2007-07-16 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / gdb / i386-linux-nat.c
1 /* Native-dependent code for GNU/Linux i386.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include "defs.h"
24 #include "inferior.h"
25 #include "gdbcore.h"
26 #include "regcache.h"
27 #include "target.h"
28 #include "linux-nat.h"
29
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32 #include <sys/ptrace.h>
33 #include <sys/user.h>
34 #include <sys/procfs.h>
35
36 #ifdef HAVE_SYS_REG_H
37 #include <sys/reg.h>
38 #endif
39
40 #ifndef ORIG_EAX
41 #define ORIG_EAX -1
42 #endif
43
44 #ifdef HAVE_SYS_DEBUGREG_H
45 #include <sys/debugreg.h>
46 #endif
47
48 #ifndef DR_FIRSTADDR
49 #define DR_FIRSTADDR 0
50 #endif
51
52 #ifndef DR_LASTADDR
53 #define DR_LASTADDR 3
54 #endif
55
56 #ifndef DR_STATUS
57 #define DR_STATUS 6
58 #endif
59
60 #ifndef DR_CONTROL
61 #define DR_CONTROL 7
62 #endif
63
64 /* Prototypes for supply_gregset etc. */
65 #include "gregset.h"
66
67 #include "i387-tdep.h"
68 #include "i386-tdep.h"
69 #include "i386-linux-tdep.h"
70
71 /* Defines ps_err_e, struct ps_prochandle. */
72 #include "gdb_proc_service.h"
73 \f
74
75 /* The register sets used in GNU/Linux ELF core-dumps are identical to
76 the register sets in `struct user' that is used for a.out
77 core-dumps, and is also used by `ptrace'. The corresponding types
78 are `elf_gregset_t' for the general-purpose registers (with
79 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
80 for the floating-point registers.
81
82 Those types used to be available under the names `gregset_t' and
83 `fpregset_t' too, and this file used those names in the past. But
84 those names are now used for the register sets used in the
85 `mcontext_t' type, and have a different size and layout. */
86
87 /* Mapping between the general-purpose registers in `struct user'
88 format and GDB's register array layout. */
89 static int regmap[] =
90 {
91 EAX, ECX, EDX, EBX,
92 UESP, EBP, ESI, EDI,
93 EIP, EFL, CS, SS,
94 DS, ES, FS, GS,
95 -1, -1, -1, -1, /* st0, st1, st2, st3 */
96 -1, -1, -1, -1, /* st4, st5, st6, st7 */
97 -1, -1, -1, -1, /* fctrl, fstat, ftag, fiseg */
98 -1, -1, -1, -1, /* fioff, foseg, fooff, fop */
99 -1, -1, -1, -1, /* xmm0, xmm1, xmm2, xmm3 */
100 -1, -1, -1, -1, /* xmm4, xmm5, xmm6, xmm6 */
101 -1, /* mxcsr */
102 ORIG_EAX
103 };
104
105 /* Which ptrace request retrieves which registers?
106 These apply to the corresponding SET requests as well. */
107
108 #define GETREGS_SUPPLIES(regno) \
109 ((0 <= (regno) && (regno) <= 15) || (regno) == I386_LINUX_ORIG_EAX_REGNUM)
110
111 #define GETFPXREGS_SUPPLIES(regno) \
112 (I386_ST0_REGNUM <= (regno) && (regno) < I386_SSE_NUM_REGS)
113
114 /* Does the current host support the GETREGS request? */
115 int have_ptrace_getregs =
116 #ifdef HAVE_PTRACE_GETREGS
117 1
118 #else
119 0
120 #endif
121 ;
122
123 /* Does the current host support the GETFPXREGS request? The header
124 file may or may not define it, and even if it is defined, the
125 kernel will return EIO if it's running on a pre-SSE processor.
126
127 My instinct is to attach this to some architecture- or
128 target-specific data structure, but really, a particular GDB
129 process can only run on top of one kernel at a time. So it's okay
130 for this to be a simple variable. */
131 int have_ptrace_getfpxregs =
132 #ifdef HAVE_PTRACE_GETFPXREGS
133 1
134 #else
135 0
136 #endif
137 ;
138 \f
139
140 /* Accessing registers through the U area, one at a time. */
141
142 /* Fetch one register. */
143
144 static void
145 fetch_register (struct regcache *regcache, int regno)
146 {
147 int tid;
148 int val;
149
150 gdb_assert (!have_ptrace_getregs);
151 if (regmap[regno] == -1)
152 {
153 regcache_raw_supply (regcache, regno, NULL);
154 return;
155 }
156
157 /* GNU/Linux LWP ID's are process ID's. */
158 tid = TIDGET (inferior_ptid);
159 if (tid == 0)
160 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
161
162 errno = 0;
163 val = ptrace (PTRACE_PEEKUSER, tid, 4 * regmap[regno], 0);
164 if (errno != 0)
165 error (_("Couldn't read register %s (#%d): %s."),
166 gdbarch_register_name (current_gdbarch, regno),
167 regno, safe_strerror (errno));
168
169 regcache_raw_supply (regcache, regno, &val);
170 }
171
172 /* Store one register. */
173
174 static void
175 store_register (const struct regcache *regcache, int regno)
176 {
177 int tid;
178 int val;
179
180 gdb_assert (!have_ptrace_getregs);
181 if (regmap[regno] == -1)
182 return;
183
184 /* GNU/Linux LWP ID's are process ID's. */
185 tid = TIDGET (inferior_ptid);
186 if (tid == 0)
187 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
188
189 errno = 0;
190 regcache_raw_collect (regcache, regno, &val);
191 ptrace (PTRACE_POKEUSER, tid, 4 * regmap[regno], val);
192 if (errno != 0)
193 error (_("Couldn't write register %s (#%d): %s."),
194 gdbarch_register_name (current_gdbarch, regno),
195 regno, safe_strerror (errno));
196 }
197 \f
198
199 /* Transfering the general-purpose registers between GDB, inferiors
200 and core files. */
201
202 /* Fill GDB's register array with the general-purpose register values
203 in *GREGSETP. */
204
205 void
206 supply_gregset (struct regcache *regcache, const elf_gregset_t *gregsetp)
207 {
208 const elf_greg_t *regp = (const elf_greg_t *) gregsetp;
209 int i;
210
211 for (i = 0; i < I386_NUM_GREGS; i++)
212 regcache_raw_supply (regcache, i, regp + regmap[i]);
213
214 if (I386_LINUX_ORIG_EAX_REGNUM < gdbarch_num_regs (current_gdbarch))
215 regcache_raw_supply (regcache, I386_LINUX_ORIG_EAX_REGNUM,
216 regp + ORIG_EAX);
217 }
218
219 /* Fill register REGNO (if it is a general-purpose register) in
220 *GREGSETPS with the value in GDB's register array. If REGNO is -1,
221 do this for all registers. */
222
223 void
224 fill_gregset (const struct regcache *regcache,
225 elf_gregset_t *gregsetp, int regno)
226 {
227 elf_greg_t *regp = (elf_greg_t *) gregsetp;
228 int i;
229
230 for (i = 0; i < I386_NUM_GREGS; i++)
231 if (regno == -1 || regno == i)
232 regcache_raw_collect (regcache, i, regp + regmap[i]);
233
234 if ((regno == -1 || regno == I386_LINUX_ORIG_EAX_REGNUM)
235 && I386_LINUX_ORIG_EAX_REGNUM < gdbarch_num_regs (current_gdbarch))
236 regcache_raw_collect (regcache, I386_LINUX_ORIG_EAX_REGNUM,
237 regp + ORIG_EAX);
238 }
239
240 #ifdef HAVE_PTRACE_GETREGS
241
242 /* Fetch all general-purpose registers from process/thread TID and
243 store their values in GDB's register array. */
244
245 static void
246 fetch_regs (struct regcache *regcache, int tid)
247 {
248 elf_gregset_t regs;
249 elf_gregset_t *regs_p = &regs;
250
251 if (ptrace (PTRACE_GETREGS, tid, 0, (int) &regs) < 0)
252 {
253 if (errno == EIO)
254 {
255 /* The kernel we're running on doesn't support the GETREGS
256 request. Reset `have_ptrace_getregs'. */
257 have_ptrace_getregs = 0;
258 return;
259 }
260
261 perror_with_name (_("Couldn't get registers"));
262 }
263
264 supply_gregset (regcache, (const elf_gregset_t *) regs_p);
265 }
266
267 /* Store all valid general-purpose registers in GDB's register array
268 into the process/thread specified by TID. */
269
270 static void
271 store_regs (const struct regcache *regcache, int tid, int regno)
272 {
273 elf_gregset_t regs;
274
275 if (ptrace (PTRACE_GETREGS, tid, 0, (int) &regs) < 0)
276 perror_with_name (_("Couldn't get registers"));
277
278 fill_gregset (regcache, &regs, regno);
279
280 if (ptrace (PTRACE_SETREGS, tid, 0, (int) &regs) < 0)
281 perror_with_name (_("Couldn't write registers"));
282 }
283
284 #else
285
286 static void fetch_regs (struct regcache *regcache, int tid) {}
287 static void store_regs (const struct regcache *regcache, int tid, int regno) {}
288
289 #endif
290 \f
291
292 /* Transfering floating-point registers between GDB, inferiors and cores. */
293
294 /* Fill GDB's register array with the floating-point register values in
295 *FPREGSETP. */
296
297 void
298 supply_fpregset (struct regcache *regcache, const elf_fpregset_t *fpregsetp)
299 {
300 i387_supply_fsave (regcache, -1, fpregsetp);
301 }
302
303 /* Fill register REGNO (if it is a floating-point register) in
304 *FPREGSETP with the value in GDB's register array. If REGNO is -1,
305 do this for all registers. */
306
307 void
308 fill_fpregset (const struct regcache *regcache,
309 elf_fpregset_t *fpregsetp, int regno)
310 {
311 i387_collect_fsave (regcache, regno, fpregsetp);
312 }
313
314 #ifdef HAVE_PTRACE_GETREGS
315
316 /* Fetch all floating-point registers from process/thread TID and store
317 thier values in GDB's register array. */
318
319 static void
320 fetch_fpregs (struct regcache *regcache, int tid)
321 {
322 elf_fpregset_t fpregs;
323
324 if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0)
325 perror_with_name (_("Couldn't get floating point status"));
326
327 supply_fpregset (regcache, (const elf_fpregset_t *) &fpregs);
328 }
329
330 /* Store all valid floating-point registers in GDB's register array
331 into the process/thread specified by TID. */
332
333 static void
334 store_fpregs (const struct regcache *regcache, int tid, int regno)
335 {
336 elf_fpregset_t fpregs;
337
338 if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0)
339 perror_with_name (_("Couldn't get floating point status"));
340
341 fill_fpregset (regcache, &fpregs, regno);
342
343 if (ptrace (PTRACE_SETFPREGS, tid, 0, (int) &fpregs) < 0)
344 perror_with_name (_("Couldn't write floating point status"));
345 }
346
347 #else
348
349 static void fetch_fpregs (struct regcache *regcache, int tid) {}
350 static void store_fpregs (const struct regcache *regcache, int tid, int regno) {}
351
352 #endif
353 \f
354
355 /* Transfering floating-point and SSE registers to and from GDB. */
356
357 #ifdef HAVE_PTRACE_GETFPXREGS
358
359 /* Fill GDB's register array with the floating-point and SSE register
360 values in *FPXREGSETP. */
361
362 void
363 supply_fpxregset (struct regcache *regcache,
364 const elf_fpxregset_t *fpxregsetp)
365 {
366 i387_supply_fxsave (regcache, -1, fpxregsetp);
367 }
368
369 /* Fill register REGNO (if it is a floating-point or SSE register) in
370 *FPXREGSETP with the value in GDB's register array. If REGNO is
371 -1, do this for all registers. */
372
373 void
374 fill_fpxregset (const struct regcache *regcache,
375 elf_fpxregset_t *fpxregsetp, int regno)
376 {
377 i387_collect_fxsave (regcache, regno, fpxregsetp);
378 }
379
380 /* Fetch all registers covered by the PTRACE_GETFPXREGS request from
381 process/thread TID and store their values in GDB's register array.
382 Return non-zero if successful, zero otherwise. */
383
384 static int
385 fetch_fpxregs (struct regcache *regcache, int tid)
386 {
387 elf_fpxregset_t fpxregs;
388
389 if (! have_ptrace_getfpxregs)
390 return 0;
391
392 if (ptrace (PTRACE_GETFPXREGS, tid, 0, (int) &fpxregs) < 0)
393 {
394 if (errno == EIO)
395 {
396 have_ptrace_getfpxregs = 0;
397 return 0;
398 }
399
400 perror_with_name (_("Couldn't read floating-point and SSE registers"));
401 }
402
403 supply_fpxregset (regcache, (const elf_fpxregset_t *) &fpxregs);
404 return 1;
405 }
406
407 /* Store all valid registers in GDB's register array covered by the
408 PTRACE_SETFPXREGS request into the process/thread specified by TID.
409 Return non-zero if successful, zero otherwise. */
410
411 static int
412 store_fpxregs (const struct regcache *regcache, int tid, int regno)
413 {
414 elf_fpxregset_t fpxregs;
415
416 if (! have_ptrace_getfpxregs)
417 return 0;
418
419 if (ptrace (PTRACE_GETFPXREGS, tid, 0, &fpxregs) == -1)
420 {
421 if (errno == EIO)
422 {
423 have_ptrace_getfpxregs = 0;
424 return 0;
425 }
426
427 perror_with_name (_("Couldn't read floating-point and SSE registers"));
428 }
429
430 fill_fpxregset (regcache, &fpxregs, regno);
431
432 if (ptrace (PTRACE_SETFPXREGS, tid, 0, &fpxregs) == -1)
433 perror_with_name (_("Couldn't write floating-point and SSE registers"));
434
435 return 1;
436 }
437
438 #else
439
440 static int fetch_fpxregs (struct regcache *regcache, int tid) { return 0; }
441 static int store_fpxregs (const struct regcache *regcache, int tid, int regno) { return 0; }
442
443 #endif /* HAVE_PTRACE_GETFPXREGS */
444 \f
445
446 /* Transferring arbitrary registers between GDB and inferior. */
447
448 /* Fetch register REGNO from the child process. If REGNO is -1, do
449 this for all registers (including the floating point and SSE
450 registers). */
451
452 static void
453 i386_linux_fetch_inferior_registers (struct regcache *regcache, int regno)
454 {
455 int tid;
456
457 /* Use the old method of peeking around in `struct user' if the
458 GETREGS request isn't available. */
459 if (!have_ptrace_getregs)
460 {
461 int i;
462
463 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
464 if (regno == -1 || regno == i)
465 fetch_register (regcache, i);
466
467 return;
468 }
469
470 /* GNU/Linux LWP ID's are process ID's. */
471 tid = TIDGET (inferior_ptid);
472 if (tid == 0)
473 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
474
475 /* Use the PTRACE_GETFPXREGS request whenever possible, since it
476 transfers more registers in one system call, and we'll cache the
477 results. But remember that fetch_fpxregs can fail, and return
478 zero. */
479 if (regno == -1)
480 {
481 fetch_regs (regcache, tid);
482
483 /* The call above might reset `have_ptrace_getregs'. */
484 if (!have_ptrace_getregs)
485 {
486 i386_linux_fetch_inferior_registers (regcache, regno);
487 return;
488 }
489
490 if (fetch_fpxregs (regcache, tid))
491 return;
492 fetch_fpregs (regcache, tid);
493 return;
494 }
495
496 if (GETREGS_SUPPLIES (regno))
497 {
498 fetch_regs (regcache, tid);
499 return;
500 }
501
502 if (GETFPXREGS_SUPPLIES (regno))
503 {
504 if (fetch_fpxregs (regcache, tid))
505 return;
506
507 /* Either our processor or our kernel doesn't support the SSE
508 registers, so read the FP registers in the traditional way,
509 and fill the SSE registers with dummy values. It would be
510 more graceful to handle differences in the register set using
511 gdbarch. Until then, this will at least make things work
512 plausibly. */
513 fetch_fpregs (regcache, tid);
514 return;
515 }
516
517 internal_error (__FILE__, __LINE__,
518 _("Got request for bad register number %d."), regno);
519 }
520
521 /* Store register REGNO back into the child process. If REGNO is -1,
522 do this for all registers (including the floating point and SSE
523 registers). */
524 static void
525 i386_linux_store_inferior_registers (struct regcache *regcache, int regno)
526 {
527 int tid;
528
529 /* Use the old method of poking around in `struct user' if the
530 SETREGS request isn't available. */
531 if (!have_ptrace_getregs)
532 {
533 int i;
534
535 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
536 if (regno == -1 || regno == i)
537 store_register (regcache, i);
538
539 return;
540 }
541
542 /* GNU/Linux LWP ID's are process ID's. */
543 tid = TIDGET (inferior_ptid);
544 if (tid == 0)
545 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
546
547 /* Use the PTRACE_SETFPXREGS requests whenever possible, since it
548 transfers more registers in one system call. But remember that
549 store_fpxregs can fail, and return zero. */
550 if (regno == -1)
551 {
552 store_regs (regcache, tid, regno);
553 if (store_fpxregs (regcache, tid, regno))
554 return;
555 store_fpregs (regcache, tid, regno);
556 return;
557 }
558
559 if (GETREGS_SUPPLIES (regno))
560 {
561 store_regs (regcache, tid, regno);
562 return;
563 }
564
565 if (GETFPXREGS_SUPPLIES (regno))
566 {
567 if (store_fpxregs (regcache, tid, regno))
568 return;
569
570 /* Either our processor or our kernel doesn't support the SSE
571 registers, so just write the FP registers in the traditional
572 way. */
573 store_fpregs (regcache, tid, regno);
574 return;
575 }
576
577 internal_error (__FILE__, __LINE__,
578 _("Got request to store bad register number %d."), regno);
579 }
580 \f
581
582 /* Support for debug registers. */
583
584 static unsigned long
585 i386_linux_dr_get (int regnum)
586 {
587 int tid;
588 unsigned long value;
589
590 /* FIXME: kettenis/2001-01-29: It's not clear what we should do with
591 multi-threaded processes here. For now, pretend there is just
592 one thread. */
593 tid = PIDGET (inferior_ptid);
594
595 /* FIXME: kettenis/2001-03-27: Calling perror_with_name if the
596 ptrace call fails breaks debugging remote targets. The correct
597 way to fix this is to add the hardware breakpoint and watchpoint
598 stuff to the target vector. For now, just return zero if the
599 ptrace call fails. */
600 errno = 0;
601 value = ptrace (PTRACE_PEEKUSER, tid,
602 offsetof (struct user, u_debugreg[regnum]), 0);
603 if (errno != 0)
604 #if 0
605 perror_with_name (_("Couldn't read debug register"));
606 #else
607 return 0;
608 #endif
609
610 return value;
611 }
612
613 static void
614 i386_linux_dr_set (int regnum, unsigned long value)
615 {
616 int tid;
617
618 /* FIXME: kettenis/2001-01-29: It's not clear what we should do with
619 multi-threaded processes here. For now, pretend there is just
620 one thread. */
621 tid = PIDGET (inferior_ptid);
622
623 errno = 0;
624 ptrace (PTRACE_POKEUSER, tid,
625 offsetof (struct user, u_debugreg[regnum]), value);
626 if (errno != 0)
627 perror_with_name (_("Couldn't write debug register"));
628 }
629
630 void
631 i386_linux_dr_set_control (unsigned long control)
632 {
633 i386_linux_dr_set (DR_CONTROL, control);
634 }
635
636 void
637 i386_linux_dr_set_addr (int regnum, CORE_ADDR addr)
638 {
639 gdb_assert (regnum >= 0 && regnum <= DR_LASTADDR - DR_FIRSTADDR);
640
641 i386_linux_dr_set (DR_FIRSTADDR + regnum, addr);
642 }
643
644 void
645 i386_linux_dr_reset_addr (int regnum)
646 {
647 gdb_assert (regnum >= 0 && regnum <= DR_LASTADDR - DR_FIRSTADDR);
648
649 i386_linux_dr_set (DR_FIRSTADDR + regnum, 0L);
650 }
651
652 unsigned long
653 i386_linux_dr_get_status (void)
654 {
655 return i386_linux_dr_get (DR_STATUS);
656 }
657 \f
658
659 /* Called by libthread_db. Returns a pointer to the thread local
660 storage (or its descriptor). */
661
662 ps_err_e
663 ps_get_thread_area (const struct ps_prochandle *ph,
664 lwpid_t lwpid, int idx, void **base)
665 {
666 /* NOTE: cagney/2003-08-26: The definition of this buffer is found
667 in the kernel header <asm-i386/ldt.h>. It, after padding, is 4 x
668 4 byte integers in size: `entry_number', `base_addr', `limit',
669 and a bunch of status bits.
670
671 The values returned by this ptrace call should be part of the
672 regcache buffer, and ps_get_thread_area should channel its
673 request through the regcache. That way remote targets could
674 provide the value using the remote protocol and not this direct
675 call.
676
677 Is this function needed? I'm guessing that the `base' is the
678 address of a a descriptor that libthread_db uses to find the
679 thread local address base that GDB needs. Perhaps that
680 descriptor is defined by the ABI. Anyway, given that
681 libthread_db calls this function without prompting (gdb
682 requesting tls base) I guess it needs info in there anyway. */
683 unsigned int desc[4];
684 gdb_assert (sizeof (int) == 4);
685
686 #ifndef PTRACE_GET_THREAD_AREA
687 #define PTRACE_GET_THREAD_AREA 25
688 #endif
689
690 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid,
691 (void *) idx, (unsigned long) &desc) < 0)
692 return PS_ERR;
693
694 *(int *)base = desc[1];
695 return PS_OK;
696 }
697 \f
698
699 /* The instruction for a GNU/Linux system call is:
700 int $0x80
701 or 0xcd 0x80. */
702
703 static const unsigned char linux_syscall[] = { 0xcd, 0x80 };
704
705 #define LINUX_SYSCALL_LEN (sizeof linux_syscall)
706
707 /* The system call number is stored in the %eax register. */
708 #define LINUX_SYSCALL_REGNUM I386_EAX_REGNUM
709
710 /* We are specifically interested in the sigreturn and rt_sigreturn
711 system calls. */
712
713 #ifndef SYS_sigreturn
714 #define SYS_sigreturn 0x77
715 #endif
716 #ifndef SYS_rt_sigreturn
717 #define SYS_rt_sigreturn 0xad
718 #endif
719
720 /* Offset to saved processor flags, from <asm/sigcontext.h>. */
721 #define LINUX_SIGCONTEXT_EFLAGS_OFFSET (64)
722
723 /* Resume execution of the inferior process.
724 If STEP is nonzero, single-step it.
725 If SIGNAL is nonzero, give it that signal. */
726
727 static void
728 i386_linux_resume (ptid_t ptid, int step, enum target_signal signal)
729 {
730 int pid = PIDGET (ptid);
731
732 int request = PTRACE_CONT;
733
734 if (pid == -1)
735 /* Resume all threads. */
736 /* I think this only gets used in the non-threaded case, where "resume
737 all threads" and "resume inferior_ptid" are the same. */
738 pid = PIDGET (inferior_ptid);
739
740 if (step)
741 {
742 struct regcache *regcache = get_thread_regcache (pid_to_ptid (pid));
743 ULONGEST pc;
744 gdb_byte buf[LINUX_SYSCALL_LEN];
745
746 request = PTRACE_SINGLESTEP;
747
748 regcache_cooked_read_unsigned (regcache,
749 gdbarch_pc_regnum (current_gdbarch), &pc);
750
751 /* Returning from a signal trampoline is done by calling a
752 special system call (sigreturn or rt_sigreturn, see
753 i386-linux-tdep.c for more information). This system call
754 restores the registers that were saved when the signal was
755 raised, including %eflags. That means that single-stepping
756 won't work. Instead, we'll have to modify the signal context
757 that's about to be restored, and set the trace flag there. */
758
759 /* First check if PC is at a system call. */
760 if (read_memory_nobpt (pc, buf, LINUX_SYSCALL_LEN) == 0
761 && memcmp (buf, linux_syscall, LINUX_SYSCALL_LEN) == 0)
762 {
763 ULONGEST syscall;
764 regcache_cooked_read_unsigned (regcache,
765 LINUX_SYSCALL_REGNUM, &syscall);
766
767 /* Then check the system call number. */
768 if (syscall == SYS_sigreturn || syscall == SYS_rt_sigreturn)
769 {
770 ULONGEST sp, addr;
771 unsigned long int eflags;
772
773 regcache_cooked_read_unsigned (regcache, I386_ESP_REGNUM, &sp);
774 if (syscall == SYS_rt_sigreturn)
775 addr = read_memory_integer (sp + 8, 4) + 20;
776 else
777 addr = sp;
778
779 /* Set the trace flag in the context that's about to be
780 restored. */
781 addr += LINUX_SIGCONTEXT_EFLAGS_OFFSET;
782 read_memory (addr, (gdb_byte *) &eflags, 4);
783 eflags |= 0x0100;
784 write_memory (addr, (gdb_byte *) &eflags, 4);
785 }
786 }
787 }
788
789 if (ptrace (request, pid, 0, target_signal_to_host (signal)) == -1)
790 perror_with_name (("ptrace"));
791 }
792
793 static void (*super_post_startup_inferior) (ptid_t ptid);
794
795 static void
796 i386_linux_child_post_startup_inferior (ptid_t ptid)
797 {
798 i386_cleanup_dregs ();
799 super_post_startup_inferior (ptid);
800 }
801
802 void
803 _initialize_i386_linux_nat (void)
804 {
805 struct target_ops *t;
806
807 /* Fill in the generic GNU/Linux methods. */
808 t = linux_target ();
809
810 /* Override the default ptrace resume method. */
811 t->to_resume = i386_linux_resume;
812
813 /* Override the GNU/Linux inferior startup hook. */
814 super_post_startup_inferior = t->to_post_startup_inferior;
815 t->to_post_startup_inferior = i386_linux_child_post_startup_inferior;
816
817 /* Add our register access methods. */
818 t->to_fetch_registers = i386_linux_fetch_inferior_registers;
819 t->to_store_registers = i386_linux_store_inferior_registers;
820
821 /* Register the target. */
822 linux_nat_add_target (t);
823 }
This page took 0.062544 seconds and 5 git commands to generate.