2009-08-10 Hui Zhu <teawater@gmail.com>
[deliverable/binutils-gdb.git] / gdb / i386-linux-tdep.c
1 /* Target-dependent code for GNU/Linux i386.
2
3 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdbcore.h"
23 #include "frame.h"
24 #include "value.h"
25 #include "regcache.h"
26 #include "inferior.h"
27 #include "osabi.h"
28 #include "reggroups.h"
29 #include "dwarf2-frame.h"
30 #include "gdb_string.h"
31
32 #include "i386-tdep.h"
33 #include "i386-linux-tdep.h"
34 #include "linux-tdep.h"
35 #include "glibc-tdep.h"
36 #include "solib-svr4.h"
37 #include "symtab.h"
38 #include "arch-utils.h"
39 #include "regset.h"
40
41 #include "record.h"
42 #include "linux-record.h"
43 #include <stdint.h>
44
45 /* Supported register note sections. */
46 static struct core_regset_section i386_linux_regset_sections[] =
47 {
48 { ".reg", 144 },
49 { ".reg2", 108 },
50 { ".reg-xfp", 512 },
51 { NULL, 0 }
52 };
53
54 /* Return the name of register REG. */
55
56 static const char *
57 i386_linux_register_name (struct gdbarch *gdbarch, int reg)
58 {
59 /* Deal with the extra "orig_eax" pseudo register. */
60 if (reg == I386_LINUX_ORIG_EAX_REGNUM)
61 return "orig_eax";
62
63 return i386_register_name (gdbarch, reg);
64 }
65
66 /* Return non-zero, when the register is in the corresponding register
67 group. Put the LINUX_ORIG_EAX register in the system group. */
68 static int
69 i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
70 struct reggroup *group)
71 {
72 if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
73 return (group == system_reggroup
74 || group == save_reggroup
75 || group == restore_reggroup);
76 return i386_register_reggroup_p (gdbarch, regnum, group);
77 }
78
79 \f
80 /* Recognizing signal handler frames. */
81
82 /* GNU/Linux has two flavors of signals. Normal signal handlers, and
83 "realtime" (RT) signals. The RT signals can provide additional
84 information to the signal handler if the SA_SIGINFO flag is set
85 when establishing a signal handler using `sigaction'. It is not
86 unlikely that future versions of GNU/Linux will support SA_SIGINFO
87 for normal signals too. */
88
89 /* When the i386 Linux kernel calls a signal handler and the
90 SA_RESTORER flag isn't set, the return address points to a bit of
91 code on the stack. This function returns whether the PC appears to
92 be within this bit of code.
93
94 The instruction sequence for normal signals is
95 pop %eax
96 mov $0x77, %eax
97 int $0x80
98 or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
99
100 Checking for the code sequence should be somewhat reliable, because
101 the effect is to call the system call sigreturn. This is unlikely
102 to occur anywhere other than in a signal trampoline.
103
104 It kind of sucks that we have to read memory from the process in
105 order to identify a signal trampoline, but there doesn't seem to be
106 any other way. Therefore we only do the memory reads if no
107 function name could be identified, which should be the case since
108 the code is on the stack.
109
110 Detection of signal trampolines for handlers that set the
111 SA_RESTORER flag is in general not possible. Unfortunately this is
112 what the GNU C Library has been doing for quite some time now.
113 However, as of version 2.1.2, the GNU C Library uses signal
114 trampolines (named __restore and __restore_rt) that are identical
115 to the ones used by the kernel. Therefore, these trampolines are
116 supported too. */
117
118 #define LINUX_SIGTRAMP_INSN0 0x58 /* pop %eax */
119 #define LINUX_SIGTRAMP_OFFSET0 0
120 #define LINUX_SIGTRAMP_INSN1 0xb8 /* mov $NNNN, %eax */
121 #define LINUX_SIGTRAMP_OFFSET1 1
122 #define LINUX_SIGTRAMP_INSN2 0xcd /* int */
123 #define LINUX_SIGTRAMP_OFFSET2 6
124
125 static const gdb_byte linux_sigtramp_code[] =
126 {
127 LINUX_SIGTRAMP_INSN0, /* pop %eax */
128 LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77, %eax */
129 LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */
130 };
131
132 #define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
133
134 /* If THIS_FRAME is a sigtramp routine, return the address of the
135 start of the routine. Otherwise, return 0. */
136
137 static CORE_ADDR
138 i386_linux_sigtramp_start (struct frame_info *this_frame)
139 {
140 CORE_ADDR pc = get_frame_pc (this_frame);
141 gdb_byte buf[LINUX_SIGTRAMP_LEN];
142
143 /* We only recognize a signal trampoline if PC is at the start of
144 one of the three instructions. We optimize for finding the PC at
145 the start, as will be the case when the trampoline is not the
146 first frame on the stack. We assume that in the case where the
147 PC is not at the start of the instruction sequence, there will be
148 a few trailing readable bytes on the stack. */
149
150 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
151 return 0;
152
153 if (buf[0] != LINUX_SIGTRAMP_INSN0)
154 {
155 int adjust;
156
157 switch (buf[0])
158 {
159 case LINUX_SIGTRAMP_INSN1:
160 adjust = LINUX_SIGTRAMP_OFFSET1;
161 break;
162 case LINUX_SIGTRAMP_INSN2:
163 adjust = LINUX_SIGTRAMP_OFFSET2;
164 break;
165 default:
166 return 0;
167 }
168
169 pc -= adjust;
170
171 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
172 return 0;
173 }
174
175 if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
176 return 0;
177
178 return pc;
179 }
180
181 /* This function does the same for RT signals. Here the instruction
182 sequence is
183 mov $0xad, %eax
184 int $0x80
185 or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
186
187 The effect is to call the system call rt_sigreturn. */
188
189 #define LINUX_RT_SIGTRAMP_INSN0 0xb8 /* mov $NNNN, %eax */
190 #define LINUX_RT_SIGTRAMP_OFFSET0 0
191 #define LINUX_RT_SIGTRAMP_INSN1 0xcd /* int */
192 #define LINUX_RT_SIGTRAMP_OFFSET1 5
193
194 static const gdb_byte linux_rt_sigtramp_code[] =
195 {
196 LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00, /* mov $0xad, %eax */
197 LINUX_RT_SIGTRAMP_INSN1, 0x80 /* int $0x80 */
198 };
199
200 #define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
201
202 /* If THIS_FRAME is an RT sigtramp routine, return the address of the
203 start of the routine. Otherwise, return 0. */
204
205 static CORE_ADDR
206 i386_linux_rt_sigtramp_start (struct frame_info *this_frame)
207 {
208 CORE_ADDR pc = get_frame_pc (this_frame);
209 gdb_byte buf[LINUX_RT_SIGTRAMP_LEN];
210
211 /* We only recognize a signal trampoline if PC is at the start of
212 one of the two instructions. We optimize for finding the PC at
213 the start, as will be the case when the trampoline is not the
214 first frame on the stack. We assume that in the case where the
215 PC is not at the start of the instruction sequence, there will be
216 a few trailing readable bytes on the stack. */
217
218 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_RT_SIGTRAMP_LEN))
219 return 0;
220
221 if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
222 {
223 if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
224 return 0;
225
226 pc -= LINUX_RT_SIGTRAMP_OFFSET1;
227
228 if (!safe_frame_unwind_memory (this_frame, pc, buf,
229 LINUX_RT_SIGTRAMP_LEN))
230 return 0;
231 }
232
233 if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
234 return 0;
235
236 return pc;
237 }
238
239 /* Return whether THIS_FRAME corresponds to a GNU/Linux sigtramp
240 routine. */
241
242 static int
243 i386_linux_sigtramp_p (struct frame_info *this_frame)
244 {
245 CORE_ADDR pc = get_frame_pc (this_frame);
246 char *name;
247
248 find_pc_partial_function (pc, &name, NULL, NULL);
249
250 /* If we have NAME, we can optimize the search. The trampolines are
251 named __restore and __restore_rt. However, they aren't dynamically
252 exported from the shared C library, so the trampoline may appear to
253 be part of the preceding function. This should always be sigaction,
254 __sigaction, or __libc_sigaction (all aliases to the same function). */
255 if (name == NULL || strstr (name, "sigaction") != NULL)
256 return (i386_linux_sigtramp_start (this_frame) != 0
257 || i386_linux_rt_sigtramp_start (this_frame) != 0);
258
259 return (strcmp ("__restore", name) == 0
260 || strcmp ("__restore_rt", name) == 0);
261 }
262
263 /* Return one if the PC of THIS_FRAME is in a signal trampoline which
264 may have DWARF-2 CFI. */
265
266 static int
267 i386_linux_dwarf_signal_frame_p (struct gdbarch *gdbarch,
268 struct frame_info *this_frame)
269 {
270 CORE_ADDR pc = get_frame_pc (this_frame);
271 char *name;
272
273 find_pc_partial_function (pc, &name, NULL, NULL);
274
275 /* If a vsyscall DSO is in use, the signal trampolines may have these
276 names. */
277 if (name && (strcmp (name, "__kernel_sigreturn") == 0
278 || strcmp (name, "__kernel_rt_sigreturn") == 0))
279 return 1;
280
281 return 0;
282 }
283
284 /* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>. */
285 #define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20
286
287 /* Assuming THIS_FRAME is a GNU/Linux sigtramp routine, return the
288 address of the associated sigcontext structure. */
289
290 static CORE_ADDR
291 i386_linux_sigcontext_addr (struct frame_info *this_frame)
292 {
293 struct gdbarch *gdbarch = get_frame_arch (this_frame);
294 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
295 CORE_ADDR pc;
296 CORE_ADDR sp;
297 gdb_byte buf[4];
298
299 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
300 sp = extract_unsigned_integer (buf, 4, byte_order);
301
302 pc = i386_linux_sigtramp_start (this_frame);
303 if (pc)
304 {
305 /* The sigcontext structure lives on the stack, right after
306 the signum argument. We determine the address of the
307 sigcontext structure by looking at the frame's stack
308 pointer. Keep in mind that the first instruction of the
309 sigtramp code is "pop %eax". If the PC is after this
310 instruction, adjust the returned value accordingly. */
311 if (pc == get_frame_pc (this_frame))
312 return sp + 4;
313 return sp;
314 }
315
316 pc = i386_linux_rt_sigtramp_start (this_frame);
317 if (pc)
318 {
319 CORE_ADDR ucontext_addr;
320
321 /* The sigcontext structure is part of the user context. A
322 pointer to the user context is passed as the third argument
323 to the signal handler. */
324 read_memory (sp + 8, buf, 4);
325 ucontext_addr = extract_unsigned_integer (buf, 4, byte_order);
326 return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
327 }
328
329 error (_("Couldn't recognize signal trampoline."));
330 return 0;
331 }
332
333 /* Set the program counter for process PTID to PC. */
334
335 static void
336 i386_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
337 {
338 regcache_cooked_write_unsigned (regcache, I386_EIP_REGNUM, pc);
339
340 /* We must be careful with modifying the program counter. If we
341 just interrupted a system call, the kernel might try to restart
342 it when we resume the inferior. On restarting the system call,
343 the kernel will try backing up the program counter even though it
344 no longer points at the system call. This typically results in a
345 SIGSEGV or SIGILL. We can prevent this by writing `-1' in the
346 "orig_eax" pseudo-register.
347
348 Note that "orig_eax" is saved when setting up a dummy call frame.
349 This means that it is properly restored when that frame is
350 popped, and that the interrupted system call will be restarted
351 when we resume the inferior on return from a function call from
352 within GDB. In all other cases the system call will not be
353 restarted. */
354 regcache_cooked_write_unsigned (regcache, I386_LINUX_ORIG_EAX_REGNUM, -1);
355 }
356
357 /* Parse the arguments of current system call instruction and record
358 the values of the registers and memory that will be changed into
359 "record_arch_list". This instruction is "int 0x80" (Linux
360 Kernel2.4) or "sysenter" (Linux Kernel 2.6).
361
362 Return -1 if something wrong. */
363
364 static struct linux_record_tdep i386_linux_record_tdep;
365
366 static int
367 i386_linux_intx80_sysenter_record (struct regcache *regcache)
368 {
369 int ret;
370 uint32_t tmpu32;
371
372 regcache_raw_read (regcache, I386_EAX_REGNUM, (gdb_byte *) &tmpu32);
373
374 if (tmpu32 > 499)
375 {
376 printf_unfiltered (_("Process record and replay target doesn't "
377 "support syscall number %u\n"), tmpu32);
378 return -1;
379 }
380
381 ret = record_linux_system_call (tmpu32, regcache,
382 &i386_linux_record_tdep);
383 if (ret)
384 return ret;
385
386 /* Record the return value of the system call. */
387 if (record_arch_list_add_reg (regcache, I386_EAX_REGNUM))
388 return -1;
389
390 return 0;
391 }
392 \f
393
394 /* The register sets used in GNU/Linux ELF core-dumps are identical to
395 the register sets in `struct user' that are used for a.out
396 core-dumps. These are also used by ptrace(2). The corresponding
397 types are `elf_gregset_t' for the general-purpose registers (with
398 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
399 for the floating-point registers.
400
401 Those types used to be available under the names `gregset_t' and
402 `fpregset_t' too, and GDB used those names in the past. But those
403 names are now used for the register sets used in the `mcontext_t'
404 type, which have a different size and layout. */
405
406 /* Mapping between the general-purpose registers in `struct user'
407 format and GDB's register cache layout. */
408
409 /* From <sys/reg.h>. */
410 static int i386_linux_gregset_reg_offset[] =
411 {
412 6 * 4, /* %eax */
413 1 * 4, /* %ecx */
414 2 * 4, /* %edx */
415 0 * 4, /* %ebx */
416 15 * 4, /* %esp */
417 5 * 4, /* %ebp */
418 3 * 4, /* %esi */
419 4 * 4, /* %edi */
420 12 * 4, /* %eip */
421 14 * 4, /* %eflags */
422 13 * 4, /* %cs */
423 16 * 4, /* %ss */
424 7 * 4, /* %ds */
425 8 * 4, /* %es */
426 9 * 4, /* %fs */
427 10 * 4, /* %gs */
428 -1, -1, -1, -1, -1, -1, -1, -1,
429 -1, -1, -1, -1, -1, -1, -1, -1,
430 -1, -1, -1, -1, -1, -1, -1, -1,
431 -1,
432 11 * 4 /* "orig_eax" */
433 };
434
435 /* Mapping between the general-purpose registers in `struct
436 sigcontext' format and GDB's register cache layout. */
437
438 /* From <asm/sigcontext.h>. */
439 static int i386_linux_sc_reg_offset[] =
440 {
441 11 * 4, /* %eax */
442 10 * 4, /* %ecx */
443 9 * 4, /* %edx */
444 8 * 4, /* %ebx */
445 7 * 4, /* %esp */
446 6 * 4, /* %ebp */
447 5 * 4, /* %esi */
448 4 * 4, /* %edi */
449 14 * 4, /* %eip */
450 16 * 4, /* %eflags */
451 15 * 4, /* %cs */
452 18 * 4, /* %ss */
453 3 * 4, /* %ds */
454 2 * 4, /* %es */
455 1 * 4, /* %fs */
456 0 * 4 /* %gs */
457 };
458
459 static void
460 i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
461 {
462 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
463
464 /* GNU/Linux uses ELF. */
465 i386_elf_init_abi (info, gdbarch);
466
467 /* Since we have the extra "orig_eax" register on GNU/Linux, we have
468 to adjust a few things. */
469
470 set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
471 set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS);
472 set_gdbarch_register_name (gdbarch, i386_linux_register_name);
473 set_gdbarch_register_reggroup_p (gdbarch, i386_linux_register_reggroup_p);
474
475 tdep->gregset_reg_offset = i386_linux_gregset_reg_offset;
476 tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset);
477 tdep->sizeof_gregset = 17 * 4;
478
479 tdep->jb_pc_offset = 20; /* From <bits/setjmp.h>. */
480
481 tdep->sigtramp_p = i386_linux_sigtramp_p;
482 tdep->sigcontext_addr = i386_linux_sigcontext_addr;
483 tdep->sc_reg_offset = i386_linux_sc_reg_offset;
484 tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset);
485
486 set_gdbarch_process_record (gdbarch, i386_process_record);
487
488 /* Initialize the i386_linux_record_tdep. */
489 /* These values are the size of the type that will be used in a system
490 call. They are obtained from Linux Kernel source. */
491 i386_linux_record_tdep.size_pointer
492 = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
493 i386_linux_record_tdep.size__old_kernel_stat = 32;
494 i386_linux_record_tdep.size_tms = 16;
495 i386_linux_record_tdep.size_loff_t = 8;
496 i386_linux_record_tdep.size_flock = 16;
497 i386_linux_record_tdep.size_oldold_utsname = 45;
498 i386_linux_record_tdep.size_ustat = 20;
499 i386_linux_record_tdep.size_old_sigaction = 140;
500 i386_linux_record_tdep.size_old_sigset_t = 128;
501 i386_linux_record_tdep.size_rlimit = 8;
502 i386_linux_record_tdep.size_rusage = 72;
503 i386_linux_record_tdep.size_timeval = 8;
504 i386_linux_record_tdep.size_timezone = 8;
505 i386_linux_record_tdep.size_old_gid_t = 2;
506 i386_linux_record_tdep.size_old_uid_t = 2;
507 i386_linux_record_tdep.size_fd_set = 128;
508 i386_linux_record_tdep.size_dirent = 268;
509 i386_linux_record_tdep.size_dirent64 = 276;
510 i386_linux_record_tdep.size_statfs = 64;
511 i386_linux_record_tdep.size_statfs64 = 84;
512 i386_linux_record_tdep.size_sockaddr = 16;
513 i386_linux_record_tdep.size_int
514 = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
515 i386_linux_record_tdep.size_long
516 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
517 i386_linux_record_tdep.size_ulong
518 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
519 i386_linux_record_tdep.size_msghdr = 28;
520 i386_linux_record_tdep.size_itimerval = 16;
521 i386_linux_record_tdep.size_stat = 88;
522 i386_linux_record_tdep.size_old_utsname = 325;
523 i386_linux_record_tdep.size_sysinfo = 64;
524 i386_linux_record_tdep.size_msqid_ds = 88;
525 i386_linux_record_tdep.size_shmid_ds = 84;
526 i386_linux_record_tdep.size_new_utsname = 390;
527 i386_linux_record_tdep.size_timex = 128;
528 i386_linux_record_tdep.size_mem_dqinfo = 24;
529 i386_linux_record_tdep.size_if_dqblk = 68;
530 i386_linux_record_tdep.size_fs_quota_stat = 68;
531 i386_linux_record_tdep.size_timespec = 8;
532 i386_linux_record_tdep.size_pollfd = 8;
533 i386_linux_record_tdep.size_NFS_FHSIZE = 32;
534 i386_linux_record_tdep.size_knfsd_fh = 132;
535 i386_linux_record_tdep.size_TASK_COMM_LEN = 16;
536 i386_linux_record_tdep.size_sigaction = 140;
537 i386_linux_record_tdep.size_sigset_t = 8;
538 i386_linux_record_tdep.size_siginfo_t = 128;
539 i386_linux_record_tdep.size_cap_user_data_t = 12;
540 i386_linux_record_tdep.size_stack_t = 12;
541 i386_linux_record_tdep.size_off_t = i386_linux_record_tdep.size_long;
542 i386_linux_record_tdep.size_stat64 = 96;
543 i386_linux_record_tdep.size_gid_t = 2;
544 i386_linux_record_tdep.size_uid_t = 2;
545 i386_linux_record_tdep.size_PAGE_SIZE = 4096;
546 i386_linux_record_tdep.size_flock64 = 24;
547 i386_linux_record_tdep.size_user_desc = 16;
548 i386_linux_record_tdep.size_io_event = 32;
549 i386_linux_record_tdep.size_iocb = 64;
550 i386_linux_record_tdep.size_epoll_event = 12;
551 i386_linux_record_tdep.size_itimerspec
552 = i386_linux_record_tdep.size_timespec * 2;
553 i386_linux_record_tdep.size_mq_attr = 32;
554 i386_linux_record_tdep.size_siginfo = 128;
555 i386_linux_record_tdep.size_termios = 36;
556 i386_linux_record_tdep.size_termios2 = 44;
557 i386_linux_record_tdep.size_pid_t = 4;
558 i386_linux_record_tdep.size_winsize = 8;
559 i386_linux_record_tdep.size_serial_struct = 60;
560 i386_linux_record_tdep.size_serial_icounter_struct = 80;
561 i386_linux_record_tdep.size_hayes_esp_config = 12;
562 i386_linux_record_tdep.size_size_t = 4;
563 i386_linux_record_tdep.size_iovec = 8;
564
565 /* These values are the second argument of system call "sys_ioctl".
566 They are obtained from Linux Kernel source. */
567 i386_linux_record_tdep.ioctl_TCGETS = 0x5401;
568 i386_linux_record_tdep.ioctl_TCSETS = 0x5402;
569 i386_linux_record_tdep.ioctl_TCSETSW = 0x5403;
570 i386_linux_record_tdep.ioctl_TCSETSF = 0x5404;
571 i386_linux_record_tdep.ioctl_TCGETA = 0x5405;
572 i386_linux_record_tdep.ioctl_TCSETA = 0x5406;
573 i386_linux_record_tdep.ioctl_TCSETAW = 0x5407;
574 i386_linux_record_tdep.ioctl_TCSETAF = 0x5408;
575 i386_linux_record_tdep.ioctl_TCSBRK = 0x5409;
576 i386_linux_record_tdep.ioctl_TCXONC = 0x540A;
577 i386_linux_record_tdep.ioctl_TCFLSH = 0x540B;
578 i386_linux_record_tdep.ioctl_TIOCEXCL = 0x540C;
579 i386_linux_record_tdep.ioctl_TIOCNXCL = 0x540D;
580 i386_linux_record_tdep.ioctl_TIOCSCTTY = 0x540E;
581 i386_linux_record_tdep.ioctl_TIOCGPGRP = 0x540F;
582 i386_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
583 i386_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
584 i386_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
585 i386_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
586 i386_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
587 i386_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
588 i386_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
589 i386_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
590 i386_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
591 i386_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
592 i386_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541A;
593 i386_linux_record_tdep.ioctl_FIONREAD = 0x541B;
594 i386_linux_record_tdep.ioctl_TIOCINQ = i386_linux_record_tdep.ioctl_FIONREAD;
595 i386_linux_record_tdep.ioctl_TIOCLINUX = 0x541C;
596 i386_linux_record_tdep.ioctl_TIOCCONS = 0x541D;
597 i386_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541E;
598 i386_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541F;
599 i386_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
600 i386_linux_record_tdep.ioctl_FIONBIO = 0x5421;
601 i386_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
602 i386_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
603 i386_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
604 i386_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
605 i386_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
606 i386_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
607 i386_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
608 i386_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
609 i386_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
610 i386_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
611 i386_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
612 i386_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
613 i386_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
614 i386_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
615 i386_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
616 i386_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
617 i386_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
618 i386_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
619 i386_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
620 i386_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
621 i386_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
622 i386_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
623 i386_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
624 i386_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
625 i386_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545A;
626 i386_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545B;
627 i386_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545C;
628 i386_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545D;
629 i386_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545E;
630 i386_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545F;
631 i386_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
632
633 /* These values are the second argument of system call "sys_fcntl"
634 and "sys_fcntl64". They are obtained from Linux Kernel source. */
635 i386_linux_record_tdep.fcntl_F_GETLK = 5;
636 i386_linux_record_tdep.fcntl_F_GETLK64 = 12;
637 i386_linux_record_tdep.fcntl_F_SETLK64 = 13;
638 i386_linux_record_tdep.fcntl_F_SETLKW64 = 14;
639
640 i386_linux_record_tdep.arg1 = I386_EBX_REGNUM;
641 i386_linux_record_tdep.arg2 = I386_ECX_REGNUM;
642 i386_linux_record_tdep.arg3 = I386_EDX_REGNUM;
643 i386_linux_record_tdep.arg4 = I386_ESI_REGNUM;
644 i386_linux_record_tdep.arg5 = I386_EDI_REGNUM;
645 i386_linux_record_tdep.arg6 = I386_EBP_REGNUM;
646
647 tdep->i386_intx80_record = i386_linux_intx80_sysenter_record;
648 tdep->i386_sysenter_record = i386_linux_intx80_sysenter_record;
649
650 /* N_FUN symbols in shared libaries have 0 for their values and need
651 to be relocated. */
652 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
653
654 /* GNU/Linux uses SVR4-style shared libraries. */
655 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
656 set_solib_svr4_fetch_link_map_offsets
657 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
658
659 /* GNU/Linux uses the dynamic linker included in the GNU C Library. */
660 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
661
662 dwarf2_frame_set_signal_frame_p (gdbarch, i386_linux_dwarf_signal_frame_p);
663
664 /* Enable TLS support. */
665 set_gdbarch_fetch_tls_load_module_address (gdbarch,
666 svr4_fetch_objfile_link_map);
667
668 /* Install supported register note sections. */
669 set_gdbarch_core_regset_sections (gdbarch, i386_linux_regset_sections);
670
671 /* Displaced stepping. */
672 set_gdbarch_displaced_step_copy_insn (gdbarch,
673 simple_displaced_step_copy_insn);
674 set_gdbarch_displaced_step_fixup (gdbarch, i386_displaced_step_fixup);
675 set_gdbarch_displaced_step_free_closure (gdbarch,
676 simple_displaced_step_free_closure);
677 set_gdbarch_displaced_step_location (gdbarch,
678 displaced_step_at_entry_point);
679
680 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
681 }
682
683 /* Provide a prototype to silence -Wmissing-prototypes. */
684 extern void _initialize_i386_linux_tdep (void);
685
686 void
687 _initialize_i386_linux_tdep (void)
688 {
689 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
690 i386_linux_init_abi);
691 }
This page took 0.062989 seconds and 5 git commands to generate.