gdb/linux-record: Support time, waitpid, pipe syscalls
[deliverable/binutils-gdb.git] / gdb / i386-linux-tdep.c
1 /* Target-dependent code for GNU/Linux i386.
2
3 Copyright (C) 2000-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcore.h"
22 #include "frame.h"
23 #include "value.h"
24 #include "regcache.h"
25 #include "regset.h"
26 #include "inferior.h"
27 #include "osabi.h"
28 #include "reggroups.h"
29 #include "dwarf2-frame.h"
30 #include "i386-tdep.h"
31 #include "i386-linux-tdep.h"
32 #include "linux-tdep.h"
33 #include "glibc-tdep.h"
34 #include "solib-svr4.h"
35 #include "symtab.h"
36 #include "arch-utils.h"
37 #include "xml-syscall.h"
38
39 #include "i387-tdep.h"
40 #include "x86-xstate.h"
41
42 /* The syscall's XML filename for i386. */
43 #define XML_SYSCALL_FILENAME_I386 "syscalls/i386-linux.xml"
44
45 #include "record-full.h"
46 #include "linux-record.h"
47 #include "features/i386/i386-linux.c"
48 #include "features/i386/i386-mmx-linux.c"
49 #include "features/i386/i386-mpx-linux.c"
50 #include "features/i386/i386-avx-linux.c"
51 #include "features/i386/i386-avx512-linux.c"
52
53 /* Return non-zero, when the register is in the corresponding register
54 group. Put the LINUX_ORIG_EAX register in the system group. */
55 static int
56 i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
57 struct reggroup *group)
58 {
59 if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
60 return (group == system_reggroup
61 || group == save_reggroup
62 || group == restore_reggroup);
63 return i386_register_reggroup_p (gdbarch, regnum, group);
64 }
65
66 \f
67 /* Recognizing signal handler frames. */
68
69 /* GNU/Linux has two flavors of signals. Normal signal handlers, and
70 "realtime" (RT) signals. The RT signals can provide additional
71 information to the signal handler if the SA_SIGINFO flag is set
72 when establishing a signal handler using `sigaction'. It is not
73 unlikely that future versions of GNU/Linux will support SA_SIGINFO
74 for normal signals too. */
75
76 /* When the i386 Linux kernel calls a signal handler and the
77 SA_RESTORER flag isn't set, the return address points to a bit of
78 code on the stack. This function returns whether the PC appears to
79 be within this bit of code.
80
81 The instruction sequence for normal signals is
82 pop %eax
83 mov $0x77, %eax
84 int $0x80
85 or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
86
87 Checking for the code sequence should be somewhat reliable, because
88 the effect is to call the system call sigreturn. This is unlikely
89 to occur anywhere other than in a signal trampoline.
90
91 It kind of sucks that we have to read memory from the process in
92 order to identify a signal trampoline, but there doesn't seem to be
93 any other way. Therefore we only do the memory reads if no
94 function name could be identified, which should be the case since
95 the code is on the stack.
96
97 Detection of signal trampolines for handlers that set the
98 SA_RESTORER flag is in general not possible. Unfortunately this is
99 what the GNU C Library has been doing for quite some time now.
100 However, as of version 2.1.2, the GNU C Library uses signal
101 trampolines (named __restore and __restore_rt) that are identical
102 to the ones used by the kernel. Therefore, these trampolines are
103 supported too. */
104
105 #define LINUX_SIGTRAMP_INSN0 0x58 /* pop %eax */
106 #define LINUX_SIGTRAMP_OFFSET0 0
107 #define LINUX_SIGTRAMP_INSN1 0xb8 /* mov $NNNN, %eax */
108 #define LINUX_SIGTRAMP_OFFSET1 1
109 #define LINUX_SIGTRAMP_INSN2 0xcd /* int */
110 #define LINUX_SIGTRAMP_OFFSET2 6
111
112 static const gdb_byte linux_sigtramp_code[] =
113 {
114 LINUX_SIGTRAMP_INSN0, /* pop %eax */
115 LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77, %eax */
116 LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */
117 };
118
119 #define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
120
121 /* If THIS_FRAME is a sigtramp routine, return the address of the
122 start of the routine. Otherwise, return 0. */
123
124 static CORE_ADDR
125 i386_linux_sigtramp_start (struct frame_info *this_frame)
126 {
127 CORE_ADDR pc = get_frame_pc (this_frame);
128 gdb_byte buf[LINUX_SIGTRAMP_LEN];
129
130 /* We only recognize a signal trampoline if PC is at the start of
131 one of the three instructions. We optimize for finding the PC at
132 the start, as will be the case when the trampoline is not the
133 first frame on the stack. We assume that in the case where the
134 PC is not at the start of the instruction sequence, there will be
135 a few trailing readable bytes on the stack. */
136
137 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
138 return 0;
139
140 if (buf[0] != LINUX_SIGTRAMP_INSN0)
141 {
142 int adjust;
143
144 switch (buf[0])
145 {
146 case LINUX_SIGTRAMP_INSN1:
147 adjust = LINUX_SIGTRAMP_OFFSET1;
148 break;
149 case LINUX_SIGTRAMP_INSN2:
150 adjust = LINUX_SIGTRAMP_OFFSET2;
151 break;
152 default:
153 return 0;
154 }
155
156 pc -= adjust;
157
158 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
159 return 0;
160 }
161
162 if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
163 return 0;
164
165 return pc;
166 }
167
168 /* This function does the same for RT signals. Here the instruction
169 sequence is
170 mov $0xad, %eax
171 int $0x80
172 or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
173
174 The effect is to call the system call rt_sigreturn. */
175
176 #define LINUX_RT_SIGTRAMP_INSN0 0xb8 /* mov $NNNN, %eax */
177 #define LINUX_RT_SIGTRAMP_OFFSET0 0
178 #define LINUX_RT_SIGTRAMP_INSN1 0xcd /* int */
179 #define LINUX_RT_SIGTRAMP_OFFSET1 5
180
181 static const gdb_byte linux_rt_sigtramp_code[] =
182 {
183 LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00, /* mov $0xad, %eax */
184 LINUX_RT_SIGTRAMP_INSN1, 0x80 /* int $0x80 */
185 };
186
187 #define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
188
189 /* If THIS_FRAME is an RT sigtramp routine, return the address of the
190 start of the routine. Otherwise, return 0. */
191
192 static CORE_ADDR
193 i386_linux_rt_sigtramp_start (struct frame_info *this_frame)
194 {
195 CORE_ADDR pc = get_frame_pc (this_frame);
196 gdb_byte buf[LINUX_RT_SIGTRAMP_LEN];
197
198 /* We only recognize a signal trampoline if PC is at the start of
199 one of the two instructions. We optimize for finding the PC at
200 the start, as will be the case when the trampoline is not the
201 first frame on the stack. We assume that in the case where the
202 PC is not at the start of the instruction sequence, there will be
203 a few trailing readable bytes on the stack. */
204
205 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_RT_SIGTRAMP_LEN))
206 return 0;
207
208 if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
209 {
210 if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
211 return 0;
212
213 pc -= LINUX_RT_SIGTRAMP_OFFSET1;
214
215 if (!safe_frame_unwind_memory (this_frame, pc, buf,
216 LINUX_RT_SIGTRAMP_LEN))
217 return 0;
218 }
219
220 if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
221 return 0;
222
223 return pc;
224 }
225
226 /* Return whether THIS_FRAME corresponds to a GNU/Linux sigtramp
227 routine. */
228
229 static int
230 i386_linux_sigtramp_p (struct frame_info *this_frame)
231 {
232 CORE_ADDR pc = get_frame_pc (this_frame);
233 const char *name;
234
235 find_pc_partial_function (pc, &name, NULL, NULL);
236
237 /* If we have NAME, we can optimize the search. The trampolines are
238 named __restore and __restore_rt. However, they aren't dynamically
239 exported from the shared C library, so the trampoline may appear to
240 be part of the preceding function. This should always be sigaction,
241 __sigaction, or __libc_sigaction (all aliases to the same function). */
242 if (name == NULL || strstr (name, "sigaction") != NULL)
243 return (i386_linux_sigtramp_start (this_frame) != 0
244 || i386_linux_rt_sigtramp_start (this_frame) != 0);
245
246 return (strcmp ("__restore", name) == 0
247 || strcmp ("__restore_rt", name) == 0);
248 }
249
250 /* Return one if the PC of THIS_FRAME is in a signal trampoline which
251 may have DWARF-2 CFI. */
252
253 static int
254 i386_linux_dwarf_signal_frame_p (struct gdbarch *gdbarch,
255 struct frame_info *this_frame)
256 {
257 CORE_ADDR pc = get_frame_pc (this_frame);
258 const char *name;
259
260 find_pc_partial_function (pc, &name, NULL, NULL);
261
262 /* If a vsyscall DSO is in use, the signal trampolines may have these
263 names. */
264 if (name && (strcmp (name, "__kernel_sigreturn") == 0
265 || strcmp (name, "__kernel_rt_sigreturn") == 0))
266 return 1;
267
268 return 0;
269 }
270
271 /* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>. */
272 #define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20
273
274 /* Assuming THIS_FRAME is a GNU/Linux sigtramp routine, return the
275 address of the associated sigcontext structure. */
276
277 static CORE_ADDR
278 i386_linux_sigcontext_addr (struct frame_info *this_frame)
279 {
280 struct gdbarch *gdbarch = get_frame_arch (this_frame);
281 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
282 CORE_ADDR pc;
283 CORE_ADDR sp;
284 gdb_byte buf[4];
285
286 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
287 sp = extract_unsigned_integer (buf, 4, byte_order);
288
289 pc = i386_linux_sigtramp_start (this_frame);
290 if (pc)
291 {
292 /* The sigcontext structure lives on the stack, right after
293 the signum argument. We determine the address of the
294 sigcontext structure by looking at the frame's stack
295 pointer. Keep in mind that the first instruction of the
296 sigtramp code is "pop %eax". If the PC is after this
297 instruction, adjust the returned value accordingly. */
298 if (pc == get_frame_pc (this_frame))
299 return sp + 4;
300 return sp;
301 }
302
303 pc = i386_linux_rt_sigtramp_start (this_frame);
304 if (pc)
305 {
306 CORE_ADDR ucontext_addr;
307
308 /* The sigcontext structure is part of the user context. A
309 pointer to the user context is passed as the third argument
310 to the signal handler. */
311 read_memory (sp + 8, buf, 4);
312 ucontext_addr = extract_unsigned_integer (buf, 4, byte_order);
313 return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
314 }
315
316 error (_("Couldn't recognize signal trampoline."));
317 return 0;
318 }
319
320 /* Set the program counter for process PTID to PC. */
321
322 static void
323 i386_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
324 {
325 regcache_cooked_write_unsigned (regcache, I386_EIP_REGNUM, pc);
326
327 /* We must be careful with modifying the program counter. If we
328 just interrupted a system call, the kernel might try to restart
329 it when we resume the inferior. On restarting the system call,
330 the kernel will try backing up the program counter even though it
331 no longer points at the system call. This typically results in a
332 SIGSEGV or SIGILL. We can prevent this by writing `-1' in the
333 "orig_eax" pseudo-register.
334
335 Note that "orig_eax" is saved when setting up a dummy call frame.
336 This means that it is properly restored when that frame is
337 popped, and that the interrupted system call will be restarted
338 when we resume the inferior on return from a function call from
339 within GDB. In all other cases the system call will not be
340 restarted. */
341 regcache_cooked_write_unsigned (regcache, I386_LINUX_ORIG_EAX_REGNUM, -1);
342 }
343
344 /* Record all registers but IP register for process-record. */
345
346 static int
347 i386_all_but_ip_registers_record (struct regcache *regcache)
348 {
349 if (record_full_arch_list_add_reg (regcache, I386_EAX_REGNUM))
350 return -1;
351 if (record_full_arch_list_add_reg (regcache, I386_ECX_REGNUM))
352 return -1;
353 if (record_full_arch_list_add_reg (regcache, I386_EDX_REGNUM))
354 return -1;
355 if (record_full_arch_list_add_reg (regcache, I386_EBX_REGNUM))
356 return -1;
357 if (record_full_arch_list_add_reg (regcache, I386_ESP_REGNUM))
358 return -1;
359 if (record_full_arch_list_add_reg (regcache, I386_EBP_REGNUM))
360 return -1;
361 if (record_full_arch_list_add_reg (regcache, I386_ESI_REGNUM))
362 return -1;
363 if (record_full_arch_list_add_reg (regcache, I386_EDI_REGNUM))
364 return -1;
365 if (record_full_arch_list_add_reg (regcache, I386_EFLAGS_REGNUM))
366 return -1;
367
368 return 0;
369 }
370
371 /* i386_canonicalize_syscall maps from the native i386 Linux set
372 of syscall ids into a canonical set of syscall ids used by
373 process record (a mostly trivial mapping, since the canonical
374 set was originally taken from the i386 set). */
375
376 static enum gdb_syscall
377 i386_canonicalize_syscall (int syscall)
378 {
379 enum { i386_syscall_max = 499 };
380
381 if (syscall <= i386_syscall_max)
382 return (enum gdb_syscall) syscall;
383 else
384 return gdb_sys_no_syscall;
385 }
386
387 /* Parse the arguments of current system call instruction and record
388 the values of the registers and memory that will be changed into
389 "record_arch_list". This instruction is "int 0x80" (Linux
390 Kernel2.4) or "sysenter" (Linux Kernel 2.6).
391
392 Return -1 if something wrong. */
393
394 static struct linux_record_tdep i386_linux_record_tdep;
395
396 static int
397 i386_linux_intx80_sysenter_syscall_record (struct regcache *regcache)
398 {
399 int ret;
400 LONGEST syscall_native;
401 enum gdb_syscall syscall_gdb;
402
403 regcache_raw_read_signed (regcache, I386_EAX_REGNUM, &syscall_native);
404
405 syscall_gdb = i386_canonicalize_syscall (syscall_native);
406
407 if (syscall_gdb < 0)
408 {
409 printf_unfiltered (_("Process record and replay target doesn't "
410 "support syscall number %s\n"),
411 plongest (syscall_native));
412 return -1;
413 }
414
415 if (syscall_gdb == gdb_sys_sigreturn
416 || syscall_gdb == gdb_sys_rt_sigreturn)
417 {
418 if (i386_all_but_ip_registers_record (regcache))
419 return -1;
420 return 0;
421 }
422
423 ret = record_linux_system_call (syscall_gdb, regcache,
424 &i386_linux_record_tdep);
425 if (ret)
426 return ret;
427
428 /* Record the return value of the system call. */
429 if (record_full_arch_list_add_reg (regcache, I386_EAX_REGNUM))
430 return -1;
431
432 return 0;
433 }
434
435 #define I386_LINUX_xstate 270
436 #define I386_LINUX_frame_size 732
437
438 static int
439 i386_linux_record_signal (struct gdbarch *gdbarch,
440 struct regcache *regcache,
441 enum gdb_signal signal)
442 {
443 ULONGEST esp;
444
445 if (i386_all_but_ip_registers_record (regcache))
446 return -1;
447
448 if (record_full_arch_list_add_reg (regcache, I386_EIP_REGNUM))
449 return -1;
450
451 /* Record the change in the stack. */
452 regcache_raw_read_unsigned (regcache, I386_ESP_REGNUM, &esp);
453 /* This is for xstate.
454 sp -= sizeof (struct _fpstate); */
455 esp -= I386_LINUX_xstate;
456 /* This is for frame_size.
457 sp -= sizeof (struct rt_sigframe); */
458 esp -= I386_LINUX_frame_size;
459 if (record_full_arch_list_add_mem (esp,
460 I386_LINUX_xstate + I386_LINUX_frame_size))
461 return -1;
462
463 if (record_full_arch_list_add_end ())
464 return -1;
465
466 return 0;
467 }
468 \f
469
470 /* Core of the implementation for gdbarch get_syscall_number. Get pending
471 syscall number from REGCACHE. If there is no pending syscall -1 will be
472 returned. Pending syscall means ptrace has stepped into the syscall but
473 another ptrace call will step out. PC is right after the int $0x80
474 / syscall / sysenter instruction in both cases, PC does not change during
475 the second ptrace step. */
476
477 static LONGEST
478 i386_linux_get_syscall_number_from_regcache (struct regcache *regcache)
479 {
480 struct gdbarch *gdbarch = get_regcache_arch (regcache);
481 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
482 /* The content of a register. */
483 gdb_byte buf[4];
484 /* The result. */
485 LONGEST ret;
486
487 /* Getting the system call number from the register.
488 When dealing with x86 architecture, this information
489 is stored at %eax register. */
490 regcache_cooked_read (regcache, I386_LINUX_ORIG_EAX_REGNUM, buf);
491
492 ret = extract_signed_integer (buf, 4, byte_order);
493
494 return ret;
495 }
496
497 /* Wrapper for i386_linux_get_syscall_number_from_regcache to make it
498 compatible with gdbarch get_syscall_number method prototype. */
499
500 static LONGEST
501 i386_linux_get_syscall_number (struct gdbarch *gdbarch,
502 ptid_t ptid)
503 {
504 struct regcache *regcache = get_thread_regcache (ptid);
505
506 return i386_linux_get_syscall_number_from_regcache (regcache);
507 }
508
509 /* The register sets used in GNU/Linux ELF core-dumps are identical to
510 the register sets in `struct user' that are used for a.out
511 core-dumps. These are also used by ptrace(2). The corresponding
512 types are `elf_gregset_t' for the general-purpose registers (with
513 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
514 for the floating-point registers.
515
516 Those types used to be available under the names `gregset_t' and
517 `fpregset_t' too, and GDB used those names in the past. But those
518 names are now used for the register sets used in the `mcontext_t'
519 type, which have a different size and layout. */
520
521 /* Mapping between the general-purpose registers in `struct user'
522 format and GDB's register cache layout. */
523
524 /* From <sys/reg.h>. */
525 int i386_linux_gregset_reg_offset[] =
526 {
527 6 * 4, /* %eax */
528 1 * 4, /* %ecx */
529 2 * 4, /* %edx */
530 0 * 4, /* %ebx */
531 15 * 4, /* %esp */
532 5 * 4, /* %ebp */
533 3 * 4, /* %esi */
534 4 * 4, /* %edi */
535 12 * 4, /* %eip */
536 14 * 4, /* %eflags */
537 13 * 4, /* %cs */
538 16 * 4, /* %ss */
539 7 * 4, /* %ds */
540 8 * 4, /* %es */
541 9 * 4, /* %fs */
542 10 * 4, /* %gs */
543 -1, -1, -1, -1, -1, -1, -1, -1,
544 -1, -1, -1, -1, -1, -1, -1, -1,
545 -1, -1, -1, -1, -1, -1, -1, -1,
546 -1,
547 -1, -1, -1, -1, -1, -1, -1, -1,
548 -1, -1, -1, -1, /* MPX registers BND0 ... BND3. */
549 -1, -1, /* MPX registers BNDCFGU, BNDSTATUS. */
550 -1, -1, -1, -1, -1, -1, -1, -1, /* k0 ... k7 (AVX512) */
551 -1, -1, -1, -1, -1, -1, -1, -1, /* zmm0 ... zmm7 (AVX512) */
552 11 * 4, /* "orig_eax" */
553 };
554
555 /* Mapping between the general-purpose registers in `struct
556 sigcontext' format and GDB's register cache layout. */
557
558 /* From <asm/sigcontext.h>. */
559 static int i386_linux_sc_reg_offset[] =
560 {
561 11 * 4, /* %eax */
562 10 * 4, /* %ecx */
563 9 * 4, /* %edx */
564 8 * 4, /* %ebx */
565 7 * 4, /* %esp */
566 6 * 4, /* %ebp */
567 5 * 4, /* %esi */
568 4 * 4, /* %edi */
569 14 * 4, /* %eip */
570 16 * 4, /* %eflags */
571 15 * 4, /* %cs */
572 18 * 4, /* %ss */
573 3 * 4, /* %ds */
574 2 * 4, /* %es */
575 1 * 4, /* %fs */
576 0 * 4 /* %gs */
577 };
578
579 /* Get XSAVE extended state xcr0 from core dump. */
580
581 uint64_t
582 i386_linux_core_read_xcr0 (bfd *abfd)
583 {
584 asection *xstate = bfd_get_section_by_name (abfd, ".reg-xstate");
585 uint64_t xcr0;
586
587 if (xstate)
588 {
589 size_t size = bfd_section_size (abfd, xstate);
590
591 /* Check extended state size. */
592 if (size < X86_XSTATE_AVX_SIZE)
593 xcr0 = X86_XSTATE_SSE_MASK;
594 else
595 {
596 char contents[8];
597
598 if (! bfd_get_section_contents (abfd, xstate, contents,
599 I386_LINUX_XSAVE_XCR0_OFFSET,
600 8))
601 {
602 warning (_("Couldn't read `xcr0' bytes from "
603 "`.reg-xstate' section in core file."));
604 return 0;
605 }
606
607 xcr0 = bfd_get_64 (abfd, contents);
608 }
609 }
610 else
611 xcr0 = 0;
612
613 return xcr0;
614 }
615
616 /* Get Linux/x86 target description from core dump. */
617
618 static const struct target_desc *
619 i386_linux_core_read_description (struct gdbarch *gdbarch,
620 struct target_ops *target,
621 bfd *abfd)
622 {
623 /* Linux/i386. */
624 uint64_t xcr0 = i386_linux_core_read_xcr0 (abfd);
625
626 switch ((xcr0 & X86_XSTATE_ALL_MASK))
627 {
628 case X86_XSTATE_MPX_AVX512_MASK:
629 case X86_XSTATE_AVX512_MASK:
630 return tdesc_i386_avx512_linux;
631 case X86_XSTATE_MPX_MASK:
632 return tdesc_i386_mpx_linux;
633 case X86_XSTATE_AVX_MASK:
634 return tdesc_i386_avx_linux;
635 case X86_XSTATE_SSE_MASK:
636 return tdesc_i386_linux;
637 case X86_XSTATE_X87_MASK:
638 return tdesc_i386_mmx_linux;
639 default:
640 break;
641 }
642
643 if (bfd_get_section_by_name (abfd, ".reg-xfp") != NULL)
644 return tdesc_i386_linux;
645 else
646 return tdesc_i386_mmx_linux;
647 }
648
649 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
650
651 static void
652 i386_linux_supply_xstateregset (const struct regset *regset,
653 struct regcache *regcache, int regnum,
654 const void *xstateregs, size_t len)
655 {
656 i387_supply_xsave (regcache, regnum, xstateregs);
657 }
658
659 /* Similar to i386_collect_fpregset, but use XSAVE extended state. */
660
661 static void
662 i386_linux_collect_xstateregset (const struct regset *regset,
663 const struct regcache *regcache,
664 int regnum, void *xstateregs, size_t len)
665 {
666 i387_collect_xsave (regcache, regnum, xstateregs, 1);
667 }
668
669 /* Register set definitions. */
670
671 static const struct regset i386_linux_xstateregset =
672 {
673 NULL,
674 i386_linux_supply_xstateregset,
675 i386_linux_collect_xstateregset
676 };
677
678 /* Iterate over core file register note sections. */
679
680 static void
681 i386_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
682 iterate_over_regset_sections_cb *cb,
683 void *cb_data,
684 const struct regcache *regcache)
685 {
686 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
687
688 cb (".reg", 68, &i386_gregset, NULL, cb_data);
689
690 if (tdep->xcr0 & X86_XSTATE_AVX)
691 cb (".reg-xstate", X86_XSTATE_SIZE (tdep->xcr0),
692 &i386_linux_xstateregset, "XSAVE extended state", cb_data);
693 else if (tdep->xcr0 & X86_XSTATE_SSE)
694 cb (".reg-xfp", 512, &i386_fpregset, "extended floating-point",
695 cb_data);
696 else
697 cb (".reg2", 108, &i386_fpregset, NULL, cb_data);
698 }
699
700 /* Linux kernel shows PC value after the 'int $0x80' instruction even if
701 inferior is still inside the syscall. On next PTRACE_SINGLESTEP it will
702 finish the syscall but PC will not change.
703
704 Some vDSOs contain 'int $0x80; ret' and during stepping out of the syscall
705 i386_displaced_step_fixup would keep PC at the displaced pad location.
706 As PC is pointing to the 'ret' instruction before the step
707 i386_displaced_step_fixup would expect inferior has just executed that 'ret'
708 and PC should not be adjusted. In reality it finished syscall instead and
709 PC should get relocated back to its vDSO address. Hide the 'ret'
710 instruction by 'nop' so that i386_displaced_step_fixup is not confused.
711
712 It is not fully correct as the bytes in struct displaced_step_closure will
713 not match the inferior code. But we would need some new flag in
714 displaced_step_closure otherwise to keep the state that syscall is finishing
715 for the later i386_displaced_step_fixup execution as the syscall execution
716 is already no longer detectable there. The new flag field would mean
717 i386-linux-tdep.c needs to wrap all the displacement methods of i386-tdep.c
718 which does not seem worth it. The same effect is achieved by patching that
719 'nop' instruction there instead. */
720
721 static struct displaced_step_closure *
722 i386_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
723 CORE_ADDR from, CORE_ADDR to,
724 struct regcache *regs)
725 {
726 struct displaced_step_closure *closure;
727
728 closure = i386_displaced_step_copy_insn (gdbarch, from, to, regs);
729
730 if (i386_linux_get_syscall_number_from_regcache (regs) != -1)
731 {
732 /* Since we use simple_displaced_step_copy_insn, our closure is a
733 copy of the instruction. */
734 gdb_byte *insn = (gdb_byte *) closure;
735
736 /* Fake nop. */
737 insn[0] = 0x90;
738 }
739
740 return closure;
741 }
742
743 static void
744 i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
745 {
746 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
747 const struct target_desc *tdesc = info.target_desc;
748 struct tdesc_arch_data *tdesc_data
749 = (struct tdesc_arch_data *) info.tdep_info;
750 const struct tdesc_feature *feature;
751 int valid_p;
752
753 gdb_assert (tdesc_data);
754
755 linux_init_abi (info, gdbarch);
756
757 /* GNU/Linux uses ELF. */
758 i386_elf_init_abi (info, gdbarch);
759
760 /* Reserve a number for orig_eax. */
761 set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS);
762
763 if (! tdesc_has_registers (tdesc))
764 tdesc = tdesc_i386_linux;
765 tdep->tdesc = tdesc;
766
767 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.linux");
768 if (feature == NULL)
769 return;
770
771 valid_p = tdesc_numbered_register (feature, tdesc_data,
772 I386_LINUX_ORIG_EAX_REGNUM,
773 "orig_eax");
774 if (!valid_p)
775 return;
776
777 /* Add the %orig_eax register used for syscall restarting. */
778 set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
779
780 tdep->register_reggroup_p = i386_linux_register_reggroup_p;
781
782 tdep->gregset_reg_offset = i386_linux_gregset_reg_offset;
783 tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset);
784 tdep->sizeof_gregset = 17 * 4;
785
786 tdep->jb_pc_offset = 20; /* From <bits/setjmp.h>. */
787
788 tdep->sigtramp_p = i386_linux_sigtramp_p;
789 tdep->sigcontext_addr = i386_linux_sigcontext_addr;
790 tdep->sc_reg_offset = i386_linux_sc_reg_offset;
791 tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset);
792
793 tdep->xsave_xcr0_offset = I386_LINUX_XSAVE_XCR0_OFFSET;
794
795 set_gdbarch_process_record (gdbarch, i386_process_record);
796 set_gdbarch_process_record_signal (gdbarch, i386_linux_record_signal);
797
798 /* Initialize the i386_linux_record_tdep. */
799 /* These values are the size of the type that will be used in a system
800 call. They are obtained from Linux Kernel source. */
801 i386_linux_record_tdep.size_pointer
802 = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
803 i386_linux_record_tdep.size__old_kernel_stat = 32;
804 i386_linux_record_tdep.size_tms = 16;
805 i386_linux_record_tdep.size_loff_t = 8;
806 i386_linux_record_tdep.size_flock = 16;
807 i386_linux_record_tdep.size_oldold_utsname = 45;
808 i386_linux_record_tdep.size_ustat = 20;
809 i386_linux_record_tdep.size_old_sigaction = 16;
810 i386_linux_record_tdep.size_old_sigset_t = 4;
811 i386_linux_record_tdep.size_rlimit = 8;
812 i386_linux_record_tdep.size_rusage = 72;
813 i386_linux_record_tdep.size_timeval = 8;
814 i386_linux_record_tdep.size_timezone = 8;
815 i386_linux_record_tdep.size_old_gid_t = 2;
816 i386_linux_record_tdep.size_old_uid_t = 2;
817 i386_linux_record_tdep.size_fd_set = 128;
818 i386_linux_record_tdep.size_old_dirent = 268;
819 i386_linux_record_tdep.size_statfs = 64;
820 i386_linux_record_tdep.size_statfs64 = 84;
821 i386_linux_record_tdep.size_sockaddr = 16;
822 i386_linux_record_tdep.size_int
823 = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
824 i386_linux_record_tdep.size_long
825 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
826 i386_linux_record_tdep.size_ulong
827 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
828 i386_linux_record_tdep.size_msghdr = 28;
829 i386_linux_record_tdep.size_itimerval = 16;
830 i386_linux_record_tdep.size_stat = 88;
831 i386_linux_record_tdep.size_old_utsname = 325;
832 i386_linux_record_tdep.size_sysinfo = 64;
833 i386_linux_record_tdep.size_msqid_ds = 88;
834 i386_linux_record_tdep.size_shmid_ds = 84;
835 i386_linux_record_tdep.size_new_utsname = 390;
836 i386_linux_record_tdep.size_timex = 128;
837 i386_linux_record_tdep.size_mem_dqinfo = 24;
838 i386_linux_record_tdep.size_if_dqblk = 68;
839 i386_linux_record_tdep.size_fs_quota_stat = 68;
840 i386_linux_record_tdep.size_timespec = 8;
841 i386_linux_record_tdep.size_pollfd = 8;
842 i386_linux_record_tdep.size_NFS_FHSIZE = 32;
843 i386_linux_record_tdep.size_knfsd_fh = 132;
844 i386_linux_record_tdep.size_TASK_COMM_LEN = 16;
845 i386_linux_record_tdep.size_sigaction = 20;
846 i386_linux_record_tdep.size_sigset_t = 8;
847 i386_linux_record_tdep.size_siginfo_t = 128;
848 i386_linux_record_tdep.size_cap_user_data_t = 12;
849 i386_linux_record_tdep.size_stack_t = 12;
850 i386_linux_record_tdep.size_off_t = i386_linux_record_tdep.size_long;
851 i386_linux_record_tdep.size_stat64 = 96;
852 i386_linux_record_tdep.size_gid_t = 4;
853 i386_linux_record_tdep.size_uid_t = 4;
854 i386_linux_record_tdep.size_PAGE_SIZE = 4096;
855 i386_linux_record_tdep.size_flock64 = 24;
856 i386_linux_record_tdep.size_user_desc = 16;
857 i386_linux_record_tdep.size_io_event = 32;
858 i386_linux_record_tdep.size_iocb = 64;
859 i386_linux_record_tdep.size_epoll_event = 12;
860 i386_linux_record_tdep.size_itimerspec
861 = i386_linux_record_tdep.size_timespec * 2;
862 i386_linux_record_tdep.size_mq_attr = 32;
863 i386_linux_record_tdep.size_termios = 36;
864 i386_linux_record_tdep.size_termios2 = 44;
865 i386_linux_record_tdep.size_pid_t = 4;
866 i386_linux_record_tdep.size_winsize = 8;
867 i386_linux_record_tdep.size_serial_struct = 60;
868 i386_linux_record_tdep.size_serial_icounter_struct = 80;
869 i386_linux_record_tdep.size_hayes_esp_config = 12;
870 i386_linux_record_tdep.size_size_t = 4;
871 i386_linux_record_tdep.size_iovec = 8;
872 i386_linux_record_tdep.size_time_t = 4;
873
874 /* These values are the second argument of system call "sys_ioctl".
875 They are obtained from Linux Kernel source. */
876 i386_linux_record_tdep.ioctl_TCGETS = 0x5401;
877 i386_linux_record_tdep.ioctl_TCSETS = 0x5402;
878 i386_linux_record_tdep.ioctl_TCSETSW = 0x5403;
879 i386_linux_record_tdep.ioctl_TCSETSF = 0x5404;
880 i386_linux_record_tdep.ioctl_TCGETA = 0x5405;
881 i386_linux_record_tdep.ioctl_TCSETA = 0x5406;
882 i386_linux_record_tdep.ioctl_TCSETAW = 0x5407;
883 i386_linux_record_tdep.ioctl_TCSETAF = 0x5408;
884 i386_linux_record_tdep.ioctl_TCSBRK = 0x5409;
885 i386_linux_record_tdep.ioctl_TCXONC = 0x540A;
886 i386_linux_record_tdep.ioctl_TCFLSH = 0x540B;
887 i386_linux_record_tdep.ioctl_TIOCEXCL = 0x540C;
888 i386_linux_record_tdep.ioctl_TIOCNXCL = 0x540D;
889 i386_linux_record_tdep.ioctl_TIOCSCTTY = 0x540E;
890 i386_linux_record_tdep.ioctl_TIOCGPGRP = 0x540F;
891 i386_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
892 i386_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
893 i386_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
894 i386_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
895 i386_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
896 i386_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
897 i386_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
898 i386_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
899 i386_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
900 i386_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
901 i386_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541A;
902 i386_linux_record_tdep.ioctl_FIONREAD = 0x541B;
903 i386_linux_record_tdep.ioctl_TIOCINQ = i386_linux_record_tdep.ioctl_FIONREAD;
904 i386_linux_record_tdep.ioctl_TIOCLINUX = 0x541C;
905 i386_linux_record_tdep.ioctl_TIOCCONS = 0x541D;
906 i386_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541E;
907 i386_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541F;
908 i386_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
909 i386_linux_record_tdep.ioctl_FIONBIO = 0x5421;
910 i386_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
911 i386_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
912 i386_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
913 i386_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
914 i386_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
915 i386_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
916 i386_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
917 i386_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
918 i386_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
919 i386_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
920 i386_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
921 i386_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
922 i386_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
923 i386_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
924 i386_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
925 i386_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
926 i386_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
927 i386_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
928 i386_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
929 i386_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
930 i386_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
931 i386_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
932 i386_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
933 i386_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
934 i386_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545A;
935 i386_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545B;
936 i386_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545C;
937 i386_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545D;
938 i386_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545E;
939 i386_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545F;
940 i386_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
941
942 /* These values are the second argument of system call "sys_fcntl"
943 and "sys_fcntl64". They are obtained from Linux Kernel source. */
944 i386_linux_record_tdep.fcntl_F_GETLK = 5;
945 i386_linux_record_tdep.fcntl_F_GETLK64 = 12;
946 i386_linux_record_tdep.fcntl_F_SETLK64 = 13;
947 i386_linux_record_tdep.fcntl_F_SETLKW64 = 14;
948
949 i386_linux_record_tdep.arg1 = I386_EBX_REGNUM;
950 i386_linux_record_tdep.arg2 = I386_ECX_REGNUM;
951 i386_linux_record_tdep.arg3 = I386_EDX_REGNUM;
952 i386_linux_record_tdep.arg4 = I386_ESI_REGNUM;
953 i386_linux_record_tdep.arg5 = I386_EDI_REGNUM;
954 i386_linux_record_tdep.arg6 = I386_EBP_REGNUM;
955
956 tdep->i386_intx80_record = i386_linux_intx80_sysenter_syscall_record;
957 tdep->i386_sysenter_record = i386_linux_intx80_sysenter_syscall_record;
958 tdep->i386_syscall_record = i386_linux_intx80_sysenter_syscall_record;
959
960 /* N_FUN symbols in shared libaries have 0 for their values and need
961 to be relocated. */
962 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
963
964 /* GNU/Linux uses SVR4-style shared libraries. */
965 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
966 set_solib_svr4_fetch_link_map_offsets
967 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
968
969 /* GNU/Linux uses the dynamic linker included in the GNU C Library. */
970 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
971
972 dwarf2_frame_set_signal_frame_p (gdbarch, i386_linux_dwarf_signal_frame_p);
973
974 /* Enable TLS support. */
975 set_gdbarch_fetch_tls_load_module_address (gdbarch,
976 svr4_fetch_objfile_link_map);
977
978 /* Core file support. */
979 set_gdbarch_iterate_over_regset_sections
980 (gdbarch, i386_linux_iterate_over_regset_sections);
981 set_gdbarch_core_read_description (gdbarch,
982 i386_linux_core_read_description);
983
984 /* Displaced stepping. */
985 set_gdbarch_displaced_step_copy_insn (gdbarch,
986 i386_linux_displaced_step_copy_insn);
987 set_gdbarch_displaced_step_fixup (gdbarch, i386_displaced_step_fixup);
988 set_gdbarch_displaced_step_free_closure (gdbarch,
989 simple_displaced_step_free_closure);
990 set_gdbarch_displaced_step_location (gdbarch,
991 linux_displaced_step_location);
992
993 /* Functions for 'catch syscall'. */
994 set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_I386);
995 set_gdbarch_get_syscall_number (gdbarch,
996 i386_linux_get_syscall_number);
997 }
998
999 /* Provide a prototype to silence -Wmissing-prototypes. */
1000 extern void _initialize_i386_linux_tdep (void);
1001
1002 void
1003 _initialize_i386_linux_tdep (void)
1004 {
1005 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
1006 i386_linux_init_abi);
1007
1008 /* Initialize the Linux target description. */
1009 initialize_tdesc_i386_linux ();
1010 initialize_tdesc_i386_mmx_linux ();
1011 initialize_tdesc_i386_avx_linux ();
1012 initialize_tdesc_i386_mpx_linux ();
1013 initialize_tdesc_i386_avx512_linux ();
1014 }
This page took 0.109932 seconds and 5 git commands to generate.