account for. */
1468 stack_remaining = u->Total_frame_size << 3;
1469
1470 /* Magic register saves we want to know about. */
1471 save_rp = u->Save_RP;
1472 save_sp = u->Save_SP;
1473
1474 /* An indication that args may be stored into the stack. Unfortunately
1475 the HPUX compilers tend to set this in cases where no args were
1476 stored too!. */
1477 args_stored = 1;
1478
1479 /* Turn the Entry_GR field into a bitmask. */
1480 save_gr = 0;
1481 for (i = 3; i < u->Entry_GR + 3; i++)
1482 {
1483 /* Frame pointer gets saved into a special location. */
1484 if (u->Save_SP && i == HPPA_FP_REGNUM)
1485 continue;
1486
1487 save_gr |= (1 << i);
1488 }
1489 save_gr &= ~restart_gr;
1490
1491 /* Turn the Entry_FR field into a bitmask too. */
1492 save_fr = 0;
1493 for (i = 12; i < u->Entry_FR + 12; i++)
1494 save_fr |= (1 << i);
1495 save_fr &= ~restart_fr;
1496
1497 final_iteration = 0;
1498
1499 /* Loop until we find everything of interest or hit a branch.
1500
1501 For unoptimized GCC code and for any HP CC code this will never ever
1502 examine any user instructions.
1503
1504 For optimzied GCC code we're faced with problems. GCC will schedule
1505 its prologue and make prologue instructions available for delay slot
1506 filling. The end result is user code gets mixed in with the prologue
1507 and a prologue instruction may be in the delay slot of the first branch
1508 or call.
1509
1510 Some unexpected things are expected with debugging optimized code, so
1511 we allow this routine to walk past user instructions in optimized
1512 GCC code. */
1513 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1514 || args_stored)
1515 {
1516 unsigned int reg_num;
1517 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1518 unsigned long old_save_rp, old_save_sp, next_inst;
1519
1520 /* Save copies of all the triggers so we can compare them later
1521 (only for HPC). */
1522 old_save_gr = save_gr;
1523 old_save_fr = save_fr;
1524 old_save_rp = save_rp;
1525 old_save_sp = save_sp;
1526 old_stack_remaining = stack_remaining;
1527
1528 status = target_read_memory (pc, buf, 4);
1529 inst = extract_unsigned_integer (buf, 4, byte_order);
1530
1531 /* Yow! */
1532 if (status != 0)
1533 return pc;
1534
1535 /* Note the interesting effects of this instruction. */
1536 stack_remaining -= prologue_inst_adjust_sp (inst);
1537
1538 /* There are limited ways to store the return pointer into the
1539 stack. */
1540 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
1541 save_rp = 0;
1542
1543 /* These are the only ways we save SP into the stack. At this time
1544 the HP compilers never bother to save SP into the stack. */
1545 if ((inst & 0xffffc000) == 0x6fc10000
1546 || (inst & 0xffffc00c) == 0x73c10008)
1547 save_sp = 0;
1548
1549 /* Are we loading some register with an offset from the argument
1550 pointer? */
1551 if ((inst & 0xffe00000) == 0x37a00000
1552 || (inst & 0xffffffe0) == 0x081d0240)
1553 {
1554 pc += 4;
1555 continue;
1556 }
1557
1558 /* Account for general and floating-point register saves. */
1559 reg_num = inst_saves_gr (inst);
1560 save_gr &= ~(1 << reg_num);
1561
1562 /* Ugh. Also account for argument stores into the stack.
1563 Unfortunately args_stored only tells us that some arguments
1564 where stored into the stack. Not how many or what kind!
1565
1566 This is a kludge as on the HP compiler sets this bit and it
1567 never does prologue scheduling. So once we see one, skip past
1568 all of them. We have similar code for the fp arg stores below.
1569
1570 FIXME. Can still die if we have a mix of GR and FR argument
1571 stores! */
1572 if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1573 && reg_num <= 26)
1574 {
1575 while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1576 && reg_num <= 26)
1577 {
1578 pc += 4;
1579 status = target_read_memory (pc, buf, 4);
1580 inst = extract_unsigned_integer (buf, 4, byte_order);
1581 if (status != 0)
1582 return pc;
1583 reg_num = inst_saves_gr (inst);
1584 }
1585 args_stored = 0;
1586 continue;
1587 }
1588
1589 reg_num = inst_saves_fr (inst);
1590 save_fr &= ~(1 << reg_num);
1591
1592 status = target_read_memory (pc + 4, buf, 4);
1593 next_inst = extract_unsigned_integer (buf, 4, byte_order);
1594
1595 /* Yow! */
1596 if (status != 0)
1597 return pc;
1598
1599 /* We've got to be read to handle the ldo before the fp register
1600 save. */
1601 if ((inst & 0xfc000000) == 0x34000000
1602 && inst_saves_fr (next_inst) >= 4
1603 && inst_saves_fr (next_inst)
1604 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1605 {
1606 /* So we drop into the code below in a reasonable state. */
1607 reg_num = inst_saves_fr (next_inst);
1608 pc -= 4;
1609 }
1610
1611 /* Ugh. Also account for argument stores into the stack.
1612 This is a kludge as on the HP compiler sets this bit and it
1613 never does prologue scheduling. So once we see one, skip past
1614 all of them. */
1615 if (reg_num >= 4
1616 && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1617 {
1618 while (reg_num >= 4
1619 && reg_num
1620 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1621 {
1622 pc += 8;
1623 status = target_read_memory (pc, buf, 4);
1624 inst = extract_unsigned_integer (buf, 4, byte_order);
1625 if (status != 0)
1626 return pc;
1627 if ((inst & 0xfc000000) != 0x34000000)
1628 break;
1629 status = target_read_memory (pc + 4, buf, 4);
1630 next_inst = extract_unsigned_integer (buf, 4, byte_order);
1631 if (status != 0)
1632 return pc;
1633 reg_num = inst_saves_fr (next_inst);
1634 }
1635 args_stored = 0;
1636 continue;
1637 }
1638
1639 /* Quit if we hit any kind of branch. This can happen if a prologue
1640 instruction is in the delay slot of the first call/branch. */
1641 if (is_branch (inst) && stop_before_branch)
1642 break;
1643
1644 /* What a crock. The HP compilers set args_stored even if no
1645 arguments were stored into the stack (boo hiss). This could
1646 cause this code to then skip a bunch of user insns (up to the
1647 first branch).
1648
1649 To combat this we try to identify when args_stored was bogusly
1650 set and clear it. We only do this when args_stored is nonzero,
1651 all other resources are accounted for, and nothing changed on
1652 this pass. */
1653 if (args_stored
1654 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1655 && old_save_gr == save_gr && old_save_fr == save_fr
1656 && old_save_rp == save_rp && old_save_sp == save_sp
1657 && old_stack_remaining == stack_remaining)
1658 break;
1659
1660 /* Bump the PC. */
1661 pc += 4;
1662
1663 /* !stop_before_branch, so also look at the insn in the delay slot
1664 of the branch. */
1665 if (final_iteration)
1666 break;
1667 if (is_branch (inst))
1668 final_iteration = 1;
1669 }
1670
1671 /* We've got a tenative location for the end of the prologue. However
1672 because of limitations in the unwind descriptor mechanism we may
1673 have went too far into user code looking for the save of a register
1674 that does not exist. So, if there registers we expected to be saved
1675 but never were, mask them out and restart.
1676
1677 This should only happen in optimized code, and should be very rare. */
1678 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1679 {
1680 pc = orig_pc;
1681 restart_gr = save_gr;
1682 restart_fr = save_fr;
1683 goto restart;
1684 }
1685
1686 return pc;
1687 }
1688
1689
1690 /* Return the address of the PC after the last prologue instruction if
1691 we can determine it from the debug symbols. Else return zero. */
1692
1693 static CORE_ADDR
1694 after_prologue (CORE_ADDR pc)
1695 {
1696 struct symtab_and_line sal;
1697 CORE_ADDR func_addr, func_end;
1698
1699 /* If we can not find the symbol in the partial symbol table, then
1700 there is no hope we can determine the function's start address
1701 with this code. */
1702 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1703 return 0;
1704
1705 /* Get the line associated with FUNC_ADDR. */
1706 sal = find_pc_line (func_addr, 0);
1707
1708 /* There are only two cases to consider. First, the end of the source line
1709 is within the function bounds. In that case we return the end of the
1710 source line. Second is the end of the source line extends beyond the
1711 bounds of the current function. We need to use the slow code to
1712 examine instructions in that case.
1713
1714 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1715 the wrong thing to do. In fact, it should be entirely possible for this
1716 function to always return zero since the slow instruction scanning code
1717 is supposed to *always* work. If it does not, then it is a bug. */
1718 if (sal.end < func_end)
1719 return sal.end;
1720 else
1721 return 0;
1722 }
1723
1724 /* To skip prologues, I use this predicate. Returns either PC itself
1725 if the code at PC does not look like a function prologue; otherwise
1726 returns an address that (if we're lucky) follows the prologue.
1727
1728 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1729 It doesn't necessarily skips all the insns in the prologue. In fact
1730 we might not want to skip all the insns because a prologue insn may
1731 appear in the delay slot of the first branch, and we don't want to
1732 skip over the branch in that case. */
1733
1734 static CORE_ADDR
1735 hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1736 {
1737 CORE_ADDR post_prologue_pc;
1738
1739 /* See if we can determine the end of the prologue via the symbol table.
1740 If so, then return either PC, or the PC after the prologue, whichever
1741 is greater. */
1742
1743 post_prologue_pc = after_prologue (pc);
1744
1745 /* If after_prologue returned a useful address, then use it. Else
1746 fall back on the instruction skipping code.
1747
1748 Some folks have claimed this causes problems because the breakpoint
1749 may be the first instruction of the prologue. If that happens, then
1750 the instruction skipping code has a bug that needs to be fixed. */
1751 if (post_prologue_pc != 0)
1752 return max (pc, post_prologue_pc);
1753 else
1754 return (skip_prologue_hard_way (gdbarch, pc, 1));
1755 }
1756
1757 /* Return an unwind entry that falls within the frame's code block. */
1758
1759 static struct unwind_table_entry *
1760 hppa_find_unwind_entry_in_block (struct frame_info *this_frame)
1761 {
1762 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1763
1764 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
1765 result of get_frame_address_in_block implies a problem.
1766 The bits should have been removed earlier, before the return
1767 value of gdbarch_unwind_pc. That might be happening already;
1768 if it isn't, it should be fixed. Then this call can be
1769 removed. */
1770 pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc);
1771 return find_unwind_entry (pc);
1772 }
1773
1774 struct hppa_frame_cache
1775 {
1776 CORE_ADDR base;
1777 struct trad_frame_saved_reg *saved_regs;
1778 };
1779
1780 static struct hppa_frame_cache *
1781 hppa_frame_cache (struct frame_info *this_frame, void **this_cache)
1782 {
1783 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1784 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1785 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1786 struct hppa_frame_cache *cache;
1787 long saved_gr_mask;
1788 long saved_fr_mask;
1789 long frame_size;
1790 struct unwind_table_entry *u;
1791 CORE_ADDR prologue_end;
1792 int fp_in_r1 = 0;
1793 int i;
1794
1795 if (hppa_debug)
1796 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1797 frame_relative_level(this_frame));
1798
1799 if ((*this_cache) != NULL)
1800 {
1801 if (hppa_debug)
1802 fprintf_unfiltered (gdb_stdlog, "base=%s (cached) }",
1803 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
1804 return (*this_cache);
1805 }
1806 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1807 (*this_cache) = cache;
1808 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1809
1810 /* Yow! */
1811 u = hppa_find_unwind_entry_in_block (this_frame);
1812 if (!u)
1813 {
1814 if (hppa_debug)
1815 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1816 return (*this_cache);
1817 }
1818
1819 /* Turn the Entry_GR field into a bitmask. */
1820 saved_gr_mask = 0;
1821 for (i = 3; i < u->Entry_GR + 3; i++)
1822 {
1823 /* Frame pointer gets saved into a special location. */
1824 if (u->Save_SP && i == HPPA_FP_REGNUM)
1825 continue;
1826
1827 saved_gr_mask |= (1 << i);
1828 }
1829
1830 /* Turn the Entry_FR field into a bitmask too. */
1831 saved_fr_mask = 0;
1832 for (i = 12; i < u->Entry_FR + 12; i++)
1833 saved_fr_mask |= (1 << i);
1834
1835 /* Loop until we find everything of interest or hit a branch.
1836
1837 For unoptimized GCC code and for any HP CC code this will never ever
1838 examine any user instructions.
1839
1840 For optimized GCC code we're faced with problems. GCC will schedule
1841 its prologue and make prologue instructions available for delay slot
1842 filling. The end result is user code gets mixed in with the prologue
1843 and a prologue instruction may be in the delay slot of the first branch
1844 or call.
1845
1846 Some unexpected things are expected with debugging optimized code, so
1847 we allow this routine to walk past user instructions in optimized
1848 GCC code. */
1849 {
1850 int final_iteration = 0;
1851 CORE_ADDR pc, start_pc, end_pc;
1852 int looking_for_sp = u->Save_SP;
1853 int looking_for_rp = u->Save_RP;
1854 int fp_loc = -1;
1855
1856 /* We have to use skip_prologue_hard_way instead of just
1857 skip_prologue_using_sal, in case we stepped into a function without
1858 symbol information. hppa_skip_prologue also bounds the returned
1859 pc by the passed in pc, so it will not return a pc in the next
1860 function.
1861
1862 We used to call hppa_skip_prologue to find the end of the prologue,
1863 but if some non-prologue instructions get scheduled into the prologue,
1864 and the program is compiled with debug information, the "easy" way
1865 in hppa_skip_prologue will return a prologue end that is too early
1866 for us to notice any potential frame adjustments. */
1867
1868 /* We used to use get_frame_func to locate the beginning of the
1869 function to pass to skip_prologue. However, when objects are
1870 compiled without debug symbols, get_frame_func can return the wrong
1871 function (or 0). We can do better than that by using unwind records.
1872 This only works if the Region_description of the unwind record
1873 indicates that it includes the entry point of the function.
1874 HP compilers sometimes generate unwind records for regions that
1875 do not include the entry or exit point of a function. GNU tools
1876 do not do this. */
1877
1878 if ((u->Region_description & 0x2) == 0)
1879 start_pc = u->region_start;
1880 else
1881 start_pc = get_frame_func (this_frame);
1882
1883 prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
1884 end_pc = get_frame_pc (this_frame);
1885
1886 if (prologue_end != 0 && end_pc > prologue_end)
1887 end_pc = prologue_end;
1888
1889 frame_size = 0;
1890
1891 for (pc = start_pc;
1892 ((saved_gr_mask || saved_fr_mask
1893 || looking_for_sp || looking_for_rp
1894 || frame_size < (u->Total_frame_size << 3))
1895 && pc < end_pc);
1896 pc += 4)
1897 {
1898 int reg;
1899 gdb_byte buf4[4];
1900 long inst;
1901
1902 if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4))
1903 {
1904 error (_("Cannot read instruction at %s."),
1905 paddress (gdbarch, pc));
1906 return (*this_cache);
1907 }
1908
1909 inst = extract_unsigned_integer (buf4, sizeof buf4, byte_order);
1910
1911 /* Note the interesting effects of this instruction. */
1912 frame_size += prologue_inst_adjust_sp (inst);
1913
1914 /* There are limited ways to store the return pointer into the
1915 stack. */
1916 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1917 {
1918 looking_for_rp = 0;
1919 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1920 }
1921 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1922 {
1923 looking_for_rp = 0;
1924 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1925 }
1926 else if (inst == 0x0fc212c1
1927 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
1928 {
1929 looking_for_rp = 0;
1930 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1931 }
1932
1933 /* Check to see if we saved SP into the stack. This also
1934 happens to indicate the location of the saved frame
1935 pointer. */
1936 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1937 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1938 {
1939 looking_for_sp = 0;
1940 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
1941 }
1942 else if (inst == 0x08030241) /* copy %r3, %r1 */
1943 {
1944 fp_in_r1 = 1;
1945 }
1946
1947 /* Account for general and floating-point register saves. */
1948 reg = inst_saves_gr (inst);
1949 if (reg >= 3 && reg <= 18
1950 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
1951 {
1952 saved_gr_mask &= ~(1 << reg);
1953 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
1954 /* stwm with a positive displacement is a _post_
1955 _modify_. */
1956 cache->saved_regs[reg].addr = 0;
1957 else if ((inst & 0xfc00000c) == 0x70000008)
1958 /* A std has explicit post_modify forms. */
1959 cache->saved_regs[reg].addr = 0;
1960 else
1961 {
1962 CORE_ADDR offset;
1963
1964 if ((inst >> 26) == 0x1c)
1965 offset = (inst & 0x1 ? -1 << 13 : 0)
1966 | (((inst >> 4) & 0x3ff) << 3);
1967 else if ((inst >> 26) == 0x03)
1968 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
1969 else
1970 offset = hppa_extract_14 (inst);
1971
1972 /* Handle code with and without frame pointers. */
1973 if (u->Save_SP)
1974 cache->saved_regs[reg].addr = offset;
1975 else
1976 cache->saved_regs[reg].addr
1977 = (u->Total_frame_size << 3) + offset;
1978 }
1979 }
1980
1981 /* GCC handles callee saved FP regs a little differently.
1982
1983 It emits an instruction to put the value of the start of
1984 the FP store area into %r1. It then uses fstds,ma with a
1985 basereg of %r1 for the stores.
1986
1987 HP CC emits them at the current stack pointer modifying the
1988 stack pointer as it stores each register. */
1989
1990 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
1991 if ((inst & 0xffffc000) == 0x34610000
1992 || (inst & 0xffffc000) == 0x37c10000)
1993 fp_loc = hppa_extract_14 (inst);
1994
1995 reg = inst_saves_fr (inst);
1996 if (reg >= 12 && reg <= 21)
1997 {
1998 /* Note +4 braindamage below is necessary because the FP
1999 status registers are internally 8 registers rather than
2000 the expected 4 registers. */
2001 saved_fr_mask &= ~(1 << reg);
2002 if (fp_loc == -1)
2003 {
2004 /* 1st HP CC FP register store. After this
2005 instruction we've set enough state that the GCC and
2006 HPCC code are both handled in the same manner. */
2007 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
2008 fp_loc = 8;
2009 }
2010 else
2011 {
2012 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
2013 fp_loc += 8;
2014 }
2015 }
2016
2017 /* Quit if we hit any kind of branch the previous iteration. */
2018 if (final_iteration)
2019 break;
2020 /* We want to look precisely one instruction beyond the branch
2021 if we have not found everything yet. */
2022 if (is_branch (inst))
2023 final_iteration = 1;
2024 }
2025 }
2026
2027 {
2028 /* The frame base always represents the value of %sp at entry to
2029 the current function (and is thus equivalent to the "saved"
2030 stack pointer. */
2031 CORE_ADDR this_sp = get_frame_register_unsigned (this_frame,
2032 HPPA_SP_REGNUM);
2033 CORE_ADDR fp;
2034
2035 if (hppa_debug)
2036 fprintf_unfiltered (gdb_stdlog, " (this_sp=%s, pc=%s, "
2037 "prologue_end=%s) ",
2038 paddress (gdbarch, this_sp),
2039 paddress (gdbarch, get_frame_pc (this_frame)),
2040 paddress (gdbarch, prologue_end));
2041
2042 /* Check to see if a frame pointer is available, and use it for
2043 frame unwinding if it is.
2044
2045 There are some situations where we need to rely on the frame
2046 pointer to do stack unwinding. For example, if a function calls
2047 alloca (), the stack pointer can get adjusted inside the body of
2048 the function. In this case, the ABI requires that the compiler
2049 maintain a frame pointer for the function.
2050
2051 The unwind record has a flag (alloca_frame) that indicates that
2052 a function has a variable frame; unfortunately, gcc/binutils
2053 does not set this flag. Instead, whenever a frame pointer is used
2054 and saved on the stack, the Save_SP flag is set. We use this to
2055 decide whether to use the frame pointer for unwinding.
2056
2057 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2058 instead of Save_SP. */
2059
2060 fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM);
2061
2062 if (u->alloca_frame)
2063 fp -= u->Total_frame_size << 3;
2064
2065 if (get_frame_pc (this_frame) >= prologue_end
2066 && (u->Save_SP || u->alloca_frame) && fp != 0)
2067 {
2068 cache->base = fp;
2069
2070 if (hppa_debug)
2071 fprintf_unfiltered (gdb_stdlog, " (base=%s) [frame pointer]",
2072 paddress (gdbarch, cache->base));
2073 }
2074 else if (u->Save_SP
2075 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
2076 {
2077 /* Both we're expecting the SP to be saved and the SP has been
2078 saved. The entry SP value is saved at this frame's SP
2079 address. */
2080 cache->base = read_memory_integer (this_sp, word_size, byte_order);
2081
2082 if (hppa_debug)
2083 fprintf_unfiltered (gdb_stdlog, " (base=%s) [saved]",
2084 paddress (gdbarch, cache->base));
2085 }
2086 else
2087 {
2088 /* The prologue has been slowly allocating stack space. Adjust
2089 the SP back. */
2090 cache->base = this_sp - frame_size;
2091 if (hppa_debug)
2092 fprintf_unfiltered (gdb_stdlog, " (base=%s) [unwind adjust]",
2093 paddress (gdbarch, cache->base));
2094
2095 }
2096 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2097 }
2098
2099 /* The PC is found in the "return register", "Millicode" uses "r31"
2100 as the return register while normal code uses "rp". */
2101 if (u->Millicode)
2102 {
2103 if (trad_frame_addr_p (cache->saved_regs, 31))
2104 {
2105 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2106 if (hppa_debug)
2107 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2108 }
2109 else
2110 {
2111 ULONGEST r31 = get_frame_register_unsigned (this_frame, 31);
2112 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
2113 if (hppa_debug)
2114 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
2115 }
2116 }
2117 else
2118 {
2119 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2120 {
2121 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2122 cache->saved_regs[HPPA_RP_REGNUM];
2123 if (hppa_debug)
2124 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2125 }
2126 else
2127 {
2128 ULONGEST rp = get_frame_register_unsigned (this_frame,
2129 HPPA_RP_REGNUM);
2130 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2131 if (hppa_debug)
2132 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
2133 }
2134 }
2135
2136 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2137 frame. However, there is a one-insn window where we haven't saved it
2138 yet, but we've already clobbered it. Detect this case and fix it up.
2139
2140 The prologue sequence for frame-pointer functions is:
2141 0: stw %rp, -20(%sp)
2142 4: copy %r3, %r1
2143 8: copy %sp, %r3
2144 c: stw,ma %r1, XX(%sp)
2145
2146 So if we are at offset c, the r3 value that we want is not yet saved
2147 on the stack, but it's been overwritten. The prologue analyzer will
2148 set fp_in_r1 when it sees the copy insn so we know to get the value
2149 from r1 instead. */
2150 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2151 && fp_in_r1)
2152 {
2153 ULONGEST r1 = get_frame_register_unsigned (this_frame, 1);
2154 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2155 }
2156
2157 {
2158 /* Convert all the offsets into addresses. */
2159 int reg;
2160 for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
2161 {
2162 if (trad_frame_addr_p (cache->saved_regs, reg))
2163 cache->saved_regs[reg].addr += cache->base;
2164 }
2165 }
2166
2167 {
2168 struct gdbarch_tdep *tdep;
2169
2170 tdep = gdbarch_tdep (gdbarch);
2171
2172 if (tdep->unwind_adjust_stub)
2173 tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs);
2174 }
2175
2176 if (hppa_debug)
2177 fprintf_unfiltered (gdb_stdlog, "base=%s }",
2178 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
2179 return (*this_cache);
2180 }
2181
2182 static void
2183 hppa_frame_this_id (struct frame_info *this_frame, void **this_cache,
2184 struct frame_id *this_id)
2185 {
2186 struct hppa_frame_cache *info;
2187 CORE_ADDR pc = get_frame_pc (this_frame);
2188 struct unwind_table_entry *u;
2189
2190 info = hppa_frame_cache (this_frame, this_cache);
2191 u = hppa_find_unwind_entry_in_block (this_frame);
2192
2193 (*this_id) = frame_id_build (info->base, u->region_start);
2194 }
2195
2196 static struct value *
2197 hppa_frame_prev_register (struct frame_info *this_frame,
2198 void **this_cache, int regnum)
2199 {
2200 struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache);
2201
2202 return hppa_frame_prev_register_helper (this_frame,
2203 info->saved_regs, regnum);
2204 }
2205
2206 static int
2207 hppa_frame_unwind_sniffer (const struct frame_unwind *self,
2208 struct frame_info *this_frame, void **this_cache)
2209 {
2210 if (hppa_find_unwind_entry_in_block (this_frame))
2211 return 1;
2212
2213 return 0;
2214 }
2215
2216 static const struct frame_unwind hppa_frame_unwind =
2217 {
2218 NORMAL_FRAME,
2219 default_frame_unwind_stop_reason,
2220 hppa_frame_this_id,
2221 hppa_frame_prev_register,
2222 NULL,
2223 hppa_frame_unwind_sniffer
2224 };
2225
2226 /* This is a generic fallback frame unwinder that kicks in if we fail all
2227 the other ones. Normally we would expect the stub and regular unwinder
2228 to work, but in some cases we might hit a function that just doesn't
2229 have any unwind information available. In this case we try to do
2230 unwinding solely based on code reading. This is obviously going to be
2231 slow, so only use this as a last resort. Currently this will only
2232 identify the stack and pc for the frame. */
2233
2234 static struct hppa_frame_cache *
2235 hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache)
2236 {
2237 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2238 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2239 struct hppa_frame_cache *cache;
2240 unsigned int frame_size = 0;
2241 int found_rp = 0;
2242 CORE_ADDR start_pc;
2243
2244 if (hppa_debug)
2245 fprintf_unfiltered (gdb_stdlog,
2246 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2247 frame_relative_level (this_frame));
2248
2249 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2250 (*this_cache) = cache;
2251 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2252
2253 start_pc = get_frame_func (this_frame);
2254 if (start_pc)
2255 {
2256 CORE_ADDR cur_pc = get_frame_pc (this_frame);
2257 CORE_ADDR pc;
2258
2259 for (pc = start_pc; pc < cur_pc; pc += 4)
2260 {
2261 unsigned int insn;
2262
2263 insn = read_memory_unsigned_integer (pc, 4, byte_order);
2264 frame_size += prologue_inst_adjust_sp (insn);
2265
2266 /* There are limited ways to store the return pointer into the
2267 stack. */
2268 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2269 {
2270 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2271 found_rp = 1;
2272 }
2273 else if (insn == 0x0fc212c1
2274 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2275 {
2276 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2277 found_rp = 1;
2278 }
2279 }
2280 }
2281
2282 if (hppa_debug)
2283 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2284 frame_size, found_rp);
2285
2286 cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2287 cache->base -= frame_size;
2288 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2289
2290 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2291 {
2292 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2293 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2294 cache->saved_regs[HPPA_RP_REGNUM];
2295 }
2296 else
2297 {
2298 ULONGEST rp;
2299 rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM);
2300 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2301 }
2302
2303 return cache;
2304 }
2305
2306 static void
2307 hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache,
2308 struct frame_id *this_id)
2309 {
2310 struct hppa_frame_cache *info =
2311 hppa_fallback_frame_cache (this_frame, this_cache);
2312
2313 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2314 }
2315
2316 static struct value *
2317 hppa_fallback_frame_prev_register (struct frame_info *this_frame,
2318 void **this_cache, int regnum)
2319 {
2320 struct hppa_frame_cache *info
2321 = hppa_fallback_frame_cache (this_frame, this_cache);
2322
2323 return hppa_frame_prev_register_helper (this_frame,
2324 info->saved_regs, regnum);
2325 }
2326
2327 static const struct frame_unwind hppa_fallback_frame_unwind =
2328 {
2329 NORMAL_FRAME,
2330 default_frame_unwind_stop_reason,
2331 hppa_fallback_frame_this_id,
2332 hppa_fallback_frame_prev_register,
2333 NULL,
2334 default_frame_sniffer
2335 };
2336
2337 /* Stub frames, used for all kinds of call stubs. */
2338 struct hppa_stub_unwind_cache
2339 {
2340 CORE_ADDR base;
2341 struct trad_frame_saved_reg *saved_regs;
2342 };
2343
2344 static struct hppa_stub_unwind_cache *
2345 hppa_stub_frame_unwind_cache (struct frame_info *this_frame,
2346 void **this_cache)
2347 {
2348 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2349 struct hppa_stub_unwind_cache *info;
2350 struct unwind_table_entry *u;
2351
2352 if (*this_cache)
2353 return *this_cache;
2354
2355 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2356 *this_cache = info;
2357 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2358
2359 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2360
2361 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2362 {
2363 /* HPUX uses export stubs in function calls; the export stub clobbers
2364 the return value of the caller, and, later restores it from the
2365 stack. */
2366 u = find_unwind_entry (get_frame_pc (this_frame));
2367
2368 if (u && u->stub_unwind.stub_type == EXPORT)
2369 {
2370 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2371
2372 return info;
2373 }
2374 }
2375
2376 /* By default we assume that stubs do not change the rp. */
2377 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2378
2379 return info;
2380 }
2381
2382 static void
2383 hppa_stub_frame_this_id (struct frame_info *this_frame,
2384 void **this_prologue_cache,
2385 struct frame_id *this_id)
2386 {
2387 struct hppa_stub_unwind_cache *info
2388 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2389
2390 if (info)
2391 *this_id = frame_id_build (info->base, get_frame_func (this_frame));
2392 }
2393
2394 static struct value *
2395 hppa_stub_frame_prev_register (struct frame_info *this_frame,
2396 void **this_prologue_cache, int regnum)
2397 {
2398 struct hppa_stub_unwind_cache *info
2399 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2400
2401 if (info == NULL)
2402 error (_("Requesting registers from null frame."));
2403
2404 return hppa_frame_prev_register_helper (this_frame,
2405 info->saved_regs, regnum);
2406 }
2407
2408 static int
2409 hppa_stub_unwind_sniffer (const struct frame_unwind *self,
2410 struct frame_info *this_frame,
2411 void **this_cache)
2412 {
2413 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2414 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2415 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2416
2417 if (pc == 0
2418 || (tdep->in_solib_call_trampoline != NULL
2419 && tdep->in_solib_call_trampoline (gdbarch, pc))
2420 || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
2421 return 1;
2422 return 0;
2423 }
2424
2425 static const struct frame_unwind hppa_stub_frame_unwind = {
2426 NORMAL_FRAME,
2427 default_frame_unwind_stop_reason,
2428 hppa_stub_frame_this_id,
2429 hppa_stub_frame_prev_register,
2430 NULL,
2431 hppa_stub_unwind_sniffer
2432 };
2433
2434 static struct frame_id
2435 hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2436 {
2437 return frame_id_build (get_frame_register_unsigned (this_frame,
2438 HPPA_SP_REGNUM),
2439 get_frame_pc (this_frame));
2440 }
2441
2442 CORE_ADDR
2443 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2444 {
2445 ULONGEST ipsw;
2446 CORE_ADDR pc;
2447
2448 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2449 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2450
2451 /* If the current instruction is nullified, then we are effectively
2452 still executing the previous instruction. Pretend we are still
2453 there. This is needed when single stepping; if the nullified
2454 instruction is on a different line, we don't want GDB to think
2455 we've stepped onto that line. */
2456 if (ipsw & 0x00200000)
2457 pc -= 4;
2458
2459 return pc & ~0x3;
2460 }
2461
2462 /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2463 Return NULL if no such symbol was found. */
2464
2465 struct bound_minimal_symbol
2466 hppa_lookup_stub_minimal_symbol (const char *name,
2467 enum unwind_stub_types stub_type)
2468 {
2469 struct objfile *objfile;
2470 struct minimal_symbol *msym;
2471 struct bound_minimal_symbol result = { NULL, NULL };
2472
2473 ALL_MSYMBOLS (objfile, msym)
2474 {
2475 if (strcmp (MSYMBOL_LINKAGE_NAME (msym), name) == 0)
2476 {
2477 struct unwind_table_entry *u;
2478
2479 u = find_unwind_entry (MSYMBOL_VALUE (msym));
2480 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2481 {
2482 result.objfile = objfile;
2483 result.minsym = msym;
2484 return result;
2485 }
2486 }
2487 }
2488
2489 return result;
2490 }
2491
2492 static void
2493 unwind_command (char *exp, int from_tty)
2494 {
2495 CORE_ADDR address;
2496 struct unwind_table_entry *u;
2497
2498 /* If we have an expression, evaluate it and use it as the address. */
2499
2500 if (exp != 0 && *exp != 0)
2501 address = parse_and_eval_address (exp);
2502 else
2503 return;
2504
2505 u = find_unwind_entry (address);
2506
2507 if (!u)
2508 {
2509 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2510 return;
2511 }
2512
2513 printf_unfiltered ("unwind_table_entry (%s):\n", host_address_to_string (u));
2514
2515 printf_unfiltered ("\tregion_start = %s\n", hex_string (u->region_start));
2516 gdb_flush (gdb_stdout);
2517
2518 printf_unfiltered ("\tregion_end = %s\n", hex_string (u->region_end));
2519 gdb_flush (gdb_stdout);
2520
2521 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2522
2523 printf_unfiltered ("\n\tflags =");
2524 pif (Cannot_unwind);
2525 pif (Millicode);
2526 pif (Millicode_save_sr0);
2527 pif (Entry_SR);
2528 pif (Args_stored);
2529 pif (Variable_Frame);
2530 pif (Separate_Package_Body);
2531 pif (Frame_Extension_Millicode);
2532 pif (Stack_Overflow_Check);
2533 pif (Two_Instruction_SP_Increment);
2534 pif (sr4export);
2535 pif (cxx_info);
2536 pif (cxx_try_catch);
2537 pif (sched_entry_seq);
2538 pif (Save_SP);
2539 pif (Save_RP);
2540 pif (Save_MRP_in_frame);
2541 pif (save_r19);
2542 pif (Cleanup_defined);
2543 pif (MPE_XL_interrupt_marker);
2544 pif (HP_UX_interrupt_marker);
2545 pif (Large_frame);
2546 pif (alloca_frame);
2547
2548 putchar_unfiltered ('\n');
2549
2550 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2551
2552 pin (Region_description);
2553 pin (Entry_FR);
2554 pin (Entry_GR);
2555 pin (Total_frame_size);
2556
2557 if (u->stub_unwind.stub_type)
2558 {
2559 printf_unfiltered ("\tstub type = ");
2560 switch (u->stub_unwind.stub_type)
2561 {
2562 case LONG_BRANCH:
2563 printf_unfiltered ("long branch\n");
2564 break;
2565 case PARAMETER_RELOCATION:
2566 printf_unfiltered ("parameter relocation\n");
2567 break;
2568 case EXPORT:
2569 printf_unfiltered ("export\n");
2570 break;
2571 case IMPORT:
2572 printf_unfiltered ("import\n");
2573 break;
2574 case IMPORT_SHLIB:
2575 printf_unfiltered ("import shlib\n");
2576 break;
2577 default:
2578 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2579 }
2580 }
2581 }
2582
2583 /* Return the GDB type object for the "standard" data type of data in
2584 register REGNUM. */
2585
2586 static struct type *
2587 hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2588 {
2589 if (regnum < HPPA_FP4_REGNUM)
2590 return builtin_type (gdbarch)->builtin_uint32;
2591 else
2592 return builtin_type (gdbarch)->builtin_float;
2593 }
2594
2595 static struct type *
2596 hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2597 {
2598 if (regnum < HPPA64_FP4_REGNUM)
2599 return builtin_type (gdbarch)->builtin_uint64;
2600 else
2601 return builtin_type (gdbarch)->builtin_double;
2602 }
2603
2604 /* Return non-zero if REGNUM is not a register available to the user
2605 through ptrace/ttrace. */
2606
2607 static int
2608 hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2609 {
2610 return (regnum == 0
2611 || regnum == HPPA_PCSQ_HEAD_REGNUM
2612 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2613 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2614 }
2615
2616 static int
2617 hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2618 {
2619 /* cr26 and cr27 are readable (but not writable) from userspace. */
2620 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2621 return 0;
2622 else
2623 return hppa32_cannot_store_register (gdbarch, regnum);
2624 }
2625
2626 static int
2627 hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2628 {
2629 return (regnum == 0
2630 || regnum == HPPA_PCSQ_HEAD_REGNUM
2631 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2632 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2633 }
2634
2635 static int
2636 hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2637 {
2638 /* cr26 and cr27 are readable (but not writable) from userspace. */
2639 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2640 return 0;
2641 else
2642 return hppa64_cannot_store_register (gdbarch, regnum);
2643 }
2644
2645 static CORE_ADDR
2646 hppa_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
2647 {
2648 /* The low two bits of the PC on the PA contain the privilege level.
2649 Some genius implementing a (non-GCC) compiler apparently decided
2650 this means that "addresses" in a text section therefore include a
2651 privilege level, and thus symbol tables should contain these bits.
2652 This seems like a bonehead thing to do--anyway, it seems to work
2653 for our purposes to just ignore those bits. */
2654
2655 return (addr &= ~0x3);
2656 }
2657
2658 /* Get the ARGIth function argument for the current function. */
2659
2660 static CORE_ADDR
2661 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2662 struct type *type)
2663 {
2664 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
2665 }
2666
2667 static enum register_status
2668 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2669 int regnum, gdb_byte *buf)
2670 {
2671 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2672 ULONGEST tmp;
2673 enum register_status status;
2674
2675 status = regcache_raw_read_unsigned (regcache, regnum, &tmp);
2676 if (status == REG_VALID)
2677 {
2678 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2679 tmp &= ~0x3;
2680 store_unsigned_integer (buf, sizeof tmp, byte_order, tmp);
2681 }
2682 return status;
2683 }
2684
2685 static CORE_ADDR
2686 hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
2687 {
2688 return 0;
2689 }
2690
2691 struct value *
2692 hppa_frame_prev_register_helper (struct frame_info *this_frame,
2693 struct trad_frame_saved_reg saved_regs[],
2694 int regnum)
2695 {
2696 struct gdbarch *arch = get_frame_arch (this_frame);
2697 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2698
2699 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2700 {
2701 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2702 CORE_ADDR pc;
2703 struct value *pcoq_val =
2704 trad_frame_get_prev_register (this_frame, saved_regs,
2705 HPPA_PCOQ_HEAD_REGNUM);
2706
2707 pc = extract_unsigned_integer (value_contents_all (pcoq_val),
2708 size, byte_order);
2709 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
2710 }
2711
2712 /* Make sure the "flags" register is zero in all unwound frames.
2713 The "flags" registers is a HP-UX specific wart, and only the code
2714 in hppa-hpux-tdep.c depends on it. However, it is easier to deal
2715 with it here. This shouldn't affect other systems since those
2716 should provide zero for the "flags" register anyway. */
2717 if (regnum == HPPA_FLAGS_REGNUM)
2718 return frame_unwind_got_constant (this_frame, regnum, 0);
2719
2720 return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
2721 }
2722 \f
2723
2724 /* An instruction to match. */
2725 struct insn_pattern
2726 {
2727 unsigned int data; /* See if it matches this.... */
2728 unsigned int mask; /* ... with this mask. */
2729 };
2730
2731 /* See bfd/elf32-hppa.c */
2732 static struct insn_pattern hppa_long_branch_stub[] = {
2733 /* ldil LR'xxx,%r1 */
2734 { 0x20200000, 0xffe00000 },
2735 /* be,n RR'xxx(%sr4,%r1) */
2736 { 0xe0202002, 0xffe02002 },
2737 { 0, 0 }
2738 };
2739
2740 static struct insn_pattern hppa_long_branch_pic_stub[] = {
2741 /* b,l .+8, %r1 */
2742 { 0xe8200000, 0xffe00000 },
2743 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2744 { 0x28200000, 0xffe00000 },
2745 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2746 { 0xe0202002, 0xffe02002 },
2747 { 0, 0 }
2748 };
2749
2750 static struct insn_pattern hppa_import_stub[] = {
2751 /* addil LR'xxx, %dp */
2752 { 0x2b600000, 0xffe00000 },
2753 /* ldw RR'xxx(%r1), %r21 */
2754 { 0x48350000, 0xffffb000 },
2755 /* bv %r0(%r21) */
2756 { 0xeaa0c000, 0xffffffff },
2757 /* ldw RR'xxx+4(%r1), %r19 */
2758 { 0x48330000, 0xffffb000 },
2759 { 0, 0 }
2760 };
2761
2762 static struct insn_pattern hppa_import_pic_stub[] = {
2763 /* addil LR'xxx,%r19 */
2764 { 0x2a600000, 0xffe00000 },
2765 /* ldw RR'xxx(%r1),%r21 */
2766 { 0x48350000, 0xffffb000 },
2767 /* bv %r0(%r21) */
2768 { 0xeaa0c000, 0xffffffff },
2769 /* ldw RR'xxx+4(%r1),%r19 */
2770 { 0x48330000, 0xffffb000 },
2771 { 0, 0 },
2772 };
2773
2774 static struct insn_pattern hppa_plt_stub[] = {
2775 /* b,l 1b, %r20 - 1b is 3 insns before here */
2776 { 0xea9f1fdd, 0xffffffff },
2777 /* depi 0,31,2,%r20 */
2778 { 0xd6801c1e, 0xffffffff },
2779 { 0, 0 }
2780 };
2781
2782 /* Maximum number of instructions on the patterns above. */
2783 #define HPPA_MAX_INSN_PATTERN_LEN 4
2784
2785 /* Return non-zero if the instructions at PC match the series
2786 described in PATTERN, or zero otherwise. PATTERN is an array of
2787 'struct insn_pattern' objects, terminated by an entry whose mask is
2788 zero.
2789
2790 When the match is successful, fill INSN[i] with what PATTERN[i]
2791 matched. */
2792
2793 static int
2794 hppa_match_insns (struct gdbarch *gdbarch, CORE_ADDR pc,
2795 struct insn_pattern *pattern, unsigned int *insn)
2796 {
2797 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2798 CORE_ADDR npc = pc;
2799 int i;
2800
2801 for (i = 0; pattern[i].mask; i++)
2802 {
2803 gdb_byte buf[HPPA_INSN_SIZE];
2804
2805 target_read_memory (npc, buf, HPPA_INSN_SIZE);
2806 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order);
2807 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2808 npc += 4;
2809 else
2810 return 0;
2811 }
2812
2813 return 1;
2814 }
2815
2816 /* This relaxed version of the insstruction matcher allows us to match
2817 from somewhere inside the pattern, by looking backwards in the
2818 instruction scheme. */
2819
2820 static int
2821 hppa_match_insns_relaxed (struct gdbarch *gdbarch, CORE_ADDR pc,
2822 struct insn_pattern *pattern, unsigned int *insn)
2823 {
2824 int offset, len = 0;
2825
2826 while (pattern[len].mask)
2827 len++;
2828
2829 for (offset = 0; offset < len; offset++)
2830 if (hppa_match_insns (gdbarch, pc - offset * HPPA_INSN_SIZE,
2831 pattern, insn))
2832 return 1;
2833
2834 return 0;
2835 }
2836
2837 static int
2838 hppa_in_dyncall (CORE_ADDR pc)
2839 {
2840 struct unwind_table_entry *u;
2841
2842 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2843 if (!u)
2844 return 0;
2845
2846 return (pc >= u->region_start && pc <= u->region_end);
2847 }
2848
2849 int
2850 hppa_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc)
2851 {
2852 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2853 struct unwind_table_entry *u;
2854
2855 if (in_plt_section (pc) || hppa_in_dyncall (pc))
2856 return 1;
2857
2858 /* The GNU toolchain produces linker stubs without unwind
2859 information. Since the pattern matching for linker stubs can be
2860 quite slow, so bail out if we do have an unwind entry. */
2861
2862 u = find_unwind_entry (pc);
2863 if (u != NULL)
2864 return 0;
2865
2866 return
2867 (hppa_match_insns_relaxed (gdbarch, pc, hppa_import_stub, insn)
2868 || hppa_match_insns_relaxed (gdbarch, pc, hppa_import_pic_stub, insn)
2869 || hppa_match_insns_relaxed (gdbarch, pc, hppa_long_branch_stub, insn)
2870 || hppa_match_insns_relaxed (gdbarch, pc,
2871 hppa_long_branch_pic_stub, insn));
2872 }
2873
2874 /* This code skips several kind of "trampolines" used on PA-RISC
2875 systems: $$dyncall, import stubs and PLT stubs. */
2876
2877 CORE_ADDR
2878 hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2879 {
2880 struct gdbarch *gdbarch = get_frame_arch (frame);
2881 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
2882
2883 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2884 int dp_rel;
2885
2886 /* $$dyncall handles both PLABELs and direct addresses. */
2887 if (hppa_in_dyncall (pc))
2888 {
2889 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
2890
2891 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2892 if (pc & 0x2)
2893 pc = read_memory_typed_address (pc & ~0x3, func_ptr_type);
2894
2895 return pc;
2896 }
2897
2898 dp_rel = hppa_match_insns (gdbarch, pc, hppa_import_stub, insn);
2899 if (dp_rel || hppa_match_insns (gdbarch, pc, hppa_import_pic_stub, insn))
2900 {
2901 /* Extract the target address from the addil/ldw sequence. */
2902 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2903
2904 if (dp_rel)
2905 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
2906 else
2907 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
2908
2909 /* fallthrough */
2910 }
2911
2912 if (in_plt_section (pc))
2913 {
2914 pc = read_memory_typed_address (pc, func_ptr_type);
2915
2916 /* If the PLT slot has not yet been resolved, the target will be
2917 the PLT stub. */
2918 if (in_plt_section (pc))
2919 {
2920 /* Sanity check: are we pointing to the PLT stub? */
2921 if (!hppa_match_insns (gdbarch, pc, hppa_plt_stub, insn))
2922 {
2923 warning (_("Cannot resolve PLT stub at %s."),
2924 paddress (gdbarch, pc));
2925 return 0;
2926 }
2927
2928 /* This should point to the fixup routine. */
2929 pc = read_memory_typed_address (pc + 8, func_ptr_type);
2930 }
2931 }
2932
2933 return pc;
2934 }
2935 \f
2936
2937 /* Here is a table of C type sizes on hppa with various compiles
2938 and options. I measured this on PA 9000/800 with HP-UX 11.11
2939 and these compilers:
2940
2941 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2942 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2943 /opt/aCC/bin/aCC B3910B A.03.45
2944 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2945
2946 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2947 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2948 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2949 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2950 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2951 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2952 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2953 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2954
2955 Each line is:
2956
2957 compiler and options
2958 char, short, int, long, long long
2959 float, double, long double
2960 char *, void (*)()
2961
2962 So all these compilers use either ILP32 or LP64 model.
2963 TODO: gcc has more options so it needs more investigation.
2964
2965 For floating point types, see:
2966
2967 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2968 HP-UX floating-point guide, hpux 11.00
2969
2970 -- chastain 2003-12-18 */
2971
2972 static struct gdbarch *
2973 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2974 {
2975 struct gdbarch_tdep *tdep;
2976 struct gdbarch *gdbarch;
2977
2978 /* Try to determine the ABI of the object we are loading. */
2979 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
2980 {
2981 /* If it's a SOM file, assume it's HP/UX SOM. */
2982 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
2983 info.osabi = GDB_OSABI_HPUX_SOM;
2984 }
2985
2986 /* find a candidate among the list of pre-declared architectures. */
2987 arches = gdbarch_list_lookup_by_info (arches, &info);
2988 if (arches != NULL)
2989 return (arches->gdbarch);
2990
2991 /* If none found, then allocate and initialize one. */
2992 tdep = XCNEW (struct gdbarch_tdep);
2993 gdbarch = gdbarch_alloc (&info, tdep);
2994
2995 /* Determine from the bfd_arch_info structure if we are dealing with
2996 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
2997 then default to a 32bit machine. */
2998 if (info.bfd_arch_info != NULL)
2999 tdep->bytes_per_address =
3000 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3001 else
3002 tdep->bytes_per_address = 4;
3003
3004 tdep->find_global_pointer = hppa_find_global_pointer;
3005
3006 /* Some parts of the gdbarch vector depend on whether we are running
3007 on a 32 bits or 64 bits target. */
3008 switch (tdep->bytes_per_address)
3009 {
3010 case 4:
3011 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3012 set_gdbarch_register_name (gdbarch, hppa32_register_name);
3013 set_gdbarch_register_type (gdbarch, hppa32_register_type);
3014 set_gdbarch_cannot_store_register (gdbarch,
3015 hppa32_cannot_store_register);
3016 set_gdbarch_cannot_fetch_register (gdbarch,
3017 hppa32_cannot_fetch_register);
3018 break;
3019 case 8:
3020 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3021 set_gdbarch_register_name (gdbarch, hppa64_register_name);
3022 set_gdbarch_register_type (gdbarch, hppa64_register_type);
3023 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3024 set_gdbarch_cannot_store_register (gdbarch,
3025 hppa64_cannot_store_register);
3026 set_gdbarch_cannot_fetch_register (gdbarch,
3027 hppa64_cannot_fetch_register);
3028 break;
3029 default:
3030 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3031 tdep->bytes_per_address);
3032 }
3033
3034 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3035 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3036
3037 /* The following gdbarch vector elements are the same in both ILP32
3038 and LP64, but might show differences some day. */
3039 set_gdbarch_long_long_bit (gdbarch, 64);
3040 set_gdbarch_long_double_bit (gdbarch, 128);
3041 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3042
3043 /* The following gdbarch vector elements do not depend on the address
3044 size, or in any other gdbarch element previously set. */
3045 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
3046 set_gdbarch_in_function_epilogue_p (gdbarch,
3047 hppa_in_function_epilogue_p);
3048 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
3049 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3050 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
3051 set_gdbarch_addr_bits_remove (gdbarch, hppa_addr_bits_remove);
3052 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3053 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3054 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
3055
3056 /* Helper for function argument information. */
3057 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3058
3059 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
3060
3061 /* When a hardware watchpoint triggers, we'll move the inferior past
3062 it by removing all eventpoints; stepping past the instruction
3063 that caused the trigger; reinserting eventpoints; and checking
3064 whether any watched location changed. */
3065 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3066
3067 /* Inferior function call methods. */
3068 switch (tdep->bytes_per_address)
3069 {
3070 case 4:
3071 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3072 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
3073 set_gdbarch_convert_from_func_ptr_addr
3074 (gdbarch, hppa32_convert_from_func_ptr_addr);
3075 break;
3076 case 8:
3077 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3078 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
3079 break;
3080 default:
3081 internal_error (__FILE__, __LINE__, _("bad switch"));
3082 }
3083
3084 /* Struct return methods. */
3085 switch (tdep->bytes_per_address)
3086 {
3087 case 4:
3088 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3089 break;
3090 case 8:
3091 set_gdbarch_return_value (gdbarch, hppa64_return_value);
3092 break;
3093 default:
3094 internal_error (__FILE__, __LINE__, _("bad switch"));
3095 }
3096
3097 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
3098 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
3099
3100 /* Frame unwind methods. */
3101 set_gdbarch_dummy_id (gdbarch, hppa_dummy_id);
3102 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
3103
3104 /* Hook in ABI-specific overrides, if they have been registered. */
3105 gdbarch_init_osabi (info, gdbarch);
3106
3107 /* Hook in the default unwinders. */
3108 frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind);
3109 frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind);
3110 frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind);
3111
3112 return gdbarch;
3113 }
3114
3115 static void
3116 hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3117 {
3118 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3119
3120 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3121 tdep->bytes_per_address);
3122 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
3123 }
3124
3125 /* Provide a prototype to silence -Wmissing-prototypes. */
3126 extern initialize_file_ftype _initialize_hppa_tdep;
3127
3128 void
3129 _initialize_hppa_tdep (void)
3130 {
3131 struct cmd_list_element *c;
3132
3133 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
3134
3135 hppa_objfile_priv_data = register_objfile_data ();
3136
3137 add_cmd ("unwind", class_maintenance, unwind_command,
3138 _("Print unwind table entry at given address."),
3139 &maintenanceprintlist);
3140
3141 /* Debug this files internals. */
3142 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3143 Set whether hppa target specific debugging information should be displayed."),
3144 _("\
3145 Show whether hppa target specific debugging information is displayed."), _("\
3146 This flag controls whether hppa target specific debugging information is\n\
3147 displayed. This information is particularly useful for debugging frame\n\
3148 unwinding problems."),
3149 NULL,
3150 NULL, /* FIXME: i18n: hppa debug flag is %s. */
3151 &setdebuglist, &showdebuglist);
3152 }
This page took 0.149524 seconds and 5 git commands to generate.