2007-05-31 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / i386-linux-nat.c
1 /* Native-dependent code for GNU/Linux i386.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include "defs.h"
24 #include "inferior.h"
25 #include "gdbcore.h"
26 #include "regcache.h"
27 #include "target.h"
28 #include "linux-nat.h"
29
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32 #include <sys/ptrace.h>
33 #include <sys/user.h>
34 #include <sys/procfs.h>
35
36 #ifdef HAVE_SYS_REG_H
37 #include <sys/reg.h>
38 #endif
39
40 #ifndef ORIG_EAX
41 #define ORIG_EAX -1
42 #endif
43
44 #ifdef HAVE_SYS_DEBUGREG_H
45 #include <sys/debugreg.h>
46 #endif
47
48 #ifndef DR_FIRSTADDR
49 #define DR_FIRSTADDR 0
50 #endif
51
52 #ifndef DR_LASTADDR
53 #define DR_LASTADDR 3
54 #endif
55
56 #ifndef DR_STATUS
57 #define DR_STATUS 6
58 #endif
59
60 #ifndef DR_CONTROL
61 #define DR_CONTROL 7
62 #endif
63
64 /* Prototypes for supply_gregset etc. */
65 #include "gregset.h"
66
67 #include "i387-tdep.h"
68 #include "i386-tdep.h"
69 #include "i386-linux-tdep.h"
70
71 /* Defines ps_err_e, struct ps_prochandle. */
72 #include "gdb_proc_service.h"
73 \f
74
75 /* The register sets used in GNU/Linux ELF core-dumps are identical to
76 the register sets in `struct user' that is used for a.out
77 core-dumps, and is also used by `ptrace'. The corresponding types
78 are `elf_gregset_t' for the general-purpose registers (with
79 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
80 for the floating-point registers.
81
82 Those types used to be available under the names `gregset_t' and
83 `fpregset_t' too, and this file used those names in the past. But
84 those names are now used for the register sets used in the
85 `mcontext_t' type, and have a different size and layout. */
86
87 /* Mapping between the general-purpose registers in `struct user'
88 format and GDB's register array layout. */
89 static int regmap[] =
90 {
91 EAX, ECX, EDX, EBX,
92 UESP, EBP, ESI, EDI,
93 EIP, EFL, CS, SS,
94 DS, ES, FS, GS,
95 -1, -1, -1, -1, /* st0, st1, st2, st3 */
96 -1, -1, -1, -1, /* st4, st5, st6, st7 */
97 -1, -1, -1, -1, /* fctrl, fstat, ftag, fiseg */
98 -1, -1, -1, -1, /* fioff, foseg, fooff, fop */
99 -1, -1, -1, -1, /* xmm0, xmm1, xmm2, xmm3 */
100 -1, -1, -1, -1, /* xmm4, xmm5, xmm6, xmm6 */
101 -1, /* mxcsr */
102 ORIG_EAX
103 };
104
105 /* Which ptrace request retrieves which registers?
106 These apply to the corresponding SET requests as well. */
107
108 #define GETREGS_SUPPLIES(regno) \
109 ((0 <= (regno) && (regno) <= 15) || (regno) == I386_LINUX_ORIG_EAX_REGNUM)
110
111 #define GETFPXREGS_SUPPLIES(regno) \
112 (I386_ST0_REGNUM <= (regno) && (regno) < I386_SSE_NUM_REGS)
113
114 /* Does the current host support the GETREGS request? */
115 int have_ptrace_getregs =
116 #ifdef HAVE_PTRACE_GETREGS
117 1
118 #else
119 0
120 #endif
121 ;
122
123 /* Does the current host support the GETFPXREGS request? The header
124 file may or may not define it, and even if it is defined, the
125 kernel will return EIO if it's running on a pre-SSE processor.
126
127 My instinct is to attach this to some architecture- or
128 target-specific data structure, but really, a particular GDB
129 process can only run on top of one kernel at a time. So it's okay
130 for this to be a simple variable. */
131 int have_ptrace_getfpxregs =
132 #ifdef HAVE_PTRACE_GETFPXREGS
133 1
134 #else
135 0
136 #endif
137 ;
138 \f
139
140 /* Accessing registers through the U area, one at a time. */
141
142 /* Fetch one register. */
143
144 static void
145 fetch_register (struct regcache *regcache, int regno)
146 {
147 int tid;
148 int val;
149
150 gdb_assert (!have_ptrace_getregs);
151 if (regmap[regno] == -1)
152 {
153 regcache_raw_supply (regcache, regno, NULL);
154 return;
155 }
156
157 /* GNU/Linux LWP ID's are process ID's. */
158 tid = TIDGET (inferior_ptid);
159 if (tid == 0)
160 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
161
162 errno = 0;
163 val = ptrace (PTRACE_PEEKUSER, tid, 4 * regmap[regno], 0);
164 if (errno != 0)
165 error (_("Couldn't read register %s (#%d): %s."), REGISTER_NAME (regno),
166 regno, safe_strerror (errno));
167
168 regcache_raw_supply (regcache, regno, &val);
169 }
170
171 /* Store one register. */
172
173 static void
174 store_register (const struct regcache *regcache, int regno)
175 {
176 int tid;
177 int val;
178
179 gdb_assert (!have_ptrace_getregs);
180 if (regmap[regno] == -1)
181 return;
182
183 /* GNU/Linux LWP ID's are process ID's. */
184 tid = TIDGET (inferior_ptid);
185 if (tid == 0)
186 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
187
188 errno = 0;
189 regcache_raw_collect (regcache, regno, &val);
190 ptrace (PTRACE_POKEUSER, tid, 4 * regmap[regno], val);
191 if (errno != 0)
192 error (_("Couldn't write register %s (#%d): %s."), REGISTER_NAME (regno),
193 regno, safe_strerror (errno));
194 }
195 \f
196
197 /* Transfering the general-purpose registers between GDB, inferiors
198 and core files. */
199
200 /* Fill GDB's register array with the general-purpose register values
201 in *GREGSETP. */
202
203 void
204 supply_gregset (struct regcache *regcache, const elf_gregset_t *gregsetp)
205 {
206 const elf_greg_t *regp = (const elf_greg_t *) gregsetp;
207 int i;
208
209 for (i = 0; i < I386_NUM_GREGS; i++)
210 regcache_raw_supply (regcache, i, regp + regmap[i]);
211
212 if (I386_LINUX_ORIG_EAX_REGNUM < gdbarch_num_regs (current_gdbarch))
213 regcache_raw_supply (regcache, I386_LINUX_ORIG_EAX_REGNUM,
214 regp + ORIG_EAX);
215 }
216
217 /* Fill register REGNO (if it is a general-purpose register) in
218 *GREGSETPS with the value in GDB's register array. If REGNO is -1,
219 do this for all registers. */
220
221 void
222 fill_gregset (const struct regcache *regcache,
223 elf_gregset_t *gregsetp, int regno)
224 {
225 elf_greg_t *regp = (elf_greg_t *) gregsetp;
226 int i;
227
228 for (i = 0; i < I386_NUM_GREGS; i++)
229 if (regno == -1 || regno == i)
230 regcache_raw_collect (regcache, i, regp + regmap[i]);
231
232 if ((regno == -1 || regno == I386_LINUX_ORIG_EAX_REGNUM)
233 && I386_LINUX_ORIG_EAX_REGNUM < gdbarch_num_regs (current_gdbarch))
234 regcache_raw_collect (regcache, I386_LINUX_ORIG_EAX_REGNUM,
235 regp + ORIG_EAX);
236 }
237
238 #ifdef HAVE_PTRACE_GETREGS
239
240 /* Fetch all general-purpose registers from process/thread TID and
241 store their values in GDB's register array. */
242
243 static void
244 fetch_regs (struct regcache *regcache, int tid)
245 {
246 elf_gregset_t regs;
247
248 if (ptrace (PTRACE_GETREGS, tid, 0, (int) &regs) < 0)
249 {
250 if (errno == EIO)
251 {
252 /* The kernel we're running on doesn't support the GETREGS
253 request. Reset `have_ptrace_getregs'. */
254 have_ptrace_getregs = 0;
255 return;
256 }
257
258 perror_with_name (_("Couldn't get registers"));
259 }
260
261 supply_gregset (regcache, (const elf_gregset_t *) &regs);
262 }
263
264 /* Store all valid general-purpose registers in GDB's register array
265 into the process/thread specified by TID. */
266
267 static void
268 store_regs (const struct regcache *regcache, int tid, int regno)
269 {
270 elf_gregset_t regs;
271
272 if (ptrace (PTRACE_GETREGS, tid, 0, (int) &regs) < 0)
273 perror_with_name (_("Couldn't get registers"));
274
275 fill_gregset (regcache, &regs, regno);
276
277 if (ptrace (PTRACE_SETREGS, tid, 0, (int) &regs) < 0)
278 perror_with_name (_("Couldn't write registers"));
279 }
280
281 #else
282
283 static void fetch_regs (struct regcache *regcache, int tid) {}
284 static void store_regs (const struct regcache *regcache, int tid, int regno) {}
285
286 #endif
287 \f
288
289 /* Transfering floating-point registers between GDB, inferiors and cores. */
290
291 /* Fill GDB's register array with the floating-point register values in
292 *FPREGSETP. */
293
294 void
295 supply_fpregset (struct regcache *regcache, const elf_fpregset_t *fpregsetp)
296 {
297 i387_supply_fsave (regcache, -1, fpregsetp);
298 }
299
300 /* Fill register REGNO (if it is a floating-point register) in
301 *FPREGSETP with the value in GDB's register array. If REGNO is -1,
302 do this for all registers. */
303
304 void
305 fill_fpregset (const struct regcache *regcache,
306 elf_fpregset_t *fpregsetp, int regno)
307 {
308 i387_collect_fsave (regcache, regno, fpregsetp);
309 }
310
311 #ifdef HAVE_PTRACE_GETREGS
312
313 /* Fetch all floating-point registers from process/thread TID and store
314 thier values in GDB's register array. */
315
316 static void
317 fetch_fpregs (struct regcache *regcache, int tid)
318 {
319 elf_fpregset_t fpregs;
320
321 if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0)
322 perror_with_name (_("Couldn't get floating point status"));
323
324 supply_fpregset (regcache, (const elf_fpregset_t *) &fpregs);
325 }
326
327 /* Store all valid floating-point registers in GDB's register array
328 into the process/thread specified by TID. */
329
330 static void
331 store_fpregs (const struct regcache *regcache, int tid, int regno)
332 {
333 elf_fpregset_t fpregs;
334
335 if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0)
336 perror_with_name (_("Couldn't get floating point status"));
337
338 fill_fpregset (regcache, &fpregs, regno);
339
340 if (ptrace (PTRACE_SETFPREGS, tid, 0, (int) &fpregs) < 0)
341 perror_with_name (_("Couldn't write floating point status"));
342 }
343
344 #else
345
346 static void fetch_fpregs (struct regcache *regcache, int tid) {}
347 static void store_fpregs (const struct regcache *regcache, int tid, int regno) {}
348
349 #endif
350 \f
351
352 /* Transfering floating-point and SSE registers to and from GDB. */
353
354 #ifdef HAVE_PTRACE_GETFPXREGS
355
356 /* Fill GDB's register array with the floating-point and SSE register
357 values in *FPXREGSETP. */
358
359 void
360 supply_fpxregset (struct regcache *regcache,
361 const elf_fpxregset_t *fpxregsetp)
362 {
363 i387_supply_fxsave (regcache, -1, fpxregsetp);
364 }
365
366 /* Fill register REGNO (if it is a floating-point or SSE register) in
367 *FPXREGSETP with the value in GDB's register array. If REGNO is
368 -1, do this for all registers. */
369
370 void
371 fill_fpxregset (const struct regcache *regcache,
372 elf_fpxregset_t *fpxregsetp, int regno)
373 {
374 i387_collect_fxsave (regcache, regno, fpxregsetp);
375 }
376
377 /* Fetch all registers covered by the PTRACE_GETFPXREGS request from
378 process/thread TID and store their values in GDB's register array.
379 Return non-zero if successful, zero otherwise. */
380
381 static int
382 fetch_fpxregs (struct regcache *regcache, int tid)
383 {
384 elf_fpxregset_t fpxregs;
385
386 if (! have_ptrace_getfpxregs)
387 return 0;
388
389 if (ptrace (PTRACE_GETFPXREGS, tid, 0, (int) &fpxregs) < 0)
390 {
391 if (errno == EIO)
392 {
393 have_ptrace_getfpxregs = 0;
394 return 0;
395 }
396
397 perror_with_name (_("Couldn't read floating-point and SSE registers"));
398 }
399
400 supply_fpxregset (regcache, (const elf_fpxregset_t *) &fpxregs);
401 return 1;
402 }
403
404 /* Store all valid registers in GDB's register array covered by the
405 PTRACE_SETFPXREGS request into the process/thread specified by TID.
406 Return non-zero if successful, zero otherwise. */
407
408 static int
409 store_fpxregs (const struct regcache *regcache, int tid, int regno)
410 {
411 elf_fpxregset_t fpxregs;
412
413 if (! have_ptrace_getfpxregs)
414 return 0;
415
416 if (ptrace (PTRACE_GETFPXREGS, tid, 0, &fpxregs) == -1)
417 {
418 if (errno == EIO)
419 {
420 have_ptrace_getfpxregs = 0;
421 return 0;
422 }
423
424 perror_with_name (_("Couldn't read floating-point and SSE registers"));
425 }
426
427 fill_fpxregset (regcache, &fpxregs, regno);
428
429 if (ptrace (PTRACE_SETFPXREGS, tid, 0, &fpxregs) == -1)
430 perror_with_name (_("Couldn't write floating-point and SSE registers"));
431
432 return 1;
433 }
434
435 #else
436
437 static int fetch_fpxregs (struct regcache *regcache, int tid) { return 0; }
438 static int store_fpxregs (const struct regcache *regcache, int tid, int regno) { return 0; }
439
440 #endif /* HAVE_PTRACE_GETFPXREGS */
441 \f
442
443 /* Transferring arbitrary registers between GDB and inferior. */
444
445 /* Fetch register REGNO from the child process. If REGNO is -1, do
446 this for all registers (including the floating point and SSE
447 registers). */
448
449 static void
450 i386_linux_fetch_inferior_registers (struct regcache *regcache, int regno)
451 {
452 int tid;
453
454 /* Use the old method of peeking around in `struct user' if the
455 GETREGS request isn't available. */
456 if (!have_ptrace_getregs)
457 {
458 int i;
459
460 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
461 if (regno == -1 || regno == i)
462 fetch_register (regcache, i);
463
464 return;
465 }
466
467 /* GNU/Linux LWP ID's are process ID's. */
468 tid = TIDGET (inferior_ptid);
469 if (tid == 0)
470 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
471
472 /* Use the PTRACE_GETFPXREGS request whenever possible, since it
473 transfers more registers in one system call, and we'll cache the
474 results. But remember that fetch_fpxregs can fail, and return
475 zero. */
476 if (regno == -1)
477 {
478 fetch_regs (regcache, tid);
479
480 /* The call above might reset `have_ptrace_getregs'. */
481 if (!have_ptrace_getregs)
482 {
483 i386_linux_fetch_inferior_registers (regcache, regno);
484 return;
485 }
486
487 if (fetch_fpxregs (regcache, tid))
488 return;
489 fetch_fpregs (regcache, tid);
490 return;
491 }
492
493 if (GETREGS_SUPPLIES (regno))
494 {
495 fetch_regs (regcache, tid);
496 return;
497 }
498
499 if (GETFPXREGS_SUPPLIES (regno))
500 {
501 if (fetch_fpxregs (regcache, tid))
502 return;
503
504 /* Either our processor or our kernel doesn't support the SSE
505 registers, so read the FP registers in the traditional way,
506 and fill the SSE registers with dummy values. It would be
507 more graceful to handle differences in the register set using
508 gdbarch. Until then, this will at least make things work
509 plausibly. */
510 fetch_fpregs (regcache, tid);
511 return;
512 }
513
514 internal_error (__FILE__, __LINE__,
515 _("Got request for bad register number %d."), regno);
516 }
517
518 /* Store register REGNO back into the child process. If REGNO is -1,
519 do this for all registers (including the floating point and SSE
520 registers). */
521 static void
522 i386_linux_store_inferior_registers (struct regcache *regcache, int regno)
523 {
524 int tid;
525
526 /* Use the old method of poking around in `struct user' if the
527 SETREGS request isn't available. */
528 if (!have_ptrace_getregs)
529 {
530 int i;
531
532 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
533 if (regno == -1 || regno == i)
534 store_register (regcache, i);
535
536 return;
537 }
538
539 /* GNU/Linux LWP ID's are process ID's. */
540 tid = TIDGET (inferior_ptid);
541 if (tid == 0)
542 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
543
544 /* Use the PTRACE_SETFPXREGS requests whenever possible, since it
545 transfers more registers in one system call. But remember that
546 store_fpxregs can fail, and return zero. */
547 if (regno == -1)
548 {
549 store_regs (regcache, tid, regno);
550 if (store_fpxregs (regcache, tid, regno))
551 return;
552 store_fpregs (regcache, tid, regno);
553 return;
554 }
555
556 if (GETREGS_SUPPLIES (regno))
557 {
558 store_regs (regcache, tid, regno);
559 return;
560 }
561
562 if (GETFPXREGS_SUPPLIES (regno))
563 {
564 if (store_fpxregs (regcache, tid, regno))
565 return;
566
567 /* Either our processor or our kernel doesn't support the SSE
568 registers, so just write the FP registers in the traditional
569 way. */
570 store_fpregs (regcache, tid, regno);
571 return;
572 }
573
574 internal_error (__FILE__, __LINE__,
575 _("Got request to store bad register number %d."), regno);
576 }
577 \f
578
579 /* Support for debug registers. */
580
581 static unsigned long
582 i386_linux_dr_get (int regnum)
583 {
584 int tid;
585 unsigned long value;
586
587 /* FIXME: kettenis/2001-01-29: It's not clear what we should do with
588 multi-threaded processes here. For now, pretend there is just
589 one thread. */
590 tid = PIDGET (inferior_ptid);
591
592 /* FIXME: kettenis/2001-03-27: Calling perror_with_name if the
593 ptrace call fails breaks debugging remote targets. The correct
594 way to fix this is to add the hardware breakpoint and watchpoint
595 stuff to the target vector. For now, just return zero if the
596 ptrace call fails. */
597 errno = 0;
598 value = ptrace (PTRACE_PEEKUSER, tid,
599 offsetof (struct user, u_debugreg[regnum]), 0);
600 if (errno != 0)
601 #if 0
602 perror_with_name (_("Couldn't read debug register"));
603 #else
604 return 0;
605 #endif
606
607 return value;
608 }
609
610 static void
611 i386_linux_dr_set (int regnum, unsigned long value)
612 {
613 int tid;
614
615 /* FIXME: kettenis/2001-01-29: It's not clear what we should do with
616 multi-threaded processes here. For now, pretend there is just
617 one thread. */
618 tid = PIDGET (inferior_ptid);
619
620 errno = 0;
621 ptrace (PTRACE_POKEUSER, tid,
622 offsetof (struct user, u_debugreg[regnum]), value);
623 if (errno != 0)
624 perror_with_name (_("Couldn't write debug register"));
625 }
626
627 void
628 i386_linux_dr_set_control (unsigned long control)
629 {
630 i386_linux_dr_set (DR_CONTROL, control);
631 }
632
633 void
634 i386_linux_dr_set_addr (int regnum, CORE_ADDR addr)
635 {
636 gdb_assert (regnum >= 0 && regnum <= DR_LASTADDR - DR_FIRSTADDR);
637
638 i386_linux_dr_set (DR_FIRSTADDR + regnum, addr);
639 }
640
641 void
642 i386_linux_dr_reset_addr (int regnum)
643 {
644 gdb_assert (regnum >= 0 && regnum <= DR_LASTADDR - DR_FIRSTADDR);
645
646 i386_linux_dr_set (DR_FIRSTADDR + regnum, 0L);
647 }
648
649 unsigned long
650 i386_linux_dr_get_status (void)
651 {
652 return i386_linux_dr_get (DR_STATUS);
653 }
654 \f
655
656 /* Called by libthread_db. Returns a pointer to the thread local
657 storage (or its descriptor). */
658
659 ps_err_e
660 ps_get_thread_area (const struct ps_prochandle *ph,
661 lwpid_t lwpid, int idx, void **base)
662 {
663 /* NOTE: cagney/2003-08-26: The definition of this buffer is found
664 in the kernel header <asm-i386/ldt.h>. It, after padding, is 4 x
665 4 byte integers in size: `entry_number', `base_addr', `limit',
666 and a bunch of status bits.
667
668 The values returned by this ptrace call should be part of the
669 regcache buffer, and ps_get_thread_area should channel its
670 request through the regcache. That way remote targets could
671 provide the value using the remote protocol and not this direct
672 call.
673
674 Is this function needed? I'm guessing that the `base' is the
675 address of a a descriptor that libthread_db uses to find the
676 thread local address base that GDB needs. Perhaps that
677 descriptor is defined by the ABI. Anyway, given that
678 libthread_db calls this function without prompting (gdb
679 requesting tls base) I guess it needs info in there anyway. */
680 unsigned int desc[4];
681 gdb_assert (sizeof (int) == 4);
682
683 #ifndef PTRACE_GET_THREAD_AREA
684 #define PTRACE_GET_THREAD_AREA 25
685 #endif
686
687 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid,
688 (void *) idx, (unsigned long) &desc) < 0)
689 return PS_ERR;
690
691 *(int *)base = desc[1];
692 return PS_OK;
693 }
694 \f
695
696 /* The instruction for a GNU/Linux system call is:
697 int $0x80
698 or 0xcd 0x80. */
699
700 static const unsigned char linux_syscall[] = { 0xcd, 0x80 };
701
702 #define LINUX_SYSCALL_LEN (sizeof linux_syscall)
703
704 /* The system call number is stored in the %eax register. */
705 #define LINUX_SYSCALL_REGNUM I386_EAX_REGNUM
706
707 /* We are specifically interested in the sigreturn and rt_sigreturn
708 system calls. */
709
710 #ifndef SYS_sigreturn
711 #define SYS_sigreturn 0x77
712 #endif
713 #ifndef SYS_rt_sigreturn
714 #define SYS_rt_sigreturn 0xad
715 #endif
716
717 /* Offset to saved processor flags, from <asm/sigcontext.h>. */
718 #define LINUX_SIGCONTEXT_EFLAGS_OFFSET (64)
719
720 /* Resume execution of the inferior process.
721 If STEP is nonzero, single-step it.
722 If SIGNAL is nonzero, give it that signal. */
723
724 static void
725 i386_linux_resume (ptid_t ptid, int step, enum target_signal signal)
726 {
727 int pid = PIDGET (ptid);
728
729 int request = PTRACE_CONT;
730
731 if (pid == -1)
732 /* Resume all threads. */
733 /* I think this only gets used in the non-threaded case, where "resume
734 all threads" and "resume inferior_ptid" are the same. */
735 pid = PIDGET (inferior_ptid);
736
737 if (step)
738 {
739 struct cleanup *old_chain = save_inferior_ptid ();
740 struct regcache *regcache = current_regcache;
741 ULONGEST pc;
742 gdb_byte buf[LINUX_SYSCALL_LEN];
743
744 request = PTRACE_SINGLESTEP;
745
746 inferior_ptid = pid_to_ptid (pid);
747 regcache_cooked_read_unsigned (regcache, PC_REGNUM, &pc);
748
749 /* Returning from a signal trampoline is done by calling a
750 special system call (sigreturn or rt_sigreturn, see
751 i386-linux-tdep.c for more information). This system call
752 restores the registers that were saved when the signal was
753 raised, including %eflags. That means that single-stepping
754 won't work. Instead, we'll have to modify the signal context
755 that's about to be restored, and set the trace flag there. */
756
757 /* First check if PC is at a system call. */
758 if (read_memory_nobpt (pc, buf, LINUX_SYSCALL_LEN) == 0
759 && memcmp (buf, linux_syscall, LINUX_SYSCALL_LEN) == 0)
760 {
761 ULONGEST syscall;
762 regcache_cooked_read_unsigned (regcache,
763 LINUX_SYSCALL_REGNUM, &syscall);
764
765 /* Then check the system call number. */
766 if (syscall == SYS_sigreturn || syscall == SYS_rt_sigreturn)
767 {
768 ULONGEST sp, addr;
769 unsigned long int eflags;
770
771 regcache_cooked_read_unsigned (regcache, I386_ESP_REGNUM, &sp);
772 if (syscall == SYS_rt_sigreturn)
773 addr = read_memory_integer (sp + 8, 4) + 20;
774 else
775 addr = sp;
776
777 /* Set the trace flag in the context that's about to be
778 restored. */
779 addr += LINUX_SIGCONTEXT_EFLAGS_OFFSET;
780 read_memory (addr, (gdb_byte *) &eflags, 4);
781 eflags |= 0x0100;
782 write_memory (addr, (gdb_byte *) &eflags, 4);
783 }
784 }
785
786 do_cleanups (old_chain);
787 }
788
789 if (ptrace (request, pid, 0, target_signal_to_host (signal)) == -1)
790 perror_with_name (("ptrace"));
791 }
792
793 static void (*super_post_startup_inferior) (ptid_t ptid);
794
795 static void
796 i386_linux_child_post_startup_inferior (ptid_t ptid)
797 {
798 i386_cleanup_dregs ();
799 super_post_startup_inferior (ptid);
800 }
801
802 void
803 _initialize_i386_linux_nat (void)
804 {
805 struct target_ops *t;
806
807 /* Fill in the generic GNU/Linux methods. */
808 t = linux_target ();
809
810 /* Override the default ptrace resume method. */
811 t->to_resume = i386_linux_resume;
812
813 /* Override the GNU/Linux inferior startup hook. */
814 super_post_startup_inferior = t->to_post_startup_inferior;
815 t->to_post_startup_inferior = i386_linux_child_post_startup_inferior;
816
817 /* Add our register access methods. */
818 t->to_fetch_registers = i386_linux_fetch_inferior_registers;
819 t->to_store_registers = i386_linux_store_inferior_registers;
820
821 /* Register the target. */
822 linux_nat_add_target (t);
823 }
This page took 0.047021 seconds and 5 git commands to generate.