windows-nat: Don't change current_event.dwThreadId in handle_output_debug_string()
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "infrun.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "osabi.h"
37 #include "regcache.h"
38 #include "reggroups.h"
39 #include "regset.h"
40 #include "symfile.h"
41 #include "symtab.h"
42 #include "target.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "x86-xstate.h"
50
51 #include "record.h"
52 #include "record-full.h"
53 #include <stdint.h>
54
55 #include "features/i386/i386.c"
56 #include "features/i386/i386-avx.c"
57 #include "features/i386/i386-mpx.c"
58 #include "features/i386/i386-avx512.c"
59 #include "features/i386/i386-mmx.c"
60
61 #include "ax.h"
62 #include "ax-gdb.h"
63
64 #include "stap-probe.h"
65 #include "user-regs.h"
66 #include "cli/cli-utils.h"
67 #include "expression.h"
68 #include "parser-defs.h"
69 #include <ctype.h>
70
71 /* Register names. */
72
73 static const char *i386_register_names[] =
74 {
75 "eax", "ecx", "edx", "ebx",
76 "esp", "ebp", "esi", "edi",
77 "eip", "eflags", "cs", "ss",
78 "ds", "es", "fs", "gs",
79 "st0", "st1", "st2", "st3",
80 "st4", "st5", "st6", "st7",
81 "fctrl", "fstat", "ftag", "fiseg",
82 "fioff", "foseg", "fooff", "fop",
83 "xmm0", "xmm1", "xmm2", "xmm3",
84 "xmm4", "xmm5", "xmm6", "xmm7",
85 "mxcsr"
86 };
87
88 static const char *i386_zmm_names[] =
89 {
90 "zmm0", "zmm1", "zmm2", "zmm3",
91 "zmm4", "zmm5", "zmm6", "zmm7"
92 };
93
94 static const char *i386_zmmh_names[] =
95 {
96 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
97 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
98 };
99
100 static const char *i386_k_names[] =
101 {
102 "k0", "k1", "k2", "k3",
103 "k4", "k5", "k6", "k7"
104 };
105
106 static const char *i386_ymm_names[] =
107 {
108 "ymm0", "ymm1", "ymm2", "ymm3",
109 "ymm4", "ymm5", "ymm6", "ymm7",
110 };
111
112 static const char *i386_ymmh_names[] =
113 {
114 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
115 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
116 };
117
118 static const char *i386_mpx_names[] =
119 {
120 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
121 };
122
123 /* Register names for MPX pseudo-registers. */
124
125 static const char *i386_bnd_names[] =
126 {
127 "bnd0", "bnd1", "bnd2", "bnd3"
128 };
129
130 /* Register names for MMX pseudo-registers. */
131
132 static const char *i386_mmx_names[] =
133 {
134 "mm0", "mm1", "mm2", "mm3",
135 "mm4", "mm5", "mm6", "mm7"
136 };
137
138 /* Register names for byte pseudo-registers. */
139
140 static const char *i386_byte_names[] =
141 {
142 "al", "cl", "dl", "bl",
143 "ah", "ch", "dh", "bh"
144 };
145
146 /* Register names for word pseudo-registers. */
147
148 static const char *i386_word_names[] =
149 {
150 "ax", "cx", "dx", "bx",
151 "", "bp", "si", "di"
152 };
153
154 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
155 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
156 we have 16 upper ZMM regs that have to be handled differently. */
157
158 const int num_lower_zmm_regs = 16;
159
160 /* MMX register? */
161
162 static int
163 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
164 {
165 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
166 int mm0_regnum = tdep->mm0_regnum;
167
168 if (mm0_regnum < 0)
169 return 0;
170
171 regnum -= mm0_regnum;
172 return regnum >= 0 && regnum < tdep->num_mmx_regs;
173 }
174
175 /* Byte register? */
176
177 int
178 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
179 {
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181
182 regnum -= tdep->al_regnum;
183 return regnum >= 0 && regnum < tdep->num_byte_regs;
184 }
185
186 /* Word register? */
187
188 int
189 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
190 {
191 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
192
193 regnum -= tdep->ax_regnum;
194 return regnum >= 0 && regnum < tdep->num_word_regs;
195 }
196
197 /* Dword register? */
198
199 int
200 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
201 {
202 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
203 int eax_regnum = tdep->eax_regnum;
204
205 if (eax_regnum < 0)
206 return 0;
207
208 regnum -= eax_regnum;
209 return regnum >= 0 && regnum < tdep->num_dword_regs;
210 }
211
212 /* AVX512 register? */
213
214 int
215 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
216 {
217 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
218 int zmm0h_regnum = tdep->zmm0h_regnum;
219
220 if (zmm0h_regnum < 0)
221 return 0;
222
223 regnum -= zmm0h_regnum;
224 return regnum >= 0 && regnum < tdep->num_zmm_regs;
225 }
226
227 int
228 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
229 {
230 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
231 int zmm0_regnum = tdep->zmm0_regnum;
232
233 if (zmm0_regnum < 0)
234 return 0;
235
236 regnum -= zmm0_regnum;
237 return regnum >= 0 && regnum < tdep->num_zmm_regs;
238 }
239
240 int
241 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
242 {
243 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
244 int k0_regnum = tdep->k0_regnum;
245
246 if (k0_regnum < 0)
247 return 0;
248
249 regnum -= k0_regnum;
250 return regnum >= 0 && regnum < I387_NUM_K_REGS;
251 }
252
253 static int
254 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
255 {
256 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
257 int ymm0h_regnum = tdep->ymm0h_regnum;
258
259 if (ymm0h_regnum < 0)
260 return 0;
261
262 regnum -= ymm0h_regnum;
263 return regnum >= 0 && regnum < tdep->num_ymm_regs;
264 }
265
266 /* AVX register? */
267
268 int
269 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
270 {
271 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
272 int ymm0_regnum = tdep->ymm0_regnum;
273
274 if (ymm0_regnum < 0)
275 return 0;
276
277 regnum -= ymm0_regnum;
278 return regnum >= 0 && regnum < tdep->num_ymm_regs;
279 }
280
281 static int
282 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
283 {
284 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
285 int ymm16h_regnum = tdep->ymm16h_regnum;
286
287 if (ymm16h_regnum < 0)
288 return 0;
289
290 regnum -= ymm16h_regnum;
291 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
292 }
293
294 int
295 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
296 {
297 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
298 int ymm16_regnum = tdep->ymm16_regnum;
299
300 if (ymm16_regnum < 0)
301 return 0;
302
303 regnum -= ymm16_regnum;
304 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
305 }
306
307 /* BND register? */
308
309 int
310 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
311 {
312 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
313 int bnd0_regnum = tdep->bnd0_regnum;
314
315 if (bnd0_regnum < 0)
316 return 0;
317
318 regnum -= bnd0_regnum;
319 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
320 }
321
322 /* SSE register? */
323
324 int
325 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
326 {
327 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
328 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
329
330 if (num_xmm_regs == 0)
331 return 0;
332
333 regnum -= I387_XMM0_REGNUM (tdep);
334 return regnum >= 0 && regnum < num_xmm_regs;
335 }
336
337 /* XMM_512 register? */
338
339 int
340 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
341 {
342 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
343 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
344
345 if (num_xmm_avx512_regs == 0)
346 return 0;
347
348 regnum -= I387_XMM16_REGNUM (tdep);
349 return regnum >= 0 && regnum < num_xmm_avx512_regs;
350 }
351
352 static int
353 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
354 {
355 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
356
357 if (I387_NUM_XMM_REGS (tdep) == 0)
358 return 0;
359
360 return (regnum == I387_MXCSR_REGNUM (tdep));
361 }
362
363 /* FP register? */
364
365 int
366 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
367 {
368 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
369
370 if (I387_ST0_REGNUM (tdep) < 0)
371 return 0;
372
373 return (I387_ST0_REGNUM (tdep) <= regnum
374 && regnum < I387_FCTRL_REGNUM (tdep));
375 }
376
377 int
378 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
379 {
380 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
381
382 if (I387_ST0_REGNUM (tdep) < 0)
383 return 0;
384
385 return (I387_FCTRL_REGNUM (tdep) <= regnum
386 && regnum < I387_XMM0_REGNUM (tdep));
387 }
388
389 /* BNDr (raw) register? */
390
391 static int
392 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
393 {
394 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
395
396 if (I387_BND0R_REGNUM (tdep) < 0)
397 return 0;
398
399 regnum -= tdep->bnd0r_regnum;
400 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
401 }
402
403 /* BND control register? */
404
405 static int
406 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
407 {
408 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
409
410 if (I387_BNDCFGU_REGNUM (tdep) < 0)
411 return 0;
412
413 regnum -= I387_BNDCFGU_REGNUM (tdep);
414 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
415 }
416
417 /* Return the name of register REGNUM, or the empty string if it is
418 an anonymous register. */
419
420 static const char *
421 i386_register_name (struct gdbarch *gdbarch, int regnum)
422 {
423 /* Hide the upper YMM registers. */
424 if (i386_ymmh_regnum_p (gdbarch, regnum))
425 return "";
426
427 /* Hide the upper YMM16-31 registers. */
428 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
429 return "";
430
431 /* Hide the upper ZMM registers. */
432 if (i386_zmmh_regnum_p (gdbarch, regnum))
433 return "";
434
435 return tdesc_register_name (gdbarch, regnum);
436 }
437
438 /* Return the name of register REGNUM. */
439
440 const char *
441 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
442 {
443 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
444 if (i386_bnd_regnum_p (gdbarch, regnum))
445 return i386_bnd_names[regnum - tdep->bnd0_regnum];
446 if (i386_mmx_regnum_p (gdbarch, regnum))
447 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
448 else if (i386_ymm_regnum_p (gdbarch, regnum))
449 return i386_ymm_names[regnum - tdep->ymm0_regnum];
450 else if (i386_zmm_regnum_p (gdbarch, regnum))
451 return i386_zmm_names[regnum - tdep->zmm0_regnum];
452 else if (i386_byte_regnum_p (gdbarch, regnum))
453 return i386_byte_names[regnum - tdep->al_regnum];
454 else if (i386_word_regnum_p (gdbarch, regnum))
455 return i386_word_names[regnum - tdep->ax_regnum];
456
457 internal_error (__FILE__, __LINE__, _("invalid regnum"));
458 }
459
460 /* Convert a dbx register number REG to the appropriate register
461 number used by GDB. */
462
463 static int
464 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
465 {
466 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
467
468 /* This implements what GCC calls the "default" register map
469 (dbx_register_map[]). */
470
471 if (reg >= 0 && reg <= 7)
472 {
473 /* General-purpose registers. The debug info calls %ebp
474 register 4, and %esp register 5. */
475 if (reg == 4)
476 return 5;
477 else if (reg == 5)
478 return 4;
479 else return reg;
480 }
481 else if (reg >= 12 && reg <= 19)
482 {
483 /* Floating-point registers. */
484 return reg - 12 + I387_ST0_REGNUM (tdep);
485 }
486 else if (reg >= 21 && reg <= 28)
487 {
488 /* SSE registers. */
489 int ymm0_regnum = tdep->ymm0_regnum;
490
491 if (ymm0_regnum >= 0
492 && i386_xmm_regnum_p (gdbarch, reg))
493 return reg - 21 + ymm0_regnum;
494 else
495 return reg - 21 + I387_XMM0_REGNUM (tdep);
496 }
497 else if (reg >= 29 && reg <= 36)
498 {
499 /* MMX registers. */
500 return reg - 29 + I387_MM0_REGNUM (tdep);
501 }
502
503 /* This will hopefully provoke a warning. */
504 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
505 }
506
507 /* Convert SVR4 register number REG to the appropriate register number
508 used by GDB. */
509
510 static int
511 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
512 {
513 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
514
515 /* This implements the GCC register map that tries to be compatible
516 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
517
518 /* The SVR4 register numbering includes %eip and %eflags, and
519 numbers the floating point registers differently. */
520 if (reg >= 0 && reg <= 9)
521 {
522 /* General-purpose registers. */
523 return reg;
524 }
525 else if (reg >= 11 && reg <= 18)
526 {
527 /* Floating-point registers. */
528 return reg - 11 + I387_ST0_REGNUM (tdep);
529 }
530 else if (reg >= 21 && reg <= 36)
531 {
532 /* The SSE and MMX registers have the same numbers as with dbx. */
533 return i386_dbx_reg_to_regnum (gdbarch, reg);
534 }
535
536 switch (reg)
537 {
538 case 37: return I387_FCTRL_REGNUM (tdep);
539 case 38: return I387_FSTAT_REGNUM (tdep);
540 case 39: return I387_MXCSR_REGNUM (tdep);
541 case 40: return I386_ES_REGNUM;
542 case 41: return I386_CS_REGNUM;
543 case 42: return I386_SS_REGNUM;
544 case 43: return I386_DS_REGNUM;
545 case 44: return I386_FS_REGNUM;
546 case 45: return I386_GS_REGNUM;
547 }
548
549 /* This will hopefully provoke a warning. */
550 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
551 }
552
553 \f
554
555 /* This is the variable that is set with "set disassembly-flavor", and
556 its legitimate values. */
557 static const char att_flavor[] = "att";
558 static const char intel_flavor[] = "intel";
559 static const char *const valid_flavors[] =
560 {
561 att_flavor,
562 intel_flavor,
563 NULL
564 };
565 static const char *disassembly_flavor = att_flavor;
566 \f
567
568 /* Use the program counter to determine the contents and size of a
569 breakpoint instruction. Return a pointer to a string of bytes that
570 encode a breakpoint instruction, store the length of the string in
571 *LEN and optionally adjust *PC to point to the correct memory
572 location for inserting the breakpoint.
573
574 On the i386 we have a single breakpoint that fits in a single byte
575 and can be inserted anywhere.
576
577 This function is 64-bit safe. */
578
579 static const gdb_byte *
580 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
581 {
582 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
583
584 *len = sizeof (break_insn);
585 return break_insn;
586 }
587 \f
588 /* Displaced instruction handling. */
589
590 /* Skip the legacy instruction prefixes in INSN.
591 Not all prefixes are valid for any particular insn
592 but we needn't care, the insn will fault if it's invalid.
593 The result is a pointer to the first opcode byte,
594 or NULL if we run off the end of the buffer. */
595
596 static gdb_byte *
597 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
598 {
599 gdb_byte *end = insn + max_len;
600
601 while (insn < end)
602 {
603 switch (*insn)
604 {
605 case DATA_PREFIX_OPCODE:
606 case ADDR_PREFIX_OPCODE:
607 case CS_PREFIX_OPCODE:
608 case DS_PREFIX_OPCODE:
609 case ES_PREFIX_OPCODE:
610 case FS_PREFIX_OPCODE:
611 case GS_PREFIX_OPCODE:
612 case SS_PREFIX_OPCODE:
613 case LOCK_PREFIX_OPCODE:
614 case REPE_PREFIX_OPCODE:
615 case REPNE_PREFIX_OPCODE:
616 ++insn;
617 continue;
618 default:
619 return insn;
620 }
621 }
622
623 return NULL;
624 }
625
626 static int
627 i386_absolute_jmp_p (const gdb_byte *insn)
628 {
629 /* jmp far (absolute address in operand). */
630 if (insn[0] == 0xea)
631 return 1;
632
633 if (insn[0] == 0xff)
634 {
635 /* jump near, absolute indirect (/4). */
636 if ((insn[1] & 0x38) == 0x20)
637 return 1;
638
639 /* jump far, absolute indirect (/5). */
640 if ((insn[1] & 0x38) == 0x28)
641 return 1;
642 }
643
644 return 0;
645 }
646
647 /* Return non-zero if INSN is a jump, zero otherwise. */
648
649 static int
650 i386_jmp_p (const gdb_byte *insn)
651 {
652 /* jump short, relative. */
653 if (insn[0] == 0xeb)
654 return 1;
655
656 /* jump near, relative. */
657 if (insn[0] == 0xe9)
658 return 1;
659
660 return i386_absolute_jmp_p (insn);
661 }
662
663 static int
664 i386_absolute_call_p (const gdb_byte *insn)
665 {
666 /* call far, absolute. */
667 if (insn[0] == 0x9a)
668 return 1;
669
670 if (insn[0] == 0xff)
671 {
672 /* Call near, absolute indirect (/2). */
673 if ((insn[1] & 0x38) == 0x10)
674 return 1;
675
676 /* Call far, absolute indirect (/3). */
677 if ((insn[1] & 0x38) == 0x18)
678 return 1;
679 }
680
681 return 0;
682 }
683
684 static int
685 i386_ret_p (const gdb_byte *insn)
686 {
687 switch (insn[0])
688 {
689 case 0xc2: /* ret near, pop N bytes. */
690 case 0xc3: /* ret near */
691 case 0xca: /* ret far, pop N bytes. */
692 case 0xcb: /* ret far */
693 case 0xcf: /* iret */
694 return 1;
695
696 default:
697 return 0;
698 }
699 }
700
701 static int
702 i386_call_p (const gdb_byte *insn)
703 {
704 if (i386_absolute_call_p (insn))
705 return 1;
706
707 /* call near, relative. */
708 if (insn[0] == 0xe8)
709 return 1;
710
711 return 0;
712 }
713
714 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
715 length in bytes. Otherwise, return zero. */
716
717 static int
718 i386_syscall_p (const gdb_byte *insn, int *lengthp)
719 {
720 /* Is it 'int $0x80'? */
721 if ((insn[0] == 0xcd && insn[1] == 0x80)
722 /* Or is it 'sysenter'? */
723 || (insn[0] == 0x0f && insn[1] == 0x34)
724 /* Or is it 'syscall'? */
725 || (insn[0] == 0x0f && insn[1] == 0x05))
726 {
727 *lengthp = 2;
728 return 1;
729 }
730
731 return 0;
732 }
733
734 /* The gdbarch insn_is_call method. */
735
736 static int
737 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
738 {
739 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
740
741 read_code (addr, buf, I386_MAX_INSN_LEN);
742 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
743
744 return i386_call_p (insn);
745 }
746
747 /* The gdbarch insn_is_ret method. */
748
749 static int
750 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
751 {
752 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
753
754 read_code (addr, buf, I386_MAX_INSN_LEN);
755 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
756
757 return i386_ret_p (insn);
758 }
759
760 /* The gdbarch insn_is_jump method. */
761
762 static int
763 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
764 {
765 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
766
767 read_code (addr, buf, I386_MAX_INSN_LEN);
768 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
769
770 return i386_jmp_p (insn);
771 }
772
773 /* Some kernels may run one past a syscall insn, so we have to cope.
774 Otherwise this is just simple_displaced_step_copy_insn. */
775
776 struct displaced_step_closure *
777 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
778 CORE_ADDR from, CORE_ADDR to,
779 struct regcache *regs)
780 {
781 size_t len = gdbarch_max_insn_length (gdbarch);
782 gdb_byte *buf = xmalloc (len);
783
784 read_memory (from, buf, len);
785
786 /* GDB may get control back after the insn after the syscall.
787 Presumably this is a kernel bug.
788 If this is a syscall, make sure there's a nop afterwards. */
789 {
790 int syscall_length;
791 gdb_byte *insn;
792
793 insn = i386_skip_prefixes (buf, len);
794 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
795 insn[syscall_length] = NOP_OPCODE;
796 }
797
798 write_memory (to, buf, len);
799
800 if (debug_displaced)
801 {
802 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
803 paddress (gdbarch, from), paddress (gdbarch, to));
804 displaced_step_dump_bytes (gdb_stdlog, buf, len);
805 }
806
807 return (struct displaced_step_closure *) buf;
808 }
809
810 /* Fix up the state of registers and memory after having single-stepped
811 a displaced instruction. */
812
813 void
814 i386_displaced_step_fixup (struct gdbarch *gdbarch,
815 struct displaced_step_closure *closure,
816 CORE_ADDR from, CORE_ADDR to,
817 struct regcache *regs)
818 {
819 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
820
821 /* The offset we applied to the instruction's address.
822 This could well be negative (when viewed as a signed 32-bit
823 value), but ULONGEST won't reflect that, so take care when
824 applying it. */
825 ULONGEST insn_offset = to - from;
826
827 /* Since we use simple_displaced_step_copy_insn, our closure is a
828 copy of the instruction. */
829 gdb_byte *insn = (gdb_byte *) closure;
830 /* The start of the insn, needed in case we see some prefixes. */
831 gdb_byte *insn_start = insn;
832
833 if (debug_displaced)
834 fprintf_unfiltered (gdb_stdlog,
835 "displaced: fixup (%s, %s), "
836 "insn = 0x%02x 0x%02x ...\n",
837 paddress (gdbarch, from), paddress (gdbarch, to),
838 insn[0], insn[1]);
839
840 /* The list of issues to contend with here is taken from
841 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
842 Yay for Free Software! */
843
844 /* Relocate the %eip, if necessary. */
845
846 /* The instruction recognizers we use assume any leading prefixes
847 have been skipped. */
848 {
849 /* This is the size of the buffer in closure. */
850 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
851 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
852 /* If there are too many prefixes, just ignore the insn.
853 It will fault when run. */
854 if (opcode != NULL)
855 insn = opcode;
856 }
857
858 /* Except in the case of absolute or indirect jump or call
859 instructions, or a return instruction, the new eip is relative to
860 the displaced instruction; make it relative. Well, signal
861 handler returns don't need relocation either, but we use the
862 value of %eip to recognize those; see below. */
863 if (! i386_absolute_jmp_p (insn)
864 && ! i386_absolute_call_p (insn)
865 && ! i386_ret_p (insn))
866 {
867 ULONGEST orig_eip;
868 int insn_len;
869
870 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
871
872 /* A signal trampoline system call changes the %eip, resuming
873 execution of the main program after the signal handler has
874 returned. That makes them like 'return' instructions; we
875 shouldn't relocate %eip.
876
877 But most system calls don't, and we do need to relocate %eip.
878
879 Our heuristic for distinguishing these cases: if stepping
880 over the system call instruction left control directly after
881 the instruction, the we relocate --- control almost certainly
882 doesn't belong in the displaced copy. Otherwise, we assume
883 the instruction has put control where it belongs, and leave
884 it unrelocated. Goodness help us if there are PC-relative
885 system calls. */
886 if (i386_syscall_p (insn, &insn_len)
887 && orig_eip != to + (insn - insn_start) + insn_len
888 /* GDB can get control back after the insn after the syscall.
889 Presumably this is a kernel bug.
890 i386_displaced_step_copy_insn ensures its a nop,
891 we add one to the length for it. */
892 && orig_eip != to + (insn - insn_start) + insn_len + 1)
893 {
894 if (debug_displaced)
895 fprintf_unfiltered (gdb_stdlog,
896 "displaced: syscall changed %%eip; "
897 "not relocating\n");
898 }
899 else
900 {
901 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
902
903 /* If we just stepped over a breakpoint insn, we don't backup
904 the pc on purpose; this is to match behaviour without
905 stepping. */
906
907 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
908
909 if (debug_displaced)
910 fprintf_unfiltered (gdb_stdlog,
911 "displaced: "
912 "relocated %%eip from %s to %s\n",
913 paddress (gdbarch, orig_eip),
914 paddress (gdbarch, eip));
915 }
916 }
917
918 /* If the instruction was PUSHFL, then the TF bit will be set in the
919 pushed value, and should be cleared. We'll leave this for later,
920 since GDB already messes up the TF flag when stepping over a
921 pushfl. */
922
923 /* If the instruction was a call, the return address now atop the
924 stack is the address following the copied instruction. We need
925 to make it the address following the original instruction. */
926 if (i386_call_p (insn))
927 {
928 ULONGEST esp;
929 ULONGEST retaddr;
930 const ULONGEST retaddr_len = 4;
931
932 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
933 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
934 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
935 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
936
937 if (debug_displaced)
938 fprintf_unfiltered (gdb_stdlog,
939 "displaced: relocated return addr at %s to %s\n",
940 paddress (gdbarch, esp),
941 paddress (gdbarch, retaddr));
942 }
943 }
944
945 static void
946 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
947 {
948 target_write_memory (*to, buf, len);
949 *to += len;
950 }
951
952 static void
953 i386_relocate_instruction (struct gdbarch *gdbarch,
954 CORE_ADDR *to, CORE_ADDR oldloc)
955 {
956 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
957 gdb_byte buf[I386_MAX_INSN_LEN];
958 int offset = 0, rel32, newrel;
959 int insn_length;
960 gdb_byte *insn = buf;
961
962 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
963
964 insn_length = gdb_buffered_insn_length (gdbarch, insn,
965 I386_MAX_INSN_LEN, oldloc);
966
967 /* Get past the prefixes. */
968 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
969
970 /* Adjust calls with 32-bit relative addresses as push/jump, with
971 the address pushed being the location where the original call in
972 the user program would return to. */
973 if (insn[0] == 0xe8)
974 {
975 gdb_byte push_buf[16];
976 unsigned int ret_addr;
977
978 /* Where "ret" in the original code will return to. */
979 ret_addr = oldloc + insn_length;
980 push_buf[0] = 0x68; /* pushq $... */
981 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
982 /* Push the push. */
983 append_insns (to, 5, push_buf);
984
985 /* Convert the relative call to a relative jump. */
986 insn[0] = 0xe9;
987
988 /* Adjust the destination offset. */
989 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
990 newrel = (oldloc - *to) + rel32;
991 store_signed_integer (insn + 1, 4, byte_order, newrel);
992
993 if (debug_displaced)
994 fprintf_unfiltered (gdb_stdlog,
995 "Adjusted insn rel32=%s at %s to"
996 " rel32=%s at %s\n",
997 hex_string (rel32), paddress (gdbarch, oldloc),
998 hex_string (newrel), paddress (gdbarch, *to));
999
1000 /* Write the adjusted jump into its displaced location. */
1001 append_insns (to, 5, insn);
1002 return;
1003 }
1004
1005 /* Adjust jumps with 32-bit relative addresses. Calls are already
1006 handled above. */
1007 if (insn[0] == 0xe9)
1008 offset = 1;
1009 /* Adjust conditional jumps. */
1010 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1011 offset = 2;
1012
1013 if (offset)
1014 {
1015 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1016 newrel = (oldloc - *to) + rel32;
1017 store_signed_integer (insn + offset, 4, byte_order, newrel);
1018 if (debug_displaced)
1019 fprintf_unfiltered (gdb_stdlog,
1020 "Adjusted insn rel32=%s at %s to"
1021 " rel32=%s at %s\n",
1022 hex_string (rel32), paddress (gdbarch, oldloc),
1023 hex_string (newrel), paddress (gdbarch, *to));
1024 }
1025
1026 /* Write the adjusted instructions into their displaced
1027 location. */
1028 append_insns (to, insn_length, buf);
1029 }
1030
1031 \f
1032 #ifdef I386_REGNO_TO_SYMMETRY
1033 #error "The Sequent Symmetry is no longer supported."
1034 #endif
1035
1036 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1037 and %esp "belong" to the calling function. Therefore these
1038 registers should be saved if they're going to be modified. */
1039
1040 /* The maximum number of saved registers. This should include all
1041 registers mentioned above, and %eip. */
1042 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1043
1044 struct i386_frame_cache
1045 {
1046 /* Base address. */
1047 CORE_ADDR base;
1048 int base_p;
1049 LONGEST sp_offset;
1050 CORE_ADDR pc;
1051
1052 /* Saved registers. */
1053 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1054 CORE_ADDR saved_sp;
1055 int saved_sp_reg;
1056 int pc_in_eax;
1057
1058 /* Stack space reserved for local variables. */
1059 long locals;
1060 };
1061
1062 /* Allocate and initialize a frame cache. */
1063
1064 static struct i386_frame_cache *
1065 i386_alloc_frame_cache (void)
1066 {
1067 struct i386_frame_cache *cache;
1068 int i;
1069
1070 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1071
1072 /* Base address. */
1073 cache->base_p = 0;
1074 cache->base = 0;
1075 cache->sp_offset = -4;
1076 cache->pc = 0;
1077
1078 /* Saved registers. We initialize these to -1 since zero is a valid
1079 offset (that's where %ebp is supposed to be stored). */
1080 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1081 cache->saved_regs[i] = -1;
1082 cache->saved_sp = 0;
1083 cache->saved_sp_reg = -1;
1084 cache->pc_in_eax = 0;
1085
1086 /* Frameless until proven otherwise. */
1087 cache->locals = -1;
1088
1089 return cache;
1090 }
1091
1092 /* If the instruction at PC is a jump, return the address of its
1093 target. Otherwise, return PC. */
1094
1095 static CORE_ADDR
1096 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1097 {
1098 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1099 gdb_byte op;
1100 long delta = 0;
1101 int data16 = 0;
1102
1103 if (target_read_code (pc, &op, 1))
1104 return pc;
1105
1106 if (op == 0x66)
1107 {
1108 data16 = 1;
1109
1110 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1111 }
1112
1113 switch (op)
1114 {
1115 case 0xe9:
1116 /* Relative jump: if data16 == 0, disp32, else disp16. */
1117 if (data16)
1118 {
1119 delta = read_memory_integer (pc + 2, 2, byte_order);
1120
1121 /* Include the size of the jmp instruction (including the
1122 0x66 prefix). */
1123 delta += 4;
1124 }
1125 else
1126 {
1127 delta = read_memory_integer (pc + 1, 4, byte_order);
1128
1129 /* Include the size of the jmp instruction. */
1130 delta += 5;
1131 }
1132 break;
1133 case 0xeb:
1134 /* Relative jump, disp8 (ignore data16). */
1135 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1136
1137 delta += data16 + 2;
1138 break;
1139 }
1140
1141 return pc + delta;
1142 }
1143
1144 /* Check whether PC points at a prologue for a function returning a
1145 structure or union. If so, it updates CACHE and returns the
1146 address of the first instruction after the code sequence that
1147 removes the "hidden" argument from the stack or CURRENT_PC,
1148 whichever is smaller. Otherwise, return PC. */
1149
1150 static CORE_ADDR
1151 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1152 struct i386_frame_cache *cache)
1153 {
1154 /* Functions that return a structure or union start with:
1155
1156 popl %eax 0x58
1157 xchgl %eax, (%esp) 0x87 0x04 0x24
1158 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1159
1160 (the System V compiler puts out the second `xchg' instruction,
1161 and the assembler doesn't try to optimize it, so the 'sib' form
1162 gets generated). This sequence is used to get the address of the
1163 return buffer for a function that returns a structure. */
1164 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1165 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1166 gdb_byte buf[4];
1167 gdb_byte op;
1168
1169 if (current_pc <= pc)
1170 return pc;
1171
1172 if (target_read_code (pc, &op, 1))
1173 return pc;
1174
1175 if (op != 0x58) /* popl %eax */
1176 return pc;
1177
1178 if (target_read_code (pc + 1, buf, 4))
1179 return pc;
1180
1181 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1182 return pc;
1183
1184 if (current_pc == pc)
1185 {
1186 cache->sp_offset += 4;
1187 return current_pc;
1188 }
1189
1190 if (current_pc == pc + 1)
1191 {
1192 cache->pc_in_eax = 1;
1193 return current_pc;
1194 }
1195
1196 if (buf[1] == proto1[1])
1197 return pc + 4;
1198 else
1199 return pc + 5;
1200 }
1201
1202 static CORE_ADDR
1203 i386_skip_probe (CORE_ADDR pc)
1204 {
1205 /* A function may start with
1206
1207 pushl constant
1208 call _probe
1209 addl $4, %esp
1210
1211 followed by
1212
1213 pushl %ebp
1214
1215 etc. */
1216 gdb_byte buf[8];
1217 gdb_byte op;
1218
1219 if (target_read_code (pc, &op, 1))
1220 return pc;
1221
1222 if (op == 0x68 || op == 0x6a)
1223 {
1224 int delta;
1225
1226 /* Skip past the `pushl' instruction; it has either a one-byte or a
1227 four-byte operand, depending on the opcode. */
1228 if (op == 0x68)
1229 delta = 5;
1230 else
1231 delta = 2;
1232
1233 /* Read the following 8 bytes, which should be `call _probe' (6
1234 bytes) followed by `addl $4,%esp' (2 bytes). */
1235 read_memory (pc + delta, buf, sizeof (buf));
1236 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1237 pc += delta + sizeof (buf);
1238 }
1239
1240 return pc;
1241 }
1242
1243 /* GCC 4.1 and later, can put code in the prologue to realign the
1244 stack pointer. Check whether PC points to such code, and update
1245 CACHE accordingly. Return the first instruction after the code
1246 sequence or CURRENT_PC, whichever is smaller. If we don't
1247 recognize the code, return PC. */
1248
1249 static CORE_ADDR
1250 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1251 struct i386_frame_cache *cache)
1252 {
1253 /* There are 2 code sequences to re-align stack before the frame
1254 gets set up:
1255
1256 1. Use a caller-saved saved register:
1257
1258 leal 4(%esp), %reg
1259 andl $-XXX, %esp
1260 pushl -4(%reg)
1261
1262 2. Use a callee-saved saved register:
1263
1264 pushl %reg
1265 leal 8(%esp), %reg
1266 andl $-XXX, %esp
1267 pushl -4(%reg)
1268
1269 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1270
1271 0x83 0xe4 0xf0 andl $-16, %esp
1272 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1273 */
1274
1275 gdb_byte buf[14];
1276 int reg;
1277 int offset, offset_and;
1278 static int regnums[8] = {
1279 I386_EAX_REGNUM, /* %eax */
1280 I386_ECX_REGNUM, /* %ecx */
1281 I386_EDX_REGNUM, /* %edx */
1282 I386_EBX_REGNUM, /* %ebx */
1283 I386_ESP_REGNUM, /* %esp */
1284 I386_EBP_REGNUM, /* %ebp */
1285 I386_ESI_REGNUM, /* %esi */
1286 I386_EDI_REGNUM /* %edi */
1287 };
1288
1289 if (target_read_code (pc, buf, sizeof buf))
1290 return pc;
1291
1292 /* Check caller-saved saved register. The first instruction has
1293 to be "leal 4(%esp), %reg". */
1294 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1295 {
1296 /* MOD must be binary 10 and R/M must be binary 100. */
1297 if ((buf[1] & 0xc7) != 0x44)
1298 return pc;
1299
1300 /* REG has register number. */
1301 reg = (buf[1] >> 3) & 7;
1302 offset = 4;
1303 }
1304 else
1305 {
1306 /* Check callee-saved saved register. The first instruction
1307 has to be "pushl %reg". */
1308 if ((buf[0] & 0xf8) != 0x50)
1309 return pc;
1310
1311 /* Get register. */
1312 reg = buf[0] & 0x7;
1313
1314 /* The next instruction has to be "leal 8(%esp), %reg". */
1315 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1316 return pc;
1317
1318 /* MOD must be binary 10 and R/M must be binary 100. */
1319 if ((buf[2] & 0xc7) != 0x44)
1320 return pc;
1321
1322 /* REG has register number. Registers in pushl and leal have to
1323 be the same. */
1324 if (reg != ((buf[2] >> 3) & 7))
1325 return pc;
1326
1327 offset = 5;
1328 }
1329
1330 /* Rigister can't be %esp nor %ebp. */
1331 if (reg == 4 || reg == 5)
1332 return pc;
1333
1334 /* The next instruction has to be "andl $-XXX, %esp". */
1335 if (buf[offset + 1] != 0xe4
1336 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1337 return pc;
1338
1339 offset_and = offset;
1340 offset += buf[offset] == 0x81 ? 6 : 3;
1341
1342 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1343 0xfc. REG must be binary 110 and MOD must be binary 01. */
1344 if (buf[offset] != 0xff
1345 || buf[offset + 2] != 0xfc
1346 || (buf[offset + 1] & 0xf8) != 0x70)
1347 return pc;
1348
1349 /* R/M has register. Registers in leal and pushl have to be the
1350 same. */
1351 if (reg != (buf[offset + 1] & 7))
1352 return pc;
1353
1354 if (current_pc > pc + offset_and)
1355 cache->saved_sp_reg = regnums[reg];
1356
1357 return min (pc + offset + 3, current_pc);
1358 }
1359
1360 /* Maximum instruction length we need to handle. */
1361 #define I386_MAX_MATCHED_INSN_LEN 6
1362
1363 /* Instruction description. */
1364 struct i386_insn
1365 {
1366 size_t len;
1367 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1368 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1369 };
1370
1371 /* Return whether instruction at PC matches PATTERN. */
1372
1373 static int
1374 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1375 {
1376 gdb_byte op;
1377
1378 if (target_read_code (pc, &op, 1))
1379 return 0;
1380
1381 if ((op & pattern.mask[0]) == pattern.insn[0])
1382 {
1383 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1384 int insn_matched = 1;
1385 size_t i;
1386
1387 gdb_assert (pattern.len > 1);
1388 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1389
1390 if (target_read_code (pc + 1, buf, pattern.len - 1))
1391 return 0;
1392
1393 for (i = 1; i < pattern.len; i++)
1394 {
1395 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1396 insn_matched = 0;
1397 }
1398 return insn_matched;
1399 }
1400 return 0;
1401 }
1402
1403 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1404 the first instruction description that matches. Otherwise, return
1405 NULL. */
1406
1407 static struct i386_insn *
1408 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1409 {
1410 struct i386_insn *pattern;
1411
1412 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1413 {
1414 if (i386_match_pattern (pc, *pattern))
1415 return pattern;
1416 }
1417
1418 return NULL;
1419 }
1420
1421 /* Return whether PC points inside a sequence of instructions that
1422 matches INSN_PATTERNS. */
1423
1424 static int
1425 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1426 {
1427 CORE_ADDR current_pc;
1428 int ix, i;
1429 struct i386_insn *insn;
1430
1431 insn = i386_match_insn (pc, insn_patterns);
1432 if (insn == NULL)
1433 return 0;
1434
1435 current_pc = pc;
1436 ix = insn - insn_patterns;
1437 for (i = ix - 1; i >= 0; i--)
1438 {
1439 current_pc -= insn_patterns[i].len;
1440
1441 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1442 return 0;
1443 }
1444
1445 current_pc = pc + insn->len;
1446 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1447 {
1448 if (!i386_match_pattern (current_pc, *insn))
1449 return 0;
1450
1451 current_pc += insn->len;
1452 }
1453
1454 return 1;
1455 }
1456
1457 /* Some special instructions that might be migrated by GCC into the
1458 part of the prologue that sets up the new stack frame. Because the
1459 stack frame hasn't been setup yet, no registers have been saved
1460 yet, and only the scratch registers %eax, %ecx and %edx can be
1461 touched. */
1462
1463 struct i386_insn i386_frame_setup_skip_insns[] =
1464 {
1465 /* Check for `movb imm8, r' and `movl imm32, r'.
1466
1467 ??? Should we handle 16-bit operand-sizes here? */
1468
1469 /* `movb imm8, %al' and `movb imm8, %ah' */
1470 /* `movb imm8, %cl' and `movb imm8, %ch' */
1471 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1472 /* `movb imm8, %dl' and `movb imm8, %dh' */
1473 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1474 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1475 { 5, { 0xb8 }, { 0xfe } },
1476 /* `movl imm32, %edx' */
1477 { 5, { 0xba }, { 0xff } },
1478
1479 /* Check for `mov imm32, r32'. Note that there is an alternative
1480 encoding for `mov m32, %eax'.
1481
1482 ??? Should we handle SIB adressing here?
1483 ??? Should we handle 16-bit operand-sizes here? */
1484
1485 /* `movl m32, %eax' */
1486 { 5, { 0xa1 }, { 0xff } },
1487 /* `movl m32, %eax' and `mov; m32, %ecx' */
1488 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1489 /* `movl m32, %edx' */
1490 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1491
1492 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1493 Because of the symmetry, there are actually two ways to encode
1494 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1495 opcode bytes 0x31 and 0x33 for `xorl'. */
1496
1497 /* `subl %eax, %eax' */
1498 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1499 /* `subl %ecx, %ecx' */
1500 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1501 /* `subl %edx, %edx' */
1502 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1503 /* `xorl %eax, %eax' */
1504 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1505 /* `xorl %ecx, %ecx' */
1506 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1507 /* `xorl %edx, %edx' */
1508 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1509 { 0 }
1510 };
1511
1512
1513 /* Check whether PC points to a no-op instruction. */
1514 static CORE_ADDR
1515 i386_skip_noop (CORE_ADDR pc)
1516 {
1517 gdb_byte op;
1518 int check = 1;
1519
1520 if (target_read_code (pc, &op, 1))
1521 return pc;
1522
1523 while (check)
1524 {
1525 check = 0;
1526 /* Ignore `nop' instruction. */
1527 if (op == 0x90)
1528 {
1529 pc += 1;
1530 if (target_read_code (pc, &op, 1))
1531 return pc;
1532 check = 1;
1533 }
1534 /* Ignore no-op instruction `mov %edi, %edi'.
1535 Microsoft system dlls often start with
1536 a `mov %edi,%edi' instruction.
1537 The 5 bytes before the function start are
1538 filled with `nop' instructions.
1539 This pattern can be used for hot-patching:
1540 The `mov %edi, %edi' instruction can be replaced by a
1541 near jump to the location of the 5 `nop' instructions
1542 which can be replaced by a 32-bit jump to anywhere
1543 in the 32-bit address space. */
1544
1545 else if (op == 0x8b)
1546 {
1547 if (target_read_code (pc + 1, &op, 1))
1548 return pc;
1549
1550 if (op == 0xff)
1551 {
1552 pc += 2;
1553 if (target_read_code (pc, &op, 1))
1554 return pc;
1555
1556 check = 1;
1557 }
1558 }
1559 }
1560 return pc;
1561 }
1562
1563 /* Check whether PC points at a code that sets up a new stack frame.
1564 If so, it updates CACHE and returns the address of the first
1565 instruction after the sequence that sets up the frame or LIMIT,
1566 whichever is smaller. If we don't recognize the code, return PC. */
1567
1568 static CORE_ADDR
1569 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1570 CORE_ADDR pc, CORE_ADDR limit,
1571 struct i386_frame_cache *cache)
1572 {
1573 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1574 struct i386_insn *insn;
1575 gdb_byte op;
1576 int skip = 0;
1577
1578 if (limit <= pc)
1579 return limit;
1580
1581 if (target_read_code (pc, &op, 1))
1582 return pc;
1583
1584 if (op == 0x55) /* pushl %ebp */
1585 {
1586 /* Take into account that we've executed the `pushl %ebp' that
1587 starts this instruction sequence. */
1588 cache->saved_regs[I386_EBP_REGNUM] = 0;
1589 cache->sp_offset += 4;
1590 pc++;
1591
1592 /* If that's all, return now. */
1593 if (limit <= pc)
1594 return limit;
1595
1596 /* Check for some special instructions that might be migrated by
1597 GCC into the prologue and skip them. At this point in the
1598 prologue, code should only touch the scratch registers %eax,
1599 %ecx and %edx, so while the number of posibilities is sheer,
1600 it is limited.
1601
1602 Make sure we only skip these instructions if we later see the
1603 `movl %esp, %ebp' that actually sets up the frame. */
1604 while (pc + skip < limit)
1605 {
1606 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1607 if (insn == NULL)
1608 break;
1609
1610 skip += insn->len;
1611 }
1612
1613 /* If that's all, return now. */
1614 if (limit <= pc + skip)
1615 return limit;
1616
1617 if (target_read_code (pc + skip, &op, 1))
1618 return pc + skip;
1619
1620 /* The i386 prologue looks like
1621
1622 push %ebp
1623 mov %esp,%ebp
1624 sub $0x10,%esp
1625
1626 and a different prologue can be generated for atom.
1627
1628 push %ebp
1629 lea (%esp),%ebp
1630 lea -0x10(%esp),%esp
1631
1632 We handle both of them here. */
1633
1634 switch (op)
1635 {
1636 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1637 case 0x8b:
1638 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1639 != 0xec)
1640 return pc;
1641 pc += (skip + 2);
1642 break;
1643 case 0x89:
1644 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1645 != 0xe5)
1646 return pc;
1647 pc += (skip + 2);
1648 break;
1649 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1650 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1651 != 0x242c)
1652 return pc;
1653 pc += (skip + 3);
1654 break;
1655 default:
1656 return pc;
1657 }
1658
1659 /* OK, we actually have a frame. We just don't know how large
1660 it is yet. Set its size to zero. We'll adjust it if
1661 necessary. We also now commit to skipping the special
1662 instructions mentioned before. */
1663 cache->locals = 0;
1664
1665 /* If that's all, return now. */
1666 if (limit <= pc)
1667 return limit;
1668
1669 /* Check for stack adjustment
1670
1671 subl $XXX, %esp
1672 or
1673 lea -XXX(%esp),%esp
1674
1675 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1676 reg, so we don't have to worry about a data16 prefix. */
1677 if (target_read_code (pc, &op, 1))
1678 return pc;
1679 if (op == 0x83)
1680 {
1681 /* `subl' with 8-bit immediate. */
1682 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1683 /* Some instruction starting with 0x83 other than `subl'. */
1684 return pc;
1685
1686 /* `subl' with signed 8-bit immediate (though it wouldn't
1687 make sense to be negative). */
1688 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1689 return pc + 3;
1690 }
1691 else if (op == 0x81)
1692 {
1693 /* Maybe it is `subl' with a 32-bit immediate. */
1694 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1695 /* Some instruction starting with 0x81 other than `subl'. */
1696 return pc;
1697
1698 /* It is `subl' with a 32-bit immediate. */
1699 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1700 return pc + 6;
1701 }
1702 else if (op == 0x8d)
1703 {
1704 /* The ModR/M byte is 0x64. */
1705 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1706 return pc;
1707 /* 'lea' with 8-bit displacement. */
1708 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1709 return pc + 4;
1710 }
1711 else
1712 {
1713 /* Some instruction other than `subl' nor 'lea'. */
1714 return pc;
1715 }
1716 }
1717 else if (op == 0xc8) /* enter */
1718 {
1719 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1720 return pc + 4;
1721 }
1722
1723 return pc;
1724 }
1725
1726 /* Check whether PC points at code that saves registers on the stack.
1727 If so, it updates CACHE and returns the address of the first
1728 instruction after the register saves or CURRENT_PC, whichever is
1729 smaller. Otherwise, return PC. */
1730
1731 static CORE_ADDR
1732 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1733 struct i386_frame_cache *cache)
1734 {
1735 CORE_ADDR offset = 0;
1736 gdb_byte op;
1737 int i;
1738
1739 if (cache->locals > 0)
1740 offset -= cache->locals;
1741 for (i = 0; i < 8 && pc < current_pc; i++)
1742 {
1743 if (target_read_code (pc, &op, 1))
1744 return pc;
1745 if (op < 0x50 || op > 0x57)
1746 break;
1747
1748 offset -= 4;
1749 cache->saved_regs[op - 0x50] = offset;
1750 cache->sp_offset += 4;
1751 pc++;
1752 }
1753
1754 return pc;
1755 }
1756
1757 /* Do a full analysis of the prologue at PC and update CACHE
1758 accordingly. Bail out early if CURRENT_PC is reached. Return the
1759 address where the analysis stopped.
1760
1761 We handle these cases:
1762
1763 The startup sequence can be at the start of the function, or the
1764 function can start with a branch to startup code at the end.
1765
1766 %ebp can be set up with either the 'enter' instruction, or "pushl
1767 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1768 once used in the System V compiler).
1769
1770 Local space is allocated just below the saved %ebp by either the
1771 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1772 16-bit unsigned argument for space to allocate, and the 'addl'
1773 instruction could have either a signed byte, or 32-bit immediate.
1774
1775 Next, the registers used by this function are pushed. With the
1776 System V compiler they will always be in the order: %edi, %esi,
1777 %ebx (and sometimes a harmless bug causes it to also save but not
1778 restore %eax); however, the code below is willing to see the pushes
1779 in any order, and will handle up to 8 of them.
1780
1781 If the setup sequence is at the end of the function, then the next
1782 instruction will be a branch back to the start. */
1783
1784 static CORE_ADDR
1785 i386_analyze_prologue (struct gdbarch *gdbarch,
1786 CORE_ADDR pc, CORE_ADDR current_pc,
1787 struct i386_frame_cache *cache)
1788 {
1789 pc = i386_skip_noop (pc);
1790 pc = i386_follow_jump (gdbarch, pc);
1791 pc = i386_analyze_struct_return (pc, current_pc, cache);
1792 pc = i386_skip_probe (pc);
1793 pc = i386_analyze_stack_align (pc, current_pc, cache);
1794 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1795 return i386_analyze_register_saves (pc, current_pc, cache);
1796 }
1797
1798 /* Return PC of first real instruction. */
1799
1800 static CORE_ADDR
1801 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1802 {
1803 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1804
1805 static gdb_byte pic_pat[6] =
1806 {
1807 0xe8, 0, 0, 0, 0, /* call 0x0 */
1808 0x5b, /* popl %ebx */
1809 };
1810 struct i386_frame_cache cache;
1811 CORE_ADDR pc;
1812 gdb_byte op;
1813 int i;
1814 CORE_ADDR func_addr;
1815
1816 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1817 {
1818 CORE_ADDR post_prologue_pc
1819 = skip_prologue_using_sal (gdbarch, func_addr);
1820 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1821
1822 /* Clang always emits a line note before the prologue and another
1823 one after. We trust clang to emit usable line notes. */
1824 if (post_prologue_pc
1825 && (cust != NULL
1826 && COMPUNIT_PRODUCER (cust) != NULL
1827 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1828 return max (start_pc, post_prologue_pc);
1829 }
1830
1831 cache.locals = -1;
1832 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1833 if (cache.locals < 0)
1834 return start_pc;
1835
1836 /* Found valid frame setup. */
1837
1838 /* The native cc on SVR4 in -K PIC mode inserts the following code
1839 to get the address of the global offset table (GOT) into register
1840 %ebx:
1841
1842 call 0x0
1843 popl %ebx
1844 movl %ebx,x(%ebp) (optional)
1845 addl y,%ebx
1846
1847 This code is with the rest of the prologue (at the end of the
1848 function), so we have to skip it to get to the first real
1849 instruction at the start of the function. */
1850
1851 for (i = 0; i < 6; i++)
1852 {
1853 if (target_read_code (pc + i, &op, 1))
1854 return pc;
1855
1856 if (pic_pat[i] != op)
1857 break;
1858 }
1859 if (i == 6)
1860 {
1861 int delta = 6;
1862
1863 if (target_read_code (pc + delta, &op, 1))
1864 return pc;
1865
1866 if (op == 0x89) /* movl %ebx, x(%ebp) */
1867 {
1868 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1869
1870 if (op == 0x5d) /* One byte offset from %ebp. */
1871 delta += 3;
1872 else if (op == 0x9d) /* Four byte offset from %ebp. */
1873 delta += 6;
1874 else /* Unexpected instruction. */
1875 delta = 0;
1876
1877 if (target_read_code (pc + delta, &op, 1))
1878 return pc;
1879 }
1880
1881 /* addl y,%ebx */
1882 if (delta > 0 && op == 0x81
1883 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1884 == 0xc3)
1885 {
1886 pc += delta + 6;
1887 }
1888 }
1889
1890 /* If the function starts with a branch (to startup code at the end)
1891 the last instruction should bring us back to the first
1892 instruction of the real code. */
1893 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1894 pc = i386_follow_jump (gdbarch, pc);
1895
1896 return pc;
1897 }
1898
1899 /* Check that the code pointed to by PC corresponds to a call to
1900 __main, skip it if so. Return PC otherwise. */
1901
1902 CORE_ADDR
1903 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1904 {
1905 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1906 gdb_byte op;
1907
1908 if (target_read_code (pc, &op, 1))
1909 return pc;
1910 if (op == 0xe8)
1911 {
1912 gdb_byte buf[4];
1913
1914 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1915 {
1916 /* Make sure address is computed correctly as a 32bit
1917 integer even if CORE_ADDR is 64 bit wide. */
1918 struct bound_minimal_symbol s;
1919 CORE_ADDR call_dest;
1920
1921 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1922 call_dest = call_dest & 0xffffffffU;
1923 s = lookup_minimal_symbol_by_pc (call_dest);
1924 if (s.minsym != NULL
1925 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1926 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1927 pc += 5;
1928 }
1929 }
1930
1931 return pc;
1932 }
1933
1934 /* This function is 64-bit safe. */
1935
1936 static CORE_ADDR
1937 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1938 {
1939 gdb_byte buf[8];
1940
1941 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1942 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1943 }
1944 \f
1945
1946 /* Normal frames. */
1947
1948 static void
1949 i386_frame_cache_1 (struct frame_info *this_frame,
1950 struct i386_frame_cache *cache)
1951 {
1952 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1953 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1954 gdb_byte buf[4];
1955 int i;
1956
1957 cache->pc = get_frame_func (this_frame);
1958
1959 /* In principle, for normal frames, %ebp holds the frame pointer,
1960 which holds the base address for the current stack frame.
1961 However, for functions that don't need it, the frame pointer is
1962 optional. For these "frameless" functions the frame pointer is
1963 actually the frame pointer of the calling frame. Signal
1964 trampolines are just a special case of a "frameless" function.
1965 They (usually) share their frame pointer with the frame that was
1966 in progress when the signal occurred. */
1967
1968 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1969 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1970 if (cache->base == 0)
1971 {
1972 cache->base_p = 1;
1973 return;
1974 }
1975
1976 /* For normal frames, %eip is stored at 4(%ebp). */
1977 cache->saved_regs[I386_EIP_REGNUM] = 4;
1978
1979 if (cache->pc != 0)
1980 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1981 cache);
1982
1983 if (cache->locals < 0)
1984 {
1985 /* We didn't find a valid frame, which means that CACHE->base
1986 currently holds the frame pointer for our calling frame. If
1987 we're at the start of a function, or somewhere half-way its
1988 prologue, the function's frame probably hasn't been fully
1989 setup yet. Try to reconstruct the base address for the stack
1990 frame by looking at the stack pointer. For truly "frameless"
1991 functions this might work too. */
1992
1993 if (cache->saved_sp_reg != -1)
1994 {
1995 /* Saved stack pointer has been saved. */
1996 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1997 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1998
1999 /* We're halfway aligning the stack. */
2000 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2001 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2002
2003 /* This will be added back below. */
2004 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2005 }
2006 else if (cache->pc != 0
2007 || target_read_code (get_frame_pc (this_frame), buf, 1))
2008 {
2009 /* We're in a known function, but did not find a frame
2010 setup. Assume that the function does not use %ebp.
2011 Alternatively, we may have jumped to an invalid
2012 address; in that case there is definitely no new
2013 frame in %ebp. */
2014 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2015 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2016 + cache->sp_offset;
2017 }
2018 else
2019 /* We're in an unknown function. We could not find the start
2020 of the function to analyze the prologue; our best option is
2021 to assume a typical frame layout with the caller's %ebp
2022 saved. */
2023 cache->saved_regs[I386_EBP_REGNUM] = 0;
2024 }
2025
2026 if (cache->saved_sp_reg != -1)
2027 {
2028 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2029 register may be unavailable). */
2030 if (cache->saved_sp == 0
2031 && deprecated_frame_register_read (this_frame,
2032 cache->saved_sp_reg, buf))
2033 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2034 }
2035 /* Now that we have the base address for the stack frame we can
2036 calculate the value of %esp in the calling frame. */
2037 else if (cache->saved_sp == 0)
2038 cache->saved_sp = cache->base + 8;
2039
2040 /* Adjust all the saved registers such that they contain addresses
2041 instead of offsets. */
2042 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2043 if (cache->saved_regs[i] != -1)
2044 cache->saved_regs[i] += cache->base;
2045
2046 cache->base_p = 1;
2047 }
2048
2049 static struct i386_frame_cache *
2050 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2051 {
2052 struct i386_frame_cache *cache;
2053
2054 if (*this_cache)
2055 return *this_cache;
2056
2057 cache = i386_alloc_frame_cache ();
2058 *this_cache = cache;
2059
2060 TRY
2061 {
2062 i386_frame_cache_1 (this_frame, cache);
2063 }
2064 CATCH (ex, RETURN_MASK_ERROR)
2065 {
2066 if (ex.error != NOT_AVAILABLE_ERROR)
2067 throw_exception (ex);
2068 }
2069 END_CATCH
2070
2071 return cache;
2072 }
2073
2074 static void
2075 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2076 struct frame_id *this_id)
2077 {
2078 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2079
2080 if (!cache->base_p)
2081 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2082 else if (cache->base == 0)
2083 {
2084 /* This marks the outermost frame. */
2085 }
2086 else
2087 {
2088 /* See the end of i386_push_dummy_call. */
2089 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2090 }
2091 }
2092
2093 static enum unwind_stop_reason
2094 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2095 void **this_cache)
2096 {
2097 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2098
2099 if (!cache->base_p)
2100 return UNWIND_UNAVAILABLE;
2101
2102 /* This marks the outermost frame. */
2103 if (cache->base == 0)
2104 return UNWIND_OUTERMOST;
2105
2106 return UNWIND_NO_REASON;
2107 }
2108
2109 static struct value *
2110 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2111 int regnum)
2112 {
2113 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2114
2115 gdb_assert (regnum >= 0);
2116
2117 /* The System V ABI says that:
2118
2119 "The flags register contains the system flags, such as the
2120 direction flag and the carry flag. The direction flag must be
2121 set to the forward (that is, zero) direction before entry and
2122 upon exit from a function. Other user flags have no specified
2123 role in the standard calling sequence and are not preserved."
2124
2125 To guarantee the "upon exit" part of that statement we fake a
2126 saved flags register that has its direction flag cleared.
2127
2128 Note that GCC doesn't seem to rely on the fact that the direction
2129 flag is cleared after a function return; it always explicitly
2130 clears the flag before operations where it matters.
2131
2132 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2133 right thing to do. The way we fake the flags register here makes
2134 it impossible to change it. */
2135
2136 if (regnum == I386_EFLAGS_REGNUM)
2137 {
2138 ULONGEST val;
2139
2140 val = get_frame_register_unsigned (this_frame, regnum);
2141 val &= ~(1 << 10);
2142 return frame_unwind_got_constant (this_frame, regnum, val);
2143 }
2144
2145 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2146 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2147
2148 if (regnum == I386_ESP_REGNUM
2149 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2150 {
2151 /* If the SP has been saved, but we don't know where, then this
2152 means that SAVED_SP_REG register was found unavailable back
2153 when we built the cache. */
2154 if (cache->saved_sp == 0)
2155 return frame_unwind_got_register (this_frame, regnum,
2156 cache->saved_sp_reg);
2157 else
2158 return frame_unwind_got_constant (this_frame, regnum,
2159 cache->saved_sp);
2160 }
2161
2162 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2163 return frame_unwind_got_memory (this_frame, regnum,
2164 cache->saved_regs[regnum]);
2165
2166 return frame_unwind_got_register (this_frame, regnum, regnum);
2167 }
2168
2169 static const struct frame_unwind i386_frame_unwind =
2170 {
2171 NORMAL_FRAME,
2172 i386_frame_unwind_stop_reason,
2173 i386_frame_this_id,
2174 i386_frame_prev_register,
2175 NULL,
2176 default_frame_sniffer
2177 };
2178
2179 /* Normal frames, but in a function epilogue. */
2180
2181 /* The epilogue is defined here as the 'ret' instruction, which will
2182 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2183 the function's stack frame. */
2184
2185 static int
2186 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2187 {
2188 gdb_byte insn;
2189 struct compunit_symtab *cust;
2190
2191 cust = find_pc_compunit_symtab (pc);
2192 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2193 return 0;
2194
2195 if (target_read_memory (pc, &insn, 1))
2196 return 0; /* Can't read memory at pc. */
2197
2198 if (insn != 0xc3) /* 'ret' instruction. */
2199 return 0;
2200
2201 return 1;
2202 }
2203
2204 static int
2205 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2206 struct frame_info *this_frame,
2207 void **this_prologue_cache)
2208 {
2209 if (frame_relative_level (this_frame) == 0)
2210 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
2211 get_frame_pc (this_frame));
2212 else
2213 return 0;
2214 }
2215
2216 static struct i386_frame_cache *
2217 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2218 {
2219 struct i386_frame_cache *cache;
2220 CORE_ADDR sp;
2221
2222 if (*this_cache)
2223 return *this_cache;
2224
2225 cache = i386_alloc_frame_cache ();
2226 *this_cache = cache;
2227
2228 TRY
2229 {
2230 cache->pc = get_frame_func (this_frame);
2231
2232 /* At this point the stack looks as if we just entered the
2233 function, with the return address at the top of the
2234 stack. */
2235 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2236 cache->base = sp + cache->sp_offset;
2237 cache->saved_sp = cache->base + 8;
2238 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2239
2240 cache->base_p = 1;
2241 }
2242 CATCH (ex, RETURN_MASK_ERROR)
2243 {
2244 if (ex.error != NOT_AVAILABLE_ERROR)
2245 throw_exception (ex);
2246 }
2247 END_CATCH
2248
2249 return cache;
2250 }
2251
2252 static enum unwind_stop_reason
2253 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2254 void **this_cache)
2255 {
2256 struct i386_frame_cache *cache =
2257 i386_epilogue_frame_cache (this_frame, this_cache);
2258
2259 if (!cache->base_p)
2260 return UNWIND_UNAVAILABLE;
2261
2262 return UNWIND_NO_REASON;
2263 }
2264
2265 static void
2266 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2267 void **this_cache,
2268 struct frame_id *this_id)
2269 {
2270 struct i386_frame_cache *cache =
2271 i386_epilogue_frame_cache (this_frame, this_cache);
2272
2273 if (!cache->base_p)
2274 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2275 else
2276 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2277 }
2278
2279 static struct value *
2280 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2281 void **this_cache, int regnum)
2282 {
2283 /* Make sure we've initialized the cache. */
2284 i386_epilogue_frame_cache (this_frame, this_cache);
2285
2286 return i386_frame_prev_register (this_frame, this_cache, regnum);
2287 }
2288
2289 static const struct frame_unwind i386_epilogue_frame_unwind =
2290 {
2291 NORMAL_FRAME,
2292 i386_epilogue_frame_unwind_stop_reason,
2293 i386_epilogue_frame_this_id,
2294 i386_epilogue_frame_prev_register,
2295 NULL,
2296 i386_epilogue_frame_sniffer
2297 };
2298 \f
2299
2300 /* Stack-based trampolines. */
2301
2302 /* These trampolines are used on cross x86 targets, when taking the
2303 address of a nested function. When executing these trampolines,
2304 no stack frame is set up, so we are in a similar situation as in
2305 epilogues and i386_epilogue_frame_this_id can be re-used. */
2306
2307 /* Static chain passed in register. */
2308
2309 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2310 {
2311 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2312 { 5, { 0xb8 }, { 0xfe } },
2313
2314 /* `jmp imm32' */
2315 { 5, { 0xe9 }, { 0xff } },
2316
2317 {0}
2318 };
2319
2320 /* Static chain passed on stack (when regparm=3). */
2321
2322 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2323 {
2324 /* `push imm32' */
2325 { 5, { 0x68 }, { 0xff } },
2326
2327 /* `jmp imm32' */
2328 { 5, { 0xe9 }, { 0xff } },
2329
2330 {0}
2331 };
2332
2333 /* Return whether PC points inside a stack trampoline. */
2334
2335 static int
2336 i386_in_stack_tramp_p (CORE_ADDR pc)
2337 {
2338 gdb_byte insn;
2339 const char *name;
2340
2341 /* A stack trampoline is detected if no name is associated
2342 to the current pc and if it points inside a trampoline
2343 sequence. */
2344
2345 find_pc_partial_function (pc, &name, NULL, NULL);
2346 if (name)
2347 return 0;
2348
2349 if (target_read_memory (pc, &insn, 1))
2350 return 0;
2351
2352 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2353 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2354 return 0;
2355
2356 return 1;
2357 }
2358
2359 static int
2360 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2361 struct frame_info *this_frame,
2362 void **this_cache)
2363 {
2364 if (frame_relative_level (this_frame) == 0)
2365 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2366 else
2367 return 0;
2368 }
2369
2370 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2371 {
2372 NORMAL_FRAME,
2373 i386_epilogue_frame_unwind_stop_reason,
2374 i386_epilogue_frame_this_id,
2375 i386_epilogue_frame_prev_register,
2376 NULL,
2377 i386_stack_tramp_frame_sniffer
2378 };
2379 \f
2380 /* Generate a bytecode expression to get the value of the saved PC. */
2381
2382 static void
2383 i386_gen_return_address (struct gdbarch *gdbarch,
2384 struct agent_expr *ax, struct axs_value *value,
2385 CORE_ADDR scope)
2386 {
2387 /* The following sequence assumes the traditional use of the base
2388 register. */
2389 ax_reg (ax, I386_EBP_REGNUM);
2390 ax_const_l (ax, 4);
2391 ax_simple (ax, aop_add);
2392 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2393 value->kind = axs_lvalue_memory;
2394 }
2395 \f
2396
2397 /* Signal trampolines. */
2398
2399 static struct i386_frame_cache *
2400 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2401 {
2402 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2403 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2404 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2405 struct i386_frame_cache *cache;
2406 CORE_ADDR addr;
2407 gdb_byte buf[4];
2408
2409 if (*this_cache)
2410 return *this_cache;
2411
2412 cache = i386_alloc_frame_cache ();
2413
2414 TRY
2415 {
2416 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2417 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2418
2419 addr = tdep->sigcontext_addr (this_frame);
2420 if (tdep->sc_reg_offset)
2421 {
2422 int i;
2423
2424 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2425
2426 for (i = 0; i < tdep->sc_num_regs; i++)
2427 if (tdep->sc_reg_offset[i] != -1)
2428 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2429 }
2430 else
2431 {
2432 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2433 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2434 }
2435
2436 cache->base_p = 1;
2437 }
2438 CATCH (ex, RETURN_MASK_ERROR)
2439 {
2440 if (ex.error != NOT_AVAILABLE_ERROR)
2441 throw_exception (ex);
2442 }
2443 END_CATCH
2444
2445 *this_cache = cache;
2446 return cache;
2447 }
2448
2449 static enum unwind_stop_reason
2450 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2451 void **this_cache)
2452 {
2453 struct i386_frame_cache *cache =
2454 i386_sigtramp_frame_cache (this_frame, this_cache);
2455
2456 if (!cache->base_p)
2457 return UNWIND_UNAVAILABLE;
2458
2459 return UNWIND_NO_REASON;
2460 }
2461
2462 static void
2463 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2464 struct frame_id *this_id)
2465 {
2466 struct i386_frame_cache *cache =
2467 i386_sigtramp_frame_cache (this_frame, this_cache);
2468
2469 if (!cache->base_p)
2470 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2471 else
2472 {
2473 /* See the end of i386_push_dummy_call. */
2474 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2475 }
2476 }
2477
2478 static struct value *
2479 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2480 void **this_cache, int regnum)
2481 {
2482 /* Make sure we've initialized the cache. */
2483 i386_sigtramp_frame_cache (this_frame, this_cache);
2484
2485 return i386_frame_prev_register (this_frame, this_cache, regnum);
2486 }
2487
2488 static int
2489 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2490 struct frame_info *this_frame,
2491 void **this_prologue_cache)
2492 {
2493 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2494
2495 /* We shouldn't even bother if we don't have a sigcontext_addr
2496 handler. */
2497 if (tdep->sigcontext_addr == NULL)
2498 return 0;
2499
2500 if (tdep->sigtramp_p != NULL)
2501 {
2502 if (tdep->sigtramp_p (this_frame))
2503 return 1;
2504 }
2505
2506 if (tdep->sigtramp_start != 0)
2507 {
2508 CORE_ADDR pc = get_frame_pc (this_frame);
2509
2510 gdb_assert (tdep->sigtramp_end != 0);
2511 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2512 return 1;
2513 }
2514
2515 return 0;
2516 }
2517
2518 static const struct frame_unwind i386_sigtramp_frame_unwind =
2519 {
2520 SIGTRAMP_FRAME,
2521 i386_sigtramp_frame_unwind_stop_reason,
2522 i386_sigtramp_frame_this_id,
2523 i386_sigtramp_frame_prev_register,
2524 NULL,
2525 i386_sigtramp_frame_sniffer
2526 };
2527 \f
2528
2529 static CORE_ADDR
2530 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2531 {
2532 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2533
2534 return cache->base;
2535 }
2536
2537 static const struct frame_base i386_frame_base =
2538 {
2539 &i386_frame_unwind,
2540 i386_frame_base_address,
2541 i386_frame_base_address,
2542 i386_frame_base_address
2543 };
2544
2545 static struct frame_id
2546 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2547 {
2548 CORE_ADDR fp;
2549
2550 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2551
2552 /* See the end of i386_push_dummy_call. */
2553 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2554 }
2555
2556 /* _Decimal128 function return values need 16-byte alignment on the
2557 stack. */
2558
2559 static CORE_ADDR
2560 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2561 {
2562 return sp & -(CORE_ADDR)16;
2563 }
2564 \f
2565
2566 /* Figure out where the longjmp will land. Slurp the args out of the
2567 stack. We expect the first arg to be a pointer to the jmp_buf
2568 structure from which we extract the address that we will land at.
2569 This address is copied into PC. This routine returns non-zero on
2570 success. */
2571
2572 static int
2573 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2574 {
2575 gdb_byte buf[4];
2576 CORE_ADDR sp, jb_addr;
2577 struct gdbarch *gdbarch = get_frame_arch (frame);
2578 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2579 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2580
2581 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2582 longjmp will land. */
2583 if (jb_pc_offset == -1)
2584 return 0;
2585
2586 get_frame_register (frame, I386_ESP_REGNUM, buf);
2587 sp = extract_unsigned_integer (buf, 4, byte_order);
2588 if (target_read_memory (sp + 4, buf, 4))
2589 return 0;
2590
2591 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2592 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2593 return 0;
2594
2595 *pc = extract_unsigned_integer (buf, 4, byte_order);
2596 return 1;
2597 }
2598 \f
2599
2600 /* Check whether TYPE must be 16-byte-aligned when passed as a
2601 function argument. 16-byte vectors, _Decimal128 and structures or
2602 unions containing such types must be 16-byte-aligned; other
2603 arguments are 4-byte-aligned. */
2604
2605 static int
2606 i386_16_byte_align_p (struct type *type)
2607 {
2608 type = check_typedef (type);
2609 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2610 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2611 && TYPE_LENGTH (type) == 16)
2612 return 1;
2613 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2614 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2615 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2616 || TYPE_CODE (type) == TYPE_CODE_UNION)
2617 {
2618 int i;
2619 for (i = 0; i < TYPE_NFIELDS (type); i++)
2620 {
2621 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2622 return 1;
2623 }
2624 }
2625 return 0;
2626 }
2627
2628 /* Implementation for set_gdbarch_push_dummy_code. */
2629
2630 static CORE_ADDR
2631 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2632 struct value **args, int nargs, struct type *value_type,
2633 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2634 struct regcache *regcache)
2635 {
2636 /* Use 0xcc breakpoint - 1 byte. */
2637 *bp_addr = sp - 1;
2638 *real_pc = funaddr;
2639
2640 /* Keep the stack aligned. */
2641 return sp - 16;
2642 }
2643
2644 static CORE_ADDR
2645 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2646 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2647 struct value **args, CORE_ADDR sp, int struct_return,
2648 CORE_ADDR struct_addr)
2649 {
2650 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2651 gdb_byte buf[4];
2652 int i;
2653 int write_pass;
2654 int args_space = 0;
2655
2656 /* Determine the total space required for arguments and struct
2657 return address in a first pass (allowing for 16-byte-aligned
2658 arguments), then push arguments in a second pass. */
2659
2660 for (write_pass = 0; write_pass < 2; write_pass++)
2661 {
2662 int args_space_used = 0;
2663
2664 if (struct_return)
2665 {
2666 if (write_pass)
2667 {
2668 /* Push value address. */
2669 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2670 write_memory (sp, buf, 4);
2671 args_space_used += 4;
2672 }
2673 else
2674 args_space += 4;
2675 }
2676
2677 for (i = 0; i < nargs; i++)
2678 {
2679 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2680
2681 if (write_pass)
2682 {
2683 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2684 args_space_used = align_up (args_space_used, 16);
2685
2686 write_memory (sp + args_space_used,
2687 value_contents_all (args[i]), len);
2688 /* The System V ABI says that:
2689
2690 "An argument's size is increased, if necessary, to make it a
2691 multiple of [32-bit] words. This may require tail padding,
2692 depending on the size of the argument."
2693
2694 This makes sure the stack stays word-aligned. */
2695 args_space_used += align_up (len, 4);
2696 }
2697 else
2698 {
2699 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2700 args_space = align_up (args_space, 16);
2701 args_space += align_up (len, 4);
2702 }
2703 }
2704
2705 if (!write_pass)
2706 {
2707 sp -= args_space;
2708
2709 /* The original System V ABI only requires word alignment,
2710 but modern incarnations need 16-byte alignment in order
2711 to support SSE. Since wasting a few bytes here isn't
2712 harmful we unconditionally enforce 16-byte alignment. */
2713 sp &= ~0xf;
2714 }
2715 }
2716
2717 /* Store return address. */
2718 sp -= 4;
2719 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2720 write_memory (sp, buf, 4);
2721
2722 /* Finally, update the stack pointer... */
2723 store_unsigned_integer (buf, 4, byte_order, sp);
2724 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2725
2726 /* ...and fake a frame pointer. */
2727 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2728
2729 /* MarkK wrote: This "+ 8" is all over the place:
2730 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2731 i386_dummy_id). It's there, since all frame unwinders for
2732 a given target have to agree (within a certain margin) on the
2733 definition of the stack address of a frame. Otherwise frame id
2734 comparison might not work correctly. Since DWARF2/GCC uses the
2735 stack address *before* the function call as a frame's CFA. On
2736 the i386, when %ebp is used as a frame pointer, the offset
2737 between the contents %ebp and the CFA as defined by GCC. */
2738 return sp + 8;
2739 }
2740
2741 /* These registers are used for returning integers (and on some
2742 targets also for returning `struct' and `union' values when their
2743 size and alignment match an integer type). */
2744 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2745 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2746
2747 /* Read, for architecture GDBARCH, a function return value of TYPE
2748 from REGCACHE, and copy that into VALBUF. */
2749
2750 static void
2751 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2752 struct regcache *regcache, gdb_byte *valbuf)
2753 {
2754 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2755 int len = TYPE_LENGTH (type);
2756 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2757
2758 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2759 {
2760 if (tdep->st0_regnum < 0)
2761 {
2762 warning (_("Cannot find floating-point return value."));
2763 memset (valbuf, 0, len);
2764 return;
2765 }
2766
2767 /* Floating-point return values can be found in %st(0). Convert
2768 its contents to the desired type. This is probably not
2769 exactly how it would happen on the target itself, but it is
2770 the best we can do. */
2771 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2772 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2773 }
2774 else
2775 {
2776 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2777 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2778
2779 if (len <= low_size)
2780 {
2781 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2782 memcpy (valbuf, buf, len);
2783 }
2784 else if (len <= (low_size + high_size))
2785 {
2786 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2787 memcpy (valbuf, buf, low_size);
2788 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2789 memcpy (valbuf + low_size, buf, len - low_size);
2790 }
2791 else
2792 internal_error (__FILE__, __LINE__,
2793 _("Cannot extract return value of %d bytes long."),
2794 len);
2795 }
2796 }
2797
2798 /* Write, for architecture GDBARCH, a function return value of TYPE
2799 from VALBUF into REGCACHE. */
2800
2801 static void
2802 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2803 struct regcache *regcache, const gdb_byte *valbuf)
2804 {
2805 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2806 int len = TYPE_LENGTH (type);
2807
2808 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2809 {
2810 ULONGEST fstat;
2811 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2812
2813 if (tdep->st0_regnum < 0)
2814 {
2815 warning (_("Cannot set floating-point return value."));
2816 return;
2817 }
2818
2819 /* Returning floating-point values is a bit tricky. Apart from
2820 storing the return value in %st(0), we have to simulate the
2821 state of the FPU at function return point. */
2822
2823 /* Convert the value found in VALBUF to the extended
2824 floating-point format used by the FPU. This is probably
2825 not exactly how it would happen on the target itself, but
2826 it is the best we can do. */
2827 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2828 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2829
2830 /* Set the top of the floating-point register stack to 7. The
2831 actual value doesn't really matter, but 7 is what a normal
2832 function return would end up with if the program started out
2833 with a freshly initialized FPU. */
2834 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2835 fstat |= (7 << 11);
2836 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2837
2838 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2839 the floating-point register stack to 7, the appropriate value
2840 for the tag word is 0x3fff. */
2841 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2842 }
2843 else
2844 {
2845 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2846 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2847
2848 if (len <= low_size)
2849 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2850 else if (len <= (low_size + high_size))
2851 {
2852 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2853 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2854 len - low_size, valbuf + low_size);
2855 }
2856 else
2857 internal_error (__FILE__, __LINE__,
2858 _("Cannot store return value of %d bytes long."), len);
2859 }
2860 }
2861 \f
2862
2863 /* This is the variable that is set with "set struct-convention", and
2864 its legitimate values. */
2865 static const char default_struct_convention[] = "default";
2866 static const char pcc_struct_convention[] = "pcc";
2867 static const char reg_struct_convention[] = "reg";
2868 static const char *const valid_conventions[] =
2869 {
2870 default_struct_convention,
2871 pcc_struct_convention,
2872 reg_struct_convention,
2873 NULL
2874 };
2875 static const char *struct_convention = default_struct_convention;
2876
2877 /* Return non-zero if TYPE, which is assumed to be a structure,
2878 a union type, or an array type, should be returned in registers
2879 for architecture GDBARCH. */
2880
2881 static int
2882 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2883 {
2884 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2885 enum type_code code = TYPE_CODE (type);
2886 int len = TYPE_LENGTH (type);
2887
2888 gdb_assert (code == TYPE_CODE_STRUCT
2889 || code == TYPE_CODE_UNION
2890 || code == TYPE_CODE_ARRAY);
2891
2892 if (struct_convention == pcc_struct_convention
2893 || (struct_convention == default_struct_convention
2894 && tdep->struct_return == pcc_struct_return))
2895 return 0;
2896
2897 /* Structures consisting of a single `float', `double' or 'long
2898 double' member are returned in %st(0). */
2899 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2900 {
2901 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2902 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2903 return (len == 4 || len == 8 || len == 12);
2904 }
2905
2906 return (len == 1 || len == 2 || len == 4 || len == 8);
2907 }
2908
2909 /* Determine, for architecture GDBARCH, how a return value of TYPE
2910 should be returned. If it is supposed to be returned in registers,
2911 and READBUF is non-zero, read the appropriate value from REGCACHE,
2912 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2913 from WRITEBUF into REGCACHE. */
2914
2915 static enum return_value_convention
2916 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2917 struct type *type, struct regcache *regcache,
2918 gdb_byte *readbuf, const gdb_byte *writebuf)
2919 {
2920 enum type_code code = TYPE_CODE (type);
2921
2922 if (((code == TYPE_CODE_STRUCT
2923 || code == TYPE_CODE_UNION
2924 || code == TYPE_CODE_ARRAY)
2925 && !i386_reg_struct_return_p (gdbarch, type))
2926 /* Complex double and long double uses the struct return covention. */
2927 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2928 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2929 /* 128-bit decimal float uses the struct return convention. */
2930 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2931 {
2932 /* The System V ABI says that:
2933
2934 "A function that returns a structure or union also sets %eax
2935 to the value of the original address of the caller's area
2936 before it returns. Thus when the caller receives control
2937 again, the address of the returned object resides in register
2938 %eax and can be used to access the object."
2939
2940 So the ABI guarantees that we can always find the return
2941 value just after the function has returned. */
2942
2943 /* Note that the ABI doesn't mention functions returning arrays,
2944 which is something possible in certain languages such as Ada.
2945 In this case, the value is returned as if it was wrapped in
2946 a record, so the convention applied to records also applies
2947 to arrays. */
2948
2949 if (readbuf)
2950 {
2951 ULONGEST addr;
2952
2953 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2954 read_memory (addr, readbuf, TYPE_LENGTH (type));
2955 }
2956
2957 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2958 }
2959
2960 /* This special case is for structures consisting of a single
2961 `float', `double' or 'long double' member. These structures are
2962 returned in %st(0). For these structures, we call ourselves
2963 recursively, changing TYPE into the type of the first member of
2964 the structure. Since that should work for all structures that
2965 have only one member, we don't bother to check the member's type
2966 here. */
2967 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2968 {
2969 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2970 return i386_return_value (gdbarch, function, type, regcache,
2971 readbuf, writebuf);
2972 }
2973
2974 if (readbuf)
2975 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2976 if (writebuf)
2977 i386_store_return_value (gdbarch, type, regcache, writebuf);
2978
2979 return RETURN_VALUE_REGISTER_CONVENTION;
2980 }
2981 \f
2982
2983 struct type *
2984 i387_ext_type (struct gdbarch *gdbarch)
2985 {
2986 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2987
2988 if (!tdep->i387_ext_type)
2989 {
2990 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2991 gdb_assert (tdep->i387_ext_type != NULL);
2992 }
2993
2994 return tdep->i387_ext_type;
2995 }
2996
2997 /* Construct type for pseudo BND registers. We can't use
2998 tdesc_find_type since a complement of one value has to be used
2999 to describe the upper bound. */
3000
3001 static struct type *
3002 i386_bnd_type (struct gdbarch *gdbarch)
3003 {
3004 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3005
3006
3007 if (!tdep->i386_bnd_type)
3008 {
3009 struct type *t, *bound_t;
3010 const struct builtin_type *bt = builtin_type (gdbarch);
3011
3012 /* The type we're building is described bellow: */
3013 #if 0
3014 struct __bound128
3015 {
3016 void *lbound;
3017 void *ubound; /* One complement of raw ubound field. */
3018 };
3019 #endif
3020
3021 t = arch_composite_type (gdbarch,
3022 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3023
3024 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3025 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3026
3027 TYPE_NAME (t) = "builtin_type_bound128";
3028 tdep->i386_bnd_type = t;
3029 }
3030
3031 return tdep->i386_bnd_type;
3032 }
3033
3034 /* Construct vector type for pseudo ZMM registers. We can't use
3035 tdesc_find_type since ZMM isn't described in target description. */
3036
3037 static struct type *
3038 i386_zmm_type (struct gdbarch *gdbarch)
3039 {
3040 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3041
3042 if (!tdep->i386_zmm_type)
3043 {
3044 const struct builtin_type *bt = builtin_type (gdbarch);
3045
3046 /* The type we're building is this: */
3047 #if 0
3048 union __gdb_builtin_type_vec512i
3049 {
3050 int128_t uint128[4];
3051 int64_t v4_int64[8];
3052 int32_t v8_int32[16];
3053 int16_t v16_int16[32];
3054 int8_t v32_int8[64];
3055 double v4_double[8];
3056 float v8_float[16];
3057 };
3058 #endif
3059
3060 struct type *t;
3061
3062 t = arch_composite_type (gdbarch,
3063 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3064 append_composite_type_field (t, "v16_float",
3065 init_vector_type (bt->builtin_float, 16));
3066 append_composite_type_field (t, "v8_double",
3067 init_vector_type (bt->builtin_double, 8));
3068 append_composite_type_field (t, "v64_int8",
3069 init_vector_type (bt->builtin_int8, 64));
3070 append_composite_type_field (t, "v32_int16",
3071 init_vector_type (bt->builtin_int16, 32));
3072 append_composite_type_field (t, "v16_int32",
3073 init_vector_type (bt->builtin_int32, 16));
3074 append_composite_type_field (t, "v8_int64",
3075 init_vector_type (bt->builtin_int64, 8));
3076 append_composite_type_field (t, "v4_int128",
3077 init_vector_type (bt->builtin_int128, 4));
3078
3079 TYPE_VECTOR (t) = 1;
3080 TYPE_NAME (t) = "builtin_type_vec512i";
3081 tdep->i386_zmm_type = t;
3082 }
3083
3084 return tdep->i386_zmm_type;
3085 }
3086
3087 /* Construct vector type for pseudo YMM registers. We can't use
3088 tdesc_find_type since YMM isn't described in target description. */
3089
3090 static struct type *
3091 i386_ymm_type (struct gdbarch *gdbarch)
3092 {
3093 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3094
3095 if (!tdep->i386_ymm_type)
3096 {
3097 const struct builtin_type *bt = builtin_type (gdbarch);
3098
3099 /* The type we're building is this: */
3100 #if 0
3101 union __gdb_builtin_type_vec256i
3102 {
3103 int128_t uint128[2];
3104 int64_t v2_int64[4];
3105 int32_t v4_int32[8];
3106 int16_t v8_int16[16];
3107 int8_t v16_int8[32];
3108 double v2_double[4];
3109 float v4_float[8];
3110 };
3111 #endif
3112
3113 struct type *t;
3114
3115 t = arch_composite_type (gdbarch,
3116 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3117 append_composite_type_field (t, "v8_float",
3118 init_vector_type (bt->builtin_float, 8));
3119 append_composite_type_field (t, "v4_double",
3120 init_vector_type (bt->builtin_double, 4));
3121 append_composite_type_field (t, "v32_int8",
3122 init_vector_type (bt->builtin_int8, 32));
3123 append_composite_type_field (t, "v16_int16",
3124 init_vector_type (bt->builtin_int16, 16));
3125 append_composite_type_field (t, "v8_int32",
3126 init_vector_type (bt->builtin_int32, 8));
3127 append_composite_type_field (t, "v4_int64",
3128 init_vector_type (bt->builtin_int64, 4));
3129 append_composite_type_field (t, "v2_int128",
3130 init_vector_type (bt->builtin_int128, 2));
3131
3132 TYPE_VECTOR (t) = 1;
3133 TYPE_NAME (t) = "builtin_type_vec256i";
3134 tdep->i386_ymm_type = t;
3135 }
3136
3137 return tdep->i386_ymm_type;
3138 }
3139
3140 /* Construct vector type for MMX registers. */
3141 static struct type *
3142 i386_mmx_type (struct gdbarch *gdbarch)
3143 {
3144 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3145
3146 if (!tdep->i386_mmx_type)
3147 {
3148 const struct builtin_type *bt = builtin_type (gdbarch);
3149
3150 /* The type we're building is this: */
3151 #if 0
3152 union __gdb_builtin_type_vec64i
3153 {
3154 int64_t uint64;
3155 int32_t v2_int32[2];
3156 int16_t v4_int16[4];
3157 int8_t v8_int8[8];
3158 };
3159 #endif
3160
3161 struct type *t;
3162
3163 t = arch_composite_type (gdbarch,
3164 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3165
3166 append_composite_type_field (t, "uint64", bt->builtin_int64);
3167 append_composite_type_field (t, "v2_int32",
3168 init_vector_type (bt->builtin_int32, 2));
3169 append_composite_type_field (t, "v4_int16",
3170 init_vector_type (bt->builtin_int16, 4));
3171 append_composite_type_field (t, "v8_int8",
3172 init_vector_type (bt->builtin_int8, 8));
3173
3174 TYPE_VECTOR (t) = 1;
3175 TYPE_NAME (t) = "builtin_type_vec64i";
3176 tdep->i386_mmx_type = t;
3177 }
3178
3179 return tdep->i386_mmx_type;
3180 }
3181
3182 /* Return the GDB type object for the "standard" data type of data in
3183 register REGNUM. */
3184
3185 struct type *
3186 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3187 {
3188 if (i386_bnd_regnum_p (gdbarch, regnum))
3189 return i386_bnd_type (gdbarch);
3190 if (i386_mmx_regnum_p (gdbarch, regnum))
3191 return i386_mmx_type (gdbarch);
3192 else if (i386_ymm_regnum_p (gdbarch, regnum))
3193 return i386_ymm_type (gdbarch);
3194 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3195 return i386_ymm_type (gdbarch);
3196 else if (i386_zmm_regnum_p (gdbarch, regnum))
3197 return i386_zmm_type (gdbarch);
3198 else
3199 {
3200 const struct builtin_type *bt = builtin_type (gdbarch);
3201 if (i386_byte_regnum_p (gdbarch, regnum))
3202 return bt->builtin_int8;
3203 else if (i386_word_regnum_p (gdbarch, regnum))
3204 return bt->builtin_int16;
3205 else if (i386_dword_regnum_p (gdbarch, regnum))
3206 return bt->builtin_int32;
3207 else if (i386_k_regnum_p (gdbarch, regnum))
3208 return bt->builtin_int64;
3209 }
3210
3211 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3212 }
3213
3214 /* Map a cooked register onto a raw register or memory. For the i386,
3215 the MMX registers need to be mapped onto floating point registers. */
3216
3217 static int
3218 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
3219 {
3220 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3221 int mmxreg, fpreg;
3222 ULONGEST fstat;
3223 int tos;
3224
3225 mmxreg = regnum - tdep->mm0_regnum;
3226 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
3227 tos = (fstat >> 11) & 0x7;
3228 fpreg = (mmxreg + tos) % 8;
3229
3230 return (I387_ST0_REGNUM (tdep) + fpreg);
3231 }
3232
3233 /* A helper function for us by i386_pseudo_register_read_value and
3234 amd64_pseudo_register_read_value. It does all the work but reads
3235 the data into an already-allocated value. */
3236
3237 void
3238 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3239 struct regcache *regcache,
3240 int regnum,
3241 struct value *result_value)
3242 {
3243 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3244 enum register_status status;
3245 gdb_byte *buf = value_contents_raw (result_value);
3246
3247 if (i386_mmx_regnum_p (gdbarch, regnum))
3248 {
3249 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3250
3251 /* Extract (always little endian). */
3252 status = regcache_raw_read (regcache, fpnum, raw_buf);
3253 if (status != REG_VALID)
3254 mark_value_bytes_unavailable (result_value, 0,
3255 TYPE_LENGTH (value_type (result_value)));
3256 else
3257 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3258 }
3259 else
3260 {
3261 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3262 if (i386_bnd_regnum_p (gdbarch, regnum))
3263 {
3264 regnum -= tdep->bnd0_regnum;
3265
3266 /* Extract (always little endian). Read lower 128bits. */
3267 status = regcache_raw_read (regcache,
3268 I387_BND0R_REGNUM (tdep) + regnum,
3269 raw_buf);
3270 if (status != REG_VALID)
3271 mark_value_bytes_unavailable (result_value, 0, 16);
3272 else
3273 {
3274 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3275 LONGEST upper, lower;
3276 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3277
3278 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3279 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3280 upper = ~upper;
3281
3282 memcpy (buf, &lower, size);
3283 memcpy (buf + size, &upper, size);
3284 }
3285 }
3286 else if (i386_k_regnum_p (gdbarch, regnum))
3287 {
3288 regnum -= tdep->k0_regnum;
3289
3290 /* Extract (always little endian). */
3291 status = regcache_raw_read (regcache,
3292 tdep->k0_regnum + regnum,
3293 raw_buf);
3294 if (status != REG_VALID)
3295 mark_value_bytes_unavailable (result_value, 0, 8);
3296 else
3297 memcpy (buf, raw_buf, 8);
3298 }
3299 else if (i386_zmm_regnum_p (gdbarch, regnum))
3300 {
3301 regnum -= tdep->zmm0_regnum;
3302
3303 if (regnum < num_lower_zmm_regs)
3304 {
3305 /* Extract (always little endian). Read lower 128bits. */
3306 status = regcache_raw_read (regcache,
3307 I387_XMM0_REGNUM (tdep) + regnum,
3308 raw_buf);
3309 if (status != REG_VALID)
3310 mark_value_bytes_unavailable (result_value, 0, 16);
3311 else
3312 memcpy (buf, raw_buf, 16);
3313
3314 /* Extract (always little endian). Read upper 128bits. */
3315 status = regcache_raw_read (regcache,
3316 tdep->ymm0h_regnum + regnum,
3317 raw_buf);
3318 if (status != REG_VALID)
3319 mark_value_bytes_unavailable (result_value, 16, 16);
3320 else
3321 memcpy (buf + 16, raw_buf, 16);
3322 }
3323 else
3324 {
3325 /* Extract (always little endian). Read lower 128bits. */
3326 status = regcache_raw_read (regcache,
3327 I387_XMM16_REGNUM (tdep) + regnum
3328 - num_lower_zmm_regs,
3329 raw_buf);
3330 if (status != REG_VALID)
3331 mark_value_bytes_unavailable (result_value, 0, 16);
3332 else
3333 memcpy (buf, raw_buf, 16);
3334
3335 /* Extract (always little endian). Read upper 128bits. */
3336 status = regcache_raw_read (regcache,
3337 I387_YMM16H_REGNUM (tdep) + regnum
3338 - num_lower_zmm_regs,
3339 raw_buf);
3340 if (status != REG_VALID)
3341 mark_value_bytes_unavailable (result_value, 16, 16);
3342 else
3343 memcpy (buf + 16, raw_buf, 16);
3344 }
3345
3346 /* Read upper 256bits. */
3347 status = regcache_raw_read (regcache,
3348 tdep->zmm0h_regnum + regnum,
3349 raw_buf);
3350 if (status != REG_VALID)
3351 mark_value_bytes_unavailable (result_value, 32, 32);
3352 else
3353 memcpy (buf + 32, raw_buf, 32);
3354 }
3355 else if (i386_ymm_regnum_p (gdbarch, regnum))
3356 {
3357 regnum -= tdep->ymm0_regnum;
3358
3359 /* Extract (always little endian). Read lower 128bits. */
3360 status = regcache_raw_read (regcache,
3361 I387_XMM0_REGNUM (tdep) + regnum,
3362 raw_buf);
3363 if (status != REG_VALID)
3364 mark_value_bytes_unavailable (result_value, 0, 16);
3365 else
3366 memcpy (buf, raw_buf, 16);
3367 /* Read upper 128bits. */
3368 status = regcache_raw_read (regcache,
3369 tdep->ymm0h_regnum + regnum,
3370 raw_buf);
3371 if (status != REG_VALID)
3372 mark_value_bytes_unavailable (result_value, 16, 32);
3373 else
3374 memcpy (buf + 16, raw_buf, 16);
3375 }
3376 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3377 {
3378 regnum -= tdep->ymm16_regnum;
3379 /* Extract (always little endian). Read lower 128bits. */
3380 status = regcache_raw_read (regcache,
3381 I387_XMM16_REGNUM (tdep) + regnum,
3382 raw_buf);
3383 if (status != REG_VALID)
3384 mark_value_bytes_unavailable (result_value, 0, 16);
3385 else
3386 memcpy (buf, raw_buf, 16);
3387 /* Read upper 128bits. */
3388 status = regcache_raw_read (regcache,
3389 tdep->ymm16h_regnum + regnum,
3390 raw_buf);
3391 if (status != REG_VALID)
3392 mark_value_bytes_unavailable (result_value, 16, 16);
3393 else
3394 memcpy (buf + 16, raw_buf, 16);
3395 }
3396 else if (i386_word_regnum_p (gdbarch, regnum))
3397 {
3398 int gpnum = regnum - tdep->ax_regnum;
3399
3400 /* Extract (always little endian). */
3401 status = regcache_raw_read (regcache, gpnum, raw_buf);
3402 if (status != REG_VALID)
3403 mark_value_bytes_unavailable (result_value, 0,
3404 TYPE_LENGTH (value_type (result_value)));
3405 else
3406 memcpy (buf, raw_buf, 2);
3407 }
3408 else if (i386_byte_regnum_p (gdbarch, regnum))
3409 {
3410 /* Check byte pseudo registers last since this function will
3411 be called from amd64_pseudo_register_read, which handles
3412 byte pseudo registers differently. */
3413 int gpnum = regnum - tdep->al_regnum;
3414
3415 /* Extract (always little endian). We read both lower and
3416 upper registers. */
3417 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3418 if (status != REG_VALID)
3419 mark_value_bytes_unavailable (result_value, 0,
3420 TYPE_LENGTH (value_type (result_value)));
3421 else if (gpnum >= 4)
3422 memcpy (buf, raw_buf + 1, 1);
3423 else
3424 memcpy (buf, raw_buf, 1);
3425 }
3426 else
3427 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3428 }
3429 }
3430
3431 static struct value *
3432 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3433 struct regcache *regcache,
3434 int regnum)
3435 {
3436 struct value *result;
3437
3438 result = allocate_value (register_type (gdbarch, regnum));
3439 VALUE_LVAL (result) = lval_register;
3440 VALUE_REGNUM (result) = regnum;
3441
3442 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3443
3444 return result;
3445 }
3446
3447 void
3448 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3449 int regnum, const gdb_byte *buf)
3450 {
3451 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3452
3453 if (i386_mmx_regnum_p (gdbarch, regnum))
3454 {
3455 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3456
3457 /* Read ... */
3458 regcache_raw_read (regcache, fpnum, raw_buf);
3459 /* ... Modify ... (always little endian). */
3460 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3461 /* ... Write. */
3462 regcache_raw_write (regcache, fpnum, raw_buf);
3463 }
3464 else
3465 {
3466 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3467
3468 if (i386_bnd_regnum_p (gdbarch, regnum))
3469 {
3470 ULONGEST upper, lower;
3471 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3472 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3473
3474 /* New values from input value. */
3475 regnum -= tdep->bnd0_regnum;
3476 lower = extract_unsigned_integer (buf, size, byte_order);
3477 upper = extract_unsigned_integer (buf + size, size, byte_order);
3478
3479 /* Fetching register buffer. */
3480 regcache_raw_read (regcache,
3481 I387_BND0R_REGNUM (tdep) + regnum,
3482 raw_buf);
3483
3484 upper = ~upper;
3485
3486 /* Set register bits. */
3487 memcpy (raw_buf, &lower, 8);
3488 memcpy (raw_buf + 8, &upper, 8);
3489
3490
3491 regcache_raw_write (regcache,
3492 I387_BND0R_REGNUM (tdep) + regnum,
3493 raw_buf);
3494 }
3495 else if (i386_k_regnum_p (gdbarch, regnum))
3496 {
3497 regnum -= tdep->k0_regnum;
3498
3499 regcache_raw_write (regcache,
3500 tdep->k0_regnum + regnum,
3501 buf);
3502 }
3503 else if (i386_zmm_regnum_p (gdbarch, regnum))
3504 {
3505 regnum -= tdep->zmm0_regnum;
3506
3507 if (regnum < num_lower_zmm_regs)
3508 {
3509 /* Write lower 128bits. */
3510 regcache_raw_write (regcache,
3511 I387_XMM0_REGNUM (tdep) + regnum,
3512 buf);
3513 /* Write upper 128bits. */
3514 regcache_raw_write (regcache,
3515 I387_YMM0_REGNUM (tdep) + regnum,
3516 buf + 16);
3517 }
3518 else
3519 {
3520 /* Write lower 128bits. */
3521 regcache_raw_write (regcache,
3522 I387_XMM16_REGNUM (tdep) + regnum
3523 - num_lower_zmm_regs,
3524 buf);
3525 /* Write upper 128bits. */
3526 regcache_raw_write (regcache,
3527 I387_YMM16H_REGNUM (tdep) + regnum
3528 - num_lower_zmm_regs,
3529 buf + 16);
3530 }
3531 /* Write upper 256bits. */
3532 regcache_raw_write (regcache,
3533 tdep->zmm0h_regnum + regnum,
3534 buf + 32);
3535 }
3536 else if (i386_ymm_regnum_p (gdbarch, regnum))
3537 {
3538 regnum -= tdep->ymm0_regnum;
3539
3540 /* ... Write lower 128bits. */
3541 regcache_raw_write (regcache,
3542 I387_XMM0_REGNUM (tdep) + regnum,
3543 buf);
3544 /* ... Write upper 128bits. */
3545 regcache_raw_write (regcache,
3546 tdep->ymm0h_regnum + regnum,
3547 buf + 16);
3548 }
3549 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3550 {
3551 regnum -= tdep->ymm16_regnum;
3552
3553 /* ... Write lower 128bits. */
3554 regcache_raw_write (regcache,
3555 I387_XMM16_REGNUM (tdep) + regnum,
3556 buf);
3557 /* ... Write upper 128bits. */
3558 regcache_raw_write (regcache,
3559 tdep->ymm16h_regnum + regnum,
3560 buf + 16);
3561 }
3562 else if (i386_word_regnum_p (gdbarch, regnum))
3563 {
3564 int gpnum = regnum - tdep->ax_regnum;
3565
3566 /* Read ... */
3567 regcache_raw_read (regcache, gpnum, raw_buf);
3568 /* ... Modify ... (always little endian). */
3569 memcpy (raw_buf, buf, 2);
3570 /* ... Write. */
3571 regcache_raw_write (regcache, gpnum, raw_buf);
3572 }
3573 else if (i386_byte_regnum_p (gdbarch, regnum))
3574 {
3575 /* Check byte pseudo registers last since this function will
3576 be called from amd64_pseudo_register_read, which handles
3577 byte pseudo registers differently. */
3578 int gpnum = regnum - tdep->al_regnum;
3579
3580 /* Read ... We read both lower and upper registers. */
3581 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3582 /* ... Modify ... (always little endian). */
3583 if (gpnum >= 4)
3584 memcpy (raw_buf + 1, buf, 1);
3585 else
3586 memcpy (raw_buf, buf, 1);
3587 /* ... Write. */
3588 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3589 }
3590 else
3591 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3592 }
3593 }
3594 \f
3595
3596 /* Return the register number of the register allocated by GCC after
3597 REGNUM, or -1 if there is no such register. */
3598
3599 static int
3600 i386_next_regnum (int regnum)
3601 {
3602 /* GCC allocates the registers in the order:
3603
3604 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3605
3606 Since storing a variable in %esp doesn't make any sense we return
3607 -1 for %ebp and for %esp itself. */
3608 static int next_regnum[] =
3609 {
3610 I386_EDX_REGNUM, /* Slot for %eax. */
3611 I386_EBX_REGNUM, /* Slot for %ecx. */
3612 I386_ECX_REGNUM, /* Slot for %edx. */
3613 I386_ESI_REGNUM, /* Slot for %ebx. */
3614 -1, -1, /* Slots for %esp and %ebp. */
3615 I386_EDI_REGNUM, /* Slot for %esi. */
3616 I386_EBP_REGNUM /* Slot for %edi. */
3617 };
3618
3619 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3620 return next_regnum[regnum];
3621
3622 return -1;
3623 }
3624
3625 /* Return nonzero if a value of type TYPE stored in register REGNUM
3626 needs any special handling. */
3627
3628 static int
3629 i386_convert_register_p (struct gdbarch *gdbarch,
3630 int regnum, struct type *type)
3631 {
3632 int len = TYPE_LENGTH (type);
3633
3634 /* Values may be spread across multiple registers. Most debugging
3635 formats aren't expressive enough to specify the locations, so
3636 some heuristics is involved. Right now we only handle types that
3637 have a length that is a multiple of the word size, since GCC
3638 doesn't seem to put any other types into registers. */
3639 if (len > 4 && len % 4 == 0)
3640 {
3641 int last_regnum = regnum;
3642
3643 while (len > 4)
3644 {
3645 last_regnum = i386_next_regnum (last_regnum);
3646 len -= 4;
3647 }
3648
3649 if (last_regnum != -1)
3650 return 1;
3651 }
3652
3653 return i387_convert_register_p (gdbarch, regnum, type);
3654 }
3655
3656 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3657 return its contents in TO. */
3658
3659 static int
3660 i386_register_to_value (struct frame_info *frame, int regnum,
3661 struct type *type, gdb_byte *to,
3662 int *optimizedp, int *unavailablep)
3663 {
3664 struct gdbarch *gdbarch = get_frame_arch (frame);
3665 int len = TYPE_LENGTH (type);
3666
3667 if (i386_fp_regnum_p (gdbarch, regnum))
3668 return i387_register_to_value (frame, regnum, type, to,
3669 optimizedp, unavailablep);
3670
3671 /* Read a value spread across multiple registers. */
3672
3673 gdb_assert (len > 4 && len % 4 == 0);
3674
3675 while (len > 0)
3676 {
3677 gdb_assert (regnum != -1);
3678 gdb_assert (register_size (gdbarch, regnum) == 4);
3679
3680 if (!get_frame_register_bytes (frame, regnum, 0,
3681 register_size (gdbarch, regnum),
3682 to, optimizedp, unavailablep))
3683 return 0;
3684
3685 regnum = i386_next_regnum (regnum);
3686 len -= 4;
3687 to += 4;
3688 }
3689
3690 *optimizedp = *unavailablep = 0;
3691 return 1;
3692 }
3693
3694 /* Write the contents FROM of a value of type TYPE into register
3695 REGNUM in frame FRAME. */
3696
3697 static void
3698 i386_value_to_register (struct frame_info *frame, int regnum,
3699 struct type *type, const gdb_byte *from)
3700 {
3701 int len = TYPE_LENGTH (type);
3702
3703 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3704 {
3705 i387_value_to_register (frame, regnum, type, from);
3706 return;
3707 }
3708
3709 /* Write a value spread across multiple registers. */
3710
3711 gdb_assert (len > 4 && len % 4 == 0);
3712
3713 while (len > 0)
3714 {
3715 gdb_assert (regnum != -1);
3716 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3717
3718 put_frame_register (frame, regnum, from);
3719 regnum = i386_next_regnum (regnum);
3720 len -= 4;
3721 from += 4;
3722 }
3723 }
3724 \f
3725 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3726 in the general-purpose register set REGSET to register cache
3727 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3728
3729 void
3730 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3731 int regnum, const void *gregs, size_t len)
3732 {
3733 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3734 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3735 const gdb_byte *regs = gregs;
3736 int i;
3737
3738 gdb_assert (len >= tdep->sizeof_gregset);
3739
3740 for (i = 0; i < tdep->gregset_num_regs; i++)
3741 {
3742 if ((regnum == i || regnum == -1)
3743 && tdep->gregset_reg_offset[i] != -1)
3744 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3745 }
3746 }
3747
3748 /* Collect register REGNUM from the register cache REGCACHE and store
3749 it in the buffer specified by GREGS and LEN as described by the
3750 general-purpose register set REGSET. If REGNUM is -1, do this for
3751 all registers in REGSET. */
3752
3753 static void
3754 i386_collect_gregset (const struct regset *regset,
3755 const struct regcache *regcache,
3756 int regnum, void *gregs, size_t len)
3757 {
3758 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3759 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3760 gdb_byte *regs = gregs;
3761 int i;
3762
3763 gdb_assert (len >= tdep->sizeof_gregset);
3764
3765 for (i = 0; i < tdep->gregset_num_regs; i++)
3766 {
3767 if ((regnum == i || regnum == -1)
3768 && tdep->gregset_reg_offset[i] != -1)
3769 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3770 }
3771 }
3772
3773 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3774 in the floating-point register set REGSET to register cache
3775 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3776
3777 static void
3778 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3779 int regnum, const void *fpregs, size_t len)
3780 {
3781 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3782 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3783
3784 if (len == I387_SIZEOF_FXSAVE)
3785 {
3786 i387_supply_fxsave (regcache, regnum, fpregs);
3787 return;
3788 }
3789
3790 gdb_assert (len >= tdep->sizeof_fpregset);
3791 i387_supply_fsave (regcache, regnum, fpregs);
3792 }
3793
3794 /* Collect register REGNUM from the register cache REGCACHE and store
3795 it in the buffer specified by FPREGS and LEN as described by the
3796 floating-point register set REGSET. If REGNUM is -1, do this for
3797 all registers in REGSET. */
3798
3799 static void
3800 i386_collect_fpregset (const struct regset *regset,
3801 const struct regcache *regcache,
3802 int regnum, void *fpregs, size_t len)
3803 {
3804 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3805 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3806
3807 if (len == I387_SIZEOF_FXSAVE)
3808 {
3809 i387_collect_fxsave (regcache, regnum, fpregs);
3810 return;
3811 }
3812
3813 gdb_assert (len >= tdep->sizeof_fpregset);
3814 i387_collect_fsave (regcache, regnum, fpregs);
3815 }
3816
3817 /* Register set definitions. */
3818
3819 const struct regset i386_gregset =
3820 {
3821 NULL, i386_supply_gregset, i386_collect_gregset
3822 };
3823
3824 const struct regset i386_fpregset =
3825 {
3826 NULL, i386_supply_fpregset, i386_collect_fpregset
3827 };
3828
3829 /* Default iterator over core file register note sections. */
3830
3831 void
3832 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3833 iterate_over_regset_sections_cb *cb,
3834 void *cb_data,
3835 const struct regcache *regcache)
3836 {
3837 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3838
3839 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3840 if (tdep->sizeof_fpregset)
3841 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
3842 }
3843 \f
3844
3845 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3846
3847 CORE_ADDR
3848 i386_pe_skip_trampoline_code (struct frame_info *frame,
3849 CORE_ADDR pc, char *name)
3850 {
3851 struct gdbarch *gdbarch = get_frame_arch (frame);
3852 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3853
3854 /* jmp *(dest) */
3855 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3856 {
3857 unsigned long indirect =
3858 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3859 struct minimal_symbol *indsym =
3860 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3861 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3862
3863 if (symname)
3864 {
3865 if (startswith (symname, "__imp_")
3866 || startswith (symname, "_imp_"))
3867 return name ? 1 :
3868 read_memory_unsigned_integer (indirect, 4, byte_order);
3869 }
3870 }
3871 return 0; /* Not a trampoline. */
3872 }
3873 \f
3874
3875 /* Return whether the THIS_FRAME corresponds to a sigtramp
3876 routine. */
3877
3878 int
3879 i386_sigtramp_p (struct frame_info *this_frame)
3880 {
3881 CORE_ADDR pc = get_frame_pc (this_frame);
3882 const char *name;
3883
3884 find_pc_partial_function (pc, &name, NULL, NULL);
3885 return (name && strcmp ("_sigtramp", name) == 0);
3886 }
3887 \f
3888
3889 /* We have two flavours of disassembly. The machinery on this page
3890 deals with switching between those. */
3891
3892 static int
3893 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3894 {
3895 gdb_assert (disassembly_flavor == att_flavor
3896 || disassembly_flavor == intel_flavor);
3897
3898 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3899 constified, cast to prevent a compiler warning. */
3900 info->disassembler_options = (char *) disassembly_flavor;
3901
3902 return print_insn_i386 (pc, info);
3903 }
3904 \f
3905
3906 /* There are a few i386 architecture variants that differ only
3907 slightly from the generic i386 target. For now, we don't give them
3908 their own source file, but include them here. As a consequence,
3909 they'll always be included. */
3910
3911 /* System V Release 4 (SVR4). */
3912
3913 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3914 routine. */
3915
3916 static int
3917 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3918 {
3919 CORE_ADDR pc = get_frame_pc (this_frame);
3920 const char *name;
3921
3922 /* The origin of these symbols is currently unknown. */
3923 find_pc_partial_function (pc, &name, NULL, NULL);
3924 return (name && (strcmp ("_sigreturn", name) == 0
3925 || strcmp ("sigvechandler", name) == 0));
3926 }
3927
3928 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3929 address of the associated sigcontext (ucontext) structure. */
3930
3931 static CORE_ADDR
3932 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3933 {
3934 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3935 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3936 gdb_byte buf[4];
3937 CORE_ADDR sp;
3938
3939 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3940 sp = extract_unsigned_integer (buf, 4, byte_order);
3941
3942 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3943 }
3944
3945 \f
3946
3947 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
3948 gdbarch.h. */
3949
3950 int
3951 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3952 {
3953 return (*s == '$' /* Literal number. */
3954 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3955 || (*s == '(' && s[1] == '%') /* Register indirection. */
3956 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3957 }
3958
3959 /* Helper function for i386_stap_parse_special_token.
3960
3961 This function parses operands of the form `-8+3+1(%rbp)', which
3962 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
3963
3964 Return 1 if the operand was parsed successfully, zero
3965 otherwise. */
3966
3967 static int
3968 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
3969 struct stap_parse_info *p)
3970 {
3971 const char *s = p->arg;
3972
3973 if (isdigit (*s) || *s == '-' || *s == '+')
3974 {
3975 int got_minus[3];
3976 int i;
3977 long displacements[3];
3978 const char *start;
3979 char *regname;
3980 int len;
3981 struct stoken str;
3982 char *endp;
3983
3984 got_minus[0] = 0;
3985 if (*s == '+')
3986 ++s;
3987 else if (*s == '-')
3988 {
3989 ++s;
3990 got_minus[0] = 1;
3991 }
3992
3993 if (!isdigit ((unsigned char) *s))
3994 return 0;
3995
3996 displacements[0] = strtol (s, &endp, 10);
3997 s = endp;
3998
3999 if (*s != '+' && *s != '-')
4000 {
4001 /* We are not dealing with a triplet. */
4002 return 0;
4003 }
4004
4005 got_minus[1] = 0;
4006 if (*s == '+')
4007 ++s;
4008 else
4009 {
4010 ++s;
4011 got_minus[1] = 1;
4012 }
4013
4014 if (!isdigit ((unsigned char) *s))
4015 return 0;
4016
4017 displacements[1] = strtol (s, &endp, 10);
4018 s = endp;
4019
4020 if (*s != '+' && *s != '-')
4021 {
4022 /* We are not dealing with a triplet. */
4023 return 0;
4024 }
4025
4026 got_minus[2] = 0;
4027 if (*s == '+')
4028 ++s;
4029 else
4030 {
4031 ++s;
4032 got_minus[2] = 1;
4033 }
4034
4035 if (!isdigit ((unsigned char) *s))
4036 return 0;
4037
4038 displacements[2] = strtol (s, &endp, 10);
4039 s = endp;
4040
4041 if (*s != '(' || s[1] != '%')
4042 return 0;
4043
4044 s += 2;
4045 start = s;
4046
4047 while (isalnum (*s))
4048 ++s;
4049
4050 if (*s++ != ')')
4051 return 0;
4052
4053 len = s - start - 1;
4054 regname = alloca (len + 1);
4055
4056 strncpy (regname, start, len);
4057 regname[len] = '\0';
4058
4059 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4060 error (_("Invalid register name `%s' on expression `%s'."),
4061 regname, p->saved_arg);
4062
4063 for (i = 0; i < 3; i++)
4064 {
4065 write_exp_elt_opcode (&p->pstate, OP_LONG);
4066 write_exp_elt_type
4067 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4068 write_exp_elt_longcst (&p->pstate, displacements[i]);
4069 write_exp_elt_opcode (&p->pstate, OP_LONG);
4070 if (got_minus[i])
4071 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4072 }
4073
4074 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4075 str.ptr = regname;
4076 str.length = len;
4077 write_exp_string (&p->pstate, str);
4078 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4079
4080 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4081 write_exp_elt_type (&p->pstate,
4082 builtin_type (gdbarch)->builtin_data_ptr);
4083 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4084
4085 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4086 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4087 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4088
4089 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4090 write_exp_elt_type (&p->pstate,
4091 lookup_pointer_type (p->arg_type));
4092 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4093
4094 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4095
4096 p->arg = s;
4097
4098 return 1;
4099 }
4100
4101 return 0;
4102 }
4103
4104 /* Helper function for i386_stap_parse_special_token.
4105
4106 This function parses operands of the form `register base +
4107 (register index * size) + offset', as represented in
4108 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4109
4110 Return 1 if the operand was parsed successfully, zero
4111 otherwise. */
4112
4113 static int
4114 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4115 struct stap_parse_info *p)
4116 {
4117 const char *s = p->arg;
4118
4119 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4120 {
4121 int offset_minus = 0;
4122 long offset = 0;
4123 int size_minus = 0;
4124 long size = 0;
4125 const char *start;
4126 char *base;
4127 int len_base;
4128 char *index;
4129 int len_index;
4130 struct stoken base_token, index_token;
4131
4132 if (*s == '+')
4133 ++s;
4134 else if (*s == '-')
4135 {
4136 ++s;
4137 offset_minus = 1;
4138 }
4139
4140 if (offset_minus && !isdigit (*s))
4141 return 0;
4142
4143 if (isdigit (*s))
4144 {
4145 char *endp;
4146
4147 offset = strtol (s, &endp, 10);
4148 s = endp;
4149 }
4150
4151 if (*s != '(' || s[1] != '%')
4152 return 0;
4153
4154 s += 2;
4155 start = s;
4156
4157 while (isalnum (*s))
4158 ++s;
4159
4160 if (*s != ',' || s[1] != '%')
4161 return 0;
4162
4163 len_base = s - start;
4164 base = alloca (len_base + 1);
4165 strncpy (base, start, len_base);
4166 base[len_base] = '\0';
4167
4168 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4169 error (_("Invalid register name `%s' on expression `%s'."),
4170 base, p->saved_arg);
4171
4172 s += 2;
4173 start = s;
4174
4175 while (isalnum (*s))
4176 ++s;
4177
4178 len_index = s - start;
4179 index = alloca (len_index + 1);
4180 strncpy (index, start, len_index);
4181 index[len_index] = '\0';
4182
4183 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4184 error (_("Invalid register name `%s' on expression `%s'."),
4185 index, p->saved_arg);
4186
4187 if (*s != ',' && *s != ')')
4188 return 0;
4189
4190 if (*s == ',')
4191 {
4192 char *endp;
4193
4194 ++s;
4195 if (*s == '+')
4196 ++s;
4197 else if (*s == '-')
4198 {
4199 ++s;
4200 size_minus = 1;
4201 }
4202
4203 size = strtol (s, &endp, 10);
4204 s = endp;
4205
4206 if (*s != ')')
4207 return 0;
4208 }
4209
4210 ++s;
4211
4212 if (offset)
4213 {
4214 write_exp_elt_opcode (&p->pstate, OP_LONG);
4215 write_exp_elt_type (&p->pstate,
4216 builtin_type (gdbarch)->builtin_long);
4217 write_exp_elt_longcst (&p->pstate, offset);
4218 write_exp_elt_opcode (&p->pstate, OP_LONG);
4219 if (offset_minus)
4220 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4221 }
4222
4223 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4224 base_token.ptr = base;
4225 base_token.length = len_base;
4226 write_exp_string (&p->pstate, base_token);
4227 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4228
4229 if (offset)
4230 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4231
4232 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4233 index_token.ptr = index;
4234 index_token.length = len_index;
4235 write_exp_string (&p->pstate, index_token);
4236 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4237
4238 if (size)
4239 {
4240 write_exp_elt_opcode (&p->pstate, OP_LONG);
4241 write_exp_elt_type (&p->pstate,
4242 builtin_type (gdbarch)->builtin_long);
4243 write_exp_elt_longcst (&p->pstate, size);
4244 write_exp_elt_opcode (&p->pstate, OP_LONG);
4245 if (size_minus)
4246 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4247 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4248 }
4249
4250 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4251
4252 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4253 write_exp_elt_type (&p->pstate,
4254 lookup_pointer_type (p->arg_type));
4255 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4256
4257 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4258
4259 p->arg = s;
4260
4261 return 1;
4262 }
4263
4264 return 0;
4265 }
4266
4267 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4268 gdbarch.h. */
4269
4270 int
4271 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4272 struct stap_parse_info *p)
4273 {
4274 /* In order to parse special tokens, we use a state-machine that go
4275 through every known token and try to get a match. */
4276 enum
4277 {
4278 TRIPLET,
4279 THREE_ARG_DISPLACEMENT,
4280 DONE
4281 };
4282 int current_state;
4283
4284 current_state = TRIPLET;
4285
4286 /* The special tokens to be parsed here are:
4287
4288 - `register base + (register index * size) + offset', as represented
4289 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4290
4291 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4292 `*(-8 + 3 - 1 + (void *) $eax)'. */
4293
4294 while (current_state != DONE)
4295 {
4296 switch (current_state)
4297 {
4298 case TRIPLET:
4299 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4300 return 1;
4301 break;
4302
4303 case THREE_ARG_DISPLACEMENT:
4304 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4305 return 1;
4306 break;
4307 }
4308
4309 /* Advancing to the next state. */
4310 ++current_state;
4311 }
4312
4313 return 0;
4314 }
4315
4316 \f
4317
4318 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4319 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4320
4321 static const char *
4322 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4323 {
4324 return "(x86_64|i.86)";
4325 }
4326
4327 \f
4328
4329 /* Generic ELF. */
4330
4331 void
4332 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4333 {
4334 static const char *const stap_integer_prefixes[] = { "$", NULL };
4335 static const char *const stap_register_prefixes[] = { "%", NULL };
4336 static const char *const stap_register_indirection_prefixes[] = { "(",
4337 NULL };
4338 static const char *const stap_register_indirection_suffixes[] = { ")",
4339 NULL };
4340
4341 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4342 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4343
4344 /* Registering SystemTap handlers. */
4345 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4346 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4347 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4348 stap_register_indirection_prefixes);
4349 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4350 stap_register_indirection_suffixes);
4351 set_gdbarch_stap_is_single_operand (gdbarch,
4352 i386_stap_is_single_operand);
4353 set_gdbarch_stap_parse_special_token (gdbarch,
4354 i386_stap_parse_special_token);
4355
4356 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
4357 }
4358
4359 /* System V Release 4 (SVR4). */
4360
4361 void
4362 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4363 {
4364 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4365
4366 /* System V Release 4 uses ELF. */
4367 i386_elf_init_abi (info, gdbarch);
4368
4369 /* System V Release 4 has shared libraries. */
4370 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4371
4372 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4373 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4374 tdep->sc_pc_offset = 36 + 14 * 4;
4375 tdep->sc_sp_offset = 36 + 17 * 4;
4376
4377 tdep->jb_pc_offset = 20;
4378 }
4379
4380 /* DJGPP. */
4381
4382 static void
4383 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4384 {
4385 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4386
4387 /* DJGPP doesn't have any special frames for signal handlers. */
4388 tdep->sigtramp_p = NULL;
4389
4390 tdep->jb_pc_offset = 36;
4391
4392 /* DJGPP does not support the SSE registers. */
4393 if (! tdesc_has_registers (info.target_desc))
4394 tdep->tdesc = tdesc_i386_mmx;
4395
4396 /* Native compiler is GCC, which uses the SVR4 register numbering
4397 even in COFF and STABS. See the comment in i386_gdbarch_init,
4398 before the calls to set_gdbarch_stab_reg_to_regnum and
4399 set_gdbarch_sdb_reg_to_regnum. */
4400 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4401 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4402
4403 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
4404
4405 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
4406 }
4407 \f
4408
4409 /* i386 register groups. In addition to the normal groups, add "mmx"
4410 and "sse". */
4411
4412 static struct reggroup *i386_sse_reggroup;
4413 static struct reggroup *i386_mmx_reggroup;
4414
4415 static void
4416 i386_init_reggroups (void)
4417 {
4418 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4419 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4420 }
4421
4422 static void
4423 i386_add_reggroups (struct gdbarch *gdbarch)
4424 {
4425 reggroup_add (gdbarch, i386_sse_reggroup);
4426 reggroup_add (gdbarch, i386_mmx_reggroup);
4427 reggroup_add (gdbarch, general_reggroup);
4428 reggroup_add (gdbarch, float_reggroup);
4429 reggroup_add (gdbarch, all_reggroup);
4430 reggroup_add (gdbarch, save_reggroup);
4431 reggroup_add (gdbarch, restore_reggroup);
4432 reggroup_add (gdbarch, vector_reggroup);
4433 reggroup_add (gdbarch, system_reggroup);
4434 }
4435
4436 int
4437 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4438 struct reggroup *group)
4439 {
4440 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4441 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4442 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4443 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4444 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4445 avx512_p, avx_p, sse_p;
4446
4447 /* Don't include pseudo registers, except for MMX, in any register
4448 groups. */
4449 if (i386_byte_regnum_p (gdbarch, regnum))
4450 return 0;
4451
4452 if (i386_word_regnum_p (gdbarch, regnum))
4453 return 0;
4454
4455 if (i386_dword_regnum_p (gdbarch, regnum))
4456 return 0;
4457
4458 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4459 if (group == i386_mmx_reggroup)
4460 return mmx_regnum_p;
4461
4462 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4463 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4464 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4465 if (group == i386_sse_reggroup)
4466 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4467
4468 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4469 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4470 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4471
4472 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4473 == X86_XSTATE_AVX512_MASK);
4474 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4475 == X86_XSTATE_AVX_MASK) && !avx512_p;
4476 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4477 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4478
4479 if (group == vector_reggroup)
4480 return (mmx_regnum_p
4481 || (zmm_regnum_p && avx512_p)
4482 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4483 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4484 || mxcsr_regnum_p);
4485
4486 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4487 || i386_fpc_regnum_p (gdbarch, regnum));
4488 if (group == float_reggroup)
4489 return fp_regnum_p;
4490
4491 /* For "info reg all", don't include upper YMM registers nor XMM
4492 registers when AVX is supported. */
4493 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4494 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4495 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4496 if (group == all_reggroup
4497 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4498 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4499 || ymmh_regnum_p
4500 || ymmh_avx512_regnum_p
4501 || zmmh_regnum_p))
4502 return 0;
4503
4504 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4505 if (group == all_reggroup
4506 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4507 return bnd_regnum_p;
4508
4509 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4510 if (group == all_reggroup
4511 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4512 return 0;
4513
4514 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4515 if (group == all_reggroup
4516 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4517 return mpx_ctrl_regnum_p;
4518
4519 if (group == general_reggroup)
4520 return (!fp_regnum_p
4521 && !mmx_regnum_p
4522 && !mxcsr_regnum_p
4523 && !xmm_regnum_p
4524 && !xmm_avx512_regnum_p
4525 && !ymm_regnum_p
4526 && !ymmh_regnum_p
4527 && !ymm_avx512_regnum_p
4528 && !ymmh_avx512_regnum_p
4529 && !bndr_regnum_p
4530 && !bnd_regnum_p
4531 && !mpx_ctrl_regnum_p
4532 && !zmm_regnum_p
4533 && !zmmh_regnum_p);
4534
4535 return default_register_reggroup_p (gdbarch, regnum, group);
4536 }
4537 \f
4538
4539 /* Get the ARGIth function argument for the current function. */
4540
4541 static CORE_ADDR
4542 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4543 struct type *type)
4544 {
4545 struct gdbarch *gdbarch = get_frame_arch (frame);
4546 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4547 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4548 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4549 }
4550
4551 #define PREFIX_REPZ 0x01
4552 #define PREFIX_REPNZ 0x02
4553 #define PREFIX_LOCK 0x04
4554 #define PREFIX_DATA 0x08
4555 #define PREFIX_ADDR 0x10
4556
4557 /* operand size */
4558 enum
4559 {
4560 OT_BYTE = 0,
4561 OT_WORD,
4562 OT_LONG,
4563 OT_QUAD,
4564 OT_DQUAD,
4565 };
4566
4567 /* i386 arith/logic operations */
4568 enum
4569 {
4570 OP_ADDL,
4571 OP_ORL,
4572 OP_ADCL,
4573 OP_SBBL,
4574 OP_ANDL,
4575 OP_SUBL,
4576 OP_XORL,
4577 OP_CMPL,
4578 };
4579
4580 struct i386_record_s
4581 {
4582 struct gdbarch *gdbarch;
4583 struct regcache *regcache;
4584 CORE_ADDR orig_addr;
4585 CORE_ADDR addr;
4586 int aflag;
4587 int dflag;
4588 int override;
4589 uint8_t modrm;
4590 uint8_t mod, reg, rm;
4591 int ot;
4592 uint8_t rex_x;
4593 uint8_t rex_b;
4594 int rip_offset;
4595 int popl_esp_hack;
4596 const int *regmap;
4597 };
4598
4599 /* Parse the "modrm" part of the memory address irp->addr points at.
4600 Returns -1 if something goes wrong, 0 otherwise. */
4601
4602 static int
4603 i386_record_modrm (struct i386_record_s *irp)
4604 {
4605 struct gdbarch *gdbarch = irp->gdbarch;
4606
4607 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4608 return -1;
4609
4610 irp->addr++;
4611 irp->mod = (irp->modrm >> 6) & 3;
4612 irp->reg = (irp->modrm >> 3) & 7;
4613 irp->rm = irp->modrm & 7;
4614
4615 return 0;
4616 }
4617
4618 /* Extract the memory address that the current instruction writes to,
4619 and return it in *ADDR. Return -1 if something goes wrong. */
4620
4621 static int
4622 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4623 {
4624 struct gdbarch *gdbarch = irp->gdbarch;
4625 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4626 gdb_byte buf[4];
4627 ULONGEST offset64;
4628
4629 *addr = 0;
4630 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4631 {
4632 /* 32/64 bits */
4633 int havesib = 0;
4634 uint8_t scale = 0;
4635 uint8_t byte;
4636 uint8_t index = 0;
4637 uint8_t base = irp->rm;
4638
4639 if (base == 4)
4640 {
4641 havesib = 1;
4642 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4643 return -1;
4644 irp->addr++;
4645 scale = (byte >> 6) & 3;
4646 index = ((byte >> 3) & 7) | irp->rex_x;
4647 base = (byte & 7);
4648 }
4649 base |= irp->rex_b;
4650
4651 switch (irp->mod)
4652 {
4653 case 0:
4654 if ((base & 7) == 5)
4655 {
4656 base = 0xff;
4657 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4658 return -1;
4659 irp->addr += 4;
4660 *addr = extract_signed_integer (buf, 4, byte_order);
4661 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4662 *addr += irp->addr + irp->rip_offset;
4663 }
4664 break;
4665 case 1:
4666 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4667 return -1;
4668 irp->addr++;
4669 *addr = (int8_t) buf[0];
4670 break;
4671 case 2:
4672 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4673 return -1;
4674 *addr = extract_signed_integer (buf, 4, byte_order);
4675 irp->addr += 4;
4676 break;
4677 }
4678
4679 offset64 = 0;
4680 if (base != 0xff)
4681 {
4682 if (base == 4 && irp->popl_esp_hack)
4683 *addr += irp->popl_esp_hack;
4684 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4685 &offset64);
4686 }
4687 if (irp->aflag == 2)
4688 {
4689 *addr += offset64;
4690 }
4691 else
4692 *addr = (uint32_t) (offset64 + *addr);
4693
4694 if (havesib && (index != 4 || scale != 0))
4695 {
4696 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4697 &offset64);
4698 if (irp->aflag == 2)
4699 *addr += offset64 << scale;
4700 else
4701 *addr = (uint32_t) (*addr + (offset64 << scale));
4702 }
4703
4704 if (!irp->aflag)
4705 {
4706 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4707 address from 32-bit to 64-bit. */
4708 *addr = (uint32_t) *addr;
4709 }
4710 }
4711 else
4712 {
4713 /* 16 bits */
4714 switch (irp->mod)
4715 {
4716 case 0:
4717 if (irp->rm == 6)
4718 {
4719 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4720 return -1;
4721 irp->addr += 2;
4722 *addr = extract_signed_integer (buf, 2, byte_order);
4723 irp->rm = 0;
4724 goto no_rm;
4725 }
4726 break;
4727 case 1:
4728 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4729 return -1;
4730 irp->addr++;
4731 *addr = (int8_t) buf[0];
4732 break;
4733 case 2:
4734 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4735 return -1;
4736 irp->addr += 2;
4737 *addr = extract_signed_integer (buf, 2, byte_order);
4738 break;
4739 }
4740
4741 switch (irp->rm)
4742 {
4743 case 0:
4744 regcache_raw_read_unsigned (irp->regcache,
4745 irp->regmap[X86_RECORD_REBX_REGNUM],
4746 &offset64);
4747 *addr = (uint32_t) (*addr + offset64);
4748 regcache_raw_read_unsigned (irp->regcache,
4749 irp->regmap[X86_RECORD_RESI_REGNUM],
4750 &offset64);
4751 *addr = (uint32_t) (*addr + offset64);
4752 break;
4753 case 1:
4754 regcache_raw_read_unsigned (irp->regcache,
4755 irp->regmap[X86_RECORD_REBX_REGNUM],
4756 &offset64);
4757 *addr = (uint32_t) (*addr + offset64);
4758 regcache_raw_read_unsigned (irp->regcache,
4759 irp->regmap[X86_RECORD_REDI_REGNUM],
4760 &offset64);
4761 *addr = (uint32_t) (*addr + offset64);
4762 break;
4763 case 2:
4764 regcache_raw_read_unsigned (irp->regcache,
4765 irp->regmap[X86_RECORD_REBP_REGNUM],
4766 &offset64);
4767 *addr = (uint32_t) (*addr + offset64);
4768 regcache_raw_read_unsigned (irp->regcache,
4769 irp->regmap[X86_RECORD_RESI_REGNUM],
4770 &offset64);
4771 *addr = (uint32_t) (*addr + offset64);
4772 break;
4773 case 3:
4774 regcache_raw_read_unsigned (irp->regcache,
4775 irp->regmap[X86_RECORD_REBP_REGNUM],
4776 &offset64);
4777 *addr = (uint32_t) (*addr + offset64);
4778 regcache_raw_read_unsigned (irp->regcache,
4779 irp->regmap[X86_RECORD_REDI_REGNUM],
4780 &offset64);
4781 *addr = (uint32_t) (*addr + offset64);
4782 break;
4783 case 4:
4784 regcache_raw_read_unsigned (irp->regcache,
4785 irp->regmap[X86_RECORD_RESI_REGNUM],
4786 &offset64);
4787 *addr = (uint32_t) (*addr + offset64);
4788 break;
4789 case 5:
4790 regcache_raw_read_unsigned (irp->regcache,
4791 irp->regmap[X86_RECORD_REDI_REGNUM],
4792 &offset64);
4793 *addr = (uint32_t) (*addr + offset64);
4794 break;
4795 case 6:
4796 regcache_raw_read_unsigned (irp->regcache,
4797 irp->regmap[X86_RECORD_REBP_REGNUM],
4798 &offset64);
4799 *addr = (uint32_t) (*addr + offset64);
4800 break;
4801 case 7:
4802 regcache_raw_read_unsigned (irp->regcache,
4803 irp->regmap[X86_RECORD_REBX_REGNUM],
4804 &offset64);
4805 *addr = (uint32_t) (*addr + offset64);
4806 break;
4807 }
4808 *addr &= 0xffff;
4809 }
4810
4811 no_rm:
4812 return 0;
4813 }
4814
4815 /* Record the address and contents of the memory that will be changed
4816 by the current instruction. Return -1 if something goes wrong, 0
4817 otherwise. */
4818
4819 static int
4820 i386_record_lea_modrm (struct i386_record_s *irp)
4821 {
4822 struct gdbarch *gdbarch = irp->gdbarch;
4823 uint64_t addr;
4824
4825 if (irp->override >= 0)
4826 {
4827 if (record_full_memory_query)
4828 {
4829 int q;
4830
4831 target_terminal_ours ();
4832 q = yquery (_("\
4833 Process record ignores the memory change of instruction at address %s\n\
4834 because it can't get the value of the segment register.\n\
4835 Do you want to stop the program?"),
4836 paddress (gdbarch, irp->orig_addr));
4837 target_terminal_inferior ();
4838 if (q)
4839 return -1;
4840 }
4841
4842 return 0;
4843 }
4844
4845 if (i386_record_lea_modrm_addr (irp, &addr))
4846 return -1;
4847
4848 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4849 return -1;
4850
4851 return 0;
4852 }
4853
4854 /* Record the effects of a push operation. Return -1 if something
4855 goes wrong, 0 otherwise. */
4856
4857 static int
4858 i386_record_push (struct i386_record_s *irp, int size)
4859 {
4860 ULONGEST addr;
4861
4862 if (record_full_arch_list_add_reg (irp->regcache,
4863 irp->regmap[X86_RECORD_RESP_REGNUM]))
4864 return -1;
4865 regcache_raw_read_unsigned (irp->regcache,
4866 irp->regmap[X86_RECORD_RESP_REGNUM],
4867 &addr);
4868 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4869 return -1;
4870
4871 return 0;
4872 }
4873
4874
4875 /* Defines contents to record. */
4876 #define I386_SAVE_FPU_REGS 0xfffd
4877 #define I386_SAVE_FPU_ENV 0xfffe
4878 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4879
4880 /* Record the values of the floating point registers which will be
4881 changed by the current instruction. Returns -1 if something is
4882 wrong, 0 otherwise. */
4883
4884 static int i386_record_floats (struct gdbarch *gdbarch,
4885 struct i386_record_s *ir,
4886 uint32_t iregnum)
4887 {
4888 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4889 int i;
4890
4891 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4892 happen. Currently we store st0-st7 registers, but we need not store all
4893 registers all the time, in future we use ftag register and record only
4894 those who are not marked as an empty. */
4895
4896 if (I386_SAVE_FPU_REGS == iregnum)
4897 {
4898 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4899 {
4900 if (record_full_arch_list_add_reg (ir->regcache, i))
4901 return -1;
4902 }
4903 }
4904 else if (I386_SAVE_FPU_ENV == iregnum)
4905 {
4906 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4907 {
4908 if (record_full_arch_list_add_reg (ir->regcache, i))
4909 return -1;
4910 }
4911 }
4912 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4913 {
4914 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4915 {
4916 if (record_full_arch_list_add_reg (ir->regcache, i))
4917 return -1;
4918 }
4919 }
4920 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4921 (iregnum <= I387_FOP_REGNUM (tdep)))
4922 {
4923 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
4924 return -1;
4925 }
4926 else
4927 {
4928 /* Parameter error. */
4929 return -1;
4930 }
4931 if(I386_SAVE_FPU_ENV != iregnum)
4932 {
4933 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4934 {
4935 if (record_full_arch_list_add_reg (ir->regcache, i))
4936 return -1;
4937 }
4938 }
4939 return 0;
4940 }
4941
4942 /* Parse the current instruction, and record the values of the
4943 registers and memory that will be changed by the current
4944 instruction. Returns -1 if something goes wrong, 0 otherwise. */
4945
4946 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
4947 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4948
4949 int
4950 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4951 CORE_ADDR input_addr)
4952 {
4953 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4954 int prefixes = 0;
4955 int regnum = 0;
4956 uint32_t opcode;
4957 uint8_t opcode8;
4958 ULONGEST addr;
4959 gdb_byte buf[MAX_REGISTER_SIZE];
4960 struct i386_record_s ir;
4961 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4962 uint8_t rex_w = -1;
4963 uint8_t rex_r = 0;
4964
4965 memset (&ir, 0, sizeof (struct i386_record_s));
4966 ir.regcache = regcache;
4967 ir.addr = input_addr;
4968 ir.orig_addr = input_addr;
4969 ir.aflag = 1;
4970 ir.dflag = 1;
4971 ir.override = -1;
4972 ir.popl_esp_hack = 0;
4973 ir.regmap = tdep->record_regmap;
4974 ir.gdbarch = gdbarch;
4975
4976 if (record_debug > 1)
4977 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
4978 "addr = %s\n",
4979 paddress (gdbarch, ir.addr));
4980
4981 /* prefixes */
4982 while (1)
4983 {
4984 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4985 return -1;
4986 ir.addr++;
4987 switch (opcode8) /* Instruction prefixes */
4988 {
4989 case REPE_PREFIX_OPCODE:
4990 prefixes |= PREFIX_REPZ;
4991 break;
4992 case REPNE_PREFIX_OPCODE:
4993 prefixes |= PREFIX_REPNZ;
4994 break;
4995 case LOCK_PREFIX_OPCODE:
4996 prefixes |= PREFIX_LOCK;
4997 break;
4998 case CS_PREFIX_OPCODE:
4999 ir.override = X86_RECORD_CS_REGNUM;
5000 break;
5001 case SS_PREFIX_OPCODE:
5002 ir.override = X86_RECORD_SS_REGNUM;
5003 break;
5004 case DS_PREFIX_OPCODE:
5005 ir.override = X86_RECORD_DS_REGNUM;
5006 break;
5007 case ES_PREFIX_OPCODE:
5008 ir.override = X86_RECORD_ES_REGNUM;
5009 break;
5010 case FS_PREFIX_OPCODE:
5011 ir.override = X86_RECORD_FS_REGNUM;
5012 break;
5013 case GS_PREFIX_OPCODE:
5014 ir.override = X86_RECORD_GS_REGNUM;
5015 break;
5016 case DATA_PREFIX_OPCODE:
5017 prefixes |= PREFIX_DATA;
5018 break;
5019 case ADDR_PREFIX_OPCODE:
5020 prefixes |= PREFIX_ADDR;
5021 break;
5022 case 0x40: /* i386 inc %eax */
5023 case 0x41: /* i386 inc %ecx */
5024 case 0x42: /* i386 inc %edx */
5025 case 0x43: /* i386 inc %ebx */
5026 case 0x44: /* i386 inc %esp */
5027 case 0x45: /* i386 inc %ebp */
5028 case 0x46: /* i386 inc %esi */
5029 case 0x47: /* i386 inc %edi */
5030 case 0x48: /* i386 dec %eax */
5031 case 0x49: /* i386 dec %ecx */
5032 case 0x4a: /* i386 dec %edx */
5033 case 0x4b: /* i386 dec %ebx */
5034 case 0x4c: /* i386 dec %esp */
5035 case 0x4d: /* i386 dec %ebp */
5036 case 0x4e: /* i386 dec %esi */
5037 case 0x4f: /* i386 dec %edi */
5038 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5039 {
5040 /* REX */
5041 rex_w = (opcode8 >> 3) & 1;
5042 rex_r = (opcode8 & 0x4) << 1;
5043 ir.rex_x = (opcode8 & 0x2) << 2;
5044 ir.rex_b = (opcode8 & 0x1) << 3;
5045 }
5046 else /* 32 bit target */
5047 goto out_prefixes;
5048 break;
5049 default:
5050 goto out_prefixes;
5051 break;
5052 }
5053 }
5054 out_prefixes:
5055 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5056 {
5057 ir.dflag = 2;
5058 }
5059 else
5060 {
5061 if (prefixes & PREFIX_DATA)
5062 ir.dflag ^= 1;
5063 }
5064 if (prefixes & PREFIX_ADDR)
5065 ir.aflag ^= 1;
5066 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5067 ir.aflag = 2;
5068
5069 /* Now check op code. */
5070 opcode = (uint32_t) opcode8;
5071 reswitch:
5072 switch (opcode)
5073 {
5074 case 0x0f:
5075 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5076 return -1;
5077 ir.addr++;
5078 opcode = (uint32_t) opcode8 | 0x0f00;
5079 goto reswitch;
5080 break;
5081
5082 case 0x00: /* arith & logic */
5083 case 0x01:
5084 case 0x02:
5085 case 0x03:
5086 case 0x04:
5087 case 0x05:
5088 case 0x08:
5089 case 0x09:
5090 case 0x0a:
5091 case 0x0b:
5092 case 0x0c:
5093 case 0x0d:
5094 case 0x10:
5095 case 0x11:
5096 case 0x12:
5097 case 0x13:
5098 case 0x14:
5099 case 0x15:
5100 case 0x18:
5101 case 0x19:
5102 case 0x1a:
5103 case 0x1b:
5104 case 0x1c:
5105 case 0x1d:
5106 case 0x20:
5107 case 0x21:
5108 case 0x22:
5109 case 0x23:
5110 case 0x24:
5111 case 0x25:
5112 case 0x28:
5113 case 0x29:
5114 case 0x2a:
5115 case 0x2b:
5116 case 0x2c:
5117 case 0x2d:
5118 case 0x30:
5119 case 0x31:
5120 case 0x32:
5121 case 0x33:
5122 case 0x34:
5123 case 0x35:
5124 case 0x38:
5125 case 0x39:
5126 case 0x3a:
5127 case 0x3b:
5128 case 0x3c:
5129 case 0x3d:
5130 if (((opcode >> 3) & 7) != OP_CMPL)
5131 {
5132 if ((opcode & 1) == 0)
5133 ir.ot = OT_BYTE;
5134 else
5135 ir.ot = ir.dflag + OT_WORD;
5136
5137 switch ((opcode >> 1) & 3)
5138 {
5139 case 0: /* OP Ev, Gv */
5140 if (i386_record_modrm (&ir))
5141 return -1;
5142 if (ir.mod != 3)
5143 {
5144 if (i386_record_lea_modrm (&ir))
5145 return -1;
5146 }
5147 else
5148 {
5149 ir.rm |= ir.rex_b;
5150 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5151 ir.rm &= 0x3;
5152 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5153 }
5154 break;
5155 case 1: /* OP Gv, Ev */
5156 if (i386_record_modrm (&ir))
5157 return -1;
5158 ir.reg |= rex_r;
5159 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5160 ir.reg &= 0x3;
5161 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5162 break;
5163 case 2: /* OP A, Iv */
5164 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5165 break;
5166 }
5167 }
5168 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5169 break;
5170
5171 case 0x80: /* GRP1 */
5172 case 0x81:
5173 case 0x82:
5174 case 0x83:
5175 if (i386_record_modrm (&ir))
5176 return -1;
5177
5178 if (ir.reg != OP_CMPL)
5179 {
5180 if ((opcode & 1) == 0)
5181 ir.ot = OT_BYTE;
5182 else
5183 ir.ot = ir.dflag + OT_WORD;
5184
5185 if (ir.mod != 3)
5186 {
5187 if (opcode == 0x83)
5188 ir.rip_offset = 1;
5189 else
5190 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5191 if (i386_record_lea_modrm (&ir))
5192 return -1;
5193 }
5194 else
5195 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5196 }
5197 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5198 break;
5199
5200 case 0x40: /* inc */
5201 case 0x41:
5202 case 0x42:
5203 case 0x43:
5204 case 0x44:
5205 case 0x45:
5206 case 0x46:
5207 case 0x47:
5208
5209 case 0x48: /* dec */
5210 case 0x49:
5211 case 0x4a:
5212 case 0x4b:
5213 case 0x4c:
5214 case 0x4d:
5215 case 0x4e:
5216 case 0x4f:
5217
5218 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5219 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5220 break;
5221
5222 case 0xf6: /* GRP3 */
5223 case 0xf7:
5224 if ((opcode & 1) == 0)
5225 ir.ot = OT_BYTE;
5226 else
5227 ir.ot = ir.dflag + OT_WORD;
5228 if (i386_record_modrm (&ir))
5229 return -1;
5230
5231 if (ir.mod != 3 && ir.reg == 0)
5232 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5233
5234 switch (ir.reg)
5235 {
5236 case 0: /* test */
5237 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5238 break;
5239 case 2: /* not */
5240 case 3: /* neg */
5241 if (ir.mod != 3)
5242 {
5243 if (i386_record_lea_modrm (&ir))
5244 return -1;
5245 }
5246 else
5247 {
5248 ir.rm |= ir.rex_b;
5249 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5250 ir.rm &= 0x3;
5251 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5252 }
5253 if (ir.reg == 3) /* neg */
5254 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5255 break;
5256 case 4: /* mul */
5257 case 5: /* imul */
5258 case 6: /* div */
5259 case 7: /* idiv */
5260 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5261 if (ir.ot != OT_BYTE)
5262 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5263 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5264 break;
5265 default:
5266 ir.addr -= 2;
5267 opcode = opcode << 8 | ir.modrm;
5268 goto no_support;
5269 break;
5270 }
5271 break;
5272
5273 case 0xfe: /* GRP4 */
5274 case 0xff: /* GRP5 */
5275 if (i386_record_modrm (&ir))
5276 return -1;
5277 if (ir.reg >= 2 && opcode == 0xfe)
5278 {
5279 ir.addr -= 2;
5280 opcode = opcode << 8 | ir.modrm;
5281 goto no_support;
5282 }
5283 switch (ir.reg)
5284 {
5285 case 0: /* inc */
5286 case 1: /* dec */
5287 if ((opcode & 1) == 0)
5288 ir.ot = OT_BYTE;
5289 else
5290 ir.ot = ir.dflag + OT_WORD;
5291 if (ir.mod != 3)
5292 {
5293 if (i386_record_lea_modrm (&ir))
5294 return -1;
5295 }
5296 else
5297 {
5298 ir.rm |= ir.rex_b;
5299 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5300 ir.rm &= 0x3;
5301 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5302 }
5303 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5304 break;
5305 case 2: /* call */
5306 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5307 ir.dflag = 2;
5308 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5309 return -1;
5310 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5311 break;
5312 case 3: /* lcall */
5313 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5314 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5315 return -1;
5316 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5317 break;
5318 case 4: /* jmp */
5319 case 5: /* ljmp */
5320 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5321 break;
5322 case 6: /* push */
5323 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5324 ir.dflag = 2;
5325 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5326 return -1;
5327 break;
5328 default:
5329 ir.addr -= 2;
5330 opcode = opcode << 8 | ir.modrm;
5331 goto no_support;
5332 break;
5333 }
5334 break;
5335
5336 case 0x84: /* test */
5337 case 0x85:
5338 case 0xa8:
5339 case 0xa9:
5340 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5341 break;
5342
5343 case 0x98: /* CWDE/CBW */
5344 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5345 break;
5346
5347 case 0x99: /* CDQ/CWD */
5348 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5349 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5350 break;
5351
5352 case 0x0faf: /* imul */
5353 case 0x69:
5354 case 0x6b:
5355 ir.ot = ir.dflag + OT_WORD;
5356 if (i386_record_modrm (&ir))
5357 return -1;
5358 if (opcode == 0x69)
5359 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5360 else if (opcode == 0x6b)
5361 ir.rip_offset = 1;
5362 ir.reg |= rex_r;
5363 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5364 ir.reg &= 0x3;
5365 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5366 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5367 break;
5368
5369 case 0x0fc0: /* xadd */
5370 case 0x0fc1:
5371 if ((opcode & 1) == 0)
5372 ir.ot = OT_BYTE;
5373 else
5374 ir.ot = ir.dflag + OT_WORD;
5375 if (i386_record_modrm (&ir))
5376 return -1;
5377 ir.reg |= rex_r;
5378 if (ir.mod == 3)
5379 {
5380 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5381 ir.reg &= 0x3;
5382 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5383 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5384 ir.rm &= 0x3;
5385 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5386 }
5387 else
5388 {
5389 if (i386_record_lea_modrm (&ir))
5390 return -1;
5391 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5392 ir.reg &= 0x3;
5393 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5394 }
5395 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5396 break;
5397
5398 case 0x0fb0: /* cmpxchg */
5399 case 0x0fb1:
5400 if ((opcode & 1) == 0)
5401 ir.ot = OT_BYTE;
5402 else
5403 ir.ot = ir.dflag + OT_WORD;
5404 if (i386_record_modrm (&ir))
5405 return -1;
5406 if (ir.mod == 3)
5407 {
5408 ir.reg |= rex_r;
5409 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5410 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5411 ir.reg &= 0x3;
5412 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5413 }
5414 else
5415 {
5416 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5417 if (i386_record_lea_modrm (&ir))
5418 return -1;
5419 }
5420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5421 break;
5422
5423 case 0x0fc7: /* cmpxchg8b */
5424 if (i386_record_modrm (&ir))
5425 return -1;
5426 if (ir.mod == 3)
5427 {
5428 ir.addr -= 2;
5429 opcode = opcode << 8 | ir.modrm;
5430 goto no_support;
5431 }
5432 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5433 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5434 if (i386_record_lea_modrm (&ir))
5435 return -1;
5436 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5437 break;
5438
5439 case 0x50: /* push */
5440 case 0x51:
5441 case 0x52:
5442 case 0x53:
5443 case 0x54:
5444 case 0x55:
5445 case 0x56:
5446 case 0x57:
5447 case 0x68:
5448 case 0x6a:
5449 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5450 ir.dflag = 2;
5451 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5452 return -1;
5453 break;
5454
5455 case 0x06: /* push es */
5456 case 0x0e: /* push cs */
5457 case 0x16: /* push ss */
5458 case 0x1e: /* push ds */
5459 if (ir.regmap[X86_RECORD_R8_REGNUM])
5460 {
5461 ir.addr -= 1;
5462 goto no_support;
5463 }
5464 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5465 return -1;
5466 break;
5467
5468 case 0x0fa0: /* push fs */
5469 case 0x0fa8: /* push gs */
5470 if (ir.regmap[X86_RECORD_R8_REGNUM])
5471 {
5472 ir.addr -= 2;
5473 goto no_support;
5474 }
5475 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5476 return -1;
5477 break;
5478
5479 case 0x60: /* pusha */
5480 if (ir.regmap[X86_RECORD_R8_REGNUM])
5481 {
5482 ir.addr -= 1;
5483 goto no_support;
5484 }
5485 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5486 return -1;
5487 break;
5488
5489 case 0x58: /* pop */
5490 case 0x59:
5491 case 0x5a:
5492 case 0x5b:
5493 case 0x5c:
5494 case 0x5d:
5495 case 0x5e:
5496 case 0x5f:
5497 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5498 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5499 break;
5500
5501 case 0x61: /* popa */
5502 if (ir.regmap[X86_RECORD_R8_REGNUM])
5503 {
5504 ir.addr -= 1;
5505 goto no_support;
5506 }
5507 for (regnum = X86_RECORD_REAX_REGNUM;
5508 regnum <= X86_RECORD_REDI_REGNUM;
5509 regnum++)
5510 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5511 break;
5512
5513 case 0x8f: /* pop */
5514 if (ir.regmap[X86_RECORD_R8_REGNUM])
5515 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5516 else
5517 ir.ot = ir.dflag + OT_WORD;
5518 if (i386_record_modrm (&ir))
5519 return -1;
5520 if (ir.mod == 3)
5521 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5522 else
5523 {
5524 ir.popl_esp_hack = 1 << ir.ot;
5525 if (i386_record_lea_modrm (&ir))
5526 return -1;
5527 }
5528 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5529 break;
5530
5531 case 0xc8: /* enter */
5532 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5533 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5534 ir.dflag = 2;
5535 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5536 return -1;
5537 break;
5538
5539 case 0xc9: /* leave */
5540 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5541 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5542 break;
5543
5544 case 0x07: /* pop es */
5545 if (ir.regmap[X86_RECORD_R8_REGNUM])
5546 {
5547 ir.addr -= 1;
5548 goto no_support;
5549 }
5550 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5551 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5552 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5553 break;
5554
5555 case 0x17: /* pop ss */
5556 if (ir.regmap[X86_RECORD_R8_REGNUM])
5557 {
5558 ir.addr -= 1;
5559 goto no_support;
5560 }
5561 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5562 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5563 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5564 break;
5565
5566 case 0x1f: /* pop ds */
5567 if (ir.regmap[X86_RECORD_R8_REGNUM])
5568 {
5569 ir.addr -= 1;
5570 goto no_support;
5571 }
5572 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5574 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5575 break;
5576
5577 case 0x0fa1: /* pop fs */
5578 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5579 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5580 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5581 break;
5582
5583 case 0x0fa9: /* pop gs */
5584 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5585 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5586 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5587 break;
5588
5589 case 0x88: /* mov */
5590 case 0x89:
5591 case 0xc6:
5592 case 0xc7:
5593 if ((opcode & 1) == 0)
5594 ir.ot = OT_BYTE;
5595 else
5596 ir.ot = ir.dflag + OT_WORD;
5597
5598 if (i386_record_modrm (&ir))
5599 return -1;
5600
5601 if (ir.mod != 3)
5602 {
5603 if (opcode == 0xc6 || opcode == 0xc7)
5604 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5605 if (i386_record_lea_modrm (&ir))
5606 return -1;
5607 }
5608 else
5609 {
5610 if (opcode == 0xc6 || opcode == 0xc7)
5611 ir.rm |= ir.rex_b;
5612 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5613 ir.rm &= 0x3;
5614 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5615 }
5616 break;
5617
5618 case 0x8a: /* mov */
5619 case 0x8b:
5620 if ((opcode & 1) == 0)
5621 ir.ot = OT_BYTE;
5622 else
5623 ir.ot = ir.dflag + OT_WORD;
5624 if (i386_record_modrm (&ir))
5625 return -1;
5626 ir.reg |= rex_r;
5627 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5628 ir.reg &= 0x3;
5629 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5630 break;
5631
5632 case 0x8c: /* mov seg */
5633 if (i386_record_modrm (&ir))
5634 return -1;
5635 if (ir.reg > 5)
5636 {
5637 ir.addr -= 2;
5638 opcode = opcode << 8 | ir.modrm;
5639 goto no_support;
5640 }
5641
5642 if (ir.mod == 3)
5643 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5644 else
5645 {
5646 ir.ot = OT_WORD;
5647 if (i386_record_lea_modrm (&ir))
5648 return -1;
5649 }
5650 break;
5651
5652 case 0x8e: /* mov seg */
5653 if (i386_record_modrm (&ir))
5654 return -1;
5655 switch (ir.reg)
5656 {
5657 case 0:
5658 regnum = X86_RECORD_ES_REGNUM;
5659 break;
5660 case 2:
5661 regnum = X86_RECORD_SS_REGNUM;
5662 break;
5663 case 3:
5664 regnum = X86_RECORD_DS_REGNUM;
5665 break;
5666 case 4:
5667 regnum = X86_RECORD_FS_REGNUM;
5668 break;
5669 case 5:
5670 regnum = X86_RECORD_GS_REGNUM;
5671 break;
5672 default:
5673 ir.addr -= 2;
5674 opcode = opcode << 8 | ir.modrm;
5675 goto no_support;
5676 break;
5677 }
5678 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5679 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5680 break;
5681
5682 case 0x0fb6: /* movzbS */
5683 case 0x0fb7: /* movzwS */
5684 case 0x0fbe: /* movsbS */
5685 case 0x0fbf: /* movswS */
5686 if (i386_record_modrm (&ir))
5687 return -1;
5688 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5689 break;
5690
5691 case 0x8d: /* lea */
5692 if (i386_record_modrm (&ir))
5693 return -1;
5694 if (ir.mod == 3)
5695 {
5696 ir.addr -= 2;
5697 opcode = opcode << 8 | ir.modrm;
5698 goto no_support;
5699 }
5700 ir.ot = ir.dflag;
5701 ir.reg |= rex_r;
5702 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5703 ir.reg &= 0x3;
5704 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5705 break;
5706
5707 case 0xa0: /* mov EAX */
5708 case 0xa1:
5709
5710 case 0xd7: /* xlat */
5711 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5712 break;
5713
5714 case 0xa2: /* mov EAX */
5715 case 0xa3:
5716 if (ir.override >= 0)
5717 {
5718 if (record_full_memory_query)
5719 {
5720 int q;
5721
5722 target_terminal_ours ();
5723 q = yquery (_("\
5724 Process record ignores the memory change of instruction at address %s\n\
5725 because it can't get the value of the segment register.\n\
5726 Do you want to stop the program?"),
5727 paddress (gdbarch, ir.orig_addr));
5728 target_terminal_inferior ();
5729 if (q)
5730 return -1;
5731 }
5732 }
5733 else
5734 {
5735 if ((opcode & 1) == 0)
5736 ir.ot = OT_BYTE;
5737 else
5738 ir.ot = ir.dflag + OT_WORD;
5739 if (ir.aflag == 2)
5740 {
5741 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5742 return -1;
5743 ir.addr += 8;
5744 addr = extract_unsigned_integer (buf, 8, byte_order);
5745 }
5746 else if (ir.aflag)
5747 {
5748 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5749 return -1;
5750 ir.addr += 4;
5751 addr = extract_unsigned_integer (buf, 4, byte_order);
5752 }
5753 else
5754 {
5755 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5756 return -1;
5757 ir.addr += 2;
5758 addr = extract_unsigned_integer (buf, 2, byte_order);
5759 }
5760 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5761 return -1;
5762 }
5763 break;
5764
5765 case 0xb0: /* mov R, Ib */
5766 case 0xb1:
5767 case 0xb2:
5768 case 0xb3:
5769 case 0xb4:
5770 case 0xb5:
5771 case 0xb6:
5772 case 0xb7:
5773 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5774 ? ((opcode & 0x7) | ir.rex_b)
5775 : ((opcode & 0x7) & 0x3));
5776 break;
5777
5778 case 0xb8: /* mov R, Iv */
5779 case 0xb9:
5780 case 0xba:
5781 case 0xbb:
5782 case 0xbc:
5783 case 0xbd:
5784 case 0xbe:
5785 case 0xbf:
5786 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5787 break;
5788
5789 case 0x91: /* xchg R, EAX */
5790 case 0x92:
5791 case 0x93:
5792 case 0x94:
5793 case 0x95:
5794 case 0x96:
5795 case 0x97:
5796 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5797 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5798 break;
5799
5800 case 0x86: /* xchg Ev, Gv */
5801 case 0x87:
5802 if ((opcode & 1) == 0)
5803 ir.ot = OT_BYTE;
5804 else
5805 ir.ot = ir.dflag + OT_WORD;
5806 if (i386_record_modrm (&ir))
5807 return -1;
5808 if (ir.mod == 3)
5809 {
5810 ir.rm |= ir.rex_b;
5811 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5812 ir.rm &= 0x3;
5813 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5814 }
5815 else
5816 {
5817 if (i386_record_lea_modrm (&ir))
5818 return -1;
5819 }
5820 ir.reg |= rex_r;
5821 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5822 ir.reg &= 0x3;
5823 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5824 break;
5825
5826 case 0xc4: /* les Gv */
5827 case 0xc5: /* lds Gv */
5828 if (ir.regmap[X86_RECORD_R8_REGNUM])
5829 {
5830 ir.addr -= 1;
5831 goto no_support;
5832 }
5833 /* FALLTHROUGH */
5834 case 0x0fb2: /* lss Gv */
5835 case 0x0fb4: /* lfs Gv */
5836 case 0x0fb5: /* lgs Gv */
5837 if (i386_record_modrm (&ir))
5838 return -1;
5839 if (ir.mod == 3)
5840 {
5841 if (opcode > 0xff)
5842 ir.addr -= 3;
5843 else
5844 ir.addr -= 2;
5845 opcode = opcode << 8 | ir.modrm;
5846 goto no_support;
5847 }
5848 switch (opcode)
5849 {
5850 case 0xc4: /* les Gv */
5851 regnum = X86_RECORD_ES_REGNUM;
5852 break;
5853 case 0xc5: /* lds Gv */
5854 regnum = X86_RECORD_DS_REGNUM;
5855 break;
5856 case 0x0fb2: /* lss Gv */
5857 regnum = X86_RECORD_SS_REGNUM;
5858 break;
5859 case 0x0fb4: /* lfs Gv */
5860 regnum = X86_RECORD_FS_REGNUM;
5861 break;
5862 case 0x0fb5: /* lgs Gv */
5863 regnum = X86_RECORD_GS_REGNUM;
5864 break;
5865 }
5866 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5867 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5868 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5869 break;
5870
5871 case 0xc0: /* shifts */
5872 case 0xc1:
5873 case 0xd0:
5874 case 0xd1:
5875 case 0xd2:
5876 case 0xd3:
5877 if ((opcode & 1) == 0)
5878 ir.ot = OT_BYTE;
5879 else
5880 ir.ot = ir.dflag + OT_WORD;
5881 if (i386_record_modrm (&ir))
5882 return -1;
5883 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5884 {
5885 if (i386_record_lea_modrm (&ir))
5886 return -1;
5887 }
5888 else
5889 {
5890 ir.rm |= ir.rex_b;
5891 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5892 ir.rm &= 0x3;
5893 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5894 }
5895 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5896 break;
5897
5898 case 0x0fa4:
5899 case 0x0fa5:
5900 case 0x0fac:
5901 case 0x0fad:
5902 if (i386_record_modrm (&ir))
5903 return -1;
5904 if (ir.mod == 3)
5905 {
5906 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5907 return -1;
5908 }
5909 else
5910 {
5911 if (i386_record_lea_modrm (&ir))
5912 return -1;
5913 }
5914 break;
5915
5916 case 0xd8: /* Floats. */
5917 case 0xd9:
5918 case 0xda:
5919 case 0xdb:
5920 case 0xdc:
5921 case 0xdd:
5922 case 0xde:
5923 case 0xdf:
5924 if (i386_record_modrm (&ir))
5925 return -1;
5926 ir.reg |= ((opcode & 7) << 3);
5927 if (ir.mod != 3)
5928 {
5929 /* Memory. */
5930 uint64_t addr64;
5931
5932 if (i386_record_lea_modrm_addr (&ir, &addr64))
5933 return -1;
5934 switch (ir.reg)
5935 {
5936 case 0x02:
5937 case 0x12:
5938 case 0x22:
5939 case 0x32:
5940 /* For fcom, ficom nothing to do. */
5941 break;
5942 case 0x03:
5943 case 0x13:
5944 case 0x23:
5945 case 0x33:
5946 /* For fcomp, ficomp pop FPU stack, store all. */
5947 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5948 return -1;
5949 break;
5950 case 0x00:
5951 case 0x01:
5952 case 0x04:
5953 case 0x05:
5954 case 0x06:
5955 case 0x07:
5956 case 0x10:
5957 case 0x11:
5958 case 0x14:
5959 case 0x15:
5960 case 0x16:
5961 case 0x17:
5962 case 0x20:
5963 case 0x21:
5964 case 0x24:
5965 case 0x25:
5966 case 0x26:
5967 case 0x27:
5968 case 0x30:
5969 case 0x31:
5970 case 0x34:
5971 case 0x35:
5972 case 0x36:
5973 case 0x37:
5974 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5975 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5976 of code, always affects st(0) register. */
5977 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5978 return -1;
5979 break;
5980 case 0x08:
5981 case 0x0a:
5982 case 0x0b:
5983 case 0x18:
5984 case 0x19:
5985 case 0x1a:
5986 case 0x1b:
5987 case 0x1d:
5988 case 0x28:
5989 case 0x29:
5990 case 0x2a:
5991 case 0x2b:
5992 case 0x38:
5993 case 0x39:
5994 case 0x3a:
5995 case 0x3b:
5996 case 0x3c:
5997 case 0x3d:
5998 switch (ir.reg & 7)
5999 {
6000 case 0:
6001 /* Handling fld, fild. */
6002 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6003 return -1;
6004 break;
6005 case 1:
6006 switch (ir.reg >> 4)
6007 {
6008 case 0:
6009 if (record_full_arch_list_add_mem (addr64, 4))
6010 return -1;
6011 break;
6012 case 2:
6013 if (record_full_arch_list_add_mem (addr64, 8))
6014 return -1;
6015 break;
6016 case 3:
6017 break;
6018 default:
6019 if (record_full_arch_list_add_mem (addr64, 2))
6020 return -1;
6021 break;
6022 }
6023 break;
6024 default:
6025 switch (ir.reg >> 4)
6026 {
6027 case 0:
6028 if (record_full_arch_list_add_mem (addr64, 4))
6029 return -1;
6030 if (3 == (ir.reg & 7))
6031 {
6032 /* For fstp m32fp. */
6033 if (i386_record_floats (gdbarch, &ir,
6034 I386_SAVE_FPU_REGS))
6035 return -1;
6036 }
6037 break;
6038 case 1:
6039 if (record_full_arch_list_add_mem (addr64, 4))
6040 return -1;
6041 if ((3 == (ir.reg & 7))
6042 || (5 == (ir.reg & 7))
6043 || (7 == (ir.reg & 7)))
6044 {
6045 /* For fstp insn. */
6046 if (i386_record_floats (gdbarch, &ir,
6047 I386_SAVE_FPU_REGS))
6048 return -1;
6049 }
6050 break;
6051 case 2:
6052 if (record_full_arch_list_add_mem (addr64, 8))
6053 return -1;
6054 if (3 == (ir.reg & 7))
6055 {
6056 /* For fstp m64fp. */
6057 if (i386_record_floats (gdbarch, &ir,
6058 I386_SAVE_FPU_REGS))
6059 return -1;
6060 }
6061 break;
6062 case 3:
6063 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6064 {
6065 /* For fistp, fbld, fild, fbstp. */
6066 if (i386_record_floats (gdbarch, &ir,
6067 I386_SAVE_FPU_REGS))
6068 return -1;
6069 }
6070 /* Fall through */
6071 default:
6072 if (record_full_arch_list_add_mem (addr64, 2))
6073 return -1;
6074 break;
6075 }
6076 break;
6077 }
6078 break;
6079 case 0x0c:
6080 /* Insn fldenv. */
6081 if (i386_record_floats (gdbarch, &ir,
6082 I386_SAVE_FPU_ENV_REG_STACK))
6083 return -1;
6084 break;
6085 case 0x0d:
6086 /* Insn fldcw. */
6087 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6088 return -1;
6089 break;
6090 case 0x2c:
6091 /* Insn frstor. */
6092 if (i386_record_floats (gdbarch, &ir,
6093 I386_SAVE_FPU_ENV_REG_STACK))
6094 return -1;
6095 break;
6096 case 0x0e:
6097 if (ir.dflag)
6098 {
6099 if (record_full_arch_list_add_mem (addr64, 28))
6100 return -1;
6101 }
6102 else
6103 {
6104 if (record_full_arch_list_add_mem (addr64, 14))
6105 return -1;
6106 }
6107 break;
6108 case 0x0f:
6109 case 0x2f:
6110 if (record_full_arch_list_add_mem (addr64, 2))
6111 return -1;
6112 /* Insn fstp, fbstp. */
6113 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6114 return -1;
6115 break;
6116 case 0x1f:
6117 case 0x3e:
6118 if (record_full_arch_list_add_mem (addr64, 10))
6119 return -1;
6120 break;
6121 case 0x2e:
6122 if (ir.dflag)
6123 {
6124 if (record_full_arch_list_add_mem (addr64, 28))
6125 return -1;
6126 addr64 += 28;
6127 }
6128 else
6129 {
6130 if (record_full_arch_list_add_mem (addr64, 14))
6131 return -1;
6132 addr64 += 14;
6133 }
6134 if (record_full_arch_list_add_mem (addr64, 80))
6135 return -1;
6136 /* Insn fsave. */
6137 if (i386_record_floats (gdbarch, &ir,
6138 I386_SAVE_FPU_ENV_REG_STACK))
6139 return -1;
6140 break;
6141 case 0x3f:
6142 if (record_full_arch_list_add_mem (addr64, 8))
6143 return -1;
6144 /* Insn fistp. */
6145 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6146 return -1;
6147 break;
6148 default:
6149 ir.addr -= 2;
6150 opcode = opcode << 8 | ir.modrm;
6151 goto no_support;
6152 break;
6153 }
6154 }
6155 /* Opcode is an extension of modR/M byte. */
6156 else
6157 {
6158 switch (opcode)
6159 {
6160 case 0xd8:
6161 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6162 return -1;
6163 break;
6164 case 0xd9:
6165 if (0x0c == (ir.modrm >> 4))
6166 {
6167 if ((ir.modrm & 0x0f) <= 7)
6168 {
6169 if (i386_record_floats (gdbarch, &ir,
6170 I386_SAVE_FPU_REGS))
6171 return -1;
6172 }
6173 else
6174 {
6175 if (i386_record_floats (gdbarch, &ir,
6176 I387_ST0_REGNUM (tdep)))
6177 return -1;
6178 /* If only st(0) is changing, then we have already
6179 recorded. */
6180 if ((ir.modrm & 0x0f) - 0x08)
6181 {
6182 if (i386_record_floats (gdbarch, &ir,
6183 I387_ST0_REGNUM (tdep) +
6184 ((ir.modrm & 0x0f) - 0x08)))
6185 return -1;
6186 }
6187 }
6188 }
6189 else
6190 {
6191 switch (ir.modrm)
6192 {
6193 case 0xe0:
6194 case 0xe1:
6195 case 0xf0:
6196 case 0xf5:
6197 case 0xf8:
6198 case 0xfa:
6199 case 0xfc:
6200 case 0xfe:
6201 case 0xff:
6202 if (i386_record_floats (gdbarch, &ir,
6203 I387_ST0_REGNUM (tdep)))
6204 return -1;
6205 break;
6206 case 0xf1:
6207 case 0xf2:
6208 case 0xf3:
6209 case 0xf4:
6210 case 0xf6:
6211 case 0xf7:
6212 case 0xe8:
6213 case 0xe9:
6214 case 0xea:
6215 case 0xeb:
6216 case 0xec:
6217 case 0xed:
6218 case 0xee:
6219 case 0xf9:
6220 case 0xfb:
6221 if (i386_record_floats (gdbarch, &ir,
6222 I386_SAVE_FPU_REGS))
6223 return -1;
6224 break;
6225 case 0xfd:
6226 if (i386_record_floats (gdbarch, &ir,
6227 I387_ST0_REGNUM (tdep)))
6228 return -1;
6229 if (i386_record_floats (gdbarch, &ir,
6230 I387_ST0_REGNUM (tdep) + 1))
6231 return -1;
6232 break;
6233 }
6234 }
6235 break;
6236 case 0xda:
6237 if (0xe9 == ir.modrm)
6238 {
6239 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6240 return -1;
6241 }
6242 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6243 {
6244 if (i386_record_floats (gdbarch, &ir,
6245 I387_ST0_REGNUM (tdep)))
6246 return -1;
6247 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6248 {
6249 if (i386_record_floats (gdbarch, &ir,
6250 I387_ST0_REGNUM (tdep) +
6251 (ir.modrm & 0x0f)))
6252 return -1;
6253 }
6254 else if ((ir.modrm & 0x0f) - 0x08)
6255 {
6256 if (i386_record_floats (gdbarch, &ir,
6257 I387_ST0_REGNUM (tdep) +
6258 ((ir.modrm & 0x0f) - 0x08)))
6259 return -1;
6260 }
6261 }
6262 break;
6263 case 0xdb:
6264 if (0xe3 == ir.modrm)
6265 {
6266 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6267 return -1;
6268 }
6269 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6270 {
6271 if (i386_record_floats (gdbarch, &ir,
6272 I387_ST0_REGNUM (tdep)))
6273 return -1;
6274 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6275 {
6276 if (i386_record_floats (gdbarch, &ir,
6277 I387_ST0_REGNUM (tdep) +
6278 (ir.modrm & 0x0f)))
6279 return -1;
6280 }
6281 else if ((ir.modrm & 0x0f) - 0x08)
6282 {
6283 if (i386_record_floats (gdbarch, &ir,
6284 I387_ST0_REGNUM (tdep) +
6285 ((ir.modrm & 0x0f) - 0x08)))
6286 return -1;
6287 }
6288 }
6289 break;
6290 case 0xdc:
6291 if ((0x0c == ir.modrm >> 4)
6292 || (0x0d == ir.modrm >> 4)
6293 || (0x0f == ir.modrm >> 4))
6294 {
6295 if ((ir.modrm & 0x0f) <= 7)
6296 {
6297 if (i386_record_floats (gdbarch, &ir,
6298 I387_ST0_REGNUM (tdep) +
6299 (ir.modrm & 0x0f)))
6300 return -1;
6301 }
6302 else
6303 {
6304 if (i386_record_floats (gdbarch, &ir,
6305 I387_ST0_REGNUM (tdep) +
6306 ((ir.modrm & 0x0f) - 0x08)))
6307 return -1;
6308 }
6309 }
6310 break;
6311 case 0xdd:
6312 if (0x0c == ir.modrm >> 4)
6313 {
6314 if (i386_record_floats (gdbarch, &ir,
6315 I387_FTAG_REGNUM (tdep)))
6316 return -1;
6317 }
6318 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6319 {
6320 if ((ir.modrm & 0x0f) <= 7)
6321 {
6322 if (i386_record_floats (gdbarch, &ir,
6323 I387_ST0_REGNUM (tdep) +
6324 (ir.modrm & 0x0f)))
6325 return -1;
6326 }
6327 else
6328 {
6329 if (i386_record_floats (gdbarch, &ir,
6330 I386_SAVE_FPU_REGS))
6331 return -1;
6332 }
6333 }
6334 break;
6335 case 0xde:
6336 if ((0x0c == ir.modrm >> 4)
6337 || (0x0e == ir.modrm >> 4)
6338 || (0x0f == ir.modrm >> 4)
6339 || (0xd9 == ir.modrm))
6340 {
6341 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6342 return -1;
6343 }
6344 break;
6345 case 0xdf:
6346 if (0xe0 == ir.modrm)
6347 {
6348 if (record_full_arch_list_add_reg (ir.regcache,
6349 I386_EAX_REGNUM))
6350 return -1;
6351 }
6352 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6353 {
6354 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6355 return -1;
6356 }
6357 break;
6358 }
6359 }
6360 break;
6361 /* string ops */
6362 case 0xa4: /* movsS */
6363 case 0xa5:
6364 case 0xaa: /* stosS */
6365 case 0xab:
6366 case 0x6c: /* insS */
6367 case 0x6d:
6368 regcache_raw_read_unsigned (ir.regcache,
6369 ir.regmap[X86_RECORD_RECX_REGNUM],
6370 &addr);
6371 if (addr)
6372 {
6373 ULONGEST es, ds;
6374
6375 if ((opcode & 1) == 0)
6376 ir.ot = OT_BYTE;
6377 else
6378 ir.ot = ir.dflag + OT_WORD;
6379 regcache_raw_read_unsigned (ir.regcache,
6380 ir.regmap[X86_RECORD_REDI_REGNUM],
6381 &addr);
6382
6383 regcache_raw_read_unsigned (ir.regcache,
6384 ir.regmap[X86_RECORD_ES_REGNUM],
6385 &es);
6386 regcache_raw_read_unsigned (ir.regcache,
6387 ir.regmap[X86_RECORD_DS_REGNUM],
6388 &ds);
6389 if (ir.aflag && (es != ds))
6390 {
6391 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6392 if (record_full_memory_query)
6393 {
6394 int q;
6395
6396 target_terminal_ours ();
6397 q = yquery (_("\
6398 Process record ignores the memory change of instruction at address %s\n\
6399 because it can't get the value of the segment register.\n\
6400 Do you want to stop the program?"),
6401 paddress (gdbarch, ir.orig_addr));
6402 target_terminal_inferior ();
6403 if (q)
6404 return -1;
6405 }
6406 }
6407 else
6408 {
6409 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6410 return -1;
6411 }
6412
6413 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6414 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6415 if (opcode == 0xa4 || opcode == 0xa5)
6416 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6417 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6418 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6419 }
6420 break;
6421
6422 case 0xa6: /* cmpsS */
6423 case 0xa7:
6424 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6425 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6426 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6427 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6428 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6429 break;
6430
6431 case 0xac: /* lodsS */
6432 case 0xad:
6433 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6434 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6435 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6436 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6437 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6438 break;
6439
6440 case 0xae: /* scasS */
6441 case 0xaf:
6442 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6443 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6444 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6445 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6446 break;
6447
6448 case 0x6e: /* outsS */
6449 case 0x6f:
6450 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6451 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6452 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6453 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6454 break;
6455
6456 case 0xe4: /* port I/O */
6457 case 0xe5:
6458 case 0xec:
6459 case 0xed:
6460 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6461 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6462 break;
6463
6464 case 0xe6:
6465 case 0xe7:
6466 case 0xee:
6467 case 0xef:
6468 break;
6469
6470 /* control */
6471 case 0xc2: /* ret im */
6472 case 0xc3: /* ret */
6473 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6474 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6475 break;
6476
6477 case 0xca: /* lret im */
6478 case 0xcb: /* lret */
6479 case 0xcf: /* iret */
6480 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6481 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6482 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6483 break;
6484
6485 case 0xe8: /* call im */
6486 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6487 ir.dflag = 2;
6488 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6489 return -1;
6490 break;
6491
6492 case 0x9a: /* lcall im */
6493 if (ir.regmap[X86_RECORD_R8_REGNUM])
6494 {
6495 ir.addr -= 1;
6496 goto no_support;
6497 }
6498 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6499 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6500 return -1;
6501 break;
6502
6503 case 0xe9: /* jmp im */
6504 case 0xea: /* ljmp im */
6505 case 0xeb: /* jmp Jb */
6506 case 0x70: /* jcc Jb */
6507 case 0x71:
6508 case 0x72:
6509 case 0x73:
6510 case 0x74:
6511 case 0x75:
6512 case 0x76:
6513 case 0x77:
6514 case 0x78:
6515 case 0x79:
6516 case 0x7a:
6517 case 0x7b:
6518 case 0x7c:
6519 case 0x7d:
6520 case 0x7e:
6521 case 0x7f:
6522 case 0x0f80: /* jcc Jv */
6523 case 0x0f81:
6524 case 0x0f82:
6525 case 0x0f83:
6526 case 0x0f84:
6527 case 0x0f85:
6528 case 0x0f86:
6529 case 0x0f87:
6530 case 0x0f88:
6531 case 0x0f89:
6532 case 0x0f8a:
6533 case 0x0f8b:
6534 case 0x0f8c:
6535 case 0x0f8d:
6536 case 0x0f8e:
6537 case 0x0f8f:
6538 break;
6539
6540 case 0x0f90: /* setcc Gv */
6541 case 0x0f91:
6542 case 0x0f92:
6543 case 0x0f93:
6544 case 0x0f94:
6545 case 0x0f95:
6546 case 0x0f96:
6547 case 0x0f97:
6548 case 0x0f98:
6549 case 0x0f99:
6550 case 0x0f9a:
6551 case 0x0f9b:
6552 case 0x0f9c:
6553 case 0x0f9d:
6554 case 0x0f9e:
6555 case 0x0f9f:
6556 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6557 ir.ot = OT_BYTE;
6558 if (i386_record_modrm (&ir))
6559 return -1;
6560 if (ir.mod == 3)
6561 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6562 : (ir.rm & 0x3));
6563 else
6564 {
6565 if (i386_record_lea_modrm (&ir))
6566 return -1;
6567 }
6568 break;
6569
6570 case 0x0f40: /* cmov Gv, Ev */
6571 case 0x0f41:
6572 case 0x0f42:
6573 case 0x0f43:
6574 case 0x0f44:
6575 case 0x0f45:
6576 case 0x0f46:
6577 case 0x0f47:
6578 case 0x0f48:
6579 case 0x0f49:
6580 case 0x0f4a:
6581 case 0x0f4b:
6582 case 0x0f4c:
6583 case 0x0f4d:
6584 case 0x0f4e:
6585 case 0x0f4f:
6586 if (i386_record_modrm (&ir))
6587 return -1;
6588 ir.reg |= rex_r;
6589 if (ir.dflag == OT_BYTE)
6590 ir.reg &= 0x3;
6591 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6592 break;
6593
6594 /* flags */
6595 case 0x9c: /* pushf */
6596 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6597 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6598 ir.dflag = 2;
6599 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6600 return -1;
6601 break;
6602
6603 case 0x9d: /* popf */
6604 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6605 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6606 break;
6607
6608 case 0x9e: /* sahf */
6609 if (ir.regmap[X86_RECORD_R8_REGNUM])
6610 {
6611 ir.addr -= 1;
6612 goto no_support;
6613 }
6614 /* FALLTHROUGH */
6615 case 0xf5: /* cmc */
6616 case 0xf8: /* clc */
6617 case 0xf9: /* stc */
6618 case 0xfc: /* cld */
6619 case 0xfd: /* std */
6620 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6621 break;
6622
6623 case 0x9f: /* lahf */
6624 if (ir.regmap[X86_RECORD_R8_REGNUM])
6625 {
6626 ir.addr -= 1;
6627 goto no_support;
6628 }
6629 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6630 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6631 break;
6632
6633 /* bit operations */
6634 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6635 ir.ot = ir.dflag + OT_WORD;
6636 if (i386_record_modrm (&ir))
6637 return -1;
6638 if (ir.reg < 4)
6639 {
6640 ir.addr -= 2;
6641 opcode = opcode << 8 | ir.modrm;
6642 goto no_support;
6643 }
6644 if (ir.reg != 4)
6645 {
6646 if (ir.mod == 3)
6647 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6648 else
6649 {
6650 if (i386_record_lea_modrm (&ir))
6651 return -1;
6652 }
6653 }
6654 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6655 break;
6656
6657 case 0x0fa3: /* bt Gv, Ev */
6658 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6659 break;
6660
6661 case 0x0fab: /* bts */
6662 case 0x0fb3: /* btr */
6663 case 0x0fbb: /* btc */
6664 ir.ot = ir.dflag + OT_WORD;
6665 if (i386_record_modrm (&ir))
6666 return -1;
6667 if (ir.mod == 3)
6668 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6669 else
6670 {
6671 uint64_t addr64;
6672 if (i386_record_lea_modrm_addr (&ir, &addr64))
6673 return -1;
6674 regcache_raw_read_unsigned (ir.regcache,
6675 ir.regmap[ir.reg | rex_r],
6676 &addr);
6677 switch (ir.dflag)
6678 {
6679 case 0:
6680 addr64 += ((int16_t) addr >> 4) << 4;
6681 break;
6682 case 1:
6683 addr64 += ((int32_t) addr >> 5) << 5;
6684 break;
6685 case 2:
6686 addr64 += ((int64_t) addr >> 6) << 6;
6687 break;
6688 }
6689 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6690 return -1;
6691 if (i386_record_lea_modrm (&ir))
6692 return -1;
6693 }
6694 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6695 break;
6696
6697 case 0x0fbc: /* bsf */
6698 case 0x0fbd: /* bsr */
6699 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6700 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6701 break;
6702
6703 /* bcd */
6704 case 0x27: /* daa */
6705 case 0x2f: /* das */
6706 case 0x37: /* aaa */
6707 case 0x3f: /* aas */
6708 case 0xd4: /* aam */
6709 case 0xd5: /* aad */
6710 if (ir.regmap[X86_RECORD_R8_REGNUM])
6711 {
6712 ir.addr -= 1;
6713 goto no_support;
6714 }
6715 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6716 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6717 break;
6718
6719 /* misc */
6720 case 0x90: /* nop */
6721 if (prefixes & PREFIX_LOCK)
6722 {
6723 ir.addr -= 1;
6724 goto no_support;
6725 }
6726 break;
6727
6728 case 0x9b: /* fwait */
6729 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6730 return -1;
6731 opcode = (uint32_t) opcode8;
6732 ir.addr++;
6733 goto reswitch;
6734 break;
6735
6736 /* XXX */
6737 case 0xcc: /* int3 */
6738 printf_unfiltered (_("Process record does not support instruction "
6739 "int3.\n"));
6740 ir.addr -= 1;
6741 goto no_support;
6742 break;
6743
6744 /* XXX */
6745 case 0xcd: /* int */
6746 {
6747 int ret;
6748 uint8_t interrupt;
6749 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6750 return -1;
6751 ir.addr++;
6752 if (interrupt != 0x80
6753 || tdep->i386_intx80_record == NULL)
6754 {
6755 printf_unfiltered (_("Process record does not support "
6756 "instruction int 0x%02x.\n"),
6757 interrupt);
6758 ir.addr -= 2;
6759 goto no_support;
6760 }
6761 ret = tdep->i386_intx80_record (ir.regcache);
6762 if (ret)
6763 return ret;
6764 }
6765 break;
6766
6767 /* XXX */
6768 case 0xce: /* into */
6769 printf_unfiltered (_("Process record does not support "
6770 "instruction into.\n"));
6771 ir.addr -= 1;
6772 goto no_support;
6773 break;
6774
6775 case 0xfa: /* cli */
6776 case 0xfb: /* sti */
6777 break;
6778
6779 case 0x62: /* bound */
6780 printf_unfiltered (_("Process record does not support "
6781 "instruction bound.\n"));
6782 ir.addr -= 1;
6783 goto no_support;
6784 break;
6785
6786 case 0x0fc8: /* bswap reg */
6787 case 0x0fc9:
6788 case 0x0fca:
6789 case 0x0fcb:
6790 case 0x0fcc:
6791 case 0x0fcd:
6792 case 0x0fce:
6793 case 0x0fcf:
6794 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6795 break;
6796
6797 case 0xd6: /* salc */
6798 if (ir.regmap[X86_RECORD_R8_REGNUM])
6799 {
6800 ir.addr -= 1;
6801 goto no_support;
6802 }
6803 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6804 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6805 break;
6806
6807 case 0xe0: /* loopnz */
6808 case 0xe1: /* loopz */
6809 case 0xe2: /* loop */
6810 case 0xe3: /* jecxz */
6811 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6812 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6813 break;
6814
6815 case 0x0f30: /* wrmsr */
6816 printf_unfiltered (_("Process record does not support "
6817 "instruction wrmsr.\n"));
6818 ir.addr -= 2;
6819 goto no_support;
6820 break;
6821
6822 case 0x0f32: /* rdmsr */
6823 printf_unfiltered (_("Process record does not support "
6824 "instruction rdmsr.\n"));
6825 ir.addr -= 2;
6826 goto no_support;
6827 break;
6828
6829 case 0x0f31: /* rdtsc */
6830 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6831 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6832 break;
6833
6834 case 0x0f34: /* sysenter */
6835 {
6836 int ret;
6837 if (ir.regmap[X86_RECORD_R8_REGNUM])
6838 {
6839 ir.addr -= 2;
6840 goto no_support;
6841 }
6842 if (tdep->i386_sysenter_record == NULL)
6843 {
6844 printf_unfiltered (_("Process record does not support "
6845 "instruction sysenter.\n"));
6846 ir.addr -= 2;
6847 goto no_support;
6848 }
6849 ret = tdep->i386_sysenter_record (ir.regcache);
6850 if (ret)
6851 return ret;
6852 }
6853 break;
6854
6855 case 0x0f35: /* sysexit */
6856 printf_unfiltered (_("Process record does not support "
6857 "instruction sysexit.\n"));
6858 ir.addr -= 2;
6859 goto no_support;
6860 break;
6861
6862 case 0x0f05: /* syscall */
6863 {
6864 int ret;
6865 if (tdep->i386_syscall_record == NULL)
6866 {
6867 printf_unfiltered (_("Process record does not support "
6868 "instruction syscall.\n"));
6869 ir.addr -= 2;
6870 goto no_support;
6871 }
6872 ret = tdep->i386_syscall_record (ir.regcache);
6873 if (ret)
6874 return ret;
6875 }
6876 break;
6877
6878 case 0x0f07: /* sysret */
6879 printf_unfiltered (_("Process record does not support "
6880 "instruction sysret.\n"));
6881 ir.addr -= 2;
6882 goto no_support;
6883 break;
6884
6885 case 0x0fa2: /* cpuid */
6886 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6887 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6888 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6889 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6890 break;
6891
6892 case 0xf4: /* hlt */
6893 printf_unfiltered (_("Process record does not support "
6894 "instruction hlt.\n"));
6895 ir.addr -= 1;
6896 goto no_support;
6897 break;
6898
6899 case 0x0f00:
6900 if (i386_record_modrm (&ir))
6901 return -1;
6902 switch (ir.reg)
6903 {
6904 case 0: /* sldt */
6905 case 1: /* str */
6906 if (ir.mod == 3)
6907 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6908 else
6909 {
6910 ir.ot = OT_WORD;
6911 if (i386_record_lea_modrm (&ir))
6912 return -1;
6913 }
6914 break;
6915 case 2: /* lldt */
6916 case 3: /* ltr */
6917 break;
6918 case 4: /* verr */
6919 case 5: /* verw */
6920 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6921 break;
6922 default:
6923 ir.addr -= 3;
6924 opcode = opcode << 8 | ir.modrm;
6925 goto no_support;
6926 break;
6927 }
6928 break;
6929
6930 case 0x0f01:
6931 if (i386_record_modrm (&ir))
6932 return -1;
6933 switch (ir.reg)
6934 {
6935 case 0: /* sgdt */
6936 {
6937 uint64_t addr64;
6938
6939 if (ir.mod == 3)
6940 {
6941 ir.addr -= 3;
6942 opcode = opcode << 8 | ir.modrm;
6943 goto no_support;
6944 }
6945 if (ir.override >= 0)
6946 {
6947 if (record_full_memory_query)
6948 {
6949 int q;
6950
6951 target_terminal_ours ();
6952 q = yquery (_("\
6953 Process record ignores the memory change of instruction at address %s\n\
6954 because it can't get the value of the segment register.\n\
6955 Do you want to stop the program?"),
6956 paddress (gdbarch, ir.orig_addr));
6957 target_terminal_inferior ();
6958 if (q)
6959 return -1;
6960 }
6961 }
6962 else
6963 {
6964 if (i386_record_lea_modrm_addr (&ir, &addr64))
6965 return -1;
6966 if (record_full_arch_list_add_mem (addr64, 2))
6967 return -1;
6968 addr64 += 2;
6969 if (ir.regmap[X86_RECORD_R8_REGNUM])
6970 {
6971 if (record_full_arch_list_add_mem (addr64, 8))
6972 return -1;
6973 }
6974 else
6975 {
6976 if (record_full_arch_list_add_mem (addr64, 4))
6977 return -1;
6978 }
6979 }
6980 }
6981 break;
6982 case 1:
6983 if (ir.mod == 3)
6984 {
6985 switch (ir.rm)
6986 {
6987 case 0: /* monitor */
6988 break;
6989 case 1: /* mwait */
6990 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6991 break;
6992 default:
6993 ir.addr -= 3;
6994 opcode = opcode << 8 | ir.modrm;
6995 goto no_support;
6996 break;
6997 }
6998 }
6999 else
7000 {
7001 /* sidt */
7002 if (ir.override >= 0)
7003 {
7004 if (record_full_memory_query)
7005 {
7006 int q;
7007
7008 target_terminal_ours ();
7009 q = yquery (_("\
7010 Process record ignores the memory change of instruction at address %s\n\
7011 because it can't get the value of the segment register.\n\
7012 Do you want to stop the program?"),
7013 paddress (gdbarch, ir.orig_addr));
7014 target_terminal_inferior ();
7015 if (q)
7016 return -1;
7017 }
7018 }
7019 else
7020 {
7021 uint64_t addr64;
7022
7023 if (i386_record_lea_modrm_addr (&ir, &addr64))
7024 return -1;
7025 if (record_full_arch_list_add_mem (addr64, 2))
7026 return -1;
7027 addr64 += 2;
7028 if (ir.regmap[X86_RECORD_R8_REGNUM])
7029 {
7030 if (record_full_arch_list_add_mem (addr64, 8))
7031 return -1;
7032 }
7033 else
7034 {
7035 if (record_full_arch_list_add_mem (addr64, 4))
7036 return -1;
7037 }
7038 }
7039 }
7040 break;
7041 case 2: /* lgdt */
7042 if (ir.mod == 3)
7043 {
7044 /* xgetbv */
7045 if (ir.rm == 0)
7046 {
7047 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7048 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7049 break;
7050 }
7051 /* xsetbv */
7052 else if (ir.rm == 1)
7053 break;
7054 }
7055 case 3: /* lidt */
7056 if (ir.mod == 3)
7057 {
7058 ir.addr -= 3;
7059 opcode = opcode << 8 | ir.modrm;
7060 goto no_support;
7061 }
7062 break;
7063 case 4: /* smsw */
7064 if (ir.mod == 3)
7065 {
7066 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7067 return -1;
7068 }
7069 else
7070 {
7071 ir.ot = OT_WORD;
7072 if (i386_record_lea_modrm (&ir))
7073 return -1;
7074 }
7075 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7076 break;
7077 case 6: /* lmsw */
7078 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7079 break;
7080 case 7: /* invlpg */
7081 if (ir.mod == 3)
7082 {
7083 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7084 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7085 else
7086 {
7087 ir.addr -= 3;
7088 opcode = opcode << 8 | ir.modrm;
7089 goto no_support;
7090 }
7091 }
7092 else
7093 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7094 break;
7095 default:
7096 ir.addr -= 3;
7097 opcode = opcode << 8 | ir.modrm;
7098 goto no_support;
7099 break;
7100 }
7101 break;
7102
7103 case 0x0f08: /* invd */
7104 case 0x0f09: /* wbinvd */
7105 break;
7106
7107 case 0x63: /* arpl */
7108 if (i386_record_modrm (&ir))
7109 return -1;
7110 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7111 {
7112 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7113 ? (ir.reg | rex_r) : ir.rm);
7114 }
7115 else
7116 {
7117 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7118 if (i386_record_lea_modrm (&ir))
7119 return -1;
7120 }
7121 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7122 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7123 break;
7124
7125 case 0x0f02: /* lar */
7126 case 0x0f03: /* lsl */
7127 if (i386_record_modrm (&ir))
7128 return -1;
7129 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7130 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7131 break;
7132
7133 case 0x0f18:
7134 if (i386_record_modrm (&ir))
7135 return -1;
7136 if (ir.mod == 3 && ir.reg == 3)
7137 {
7138 ir.addr -= 3;
7139 opcode = opcode << 8 | ir.modrm;
7140 goto no_support;
7141 }
7142 break;
7143
7144 case 0x0f19:
7145 case 0x0f1a:
7146 case 0x0f1b:
7147 case 0x0f1c:
7148 case 0x0f1d:
7149 case 0x0f1e:
7150 case 0x0f1f:
7151 /* nop (multi byte) */
7152 break;
7153
7154 case 0x0f20: /* mov reg, crN */
7155 case 0x0f22: /* mov crN, reg */
7156 if (i386_record_modrm (&ir))
7157 return -1;
7158 if ((ir.modrm & 0xc0) != 0xc0)
7159 {
7160 ir.addr -= 3;
7161 opcode = opcode << 8 | ir.modrm;
7162 goto no_support;
7163 }
7164 switch (ir.reg)
7165 {
7166 case 0:
7167 case 2:
7168 case 3:
7169 case 4:
7170 case 8:
7171 if (opcode & 2)
7172 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7173 else
7174 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7175 break;
7176 default:
7177 ir.addr -= 3;
7178 opcode = opcode << 8 | ir.modrm;
7179 goto no_support;
7180 break;
7181 }
7182 break;
7183
7184 case 0x0f21: /* mov reg, drN */
7185 case 0x0f23: /* mov drN, reg */
7186 if (i386_record_modrm (&ir))
7187 return -1;
7188 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7189 || ir.reg == 5 || ir.reg >= 8)
7190 {
7191 ir.addr -= 3;
7192 opcode = opcode << 8 | ir.modrm;
7193 goto no_support;
7194 }
7195 if (opcode & 2)
7196 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7197 else
7198 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7199 break;
7200
7201 case 0x0f06: /* clts */
7202 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7203 break;
7204
7205 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7206
7207 case 0x0f0d: /* 3DNow! prefetch */
7208 break;
7209
7210 case 0x0f0e: /* 3DNow! femms */
7211 case 0x0f77: /* emms */
7212 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7213 goto no_support;
7214 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7215 break;
7216
7217 case 0x0f0f: /* 3DNow! data */
7218 if (i386_record_modrm (&ir))
7219 return -1;
7220 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7221 return -1;
7222 ir.addr++;
7223 switch (opcode8)
7224 {
7225 case 0x0c: /* 3DNow! pi2fw */
7226 case 0x0d: /* 3DNow! pi2fd */
7227 case 0x1c: /* 3DNow! pf2iw */
7228 case 0x1d: /* 3DNow! pf2id */
7229 case 0x8a: /* 3DNow! pfnacc */
7230 case 0x8e: /* 3DNow! pfpnacc */
7231 case 0x90: /* 3DNow! pfcmpge */
7232 case 0x94: /* 3DNow! pfmin */
7233 case 0x96: /* 3DNow! pfrcp */
7234 case 0x97: /* 3DNow! pfrsqrt */
7235 case 0x9a: /* 3DNow! pfsub */
7236 case 0x9e: /* 3DNow! pfadd */
7237 case 0xa0: /* 3DNow! pfcmpgt */
7238 case 0xa4: /* 3DNow! pfmax */
7239 case 0xa6: /* 3DNow! pfrcpit1 */
7240 case 0xa7: /* 3DNow! pfrsqit1 */
7241 case 0xaa: /* 3DNow! pfsubr */
7242 case 0xae: /* 3DNow! pfacc */
7243 case 0xb0: /* 3DNow! pfcmpeq */
7244 case 0xb4: /* 3DNow! pfmul */
7245 case 0xb6: /* 3DNow! pfrcpit2 */
7246 case 0xb7: /* 3DNow! pmulhrw */
7247 case 0xbb: /* 3DNow! pswapd */
7248 case 0xbf: /* 3DNow! pavgusb */
7249 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7250 goto no_support_3dnow_data;
7251 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7252 break;
7253
7254 default:
7255 no_support_3dnow_data:
7256 opcode = (opcode << 8) | opcode8;
7257 goto no_support;
7258 break;
7259 }
7260 break;
7261
7262 case 0x0faa: /* rsm */
7263 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7264 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7265 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7266 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7267 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7268 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7269 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7270 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7271 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7272 break;
7273
7274 case 0x0fae:
7275 if (i386_record_modrm (&ir))
7276 return -1;
7277 switch(ir.reg)
7278 {
7279 case 0: /* fxsave */
7280 {
7281 uint64_t tmpu64;
7282
7283 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7284 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7285 return -1;
7286 if (record_full_arch_list_add_mem (tmpu64, 512))
7287 return -1;
7288 }
7289 break;
7290
7291 case 1: /* fxrstor */
7292 {
7293 int i;
7294
7295 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7296
7297 for (i = I387_MM0_REGNUM (tdep);
7298 i386_mmx_regnum_p (gdbarch, i); i++)
7299 record_full_arch_list_add_reg (ir.regcache, i);
7300
7301 for (i = I387_XMM0_REGNUM (tdep);
7302 i386_xmm_regnum_p (gdbarch, i); i++)
7303 record_full_arch_list_add_reg (ir.regcache, i);
7304
7305 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7306 record_full_arch_list_add_reg (ir.regcache,
7307 I387_MXCSR_REGNUM(tdep));
7308
7309 for (i = I387_ST0_REGNUM (tdep);
7310 i386_fp_regnum_p (gdbarch, i); i++)
7311 record_full_arch_list_add_reg (ir.regcache, i);
7312
7313 for (i = I387_FCTRL_REGNUM (tdep);
7314 i386_fpc_regnum_p (gdbarch, i); i++)
7315 record_full_arch_list_add_reg (ir.regcache, i);
7316 }
7317 break;
7318
7319 case 2: /* ldmxcsr */
7320 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7321 goto no_support;
7322 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7323 break;
7324
7325 case 3: /* stmxcsr */
7326 ir.ot = OT_LONG;
7327 if (i386_record_lea_modrm (&ir))
7328 return -1;
7329 break;
7330
7331 case 5: /* lfence */
7332 case 6: /* mfence */
7333 case 7: /* sfence clflush */
7334 break;
7335
7336 default:
7337 opcode = (opcode << 8) | ir.modrm;
7338 goto no_support;
7339 break;
7340 }
7341 break;
7342
7343 case 0x0fc3: /* movnti */
7344 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7345 if (i386_record_modrm (&ir))
7346 return -1;
7347 if (ir.mod == 3)
7348 goto no_support;
7349 ir.reg |= rex_r;
7350 if (i386_record_lea_modrm (&ir))
7351 return -1;
7352 break;
7353
7354 /* Add prefix to opcode. */
7355 case 0x0f10:
7356 case 0x0f11:
7357 case 0x0f12:
7358 case 0x0f13:
7359 case 0x0f14:
7360 case 0x0f15:
7361 case 0x0f16:
7362 case 0x0f17:
7363 case 0x0f28:
7364 case 0x0f29:
7365 case 0x0f2a:
7366 case 0x0f2b:
7367 case 0x0f2c:
7368 case 0x0f2d:
7369 case 0x0f2e:
7370 case 0x0f2f:
7371 case 0x0f38:
7372 case 0x0f39:
7373 case 0x0f3a:
7374 case 0x0f50:
7375 case 0x0f51:
7376 case 0x0f52:
7377 case 0x0f53:
7378 case 0x0f54:
7379 case 0x0f55:
7380 case 0x0f56:
7381 case 0x0f57:
7382 case 0x0f58:
7383 case 0x0f59:
7384 case 0x0f5a:
7385 case 0x0f5b:
7386 case 0x0f5c:
7387 case 0x0f5d:
7388 case 0x0f5e:
7389 case 0x0f5f:
7390 case 0x0f60:
7391 case 0x0f61:
7392 case 0x0f62:
7393 case 0x0f63:
7394 case 0x0f64:
7395 case 0x0f65:
7396 case 0x0f66:
7397 case 0x0f67:
7398 case 0x0f68:
7399 case 0x0f69:
7400 case 0x0f6a:
7401 case 0x0f6b:
7402 case 0x0f6c:
7403 case 0x0f6d:
7404 case 0x0f6e:
7405 case 0x0f6f:
7406 case 0x0f70:
7407 case 0x0f71:
7408 case 0x0f72:
7409 case 0x0f73:
7410 case 0x0f74:
7411 case 0x0f75:
7412 case 0x0f76:
7413 case 0x0f7c:
7414 case 0x0f7d:
7415 case 0x0f7e:
7416 case 0x0f7f:
7417 case 0x0fb8:
7418 case 0x0fc2:
7419 case 0x0fc4:
7420 case 0x0fc5:
7421 case 0x0fc6:
7422 case 0x0fd0:
7423 case 0x0fd1:
7424 case 0x0fd2:
7425 case 0x0fd3:
7426 case 0x0fd4:
7427 case 0x0fd5:
7428 case 0x0fd6:
7429 case 0x0fd7:
7430 case 0x0fd8:
7431 case 0x0fd9:
7432 case 0x0fda:
7433 case 0x0fdb:
7434 case 0x0fdc:
7435 case 0x0fdd:
7436 case 0x0fde:
7437 case 0x0fdf:
7438 case 0x0fe0:
7439 case 0x0fe1:
7440 case 0x0fe2:
7441 case 0x0fe3:
7442 case 0x0fe4:
7443 case 0x0fe5:
7444 case 0x0fe6:
7445 case 0x0fe7:
7446 case 0x0fe8:
7447 case 0x0fe9:
7448 case 0x0fea:
7449 case 0x0feb:
7450 case 0x0fec:
7451 case 0x0fed:
7452 case 0x0fee:
7453 case 0x0fef:
7454 case 0x0ff0:
7455 case 0x0ff1:
7456 case 0x0ff2:
7457 case 0x0ff3:
7458 case 0x0ff4:
7459 case 0x0ff5:
7460 case 0x0ff6:
7461 case 0x0ff7:
7462 case 0x0ff8:
7463 case 0x0ff9:
7464 case 0x0ffa:
7465 case 0x0ffb:
7466 case 0x0ffc:
7467 case 0x0ffd:
7468 case 0x0ffe:
7469 /* Mask out PREFIX_ADDR. */
7470 switch ((prefixes & ~PREFIX_ADDR))
7471 {
7472 case PREFIX_REPNZ:
7473 opcode |= 0xf20000;
7474 break;
7475 case PREFIX_DATA:
7476 opcode |= 0x660000;
7477 break;
7478 case PREFIX_REPZ:
7479 opcode |= 0xf30000;
7480 break;
7481 }
7482 reswitch_prefix_add:
7483 switch (opcode)
7484 {
7485 case 0x0f38:
7486 case 0x660f38:
7487 case 0xf20f38:
7488 case 0x0f3a:
7489 case 0x660f3a:
7490 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7491 return -1;
7492 ir.addr++;
7493 opcode = (uint32_t) opcode8 | opcode << 8;
7494 goto reswitch_prefix_add;
7495 break;
7496
7497 case 0x0f10: /* movups */
7498 case 0x660f10: /* movupd */
7499 case 0xf30f10: /* movss */
7500 case 0xf20f10: /* movsd */
7501 case 0x0f12: /* movlps */
7502 case 0x660f12: /* movlpd */
7503 case 0xf30f12: /* movsldup */
7504 case 0xf20f12: /* movddup */
7505 case 0x0f14: /* unpcklps */
7506 case 0x660f14: /* unpcklpd */
7507 case 0x0f15: /* unpckhps */
7508 case 0x660f15: /* unpckhpd */
7509 case 0x0f16: /* movhps */
7510 case 0x660f16: /* movhpd */
7511 case 0xf30f16: /* movshdup */
7512 case 0x0f28: /* movaps */
7513 case 0x660f28: /* movapd */
7514 case 0x0f2a: /* cvtpi2ps */
7515 case 0x660f2a: /* cvtpi2pd */
7516 case 0xf30f2a: /* cvtsi2ss */
7517 case 0xf20f2a: /* cvtsi2sd */
7518 case 0x0f2c: /* cvttps2pi */
7519 case 0x660f2c: /* cvttpd2pi */
7520 case 0x0f2d: /* cvtps2pi */
7521 case 0x660f2d: /* cvtpd2pi */
7522 case 0x660f3800: /* pshufb */
7523 case 0x660f3801: /* phaddw */
7524 case 0x660f3802: /* phaddd */
7525 case 0x660f3803: /* phaddsw */
7526 case 0x660f3804: /* pmaddubsw */
7527 case 0x660f3805: /* phsubw */
7528 case 0x660f3806: /* phsubd */
7529 case 0x660f3807: /* phsubsw */
7530 case 0x660f3808: /* psignb */
7531 case 0x660f3809: /* psignw */
7532 case 0x660f380a: /* psignd */
7533 case 0x660f380b: /* pmulhrsw */
7534 case 0x660f3810: /* pblendvb */
7535 case 0x660f3814: /* blendvps */
7536 case 0x660f3815: /* blendvpd */
7537 case 0x660f381c: /* pabsb */
7538 case 0x660f381d: /* pabsw */
7539 case 0x660f381e: /* pabsd */
7540 case 0x660f3820: /* pmovsxbw */
7541 case 0x660f3821: /* pmovsxbd */
7542 case 0x660f3822: /* pmovsxbq */
7543 case 0x660f3823: /* pmovsxwd */
7544 case 0x660f3824: /* pmovsxwq */
7545 case 0x660f3825: /* pmovsxdq */
7546 case 0x660f3828: /* pmuldq */
7547 case 0x660f3829: /* pcmpeqq */
7548 case 0x660f382a: /* movntdqa */
7549 case 0x660f3a08: /* roundps */
7550 case 0x660f3a09: /* roundpd */
7551 case 0x660f3a0a: /* roundss */
7552 case 0x660f3a0b: /* roundsd */
7553 case 0x660f3a0c: /* blendps */
7554 case 0x660f3a0d: /* blendpd */
7555 case 0x660f3a0e: /* pblendw */
7556 case 0x660f3a0f: /* palignr */
7557 case 0x660f3a20: /* pinsrb */
7558 case 0x660f3a21: /* insertps */
7559 case 0x660f3a22: /* pinsrd pinsrq */
7560 case 0x660f3a40: /* dpps */
7561 case 0x660f3a41: /* dppd */
7562 case 0x660f3a42: /* mpsadbw */
7563 case 0x660f3a60: /* pcmpestrm */
7564 case 0x660f3a61: /* pcmpestri */
7565 case 0x660f3a62: /* pcmpistrm */
7566 case 0x660f3a63: /* pcmpistri */
7567 case 0x0f51: /* sqrtps */
7568 case 0x660f51: /* sqrtpd */
7569 case 0xf20f51: /* sqrtsd */
7570 case 0xf30f51: /* sqrtss */
7571 case 0x0f52: /* rsqrtps */
7572 case 0xf30f52: /* rsqrtss */
7573 case 0x0f53: /* rcpps */
7574 case 0xf30f53: /* rcpss */
7575 case 0x0f54: /* andps */
7576 case 0x660f54: /* andpd */
7577 case 0x0f55: /* andnps */
7578 case 0x660f55: /* andnpd */
7579 case 0x0f56: /* orps */
7580 case 0x660f56: /* orpd */
7581 case 0x0f57: /* xorps */
7582 case 0x660f57: /* xorpd */
7583 case 0x0f58: /* addps */
7584 case 0x660f58: /* addpd */
7585 case 0xf20f58: /* addsd */
7586 case 0xf30f58: /* addss */
7587 case 0x0f59: /* mulps */
7588 case 0x660f59: /* mulpd */
7589 case 0xf20f59: /* mulsd */
7590 case 0xf30f59: /* mulss */
7591 case 0x0f5a: /* cvtps2pd */
7592 case 0x660f5a: /* cvtpd2ps */
7593 case 0xf20f5a: /* cvtsd2ss */
7594 case 0xf30f5a: /* cvtss2sd */
7595 case 0x0f5b: /* cvtdq2ps */
7596 case 0x660f5b: /* cvtps2dq */
7597 case 0xf30f5b: /* cvttps2dq */
7598 case 0x0f5c: /* subps */
7599 case 0x660f5c: /* subpd */
7600 case 0xf20f5c: /* subsd */
7601 case 0xf30f5c: /* subss */
7602 case 0x0f5d: /* minps */
7603 case 0x660f5d: /* minpd */
7604 case 0xf20f5d: /* minsd */
7605 case 0xf30f5d: /* minss */
7606 case 0x0f5e: /* divps */
7607 case 0x660f5e: /* divpd */
7608 case 0xf20f5e: /* divsd */
7609 case 0xf30f5e: /* divss */
7610 case 0x0f5f: /* maxps */
7611 case 0x660f5f: /* maxpd */
7612 case 0xf20f5f: /* maxsd */
7613 case 0xf30f5f: /* maxss */
7614 case 0x660f60: /* punpcklbw */
7615 case 0x660f61: /* punpcklwd */
7616 case 0x660f62: /* punpckldq */
7617 case 0x660f63: /* packsswb */
7618 case 0x660f64: /* pcmpgtb */
7619 case 0x660f65: /* pcmpgtw */
7620 case 0x660f66: /* pcmpgtd */
7621 case 0x660f67: /* packuswb */
7622 case 0x660f68: /* punpckhbw */
7623 case 0x660f69: /* punpckhwd */
7624 case 0x660f6a: /* punpckhdq */
7625 case 0x660f6b: /* packssdw */
7626 case 0x660f6c: /* punpcklqdq */
7627 case 0x660f6d: /* punpckhqdq */
7628 case 0x660f6e: /* movd */
7629 case 0x660f6f: /* movdqa */
7630 case 0xf30f6f: /* movdqu */
7631 case 0x660f70: /* pshufd */
7632 case 0xf20f70: /* pshuflw */
7633 case 0xf30f70: /* pshufhw */
7634 case 0x660f74: /* pcmpeqb */
7635 case 0x660f75: /* pcmpeqw */
7636 case 0x660f76: /* pcmpeqd */
7637 case 0x660f7c: /* haddpd */
7638 case 0xf20f7c: /* haddps */
7639 case 0x660f7d: /* hsubpd */
7640 case 0xf20f7d: /* hsubps */
7641 case 0xf30f7e: /* movq */
7642 case 0x0fc2: /* cmpps */
7643 case 0x660fc2: /* cmppd */
7644 case 0xf20fc2: /* cmpsd */
7645 case 0xf30fc2: /* cmpss */
7646 case 0x660fc4: /* pinsrw */
7647 case 0x0fc6: /* shufps */
7648 case 0x660fc6: /* shufpd */
7649 case 0x660fd0: /* addsubpd */
7650 case 0xf20fd0: /* addsubps */
7651 case 0x660fd1: /* psrlw */
7652 case 0x660fd2: /* psrld */
7653 case 0x660fd3: /* psrlq */
7654 case 0x660fd4: /* paddq */
7655 case 0x660fd5: /* pmullw */
7656 case 0xf30fd6: /* movq2dq */
7657 case 0x660fd8: /* psubusb */
7658 case 0x660fd9: /* psubusw */
7659 case 0x660fda: /* pminub */
7660 case 0x660fdb: /* pand */
7661 case 0x660fdc: /* paddusb */
7662 case 0x660fdd: /* paddusw */
7663 case 0x660fde: /* pmaxub */
7664 case 0x660fdf: /* pandn */
7665 case 0x660fe0: /* pavgb */
7666 case 0x660fe1: /* psraw */
7667 case 0x660fe2: /* psrad */
7668 case 0x660fe3: /* pavgw */
7669 case 0x660fe4: /* pmulhuw */
7670 case 0x660fe5: /* pmulhw */
7671 case 0x660fe6: /* cvttpd2dq */
7672 case 0xf20fe6: /* cvtpd2dq */
7673 case 0xf30fe6: /* cvtdq2pd */
7674 case 0x660fe8: /* psubsb */
7675 case 0x660fe9: /* psubsw */
7676 case 0x660fea: /* pminsw */
7677 case 0x660feb: /* por */
7678 case 0x660fec: /* paddsb */
7679 case 0x660fed: /* paddsw */
7680 case 0x660fee: /* pmaxsw */
7681 case 0x660fef: /* pxor */
7682 case 0xf20ff0: /* lddqu */
7683 case 0x660ff1: /* psllw */
7684 case 0x660ff2: /* pslld */
7685 case 0x660ff3: /* psllq */
7686 case 0x660ff4: /* pmuludq */
7687 case 0x660ff5: /* pmaddwd */
7688 case 0x660ff6: /* psadbw */
7689 case 0x660ff8: /* psubb */
7690 case 0x660ff9: /* psubw */
7691 case 0x660ffa: /* psubd */
7692 case 0x660ffb: /* psubq */
7693 case 0x660ffc: /* paddb */
7694 case 0x660ffd: /* paddw */
7695 case 0x660ffe: /* paddd */
7696 if (i386_record_modrm (&ir))
7697 return -1;
7698 ir.reg |= rex_r;
7699 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7700 goto no_support;
7701 record_full_arch_list_add_reg (ir.regcache,
7702 I387_XMM0_REGNUM (tdep) + ir.reg);
7703 if ((opcode & 0xfffffffc) == 0x660f3a60)
7704 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7705 break;
7706
7707 case 0x0f11: /* movups */
7708 case 0x660f11: /* movupd */
7709 case 0xf30f11: /* movss */
7710 case 0xf20f11: /* movsd */
7711 case 0x0f13: /* movlps */
7712 case 0x660f13: /* movlpd */
7713 case 0x0f17: /* movhps */
7714 case 0x660f17: /* movhpd */
7715 case 0x0f29: /* movaps */
7716 case 0x660f29: /* movapd */
7717 case 0x660f3a14: /* pextrb */
7718 case 0x660f3a15: /* pextrw */
7719 case 0x660f3a16: /* pextrd pextrq */
7720 case 0x660f3a17: /* extractps */
7721 case 0x660f7f: /* movdqa */
7722 case 0xf30f7f: /* movdqu */
7723 if (i386_record_modrm (&ir))
7724 return -1;
7725 if (ir.mod == 3)
7726 {
7727 if (opcode == 0x0f13 || opcode == 0x660f13
7728 || opcode == 0x0f17 || opcode == 0x660f17)
7729 goto no_support;
7730 ir.rm |= ir.rex_b;
7731 if (!i386_xmm_regnum_p (gdbarch,
7732 I387_XMM0_REGNUM (tdep) + ir.rm))
7733 goto no_support;
7734 record_full_arch_list_add_reg (ir.regcache,
7735 I387_XMM0_REGNUM (tdep) + ir.rm);
7736 }
7737 else
7738 {
7739 switch (opcode)
7740 {
7741 case 0x660f3a14:
7742 ir.ot = OT_BYTE;
7743 break;
7744 case 0x660f3a15:
7745 ir.ot = OT_WORD;
7746 break;
7747 case 0x660f3a16:
7748 ir.ot = OT_LONG;
7749 break;
7750 case 0x660f3a17:
7751 ir.ot = OT_QUAD;
7752 break;
7753 default:
7754 ir.ot = OT_DQUAD;
7755 break;
7756 }
7757 if (i386_record_lea_modrm (&ir))
7758 return -1;
7759 }
7760 break;
7761
7762 case 0x0f2b: /* movntps */
7763 case 0x660f2b: /* movntpd */
7764 case 0x0fe7: /* movntq */
7765 case 0x660fe7: /* movntdq */
7766 if (ir.mod == 3)
7767 goto no_support;
7768 if (opcode == 0x0fe7)
7769 ir.ot = OT_QUAD;
7770 else
7771 ir.ot = OT_DQUAD;
7772 if (i386_record_lea_modrm (&ir))
7773 return -1;
7774 break;
7775
7776 case 0xf30f2c: /* cvttss2si */
7777 case 0xf20f2c: /* cvttsd2si */
7778 case 0xf30f2d: /* cvtss2si */
7779 case 0xf20f2d: /* cvtsd2si */
7780 case 0xf20f38f0: /* crc32 */
7781 case 0xf20f38f1: /* crc32 */
7782 case 0x0f50: /* movmskps */
7783 case 0x660f50: /* movmskpd */
7784 case 0x0fc5: /* pextrw */
7785 case 0x660fc5: /* pextrw */
7786 case 0x0fd7: /* pmovmskb */
7787 case 0x660fd7: /* pmovmskb */
7788 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7789 break;
7790
7791 case 0x0f3800: /* pshufb */
7792 case 0x0f3801: /* phaddw */
7793 case 0x0f3802: /* phaddd */
7794 case 0x0f3803: /* phaddsw */
7795 case 0x0f3804: /* pmaddubsw */
7796 case 0x0f3805: /* phsubw */
7797 case 0x0f3806: /* phsubd */
7798 case 0x0f3807: /* phsubsw */
7799 case 0x0f3808: /* psignb */
7800 case 0x0f3809: /* psignw */
7801 case 0x0f380a: /* psignd */
7802 case 0x0f380b: /* pmulhrsw */
7803 case 0x0f381c: /* pabsb */
7804 case 0x0f381d: /* pabsw */
7805 case 0x0f381e: /* pabsd */
7806 case 0x0f382b: /* packusdw */
7807 case 0x0f3830: /* pmovzxbw */
7808 case 0x0f3831: /* pmovzxbd */
7809 case 0x0f3832: /* pmovzxbq */
7810 case 0x0f3833: /* pmovzxwd */
7811 case 0x0f3834: /* pmovzxwq */
7812 case 0x0f3835: /* pmovzxdq */
7813 case 0x0f3837: /* pcmpgtq */
7814 case 0x0f3838: /* pminsb */
7815 case 0x0f3839: /* pminsd */
7816 case 0x0f383a: /* pminuw */
7817 case 0x0f383b: /* pminud */
7818 case 0x0f383c: /* pmaxsb */
7819 case 0x0f383d: /* pmaxsd */
7820 case 0x0f383e: /* pmaxuw */
7821 case 0x0f383f: /* pmaxud */
7822 case 0x0f3840: /* pmulld */
7823 case 0x0f3841: /* phminposuw */
7824 case 0x0f3a0f: /* palignr */
7825 case 0x0f60: /* punpcklbw */
7826 case 0x0f61: /* punpcklwd */
7827 case 0x0f62: /* punpckldq */
7828 case 0x0f63: /* packsswb */
7829 case 0x0f64: /* pcmpgtb */
7830 case 0x0f65: /* pcmpgtw */
7831 case 0x0f66: /* pcmpgtd */
7832 case 0x0f67: /* packuswb */
7833 case 0x0f68: /* punpckhbw */
7834 case 0x0f69: /* punpckhwd */
7835 case 0x0f6a: /* punpckhdq */
7836 case 0x0f6b: /* packssdw */
7837 case 0x0f6e: /* movd */
7838 case 0x0f6f: /* movq */
7839 case 0x0f70: /* pshufw */
7840 case 0x0f74: /* pcmpeqb */
7841 case 0x0f75: /* pcmpeqw */
7842 case 0x0f76: /* pcmpeqd */
7843 case 0x0fc4: /* pinsrw */
7844 case 0x0fd1: /* psrlw */
7845 case 0x0fd2: /* psrld */
7846 case 0x0fd3: /* psrlq */
7847 case 0x0fd4: /* paddq */
7848 case 0x0fd5: /* pmullw */
7849 case 0xf20fd6: /* movdq2q */
7850 case 0x0fd8: /* psubusb */
7851 case 0x0fd9: /* psubusw */
7852 case 0x0fda: /* pminub */
7853 case 0x0fdb: /* pand */
7854 case 0x0fdc: /* paddusb */
7855 case 0x0fdd: /* paddusw */
7856 case 0x0fde: /* pmaxub */
7857 case 0x0fdf: /* pandn */
7858 case 0x0fe0: /* pavgb */
7859 case 0x0fe1: /* psraw */
7860 case 0x0fe2: /* psrad */
7861 case 0x0fe3: /* pavgw */
7862 case 0x0fe4: /* pmulhuw */
7863 case 0x0fe5: /* pmulhw */
7864 case 0x0fe8: /* psubsb */
7865 case 0x0fe9: /* psubsw */
7866 case 0x0fea: /* pminsw */
7867 case 0x0feb: /* por */
7868 case 0x0fec: /* paddsb */
7869 case 0x0fed: /* paddsw */
7870 case 0x0fee: /* pmaxsw */
7871 case 0x0fef: /* pxor */
7872 case 0x0ff1: /* psllw */
7873 case 0x0ff2: /* pslld */
7874 case 0x0ff3: /* psllq */
7875 case 0x0ff4: /* pmuludq */
7876 case 0x0ff5: /* pmaddwd */
7877 case 0x0ff6: /* psadbw */
7878 case 0x0ff8: /* psubb */
7879 case 0x0ff9: /* psubw */
7880 case 0x0ffa: /* psubd */
7881 case 0x0ffb: /* psubq */
7882 case 0x0ffc: /* paddb */
7883 case 0x0ffd: /* paddw */
7884 case 0x0ffe: /* paddd */
7885 if (i386_record_modrm (&ir))
7886 return -1;
7887 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7888 goto no_support;
7889 record_full_arch_list_add_reg (ir.regcache,
7890 I387_MM0_REGNUM (tdep) + ir.reg);
7891 break;
7892
7893 case 0x0f71: /* psllw */
7894 case 0x0f72: /* pslld */
7895 case 0x0f73: /* psllq */
7896 if (i386_record_modrm (&ir))
7897 return -1;
7898 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7899 goto no_support;
7900 record_full_arch_list_add_reg (ir.regcache,
7901 I387_MM0_REGNUM (tdep) + ir.rm);
7902 break;
7903
7904 case 0x660f71: /* psllw */
7905 case 0x660f72: /* pslld */
7906 case 0x660f73: /* psllq */
7907 if (i386_record_modrm (&ir))
7908 return -1;
7909 ir.rm |= ir.rex_b;
7910 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7911 goto no_support;
7912 record_full_arch_list_add_reg (ir.regcache,
7913 I387_XMM0_REGNUM (tdep) + ir.rm);
7914 break;
7915
7916 case 0x0f7e: /* movd */
7917 case 0x660f7e: /* movd */
7918 if (i386_record_modrm (&ir))
7919 return -1;
7920 if (ir.mod == 3)
7921 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7922 else
7923 {
7924 if (ir.dflag == 2)
7925 ir.ot = OT_QUAD;
7926 else
7927 ir.ot = OT_LONG;
7928 if (i386_record_lea_modrm (&ir))
7929 return -1;
7930 }
7931 break;
7932
7933 case 0x0f7f: /* movq */
7934 if (i386_record_modrm (&ir))
7935 return -1;
7936 if (ir.mod == 3)
7937 {
7938 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7939 goto no_support;
7940 record_full_arch_list_add_reg (ir.regcache,
7941 I387_MM0_REGNUM (tdep) + ir.rm);
7942 }
7943 else
7944 {
7945 ir.ot = OT_QUAD;
7946 if (i386_record_lea_modrm (&ir))
7947 return -1;
7948 }
7949 break;
7950
7951 case 0xf30fb8: /* popcnt */
7952 if (i386_record_modrm (&ir))
7953 return -1;
7954 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7955 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7956 break;
7957
7958 case 0x660fd6: /* movq */
7959 if (i386_record_modrm (&ir))
7960 return -1;
7961 if (ir.mod == 3)
7962 {
7963 ir.rm |= ir.rex_b;
7964 if (!i386_xmm_regnum_p (gdbarch,
7965 I387_XMM0_REGNUM (tdep) + ir.rm))
7966 goto no_support;
7967 record_full_arch_list_add_reg (ir.regcache,
7968 I387_XMM0_REGNUM (tdep) + ir.rm);
7969 }
7970 else
7971 {
7972 ir.ot = OT_QUAD;
7973 if (i386_record_lea_modrm (&ir))
7974 return -1;
7975 }
7976 break;
7977
7978 case 0x660f3817: /* ptest */
7979 case 0x0f2e: /* ucomiss */
7980 case 0x660f2e: /* ucomisd */
7981 case 0x0f2f: /* comiss */
7982 case 0x660f2f: /* comisd */
7983 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7984 break;
7985
7986 case 0x0ff7: /* maskmovq */
7987 regcache_raw_read_unsigned (ir.regcache,
7988 ir.regmap[X86_RECORD_REDI_REGNUM],
7989 &addr);
7990 if (record_full_arch_list_add_mem (addr, 64))
7991 return -1;
7992 break;
7993
7994 case 0x660ff7: /* maskmovdqu */
7995 regcache_raw_read_unsigned (ir.regcache,
7996 ir.regmap[X86_RECORD_REDI_REGNUM],
7997 &addr);
7998 if (record_full_arch_list_add_mem (addr, 128))
7999 return -1;
8000 break;
8001
8002 default:
8003 goto no_support;
8004 break;
8005 }
8006 break;
8007
8008 default:
8009 goto no_support;
8010 break;
8011 }
8012
8013 /* In the future, maybe still need to deal with need_dasm. */
8014 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8015 if (record_full_arch_list_add_end ())
8016 return -1;
8017
8018 return 0;
8019
8020 no_support:
8021 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8022 "at address %s.\n"),
8023 (unsigned int) (opcode),
8024 paddress (gdbarch, ir.orig_addr));
8025 return -1;
8026 }
8027
8028 static const int i386_record_regmap[] =
8029 {
8030 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8031 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8032 0, 0, 0, 0, 0, 0, 0, 0,
8033 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8034 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8035 };
8036
8037 /* Check that the given address appears suitable for a fast
8038 tracepoint, which on x86-64 means that we need an instruction of at
8039 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8040 jump and not have to worry about program jumps to an address in the
8041 middle of the tracepoint jump. On x86, it may be possible to use
8042 4-byte jumps with a 2-byte offset to a trampoline located in the
8043 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8044 of instruction to replace, and 0 if not, plus an explanatory
8045 string. */
8046
8047 static int
8048 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
8049 CORE_ADDR addr, int *isize, char **msg)
8050 {
8051 int len, jumplen;
8052 static struct ui_file *gdb_null = NULL;
8053
8054 /* Ask the target for the minimum instruction length supported. */
8055 jumplen = target_get_min_fast_tracepoint_insn_len ();
8056
8057 if (jumplen < 0)
8058 {
8059 /* If the target does not support the get_min_fast_tracepoint_insn_len
8060 operation, assume that fast tracepoints will always be implemented
8061 using 4-byte relative jumps on both x86 and x86-64. */
8062 jumplen = 5;
8063 }
8064 else if (jumplen == 0)
8065 {
8066 /* If the target does support get_min_fast_tracepoint_insn_len but
8067 returns zero, then the IPA has not loaded yet. In this case,
8068 we optimistically assume that truncated 2-byte relative jumps
8069 will be available on x86, and compensate later if this assumption
8070 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8071 jumps will always be used. */
8072 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8073 }
8074
8075 /* Dummy file descriptor for the disassembler. */
8076 if (!gdb_null)
8077 gdb_null = ui_file_new ();
8078
8079 /* Check for fit. */
8080 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
8081 if (isize)
8082 *isize = len;
8083
8084 if (len < jumplen)
8085 {
8086 /* Return a bit of target-specific detail to add to the caller's
8087 generic failure message. */
8088 if (msg)
8089 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8090 "need at least %d bytes for the jump"),
8091 len, jumplen);
8092 return 0;
8093 }
8094 else
8095 {
8096 if (msg)
8097 *msg = NULL;
8098 return 1;
8099 }
8100 }
8101
8102 static int
8103 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8104 struct tdesc_arch_data *tdesc_data)
8105 {
8106 const struct target_desc *tdesc = tdep->tdesc;
8107 const struct tdesc_feature *feature_core;
8108
8109 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8110 *feature_avx512;
8111 int i, num_regs, valid_p;
8112
8113 if (! tdesc_has_registers (tdesc))
8114 return 0;
8115
8116 /* Get core registers. */
8117 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8118 if (feature_core == NULL)
8119 return 0;
8120
8121 /* Get SSE registers. */
8122 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8123
8124 /* Try AVX registers. */
8125 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8126
8127 /* Try MPX registers. */
8128 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8129
8130 /* Try AVX512 registers. */
8131 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8132
8133 valid_p = 1;
8134
8135 /* The XCR0 bits. */
8136 if (feature_avx512)
8137 {
8138 /* AVX512 register description requires AVX register description. */
8139 if (!feature_avx)
8140 return 0;
8141
8142 tdep->xcr0 = X86_XSTATE_MPX_AVX512_MASK;
8143
8144 /* It may have been set by OSABI initialization function. */
8145 if (tdep->k0_regnum < 0)
8146 {
8147 tdep->k_register_names = i386_k_names;
8148 tdep->k0_regnum = I386_K0_REGNUM;
8149 }
8150
8151 for (i = 0; i < I387_NUM_K_REGS; i++)
8152 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8153 tdep->k0_regnum + i,
8154 i386_k_names[i]);
8155
8156 if (tdep->num_zmm_regs == 0)
8157 {
8158 tdep->zmmh_register_names = i386_zmmh_names;
8159 tdep->num_zmm_regs = 8;
8160 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8161 }
8162
8163 for (i = 0; i < tdep->num_zmm_regs; i++)
8164 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8165 tdep->zmm0h_regnum + i,
8166 tdep->zmmh_register_names[i]);
8167
8168 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8169 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8170 tdep->xmm16_regnum + i,
8171 tdep->xmm_avx512_register_names[i]);
8172
8173 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8174 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8175 tdep->ymm16h_regnum + i,
8176 tdep->ymm16h_register_names[i]);
8177 }
8178 if (feature_avx)
8179 {
8180 /* AVX register description requires SSE register description. */
8181 if (!feature_sse)
8182 return 0;
8183
8184 if (!feature_avx512)
8185 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8186
8187 /* It may have been set by OSABI initialization function. */
8188 if (tdep->num_ymm_regs == 0)
8189 {
8190 tdep->ymmh_register_names = i386_ymmh_names;
8191 tdep->num_ymm_regs = 8;
8192 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8193 }
8194
8195 for (i = 0; i < tdep->num_ymm_regs; i++)
8196 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8197 tdep->ymm0h_regnum + i,
8198 tdep->ymmh_register_names[i]);
8199 }
8200 else if (feature_sse)
8201 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8202 else
8203 {
8204 tdep->xcr0 = X86_XSTATE_X87_MASK;
8205 tdep->num_xmm_regs = 0;
8206 }
8207
8208 num_regs = tdep->num_core_regs;
8209 for (i = 0; i < num_regs; i++)
8210 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8211 tdep->register_names[i]);
8212
8213 if (feature_sse)
8214 {
8215 /* Need to include %mxcsr, so add one. */
8216 num_regs += tdep->num_xmm_regs + 1;
8217 for (; i < num_regs; i++)
8218 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8219 tdep->register_names[i]);
8220 }
8221
8222 if (feature_mpx)
8223 {
8224 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8225
8226 if (tdep->bnd0r_regnum < 0)
8227 {
8228 tdep->mpx_register_names = i386_mpx_names;
8229 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8230 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8231 }
8232
8233 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8234 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8235 I387_BND0R_REGNUM (tdep) + i,
8236 tdep->mpx_register_names[i]);
8237 }
8238
8239 return valid_p;
8240 }
8241
8242 \f
8243 static struct gdbarch *
8244 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8245 {
8246 struct gdbarch_tdep *tdep;
8247 struct gdbarch *gdbarch;
8248 struct tdesc_arch_data *tdesc_data;
8249 const struct target_desc *tdesc;
8250 int mm0_regnum;
8251 int ymm0_regnum;
8252 int bnd0_regnum;
8253 int num_bnd_cooked;
8254 int k0_regnum;
8255 int zmm0_regnum;
8256
8257 /* If there is already a candidate, use it. */
8258 arches = gdbarch_list_lookup_by_info (arches, &info);
8259 if (arches != NULL)
8260 return arches->gdbarch;
8261
8262 /* Allocate space for the new architecture. */
8263 tdep = XCNEW (struct gdbarch_tdep);
8264 gdbarch = gdbarch_alloc (&info, tdep);
8265
8266 /* General-purpose registers. */
8267 tdep->gregset_reg_offset = NULL;
8268 tdep->gregset_num_regs = I386_NUM_GREGS;
8269 tdep->sizeof_gregset = 0;
8270
8271 /* Floating-point registers. */
8272 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8273 tdep->fpregset = &i386_fpregset;
8274
8275 /* The default settings include the FPU registers, the MMX registers
8276 and the SSE registers. This can be overridden for a specific ABI
8277 by adjusting the members `st0_regnum', `mm0_regnum' and
8278 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8279 will show up in the output of "info all-registers". */
8280
8281 tdep->st0_regnum = I386_ST0_REGNUM;
8282
8283 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8284 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8285
8286 tdep->jb_pc_offset = -1;
8287 tdep->struct_return = pcc_struct_return;
8288 tdep->sigtramp_start = 0;
8289 tdep->sigtramp_end = 0;
8290 tdep->sigtramp_p = i386_sigtramp_p;
8291 tdep->sigcontext_addr = NULL;
8292 tdep->sc_reg_offset = NULL;
8293 tdep->sc_pc_offset = -1;
8294 tdep->sc_sp_offset = -1;
8295
8296 tdep->xsave_xcr0_offset = -1;
8297
8298 tdep->record_regmap = i386_record_regmap;
8299
8300 set_gdbarch_long_long_align_bit (gdbarch, 32);
8301
8302 /* The format used for `long double' on almost all i386 targets is
8303 the i387 extended floating-point format. In fact, of all targets
8304 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8305 on having a `long double' that's not `long' at all. */
8306 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8307
8308 /* Although the i387 extended floating-point has only 80 significant
8309 bits, a `long double' actually takes up 96, probably to enforce
8310 alignment. */
8311 set_gdbarch_long_double_bit (gdbarch, 96);
8312
8313 /* Register numbers of various important registers. */
8314 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8315 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8316 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8317 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8318
8319 /* NOTE: kettenis/20040418: GCC does have two possible register
8320 numbering schemes on the i386: dbx and SVR4. These schemes
8321 differ in how they number %ebp, %esp, %eflags, and the
8322 floating-point registers, and are implemented by the arrays
8323 dbx_register_map[] and svr4_dbx_register_map in
8324 gcc/config/i386.c. GCC also defines a third numbering scheme in
8325 gcc/config/i386.c, which it designates as the "default" register
8326 map used in 64bit mode. This last register numbering scheme is
8327 implemented in dbx64_register_map, and is used for AMD64; see
8328 amd64-tdep.c.
8329
8330 Currently, each GCC i386 target always uses the same register
8331 numbering scheme across all its supported debugging formats
8332 i.e. SDB (COFF), stabs and DWARF 2. This is because
8333 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8334 DBX_REGISTER_NUMBER macro which is defined by each target's
8335 respective config header in a manner independent of the requested
8336 output debugging format.
8337
8338 This does not match the arrangement below, which presumes that
8339 the SDB and stabs numbering schemes differ from the DWARF and
8340 DWARF 2 ones. The reason for this arrangement is that it is
8341 likely to get the numbering scheme for the target's
8342 default/native debug format right. For targets where GCC is the
8343 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8344 targets where the native toolchain uses a different numbering
8345 scheme for a particular debug format (stabs-in-ELF on Solaris)
8346 the defaults below will have to be overridden, like
8347 i386_elf_init_abi() does. */
8348
8349 /* Use the dbx register numbering scheme for stabs and COFF. */
8350 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8351 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8352
8353 /* Use the SVR4 register numbering scheme for DWARF 2. */
8354 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8355
8356 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8357 be in use on any of the supported i386 targets. */
8358
8359 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8360
8361 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8362
8363 /* Call dummy code. */
8364 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8365 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8366 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8367 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8368
8369 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8370 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8371 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8372
8373 set_gdbarch_return_value (gdbarch, i386_return_value);
8374
8375 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8376
8377 /* Stack grows downward. */
8378 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8379
8380 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
8381 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8382 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8383
8384 set_gdbarch_frame_args_skip (gdbarch, 8);
8385
8386 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8387
8388 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8389
8390 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8391
8392 /* Add the i386 register groups. */
8393 i386_add_reggroups (gdbarch);
8394 tdep->register_reggroup_p = i386_register_reggroup_p;
8395
8396 /* Helper for function argument information. */
8397 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8398
8399 /* Hook the function epilogue frame unwinder. This unwinder is
8400 appended to the list first, so that it supercedes the DWARF
8401 unwinder in function epilogues (where the DWARF unwinder
8402 currently fails). */
8403 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8404
8405 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8406 to the list before the prologue-based unwinders, so that DWARF
8407 CFI info will be used if it is available. */
8408 dwarf2_append_unwinders (gdbarch);
8409
8410 frame_base_set_default (gdbarch, &i386_frame_base);
8411
8412 /* Pseudo registers may be changed by amd64_init_abi. */
8413 set_gdbarch_pseudo_register_read_value (gdbarch,
8414 i386_pseudo_register_read_value);
8415 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8416
8417 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8418 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8419
8420 /* Override the normal target description method to make the AVX
8421 upper halves anonymous. */
8422 set_gdbarch_register_name (gdbarch, i386_register_name);
8423
8424 /* Even though the default ABI only includes general-purpose registers,
8425 floating-point registers and the SSE registers, we have to leave a
8426 gap for the upper AVX, MPX and AVX512 registers. */
8427 set_gdbarch_num_regs (gdbarch, I386_AVX512_NUM_REGS);
8428
8429 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8430
8431 /* Get the x86 target description from INFO. */
8432 tdesc = info.target_desc;
8433 if (! tdesc_has_registers (tdesc))
8434 tdesc = tdesc_i386;
8435 tdep->tdesc = tdesc;
8436
8437 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8438 tdep->register_names = i386_register_names;
8439
8440 /* No upper YMM registers. */
8441 tdep->ymmh_register_names = NULL;
8442 tdep->ymm0h_regnum = -1;
8443
8444 /* No upper ZMM registers. */
8445 tdep->zmmh_register_names = NULL;
8446 tdep->zmm0h_regnum = -1;
8447
8448 /* No high XMM registers. */
8449 tdep->xmm_avx512_register_names = NULL;
8450 tdep->xmm16_regnum = -1;
8451
8452 /* No upper YMM16-31 registers. */
8453 tdep->ymm16h_register_names = NULL;
8454 tdep->ymm16h_regnum = -1;
8455
8456 tdep->num_byte_regs = 8;
8457 tdep->num_word_regs = 8;
8458 tdep->num_dword_regs = 0;
8459 tdep->num_mmx_regs = 8;
8460 tdep->num_ymm_regs = 0;
8461
8462 /* No MPX registers. */
8463 tdep->bnd0r_regnum = -1;
8464 tdep->bndcfgu_regnum = -1;
8465
8466 /* No AVX512 registers. */
8467 tdep->k0_regnum = -1;
8468 tdep->num_zmm_regs = 0;
8469 tdep->num_ymm_avx512_regs = 0;
8470 tdep->num_xmm_avx512_regs = 0;
8471
8472 tdesc_data = tdesc_data_alloc ();
8473
8474 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8475
8476 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8477
8478 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8479 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8480 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8481
8482 /* Hook in ABI-specific overrides, if they have been registered. */
8483 info.tdep_info = (void *) tdesc_data;
8484 gdbarch_init_osabi (info, gdbarch);
8485
8486 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8487 {
8488 tdesc_data_cleanup (tdesc_data);
8489 xfree (tdep);
8490 gdbarch_free (gdbarch);
8491 return NULL;
8492 }
8493
8494 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8495
8496 /* Wire in pseudo registers. Number of pseudo registers may be
8497 changed. */
8498 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8499 + tdep->num_word_regs
8500 + tdep->num_dword_regs
8501 + tdep->num_mmx_regs
8502 + tdep->num_ymm_regs
8503 + num_bnd_cooked
8504 + tdep->num_ymm_avx512_regs
8505 + tdep->num_zmm_regs));
8506
8507 /* Target description may be changed. */
8508 tdesc = tdep->tdesc;
8509
8510 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8511
8512 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8513 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8514
8515 /* Make %al the first pseudo-register. */
8516 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8517 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8518
8519 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8520 if (tdep->num_dword_regs)
8521 {
8522 /* Support dword pseudo-register if it hasn't been disabled. */
8523 tdep->eax_regnum = ymm0_regnum;
8524 ymm0_regnum += tdep->num_dword_regs;
8525 }
8526 else
8527 tdep->eax_regnum = -1;
8528
8529 mm0_regnum = ymm0_regnum;
8530 if (tdep->num_ymm_regs)
8531 {
8532 /* Support YMM pseudo-register if it is available. */
8533 tdep->ymm0_regnum = ymm0_regnum;
8534 mm0_regnum += tdep->num_ymm_regs;
8535 }
8536 else
8537 tdep->ymm0_regnum = -1;
8538
8539 if (tdep->num_ymm_avx512_regs)
8540 {
8541 /* Support YMM16-31 pseudo registers if available. */
8542 tdep->ymm16_regnum = mm0_regnum;
8543 mm0_regnum += tdep->num_ymm_avx512_regs;
8544 }
8545 else
8546 tdep->ymm16_regnum = -1;
8547
8548 if (tdep->num_zmm_regs)
8549 {
8550 /* Support ZMM pseudo-register if it is available. */
8551 tdep->zmm0_regnum = mm0_regnum;
8552 mm0_regnum += tdep->num_zmm_regs;
8553 }
8554 else
8555 tdep->zmm0_regnum = -1;
8556
8557 bnd0_regnum = mm0_regnum;
8558 if (tdep->num_mmx_regs != 0)
8559 {
8560 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8561 tdep->mm0_regnum = mm0_regnum;
8562 bnd0_regnum += tdep->num_mmx_regs;
8563 }
8564 else
8565 tdep->mm0_regnum = -1;
8566
8567 if (tdep->bnd0r_regnum > 0)
8568 tdep->bnd0_regnum = bnd0_regnum;
8569 else
8570 tdep-> bnd0_regnum = -1;
8571
8572 /* Hook in the legacy prologue-based unwinders last (fallback). */
8573 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8574 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8575 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8576
8577 /* If we have a register mapping, enable the generic core file
8578 support, unless it has already been enabled. */
8579 if (tdep->gregset_reg_offset
8580 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8581 set_gdbarch_iterate_over_regset_sections
8582 (gdbarch, i386_iterate_over_regset_sections);
8583
8584 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8585 i386_fast_tracepoint_valid_at);
8586
8587 return gdbarch;
8588 }
8589
8590 static enum gdb_osabi
8591 i386_coff_osabi_sniffer (bfd *abfd)
8592 {
8593 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8594 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8595 return GDB_OSABI_GO32;
8596
8597 return GDB_OSABI_UNKNOWN;
8598 }
8599 \f
8600
8601 /* Return the target description for a specified XSAVE feature mask. */
8602
8603 const struct target_desc *
8604 i386_target_description (uint64_t xcr0)
8605 {
8606 switch (xcr0 & X86_XSTATE_ALL_MASK)
8607 {
8608 case X86_XSTATE_MPX_AVX512_MASK:
8609 case X86_XSTATE_AVX512_MASK:
8610 return tdesc_i386_avx512;
8611 case X86_XSTATE_MPX_MASK:
8612 return tdesc_i386_mpx;
8613 case X86_XSTATE_AVX_MASK:
8614 return tdesc_i386_avx;
8615 default:
8616 return tdesc_i386;
8617 }
8618 }
8619
8620 /* Provide a prototype to silence -Wmissing-prototypes. */
8621 void _initialize_i386_tdep (void);
8622
8623 void
8624 _initialize_i386_tdep (void)
8625 {
8626 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8627
8628 /* Add the variable that controls the disassembly flavor. */
8629 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8630 &disassembly_flavor, _("\
8631 Set the disassembly flavor."), _("\
8632 Show the disassembly flavor."), _("\
8633 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8634 NULL,
8635 NULL, /* FIXME: i18n: */
8636 &setlist, &showlist);
8637
8638 /* Add the variable that controls the convention for returning
8639 structs. */
8640 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
8641 &struct_convention, _("\
8642 Set the convention for returning small structs."), _("\
8643 Show the convention for returning small structs."), _("\
8644 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
8645 is \"default\"."),
8646 NULL,
8647 NULL, /* FIXME: i18n: */
8648 &setlist, &showlist);
8649
8650 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
8651 i386_coff_osabi_sniffer);
8652
8653 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8654 i386_svr4_init_abi);
8655 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8656 i386_go32_init_abi);
8657
8658 /* Initialize the i386-specific register groups. */
8659 i386_init_reggroups ();
8660
8661 /* Initialize the standard target descriptions. */
8662 initialize_tdesc_i386 ();
8663 initialize_tdesc_i386_mmx ();
8664 initialize_tdesc_i386_avx ();
8665 initialize_tdesc_i386_mpx ();
8666 initialize_tdesc_i386_avx512 ();
8667
8668 /* Tell remote stub that we support XML target description. */
8669 register_remote_support_xml ("i386");
8670 }
This page took 0.377758 seconds and 4 git commands to generate.