windows-nat: Don't change current_event.dwThreadId in handle_output_debug_string()
[deliverable/binutils-gdb.git] / gdb / i386-linux-tdep.c
1 /* Target-dependent code for GNU/Linux i386.
2
3 Copyright (C) 2000-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcore.h"
22 #include "frame.h"
23 #include "value.h"
24 #include "regcache.h"
25 #include "regset.h"
26 #include "inferior.h"
27 #include "osabi.h"
28 #include "reggroups.h"
29 #include "dwarf2-frame.h"
30 #include "i386-tdep.h"
31 #include "i386-linux-tdep.h"
32 #include "linux-tdep.h"
33 #include "glibc-tdep.h"
34 #include "solib-svr4.h"
35 #include "symtab.h"
36 #include "arch-utils.h"
37 #include "xml-syscall.h"
38
39 #include "i387-tdep.h"
40 #include "x86-xstate.h"
41
42 /* The syscall's XML filename for i386. */
43 #define XML_SYSCALL_FILENAME_I386 "syscalls/i386-linux.xml"
44
45 #include "record-full.h"
46 #include "linux-record.h"
47 #include <stdint.h>
48
49 #include "features/i386/i386-linux.c"
50 #include "features/i386/i386-mmx-linux.c"
51 #include "features/i386/i386-mpx-linux.c"
52 #include "features/i386/i386-avx-linux.c"
53 #include "features/i386/i386-avx512-linux.c"
54
55 /* Return non-zero, when the register is in the corresponding register
56 group. Put the LINUX_ORIG_EAX register in the system group. */
57 static int
58 i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
59 struct reggroup *group)
60 {
61 if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
62 return (group == system_reggroup
63 || group == save_reggroup
64 || group == restore_reggroup);
65 return i386_register_reggroup_p (gdbarch, regnum, group);
66 }
67
68 \f
69 /* Recognizing signal handler frames. */
70
71 /* GNU/Linux has two flavors of signals. Normal signal handlers, and
72 "realtime" (RT) signals. The RT signals can provide additional
73 information to the signal handler if the SA_SIGINFO flag is set
74 when establishing a signal handler using `sigaction'. It is not
75 unlikely that future versions of GNU/Linux will support SA_SIGINFO
76 for normal signals too. */
77
78 /* When the i386 Linux kernel calls a signal handler and the
79 SA_RESTORER flag isn't set, the return address points to a bit of
80 code on the stack. This function returns whether the PC appears to
81 be within this bit of code.
82
83 The instruction sequence for normal signals is
84 pop %eax
85 mov $0x77, %eax
86 int $0x80
87 or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
88
89 Checking for the code sequence should be somewhat reliable, because
90 the effect is to call the system call sigreturn. This is unlikely
91 to occur anywhere other than in a signal trampoline.
92
93 It kind of sucks that we have to read memory from the process in
94 order to identify a signal trampoline, but there doesn't seem to be
95 any other way. Therefore we only do the memory reads if no
96 function name could be identified, which should be the case since
97 the code is on the stack.
98
99 Detection of signal trampolines for handlers that set the
100 SA_RESTORER flag is in general not possible. Unfortunately this is
101 what the GNU C Library has been doing for quite some time now.
102 However, as of version 2.1.2, the GNU C Library uses signal
103 trampolines (named __restore and __restore_rt) that are identical
104 to the ones used by the kernel. Therefore, these trampolines are
105 supported too. */
106
107 #define LINUX_SIGTRAMP_INSN0 0x58 /* pop %eax */
108 #define LINUX_SIGTRAMP_OFFSET0 0
109 #define LINUX_SIGTRAMP_INSN1 0xb8 /* mov $NNNN, %eax */
110 #define LINUX_SIGTRAMP_OFFSET1 1
111 #define LINUX_SIGTRAMP_INSN2 0xcd /* int */
112 #define LINUX_SIGTRAMP_OFFSET2 6
113
114 static const gdb_byte linux_sigtramp_code[] =
115 {
116 LINUX_SIGTRAMP_INSN0, /* pop %eax */
117 LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77, %eax */
118 LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */
119 };
120
121 #define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
122
123 /* If THIS_FRAME is a sigtramp routine, return the address of the
124 start of the routine. Otherwise, return 0. */
125
126 static CORE_ADDR
127 i386_linux_sigtramp_start (struct frame_info *this_frame)
128 {
129 CORE_ADDR pc = get_frame_pc (this_frame);
130 gdb_byte buf[LINUX_SIGTRAMP_LEN];
131
132 /* We only recognize a signal trampoline if PC is at the start of
133 one of the three instructions. We optimize for finding the PC at
134 the start, as will be the case when the trampoline is not the
135 first frame on the stack. We assume that in the case where the
136 PC is not at the start of the instruction sequence, there will be
137 a few trailing readable bytes on the stack. */
138
139 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
140 return 0;
141
142 if (buf[0] != LINUX_SIGTRAMP_INSN0)
143 {
144 int adjust;
145
146 switch (buf[0])
147 {
148 case LINUX_SIGTRAMP_INSN1:
149 adjust = LINUX_SIGTRAMP_OFFSET1;
150 break;
151 case LINUX_SIGTRAMP_INSN2:
152 adjust = LINUX_SIGTRAMP_OFFSET2;
153 break;
154 default:
155 return 0;
156 }
157
158 pc -= adjust;
159
160 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
161 return 0;
162 }
163
164 if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
165 return 0;
166
167 return pc;
168 }
169
170 /* This function does the same for RT signals. Here the instruction
171 sequence is
172 mov $0xad, %eax
173 int $0x80
174 or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
175
176 The effect is to call the system call rt_sigreturn. */
177
178 #define LINUX_RT_SIGTRAMP_INSN0 0xb8 /* mov $NNNN, %eax */
179 #define LINUX_RT_SIGTRAMP_OFFSET0 0
180 #define LINUX_RT_SIGTRAMP_INSN1 0xcd /* int */
181 #define LINUX_RT_SIGTRAMP_OFFSET1 5
182
183 static const gdb_byte linux_rt_sigtramp_code[] =
184 {
185 LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00, /* mov $0xad, %eax */
186 LINUX_RT_SIGTRAMP_INSN1, 0x80 /* int $0x80 */
187 };
188
189 #define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
190
191 /* If THIS_FRAME is an RT sigtramp routine, return the address of the
192 start of the routine. Otherwise, return 0. */
193
194 static CORE_ADDR
195 i386_linux_rt_sigtramp_start (struct frame_info *this_frame)
196 {
197 CORE_ADDR pc = get_frame_pc (this_frame);
198 gdb_byte buf[LINUX_RT_SIGTRAMP_LEN];
199
200 /* We only recognize a signal trampoline if PC is at the start of
201 one of the two instructions. We optimize for finding the PC at
202 the start, as will be the case when the trampoline is not the
203 first frame on the stack. We assume that in the case where the
204 PC is not at the start of the instruction sequence, there will be
205 a few trailing readable bytes on the stack. */
206
207 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_RT_SIGTRAMP_LEN))
208 return 0;
209
210 if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
211 {
212 if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
213 return 0;
214
215 pc -= LINUX_RT_SIGTRAMP_OFFSET1;
216
217 if (!safe_frame_unwind_memory (this_frame, pc, buf,
218 LINUX_RT_SIGTRAMP_LEN))
219 return 0;
220 }
221
222 if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
223 return 0;
224
225 return pc;
226 }
227
228 /* Return whether THIS_FRAME corresponds to a GNU/Linux sigtramp
229 routine. */
230
231 static int
232 i386_linux_sigtramp_p (struct frame_info *this_frame)
233 {
234 CORE_ADDR pc = get_frame_pc (this_frame);
235 const char *name;
236
237 find_pc_partial_function (pc, &name, NULL, NULL);
238
239 /* If we have NAME, we can optimize the search. The trampolines are
240 named __restore and __restore_rt. However, they aren't dynamically
241 exported from the shared C library, so the trampoline may appear to
242 be part of the preceding function. This should always be sigaction,
243 __sigaction, or __libc_sigaction (all aliases to the same function). */
244 if (name == NULL || strstr (name, "sigaction") != NULL)
245 return (i386_linux_sigtramp_start (this_frame) != 0
246 || i386_linux_rt_sigtramp_start (this_frame) != 0);
247
248 return (strcmp ("__restore", name) == 0
249 || strcmp ("__restore_rt", name) == 0);
250 }
251
252 /* Return one if the PC of THIS_FRAME is in a signal trampoline which
253 may have DWARF-2 CFI. */
254
255 static int
256 i386_linux_dwarf_signal_frame_p (struct gdbarch *gdbarch,
257 struct frame_info *this_frame)
258 {
259 CORE_ADDR pc = get_frame_pc (this_frame);
260 const char *name;
261
262 find_pc_partial_function (pc, &name, NULL, NULL);
263
264 /* If a vsyscall DSO is in use, the signal trampolines may have these
265 names. */
266 if (name && (strcmp (name, "__kernel_sigreturn") == 0
267 || strcmp (name, "__kernel_rt_sigreturn") == 0))
268 return 1;
269
270 return 0;
271 }
272
273 /* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>. */
274 #define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20
275
276 /* Assuming THIS_FRAME is a GNU/Linux sigtramp routine, return the
277 address of the associated sigcontext structure. */
278
279 static CORE_ADDR
280 i386_linux_sigcontext_addr (struct frame_info *this_frame)
281 {
282 struct gdbarch *gdbarch = get_frame_arch (this_frame);
283 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
284 CORE_ADDR pc;
285 CORE_ADDR sp;
286 gdb_byte buf[4];
287
288 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
289 sp = extract_unsigned_integer (buf, 4, byte_order);
290
291 pc = i386_linux_sigtramp_start (this_frame);
292 if (pc)
293 {
294 /* The sigcontext structure lives on the stack, right after
295 the signum argument. We determine the address of the
296 sigcontext structure by looking at the frame's stack
297 pointer. Keep in mind that the first instruction of the
298 sigtramp code is "pop %eax". If the PC is after this
299 instruction, adjust the returned value accordingly. */
300 if (pc == get_frame_pc (this_frame))
301 return sp + 4;
302 return sp;
303 }
304
305 pc = i386_linux_rt_sigtramp_start (this_frame);
306 if (pc)
307 {
308 CORE_ADDR ucontext_addr;
309
310 /* The sigcontext structure is part of the user context. A
311 pointer to the user context is passed as the third argument
312 to the signal handler. */
313 read_memory (sp + 8, buf, 4);
314 ucontext_addr = extract_unsigned_integer (buf, 4, byte_order);
315 return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
316 }
317
318 error (_("Couldn't recognize signal trampoline."));
319 return 0;
320 }
321
322 /* Set the program counter for process PTID to PC. */
323
324 static void
325 i386_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
326 {
327 regcache_cooked_write_unsigned (regcache, I386_EIP_REGNUM, pc);
328
329 /* We must be careful with modifying the program counter. If we
330 just interrupted a system call, the kernel might try to restart
331 it when we resume the inferior. On restarting the system call,
332 the kernel will try backing up the program counter even though it
333 no longer points at the system call. This typically results in a
334 SIGSEGV or SIGILL. We can prevent this by writing `-1' in the
335 "orig_eax" pseudo-register.
336
337 Note that "orig_eax" is saved when setting up a dummy call frame.
338 This means that it is properly restored when that frame is
339 popped, and that the interrupted system call will be restarted
340 when we resume the inferior on return from a function call from
341 within GDB. In all other cases the system call will not be
342 restarted. */
343 regcache_cooked_write_unsigned (regcache, I386_LINUX_ORIG_EAX_REGNUM, -1);
344 }
345
346 /* Record all registers but IP register for process-record. */
347
348 static int
349 i386_all_but_ip_registers_record (struct regcache *regcache)
350 {
351 if (record_full_arch_list_add_reg (regcache, I386_EAX_REGNUM))
352 return -1;
353 if (record_full_arch_list_add_reg (regcache, I386_ECX_REGNUM))
354 return -1;
355 if (record_full_arch_list_add_reg (regcache, I386_EDX_REGNUM))
356 return -1;
357 if (record_full_arch_list_add_reg (regcache, I386_EBX_REGNUM))
358 return -1;
359 if (record_full_arch_list_add_reg (regcache, I386_ESP_REGNUM))
360 return -1;
361 if (record_full_arch_list_add_reg (regcache, I386_EBP_REGNUM))
362 return -1;
363 if (record_full_arch_list_add_reg (regcache, I386_ESI_REGNUM))
364 return -1;
365 if (record_full_arch_list_add_reg (regcache, I386_EDI_REGNUM))
366 return -1;
367 if (record_full_arch_list_add_reg (regcache, I386_EFLAGS_REGNUM))
368 return -1;
369
370 return 0;
371 }
372
373 /* i386_canonicalize_syscall maps from the native i386 Linux set
374 of syscall ids into a canonical set of syscall ids used by
375 process record (a mostly trivial mapping, since the canonical
376 set was originally taken from the i386 set). */
377
378 static enum gdb_syscall
379 i386_canonicalize_syscall (int syscall)
380 {
381 enum { i386_syscall_max = 499 };
382
383 if (syscall <= i386_syscall_max)
384 return syscall;
385 else
386 return -1;
387 }
388
389 /* Parse the arguments of current system call instruction and record
390 the values of the registers and memory that will be changed into
391 "record_arch_list". This instruction is "int 0x80" (Linux
392 Kernel2.4) or "sysenter" (Linux Kernel 2.6).
393
394 Return -1 if something wrong. */
395
396 static struct linux_record_tdep i386_linux_record_tdep;
397
398 static int
399 i386_linux_intx80_sysenter_syscall_record (struct regcache *regcache)
400 {
401 int ret;
402 LONGEST syscall_native;
403 enum gdb_syscall syscall_gdb;
404
405 regcache_raw_read_signed (regcache, I386_EAX_REGNUM, &syscall_native);
406
407 syscall_gdb = i386_canonicalize_syscall (syscall_native);
408
409 if (syscall_gdb < 0)
410 {
411 printf_unfiltered (_("Process record and replay target doesn't "
412 "support syscall number %s\n"),
413 plongest (syscall_native));
414 return -1;
415 }
416
417 if (syscall_gdb == gdb_sys_sigreturn
418 || syscall_gdb == gdb_sys_rt_sigreturn)
419 {
420 if (i386_all_but_ip_registers_record (regcache))
421 return -1;
422 return 0;
423 }
424
425 ret = record_linux_system_call (syscall_gdb, regcache,
426 &i386_linux_record_tdep);
427 if (ret)
428 return ret;
429
430 /* Record the return value of the system call. */
431 if (record_full_arch_list_add_reg (regcache, I386_EAX_REGNUM))
432 return -1;
433
434 return 0;
435 }
436
437 #define I386_LINUX_xstate 270
438 #define I386_LINUX_frame_size 732
439
440 static int
441 i386_linux_record_signal (struct gdbarch *gdbarch,
442 struct regcache *regcache,
443 enum gdb_signal signal)
444 {
445 ULONGEST esp;
446
447 if (i386_all_but_ip_registers_record (regcache))
448 return -1;
449
450 if (record_full_arch_list_add_reg (regcache, I386_EIP_REGNUM))
451 return -1;
452
453 /* Record the change in the stack. */
454 regcache_raw_read_unsigned (regcache, I386_ESP_REGNUM, &esp);
455 /* This is for xstate.
456 sp -= sizeof (struct _fpstate); */
457 esp -= I386_LINUX_xstate;
458 /* This is for frame_size.
459 sp -= sizeof (struct rt_sigframe); */
460 esp -= I386_LINUX_frame_size;
461 if (record_full_arch_list_add_mem (esp,
462 I386_LINUX_xstate + I386_LINUX_frame_size))
463 return -1;
464
465 if (record_full_arch_list_add_end ())
466 return -1;
467
468 return 0;
469 }
470 \f
471
472 /* Core of the implementation for gdbarch get_syscall_number. Get pending
473 syscall number from REGCACHE. If there is no pending syscall -1 will be
474 returned. Pending syscall means ptrace has stepped into the syscall but
475 another ptrace call will step out. PC is right after the int $0x80
476 / syscall / sysenter instruction in both cases, PC does not change during
477 the second ptrace step. */
478
479 static LONGEST
480 i386_linux_get_syscall_number_from_regcache (struct regcache *regcache)
481 {
482 struct gdbarch *gdbarch = get_regcache_arch (regcache);
483 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
484 /* The content of a register. */
485 gdb_byte buf[4];
486 /* The result. */
487 LONGEST ret;
488
489 /* Getting the system call number from the register.
490 When dealing with x86 architecture, this information
491 is stored at %eax register. */
492 regcache_cooked_read (regcache, I386_LINUX_ORIG_EAX_REGNUM, buf);
493
494 ret = extract_signed_integer (buf, 4, byte_order);
495
496 return ret;
497 }
498
499 /* Wrapper for i386_linux_get_syscall_number_from_regcache to make it
500 compatible with gdbarch get_syscall_number method prototype. */
501
502 static LONGEST
503 i386_linux_get_syscall_number (struct gdbarch *gdbarch,
504 ptid_t ptid)
505 {
506 struct regcache *regcache = get_thread_regcache (ptid);
507
508 return i386_linux_get_syscall_number_from_regcache (regcache);
509 }
510
511 /* The register sets used in GNU/Linux ELF core-dumps are identical to
512 the register sets in `struct user' that are used for a.out
513 core-dumps. These are also used by ptrace(2). The corresponding
514 types are `elf_gregset_t' for the general-purpose registers (with
515 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
516 for the floating-point registers.
517
518 Those types used to be available under the names `gregset_t' and
519 `fpregset_t' too, and GDB used those names in the past. But those
520 names are now used for the register sets used in the `mcontext_t'
521 type, which have a different size and layout. */
522
523 /* Mapping between the general-purpose registers in `struct user'
524 format and GDB's register cache layout. */
525
526 /* From <sys/reg.h>. */
527 int i386_linux_gregset_reg_offset[] =
528 {
529 6 * 4, /* %eax */
530 1 * 4, /* %ecx */
531 2 * 4, /* %edx */
532 0 * 4, /* %ebx */
533 15 * 4, /* %esp */
534 5 * 4, /* %ebp */
535 3 * 4, /* %esi */
536 4 * 4, /* %edi */
537 12 * 4, /* %eip */
538 14 * 4, /* %eflags */
539 13 * 4, /* %cs */
540 16 * 4, /* %ss */
541 7 * 4, /* %ds */
542 8 * 4, /* %es */
543 9 * 4, /* %fs */
544 10 * 4, /* %gs */
545 -1, -1, -1, -1, -1, -1, -1, -1,
546 -1, -1, -1, -1, -1, -1, -1, -1,
547 -1, -1, -1, -1, -1, -1, -1, -1,
548 -1,
549 -1, -1, -1, -1, -1, -1, -1, -1,
550 -1, -1, -1, -1, /* MPX registers BND0 ... BND3. */
551 -1, -1, /* MPX registers BNDCFGU, BNDSTATUS. */
552 -1, -1, -1, -1, -1, -1, -1, -1, /* k0 ... k7 (AVX512) */
553 -1, -1, -1, -1, -1, -1, -1, -1, /* zmm0 ... zmm7 (AVX512) */
554 11 * 4, /* "orig_eax" */
555 };
556
557 /* Mapping between the general-purpose registers in `struct
558 sigcontext' format and GDB's register cache layout. */
559
560 /* From <asm/sigcontext.h>. */
561 static int i386_linux_sc_reg_offset[] =
562 {
563 11 * 4, /* %eax */
564 10 * 4, /* %ecx */
565 9 * 4, /* %edx */
566 8 * 4, /* %ebx */
567 7 * 4, /* %esp */
568 6 * 4, /* %ebp */
569 5 * 4, /* %esi */
570 4 * 4, /* %edi */
571 14 * 4, /* %eip */
572 16 * 4, /* %eflags */
573 15 * 4, /* %cs */
574 18 * 4, /* %ss */
575 3 * 4, /* %ds */
576 2 * 4, /* %es */
577 1 * 4, /* %fs */
578 0 * 4 /* %gs */
579 };
580
581 /* Get XSAVE extended state xcr0 from core dump. */
582
583 uint64_t
584 i386_linux_core_read_xcr0 (bfd *abfd)
585 {
586 asection *xstate = bfd_get_section_by_name (abfd, ".reg-xstate");
587 uint64_t xcr0;
588
589 if (xstate)
590 {
591 size_t size = bfd_section_size (abfd, xstate);
592
593 /* Check extended state size. */
594 if (size < X86_XSTATE_AVX_SIZE)
595 xcr0 = X86_XSTATE_SSE_MASK;
596 else
597 {
598 char contents[8];
599
600 if (! bfd_get_section_contents (abfd, xstate, contents,
601 I386_LINUX_XSAVE_XCR0_OFFSET,
602 8))
603 {
604 warning (_("Couldn't read `xcr0' bytes from "
605 "`.reg-xstate' section in core file."));
606 return 0;
607 }
608
609 xcr0 = bfd_get_64 (abfd, contents);
610 }
611 }
612 else
613 xcr0 = 0;
614
615 return xcr0;
616 }
617
618 /* Get Linux/x86 target description from core dump. */
619
620 static const struct target_desc *
621 i386_linux_core_read_description (struct gdbarch *gdbarch,
622 struct target_ops *target,
623 bfd *abfd)
624 {
625 /* Linux/i386. */
626 uint64_t xcr0 = i386_linux_core_read_xcr0 (abfd);
627
628 switch ((xcr0 & X86_XSTATE_ALL_MASK))
629 {
630 case X86_XSTATE_MPX_AVX512_MASK:
631 case X86_XSTATE_AVX512_MASK:
632 return tdesc_i386_avx512_linux;
633 case X86_XSTATE_MPX_MASK:
634 return tdesc_i386_mpx_linux;
635 case X86_XSTATE_AVX_MASK:
636 return tdesc_i386_avx_linux;
637 case X86_XSTATE_SSE_MASK:
638 return tdesc_i386_linux;
639 case X86_XSTATE_X87_MASK:
640 return tdesc_i386_mmx_linux;
641 default:
642 break;
643 }
644
645 if (bfd_get_section_by_name (abfd, ".reg-xfp") != NULL)
646 return tdesc_i386_linux;
647 else
648 return tdesc_i386_mmx_linux;
649 }
650
651 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
652
653 static void
654 i386_linux_supply_xstateregset (const struct regset *regset,
655 struct regcache *regcache, int regnum,
656 const void *xstateregs, size_t len)
657 {
658 i387_supply_xsave (regcache, regnum, xstateregs);
659 }
660
661 /* Similar to i386_collect_fpregset, but use XSAVE extended state. */
662
663 static void
664 i386_linux_collect_xstateregset (const struct regset *regset,
665 const struct regcache *regcache,
666 int regnum, void *xstateregs, size_t len)
667 {
668 i387_collect_xsave (regcache, regnum, xstateregs, 1);
669 }
670
671 /* Register set definitions. */
672
673 static const struct regset i386_linux_xstateregset =
674 {
675 NULL,
676 i386_linux_supply_xstateregset,
677 i386_linux_collect_xstateregset
678 };
679
680 /* Iterate over core file register note sections. */
681
682 static void
683 i386_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
684 iterate_over_regset_sections_cb *cb,
685 void *cb_data,
686 const struct regcache *regcache)
687 {
688 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
689
690 cb (".reg", 68, &i386_gregset, NULL, cb_data);
691
692 if (tdep->xcr0 & X86_XSTATE_AVX)
693 cb (".reg-xstate", X86_XSTATE_SIZE (tdep->xcr0),
694 &i386_linux_xstateregset, "XSAVE extended state", cb_data);
695 else if (tdep->xcr0 & X86_XSTATE_SSE)
696 cb (".reg-xfp", 512, &i386_fpregset, "extended floating-point",
697 cb_data);
698 else
699 cb (".reg2", 108, &i386_fpregset, NULL, cb_data);
700 }
701
702 /* Linux kernel shows PC value after the 'int $0x80' instruction even if
703 inferior is still inside the syscall. On next PTRACE_SINGLESTEP it will
704 finish the syscall but PC will not change.
705
706 Some vDSOs contain 'int $0x80; ret' and during stepping out of the syscall
707 i386_displaced_step_fixup would keep PC at the displaced pad location.
708 As PC is pointing to the 'ret' instruction before the step
709 i386_displaced_step_fixup would expect inferior has just executed that 'ret'
710 and PC should not be adjusted. In reality it finished syscall instead and
711 PC should get relocated back to its vDSO address. Hide the 'ret'
712 instruction by 'nop' so that i386_displaced_step_fixup is not confused.
713
714 It is not fully correct as the bytes in struct displaced_step_closure will
715 not match the inferior code. But we would need some new flag in
716 displaced_step_closure otherwise to keep the state that syscall is finishing
717 for the later i386_displaced_step_fixup execution as the syscall execution
718 is already no longer detectable there. The new flag field would mean
719 i386-linux-tdep.c needs to wrap all the displacement methods of i386-tdep.c
720 which does not seem worth it. The same effect is achieved by patching that
721 'nop' instruction there instead. */
722
723 static struct displaced_step_closure *
724 i386_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
725 CORE_ADDR from, CORE_ADDR to,
726 struct regcache *regs)
727 {
728 struct displaced_step_closure *closure;
729
730 closure = i386_displaced_step_copy_insn (gdbarch, from, to, regs);
731
732 if (i386_linux_get_syscall_number_from_regcache (regs) != -1)
733 {
734 /* Since we use simple_displaced_step_copy_insn, our closure is a
735 copy of the instruction. */
736 gdb_byte *insn = (gdb_byte *) closure;
737
738 /* Fake nop. */
739 insn[0] = 0x90;
740 }
741
742 return closure;
743 }
744
745 static void
746 i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
747 {
748 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
749 const struct target_desc *tdesc = info.target_desc;
750 struct tdesc_arch_data *tdesc_data = (void *) info.tdep_info;
751 const struct tdesc_feature *feature;
752 int valid_p;
753
754 gdb_assert (tdesc_data);
755
756 linux_init_abi (info, gdbarch);
757
758 /* GNU/Linux uses ELF. */
759 i386_elf_init_abi (info, gdbarch);
760
761 /* Reserve a number for orig_eax. */
762 set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS);
763
764 if (! tdesc_has_registers (tdesc))
765 tdesc = tdesc_i386_linux;
766 tdep->tdesc = tdesc;
767
768 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.linux");
769 if (feature == NULL)
770 return;
771
772 valid_p = tdesc_numbered_register (feature, tdesc_data,
773 I386_LINUX_ORIG_EAX_REGNUM,
774 "orig_eax");
775 if (!valid_p)
776 return;
777
778 /* Add the %orig_eax register used for syscall restarting. */
779 set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
780
781 tdep->register_reggroup_p = i386_linux_register_reggroup_p;
782
783 tdep->gregset_reg_offset = i386_linux_gregset_reg_offset;
784 tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset);
785 tdep->sizeof_gregset = 17 * 4;
786
787 tdep->jb_pc_offset = 20; /* From <bits/setjmp.h>. */
788
789 tdep->sigtramp_p = i386_linux_sigtramp_p;
790 tdep->sigcontext_addr = i386_linux_sigcontext_addr;
791 tdep->sc_reg_offset = i386_linux_sc_reg_offset;
792 tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset);
793
794 tdep->xsave_xcr0_offset = I386_LINUX_XSAVE_XCR0_OFFSET;
795
796 set_gdbarch_process_record (gdbarch, i386_process_record);
797 set_gdbarch_process_record_signal (gdbarch, i386_linux_record_signal);
798
799 /* Initialize the i386_linux_record_tdep. */
800 /* These values are the size of the type that will be used in a system
801 call. They are obtained from Linux Kernel source. */
802 i386_linux_record_tdep.size_pointer
803 = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
804 i386_linux_record_tdep.size__old_kernel_stat = 32;
805 i386_linux_record_tdep.size_tms = 16;
806 i386_linux_record_tdep.size_loff_t = 8;
807 i386_linux_record_tdep.size_flock = 16;
808 i386_linux_record_tdep.size_oldold_utsname = 45;
809 i386_linux_record_tdep.size_ustat = 20;
810 i386_linux_record_tdep.size_old_sigaction = 140;
811 i386_linux_record_tdep.size_old_sigset_t = 128;
812 i386_linux_record_tdep.size_rlimit = 8;
813 i386_linux_record_tdep.size_rusage = 72;
814 i386_linux_record_tdep.size_timeval = 8;
815 i386_linux_record_tdep.size_timezone = 8;
816 i386_linux_record_tdep.size_old_gid_t = 2;
817 i386_linux_record_tdep.size_old_uid_t = 2;
818 i386_linux_record_tdep.size_fd_set = 128;
819 i386_linux_record_tdep.size_dirent = 268;
820 i386_linux_record_tdep.size_dirent64 = 276;
821 i386_linux_record_tdep.size_statfs = 64;
822 i386_linux_record_tdep.size_statfs64 = 84;
823 i386_linux_record_tdep.size_sockaddr = 16;
824 i386_linux_record_tdep.size_int
825 = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
826 i386_linux_record_tdep.size_long
827 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
828 i386_linux_record_tdep.size_ulong
829 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
830 i386_linux_record_tdep.size_msghdr = 28;
831 i386_linux_record_tdep.size_itimerval = 16;
832 i386_linux_record_tdep.size_stat = 88;
833 i386_linux_record_tdep.size_old_utsname = 325;
834 i386_linux_record_tdep.size_sysinfo = 64;
835 i386_linux_record_tdep.size_msqid_ds = 88;
836 i386_linux_record_tdep.size_shmid_ds = 84;
837 i386_linux_record_tdep.size_new_utsname = 390;
838 i386_linux_record_tdep.size_timex = 128;
839 i386_linux_record_tdep.size_mem_dqinfo = 24;
840 i386_linux_record_tdep.size_if_dqblk = 68;
841 i386_linux_record_tdep.size_fs_quota_stat = 68;
842 i386_linux_record_tdep.size_timespec = 8;
843 i386_linux_record_tdep.size_pollfd = 8;
844 i386_linux_record_tdep.size_NFS_FHSIZE = 32;
845 i386_linux_record_tdep.size_knfsd_fh = 132;
846 i386_linux_record_tdep.size_TASK_COMM_LEN = 16;
847 i386_linux_record_tdep.size_sigaction = 140;
848 i386_linux_record_tdep.size_sigset_t = 8;
849 i386_linux_record_tdep.size_siginfo_t = 128;
850 i386_linux_record_tdep.size_cap_user_data_t = 12;
851 i386_linux_record_tdep.size_stack_t = 12;
852 i386_linux_record_tdep.size_off_t = i386_linux_record_tdep.size_long;
853 i386_linux_record_tdep.size_stat64 = 96;
854 i386_linux_record_tdep.size_gid_t = 2;
855 i386_linux_record_tdep.size_uid_t = 2;
856 i386_linux_record_tdep.size_PAGE_SIZE = 4096;
857 i386_linux_record_tdep.size_flock64 = 24;
858 i386_linux_record_tdep.size_user_desc = 16;
859 i386_linux_record_tdep.size_io_event = 32;
860 i386_linux_record_tdep.size_iocb = 64;
861 i386_linux_record_tdep.size_epoll_event = 12;
862 i386_linux_record_tdep.size_itimerspec
863 = i386_linux_record_tdep.size_timespec * 2;
864 i386_linux_record_tdep.size_mq_attr = 32;
865 i386_linux_record_tdep.size_siginfo = 128;
866 i386_linux_record_tdep.size_termios = 36;
867 i386_linux_record_tdep.size_termios2 = 44;
868 i386_linux_record_tdep.size_pid_t = 4;
869 i386_linux_record_tdep.size_winsize = 8;
870 i386_linux_record_tdep.size_serial_struct = 60;
871 i386_linux_record_tdep.size_serial_icounter_struct = 80;
872 i386_linux_record_tdep.size_hayes_esp_config = 12;
873 i386_linux_record_tdep.size_size_t = 4;
874 i386_linux_record_tdep.size_iovec = 8;
875
876 /* These values are the second argument of system call "sys_ioctl".
877 They are obtained from Linux Kernel source. */
878 i386_linux_record_tdep.ioctl_TCGETS = 0x5401;
879 i386_linux_record_tdep.ioctl_TCSETS = 0x5402;
880 i386_linux_record_tdep.ioctl_TCSETSW = 0x5403;
881 i386_linux_record_tdep.ioctl_TCSETSF = 0x5404;
882 i386_linux_record_tdep.ioctl_TCGETA = 0x5405;
883 i386_linux_record_tdep.ioctl_TCSETA = 0x5406;
884 i386_linux_record_tdep.ioctl_TCSETAW = 0x5407;
885 i386_linux_record_tdep.ioctl_TCSETAF = 0x5408;
886 i386_linux_record_tdep.ioctl_TCSBRK = 0x5409;
887 i386_linux_record_tdep.ioctl_TCXONC = 0x540A;
888 i386_linux_record_tdep.ioctl_TCFLSH = 0x540B;
889 i386_linux_record_tdep.ioctl_TIOCEXCL = 0x540C;
890 i386_linux_record_tdep.ioctl_TIOCNXCL = 0x540D;
891 i386_linux_record_tdep.ioctl_TIOCSCTTY = 0x540E;
892 i386_linux_record_tdep.ioctl_TIOCGPGRP = 0x540F;
893 i386_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
894 i386_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
895 i386_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
896 i386_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
897 i386_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
898 i386_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
899 i386_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
900 i386_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
901 i386_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
902 i386_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
903 i386_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541A;
904 i386_linux_record_tdep.ioctl_FIONREAD = 0x541B;
905 i386_linux_record_tdep.ioctl_TIOCINQ = i386_linux_record_tdep.ioctl_FIONREAD;
906 i386_linux_record_tdep.ioctl_TIOCLINUX = 0x541C;
907 i386_linux_record_tdep.ioctl_TIOCCONS = 0x541D;
908 i386_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541E;
909 i386_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541F;
910 i386_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
911 i386_linux_record_tdep.ioctl_FIONBIO = 0x5421;
912 i386_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
913 i386_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
914 i386_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
915 i386_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
916 i386_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
917 i386_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
918 i386_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
919 i386_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
920 i386_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
921 i386_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
922 i386_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
923 i386_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
924 i386_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
925 i386_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
926 i386_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
927 i386_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
928 i386_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
929 i386_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
930 i386_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
931 i386_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
932 i386_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
933 i386_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
934 i386_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
935 i386_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
936 i386_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545A;
937 i386_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545B;
938 i386_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545C;
939 i386_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545D;
940 i386_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545E;
941 i386_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545F;
942 i386_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
943
944 /* These values are the second argument of system call "sys_fcntl"
945 and "sys_fcntl64". They are obtained from Linux Kernel source. */
946 i386_linux_record_tdep.fcntl_F_GETLK = 5;
947 i386_linux_record_tdep.fcntl_F_GETLK64 = 12;
948 i386_linux_record_tdep.fcntl_F_SETLK64 = 13;
949 i386_linux_record_tdep.fcntl_F_SETLKW64 = 14;
950
951 i386_linux_record_tdep.arg1 = I386_EBX_REGNUM;
952 i386_linux_record_tdep.arg2 = I386_ECX_REGNUM;
953 i386_linux_record_tdep.arg3 = I386_EDX_REGNUM;
954 i386_linux_record_tdep.arg4 = I386_ESI_REGNUM;
955 i386_linux_record_tdep.arg5 = I386_EDI_REGNUM;
956 i386_linux_record_tdep.arg6 = I386_EBP_REGNUM;
957
958 tdep->i386_intx80_record = i386_linux_intx80_sysenter_syscall_record;
959 tdep->i386_sysenter_record = i386_linux_intx80_sysenter_syscall_record;
960 tdep->i386_syscall_record = i386_linux_intx80_sysenter_syscall_record;
961
962 /* N_FUN symbols in shared libaries have 0 for their values and need
963 to be relocated. */
964 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
965
966 /* GNU/Linux uses SVR4-style shared libraries. */
967 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
968 set_solib_svr4_fetch_link_map_offsets
969 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
970
971 /* GNU/Linux uses the dynamic linker included in the GNU C Library. */
972 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
973
974 dwarf2_frame_set_signal_frame_p (gdbarch, i386_linux_dwarf_signal_frame_p);
975
976 /* Enable TLS support. */
977 set_gdbarch_fetch_tls_load_module_address (gdbarch,
978 svr4_fetch_objfile_link_map);
979
980 /* Core file support. */
981 set_gdbarch_iterate_over_regset_sections
982 (gdbarch, i386_linux_iterate_over_regset_sections);
983 set_gdbarch_core_read_description (gdbarch,
984 i386_linux_core_read_description);
985
986 /* Displaced stepping. */
987 set_gdbarch_displaced_step_copy_insn (gdbarch,
988 i386_linux_displaced_step_copy_insn);
989 set_gdbarch_displaced_step_fixup (gdbarch, i386_displaced_step_fixup);
990 set_gdbarch_displaced_step_free_closure (gdbarch,
991 simple_displaced_step_free_closure);
992 set_gdbarch_displaced_step_location (gdbarch,
993 linux_displaced_step_location);
994
995 /* Functions for 'catch syscall'. */
996 set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_I386);
997 set_gdbarch_get_syscall_number (gdbarch,
998 i386_linux_get_syscall_number);
999
1000 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
1001 }
1002
1003 /* Provide a prototype to silence -Wmissing-prototypes. */
1004 extern void _initialize_i386_linux_tdep (void);
1005
1006 void
1007 _initialize_i386_linux_tdep (void)
1008 {
1009 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
1010 i386_linux_init_abi);
1011
1012 /* Initialize the Linux target description. */
1013 initialize_tdesc_i386_linux ();
1014 initialize_tdesc_i386_mmx_linux ();
1015 initialize_tdesc_i386_avx_linux ();
1016 initialize_tdesc_i386_mpx_linux ();
1017 initialize_tdesc_i386_avx512_linux ();
1018 }
This page took 0.050476 seconds and 4 git commands to generate.