Use XOBNEW/XOBNEWVEC/OBSTACK_ZALLOC when possible
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA-RISC architecture.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "bfd.h"
25 #include "inferior.h"
26 #include "regcache.h"
27 #include "completer.h"
28 #include "osabi.h"
29 #include "arch-utils.h"
30 /* For argument passing to the inferior. */
31 #include "symtab.h"
32 #include "dis-asm.h"
33 #include "trad-frame.h"
34 #include "frame-unwind.h"
35 #include "frame-base.h"
36
37 #include "gdbcore.h"
38 #include "gdbcmd.h"
39 #include "gdbtypes.h"
40 #include "objfiles.h"
41 #include "hppa-tdep.h"
42 #include <algorithm>
43
44 static int hppa_debug = 0;
45
46 /* Some local constants. */
47 static const int hppa32_num_regs = 128;
48 static const int hppa64_num_regs = 96;
49
50 /* We use the objfile->obj_private pointer for two things:
51 * 1. An unwind table;
52 *
53 * 2. A pointer to any associated shared library object.
54 *
55 * #defines are used to help refer to these objects.
56 */
57
58 /* Info about the unwind table associated with an object file.
59 * This is hung off of the "objfile->obj_private" pointer, and
60 * is allocated in the objfile's psymbol obstack. This allows
61 * us to have unique unwind info for each executable and shared
62 * library that we are debugging.
63 */
64 struct hppa_unwind_info
65 {
66 struct unwind_table_entry *table; /* Pointer to unwind info */
67 struct unwind_table_entry *cache; /* Pointer to last entry we found */
68 int last; /* Index of last entry */
69 };
70
71 struct hppa_objfile_private
72 {
73 struct hppa_unwind_info *unwind_info; /* a pointer */
74 struct so_list *so_info; /* a pointer */
75 CORE_ADDR dp;
76
77 int dummy_call_sequence_reg;
78 CORE_ADDR dummy_call_sequence_addr;
79 };
80
81 /* hppa-specific object data -- unwind and solib info.
82 TODO/maybe: think about splitting this into two parts; the unwind data is
83 common to all hppa targets, but is only used in this file; we can register
84 that separately and make this static. The solib data is probably hpux-
85 specific, so we can create a separate extern objfile_data that is registered
86 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
87 static const struct objfile_data *hppa_objfile_priv_data = NULL;
88
89 /* Get at various relevent fields of an instruction word. */
90 #define MASK_5 0x1f
91 #define MASK_11 0x7ff
92 #define MASK_14 0x3fff
93 #define MASK_21 0x1fffff
94
95 /* Sizes (in bytes) of the native unwind entries. */
96 #define UNWIND_ENTRY_SIZE 16
97 #define STUB_UNWIND_ENTRY_SIZE 8
98
99 /* Routines to extract various sized constants out of hppa
100 instructions. */
101
102 /* This assumes that no garbage lies outside of the lower bits of
103 value. */
104
105 static int
106 hppa_sign_extend (unsigned val, unsigned bits)
107 {
108 return (int) (val >> (bits - 1) ? (-(1 << bits)) | val : val);
109 }
110
111 /* For many immediate values the sign bit is the low bit! */
112
113 static int
114 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
115 {
116 return (int) ((val & 0x1 ? (-(1 << (bits - 1))) : 0) | val >> 1);
117 }
118
119 /* Extract the bits at positions between FROM and TO, using HP's numbering
120 (MSB = 0). */
121
122 int
123 hppa_get_field (unsigned word, int from, int to)
124 {
125 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
126 }
127
128 /* Extract the immediate field from a ld{bhw}s instruction. */
129
130 int
131 hppa_extract_5_load (unsigned word)
132 {
133 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
134 }
135
136 /* Extract the immediate field from a break instruction. */
137
138 unsigned
139 hppa_extract_5r_store (unsigned word)
140 {
141 return (word & MASK_5);
142 }
143
144 /* Extract the immediate field from a {sr}sm instruction. */
145
146 unsigned
147 hppa_extract_5R_store (unsigned word)
148 {
149 return (word >> 16 & MASK_5);
150 }
151
152 /* Extract a 14 bit immediate field. */
153
154 int
155 hppa_extract_14 (unsigned word)
156 {
157 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
158 }
159
160 /* Extract a 21 bit constant. */
161
162 int
163 hppa_extract_21 (unsigned word)
164 {
165 int val;
166
167 word &= MASK_21;
168 word <<= 11;
169 val = hppa_get_field (word, 20, 20);
170 val <<= 11;
171 val |= hppa_get_field (word, 9, 19);
172 val <<= 2;
173 val |= hppa_get_field (word, 5, 6);
174 val <<= 5;
175 val |= hppa_get_field (word, 0, 4);
176 val <<= 2;
177 val |= hppa_get_field (word, 7, 8);
178 return hppa_sign_extend (val, 21) << 11;
179 }
180
181 /* extract a 17 bit constant from branch instructions, returning the
182 19 bit signed value. */
183
184 int
185 hppa_extract_17 (unsigned word)
186 {
187 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
188 hppa_get_field (word, 29, 29) << 10 |
189 hppa_get_field (word, 11, 15) << 11 |
190 (word & 0x1) << 16, 17) << 2;
191 }
192
193 CORE_ADDR
194 hppa_symbol_address(const char *sym)
195 {
196 struct bound_minimal_symbol minsym;
197
198 minsym = lookup_minimal_symbol (sym, NULL, NULL);
199 if (minsym.minsym)
200 return BMSYMBOL_VALUE_ADDRESS (minsym);
201 else
202 return (CORE_ADDR)-1;
203 }
204
205 static struct hppa_objfile_private *
206 hppa_init_objfile_priv_data (struct objfile *objfile)
207 {
208 hppa_objfile_private *priv
209 = OBSTACK_ZALLOC (&objfile->objfile_obstack, hppa_objfile_private);
210
211 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
212
213 return priv;
214 }
215 \f
216
217 /* Compare the start address for two unwind entries returning 1 if
218 the first address is larger than the second, -1 if the second is
219 larger than the first, and zero if they are equal. */
220
221 static int
222 compare_unwind_entries (const void *arg1, const void *arg2)
223 {
224 const struct unwind_table_entry *a = (const struct unwind_table_entry *) arg1;
225 const struct unwind_table_entry *b = (const struct unwind_table_entry *) arg2;
226
227 if (a->region_start > b->region_start)
228 return 1;
229 else if (a->region_start < b->region_start)
230 return -1;
231 else
232 return 0;
233 }
234
235 static void
236 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
237 {
238 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
239 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
240 {
241 bfd_vma value = section->vma - section->filepos;
242 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
243
244 if (value < *low_text_segment_address)
245 *low_text_segment_address = value;
246 }
247 }
248
249 static void
250 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
251 asection *section, unsigned int entries,
252 size_t size, CORE_ADDR text_offset)
253 {
254 /* We will read the unwind entries into temporary memory, then
255 fill in the actual unwind table. */
256
257 if (size > 0)
258 {
259 struct gdbarch *gdbarch = get_objfile_arch (objfile);
260 unsigned long tmp;
261 unsigned i;
262 char *buf = (char *) alloca (size);
263 CORE_ADDR low_text_segment_address;
264
265 /* For ELF targets, then unwinds are supposed to
266 be segment relative offsets instead of absolute addresses.
267
268 Note that when loading a shared library (text_offset != 0) the
269 unwinds are already relative to the text_offset that will be
270 passed in. */
271 if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0)
272 {
273 low_text_segment_address = -1;
274
275 bfd_map_over_sections (objfile->obfd,
276 record_text_segment_lowaddr,
277 &low_text_segment_address);
278
279 text_offset = low_text_segment_address;
280 }
281 else if (gdbarch_tdep (gdbarch)->solib_get_text_base)
282 {
283 text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile);
284 }
285
286 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
287
288 /* Now internalize the information being careful to handle host/target
289 endian issues. */
290 for (i = 0; i < entries; i++)
291 {
292 table[i].region_start = bfd_get_32 (objfile->obfd,
293 (bfd_byte *) buf);
294 table[i].region_start += text_offset;
295 buf += 4;
296 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
297 table[i].region_end += text_offset;
298 buf += 4;
299 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
300 buf += 4;
301 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
302 table[i].Millicode = (tmp >> 30) & 0x1;
303 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
304 table[i].Region_description = (tmp >> 27) & 0x3;
305 table[i].reserved = (tmp >> 26) & 0x1;
306 table[i].Entry_SR = (tmp >> 25) & 0x1;
307 table[i].Entry_FR = (tmp >> 21) & 0xf;
308 table[i].Entry_GR = (tmp >> 16) & 0x1f;
309 table[i].Args_stored = (tmp >> 15) & 0x1;
310 table[i].Variable_Frame = (tmp >> 14) & 0x1;
311 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
312 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
313 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
314 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
315 table[i].sr4export = (tmp >> 9) & 0x1;
316 table[i].cxx_info = (tmp >> 8) & 0x1;
317 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
318 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
319 table[i].reserved1 = (tmp >> 5) & 0x1;
320 table[i].Save_SP = (tmp >> 4) & 0x1;
321 table[i].Save_RP = (tmp >> 3) & 0x1;
322 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
323 table[i].save_r19 = (tmp >> 1) & 0x1;
324 table[i].Cleanup_defined = tmp & 0x1;
325 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
326 buf += 4;
327 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
328 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
329 table[i].Large_frame = (tmp >> 29) & 0x1;
330 table[i].alloca_frame = (tmp >> 28) & 0x1;
331 table[i].reserved2 = (tmp >> 27) & 0x1;
332 table[i].Total_frame_size = tmp & 0x7ffffff;
333
334 /* Stub unwinds are handled elsewhere. */
335 table[i].stub_unwind.stub_type = 0;
336 table[i].stub_unwind.padding = 0;
337 }
338 }
339 }
340
341 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
342 the object file. This info is used mainly by find_unwind_entry() to find
343 out the stack frame size and frame pointer used by procedures. We put
344 everything on the psymbol obstack in the objfile so that it automatically
345 gets freed when the objfile is destroyed. */
346
347 static void
348 read_unwind_info (struct objfile *objfile)
349 {
350 asection *unwind_sec, *stub_unwind_sec;
351 size_t unwind_size, stub_unwind_size, total_size;
352 unsigned index, unwind_entries;
353 unsigned stub_entries, total_entries;
354 CORE_ADDR text_offset;
355 struct hppa_unwind_info *ui;
356 struct hppa_objfile_private *obj_private;
357
358 text_offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
359 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
360 sizeof (struct hppa_unwind_info));
361
362 ui->table = NULL;
363 ui->cache = NULL;
364 ui->last = -1;
365
366 /* For reasons unknown the HP PA64 tools generate multiple unwinder
367 sections in a single executable. So we just iterate over every
368 section in the BFD looking for unwinder sections intead of trying
369 to do a lookup with bfd_get_section_by_name.
370
371 First determine the total size of the unwind tables so that we
372 can allocate memory in a nice big hunk. */
373 total_entries = 0;
374 for (unwind_sec = objfile->obfd->sections;
375 unwind_sec;
376 unwind_sec = unwind_sec->next)
377 {
378 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
379 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
380 {
381 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
382 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
383
384 total_entries += unwind_entries;
385 }
386 }
387
388 /* Now compute the size of the stub unwinds. Note the ELF tools do not
389 use stub unwinds at the current time. */
390 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
391
392 if (stub_unwind_sec)
393 {
394 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
395 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
396 }
397 else
398 {
399 stub_unwind_size = 0;
400 stub_entries = 0;
401 }
402
403 /* Compute total number of unwind entries and their total size. */
404 total_entries += stub_entries;
405 total_size = total_entries * sizeof (struct unwind_table_entry);
406
407 /* Allocate memory for the unwind table. */
408 ui->table = (struct unwind_table_entry *)
409 obstack_alloc (&objfile->objfile_obstack, total_size);
410 ui->last = total_entries - 1;
411
412 /* Now read in each unwind section and internalize the standard unwind
413 entries. */
414 index = 0;
415 for (unwind_sec = objfile->obfd->sections;
416 unwind_sec;
417 unwind_sec = unwind_sec->next)
418 {
419 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
420 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
421 {
422 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
423 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
424
425 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
426 unwind_entries, unwind_size, text_offset);
427 index += unwind_entries;
428 }
429 }
430
431 /* Now read in and internalize the stub unwind entries. */
432 if (stub_unwind_size > 0)
433 {
434 unsigned int i;
435 char *buf = (char *) alloca (stub_unwind_size);
436
437 /* Read in the stub unwind entries. */
438 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
439 0, stub_unwind_size);
440
441 /* Now convert them into regular unwind entries. */
442 for (i = 0; i < stub_entries; i++, index++)
443 {
444 /* Clear out the next unwind entry. */
445 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
446
447 /* Convert offset & size into region_start and region_end.
448 Stuff away the stub type into "reserved" fields. */
449 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
450 (bfd_byte *) buf);
451 ui->table[index].region_start += text_offset;
452 buf += 4;
453 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
454 (bfd_byte *) buf);
455 buf += 2;
456 ui->table[index].region_end
457 = ui->table[index].region_start + 4 *
458 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
459 buf += 2;
460 }
461
462 }
463
464 /* Unwind table needs to be kept sorted. */
465 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
466 compare_unwind_entries);
467
468 /* Keep a pointer to the unwind information. */
469 obj_private = (struct hppa_objfile_private *)
470 objfile_data (objfile, hppa_objfile_priv_data);
471 if (obj_private == NULL)
472 obj_private = hppa_init_objfile_priv_data (objfile);
473
474 obj_private->unwind_info = ui;
475 }
476
477 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
478 of the objfiles seeking the unwind table entry for this PC. Each objfile
479 contains a sorted list of struct unwind_table_entry. Since we do a binary
480 search of the unwind tables, we depend upon them to be sorted. */
481
482 struct unwind_table_entry *
483 find_unwind_entry (CORE_ADDR pc)
484 {
485 int first, middle, last;
486 struct objfile *objfile;
487 struct hppa_objfile_private *priv;
488
489 if (hppa_debug)
490 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry %s -> ",
491 hex_string (pc));
492
493 /* A function at address 0? Not in HP-UX! */
494 if (pc == (CORE_ADDR) 0)
495 {
496 if (hppa_debug)
497 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
498 return NULL;
499 }
500
501 ALL_OBJFILES (objfile)
502 {
503 struct hppa_unwind_info *ui;
504 ui = NULL;
505 priv = ((struct hppa_objfile_private *)
506 objfile_data (objfile, hppa_objfile_priv_data));
507 if (priv)
508 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
509
510 if (!ui)
511 {
512 read_unwind_info (objfile);
513 priv = ((struct hppa_objfile_private *)
514 objfile_data (objfile, hppa_objfile_priv_data));
515 if (priv == NULL)
516 error (_("Internal error reading unwind information."));
517 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
518 }
519
520 /* First, check the cache. */
521
522 if (ui->cache
523 && pc >= ui->cache->region_start
524 && pc <= ui->cache->region_end)
525 {
526 if (hppa_debug)
527 fprintf_unfiltered (gdb_stdlog, "%s (cached) }\n",
528 hex_string ((uintptr_t) ui->cache));
529 return ui->cache;
530 }
531
532 /* Not in the cache, do a binary search. */
533
534 first = 0;
535 last = ui->last;
536
537 while (first <= last)
538 {
539 middle = (first + last) / 2;
540 if (pc >= ui->table[middle].region_start
541 && pc <= ui->table[middle].region_end)
542 {
543 ui->cache = &ui->table[middle];
544 if (hppa_debug)
545 fprintf_unfiltered (gdb_stdlog, "%s }\n",
546 hex_string ((uintptr_t) ui->cache));
547 return &ui->table[middle];
548 }
549
550 if (pc < ui->table[middle].region_start)
551 last = middle - 1;
552 else
553 first = middle + 1;
554 }
555 } /* ALL_OBJFILES() */
556
557 if (hppa_debug)
558 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
559
560 return NULL;
561 }
562
563 /* Implement the stack_frame_destroyed_p gdbarch method.
564
565 The epilogue is defined here as the area either on the `bv' instruction
566 itself or an instruction which destroys the function's stack frame.
567
568 We do not assume that the epilogue is at the end of a function as we can
569 also have return sequences in the middle of a function. */
570
571 static int
572 hppa_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
573 {
574 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
575 unsigned long status;
576 unsigned int inst;
577 gdb_byte buf[4];
578
579 status = target_read_memory (pc, buf, 4);
580 if (status != 0)
581 return 0;
582
583 inst = extract_unsigned_integer (buf, 4, byte_order);
584
585 /* The most common way to perform a stack adjustment ldo X(sp),sp
586 We are destroying a stack frame if the offset is negative. */
587 if ((inst & 0xffffc000) == 0x37de0000
588 && hppa_extract_14 (inst) < 0)
589 return 1;
590
591 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
592 if (((inst & 0x0fc010e0) == 0x0fc010e0
593 || (inst & 0x0fc010e0) == 0x0fc010e0)
594 && hppa_extract_14 (inst) < 0)
595 return 1;
596
597 /* bv %r0(%rp) or bv,n %r0(%rp) */
598 if (inst == 0xe840c000 || inst == 0xe840c002)
599 return 1;
600
601 return 0;
602 }
603
604 constexpr gdb_byte hppa_break_insn[] = {0x00, 0x01, 0x00, 0x04};
605
606 typedef BP_MANIPULATION (hppa_break_insn) hppa_breakpoint;
607
608 /* Return the name of a register. */
609
610 static const char *
611 hppa32_register_name (struct gdbarch *gdbarch, int i)
612 {
613 static const char *names[] = {
614 "flags", "r1", "rp", "r3",
615 "r4", "r5", "r6", "r7",
616 "r8", "r9", "r10", "r11",
617 "r12", "r13", "r14", "r15",
618 "r16", "r17", "r18", "r19",
619 "r20", "r21", "r22", "r23",
620 "r24", "r25", "r26", "dp",
621 "ret0", "ret1", "sp", "r31",
622 "sar", "pcoqh", "pcsqh", "pcoqt",
623 "pcsqt", "eiem", "iir", "isr",
624 "ior", "ipsw", "goto", "sr4",
625 "sr0", "sr1", "sr2", "sr3",
626 "sr5", "sr6", "sr7", "cr0",
627 "cr8", "cr9", "ccr", "cr12",
628 "cr13", "cr24", "cr25", "cr26",
629 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
630 "fpsr", "fpe1", "fpe2", "fpe3",
631 "fpe4", "fpe5", "fpe6", "fpe7",
632 "fr4", "fr4R", "fr5", "fr5R",
633 "fr6", "fr6R", "fr7", "fr7R",
634 "fr8", "fr8R", "fr9", "fr9R",
635 "fr10", "fr10R", "fr11", "fr11R",
636 "fr12", "fr12R", "fr13", "fr13R",
637 "fr14", "fr14R", "fr15", "fr15R",
638 "fr16", "fr16R", "fr17", "fr17R",
639 "fr18", "fr18R", "fr19", "fr19R",
640 "fr20", "fr20R", "fr21", "fr21R",
641 "fr22", "fr22R", "fr23", "fr23R",
642 "fr24", "fr24R", "fr25", "fr25R",
643 "fr26", "fr26R", "fr27", "fr27R",
644 "fr28", "fr28R", "fr29", "fr29R",
645 "fr30", "fr30R", "fr31", "fr31R"
646 };
647 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
648 return NULL;
649 else
650 return names[i];
651 }
652
653 static const char *
654 hppa64_register_name (struct gdbarch *gdbarch, int i)
655 {
656 static const char *names[] = {
657 "flags", "r1", "rp", "r3",
658 "r4", "r5", "r6", "r7",
659 "r8", "r9", "r10", "r11",
660 "r12", "r13", "r14", "r15",
661 "r16", "r17", "r18", "r19",
662 "r20", "r21", "r22", "r23",
663 "r24", "r25", "r26", "dp",
664 "ret0", "ret1", "sp", "r31",
665 "sar", "pcoqh", "pcsqh", "pcoqt",
666 "pcsqt", "eiem", "iir", "isr",
667 "ior", "ipsw", "goto", "sr4",
668 "sr0", "sr1", "sr2", "sr3",
669 "sr5", "sr6", "sr7", "cr0",
670 "cr8", "cr9", "ccr", "cr12",
671 "cr13", "cr24", "cr25", "cr26",
672 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
673 "fpsr", "fpe1", "fpe2", "fpe3",
674 "fr4", "fr5", "fr6", "fr7",
675 "fr8", "fr9", "fr10", "fr11",
676 "fr12", "fr13", "fr14", "fr15",
677 "fr16", "fr17", "fr18", "fr19",
678 "fr20", "fr21", "fr22", "fr23",
679 "fr24", "fr25", "fr26", "fr27",
680 "fr28", "fr29", "fr30", "fr31"
681 };
682 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
683 return NULL;
684 else
685 return names[i];
686 }
687
688 /* Map dwarf DBX register numbers to GDB register numbers. */
689 static int
690 hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
691 {
692 /* The general registers and the sar are the same in both sets. */
693 if (reg >= 0 && reg <= 32)
694 return reg;
695
696 /* fr4-fr31 are mapped from 72 in steps of 2. */
697 if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1))
698 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
699
700 return -1;
701 }
702
703 /* This function pushes a stack frame with arguments as part of the
704 inferior function calling mechanism.
705
706 This is the version of the function for the 32-bit PA machines, in
707 which later arguments appear at lower addresses. (The stack always
708 grows towards higher addresses.)
709
710 We simply allocate the appropriate amount of stack space and put
711 arguments into their proper slots. */
712
713 static CORE_ADDR
714 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
715 struct regcache *regcache, CORE_ADDR bp_addr,
716 int nargs, struct value **args, CORE_ADDR sp,
717 int struct_return, CORE_ADDR struct_addr)
718 {
719 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
720
721 /* Stack base address at which any pass-by-reference parameters are
722 stored. */
723 CORE_ADDR struct_end = 0;
724 /* Stack base address at which the first parameter is stored. */
725 CORE_ADDR param_end = 0;
726
727 /* Two passes. First pass computes the location of everything,
728 second pass writes the bytes out. */
729 int write_pass;
730
731 /* Global pointer (r19) of the function we are trying to call. */
732 CORE_ADDR gp;
733
734 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
735
736 for (write_pass = 0; write_pass < 2; write_pass++)
737 {
738 CORE_ADDR struct_ptr = 0;
739 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
740 struct_ptr is adjusted for each argument below, so the first
741 argument will end up at sp-36. */
742 CORE_ADDR param_ptr = 32;
743 int i;
744 int small_struct = 0;
745
746 for (i = 0; i < nargs; i++)
747 {
748 struct value *arg = args[i];
749 struct type *type = check_typedef (value_type (arg));
750 /* The corresponding parameter that is pushed onto the
751 stack, and [possibly] passed in a register. */
752 gdb_byte param_val[8];
753 int param_len;
754 memset (param_val, 0, sizeof param_val);
755 if (TYPE_LENGTH (type) > 8)
756 {
757 /* Large parameter, pass by reference. Store the value
758 in "struct" area and then pass its address. */
759 param_len = 4;
760 struct_ptr += align_up (TYPE_LENGTH (type), 8);
761 if (write_pass)
762 write_memory (struct_end - struct_ptr, value_contents (arg),
763 TYPE_LENGTH (type));
764 store_unsigned_integer (param_val, 4, byte_order,
765 struct_end - struct_ptr);
766 }
767 else if (TYPE_CODE (type) == TYPE_CODE_INT
768 || TYPE_CODE (type) == TYPE_CODE_ENUM)
769 {
770 /* Integer value store, right aligned. "unpack_long"
771 takes care of any sign-extension problems. */
772 param_len = align_up (TYPE_LENGTH (type), 4);
773 store_unsigned_integer (param_val, param_len, byte_order,
774 unpack_long (type,
775 value_contents (arg)));
776 }
777 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
778 {
779 /* Floating point value store, right aligned. */
780 param_len = align_up (TYPE_LENGTH (type), 4);
781 memcpy (param_val, value_contents (arg), param_len);
782 }
783 else
784 {
785 param_len = align_up (TYPE_LENGTH (type), 4);
786
787 /* Small struct value are stored right-aligned. */
788 memcpy (param_val + param_len - TYPE_LENGTH (type),
789 value_contents (arg), TYPE_LENGTH (type));
790
791 /* Structures of size 5, 6 and 7 bytes are special in that
792 the higher-ordered word is stored in the lower-ordered
793 argument, and even though it is a 8-byte quantity the
794 registers need not be 8-byte aligned. */
795 if (param_len > 4 && param_len < 8)
796 small_struct = 1;
797 }
798
799 param_ptr += param_len;
800 if (param_len == 8 && !small_struct)
801 param_ptr = align_up (param_ptr, 8);
802
803 /* First 4 non-FP arguments are passed in gr26-gr23.
804 First 4 32-bit FP arguments are passed in fr4L-fr7L.
805 First 2 64-bit FP arguments are passed in fr5 and fr7.
806
807 The rest go on the stack, starting at sp-36, towards lower
808 addresses. 8-byte arguments must be aligned to a 8-byte
809 stack boundary. */
810 if (write_pass)
811 {
812 write_memory (param_end - param_ptr, param_val, param_len);
813
814 /* There are some cases when we don't know the type
815 expected by the callee (e.g. for variadic functions), so
816 pass the parameters in both general and fp regs. */
817 if (param_ptr <= 48)
818 {
819 int grreg = 26 - (param_ptr - 36) / 4;
820 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
821 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
822
823 regcache_cooked_write (regcache, grreg, param_val);
824 regcache_cooked_write (regcache, fpLreg, param_val);
825
826 if (param_len > 4)
827 {
828 regcache_cooked_write (regcache, grreg + 1,
829 param_val + 4);
830
831 regcache_cooked_write (regcache, fpreg, param_val);
832 regcache_cooked_write (regcache, fpreg + 1,
833 param_val + 4);
834 }
835 }
836 }
837 }
838
839 /* Update the various stack pointers. */
840 if (!write_pass)
841 {
842 struct_end = sp + align_up (struct_ptr, 64);
843 /* PARAM_PTR already accounts for all the arguments passed
844 by the user. However, the ABI mandates minimum stack
845 space allocations for outgoing arguments. The ABI also
846 mandates minimum stack alignments which we must
847 preserve. */
848 param_end = struct_end + align_up (param_ptr, 64);
849 }
850 }
851
852 /* If a structure has to be returned, set up register 28 to hold its
853 address. */
854 if (struct_return)
855 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
856
857 gp = tdep->find_global_pointer (gdbarch, function);
858
859 if (gp != 0)
860 regcache_cooked_write_unsigned (regcache, 19, gp);
861
862 /* Set the return address. */
863 if (!gdbarch_push_dummy_code_p (gdbarch))
864 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
865
866 /* Update the Stack Pointer. */
867 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
868
869 return param_end;
870 }
871
872 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit
873 Runtime Architecture for PA-RISC 2.0", which is distributed as part
874 as of the HP-UX Software Transition Kit (STK). This implementation
875 is based on version 3.3, dated October 6, 1997. */
876
877 /* Check whether TYPE is an "Integral or Pointer Scalar Type". */
878
879 static int
880 hppa64_integral_or_pointer_p (const struct type *type)
881 {
882 switch (TYPE_CODE (type))
883 {
884 case TYPE_CODE_INT:
885 case TYPE_CODE_BOOL:
886 case TYPE_CODE_CHAR:
887 case TYPE_CODE_ENUM:
888 case TYPE_CODE_RANGE:
889 {
890 int len = TYPE_LENGTH (type);
891 return (len == 1 || len == 2 || len == 4 || len == 8);
892 }
893 case TYPE_CODE_PTR:
894 case TYPE_CODE_REF:
895 case TYPE_CODE_RVALUE_REF:
896 return (TYPE_LENGTH (type) == 8);
897 default:
898 break;
899 }
900
901 return 0;
902 }
903
904 /* Check whether TYPE is a "Floating Scalar Type". */
905
906 static int
907 hppa64_floating_p (const struct type *type)
908 {
909 switch (TYPE_CODE (type))
910 {
911 case TYPE_CODE_FLT:
912 {
913 int len = TYPE_LENGTH (type);
914 return (len == 4 || len == 8 || len == 16);
915 }
916 default:
917 break;
918 }
919
920 return 0;
921 }
922
923 /* If CODE points to a function entry address, try to look up the corresponding
924 function descriptor and return its address instead. If CODE is not a
925 function entry address, then just return it unchanged. */
926 static CORE_ADDR
927 hppa64_convert_code_addr_to_fptr (struct gdbarch *gdbarch, CORE_ADDR code)
928 {
929 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
930 struct obj_section *sec, *opd;
931
932 sec = find_pc_section (code);
933
934 if (!sec)
935 return code;
936
937 /* If CODE is in a data section, assume it's already a fptr. */
938 if (!(sec->the_bfd_section->flags & SEC_CODE))
939 return code;
940
941 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
942 {
943 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
944 break;
945 }
946
947 if (opd < sec->objfile->sections_end)
948 {
949 CORE_ADDR addr;
950
951 for (addr = obj_section_addr (opd);
952 addr < obj_section_endaddr (opd);
953 addr += 2 * 8)
954 {
955 ULONGEST opdaddr;
956 gdb_byte tmp[8];
957
958 if (target_read_memory (addr, tmp, sizeof (tmp)))
959 break;
960 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp), byte_order);
961
962 if (opdaddr == code)
963 return addr - 16;
964 }
965 }
966
967 return code;
968 }
969
970 static CORE_ADDR
971 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
972 struct regcache *regcache, CORE_ADDR bp_addr,
973 int nargs, struct value **args, CORE_ADDR sp,
974 int struct_return, CORE_ADDR struct_addr)
975 {
976 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
977 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
978 int i, offset = 0;
979 CORE_ADDR gp;
980
981 /* "The outgoing parameter area [...] must be aligned at a 16-byte
982 boundary." */
983 sp = align_up (sp, 16);
984
985 for (i = 0; i < nargs; i++)
986 {
987 struct value *arg = args[i];
988 struct type *type = value_type (arg);
989 int len = TYPE_LENGTH (type);
990 const bfd_byte *valbuf;
991 bfd_byte fptrbuf[8];
992 int regnum;
993
994 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
995 offset = align_up (offset, 8);
996
997 if (hppa64_integral_or_pointer_p (type))
998 {
999 /* "Integral scalar parameters smaller than 64 bits are
1000 padded on the left (i.e., the value is in the
1001 least-significant bits of the 64-bit storage unit, and
1002 the high-order bits are undefined)." Therefore we can
1003 safely sign-extend them. */
1004 if (len < 8)
1005 {
1006 arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg);
1007 len = 8;
1008 }
1009 }
1010 else if (hppa64_floating_p (type))
1011 {
1012 if (len > 8)
1013 {
1014 /* "Quad-precision (128-bit) floating-point scalar
1015 parameters are aligned on a 16-byte boundary." */
1016 offset = align_up (offset, 16);
1017
1018 /* "Double-extended- and quad-precision floating-point
1019 parameters within the first 64 bytes of the parameter
1020 list are always passed in general registers." */
1021 }
1022 else
1023 {
1024 if (len == 4)
1025 {
1026 /* "Single-precision (32-bit) floating-point scalar
1027 parameters are padded on the left with 32 bits of
1028 garbage (i.e., the floating-point value is in the
1029 least-significant 32 bits of a 64-bit storage
1030 unit)." */
1031 offset += 4;
1032 }
1033
1034 /* "Single- and double-precision floating-point
1035 parameters in this area are passed according to the
1036 available formal parameter information in a function
1037 prototype. [...] If no prototype is in scope,
1038 floating-point parameters must be passed both in the
1039 corresponding general registers and in the
1040 corresponding floating-point registers." */
1041 regnum = HPPA64_FP4_REGNUM + offset / 8;
1042
1043 if (regnum < HPPA64_FP4_REGNUM + 8)
1044 {
1045 /* "Single-precision floating-point parameters, when
1046 passed in floating-point registers, are passed in
1047 the right halves of the floating point registers;
1048 the left halves are unused." */
1049 regcache_cooked_write_part (regcache, regnum, offset % 8,
1050 len, value_contents (arg));
1051 }
1052 }
1053 }
1054 else
1055 {
1056 if (len > 8)
1057 {
1058 /* "Aggregates larger than 8 bytes are aligned on a
1059 16-byte boundary, possibly leaving an unused argument
1060 slot, which is filled with garbage. If necessary,
1061 they are padded on the right (with garbage), to a
1062 multiple of 8 bytes." */
1063 offset = align_up (offset, 16);
1064 }
1065 }
1066
1067 /* If we are passing a function pointer, make sure we pass a function
1068 descriptor instead of the function entry address. */
1069 if (TYPE_CODE (type) == TYPE_CODE_PTR
1070 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1071 {
1072 ULONGEST codeptr, fptr;
1073
1074 codeptr = unpack_long (type, value_contents (arg));
1075 fptr = hppa64_convert_code_addr_to_fptr (gdbarch, codeptr);
1076 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), byte_order,
1077 fptr);
1078 valbuf = fptrbuf;
1079 }
1080 else
1081 {
1082 valbuf = value_contents (arg);
1083 }
1084
1085 /* Always store the argument in memory. */
1086 write_memory (sp + offset, valbuf, len);
1087
1088 regnum = HPPA_ARG0_REGNUM - offset / 8;
1089 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1090 {
1091 regcache_cooked_write_part (regcache, regnum,
1092 offset % 8, std::min (len, 8), valbuf);
1093 offset += std::min (len, 8);
1094 valbuf += std::min (len, 8);
1095 len -= std::min (len, 8);
1096 regnum--;
1097 }
1098
1099 offset += len;
1100 }
1101
1102 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1103 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1104
1105 /* Allocate the outgoing parameter area. Make sure the outgoing
1106 parameter area is multiple of 16 bytes in length. */
1107 sp += std::max (align_up (offset, 16), (ULONGEST) 64);
1108
1109 /* Allocate 32-bytes of scratch space. The documentation doesn't
1110 mention this, but it seems to be needed. */
1111 sp += 32;
1112
1113 /* Allocate the frame marker area. */
1114 sp += 16;
1115
1116 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1117 its address. */
1118 if (struct_return)
1119 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1120
1121 /* Set up GR27 (%dp) to hold the global pointer (gp). */
1122 gp = tdep->find_global_pointer (gdbarch, function);
1123 if (gp != 0)
1124 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1125
1126 /* Set up GR2 (%rp) to hold the return pointer (rp). */
1127 if (!gdbarch_push_dummy_code_p (gdbarch))
1128 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1129
1130 /* Set up GR30 to hold the stack pointer (sp). */
1131 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1132
1133 return sp;
1134 }
1135 \f
1136
1137 /* Handle 32/64-bit struct return conventions. */
1138
1139 static enum return_value_convention
1140 hppa32_return_value (struct gdbarch *gdbarch, struct value *function,
1141 struct type *type, struct regcache *regcache,
1142 gdb_byte *readbuf, const gdb_byte *writebuf)
1143 {
1144 if (TYPE_LENGTH (type) <= 2 * 4)
1145 {
1146 /* The value always lives in the right hand end of the register
1147 (or register pair)? */
1148 int b;
1149 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1150 int part = TYPE_LENGTH (type) % 4;
1151 /* The left hand register contains only part of the value,
1152 transfer that first so that the rest can be xfered as entire
1153 4-byte registers. */
1154 if (part > 0)
1155 {
1156 if (readbuf != NULL)
1157 regcache_cooked_read_part (regcache, reg, 4 - part,
1158 part, readbuf);
1159 if (writebuf != NULL)
1160 regcache_cooked_write_part (regcache, reg, 4 - part,
1161 part, writebuf);
1162 reg++;
1163 }
1164 /* Now transfer the remaining register values. */
1165 for (b = part; b < TYPE_LENGTH (type); b += 4)
1166 {
1167 if (readbuf != NULL)
1168 regcache_cooked_read (regcache, reg, readbuf + b);
1169 if (writebuf != NULL)
1170 regcache_cooked_write (regcache, reg, writebuf + b);
1171 reg++;
1172 }
1173 return RETURN_VALUE_REGISTER_CONVENTION;
1174 }
1175 else
1176 return RETURN_VALUE_STRUCT_CONVENTION;
1177 }
1178
1179 static enum return_value_convention
1180 hppa64_return_value (struct gdbarch *gdbarch, struct value *function,
1181 struct type *type, struct regcache *regcache,
1182 gdb_byte *readbuf, const gdb_byte *writebuf)
1183 {
1184 int len = TYPE_LENGTH (type);
1185 int regnum, offset;
1186
1187 if (len > 16)
1188 {
1189 /* All return values larget than 128 bits must be aggregate
1190 return values. */
1191 gdb_assert (!hppa64_integral_or_pointer_p (type));
1192 gdb_assert (!hppa64_floating_p (type));
1193
1194 /* "Aggregate return values larger than 128 bits are returned in
1195 a buffer allocated by the caller. The address of the buffer
1196 must be passed in GR 28." */
1197 return RETURN_VALUE_STRUCT_CONVENTION;
1198 }
1199
1200 if (hppa64_integral_or_pointer_p (type))
1201 {
1202 /* "Integral return values are returned in GR 28. Values
1203 smaller than 64 bits are padded on the left (with garbage)." */
1204 regnum = HPPA_RET0_REGNUM;
1205 offset = 8 - len;
1206 }
1207 else if (hppa64_floating_p (type))
1208 {
1209 if (len > 8)
1210 {
1211 /* "Double-extended- and quad-precision floating-point
1212 values are returned in GRs 28 and 29. The sign,
1213 exponent, and most-significant bits of the mantissa are
1214 returned in GR 28; the least-significant bits of the
1215 mantissa are passed in GR 29. For double-extended
1216 precision values, GR 29 is padded on the right with 48
1217 bits of garbage." */
1218 regnum = HPPA_RET0_REGNUM;
1219 offset = 0;
1220 }
1221 else
1222 {
1223 /* "Single-precision and double-precision floating-point
1224 return values are returned in FR 4R (single precision) or
1225 FR 4 (double-precision)." */
1226 regnum = HPPA64_FP4_REGNUM;
1227 offset = 8 - len;
1228 }
1229 }
1230 else
1231 {
1232 /* "Aggregate return values up to 64 bits in size are returned
1233 in GR 28. Aggregates smaller than 64 bits are left aligned
1234 in the register; the pad bits on the right are undefined."
1235
1236 "Aggregate return values between 65 and 128 bits are returned
1237 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1238 the remaining bits are placed, left aligned, in GR 29. The
1239 pad bits on the right of GR 29 (if any) are undefined." */
1240 regnum = HPPA_RET0_REGNUM;
1241 offset = 0;
1242 }
1243
1244 if (readbuf)
1245 {
1246 while (len > 0)
1247 {
1248 regcache_cooked_read_part (regcache, regnum, offset,
1249 std::min (len, 8), readbuf);
1250 readbuf += std::min (len, 8);
1251 len -= std::min (len, 8);
1252 regnum++;
1253 }
1254 }
1255
1256 if (writebuf)
1257 {
1258 while (len > 0)
1259 {
1260 regcache_cooked_write_part (regcache, regnum, offset,
1261 std::min (len, 8), writebuf);
1262 writebuf += std::min (len, 8);
1263 len -= std::min (len, 8);
1264 regnum++;
1265 }
1266 }
1267
1268 return RETURN_VALUE_REGISTER_CONVENTION;
1269 }
1270 \f
1271
1272 static CORE_ADDR
1273 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1274 struct target_ops *targ)
1275 {
1276 if (addr & 2)
1277 {
1278 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
1279 CORE_ADDR plabel = addr & ~3;
1280 return read_memory_typed_address (plabel, func_ptr_type);
1281 }
1282
1283 return addr;
1284 }
1285
1286 static CORE_ADDR
1287 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1288 {
1289 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1290 and not _bit_)! */
1291 return align_up (addr, 64);
1292 }
1293
1294 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1295
1296 static CORE_ADDR
1297 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1298 {
1299 /* Just always 16-byte align. */
1300 return align_up (addr, 16);
1301 }
1302
1303 CORE_ADDR
1304 hppa_read_pc (readable_regcache *regcache)
1305 {
1306 ULONGEST ipsw;
1307 ULONGEST pc;
1308
1309 regcache->cooked_read (HPPA_IPSW_REGNUM, &ipsw);
1310 regcache->cooked_read (HPPA_PCOQ_HEAD_REGNUM, &pc);
1311
1312 /* If the current instruction is nullified, then we are effectively
1313 still executing the previous instruction. Pretend we are still
1314 there. This is needed when single stepping; if the nullified
1315 instruction is on a different line, we don't want GDB to think
1316 we've stepped onto that line. */
1317 if (ipsw & 0x00200000)
1318 pc -= 4;
1319
1320 return pc & ~0x3;
1321 }
1322
1323 void
1324 hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
1325 {
1326 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1327 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
1328 }
1329
1330 /* For the given instruction (INST), return any adjustment it makes
1331 to the stack pointer or zero for no adjustment.
1332
1333 This only handles instructions commonly found in prologues. */
1334
1335 static int
1336 prologue_inst_adjust_sp (unsigned long inst)
1337 {
1338 /* This must persist across calls. */
1339 static int save_high21;
1340
1341 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1342 if ((inst & 0xffffc000) == 0x37de0000)
1343 return hppa_extract_14 (inst);
1344
1345 /* stwm X,D(sp) */
1346 if ((inst & 0xffe00000) == 0x6fc00000)
1347 return hppa_extract_14 (inst);
1348
1349 /* std,ma X,D(sp) */
1350 if ((inst & 0xffe00008) == 0x73c00008)
1351 return (inst & 0x1 ? -(1 << 13) : 0) | (((inst >> 4) & 0x3ff) << 3);
1352
1353 /* addil high21,%r30; ldo low11,(%r1),%r30)
1354 save high bits in save_high21 for later use. */
1355 if ((inst & 0xffe00000) == 0x2bc00000)
1356 {
1357 save_high21 = hppa_extract_21 (inst);
1358 return 0;
1359 }
1360
1361 if ((inst & 0xffff0000) == 0x343e0000)
1362 return save_high21 + hppa_extract_14 (inst);
1363
1364 /* fstws as used by the HP compilers. */
1365 if ((inst & 0xffffffe0) == 0x2fd01220)
1366 return hppa_extract_5_load (inst);
1367
1368 /* No adjustment. */
1369 return 0;
1370 }
1371
1372 /* Return nonzero if INST is a branch of some kind, else return zero. */
1373
1374 static int
1375 is_branch (unsigned long inst)
1376 {
1377 switch (inst >> 26)
1378 {
1379 case 0x20:
1380 case 0x21:
1381 case 0x22:
1382 case 0x23:
1383 case 0x27:
1384 case 0x28:
1385 case 0x29:
1386 case 0x2a:
1387 case 0x2b:
1388 case 0x2f:
1389 case 0x30:
1390 case 0x31:
1391 case 0x32:
1392 case 0x33:
1393 case 0x38:
1394 case 0x39:
1395 case 0x3a:
1396 case 0x3b:
1397 return 1;
1398
1399 default:
1400 return 0;
1401 }
1402 }
1403
1404 /* Return the register number for a GR which is saved by INST or
1405 zero if INST does not save a GR.
1406
1407 Referenced from:
1408
1409 parisc 1.1:
1410 https://parisc.wiki.kernel.org/images-parisc/6/68/Pa11_acd.pdf
1411
1412 parisc 2.0:
1413 https://parisc.wiki.kernel.org/images-parisc/7/73/Parisc2.0.pdf
1414
1415 According to Table 6-5 of Chapter 6 (Memory Reference Instructions)
1416 on page 106 in parisc 2.0, all instructions for storing values from
1417 the general registers are:
1418
1419 Store: stb, sth, stw, std (according to Chapter 7, they
1420 are only in both "inst >> 26" and "inst >> 6".
1421 Store Absolute: stwa, stda (according to Chapter 7, they are only
1422 in "inst >> 6".
1423 Store Bytes: stby, stdby (according to Chapter 7, they are
1424 only in "inst >> 6").
1425
1426 For (inst >> 26), according to Chapter 7:
1427
1428 The effective memory reference address is formed by the addition
1429 of an immediate displacement to a base value.
1430
1431 - stb: 0x18, store a byte from a general register.
1432
1433 - sth: 0x19, store a halfword from a general register.
1434
1435 - stw: 0x1a, store a word from a general register.
1436
1437 - stwm: 0x1b, store a word from a general register and perform base
1438 register modification (2.0 will still treate it as stw).
1439
1440 - std: 0x1c, store a doubleword from a general register (2.0 only).
1441
1442 - stw: 0x1f, store a word from a general register (2.0 only).
1443
1444 For (inst >> 6) when ((inst >> 26) == 0x03), according to Chapter 7:
1445
1446 The effective memory reference address is formed by the addition
1447 of an index value to a base value specified in the instruction.
1448
1449 - stb: 0x08, store a byte from a general register (1.1 calls stbs).
1450
1451 - sth: 0x09, store a halfword from a general register (1.1 calls
1452 sths).
1453
1454 - stw: 0x0a, store a word from a general register (1.1 calls stws).
1455
1456 - std: 0x0b: store a doubleword from a general register (2.0 only)
1457
1458 Implement fast byte moves (stores) to unaligned word or doubleword
1459 destination.
1460
1461 - stby: 0x0c, for unaligned word (1.1 calls stbys).
1462
1463 - stdby: 0x0d for unaligned doubleword (2.0 only).
1464
1465 Store a word or doubleword using an absolute memory address formed
1466 using short or long displacement or indexed
1467
1468 - stwa: 0x0e, store a word from a general register to an absolute
1469 address (1.0 calls stwas).
1470
1471 - stda: 0x0f, store a doubleword from a general register to an
1472 absolute address (2.0 only). */
1473
1474 static int
1475 inst_saves_gr (unsigned long inst)
1476 {
1477 switch ((inst >> 26) & 0x0f)
1478 {
1479 case 0x03:
1480 switch ((inst >> 6) & 0x0f)
1481 {
1482 case 0x08:
1483 case 0x09:
1484 case 0x0a:
1485 case 0x0b:
1486 case 0x0c:
1487 case 0x0d:
1488 case 0x0e:
1489 case 0x0f:
1490 return hppa_extract_5R_store (inst);
1491 default:
1492 return 0;
1493 }
1494 case 0x18:
1495 case 0x19:
1496 case 0x1a:
1497 case 0x1b:
1498 case 0x1c:
1499 /* no 0x1d or 0x1e -- according to parisc 2.0 document */
1500 case 0x1f:
1501 return hppa_extract_5R_store (inst);
1502 default:
1503 return 0;
1504 }
1505 }
1506
1507 /* Return the register number for a FR which is saved by INST or
1508 zero it INST does not save a FR.
1509
1510 Note we only care about full 64bit register stores (that's the only
1511 kind of stores the prologue will use).
1512
1513 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1514
1515 static int
1516 inst_saves_fr (unsigned long inst)
1517 {
1518 /* Is this an FSTD? */
1519 if ((inst & 0xfc00dfc0) == 0x2c001200)
1520 return hppa_extract_5r_store (inst);
1521 if ((inst & 0xfc000002) == 0x70000002)
1522 return hppa_extract_5R_store (inst);
1523 /* Is this an FSTW? */
1524 if ((inst & 0xfc00df80) == 0x24001200)
1525 return hppa_extract_5r_store (inst);
1526 if ((inst & 0xfc000002) == 0x7c000000)
1527 return hppa_extract_5R_store (inst);
1528 return 0;
1529 }
1530
1531 /* Advance PC across any function entry prologue instructions
1532 to reach some "real" code.
1533
1534 Use information in the unwind table to determine what exactly should
1535 be in the prologue. */
1536
1537
1538 static CORE_ADDR
1539 skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
1540 int stop_before_branch)
1541 {
1542 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1543 gdb_byte buf[4];
1544 CORE_ADDR orig_pc = pc;
1545 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1546 unsigned long args_stored, status, i, restart_gr, restart_fr;
1547 struct unwind_table_entry *u;
1548 int final_iteration;
1549
1550 restart_gr = 0;
1551 restart_fr = 0;
1552
1553 restart:
1554 u = find_unwind_entry (pc);
1555 if (!u)
1556 return pc;
1557
1558 /* If we are not at the beginning of a function, then return now. */
1559 if ((pc & ~0x3) != u->region_start)
1560 return pc;
1561
1562 /* This is how much of a frame adjustment we need to account for. */
1563 stack_remaining = u->Total_frame_size << 3;
1564
1565 /* Magic register saves we want to know about. */
1566 save_rp = u->Save_RP;
1567 save_sp = u->Save_SP;
1568
1569 /* An indication that args may be stored into the stack. Unfortunately
1570 the HPUX compilers tend to set this in cases where no args were
1571 stored too!. */
1572 args_stored = 1;
1573
1574 /* Turn the Entry_GR field into a bitmask. */
1575 save_gr = 0;
1576 for (i = 3; i < u->Entry_GR + 3; i++)
1577 {
1578 /* Frame pointer gets saved into a special location. */
1579 if (u->Save_SP && i == HPPA_FP_REGNUM)
1580 continue;
1581
1582 save_gr |= (1 << i);
1583 }
1584 save_gr &= ~restart_gr;
1585
1586 /* Turn the Entry_FR field into a bitmask too. */
1587 save_fr = 0;
1588 for (i = 12; i < u->Entry_FR + 12; i++)
1589 save_fr |= (1 << i);
1590 save_fr &= ~restart_fr;
1591
1592 final_iteration = 0;
1593
1594 /* Loop until we find everything of interest or hit a branch.
1595
1596 For unoptimized GCC code and for any HP CC code this will never ever
1597 examine any user instructions.
1598
1599 For optimzied GCC code we're faced with problems. GCC will schedule
1600 its prologue and make prologue instructions available for delay slot
1601 filling. The end result is user code gets mixed in with the prologue
1602 and a prologue instruction may be in the delay slot of the first branch
1603 or call.
1604
1605 Some unexpected things are expected with debugging optimized code, so
1606 we allow this routine to walk past user instructions in optimized
1607 GCC code. */
1608 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1609 || args_stored)
1610 {
1611 unsigned int reg_num;
1612 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1613 unsigned long old_save_rp, old_save_sp, next_inst;
1614
1615 /* Save copies of all the triggers so we can compare them later
1616 (only for HPC). */
1617 old_save_gr = save_gr;
1618 old_save_fr = save_fr;
1619 old_save_rp = save_rp;
1620 old_save_sp = save_sp;
1621 old_stack_remaining = stack_remaining;
1622
1623 status = target_read_memory (pc, buf, 4);
1624 inst = extract_unsigned_integer (buf, 4, byte_order);
1625
1626 /* Yow! */
1627 if (status != 0)
1628 return pc;
1629
1630 /* Note the interesting effects of this instruction. */
1631 stack_remaining -= prologue_inst_adjust_sp (inst);
1632
1633 /* There are limited ways to store the return pointer into the
1634 stack. */
1635 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
1636 save_rp = 0;
1637
1638 /* These are the only ways we save SP into the stack. At this time
1639 the HP compilers never bother to save SP into the stack. */
1640 if ((inst & 0xffffc000) == 0x6fc10000
1641 || (inst & 0xffffc00c) == 0x73c10008)
1642 save_sp = 0;
1643
1644 /* Are we loading some register with an offset from the argument
1645 pointer? */
1646 if ((inst & 0xffe00000) == 0x37a00000
1647 || (inst & 0xffffffe0) == 0x081d0240)
1648 {
1649 pc += 4;
1650 continue;
1651 }
1652
1653 /* Account for general and floating-point register saves. */
1654 reg_num = inst_saves_gr (inst);
1655 save_gr &= ~(1 << reg_num);
1656
1657 /* Ugh. Also account for argument stores into the stack.
1658 Unfortunately args_stored only tells us that some arguments
1659 where stored into the stack. Not how many or what kind!
1660
1661 This is a kludge as on the HP compiler sets this bit and it
1662 never does prologue scheduling. So once we see one, skip past
1663 all of them. We have similar code for the fp arg stores below.
1664
1665 FIXME. Can still die if we have a mix of GR and FR argument
1666 stores! */
1667 if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1668 && reg_num <= 26)
1669 {
1670 while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1671 && reg_num <= 26)
1672 {
1673 pc += 4;
1674 status = target_read_memory (pc, buf, 4);
1675 inst = extract_unsigned_integer (buf, 4, byte_order);
1676 if (status != 0)
1677 return pc;
1678 reg_num = inst_saves_gr (inst);
1679 }
1680 args_stored = 0;
1681 continue;
1682 }
1683
1684 reg_num = inst_saves_fr (inst);
1685 save_fr &= ~(1 << reg_num);
1686
1687 status = target_read_memory (pc + 4, buf, 4);
1688 next_inst = extract_unsigned_integer (buf, 4, byte_order);
1689
1690 /* Yow! */
1691 if (status != 0)
1692 return pc;
1693
1694 /* We've got to be read to handle the ldo before the fp register
1695 save. */
1696 if ((inst & 0xfc000000) == 0x34000000
1697 && inst_saves_fr (next_inst) >= 4
1698 && inst_saves_fr (next_inst)
1699 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1700 {
1701 /* So we drop into the code below in a reasonable state. */
1702 reg_num = inst_saves_fr (next_inst);
1703 pc -= 4;
1704 }
1705
1706 /* Ugh. Also account for argument stores into the stack.
1707 This is a kludge as on the HP compiler sets this bit and it
1708 never does prologue scheduling. So once we see one, skip past
1709 all of them. */
1710 if (reg_num >= 4
1711 && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1712 {
1713 while (reg_num >= 4
1714 && reg_num
1715 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1716 {
1717 pc += 8;
1718 status = target_read_memory (pc, buf, 4);
1719 inst = extract_unsigned_integer (buf, 4, byte_order);
1720 if (status != 0)
1721 return pc;
1722 if ((inst & 0xfc000000) != 0x34000000)
1723 break;
1724 status = target_read_memory (pc + 4, buf, 4);
1725 next_inst = extract_unsigned_integer (buf, 4, byte_order);
1726 if (status != 0)
1727 return pc;
1728 reg_num = inst_saves_fr (next_inst);
1729 }
1730 args_stored = 0;
1731 continue;
1732 }
1733
1734 /* Quit if we hit any kind of branch. This can happen if a prologue
1735 instruction is in the delay slot of the first call/branch. */
1736 if (is_branch (inst) && stop_before_branch)
1737 break;
1738
1739 /* What a crock. The HP compilers set args_stored even if no
1740 arguments were stored into the stack (boo hiss). This could
1741 cause this code to then skip a bunch of user insns (up to the
1742 first branch).
1743
1744 To combat this we try to identify when args_stored was bogusly
1745 set and clear it. We only do this when args_stored is nonzero,
1746 all other resources are accounted for, and nothing changed on
1747 this pass. */
1748 if (args_stored
1749 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1750 && old_save_gr == save_gr && old_save_fr == save_fr
1751 && old_save_rp == save_rp && old_save_sp == save_sp
1752 && old_stack_remaining == stack_remaining)
1753 break;
1754
1755 /* Bump the PC. */
1756 pc += 4;
1757
1758 /* !stop_before_branch, so also look at the insn in the delay slot
1759 of the branch. */
1760 if (final_iteration)
1761 break;
1762 if (is_branch (inst))
1763 final_iteration = 1;
1764 }
1765
1766 /* We've got a tenative location for the end of the prologue. However
1767 because of limitations in the unwind descriptor mechanism we may
1768 have went too far into user code looking for the save of a register
1769 that does not exist. So, if there registers we expected to be saved
1770 but never were, mask them out and restart.
1771
1772 This should only happen in optimized code, and should be very rare. */
1773 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1774 {
1775 pc = orig_pc;
1776 restart_gr = save_gr;
1777 restart_fr = save_fr;
1778 goto restart;
1779 }
1780
1781 return pc;
1782 }
1783
1784
1785 /* Return the address of the PC after the last prologue instruction if
1786 we can determine it from the debug symbols. Else return zero. */
1787
1788 static CORE_ADDR
1789 after_prologue (CORE_ADDR pc)
1790 {
1791 struct symtab_and_line sal;
1792 CORE_ADDR func_addr, func_end;
1793
1794 /* If we can not find the symbol in the partial symbol table, then
1795 there is no hope we can determine the function's start address
1796 with this code. */
1797 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1798 return 0;
1799
1800 /* Get the line associated with FUNC_ADDR. */
1801 sal = find_pc_line (func_addr, 0);
1802
1803 /* There are only two cases to consider. First, the end of the source line
1804 is within the function bounds. In that case we return the end of the
1805 source line. Second is the end of the source line extends beyond the
1806 bounds of the current function. We need to use the slow code to
1807 examine instructions in that case.
1808
1809 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1810 the wrong thing to do. In fact, it should be entirely possible for this
1811 function to always return zero since the slow instruction scanning code
1812 is supposed to *always* work. If it does not, then it is a bug. */
1813 if (sal.end < func_end)
1814 return sal.end;
1815 else
1816 return 0;
1817 }
1818
1819 /* To skip prologues, I use this predicate. Returns either PC itself
1820 if the code at PC does not look like a function prologue; otherwise
1821 returns an address that (if we're lucky) follows the prologue.
1822
1823 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1824 It doesn't necessarily skips all the insns in the prologue. In fact
1825 we might not want to skip all the insns because a prologue insn may
1826 appear in the delay slot of the first branch, and we don't want to
1827 skip over the branch in that case. */
1828
1829 static CORE_ADDR
1830 hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1831 {
1832 CORE_ADDR post_prologue_pc;
1833
1834 /* See if we can determine the end of the prologue via the symbol table.
1835 If so, then return either PC, or the PC after the prologue, whichever
1836 is greater. */
1837
1838 post_prologue_pc = after_prologue (pc);
1839
1840 /* If after_prologue returned a useful address, then use it. Else
1841 fall back on the instruction skipping code.
1842
1843 Some folks have claimed this causes problems because the breakpoint
1844 may be the first instruction of the prologue. If that happens, then
1845 the instruction skipping code has a bug that needs to be fixed. */
1846 if (post_prologue_pc != 0)
1847 return std::max (pc, post_prologue_pc);
1848 else
1849 return (skip_prologue_hard_way (gdbarch, pc, 1));
1850 }
1851
1852 /* Return an unwind entry that falls within the frame's code block. */
1853
1854 static struct unwind_table_entry *
1855 hppa_find_unwind_entry_in_block (struct frame_info *this_frame)
1856 {
1857 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1858
1859 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
1860 result of get_frame_address_in_block implies a problem.
1861 The bits should have been removed earlier, before the return
1862 value of gdbarch_unwind_pc. That might be happening already;
1863 if it isn't, it should be fixed. Then this call can be
1864 removed. */
1865 pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc);
1866 return find_unwind_entry (pc);
1867 }
1868
1869 struct hppa_frame_cache
1870 {
1871 CORE_ADDR base;
1872 struct trad_frame_saved_reg *saved_regs;
1873 };
1874
1875 static struct hppa_frame_cache *
1876 hppa_frame_cache (struct frame_info *this_frame, void **this_cache)
1877 {
1878 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1879 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1880 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1881 struct hppa_frame_cache *cache;
1882 long saved_gr_mask;
1883 long saved_fr_mask;
1884 long frame_size;
1885 struct unwind_table_entry *u;
1886 CORE_ADDR prologue_end;
1887 int fp_in_r1 = 0;
1888 int i;
1889
1890 if (hppa_debug)
1891 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1892 frame_relative_level(this_frame));
1893
1894 if ((*this_cache) != NULL)
1895 {
1896 if (hppa_debug)
1897 fprintf_unfiltered (gdb_stdlog, "base=%s (cached) }",
1898 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
1899 return (struct hppa_frame_cache *) (*this_cache);
1900 }
1901 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1902 (*this_cache) = cache;
1903 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1904
1905 /* Yow! */
1906 u = hppa_find_unwind_entry_in_block (this_frame);
1907 if (!u)
1908 {
1909 if (hppa_debug)
1910 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1911 return (struct hppa_frame_cache *) (*this_cache);
1912 }
1913
1914 /* Turn the Entry_GR field into a bitmask. */
1915 saved_gr_mask = 0;
1916 for (i = 3; i < u->Entry_GR + 3; i++)
1917 {
1918 /* Frame pointer gets saved into a special location. */
1919 if (u->Save_SP && i == HPPA_FP_REGNUM)
1920 continue;
1921
1922 saved_gr_mask |= (1 << i);
1923 }
1924
1925 /* Turn the Entry_FR field into a bitmask too. */
1926 saved_fr_mask = 0;
1927 for (i = 12; i < u->Entry_FR + 12; i++)
1928 saved_fr_mask |= (1 << i);
1929
1930 /* Loop until we find everything of interest or hit a branch.
1931
1932 For unoptimized GCC code and for any HP CC code this will never ever
1933 examine any user instructions.
1934
1935 For optimized GCC code we're faced with problems. GCC will schedule
1936 its prologue and make prologue instructions available for delay slot
1937 filling. The end result is user code gets mixed in with the prologue
1938 and a prologue instruction may be in the delay slot of the first branch
1939 or call.
1940
1941 Some unexpected things are expected with debugging optimized code, so
1942 we allow this routine to walk past user instructions in optimized
1943 GCC code. */
1944 {
1945 int final_iteration = 0;
1946 CORE_ADDR pc, start_pc, end_pc;
1947 int looking_for_sp = u->Save_SP;
1948 int looking_for_rp = u->Save_RP;
1949 int fp_loc = -1;
1950
1951 /* We have to use skip_prologue_hard_way instead of just
1952 skip_prologue_using_sal, in case we stepped into a function without
1953 symbol information. hppa_skip_prologue also bounds the returned
1954 pc by the passed in pc, so it will not return a pc in the next
1955 function.
1956
1957 We used to call hppa_skip_prologue to find the end of the prologue,
1958 but if some non-prologue instructions get scheduled into the prologue,
1959 and the program is compiled with debug information, the "easy" way
1960 in hppa_skip_prologue will return a prologue end that is too early
1961 for us to notice any potential frame adjustments. */
1962
1963 /* We used to use get_frame_func to locate the beginning of the
1964 function to pass to skip_prologue. However, when objects are
1965 compiled without debug symbols, get_frame_func can return the wrong
1966 function (or 0). We can do better than that by using unwind records.
1967 This only works if the Region_description of the unwind record
1968 indicates that it includes the entry point of the function.
1969 HP compilers sometimes generate unwind records for regions that
1970 do not include the entry or exit point of a function. GNU tools
1971 do not do this. */
1972
1973 if ((u->Region_description & 0x2) == 0)
1974 start_pc = u->region_start;
1975 else
1976 start_pc = get_frame_func (this_frame);
1977
1978 prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
1979 end_pc = get_frame_pc (this_frame);
1980
1981 if (prologue_end != 0 && end_pc > prologue_end)
1982 end_pc = prologue_end;
1983
1984 frame_size = 0;
1985
1986 for (pc = start_pc;
1987 ((saved_gr_mask || saved_fr_mask
1988 || looking_for_sp || looking_for_rp
1989 || frame_size < (u->Total_frame_size << 3))
1990 && pc < end_pc);
1991 pc += 4)
1992 {
1993 int reg;
1994 gdb_byte buf4[4];
1995 long inst;
1996
1997 if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4))
1998 {
1999 error (_("Cannot read instruction at %s."),
2000 paddress (gdbarch, pc));
2001 return (struct hppa_frame_cache *) (*this_cache);
2002 }
2003
2004 inst = extract_unsigned_integer (buf4, sizeof buf4, byte_order);
2005
2006 /* Note the interesting effects of this instruction. */
2007 frame_size += prologue_inst_adjust_sp (inst);
2008
2009 /* There are limited ways to store the return pointer into the
2010 stack. */
2011 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2012 {
2013 looking_for_rp = 0;
2014 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2015 }
2016 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
2017 {
2018 looking_for_rp = 0;
2019 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
2020 }
2021 else if (inst == 0x0fc212c1
2022 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2023 {
2024 looking_for_rp = 0;
2025 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2026 }
2027
2028 /* Check to see if we saved SP into the stack. This also
2029 happens to indicate the location of the saved frame
2030 pointer. */
2031 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
2032 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
2033 {
2034 looking_for_sp = 0;
2035 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
2036 }
2037 else if (inst == 0x08030241) /* copy %r3, %r1 */
2038 {
2039 fp_in_r1 = 1;
2040 }
2041
2042 /* Account for general and floating-point register saves. */
2043 reg = inst_saves_gr (inst);
2044 if (reg >= 3 && reg <= 18
2045 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
2046 {
2047 saved_gr_mask &= ~(1 << reg);
2048 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
2049 /* stwm with a positive displacement is a _post_
2050 _modify_. */
2051 cache->saved_regs[reg].addr = 0;
2052 else if ((inst & 0xfc00000c) == 0x70000008)
2053 /* A std has explicit post_modify forms. */
2054 cache->saved_regs[reg].addr = 0;
2055 else
2056 {
2057 CORE_ADDR offset;
2058
2059 if ((inst >> 26) == 0x1c)
2060 offset = (inst & 0x1 ? -(1 << 13) : 0)
2061 | (((inst >> 4) & 0x3ff) << 3);
2062 else if ((inst >> 26) == 0x03)
2063 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
2064 else
2065 offset = hppa_extract_14 (inst);
2066
2067 /* Handle code with and without frame pointers. */
2068 if (u->Save_SP)
2069 cache->saved_regs[reg].addr = offset;
2070 else
2071 cache->saved_regs[reg].addr
2072 = (u->Total_frame_size << 3) + offset;
2073 }
2074 }
2075
2076 /* GCC handles callee saved FP regs a little differently.
2077
2078 It emits an instruction to put the value of the start of
2079 the FP store area into %r1. It then uses fstds,ma with a
2080 basereg of %r1 for the stores.
2081
2082 HP CC emits them at the current stack pointer modifying the
2083 stack pointer as it stores each register. */
2084
2085 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2086 if ((inst & 0xffffc000) == 0x34610000
2087 || (inst & 0xffffc000) == 0x37c10000)
2088 fp_loc = hppa_extract_14 (inst);
2089
2090 reg = inst_saves_fr (inst);
2091 if (reg >= 12 && reg <= 21)
2092 {
2093 /* Note +4 braindamage below is necessary because the FP
2094 status registers are internally 8 registers rather than
2095 the expected 4 registers. */
2096 saved_fr_mask &= ~(1 << reg);
2097 if (fp_loc == -1)
2098 {
2099 /* 1st HP CC FP register store. After this
2100 instruction we've set enough state that the GCC and
2101 HPCC code are both handled in the same manner. */
2102 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
2103 fp_loc = 8;
2104 }
2105 else
2106 {
2107 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
2108 fp_loc += 8;
2109 }
2110 }
2111
2112 /* Quit if we hit any kind of branch the previous iteration. */
2113 if (final_iteration)
2114 break;
2115 /* We want to look precisely one instruction beyond the branch
2116 if we have not found everything yet. */
2117 if (is_branch (inst))
2118 final_iteration = 1;
2119 }
2120 }
2121
2122 {
2123 /* The frame base always represents the value of %sp at entry to
2124 the current function (and is thus equivalent to the "saved"
2125 stack pointer. */
2126 CORE_ADDR this_sp = get_frame_register_unsigned (this_frame,
2127 HPPA_SP_REGNUM);
2128 CORE_ADDR fp;
2129
2130 if (hppa_debug)
2131 fprintf_unfiltered (gdb_stdlog, " (this_sp=%s, pc=%s, "
2132 "prologue_end=%s) ",
2133 paddress (gdbarch, this_sp),
2134 paddress (gdbarch, get_frame_pc (this_frame)),
2135 paddress (gdbarch, prologue_end));
2136
2137 /* Check to see if a frame pointer is available, and use it for
2138 frame unwinding if it is.
2139
2140 There are some situations where we need to rely on the frame
2141 pointer to do stack unwinding. For example, if a function calls
2142 alloca (), the stack pointer can get adjusted inside the body of
2143 the function. In this case, the ABI requires that the compiler
2144 maintain a frame pointer for the function.
2145
2146 The unwind record has a flag (alloca_frame) that indicates that
2147 a function has a variable frame; unfortunately, gcc/binutils
2148 does not set this flag. Instead, whenever a frame pointer is used
2149 and saved on the stack, the Save_SP flag is set. We use this to
2150 decide whether to use the frame pointer for unwinding.
2151
2152 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2153 instead of Save_SP. */
2154
2155 fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM);
2156
2157 if (u->alloca_frame)
2158 fp -= u->Total_frame_size << 3;
2159
2160 if (get_frame_pc (this_frame) >= prologue_end
2161 && (u->Save_SP || u->alloca_frame) && fp != 0)
2162 {
2163 cache->base = fp;
2164
2165 if (hppa_debug)
2166 fprintf_unfiltered (gdb_stdlog, " (base=%s) [frame pointer]",
2167 paddress (gdbarch, cache->base));
2168 }
2169 else if (u->Save_SP
2170 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
2171 {
2172 /* Both we're expecting the SP to be saved and the SP has been
2173 saved. The entry SP value is saved at this frame's SP
2174 address. */
2175 cache->base = read_memory_integer (this_sp, word_size, byte_order);
2176
2177 if (hppa_debug)
2178 fprintf_unfiltered (gdb_stdlog, " (base=%s) [saved]",
2179 paddress (gdbarch, cache->base));
2180 }
2181 else
2182 {
2183 /* The prologue has been slowly allocating stack space. Adjust
2184 the SP back. */
2185 cache->base = this_sp - frame_size;
2186 if (hppa_debug)
2187 fprintf_unfiltered (gdb_stdlog, " (base=%s) [unwind adjust]",
2188 paddress (gdbarch, cache->base));
2189
2190 }
2191 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2192 }
2193
2194 /* The PC is found in the "return register", "Millicode" uses "r31"
2195 as the return register while normal code uses "rp". */
2196 if (u->Millicode)
2197 {
2198 if (trad_frame_addr_p (cache->saved_regs, 31))
2199 {
2200 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2201 if (hppa_debug)
2202 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2203 }
2204 else
2205 {
2206 ULONGEST r31 = get_frame_register_unsigned (this_frame, 31);
2207 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
2208 if (hppa_debug)
2209 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
2210 }
2211 }
2212 else
2213 {
2214 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2215 {
2216 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2217 cache->saved_regs[HPPA_RP_REGNUM];
2218 if (hppa_debug)
2219 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2220 }
2221 else
2222 {
2223 ULONGEST rp = get_frame_register_unsigned (this_frame,
2224 HPPA_RP_REGNUM);
2225 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2226 if (hppa_debug)
2227 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
2228 }
2229 }
2230
2231 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2232 frame. However, there is a one-insn window where we haven't saved it
2233 yet, but we've already clobbered it. Detect this case and fix it up.
2234
2235 The prologue sequence for frame-pointer functions is:
2236 0: stw %rp, -20(%sp)
2237 4: copy %r3, %r1
2238 8: copy %sp, %r3
2239 c: stw,ma %r1, XX(%sp)
2240
2241 So if we are at offset c, the r3 value that we want is not yet saved
2242 on the stack, but it's been overwritten. The prologue analyzer will
2243 set fp_in_r1 when it sees the copy insn so we know to get the value
2244 from r1 instead. */
2245 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2246 && fp_in_r1)
2247 {
2248 ULONGEST r1 = get_frame_register_unsigned (this_frame, 1);
2249 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2250 }
2251
2252 {
2253 /* Convert all the offsets into addresses. */
2254 int reg;
2255 for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
2256 {
2257 if (trad_frame_addr_p (cache->saved_regs, reg))
2258 cache->saved_regs[reg].addr += cache->base;
2259 }
2260 }
2261
2262 {
2263 struct gdbarch_tdep *tdep;
2264
2265 tdep = gdbarch_tdep (gdbarch);
2266
2267 if (tdep->unwind_adjust_stub)
2268 tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs);
2269 }
2270
2271 if (hppa_debug)
2272 fprintf_unfiltered (gdb_stdlog, "base=%s }",
2273 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
2274 return (struct hppa_frame_cache *) (*this_cache);
2275 }
2276
2277 static void
2278 hppa_frame_this_id (struct frame_info *this_frame, void **this_cache,
2279 struct frame_id *this_id)
2280 {
2281 struct hppa_frame_cache *info;
2282 struct unwind_table_entry *u;
2283
2284 info = hppa_frame_cache (this_frame, this_cache);
2285 u = hppa_find_unwind_entry_in_block (this_frame);
2286
2287 (*this_id) = frame_id_build (info->base, u->region_start);
2288 }
2289
2290 static struct value *
2291 hppa_frame_prev_register (struct frame_info *this_frame,
2292 void **this_cache, int regnum)
2293 {
2294 struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache);
2295
2296 return hppa_frame_prev_register_helper (this_frame,
2297 info->saved_regs, regnum);
2298 }
2299
2300 static int
2301 hppa_frame_unwind_sniffer (const struct frame_unwind *self,
2302 struct frame_info *this_frame, void **this_cache)
2303 {
2304 if (hppa_find_unwind_entry_in_block (this_frame))
2305 return 1;
2306
2307 return 0;
2308 }
2309
2310 static const struct frame_unwind hppa_frame_unwind =
2311 {
2312 NORMAL_FRAME,
2313 default_frame_unwind_stop_reason,
2314 hppa_frame_this_id,
2315 hppa_frame_prev_register,
2316 NULL,
2317 hppa_frame_unwind_sniffer
2318 };
2319
2320 /* This is a generic fallback frame unwinder that kicks in if we fail all
2321 the other ones. Normally we would expect the stub and regular unwinder
2322 to work, but in some cases we might hit a function that just doesn't
2323 have any unwind information available. In this case we try to do
2324 unwinding solely based on code reading. This is obviously going to be
2325 slow, so only use this as a last resort. Currently this will only
2326 identify the stack and pc for the frame. */
2327
2328 static struct hppa_frame_cache *
2329 hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache)
2330 {
2331 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2332 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2333 struct hppa_frame_cache *cache;
2334 unsigned int frame_size = 0;
2335 int found_rp = 0;
2336 CORE_ADDR start_pc;
2337
2338 if (hppa_debug)
2339 fprintf_unfiltered (gdb_stdlog,
2340 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2341 frame_relative_level (this_frame));
2342
2343 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2344 (*this_cache) = cache;
2345 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2346
2347 start_pc = get_frame_func (this_frame);
2348 if (start_pc)
2349 {
2350 CORE_ADDR cur_pc = get_frame_pc (this_frame);
2351 CORE_ADDR pc;
2352
2353 for (pc = start_pc; pc < cur_pc; pc += 4)
2354 {
2355 unsigned int insn;
2356
2357 insn = read_memory_unsigned_integer (pc, 4, byte_order);
2358 frame_size += prologue_inst_adjust_sp (insn);
2359
2360 /* There are limited ways to store the return pointer into the
2361 stack. */
2362 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2363 {
2364 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2365 found_rp = 1;
2366 }
2367 else if (insn == 0x0fc212c1
2368 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2369 {
2370 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2371 found_rp = 1;
2372 }
2373 }
2374 }
2375
2376 if (hppa_debug)
2377 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2378 frame_size, found_rp);
2379
2380 cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2381 cache->base -= frame_size;
2382 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2383
2384 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2385 {
2386 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2387 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2388 cache->saved_regs[HPPA_RP_REGNUM];
2389 }
2390 else
2391 {
2392 ULONGEST rp;
2393 rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM);
2394 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2395 }
2396
2397 return cache;
2398 }
2399
2400 static void
2401 hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache,
2402 struct frame_id *this_id)
2403 {
2404 struct hppa_frame_cache *info =
2405 hppa_fallback_frame_cache (this_frame, this_cache);
2406
2407 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2408 }
2409
2410 static struct value *
2411 hppa_fallback_frame_prev_register (struct frame_info *this_frame,
2412 void **this_cache, int regnum)
2413 {
2414 struct hppa_frame_cache *info
2415 = hppa_fallback_frame_cache (this_frame, this_cache);
2416
2417 return hppa_frame_prev_register_helper (this_frame,
2418 info->saved_regs, regnum);
2419 }
2420
2421 static const struct frame_unwind hppa_fallback_frame_unwind =
2422 {
2423 NORMAL_FRAME,
2424 default_frame_unwind_stop_reason,
2425 hppa_fallback_frame_this_id,
2426 hppa_fallback_frame_prev_register,
2427 NULL,
2428 default_frame_sniffer
2429 };
2430
2431 /* Stub frames, used for all kinds of call stubs. */
2432 struct hppa_stub_unwind_cache
2433 {
2434 CORE_ADDR base;
2435 struct trad_frame_saved_reg *saved_regs;
2436 };
2437
2438 static struct hppa_stub_unwind_cache *
2439 hppa_stub_frame_unwind_cache (struct frame_info *this_frame,
2440 void **this_cache)
2441 {
2442 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2443 struct hppa_stub_unwind_cache *info;
2444 struct unwind_table_entry *u;
2445
2446 if (*this_cache)
2447 return (struct hppa_stub_unwind_cache *) *this_cache;
2448
2449 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2450 *this_cache = info;
2451 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2452
2453 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2454
2455 /* By default we assume that stubs do not change the rp. */
2456 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2457
2458 return info;
2459 }
2460
2461 static void
2462 hppa_stub_frame_this_id (struct frame_info *this_frame,
2463 void **this_prologue_cache,
2464 struct frame_id *this_id)
2465 {
2466 struct hppa_stub_unwind_cache *info
2467 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2468
2469 if (info)
2470 *this_id = frame_id_build (info->base, get_frame_func (this_frame));
2471 }
2472
2473 static struct value *
2474 hppa_stub_frame_prev_register (struct frame_info *this_frame,
2475 void **this_prologue_cache, int regnum)
2476 {
2477 struct hppa_stub_unwind_cache *info
2478 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2479
2480 if (info == NULL)
2481 error (_("Requesting registers from null frame."));
2482
2483 return hppa_frame_prev_register_helper (this_frame,
2484 info->saved_regs, regnum);
2485 }
2486
2487 static int
2488 hppa_stub_unwind_sniffer (const struct frame_unwind *self,
2489 struct frame_info *this_frame,
2490 void **this_cache)
2491 {
2492 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2493 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2494 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2495
2496 if (pc == 0
2497 || (tdep->in_solib_call_trampoline != NULL
2498 && tdep->in_solib_call_trampoline (gdbarch, pc))
2499 || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
2500 return 1;
2501 return 0;
2502 }
2503
2504 static const struct frame_unwind hppa_stub_frame_unwind = {
2505 NORMAL_FRAME,
2506 default_frame_unwind_stop_reason,
2507 hppa_stub_frame_this_id,
2508 hppa_stub_frame_prev_register,
2509 NULL,
2510 hppa_stub_unwind_sniffer
2511 };
2512
2513 static struct frame_id
2514 hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2515 {
2516 return frame_id_build (get_frame_register_unsigned (this_frame,
2517 HPPA_SP_REGNUM),
2518 get_frame_pc (this_frame));
2519 }
2520
2521 CORE_ADDR
2522 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2523 {
2524 ULONGEST ipsw;
2525 CORE_ADDR pc;
2526
2527 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2528 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2529
2530 /* If the current instruction is nullified, then we are effectively
2531 still executing the previous instruction. Pretend we are still
2532 there. This is needed when single stepping; if the nullified
2533 instruction is on a different line, we don't want GDB to think
2534 we've stepped onto that line. */
2535 if (ipsw & 0x00200000)
2536 pc -= 4;
2537
2538 return pc & ~0x3;
2539 }
2540
2541 /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2542 Return NULL if no such symbol was found. */
2543
2544 struct bound_minimal_symbol
2545 hppa_lookup_stub_minimal_symbol (const char *name,
2546 enum unwind_stub_types stub_type)
2547 {
2548 struct objfile *objfile;
2549 struct minimal_symbol *msym;
2550 struct bound_minimal_symbol result = { NULL, NULL };
2551
2552 ALL_MSYMBOLS (objfile, msym)
2553 {
2554 if (strcmp (MSYMBOL_LINKAGE_NAME (msym), name) == 0)
2555 {
2556 struct unwind_table_entry *u;
2557
2558 u = find_unwind_entry (MSYMBOL_VALUE (msym));
2559 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2560 {
2561 result.objfile = objfile;
2562 result.minsym = msym;
2563 return result;
2564 }
2565 }
2566 }
2567
2568 return result;
2569 }
2570
2571 static void
2572 unwind_command (const char *exp, int from_tty)
2573 {
2574 CORE_ADDR address;
2575 struct unwind_table_entry *u;
2576
2577 /* If we have an expression, evaluate it and use it as the address. */
2578
2579 if (exp != 0 && *exp != 0)
2580 address = parse_and_eval_address (exp);
2581 else
2582 return;
2583
2584 u = find_unwind_entry (address);
2585
2586 if (!u)
2587 {
2588 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2589 return;
2590 }
2591
2592 printf_unfiltered ("unwind_table_entry (%s):\n", host_address_to_string (u));
2593
2594 printf_unfiltered ("\tregion_start = %s\n", hex_string (u->region_start));
2595 gdb_flush (gdb_stdout);
2596
2597 printf_unfiltered ("\tregion_end = %s\n", hex_string (u->region_end));
2598 gdb_flush (gdb_stdout);
2599
2600 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2601
2602 printf_unfiltered ("\n\tflags =");
2603 pif (Cannot_unwind);
2604 pif (Millicode);
2605 pif (Millicode_save_sr0);
2606 pif (Entry_SR);
2607 pif (Args_stored);
2608 pif (Variable_Frame);
2609 pif (Separate_Package_Body);
2610 pif (Frame_Extension_Millicode);
2611 pif (Stack_Overflow_Check);
2612 pif (Two_Instruction_SP_Increment);
2613 pif (sr4export);
2614 pif (cxx_info);
2615 pif (cxx_try_catch);
2616 pif (sched_entry_seq);
2617 pif (Save_SP);
2618 pif (Save_RP);
2619 pif (Save_MRP_in_frame);
2620 pif (save_r19);
2621 pif (Cleanup_defined);
2622 pif (MPE_XL_interrupt_marker);
2623 pif (HP_UX_interrupt_marker);
2624 pif (Large_frame);
2625 pif (alloca_frame);
2626
2627 putchar_unfiltered ('\n');
2628
2629 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2630
2631 pin (Region_description);
2632 pin (Entry_FR);
2633 pin (Entry_GR);
2634 pin (Total_frame_size);
2635
2636 if (u->stub_unwind.stub_type)
2637 {
2638 printf_unfiltered ("\tstub type = ");
2639 switch (u->stub_unwind.stub_type)
2640 {
2641 case LONG_BRANCH:
2642 printf_unfiltered ("long branch\n");
2643 break;
2644 case PARAMETER_RELOCATION:
2645 printf_unfiltered ("parameter relocation\n");
2646 break;
2647 case EXPORT:
2648 printf_unfiltered ("export\n");
2649 break;
2650 case IMPORT:
2651 printf_unfiltered ("import\n");
2652 break;
2653 case IMPORT_SHLIB:
2654 printf_unfiltered ("import shlib\n");
2655 break;
2656 default:
2657 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2658 }
2659 }
2660 }
2661
2662 /* Return the GDB type object for the "standard" data type of data in
2663 register REGNUM. */
2664
2665 static struct type *
2666 hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2667 {
2668 if (regnum < HPPA_FP4_REGNUM)
2669 return builtin_type (gdbarch)->builtin_uint32;
2670 else
2671 return builtin_type (gdbarch)->builtin_float;
2672 }
2673
2674 static struct type *
2675 hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2676 {
2677 if (regnum < HPPA64_FP4_REGNUM)
2678 return builtin_type (gdbarch)->builtin_uint64;
2679 else
2680 return builtin_type (gdbarch)->builtin_double;
2681 }
2682
2683 /* Return non-zero if REGNUM is not a register available to the user
2684 through ptrace/ttrace. */
2685
2686 static int
2687 hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2688 {
2689 return (regnum == 0
2690 || regnum == HPPA_PCSQ_HEAD_REGNUM
2691 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2692 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2693 }
2694
2695 static int
2696 hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2697 {
2698 /* cr26 and cr27 are readable (but not writable) from userspace. */
2699 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2700 return 0;
2701 else
2702 return hppa32_cannot_store_register (gdbarch, regnum);
2703 }
2704
2705 static int
2706 hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2707 {
2708 return (regnum == 0
2709 || regnum == HPPA_PCSQ_HEAD_REGNUM
2710 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2711 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2712 }
2713
2714 static int
2715 hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2716 {
2717 /* cr26 and cr27 are readable (but not writable) from userspace. */
2718 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2719 return 0;
2720 else
2721 return hppa64_cannot_store_register (gdbarch, regnum);
2722 }
2723
2724 static CORE_ADDR
2725 hppa_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
2726 {
2727 /* The low two bits of the PC on the PA contain the privilege level.
2728 Some genius implementing a (non-GCC) compiler apparently decided
2729 this means that "addresses" in a text section therefore include a
2730 privilege level, and thus symbol tables should contain these bits.
2731 This seems like a bonehead thing to do--anyway, it seems to work
2732 for our purposes to just ignore those bits. */
2733
2734 return (addr &= ~0x3);
2735 }
2736
2737 /* Get the ARGIth function argument for the current function. */
2738
2739 static CORE_ADDR
2740 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2741 struct type *type)
2742 {
2743 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
2744 }
2745
2746 static enum register_status
2747 hppa_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2748 int regnum, gdb_byte *buf)
2749 {
2750 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2751 ULONGEST tmp;
2752 enum register_status status;
2753
2754 status = regcache->raw_read (regnum, &tmp);
2755 if (status == REG_VALID)
2756 {
2757 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2758 tmp &= ~0x3;
2759 store_unsigned_integer (buf, sizeof tmp, byte_order, tmp);
2760 }
2761 return status;
2762 }
2763
2764 static CORE_ADDR
2765 hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
2766 {
2767 return 0;
2768 }
2769
2770 struct value *
2771 hppa_frame_prev_register_helper (struct frame_info *this_frame,
2772 struct trad_frame_saved_reg saved_regs[],
2773 int regnum)
2774 {
2775 struct gdbarch *arch = get_frame_arch (this_frame);
2776 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2777
2778 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2779 {
2780 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2781 CORE_ADDR pc;
2782 struct value *pcoq_val =
2783 trad_frame_get_prev_register (this_frame, saved_regs,
2784 HPPA_PCOQ_HEAD_REGNUM);
2785
2786 pc = extract_unsigned_integer (value_contents_all (pcoq_val),
2787 size, byte_order);
2788 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
2789 }
2790
2791 return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
2792 }
2793 \f
2794
2795 /* An instruction to match. */
2796 struct insn_pattern
2797 {
2798 unsigned int data; /* See if it matches this.... */
2799 unsigned int mask; /* ... with this mask. */
2800 };
2801
2802 /* See bfd/elf32-hppa.c */
2803 static struct insn_pattern hppa_long_branch_stub[] = {
2804 /* ldil LR'xxx,%r1 */
2805 { 0x20200000, 0xffe00000 },
2806 /* be,n RR'xxx(%sr4,%r1) */
2807 { 0xe0202002, 0xffe02002 },
2808 { 0, 0 }
2809 };
2810
2811 static struct insn_pattern hppa_long_branch_pic_stub[] = {
2812 /* b,l .+8, %r1 */
2813 { 0xe8200000, 0xffe00000 },
2814 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2815 { 0x28200000, 0xffe00000 },
2816 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2817 { 0xe0202002, 0xffe02002 },
2818 { 0, 0 }
2819 };
2820
2821 static struct insn_pattern hppa_import_stub[] = {
2822 /* addil LR'xxx, %dp */
2823 { 0x2b600000, 0xffe00000 },
2824 /* ldw RR'xxx(%r1), %r21 */
2825 { 0x48350000, 0xffffb000 },
2826 /* bv %r0(%r21) */
2827 { 0xeaa0c000, 0xffffffff },
2828 /* ldw RR'xxx+4(%r1), %r19 */
2829 { 0x48330000, 0xffffb000 },
2830 { 0, 0 }
2831 };
2832
2833 static struct insn_pattern hppa_import_pic_stub[] = {
2834 /* addil LR'xxx,%r19 */
2835 { 0x2a600000, 0xffe00000 },
2836 /* ldw RR'xxx(%r1),%r21 */
2837 { 0x48350000, 0xffffb000 },
2838 /* bv %r0(%r21) */
2839 { 0xeaa0c000, 0xffffffff },
2840 /* ldw RR'xxx+4(%r1),%r19 */
2841 { 0x48330000, 0xffffb000 },
2842 { 0, 0 },
2843 };
2844
2845 static struct insn_pattern hppa_plt_stub[] = {
2846 /* b,l 1b, %r20 - 1b is 3 insns before here */
2847 { 0xea9f1fdd, 0xffffffff },
2848 /* depi 0,31,2,%r20 */
2849 { 0xd6801c1e, 0xffffffff },
2850 { 0, 0 }
2851 };
2852
2853 /* Maximum number of instructions on the patterns above. */
2854 #define HPPA_MAX_INSN_PATTERN_LEN 4
2855
2856 /* Return non-zero if the instructions at PC match the series
2857 described in PATTERN, or zero otherwise. PATTERN is an array of
2858 'struct insn_pattern' objects, terminated by an entry whose mask is
2859 zero.
2860
2861 When the match is successful, fill INSN[i] with what PATTERN[i]
2862 matched. */
2863
2864 static int
2865 hppa_match_insns (struct gdbarch *gdbarch, CORE_ADDR pc,
2866 struct insn_pattern *pattern, unsigned int *insn)
2867 {
2868 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2869 CORE_ADDR npc = pc;
2870 int i;
2871
2872 for (i = 0; pattern[i].mask; i++)
2873 {
2874 gdb_byte buf[HPPA_INSN_SIZE];
2875
2876 target_read_memory (npc, buf, HPPA_INSN_SIZE);
2877 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order);
2878 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2879 npc += 4;
2880 else
2881 return 0;
2882 }
2883
2884 return 1;
2885 }
2886
2887 /* This relaxed version of the insstruction matcher allows us to match
2888 from somewhere inside the pattern, by looking backwards in the
2889 instruction scheme. */
2890
2891 static int
2892 hppa_match_insns_relaxed (struct gdbarch *gdbarch, CORE_ADDR pc,
2893 struct insn_pattern *pattern, unsigned int *insn)
2894 {
2895 int offset, len = 0;
2896
2897 while (pattern[len].mask)
2898 len++;
2899
2900 for (offset = 0; offset < len; offset++)
2901 if (hppa_match_insns (gdbarch, pc - offset * HPPA_INSN_SIZE,
2902 pattern, insn))
2903 return 1;
2904
2905 return 0;
2906 }
2907
2908 static int
2909 hppa_in_dyncall (CORE_ADDR pc)
2910 {
2911 struct unwind_table_entry *u;
2912
2913 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2914 if (!u)
2915 return 0;
2916
2917 return (pc >= u->region_start && pc <= u->region_end);
2918 }
2919
2920 int
2921 hppa_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc)
2922 {
2923 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2924 struct unwind_table_entry *u;
2925
2926 if (in_plt_section (pc) || hppa_in_dyncall (pc))
2927 return 1;
2928
2929 /* The GNU toolchain produces linker stubs without unwind
2930 information. Since the pattern matching for linker stubs can be
2931 quite slow, so bail out if we do have an unwind entry. */
2932
2933 u = find_unwind_entry (pc);
2934 if (u != NULL)
2935 return 0;
2936
2937 return
2938 (hppa_match_insns_relaxed (gdbarch, pc, hppa_import_stub, insn)
2939 || hppa_match_insns_relaxed (gdbarch, pc, hppa_import_pic_stub, insn)
2940 || hppa_match_insns_relaxed (gdbarch, pc, hppa_long_branch_stub, insn)
2941 || hppa_match_insns_relaxed (gdbarch, pc,
2942 hppa_long_branch_pic_stub, insn));
2943 }
2944
2945 /* This code skips several kind of "trampolines" used on PA-RISC
2946 systems: $$dyncall, import stubs and PLT stubs. */
2947
2948 CORE_ADDR
2949 hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2950 {
2951 struct gdbarch *gdbarch = get_frame_arch (frame);
2952 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
2953
2954 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2955 int dp_rel;
2956
2957 /* $$dyncall handles both PLABELs and direct addresses. */
2958 if (hppa_in_dyncall (pc))
2959 {
2960 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
2961
2962 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2963 if (pc & 0x2)
2964 pc = read_memory_typed_address (pc & ~0x3, func_ptr_type);
2965
2966 return pc;
2967 }
2968
2969 dp_rel = hppa_match_insns (gdbarch, pc, hppa_import_stub, insn);
2970 if (dp_rel || hppa_match_insns (gdbarch, pc, hppa_import_pic_stub, insn))
2971 {
2972 /* Extract the target address from the addil/ldw sequence. */
2973 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2974
2975 if (dp_rel)
2976 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
2977 else
2978 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
2979
2980 /* fallthrough */
2981 }
2982
2983 if (in_plt_section (pc))
2984 {
2985 pc = read_memory_typed_address (pc, func_ptr_type);
2986
2987 /* If the PLT slot has not yet been resolved, the target will be
2988 the PLT stub. */
2989 if (in_plt_section (pc))
2990 {
2991 /* Sanity check: are we pointing to the PLT stub? */
2992 if (!hppa_match_insns (gdbarch, pc, hppa_plt_stub, insn))
2993 {
2994 warning (_("Cannot resolve PLT stub at %s."),
2995 paddress (gdbarch, pc));
2996 return 0;
2997 }
2998
2999 /* This should point to the fixup routine. */
3000 pc = read_memory_typed_address (pc + 8, func_ptr_type);
3001 }
3002 }
3003
3004 return pc;
3005 }
3006 \f
3007
3008 /* Here is a table of C type sizes on hppa with various compiles
3009 and options. I measured this on PA 9000/800 with HP-UX 11.11
3010 and these compilers:
3011
3012 /usr/ccs/bin/cc HP92453-01 A.11.01.21
3013 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
3014 /opt/aCC/bin/aCC B3910B A.03.45
3015 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
3016
3017 cc : 1 2 4 4 8 : 4 8 -- : 4 4
3018 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3019 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3020 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3021 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3022 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3023 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3024 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
3025
3026 Each line is:
3027
3028 compiler and options
3029 char, short, int, long, long long
3030 float, double, long double
3031 char *, void (*)()
3032
3033 So all these compilers use either ILP32 or LP64 model.
3034 TODO: gcc has more options so it needs more investigation.
3035
3036 For floating point types, see:
3037
3038 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
3039 HP-UX floating-point guide, hpux 11.00
3040
3041 -- chastain 2003-12-18 */
3042
3043 static struct gdbarch *
3044 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3045 {
3046 struct gdbarch_tdep *tdep;
3047 struct gdbarch *gdbarch;
3048
3049 /* find a candidate among the list of pre-declared architectures. */
3050 arches = gdbarch_list_lookup_by_info (arches, &info);
3051 if (arches != NULL)
3052 return (arches->gdbarch);
3053
3054 /* If none found, then allocate and initialize one. */
3055 tdep = XCNEW (struct gdbarch_tdep);
3056 gdbarch = gdbarch_alloc (&info, tdep);
3057
3058 /* Determine from the bfd_arch_info structure if we are dealing with
3059 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3060 then default to a 32bit machine. */
3061 if (info.bfd_arch_info != NULL)
3062 tdep->bytes_per_address =
3063 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3064 else
3065 tdep->bytes_per_address = 4;
3066
3067 tdep->find_global_pointer = hppa_find_global_pointer;
3068
3069 /* Some parts of the gdbarch vector depend on whether we are running
3070 on a 32 bits or 64 bits target. */
3071 switch (tdep->bytes_per_address)
3072 {
3073 case 4:
3074 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3075 set_gdbarch_register_name (gdbarch, hppa32_register_name);
3076 set_gdbarch_register_type (gdbarch, hppa32_register_type);
3077 set_gdbarch_cannot_store_register (gdbarch,
3078 hppa32_cannot_store_register);
3079 set_gdbarch_cannot_fetch_register (gdbarch,
3080 hppa32_cannot_fetch_register);
3081 break;
3082 case 8:
3083 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3084 set_gdbarch_register_name (gdbarch, hppa64_register_name);
3085 set_gdbarch_register_type (gdbarch, hppa64_register_type);
3086 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3087 set_gdbarch_cannot_store_register (gdbarch,
3088 hppa64_cannot_store_register);
3089 set_gdbarch_cannot_fetch_register (gdbarch,
3090 hppa64_cannot_fetch_register);
3091 break;
3092 default:
3093 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3094 tdep->bytes_per_address);
3095 }
3096
3097 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3098 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3099
3100 /* The following gdbarch vector elements are the same in both ILP32
3101 and LP64, but might show differences some day. */
3102 set_gdbarch_long_long_bit (gdbarch, 64);
3103 set_gdbarch_long_double_bit (gdbarch, 128);
3104 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3105
3106 /* The following gdbarch vector elements do not depend on the address
3107 size, or in any other gdbarch element previously set. */
3108 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
3109 set_gdbarch_stack_frame_destroyed_p (gdbarch,
3110 hppa_stack_frame_destroyed_p);
3111 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
3112 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3113 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
3114 set_gdbarch_addr_bits_remove (gdbarch, hppa_addr_bits_remove);
3115 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3116 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3117 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
3118
3119 /* Helper for function argument information. */
3120 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3121
3122 /* When a hardware watchpoint triggers, we'll move the inferior past
3123 it by removing all eventpoints; stepping past the instruction
3124 that caused the trigger; reinserting eventpoints; and checking
3125 whether any watched location changed. */
3126 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3127
3128 /* Inferior function call methods. */
3129 switch (tdep->bytes_per_address)
3130 {
3131 case 4:
3132 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3133 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
3134 set_gdbarch_convert_from_func_ptr_addr
3135 (gdbarch, hppa32_convert_from_func_ptr_addr);
3136 break;
3137 case 8:
3138 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3139 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
3140 break;
3141 default:
3142 internal_error (__FILE__, __LINE__, _("bad switch"));
3143 }
3144
3145 /* Struct return methods. */
3146 switch (tdep->bytes_per_address)
3147 {
3148 case 4:
3149 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3150 break;
3151 case 8:
3152 set_gdbarch_return_value (gdbarch, hppa64_return_value);
3153 break;
3154 default:
3155 internal_error (__FILE__, __LINE__, _("bad switch"));
3156 }
3157
3158 set_gdbarch_breakpoint_kind_from_pc (gdbarch, hppa_breakpoint::kind_from_pc);
3159 set_gdbarch_sw_breakpoint_from_kind (gdbarch, hppa_breakpoint::bp_from_kind);
3160 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
3161
3162 /* Frame unwind methods. */
3163 set_gdbarch_dummy_id (gdbarch, hppa_dummy_id);
3164 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
3165
3166 /* Hook in ABI-specific overrides, if they have been registered. */
3167 gdbarch_init_osabi (info, gdbarch);
3168
3169 /* Hook in the default unwinders. */
3170 frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind);
3171 frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind);
3172 frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind);
3173
3174 return gdbarch;
3175 }
3176
3177 static void
3178 hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3179 {
3180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3181
3182 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3183 tdep->bytes_per_address);
3184 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
3185 }
3186
3187 void
3188 _initialize_hppa_tdep (void)
3189 {
3190 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
3191
3192 hppa_objfile_priv_data = register_objfile_data ();
3193
3194 add_cmd ("unwind", class_maintenance, unwind_command,
3195 _("Print unwind table entry at given address."),
3196 &maintenanceprintlist);
3197
3198 /* Debug this files internals. */
3199 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3200 Set whether hppa target specific debugging information should be displayed."),
3201 _("\
3202 Show whether hppa target specific debugging information is displayed."), _("\
3203 This flag controls whether hppa target specific debugging information is\n\
3204 displayed. This information is particularly useful for debugging frame\n\
3205 unwinding problems."),
3206 NULL,
3207 NULL, /* FIXME: i18n: hppa debug flag is %s. */
3208 &setdebuglist, &showdebuglist);
3209 }
This page took 0.147253 seconds and 5 git commands to generate.