Implement displaced stepping.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "command.h"
25 #include "dummy-frame.h"
26 #include "dwarf2-frame.h"
27 #include "doublest.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "osabi.h"
37 #include "regcache.h"
38 #include "reggroups.h"
39 #include "regset.h"
40 #include "symfile.h"
41 #include "symtab.h"
42 #include "target.h"
43 #include "value.h"
44 #include "dis-asm.h"
45
46 #include "gdb_assert.h"
47 #include "gdb_string.h"
48
49 #include "i386-tdep.h"
50 #include "i387-tdep.h"
51
52 /* Register names. */
53
54 static char *i386_register_names[] =
55 {
56 "eax", "ecx", "edx", "ebx",
57 "esp", "ebp", "esi", "edi",
58 "eip", "eflags", "cs", "ss",
59 "ds", "es", "fs", "gs",
60 "st0", "st1", "st2", "st3",
61 "st4", "st5", "st6", "st7",
62 "fctrl", "fstat", "ftag", "fiseg",
63 "fioff", "foseg", "fooff", "fop",
64 "xmm0", "xmm1", "xmm2", "xmm3",
65 "xmm4", "xmm5", "xmm6", "xmm7",
66 "mxcsr"
67 };
68
69 static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
70
71 /* Register names for MMX pseudo-registers. */
72
73 static char *i386_mmx_names[] =
74 {
75 "mm0", "mm1", "mm2", "mm3",
76 "mm4", "mm5", "mm6", "mm7"
77 };
78
79 static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
80
81 static int
82 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
83 {
84 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
85
86 if (mm0_regnum < 0)
87 return 0;
88
89 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
90 }
91
92 /* SSE register? */
93
94 static int
95 i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
96 {
97 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
98
99 if (I387_NUM_XMM_REGS (tdep) == 0)
100 return 0;
101
102 return (I387_XMM0_REGNUM (tdep) <= regnum
103 && regnum < I387_MXCSR_REGNUM (tdep));
104 }
105
106 static int
107 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
108 {
109 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
110
111 if (I387_NUM_XMM_REGS (tdep) == 0)
112 return 0;
113
114 return (regnum == I387_MXCSR_REGNUM (tdep));
115 }
116
117 /* FP register? */
118
119 int
120 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
121 {
122 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
123
124 if (I387_ST0_REGNUM (tdep) < 0)
125 return 0;
126
127 return (I387_ST0_REGNUM (tdep) <= regnum
128 && regnum < I387_FCTRL_REGNUM (tdep));
129 }
130
131 int
132 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
133 {
134 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
135
136 if (I387_ST0_REGNUM (tdep) < 0)
137 return 0;
138
139 return (I387_FCTRL_REGNUM (tdep) <= regnum
140 && regnum < I387_XMM0_REGNUM (tdep));
141 }
142
143 /* Return the name of register REGNUM. */
144
145 const char *
146 i386_register_name (struct gdbarch *gdbarch, int regnum)
147 {
148 if (i386_mmx_regnum_p (gdbarch, regnum))
149 return i386_mmx_names[regnum - I387_MM0_REGNUM (gdbarch_tdep (gdbarch))];
150
151 if (regnum >= 0 && regnum < i386_num_register_names)
152 return i386_register_names[regnum];
153
154 return NULL;
155 }
156
157 /* Convert a dbx register number REG to the appropriate register
158 number used by GDB. */
159
160 static int
161 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
162 {
163 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
164
165 /* This implements what GCC calls the "default" register map
166 (dbx_register_map[]). */
167
168 if (reg >= 0 && reg <= 7)
169 {
170 /* General-purpose registers. The debug info calls %ebp
171 register 4, and %esp register 5. */
172 if (reg == 4)
173 return 5;
174 else if (reg == 5)
175 return 4;
176 else return reg;
177 }
178 else if (reg >= 12 && reg <= 19)
179 {
180 /* Floating-point registers. */
181 return reg - 12 + I387_ST0_REGNUM (tdep);
182 }
183 else if (reg >= 21 && reg <= 28)
184 {
185 /* SSE registers. */
186 return reg - 21 + I387_XMM0_REGNUM (tdep);
187 }
188 else if (reg >= 29 && reg <= 36)
189 {
190 /* MMX registers. */
191 return reg - 29 + I387_MM0_REGNUM (tdep);
192 }
193
194 /* This will hopefully provoke a warning. */
195 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
196 }
197
198 /* Convert SVR4 register number REG to the appropriate register number
199 used by GDB. */
200
201 static int
202 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
203 {
204 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
205
206 /* This implements the GCC register map that tries to be compatible
207 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
208
209 /* The SVR4 register numbering includes %eip and %eflags, and
210 numbers the floating point registers differently. */
211 if (reg >= 0 && reg <= 9)
212 {
213 /* General-purpose registers. */
214 return reg;
215 }
216 else if (reg >= 11 && reg <= 18)
217 {
218 /* Floating-point registers. */
219 return reg - 11 + I387_ST0_REGNUM (tdep);
220 }
221 else if (reg >= 21 && reg <= 36)
222 {
223 /* The SSE and MMX registers have the same numbers as with dbx. */
224 return i386_dbx_reg_to_regnum (gdbarch, reg);
225 }
226
227 switch (reg)
228 {
229 case 37: return I387_FCTRL_REGNUM (tdep);
230 case 38: return I387_FSTAT_REGNUM (tdep);
231 case 39: return I387_MXCSR_REGNUM (tdep);
232 case 40: return I386_ES_REGNUM;
233 case 41: return I386_CS_REGNUM;
234 case 42: return I386_SS_REGNUM;
235 case 43: return I386_DS_REGNUM;
236 case 44: return I386_FS_REGNUM;
237 case 45: return I386_GS_REGNUM;
238 }
239
240 /* This will hopefully provoke a warning. */
241 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
242 }
243
244 \f
245
246 /* This is the variable that is set with "set disassembly-flavor", and
247 its legitimate values. */
248 static const char att_flavor[] = "att";
249 static const char intel_flavor[] = "intel";
250 static const char *valid_flavors[] =
251 {
252 att_flavor,
253 intel_flavor,
254 NULL
255 };
256 static const char *disassembly_flavor = att_flavor;
257 \f
258
259 /* Use the program counter to determine the contents and size of a
260 breakpoint instruction. Return a pointer to a string of bytes that
261 encode a breakpoint instruction, store the length of the string in
262 *LEN and optionally adjust *PC to point to the correct memory
263 location for inserting the breakpoint.
264
265 On the i386 we have a single breakpoint that fits in a single byte
266 and can be inserted anywhere.
267
268 This function is 64-bit safe. */
269
270 static const gdb_byte *
271 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
272 {
273 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
274
275 *len = sizeof (break_insn);
276 return break_insn;
277 }
278 \f
279 /* Displaced instruction handling. */
280
281
282 static int
283 i386_absolute_jmp_p (gdb_byte *insn)
284 {
285 /* jmp far (absolute address in operand) */
286 if (insn[0] == 0xea)
287 return 1;
288
289 if (insn[0] == 0xff)
290 {
291 /* jump near, absolute indirect (/4) */
292 if ((insn[1] & 0x38) == 0x20)
293 return 1;
294
295 /* jump far, absolute indirect (/5) */
296 if ((insn[1] & 0x38) == 0x28)
297 return 1;
298 }
299
300 return 0;
301 }
302
303 static int
304 i386_absolute_call_p (gdb_byte *insn)
305 {
306 /* call far, absolute */
307 if (insn[0] == 0x9a)
308 return 1;
309
310 if (insn[0] == 0xff)
311 {
312 /* Call near, absolute indirect (/2) */
313 if ((insn[1] & 0x38) == 0x10)
314 return 1;
315
316 /* Call far, absolute indirect (/3) */
317 if ((insn[1] & 0x38) == 0x18)
318 return 1;
319 }
320
321 return 0;
322 }
323
324 static int
325 i386_ret_p (gdb_byte *insn)
326 {
327 switch (insn[0])
328 {
329 case 0xc2: /* ret near, pop N bytes */
330 case 0xc3: /* ret near */
331 case 0xca: /* ret far, pop N bytes */
332 case 0xcb: /* ret far */
333 case 0xcf: /* iret */
334 return 1;
335
336 default:
337 return 0;
338 }
339 }
340
341 static int
342 i386_call_p (gdb_byte *insn)
343 {
344 if (i386_absolute_call_p (insn))
345 return 1;
346
347 /* call near, relative */
348 if (insn[0] == 0xe8)
349 return 1;
350
351 return 0;
352 }
353
354 static int
355 i386_breakpoint_p (gdb_byte *insn)
356 {
357 return insn[0] == 0xcc; /* int 3 */
358 }
359
360 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
361 length in bytes. Otherwise, return zero. */
362 static int
363 i386_syscall_p (gdb_byte *insn, ULONGEST *lengthp)
364 {
365 if (insn[0] == 0xcd)
366 {
367 *lengthp = 2;
368 return 1;
369 }
370
371 return 0;
372 }
373
374 /* Fix up the state of registers and memory after having single-stepped
375 a displaced instruction. */
376 void
377 i386_displaced_step_fixup (struct gdbarch *gdbarch,
378 struct displaced_step_closure *closure,
379 CORE_ADDR from, CORE_ADDR to,
380 struct regcache *regs)
381 {
382 /* The offset we applied to the instruction's address.
383 This could well be negative (when viewed as a signed 32-bit
384 value), but ULONGEST won't reflect that, so take care when
385 applying it. */
386 ULONGEST insn_offset = to - from;
387
388 /* Since we use simple_displaced_step_copy_insn, our closure is a
389 copy of the instruction. */
390 gdb_byte *insn = (gdb_byte *) closure;
391
392 if (debug_displaced)
393 fprintf_unfiltered (gdb_stdlog,
394 "displaced: fixup (0x%s, 0x%s), "
395 "insn = 0x%02x 0x%02x ...\n",
396 paddr_nz (from), paddr_nz (to), insn[0], insn[1]);
397
398 /* The list of issues to contend with here is taken from
399 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
400 Yay for Free Software! */
401
402 /* Relocate the %eip, if necessary. */
403
404 /* Except in the case of absolute or indirect jump or call
405 instructions, or a return instruction, the new eip is relative to
406 the displaced instruction; make it relative. Well, signal
407 handler returns don't need relocation either, but we use the
408 value of %eip to recognize those; see below. */
409 if (! i386_absolute_jmp_p (insn)
410 && ! i386_absolute_call_p (insn)
411 && ! i386_ret_p (insn))
412 {
413 ULONGEST orig_eip;
414 ULONGEST insn_len;
415
416 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
417
418 /* A signal trampoline system call changes the %eip, resuming
419 execution of the main program after the signal handler has
420 returned. That makes them like 'return' instructions; we
421 shouldn't relocate %eip.
422
423 But most system calls don't, and we do need to relocate %eip.
424
425 Our heuristic for distinguishing these cases: if stepping
426 over the system call instruction left control directly after
427 the instruction, the we relocate --- control almost certainly
428 doesn't belong in the displaced copy. Otherwise, we assume
429 the instruction has put control where it belongs, and leave
430 it unrelocated. Goodness help us if there are PC-relative
431 system calls. */
432 if (i386_syscall_p (insn, &insn_len)
433 && orig_eip != to + insn_len)
434 {
435 if (debug_displaced)
436 fprintf_unfiltered (gdb_stdlog,
437 "displaced: syscall changed %%eip; "
438 "not relocating\n");
439 }
440 else
441 {
442 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
443
444 /* If we have stepped over a breakpoint, set the %eip to
445 point at the breakpoint instruction itself.
446
447 (gdbarch_decr_pc_after_break was never something the core
448 of GDB should have been concerned with; arch-specific
449 code should be making PC values consistent before
450 presenting them to GDB.) */
451 if (i386_breakpoint_p (insn))
452 {
453 fprintf_unfiltered (gdb_stdlog,
454 "displaced: stepped breakpoint\n");
455 eip--;
456 }
457
458 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
459
460 if (debug_displaced)
461 fprintf_unfiltered (gdb_stdlog,
462 "displaced: "
463 "relocated %%eip from 0x%s to 0x%s\n",
464 paddr_nz (orig_eip), paddr_nz (eip));
465 }
466 }
467
468 /* If the instruction was PUSHFL, then the TF bit will be set in the
469 pushed value, and should be cleared. We'll leave this for later,
470 since GDB already messes up the TF flag when stepping over a
471 pushfl. */
472
473 /* If the instruction was a call, the return address now atop the
474 stack is the address following the copied instruction. We need
475 to make it the address following the original instruction. */
476 if (i386_call_p (insn))
477 {
478 ULONGEST esp;
479 ULONGEST retaddr;
480 const ULONGEST retaddr_len = 4;
481
482 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
483 retaddr = read_memory_unsigned_integer (esp, retaddr_len);
484 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
485 write_memory_unsigned_integer (esp, retaddr_len, retaddr);
486
487 if (debug_displaced)
488 fprintf_unfiltered (gdb_stdlog,
489 "displaced: relocated return addr at 0x%s "
490 "to 0x%s\n",
491 paddr_nz (esp),
492 paddr_nz (retaddr));
493 }
494 }
495
496
497 \f
498 #ifdef I386_REGNO_TO_SYMMETRY
499 #error "The Sequent Symmetry is no longer supported."
500 #endif
501
502 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
503 and %esp "belong" to the calling function. Therefore these
504 registers should be saved if they're going to be modified. */
505
506 /* The maximum number of saved registers. This should include all
507 registers mentioned above, and %eip. */
508 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
509
510 struct i386_frame_cache
511 {
512 /* Base address. */
513 CORE_ADDR base;
514 LONGEST sp_offset;
515 CORE_ADDR pc;
516
517 /* Saved registers. */
518 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
519 CORE_ADDR saved_sp;
520 int stack_align;
521 int pc_in_eax;
522
523 /* Stack space reserved for local variables. */
524 long locals;
525 };
526
527 /* Allocate and initialize a frame cache. */
528
529 static struct i386_frame_cache *
530 i386_alloc_frame_cache (void)
531 {
532 struct i386_frame_cache *cache;
533 int i;
534
535 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
536
537 /* Base address. */
538 cache->base = 0;
539 cache->sp_offset = -4;
540 cache->pc = 0;
541
542 /* Saved registers. We initialize these to -1 since zero is a valid
543 offset (that's where %ebp is supposed to be stored). */
544 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
545 cache->saved_regs[i] = -1;
546 cache->saved_sp = 0;
547 cache->stack_align = 0;
548 cache->pc_in_eax = 0;
549
550 /* Frameless until proven otherwise. */
551 cache->locals = -1;
552
553 return cache;
554 }
555
556 /* If the instruction at PC is a jump, return the address of its
557 target. Otherwise, return PC. */
558
559 static CORE_ADDR
560 i386_follow_jump (CORE_ADDR pc)
561 {
562 gdb_byte op;
563 long delta = 0;
564 int data16 = 0;
565
566 target_read_memory (pc, &op, 1);
567 if (op == 0x66)
568 {
569 data16 = 1;
570 op = read_memory_unsigned_integer (pc + 1, 1);
571 }
572
573 switch (op)
574 {
575 case 0xe9:
576 /* Relative jump: if data16 == 0, disp32, else disp16. */
577 if (data16)
578 {
579 delta = read_memory_integer (pc + 2, 2);
580
581 /* Include the size of the jmp instruction (including the
582 0x66 prefix). */
583 delta += 4;
584 }
585 else
586 {
587 delta = read_memory_integer (pc + 1, 4);
588
589 /* Include the size of the jmp instruction. */
590 delta += 5;
591 }
592 break;
593 case 0xeb:
594 /* Relative jump, disp8 (ignore data16). */
595 delta = read_memory_integer (pc + data16 + 1, 1);
596
597 delta += data16 + 2;
598 break;
599 }
600
601 return pc + delta;
602 }
603
604 /* Check whether PC points at a prologue for a function returning a
605 structure or union. If so, it updates CACHE and returns the
606 address of the first instruction after the code sequence that
607 removes the "hidden" argument from the stack or CURRENT_PC,
608 whichever is smaller. Otherwise, return PC. */
609
610 static CORE_ADDR
611 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
612 struct i386_frame_cache *cache)
613 {
614 /* Functions that return a structure or union start with:
615
616 popl %eax 0x58
617 xchgl %eax, (%esp) 0x87 0x04 0x24
618 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
619
620 (the System V compiler puts out the second `xchg' instruction,
621 and the assembler doesn't try to optimize it, so the 'sib' form
622 gets generated). This sequence is used to get the address of the
623 return buffer for a function that returns a structure. */
624 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
625 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
626 gdb_byte buf[4];
627 gdb_byte op;
628
629 if (current_pc <= pc)
630 return pc;
631
632 target_read_memory (pc, &op, 1);
633
634 if (op != 0x58) /* popl %eax */
635 return pc;
636
637 target_read_memory (pc + 1, buf, 4);
638 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
639 return pc;
640
641 if (current_pc == pc)
642 {
643 cache->sp_offset += 4;
644 return current_pc;
645 }
646
647 if (current_pc == pc + 1)
648 {
649 cache->pc_in_eax = 1;
650 return current_pc;
651 }
652
653 if (buf[1] == proto1[1])
654 return pc + 4;
655 else
656 return pc + 5;
657 }
658
659 static CORE_ADDR
660 i386_skip_probe (CORE_ADDR pc)
661 {
662 /* A function may start with
663
664 pushl constant
665 call _probe
666 addl $4, %esp
667
668 followed by
669
670 pushl %ebp
671
672 etc. */
673 gdb_byte buf[8];
674 gdb_byte op;
675
676 target_read_memory (pc, &op, 1);
677
678 if (op == 0x68 || op == 0x6a)
679 {
680 int delta;
681
682 /* Skip past the `pushl' instruction; it has either a one-byte or a
683 four-byte operand, depending on the opcode. */
684 if (op == 0x68)
685 delta = 5;
686 else
687 delta = 2;
688
689 /* Read the following 8 bytes, which should be `call _probe' (6
690 bytes) followed by `addl $4,%esp' (2 bytes). */
691 read_memory (pc + delta, buf, sizeof (buf));
692 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
693 pc += delta + sizeof (buf);
694 }
695
696 return pc;
697 }
698
699 /* GCC 4.1 and later, can put code in the prologue to realign the
700 stack pointer. Check whether PC points to such code, and update
701 CACHE accordingly. Return the first instruction after the code
702 sequence or CURRENT_PC, whichever is smaller. If we don't
703 recognize the code, return PC. */
704
705 static CORE_ADDR
706 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
707 struct i386_frame_cache *cache)
708 {
709 /* The register used by the compiler to perform the stack re-alignment
710 is, in order of preference, either %ecx, %edx, or %eax. GCC should
711 never use %ebx as it always treats it as callee-saved, whereas
712 the compiler can only use caller-saved registers. */
713 static const gdb_byte insns_ecx[10] = {
714 0x8d, 0x4c, 0x24, 0x04, /* leal 4(%esp), %ecx */
715 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
716 0xff, 0x71, 0xfc /* pushl -4(%ecx) */
717 };
718 static const gdb_byte insns_edx[10] = {
719 0x8d, 0x54, 0x24, 0x04, /* leal 4(%esp), %edx */
720 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
721 0xff, 0x72, 0xfc /* pushl -4(%edx) */
722 };
723 static const gdb_byte insns_eax[10] = {
724 0x8d, 0x44, 0x24, 0x04, /* leal 4(%esp), %eax */
725 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
726 0xff, 0x70, 0xfc /* pushl -4(%eax) */
727 };
728 gdb_byte buf[10];
729
730 if (target_read_memory (pc, buf, sizeof buf)
731 || (memcmp (buf, insns_ecx, sizeof buf) != 0
732 && memcmp (buf, insns_edx, sizeof buf) != 0
733 && memcmp (buf, insns_eax, sizeof buf) != 0))
734 return pc;
735
736 if (current_pc > pc + 4)
737 cache->stack_align = 1;
738
739 return min (pc + 10, current_pc);
740 }
741
742 /* Maximum instruction length we need to handle. */
743 #define I386_MAX_MATCHED_INSN_LEN 6
744
745 /* Instruction description. */
746 struct i386_insn
747 {
748 size_t len;
749 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
750 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
751 };
752
753 /* Search for the instruction at PC in the list SKIP_INSNS. Return
754 the first instruction description that matches. Otherwise, return
755 NULL. */
756
757 static struct i386_insn *
758 i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
759 {
760 struct i386_insn *insn;
761 gdb_byte op;
762
763 target_read_memory (pc, &op, 1);
764
765 for (insn = skip_insns; insn->len > 0; insn++)
766 {
767 if ((op & insn->mask[0]) == insn->insn[0])
768 {
769 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
770 int insn_matched = 1;
771 size_t i;
772
773 gdb_assert (insn->len > 1);
774 gdb_assert (insn->len <= I386_MAX_MATCHED_INSN_LEN);
775
776 target_read_memory (pc + 1, buf, insn->len - 1);
777 for (i = 1; i < insn->len; i++)
778 {
779 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
780 insn_matched = 0;
781 }
782
783 if (insn_matched)
784 return insn;
785 }
786 }
787
788 return NULL;
789 }
790
791 /* Some special instructions that might be migrated by GCC into the
792 part of the prologue that sets up the new stack frame. Because the
793 stack frame hasn't been setup yet, no registers have been saved
794 yet, and only the scratch registers %eax, %ecx and %edx can be
795 touched. */
796
797 struct i386_insn i386_frame_setup_skip_insns[] =
798 {
799 /* Check for `movb imm8, r' and `movl imm32, r'.
800
801 ??? Should we handle 16-bit operand-sizes here? */
802
803 /* `movb imm8, %al' and `movb imm8, %ah' */
804 /* `movb imm8, %cl' and `movb imm8, %ch' */
805 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
806 /* `movb imm8, %dl' and `movb imm8, %dh' */
807 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
808 /* `movl imm32, %eax' and `movl imm32, %ecx' */
809 { 5, { 0xb8 }, { 0xfe } },
810 /* `movl imm32, %edx' */
811 { 5, { 0xba }, { 0xff } },
812
813 /* Check for `mov imm32, r32'. Note that there is an alternative
814 encoding for `mov m32, %eax'.
815
816 ??? Should we handle SIB adressing here?
817 ??? Should we handle 16-bit operand-sizes here? */
818
819 /* `movl m32, %eax' */
820 { 5, { 0xa1 }, { 0xff } },
821 /* `movl m32, %eax' and `mov; m32, %ecx' */
822 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
823 /* `movl m32, %edx' */
824 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
825
826 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
827 Because of the symmetry, there are actually two ways to encode
828 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
829 opcode bytes 0x31 and 0x33 for `xorl'. */
830
831 /* `subl %eax, %eax' */
832 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
833 /* `subl %ecx, %ecx' */
834 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
835 /* `subl %edx, %edx' */
836 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
837 /* `xorl %eax, %eax' */
838 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
839 /* `xorl %ecx, %ecx' */
840 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
841 /* `xorl %edx, %edx' */
842 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
843 { 0 }
844 };
845
846
847 /* Check whether PC points to a no-op instruction. */
848 static CORE_ADDR
849 i386_skip_noop (CORE_ADDR pc)
850 {
851 gdb_byte op;
852 int check = 1;
853
854 target_read_memory (pc, &op, 1);
855
856 while (check)
857 {
858 check = 0;
859 /* Ignore `nop' instruction. */
860 if (op == 0x90)
861 {
862 pc += 1;
863 target_read_memory (pc, &op, 1);
864 check = 1;
865 }
866 /* Ignore no-op instruction `mov %edi, %edi'.
867 Microsoft system dlls often start with
868 a `mov %edi,%edi' instruction.
869 The 5 bytes before the function start are
870 filled with `nop' instructions.
871 This pattern can be used for hot-patching:
872 The `mov %edi, %edi' instruction can be replaced by a
873 near jump to the location of the 5 `nop' instructions
874 which can be replaced by a 32-bit jump to anywhere
875 in the 32-bit address space. */
876
877 else if (op == 0x8b)
878 {
879 target_read_memory (pc + 1, &op, 1);
880 if (op == 0xff)
881 {
882 pc += 2;
883 target_read_memory (pc, &op, 1);
884 check = 1;
885 }
886 }
887 }
888 return pc;
889 }
890
891 /* Check whether PC points at a code that sets up a new stack frame.
892 If so, it updates CACHE and returns the address of the first
893 instruction after the sequence that sets up the frame or LIMIT,
894 whichever is smaller. If we don't recognize the code, return PC. */
895
896 static CORE_ADDR
897 i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
898 struct i386_frame_cache *cache)
899 {
900 struct i386_insn *insn;
901 gdb_byte op;
902 int skip = 0;
903
904 if (limit <= pc)
905 return limit;
906
907 target_read_memory (pc, &op, 1);
908
909 if (op == 0x55) /* pushl %ebp */
910 {
911 /* Take into account that we've executed the `pushl %ebp' that
912 starts this instruction sequence. */
913 cache->saved_regs[I386_EBP_REGNUM] = 0;
914 cache->sp_offset += 4;
915 pc++;
916
917 /* If that's all, return now. */
918 if (limit <= pc)
919 return limit;
920
921 /* Check for some special instructions that might be migrated by
922 GCC into the prologue and skip them. At this point in the
923 prologue, code should only touch the scratch registers %eax,
924 %ecx and %edx, so while the number of posibilities is sheer,
925 it is limited.
926
927 Make sure we only skip these instructions if we later see the
928 `movl %esp, %ebp' that actually sets up the frame. */
929 while (pc + skip < limit)
930 {
931 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
932 if (insn == NULL)
933 break;
934
935 skip += insn->len;
936 }
937
938 /* If that's all, return now. */
939 if (limit <= pc + skip)
940 return limit;
941
942 target_read_memory (pc + skip, &op, 1);
943
944 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
945 switch (op)
946 {
947 case 0x8b:
948 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
949 return pc;
950 break;
951 case 0x89:
952 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
953 return pc;
954 break;
955 default:
956 return pc;
957 }
958
959 /* OK, we actually have a frame. We just don't know how large
960 it is yet. Set its size to zero. We'll adjust it if
961 necessary. We also now commit to skipping the special
962 instructions mentioned before. */
963 cache->locals = 0;
964 pc += (skip + 2);
965
966 /* If that's all, return now. */
967 if (limit <= pc)
968 return limit;
969
970 /* Check for stack adjustment
971
972 subl $XXX, %esp
973
974 NOTE: You can't subtract a 16-bit immediate from a 32-bit
975 reg, so we don't have to worry about a data16 prefix. */
976 target_read_memory (pc, &op, 1);
977 if (op == 0x83)
978 {
979 /* `subl' with 8-bit immediate. */
980 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
981 /* Some instruction starting with 0x83 other than `subl'. */
982 return pc;
983
984 /* `subl' with signed 8-bit immediate (though it wouldn't
985 make sense to be negative). */
986 cache->locals = read_memory_integer (pc + 2, 1);
987 return pc + 3;
988 }
989 else if (op == 0x81)
990 {
991 /* Maybe it is `subl' with a 32-bit immediate. */
992 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
993 /* Some instruction starting with 0x81 other than `subl'. */
994 return pc;
995
996 /* It is `subl' with a 32-bit immediate. */
997 cache->locals = read_memory_integer (pc + 2, 4);
998 return pc + 6;
999 }
1000 else
1001 {
1002 /* Some instruction other than `subl'. */
1003 return pc;
1004 }
1005 }
1006 else if (op == 0xc8) /* enter */
1007 {
1008 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
1009 return pc + 4;
1010 }
1011
1012 return pc;
1013 }
1014
1015 /* Check whether PC points at code that saves registers on the stack.
1016 If so, it updates CACHE and returns the address of the first
1017 instruction after the register saves or CURRENT_PC, whichever is
1018 smaller. Otherwise, return PC. */
1019
1020 static CORE_ADDR
1021 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1022 struct i386_frame_cache *cache)
1023 {
1024 CORE_ADDR offset = 0;
1025 gdb_byte op;
1026 int i;
1027
1028 if (cache->locals > 0)
1029 offset -= cache->locals;
1030 for (i = 0; i < 8 && pc < current_pc; i++)
1031 {
1032 target_read_memory (pc, &op, 1);
1033 if (op < 0x50 || op > 0x57)
1034 break;
1035
1036 offset -= 4;
1037 cache->saved_regs[op - 0x50] = offset;
1038 cache->sp_offset += 4;
1039 pc++;
1040 }
1041
1042 return pc;
1043 }
1044
1045 /* Do a full analysis of the prologue at PC and update CACHE
1046 accordingly. Bail out early if CURRENT_PC is reached. Return the
1047 address where the analysis stopped.
1048
1049 We handle these cases:
1050
1051 The startup sequence can be at the start of the function, or the
1052 function can start with a branch to startup code at the end.
1053
1054 %ebp can be set up with either the 'enter' instruction, or "pushl
1055 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1056 once used in the System V compiler).
1057
1058 Local space is allocated just below the saved %ebp by either the
1059 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1060 16-bit unsigned argument for space to allocate, and the 'addl'
1061 instruction could have either a signed byte, or 32-bit immediate.
1062
1063 Next, the registers used by this function are pushed. With the
1064 System V compiler they will always be in the order: %edi, %esi,
1065 %ebx (and sometimes a harmless bug causes it to also save but not
1066 restore %eax); however, the code below is willing to see the pushes
1067 in any order, and will handle up to 8 of them.
1068
1069 If the setup sequence is at the end of the function, then the next
1070 instruction will be a branch back to the start. */
1071
1072 static CORE_ADDR
1073 i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
1074 struct i386_frame_cache *cache)
1075 {
1076 pc = i386_skip_noop (pc);
1077 pc = i386_follow_jump (pc);
1078 pc = i386_analyze_struct_return (pc, current_pc, cache);
1079 pc = i386_skip_probe (pc);
1080 pc = i386_analyze_stack_align (pc, current_pc, cache);
1081 pc = i386_analyze_frame_setup (pc, current_pc, cache);
1082 return i386_analyze_register_saves (pc, current_pc, cache);
1083 }
1084
1085 /* Return PC of first real instruction. */
1086
1087 static CORE_ADDR
1088 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1089 {
1090 static gdb_byte pic_pat[6] =
1091 {
1092 0xe8, 0, 0, 0, 0, /* call 0x0 */
1093 0x5b, /* popl %ebx */
1094 };
1095 struct i386_frame_cache cache;
1096 CORE_ADDR pc;
1097 gdb_byte op;
1098 int i;
1099
1100 cache.locals = -1;
1101 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
1102 if (cache.locals < 0)
1103 return start_pc;
1104
1105 /* Found valid frame setup. */
1106
1107 /* The native cc on SVR4 in -K PIC mode inserts the following code
1108 to get the address of the global offset table (GOT) into register
1109 %ebx:
1110
1111 call 0x0
1112 popl %ebx
1113 movl %ebx,x(%ebp) (optional)
1114 addl y,%ebx
1115
1116 This code is with the rest of the prologue (at the end of the
1117 function), so we have to skip it to get to the first real
1118 instruction at the start of the function. */
1119
1120 for (i = 0; i < 6; i++)
1121 {
1122 target_read_memory (pc + i, &op, 1);
1123 if (pic_pat[i] != op)
1124 break;
1125 }
1126 if (i == 6)
1127 {
1128 int delta = 6;
1129
1130 target_read_memory (pc + delta, &op, 1);
1131
1132 if (op == 0x89) /* movl %ebx, x(%ebp) */
1133 {
1134 op = read_memory_unsigned_integer (pc + delta + 1, 1);
1135
1136 if (op == 0x5d) /* One byte offset from %ebp. */
1137 delta += 3;
1138 else if (op == 0x9d) /* Four byte offset from %ebp. */
1139 delta += 6;
1140 else /* Unexpected instruction. */
1141 delta = 0;
1142
1143 target_read_memory (pc + delta, &op, 1);
1144 }
1145
1146 /* addl y,%ebx */
1147 if (delta > 0 && op == 0x81
1148 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3)
1149 {
1150 pc += delta + 6;
1151 }
1152 }
1153
1154 /* If the function starts with a branch (to startup code at the end)
1155 the last instruction should bring us back to the first
1156 instruction of the real code. */
1157 if (i386_follow_jump (start_pc) != start_pc)
1158 pc = i386_follow_jump (pc);
1159
1160 return pc;
1161 }
1162
1163 /* This function is 64-bit safe. */
1164
1165 static CORE_ADDR
1166 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1167 {
1168 gdb_byte buf[8];
1169
1170 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1171 return extract_typed_address (buf, builtin_type_void_func_ptr);
1172 }
1173 \f
1174
1175 /* Normal frames. */
1176
1177 static struct i386_frame_cache *
1178 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1179 {
1180 struct i386_frame_cache *cache;
1181 gdb_byte buf[4];
1182 int i;
1183
1184 if (*this_cache)
1185 return *this_cache;
1186
1187 cache = i386_alloc_frame_cache ();
1188 *this_cache = cache;
1189
1190 /* In principle, for normal frames, %ebp holds the frame pointer,
1191 which holds the base address for the current stack frame.
1192 However, for functions that don't need it, the frame pointer is
1193 optional. For these "frameless" functions the frame pointer is
1194 actually the frame pointer of the calling frame. Signal
1195 trampolines are just a special case of a "frameless" function.
1196 They (usually) share their frame pointer with the frame that was
1197 in progress when the signal occurred. */
1198
1199 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1200 cache->base = extract_unsigned_integer (buf, 4);
1201 if (cache->base == 0)
1202 return cache;
1203
1204 /* For normal frames, %eip is stored at 4(%ebp). */
1205 cache->saved_regs[I386_EIP_REGNUM] = 4;
1206
1207 cache->pc = get_frame_func (this_frame);
1208 if (cache->pc != 0)
1209 i386_analyze_prologue (cache->pc, get_frame_pc (this_frame), cache);
1210
1211 if (cache->stack_align)
1212 {
1213 /* Saved stack pointer has been saved in %ecx. */
1214 get_frame_register (this_frame, I386_ECX_REGNUM, buf);
1215 cache->saved_sp = extract_unsigned_integer(buf, 4);
1216 }
1217
1218 if (cache->locals < 0)
1219 {
1220 /* We didn't find a valid frame, which means that CACHE->base
1221 currently holds the frame pointer for our calling frame. If
1222 we're at the start of a function, or somewhere half-way its
1223 prologue, the function's frame probably hasn't been fully
1224 setup yet. Try to reconstruct the base address for the stack
1225 frame by looking at the stack pointer. For truly "frameless"
1226 functions this might work too. */
1227
1228 if (cache->stack_align)
1229 {
1230 /* We're halfway aligning the stack. */
1231 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1232 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1233
1234 /* This will be added back below. */
1235 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1236 }
1237 else
1238 {
1239 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1240 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
1241 }
1242 }
1243
1244 /* Now that we have the base address for the stack frame we can
1245 calculate the value of %esp in the calling frame. */
1246 if (cache->saved_sp == 0)
1247 cache->saved_sp = cache->base + 8;
1248
1249 /* Adjust all the saved registers such that they contain addresses
1250 instead of offsets. */
1251 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1252 if (cache->saved_regs[i] != -1)
1253 cache->saved_regs[i] += cache->base;
1254
1255 return cache;
1256 }
1257
1258 static void
1259 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1260 struct frame_id *this_id)
1261 {
1262 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1263
1264 /* This marks the outermost frame. */
1265 if (cache->base == 0)
1266 return;
1267
1268 /* See the end of i386_push_dummy_call. */
1269 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1270 }
1271
1272 static struct value *
1273 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1274 int regnum)
1275 {
1276 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1277
1278 gdb_assert (regnum >= 0);
1279
1280 /* The System V ABI says that:
1281
1282 "The flags register contains the system flags, such as the
1283 direction flag and the carry flag. The direction flag must be
1284 set to the forward (that is, zero) direction before entry and
1285 upon exit from a function. Other user flags have no specified
1286 role in the standard calling sequence and are not preserved."
1287
1288 To guarantee the "upon exit" part of that statement we fake a
1289 saved flags register that has its direction flag cleared.
1290
1291 Note that GCC doesn't seem to rely on the fact that the direction
1292 flag is cleared after a function return; it always explicitly
1293 clears the flag before operations where it matters.
1294
1295 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1296 right thing to do. The way we fake the flags register here makes
1297 it impossible to change it. */
1298
1299 if (regnum == I386_EFLAGS_REGNUM)
1300 {
1301 ULONGEST val;
1302
1303 val = get_frame_register_unsigned (this_frame, regnum);
1304 val &= ~(1 << 10);
1305 return frame_unwind_got_constant (this_frame, regnum, val);
1306 }
1307
1308 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1309 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1310
1311 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
1312 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1313
1314 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1315 return frame_unwind_got_memory (this_frame, regnum,
1316 cache->saved_regs[regnum]);
1317
1318 return frame_unwind_got_register (this_frame, regnum, regnum);
1319 }
1320
1321 static const struct frame_unwind i386_frame_unwind =
1322 {
1323 NORMAL_FRAME,
1324 i386_frame_this_id,
1325 i386_frame_prev_register,
1326 NULL,
1327 default_frame_sniffer
1328 };
1329 \f
1330
1331 /* Signal trampolines. */
1332
1333 static struct i386_frame_cache *
1334 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
1335 {
1336 struct i386_frame_cache *cache;
1337 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1338 CORE_ADDR addr;
1339 gdb_byte buf[4];
1340
1341 if (*this_cache)
1342 return *this_cache;
1343
1344 cache = i386_alloc_frame_cache ();
1345
1346 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1347 cache->base = extract_unsigned_integer (buf, 4) - 4;
1348
1349 addr = tdep->sigcontext_addr (this_frame);
1350 if (tdep->sc_reg_offset)
1351 {
1352 int i;
1353
1354 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1355
1356 for (i = 0; i < tdep->sc_num_regs; i++)
1357 if (tdep->sc_reg_offset[i] != -1)
1358 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1359 }
1360 else
1361 {
1362 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1363 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
1364 }
1365
1366 *this_cache = cache;
1367 return cache;
1368 }
1369
1370 static void
1371 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
1372 struct frame_id *this_id)
1373 {
1374 struct i386_frame_cache *cache =
1375 i386_sigtramp_frame_cache (this_frame, this_cache);
1376
1377 /* See the end of i386_push_dummy_call. */
1378 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
1379 }
1380
1381 static struct value *
1382 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
1383 void **this_cache, int regnum)
1384 {
1385 /* Make sure we've initialized the cache. */
1386 i386_sigtramp_frame_cache (this_frame, this_cache);
1387
1388 return i386_frame_prev_register (this_frame, this_cache, regnum);
1389 }
1390
1391 static int
1392 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
1393 struct frame_info *this_frame,
1394 void **this_prologue_cache)
1395 {
1396 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1397
1398 /* We shouldn't even bother if we don't have a sigcontext_addr
1399 handler. */
1400 if (tdep->sigcontext_addr == NULL)
1401 return 0;
1402
1403 if (tdep->sigtramp_p != NULL)
1404 {
1405 if (tdep->sigtramp_p (this_frame))
1406 return 1;
1407 }
1408
1409 if (tdep->sigtramp_start != 0)
1410 {
1411 CORE_ADDR pc = get_frame_pc (this_frame);
1412
1413 gdb_assert (tdep->sigtramp_end != 0);
1414 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1415 return 1;
1416 }
1417
1418 return 0;
1419 }
1420
1421 static const struct frame_unwind i386_sigtramp_frame_unwind =
1422 {
1423 SIGTRAMP_FRAME,
1424 i386_sigtramp_frame_this_id,
1425 i386_sigtramp_frame_prev_register,
1426 NULL,
1427 i386_sigtramp_frame_sniffer
1428 };
1429 \f
1430
1431 static CORE_ADDR
1432 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
1433 {
1434 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1435
1436 return cache->base;
1437 }
1438
1439 static const struct frame_base i386_frame_base =
1440 {
1441 &i386_frame_unwind,
1442 i386_frame_base_address,
1443 i386_frame_base_address,
1444 i386_frame_base_address
1445 };
1446
1447 static struct frame_id
1448 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1449 {
1450 CORE_ADDR fp;
1451
1452 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
1453
1454 /* See the end of i386_push_dummy_call. */
1455 return frame_id_build (fp + 8, get_frame_pc (this_frame));
1456 }
1457 \f
1458
1459 /* Figure out where the longjmp will land. Slurp the args out of the
1460 stack. We expect the first arg to be a pointer to the jmp_buf
1461 structure from which we extract the address that we will land at.
1462 This address is copied into PC. This routine returns non-zero on
1463 success. */
1464
1465 static int
1466 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1467 {
1468 gdb_byte buf[4];
1469 CORE_ADDR sp, jb_addr;
1470 struct gdbarch *gdbarch = get_frame_arch (frame);
1471 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
1472
1473 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1474 longjmp will land. */
1475 if (jb_pc_offset == -1)
1476 return 0;
1477
1478 get_frame_register (frame, I386_ESP_REGNUM, buf);
1479 sp = extract_unsigned_integer (buf, 4);
1480 if (target_read_memory (sp + 4, buf, 4))
1481 return 0;
1482
1483 jb_addr = extract_unsigned_integer (buf, 4);
1484 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
1485 return 0;
1486
1487 *pc = extract_unsigned_integer (buf, 4);
1488 return 1;
1489 }
1490 \f
1491
1492 static CORE_ADDR
1493 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1494 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1495 struct value **args, CORE_ADDR sp, int struct_return,
1496 CORE_ADDR struct_addr)
1497 {
1498 gdb_byte buf[4];
1499 int i;
1500
1501 /* Push arguments in reverse order. */
1502 for (i = nargs - 1; i >= 0; i--)
1503 {
1504 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
1505
1506 /* The System V ABI says that:
1507
1508 "An argument's size is increased, if necessary, to make it a
1509 multiple of [32-bit] words. This may require tail padding,
1510 depending on the size of the argument."
1511
1512 This makes sure the stack stays word-aligned. */
1513 sp -= (len + 3) & ~3;
1514 write_memory (sp, value_contents_all (args[i]), len);
1515 }
1516
1517 /* Push value address. */
1518 if (struct_return)
1519 {
1520 sp -= 4;
1521 store_unsigned_integer (buf, 4, struct_addr);
1522 write_memory (sp, buf, 4);
1523 }
1524
1525 /* Store return address. */
1526 sp -= 4;
1527 store_unsigned_integer (buf, 4, bp_addr);
1528 write_memory (sp, buf, 4);
1529
1530 /* Finally, update the stack pointer... */
1531 store_unsigned_integer (buf, 4, sp);
1532 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1533
1534 /* ...and fake a frame pointer. */
1535 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1536
1537 /* MarkK wrote: This "+ 8" is all over the place:
1538 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1539 i386_dummy_id). It's there, since all frame unwinders for
1540 a given target have to agree (within a certain margin) on the
1541 definition of the stack address of a frame. Otherwise
1542 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1543 stack address *before* the function call as a frame's CFA. On
1544 the i386, when %ebp is used as a frame pointer, the offset
1545 between the contents %ebp and the CFA as defined by GCC. */
1546 return sp + 8;
1547 }
1548
1549 /* These registers are used for returning integers (and on some
1550 targets also for returning `struct' and `union' values when their
1551 size and alignment match an integer type). */
1552 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1553 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1554
1555 /* Read, for architecture GDBARCH, a function return value of TYPE
1556 from REGCACHE, and copy that into VALBUF. */
1557
1558 static void
1559 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
1560 struct regcache *regcache, gdb_byte *valbuf)
1561 {
1562 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1563 int len = TYPE_LENGTH (type);
1564 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1565
1566 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1567 {
1568 if (tdep->st0_regnum < 0)
1569 {
1570 warning (_("Cannot find floating-point return value."));
1571 memset (valbuf, 0, len);
1572 return;
1573 }
1574
1575 /* Floating-point return values can be found in %st(0). Convert
1576 its contents to the desired type. This is probably not
1577 exactly how it would happen on the target itself, but it is
1578 the best we can do. */
1579 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
1580 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
1581 }
1582 else
1583 {
1584 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1585 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
1586
1587 if (len <= low_size)
1588 {
1589 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1590 memcpy (valbuf, buf, len);
1591 }
1592 else if (len <= (low_size + high_size))
1593 {
1594 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1595 memcpy (valbuf, buf, low_size);
1596 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
1597 memcpy (valbuf + low_size, buf, len - low_size);
1598 }
1599 else
1600 internal_error (__FILE__, __LINE__,
1601 _("Cannot extract return value of %d bytes long."), len);
1602 }
1603 }
1604
1605 /* Write, for architecture GDBARCH, a function return value of TYPE
1606 from VALBUF into REGCACHE. */
1607
1608 static void
1609 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
1610 struct regcache *regcache, const gdb_byte *valbuf)
1611 {
1612 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1613 int len = TYPE_LENGTH (type);
1614
1615 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1616 {
1617 ULONGEST fstat;
1618 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1619
1620 if (tdep->st0_regnum < 0)
1621 {
1622 warning (_("Cannot set floating-point return value."));
1623 return;
1624 }
1625
1626 /* Returning floating-point values is a bit tricky. Apart from
1627 storing the return value in %st(0), we have to simulate the
1628 state of the FPU at function return point. */
1629
1630 /* Convert the value found in VALBUF to the extended
1631 floating-point format used by the FPU. This is probably
1632 not exactly how it would happen on the target itself, but
1633 it is the best we can do. */
1634 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1635 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
1636
1637 /* Set the top of the floating-point register stack to 7. The
1638 actual value doesn't really matter, but 7 is what a normal
1639 function return would end up with if the program started out
1640 with a freshly initialized FPU. */
1641 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
1642 fstat |= (7 << 11);
1643 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
1644
1645 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1646 the floating-point register stack to 7, the appropriate value
1647 for the tag word is 0x3fff. */
1648 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
1649 }
1650 else
1651 {
1652 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1653 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
1654
1655 if (len <= low_size)
1656 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1657 else if (len <= (low_size + high_size))
1658 {
1659 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1660 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1661 len - low_size, valbuf + low_size);
1662 }
1663 else
1664 internal_error (__FILE__, __LINE__,
1665 _("Cannot store return value of %d bytes long."), len);
1666 }
1667 }
1668 \f
1669
1670 /* This is the variable that is set with "set struct-convention", and
1671 its legitimate values. */
1672 static const char default_struct_convention[] = "default";
1673 static const char pcc_struct_convention[] = "pcc";
1674 static const char reg_struct_convention[] = "reg";
1675 static const char *valid_conventions[] =
1676 {
1677 default_struct_convention,
1678 pcc_struct_convention,
1679 reg_struct_convention,
1680 NULL
1681 };
1682 static const char *struct_convention = default_struct_convention;
1683
1684 /* Return non-zero if TYPE, which is assumed to be a structure,
1685 a union type, or an array type, should be returned in registers
1686 for architecture GDBARCH. */
1687
1688 static int
1689 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
1690 {
1691 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1692 enum type_code code = TYPE_CODE (type);
1693 int len = TYPE_LENGTH (type);
1694
1695 gdb_assert (code == TYPE_CODE_STRUCT
1696 || code == TYPE_CODE_UNION
1697 || code == TYPE_CODE_ARRAY);
1698
1699 if (struct_convention == pcc_struct_convention
1700 || (struct_convention == default_struct_convention
1701 && tdep->struct_return == pcc_struct_return))
1702 return 0;
1703
1704 /* Structures consisting of a single `float', `double' or 'long
1705 double' member are returned in %st(0). */
1706 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1707 {
1708 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1709 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1710 return (len == 4 || len == 8 || len == 12);
1711 }
1712
1713 return (len == 1 || len == 2 || len == 4 || len == 8);
1714 }
1715
1716 /* Determine, for architecture GDBARCH, how a return value of TYPE
1717 should be returned. If it is supposed to be returned in registers,
1718 and READBUF is non-zero, read the appropriate value from REGCACHE,
1719 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1720 from WRITEBUF into REGCACHE. */
1721
1722 static enum return_value_convention
1723 i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
1724 struct type *type, struct regcache *regcache,
1725 gdb_byte *readbuf, const gdb_byte *writebuf)
1726 {
1727 enum type_code code = TYPE_CODE (type);
1728
1729 if (((code == TYPE_CODE_STRUCT
1730 || code == TYPE_CODE_UNION
1731 || code == TYPE_CODE_ARRAY)
1732 && !i386_reg_struct_return_p (gdbarch, type))
1733 /* 128-bit decimal float uses the struct return convention. */
1734 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
1735 {
1736 /* The System V ABI says that:
1737
1738 "A function that returns a structure or union also sets %eax
1739 to the value of the original address of the caller's area
1740 before it returns. Thus when the caller receives control
1741 again, the address of the returned object resides in register
1742 %eax and can be used to access the object."
1743
1744 So the ABI guarantees that we can always find the return
1745 value just after the function has returned. */
1746
1747 /* Note that the ABI doesn't mention functions returning arrays,
1748 which is something possible in certain languages such as Ada.
1749 In this case, the value is returned as if it was wrapped in
1750 a record, so the convention applied to records also applies
1751 to arrays. */
1752
1753 if (readbuf)
1754 {
1755 ULONGEST addr;
1756
1757 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1758 read_memory (addr, readbuf, TYPE_LENGTH (type));
1759 }
1760
1761 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1762 }
1763
1764 /* This special case is for structures consisting of a single
1765 `float', `double' or 'long double' member. These structures are
1766 returned in %st(0). For these structures, we call ourselves
1767 recursively, changing TYPE into the type of the first member of
1768 the structure. Since that should work for all structures that
1769 have only one member, we don't bother to check the member's type
1770 here. */
1771 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1772 {
1773 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1774 return i386_return_value (gdbarch, func_type, type, regcache,
1775 readbuf, writebuf);
1776 }
1777
1778 if (readbuf)
1779 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1780 if (writebuf)
1781 i386_store_return_value (gdbarch, type, regcache, writebuf);
1782
1783 return RETURN_VALUE_REGISTER_CONVENTION;
1784 }
1785 \f
1786
1787 /* Type for %eflags. */
1788 struct type *i386_eflags_type;
1789
1790 /* Type for %mxcsr. */
1791 struct type *i386_mxcsr_type;
1792
1793 /* Construct types for ISA-specific registers. */
1794 static void
1795 i386_init_types (void)
1796 {
1797 struct type *type;
1798
1799 type = init_flags_type ("builtin_type_i386_eflags", 4);
1800 append_flags_type_flag (type, 0, "CF");
1801 append_flags_type_flag (type, 1, NULL);
1802 append_flags_type_flag (type, 2, "PF");
1803 append_flags_type_flag (type, 4, "AF");
1804 append_flags_type_flag (type, 6, "ZF");
1805 append_flags_type_flag (type, 7, "SF");
1806 append_flags_type_flag (type, 8, "TF");
1807 append_flags_type_flag (type, 9, "IF");
1808 append_flags_type_flag (type, 10, "DF");
1809 append_flags_type_flag (type, 11, "OF");
1810 append_flags_type_flag (type, 14, "NT");
1811 append_flags_type_flag (type, 16, "RF");
1812 append_flags_type_flag (type, 17, "VM");
1813 append_flags_type_flag (type, 18, "AC");
1814 append_flags_type_flag (type, 19, "VIF");
1815 append_flags_type_flag (type, 20, "VIP");
1816 append_flags_type_flag (type, 21, "ID");
1817 i386_eflags_type = type;
1818
1819 type = init_flags_type ("builtin_type_i386_mxcsr", 4);
1820 append_flags_type_flag (type, 0, "IE");
1821 append_flags_type_flag (type, 1, "DE");
1822 append_flags_type_flag (type, 2, "ZE");
1823 append_flags_type_flag (type, 3, "OE");
1824 append_flags_type_flag (type, 4, "UE");
1825 append_flags_type_flag (type, 5, "PE");
1826 append_flags_type_flag (type, 6, "DAZ");
1827 append_flags_type_flag (type, 7, "IM");
1828 append_flags_type_flag (type, 8, "DM");
1829 append_flags_type_flag (type, 9, "ZM");
1830 append_flags_type_flag (type, 10, "OM");
1831 append_flags_type_flag (type, 11, "UM");
1832 append_flags_type_flag (type, 12, "PM");
1833 append_flags_type_flag (type, 15, "FZ");
1834 i386_mxcsr_type = type;
1835 }
1836
1837 /* Construct vector type for MMX registers. */
1838 struct type *
1839 i386_mmx_type (struct gdbarch *gdbarch)
1840 {
1841 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1842
1843 if (!tdep->i386_mmx_type)
1844 {
1845 /* The type we're building is this: */
1846 #if 0
1847 union __gdb_builtin_type_vec64i
1848 {
1849 int64_t uint64;
1850 int32_t v2_int32[2];
1851 int16_t v4_int16[4];
1852 int8_t v8_int8[8];
1853 };
1854 #endif
1855
1856 struct type *t;
1857
1858 t = init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
1859 append_composite_type_field (t, "uint64", builtin_type_int64);
1860 append_composite_type_field (t, "v2_int32",
1861 init_vector_type (builtin_type_int32, 2));
1862 append_composite_type_field (t, "v4_int16",
1863 init_vector_type (builtin_type_int16, 4));
1864 append_composite_type_field (t, "v8_int8",
1865 init_vector_type (builtin_type_int8, 8));
1866
1867 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1868 TYPE_NAME (t) = "builtin_type_vec64i";
1869 tdep->i386_mmx_type = t;
1870 }
1871
1872 return tdep->i386_mmx_type;
1873 }
1874
1875 struct type *
1876 i386_sse_type (struct gdbarch *gdbarch)
1877 {
1878 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1879
1880 if (!tdep->i386_sse_type)
1881 {
1882 /* The type we're building is this: */
1883 #if 0
1884 union __gdb_builtin_type_vec128i
1885 {
1886 int128_t uint128;
1887 int64_t v2_int64[2];
1888 int32_t v4_int32[4];
1889 int16_t v8_int16[8];
1890 int8_t v16_int8[16];
1891 double v2_double[2];
1892 float v4_float[4];
1893 };
1894 #endif
1895
1896 struct type *t;
1897
1898 t = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
1899 append_composite_type_field (t, "v4_float",
1900 init_vector_type (builtin_type_float, 4));
1901 append_composite_type_field (t, "v2_double",
1902 init_vector_type (builtin_type_double, 2));
1903 append_composite_type_field (t, "v16_int8",
1904 init_vector_type (builtin_type_int8, 16));
1905 append_composite_type_field (t, "v8_int16",
1906 init_vector_type (builtin_type_int16, 8));
1907 append_composite_type_field (t, "v4_int32",
1908 init_vector_type (builtin_type_int32, 4));
1909 append_composite_type_field (t, "v2_int64",
1910 init_vector_type (builtin_type_int64, 2));
1911 append_composite_type_field (t, "uint128", builtin_type_int128);
1912
1913 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1914 TYPE_NAME (t) = "builtin_type_vec128i";
1915 tdep->i386_sse_type = t;
1916 }
1917
1918 return tdep->i386_sse_type;
1919 }
1920
1921 /* Return the GDB type object for the "standard" data type of data in
1922 register REGNUM. Perhaps %esi and %edi should go here, but
1923 potentially they could be used for things other than address. */
1924
1925 static struct type *
1926 i386_register_type (struct gdbarch *gdbarch, int regnum)
1927 {
1928 if (regnum == I386_EIP_REGNUM)
1929 return builtin_type_void_func_ptr;
1930
1931 if (regnum == I386_EFLAGS_REGNUM)
1932 return i386_eflags_type;
1933
1934 if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1935 return builtin_type_void_data_ptr;
1936
1937 if (i386_fp_regnum_p (gdbarch, regnum))
1938 return builtin_type_i387_ext;
1939
1940 if (i386_mmx_regnum_p (gdbarch, regnum))
1941 return i386_mmx_type (gdbarch);
1942
1943 if (i386_sse_regnum_p (gdbarch, regnum))
1944 return i386_sse_type (gdbarch);
1945
1946 if (regnum == I387_MXCSR_REGNUM (gdbarch_tdep (gdbarch)))
1947 return i386_mxcsr_type;
1948
1949 return builtin_type_int;
1950 }
1951
1952 /* Map a cooked register onto a raw register or memory. For the i386,
1953 the MMX registers need to be mapped onto floating point registers. */
1954
1955 static int
1956 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1957 {
1958 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1959 int mmxreg, fpreg;
1960 ULONGEST fstat;
1961 int tos;
1962
1963 mmxreg = regnum - tdep->mm0_regnum;
1964 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
1965 tos = (fstat >> 11) & 0x7;
1966 fpreg = (mmxreg + tos) % 8;
1967
1968 return (I387_ST0_REGNUM (tdep) + fpreg);
1969 }
1970
1971 static void
1972 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1973 int regnum, gdb_byte *buf)
1974 {
1975 if (i386_mmx_regnum_p (gdbarch, regnum))
1976 {
1977 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
1978 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1979
1980 /* Extract (always little endian). */
1981 regcache_raw_read (regcache, fpnum, mmx_buf);
1982 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
1983 }
1984 else
1985 regcache_raw_read (regcache, regnum, buf);
1986 }
1987
1988 static void
1989 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1990 int regnum, const gdb_byte *buf)
1991 {
1992 if (i386_mmx_regnum_p (gdbarch, regnum))
1993 {
1994 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
1995 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1996
1997 /* Read ... */
1998 regcache_raw_read (regcache, fpnum, mmx_buf);
1999 /* ... Modify ... (always little endian). */
2000 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
2001 /* ... Write. */
2002 regcache_raw_write (regcache, fpnum, mmx_buf);
2003 }
2004 else
2005 regcache_raw_write (regcache, regnum, buf);
2006 }
2007 \f
2008
2009 /* Return the register number of the register allocated by GCC after
2010 REGNUM, or -1 if there is no such register. */
2011
2012 static int
2013 i386_next_regnum (int regnum)
2014 {
2015 /* GCC allocates the registers in the order:
2016
2017 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
2018
2019 Since storing a variable in %esp doesn't make any sense we return
2020 -1 for %ebp and for %esp itself. */
2021 static int next_regnum[] =
2022 {
2023 I386_EDX_REGNUM, /* Slot for %eax. */
2024 I386_EBX_REGNUM, /* Slot for %ecx. */
2025 I386_ECX_REGNUM, /* Slot for %edx. */
2026 I386_ESI_REGNUM, /* Slot for %ebx. */
2027 -1, -1, /* Slots for %esp and %ebp. */
2028 I386_EDI_REGNUM, /* Slot for %esi. */
2029 I386_EBP_REGNUM /* Slot for %edi. */
2030 };
2031
2032 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
2033 return next_regnum[regnum];
2034
2035 return -1;
2036 }
2037
2038 /* Return nonzero if a value of type TYPE stored in register REGNUM
2039 needs any special handling. */
2040
2041 static int
2042 i386_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
2043 {
2044 int len = TYPE_LENGTH (type);
2045
2046 /* Values may be spread across multiple registers. Most debugging
2047 formats aren't expressive enough to specify the locations, so
2048 some heuristics is involved. Right now we only handle types that
2049 have a length that is a multiple of the word size, since GCC
2050 doesn't seem to put any other types into registers. */
2051 if (len > 4 && len % 4 == 0)
2052 {
2053 int last_regnum = regnum;
2054
2055 while (len > 4)
2056 {
2057 last_regnum = i386_next_regnum (last_regnum);
2058 len -= 4;
2059 }
2060
2061 if (last_regnum != -1)
2062 return 1;
2063 }
2064
2065 return i387_convert_register_p (gdbarch, regnum, type);
2066 }
2067
2068 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
2069 return its contents in TO. */
2070
2071 static void
2072 i386_register_to_value (struct frame_info *frame, int regnum,
2073 struct type *type, gdb_byte *to)
2074 {
2075 struct gdbarch *gdbarch = get_frame_arch (frame);
2076 int len = TYPE_LENGTH (type);
2077
2078 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
2079 available in FRAME (i.e. if it wasn't saved)? */
2080
2081 if (i386_fp_regnum_p (gdbarch, regnum))
2082 {
2083 i387_register_to_value (frame, regnum, type, to);
2084 return;
2085 }
2086
2087 /* Read a value spread across multiple registers. */
2088
2089 gdb_assert (len > 4 && len % 4 == 0);
2090
2091 while (len > 0)
2092 {
2093 gdb_assert (regnum != -1);
2094 gdb_assert (register_size (gdbarch, regnum) == 4);
2095
2096 get_frame_register (frame, regnum, to);
2097 regnum = i386_next_regnum (regnum);
2098 len -= 4;
2099 to += 4;
2100 }
2101 }
2102
2103 /* Write the contents FROM of a value of type TYPE into register
2104 REGNUM in frame FRAME. */
2105
2106 static void
2107 i386_value_to_register (struct frame_info *frame, int regnum,
2108 struct type *type, const gdb_byte *from)
2109 {
2110 int len = TYPE_LENGTH (type);
2111
2112 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
2113 {
2114 i387_value_to_register (frame, regnum, type, from);
2115 return;
2116 }
2117
2118 /* Write a value spread across multiple registers. */
2119
2120 gdb_assert (len > 4 && len % 4 == 0);
2121
2122 while (len > 0)
2123 {
2124 gdb_assert (regnum != -1);
2125 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
2126
2127 put_frame_register (frame, regnum, from);
2128 regnum = i386_next_regnum (regnum);
2129 len -= 4;
2130 from += 4;
2131 }
2132 }
2133 \f
2134 /* Supply register REGNUM from the buffer specified by GREGS and LEN
2135 in the general-purpose register set REGSET to register cache
2136 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2137
2138 void
2139 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
2140 int regnum, const void *gregs, size_t len)
2141 {
2142 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2143 const gdb_byte *regs = gregs;
2144 int i;
2145
2146 gdb_assert (len == tdep->sizeof_gregset);
2147
2148 for (i = 0; i < tdep->gregset_num_regs; i++)
2149 {
2150 if ((regnum == i || regnum == -1)
2151 && tdep->gregset_reg_offset[i] != -1)
2152 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
2153 }
2154 }
2155
2156 /* Collect register REGNUM from the register cache REGCACHE and store
2157 it in the buffer specified by GREGS and LEN as described by the
2158 general-purpose register set REGSET. If REGNUM is -1, do this for
2159 all registers in REGSET. */
2160
2161 void
2162 i386_collect_gregset (const struct regset *regset,
2163 const struct regcache *regcache,
2164 int regnum, void *gregs, size_t len)
2165 {
2166 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2167 gdb_byte *regs = gregs;
2168 int i;
2169
2170 gdb_assert (len == tdep->sizeof_gregset);
2171
2172 for (i = 0; i < tdep->gregset_num_regs; i++)
2173 {
2174 if ((regnum == i || regnum == -1)
2175 && tdep->gregset_reg_offset[i] != -1)
2176 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
2177 }
2178 }
2179
2180 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2181 in the floating-point register set REGSET to register cache
2182 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2183
2184 static void
2185 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2186 int regnum, const void *fpregs, size_t len)
2187 {
2188 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2189
2190 if (len == I387_SIZEOF_FXSAVE)
2191 {
2192 i387_supply_fxsave (regcache, regnum, fpregs);
2193 return;
2194 }
2195
2196 gdb_assert (len == tdep->sizeof_fpregset);
2197 i387_supply_fsave (regcache, regnum, fpregs);
2198 }
2199
2200 /* Collect register REGNUM from the register cache REGCACHE and store
2201 it in the buffer specified by FPREGS and LEN as described by the
2202 floating-point register set REGSET. If REGNUM is -1, do this for
2203 all registers in REGSET. */
2204
2205 static void
2206 i386_collect_fpregset (const struct regset *regset,
2207 const struct regcache *regcache,
2208 int regnum, void *fpregs, size_t len)
2209 {
2210 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2211
2212 if (len == I387_SIZEOF_FXSAVE)
2213 {
2214 i387_collect_fxsave (regcache, regnum, fpregs);
2215 return;
2216 }
2217
2218 gdb_assert (len == tdep->sizeof_fpregset);
2219 i387_collect_fsave (regcache, regnum, fpregs);
2220 }
2221
2222 /* Return the appropriate register set for the core section identified
2223 by SECT_NAME and SECT_SIZE. */
2224
2225 const struct regset *
2226 i386_regset_from_core_section (struct gdbarch *gdbarch,
2227 const char *sect_name, size_t sect_size)
2228 {
2229 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2230
2231 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2232 {
2233 if (tdep->gregset == NULL)
2234 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2235 i386_collect_gregset);
2236 return tdep->gregset;
2237 }
2238
2239 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2240 || (strcmp (sect_name, ".reg-xfp") == 0
2241 && sect_size == I387_SIZEOF_FXSAVE))
2242 {
2243 if (tdep->fpregset == NULL)
2244 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2245 i386_collect_fpregset);
2246 return tdep->fpregset;
2247 }
2248
2249 return NULL;
2250 }
2251 \f
2252
2253 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
2254
2255 CORE_ADDR
2256 i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
2257 {
2258 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
2259 {
2260 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
2261 struct minimal_symbol *indsym =
2262 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
2263 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
2264
2265 if (symname)
2266 {
2267 if (strncmp (symname, "__imp_", 6) == 0
2268 || strncmp (symname, "_imp_", 5) == 0)
2269 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
2270 }
2271 }
2272 return 0; /* Not a trampoline. */
2273 }
2274 \f
2275
2276 /* Return whether the THIS_FRAME corresponds to a sigtramp
2277 routine. */
2278
2279 static int
2280 i386_sigtramp_p (struct frame_info *this_frame)
2281 {
2282 CORE_ADDR pc = get_frame_pc (this_frame);
2283 char *name;
2284
2285 find_pc_partial_function (pc, &name, NULL, NULL);
2286 return (name && strcmp ("_sigtramp", name) == 0);
2287 }
2288 \f
2289
2290 /* We have two flavours of disassembly. The machinery on this page
2291 deals with switching between those. */
2292
2293 static int
2294 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
2295 {
2296 gdb_assert (disassembly_flavor == att_flavor
2297 || disassembly_flavor == intel_flavor);
2298
2299 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2300 constified, cast to prevent a compiler warning. */
2301 info->disassembler_options = (char *) disassembly_flavor;
2302
2303 return print_insn_i386 (pc, info);
2304 }
2305 \f
2306
2307 /* There are a few i386 architecture variants that differ only
2308 slightly from the generic i386 target. For now, we don't give them
2309 their own source file, but include them here. As a consequence,
2310 they'll always be included. */
2311
2312 /* System V Release 4 (SVR4). */
2313
2314 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
2315 routine. */
2316
2317 static int
2318 i386_svr4_sigtramp_p (struct frame_info *this_frame)
2319 {
2320 CORE_ADDR pc = get_frame_pc (this_frame);
2321 char *name;
2322
2323 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2324 currently unknown. */
2325 find_pc_partial_function (pc, &name, NULL, NULL);
2326 return (name && (strcmp ("_sigreturn", name) == 0
2327 || strcmp ("_sigacthandler", name) == 0
2328 || strcmp ("sigvechandler", name) == 0));
2329 }
2330
2331 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
2332 address of the associated sigcontext (ucontext) structure. */
2333
2334 static CORE_ADDR
2335 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
2336 {
2337 gdb_byte buf[4];
2338 CORE_ADDR sp;
2339
2340 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2341 sp = extract_unsigned_integer (buf, 4);
2342
2343 return read_memory_unsigned_integer (sp + 8, 4);
2344 }
2345 \f
2346
2347 /* Generic ELF. */
2348
2349 void
2350 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2351 {
2352 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2353 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2354 }
2355
2356 /* System V Release 4 (SVR4). */
2357
2358 void
2359 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2360 {
2361 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2362
2363 /* System V Release 4 uses ELF. */
2364 i386_elf_init_abi (info, gdbarch);
2365
2366 /* System V Release 4 has shared libraries. */
2367 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2368
2369 tdep->sigtramp_p = i386_svr4_sigtramp_p;
2370 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
2371 tdep->sc_pc_offset = 36 + 14 * 4;
2372 tdep->sc_sp_offset = 36 + 17 * 4;
2373
2374 tdep->jb_pc_offset = 20;
2375 }
2376
2377 /* DJGPP. */
2378
2379 static void
2380 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2381 {
2382 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2383
2384 /* DJGPP doesn't have any special frames for signal handlers. */
2385 tdep->sigtramp_p = NULL;
2386
2387 tdep->jb_pc_offset = 36;
2388 }
2389 \f
2390
2391 /* i386 register groups. In addition to the normal groups, add "mmx"
2392 and "sse". */
2393
2394 static struct reggroup *i386_sse_reggroup;
2395 static struct reggroup *i386_mmx_reggroup;
2396
2397 static void
2398 i386_init_reggroups (void)
2399 {
2400 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2401 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2402 }
2403
2404 static void
2405 i386_add_reggroups (struct gdbarch *gdbarch)
2406 {
2407 reggroup_add (gdbarch, i386_sse_reggroup);
2408 reggroup_add (gdbarch, i386_mmx_reggroup);
2409 reggroup_add (gdbarch, general_reggroup);
2410 reggroup_add (gdbarch, float_reggroup);
2411 reggroup_add (gdbarch, all_reggroup);
2412 reggroup_add (gdbarch, save_reggroup);
2413 reggroup_add (gdbarch, restore_reggroup);
2414 reggroup_add (gdbarch, vector_reggroup);
2415 reggroup_add (gdbarch, system_reggroup);
2416 }
2417
2418 int
2419 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2420 struct reggroup *group)
2421 {
2422 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2423 || i386_mxcsr_regnum_p (gdbarch, regnum));
2424 int fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
2425 || i386_fpc_regnum_p (gdbarch, regnum));
2426 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
2427
2428 if (group == i386_mmx_reggroup)
2429 return mmx_regnum_p;
2430 if (group == i386_sse_reggroup)
2431 return sse_regnum_p;
2432 if (group == vector_reggroup)
2433 return (mmx_regnum_p || sse_regnum_p);
2434 if (group == float_reggroup)
2435 return fp_regnum_p;
2436 if (group == general_reggroup)
2437 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
2438
2439 return default_register_reggroup_p (gdbarch, regnum, group);
2440 }
2441 \f
2442
2443 /* Get the ARGIth function argument for the current function. */
2444
2445 static CORE_ADDR
2446 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2447 struct type *type)
2448 {
2449 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2450 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
2451 }
2452
2453 \f
2454 static struct gdbarch *
2455 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2456 {
2457 struct gdbarch_tdep *tdep;
2458 struct gdbarch *gdbarch;
2459
2460 /* If there is already a candidate, use it. */
2461 arches = gdbarch_list_lookup_by_info (arches, &info);
2462 if (arches != NULL)
2463 return arches->gdbarch;
2464
2465 /* Allocate space for the new architecture. */
2466 tdep = XCALLOC (1, struct gdbarch_tdep);
2467 gdbarch = gdbarch_alloc (&info, tdep);
2468
2469 /* General-purpose registers. */
2470 tdep->gregset = NULL;
2471 tdep->gregset_reg_offset = NULL;
2472 tdep->gregset_num_regs = I386_NUM_GREGS;
2473 tdep->sizeof_gregset = 0;
2474
2475 /* Floating-point registers. */
2476 tdep->fpregset = NULL;
2477 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2478
2479 /* The default settings include the FPU registers, the MMX registers
2480 and the SSE registers. This can be overridden for a specific ABI
2481 by adjusting the members `st0_regnum', `mm0_regnum' and
2482 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2483 will show up in the output of "info all-registers". Ideally we
2484 should try to autodetect whether they are available, such that we
2485 can prevent "info all-registers" from displaying registers that
2486 aren't available.
2487
2488 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2489 [the SSE registers] always (even when they don't exist) or never
2490 showing them to the user (even when they do exist), I prefer the
2491 former over the latter. */
2492
2493 tdep->st0_regnum = I386_ST0_REGNUM;
2494
2495 /* The MMX registers are implemented as pseudo-registers. Put off
2496 calculating the register number for %mm0 until we know the number
2497 of raw registers. */
2498 tdep->mm0_regnum = 0;
2499
2500 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
2501 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
2502
2503 tdep->jb_pc_offset = -1;
2504 tdep->struct_return = pcc_struct_return;
2505 tdep->sigtramp_start = 0;
2506 tdep->sigtramp_end = 0;
2507 tdep->sigtramp_p = i386_sigtramp_p;
2508 tdep->sigcontext_addr = NULL;
2509 tdep->sc_reg_offset = NULL;
2510 tdep->sc_pc_offset = -1;
2511 tdep->sc_sp_offset = -1;
2512
2513 /* The format used for `long double' on almost all i386 targets is
2514 the i387 extended floating-point format. In fact, of all targets
2515 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2516 on having a `long double' that's not `long' at all. */
2517 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
2518
2519 /* Although the i387 extended floating-point has only 80 significant
2520 bits, a `long double' actually takes up 96, probably to enforce
2521 alignment. */
2522 set_gdbarch_long_double_bit (gdbarch, 96);
2523
2524 /* The default ABI includes general-purpose registers,
2525 floating-point registers, and the SSE registers. */
2526 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
2527 set_gdbarch_register_name (gdbarch, i386_register_name);
2528 set_gdbarch_register_type (gdbarch, i386_register_type);
2529
2530 /* Register numbers of various important registers. */
2531 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2532 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2533 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2534 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
2535
2536 /* NOTE: kettenis/20040418: GCC does have two possible register
2537 numbering schemes on the i386: dbx and SVR4. These schemes
2538 differ in how they number %ebp, %esp, %eflags, and the
2539 floating-point registers, and are implemented by the arrays
2540 dbx_register_map[] and svr4_dbx_register_map in
2541 gcc/config/i386.c. GCC also defines a third numbering scheme in
2542 gcc/config/i386.c, which it designates as the "default" register
2543 map used in 64bit mode. This last register numbering scheme is
2544 implemented in dbx64_register_map, and is used for AMD64; see
2545 amd64-tdep.c.
2546
2547 Currently, each GCC i386 target always uses the same register
2548 numbering scheme across all its supported debugging formats
2549 i.e. SDB (COFF), stabs and DWARF 2. This is because
2550 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2551 DBX_REGISTER_NUMBER macro which is defined by each target's
2552 respective config header in a manner independent of the requested
2553 output debugging format.
2554
2555 This does not match the arrangement below, which presumes that
2556 the SDB and stabs numbering schemes differ from the DWARF and
2557 DWARF 2 ones. The reason for this arrangement is that it is
2558 likely to get the numbering scheme for the target's
2559 default/native debug format right. For targets where GCC is the
2560 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2561 targets where the native toolchain uses a different numbering
2562 scheme for a particular debug format (stabs-in-ELF on Solaris)
2563 the defaults below will have to be overridden, like
2564 i386_elf_init_abi() does. */
2565
2566 /* Use the dbx register numbering scheme for stabs and COFF. */
2567 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2568 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2569
2570 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */
2571 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2572 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2573
2574 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
2575 be in use on any of the supported i386 targets. */
2576
2577 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2578
2579 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
2580
2581 /* Call dummy code. */
2582 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
2583
2584 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2585 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2586 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
2587
2588 set_gdbarch_return_value (gdbarch, i386_return_value);
2589
2590 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2591
2592 /* Stack grows downward. */
2593 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2594
2595 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2596 set_gdbarch_decr_pc_after_break (gdbarch, 1);
2597 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
2598
2599 set_gdbarch_frame_args_skip (gdbarch, 8);
2600
2601 /* Wire in the MMX registers. */
2602 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
2603 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2604 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2605
2606 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2607
2608 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
2609
2610 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2611
2612 /* Add the i386 register groups. */
2613 i386_add_reggroups (gdbarch);
2614 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2615
2616 /* Helper for function argument information. */
2617 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2618
2619 /* Hook in the DWARF CFI frame unwinder. */
2620 dwarf2_append_unwinders (gdbarch);
2621
2622 frame_base_set_default (gdbarch, &i386_frame_base);
2623
2624 /* Hook in ABI-specific overrides, if they have been registered. */
2625 gdbarch_init_osabi (info, gdbarch);
2626
2627 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
2628 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
2629
2630 /* If we have a register mapping, enable the generic core file
2631 support, unless it has already been enabled. */
2632 if (tdep->gregset_reg_offset
2633 && !gdbarch_regset_from_core_section_p (gdbarch))
2634 set_gdbarch_regset_from_core_section (gdbarch,
2635 i386_regset_from_core_section);
2636
2637 /* Unless support for MMX has been disabled, make %mm0 the first
2638 pseudo-register. */
2639 if (tdep->mm0_regnum == 0)
2640 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2641
2642 return gdbarch;
2643 }
2644
2645 static enum gdb_osabi
2646 i386_coff_osabi_sniffer (bfd *abfd)
2647 {
2648 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2649 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
2650 return GDB_OSABI_GO32;
2651
2652 return GDB_OSABI_UNKNOWN;
2653 }
2654 \f
2655
2656 /* Provide a prototype to silence -Wmissing-prototypes. */
2657 void _initialize_i386_tdep (void);
2658
2659 void
2660 _initialize_i386_tdep (void)
2661 {
2662 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2663
2664 /* Add the variable that controls the disassembly flavor. */
2665 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
2666 &disassembly_flavor, _("\
2667 Set the disassembly flavor."), _("\
2668 Show the disassembly flavor."), _("\
2669 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
2670 NULL,
2671 NULL, /* FIXME: i18n: */
2672 &setlist, &showlist);
2673
2674 /* Add the variable that controls the convention for returning
2675 structs. */
2676 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
2677 &struct_convention, _("\
2678 Set the convention for returning small structs."), _("\
2679 Show the convention for returning small structs."), _("\
2680 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
2681 is \"default\"."),
2682 NULL,
2683 NULL, /* FIXME: i18n: */
2684 &setlist, &showlist);
2685
2686 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2687 i386_coff_osabi_sniffer);
2688
2689 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
2690 i386_svr4_init_abi);
2691 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
2692 i386_go32_init_abi);
2693
2694 /* Initialize the i386-specific register groups & types. */
2695 i386_init_reggroups ();
2696 i386_init_types();
2697 }
This page took 0.1174 seconds and 4 git commands to generate.