2007-11-02 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "command.h"
25 #include "dummy-frame.h"
26 #include "dwarf2-frame.h"
27 #include "doublest.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "osabi.h"
37 #include "regcache.h"
38 #include "reggroups.h"
39 #include "regset.h"
40 #include "symfile.h"
41 #include "symtab.h"
42 #include "target.h"
43 #include "value.h"
44 #include "dis-asm.h"
45
46 #include "gdb_assert.h"
47 #include "gdb_string.h"
48
49 #include "i386-tdep.h"
50 #include "i387-tdep.h"
51
52 /* Register names. */
53
54 static char *i386_register_names[] =
55 {
56 "eax", "ecx", "edx", "ebx",
57 "esp", "ebp", "esi", "edi",
58 "eip", "eflags", "cs", "ss",
59 "ds", "es", "fs", "gs",
60 "st0", "st1", "st2", "st3",
61 "st4", "st5", "st6", "st7",
62 "fctrl", "fstat", "ftag", "fiseg",
63 "fioff", "foseg", "fooff", "fop",
64 "xmm0", "xmm1", "xmm2", "xmm3",
65 "xmm4", "xmm5", "xmm6", "xmm7",
66 "mxcsr"
67 };
68
69 static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
70
71 /* Register names for MMX pseudo-registers. */
72
73 static char *i386_mmx_names[] =
74 {
75 "mm0", "mm1", "mm2", "mm3",
76 "mm4", "mm5", "mm6", "mm7"
77 };
78
79 static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
80
81 static int
82 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
83 {
84 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
85
86 if (mm0_regnum < 0)
87 return 0;
88
89 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
90 }
91
92 /* SSE register? */
93
94 static int
95 i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
96 {
97 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
98
99 #define I387_ST0_REGNUM tdep->st0_regnum
100 #define I387_NUM_XMM_REGS tdep->num_xmm_regs
101
102 if (I387_NUM_XMM_REGS == 0)
103 return 0;
104
105 return (I387_XMM0_REGNUM <= regnum && regnum < I387_MXCSR_REGNUM);
106
107 #undef I387_ST0_REGNUM
108 #undef I387_NUM_XMM_REGS
109 }
110
111 static int
112 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
113 {
114 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
115
116 #define I387_ST0_REGNUM tdep->st0_regnum
117 #define I387_NUM_XMM_REGS tdep->num_xmm_regs
118
119 if (I387_NUM_XMM_REGS == 0)
120 return 0;
121
122 return (regnum == I387_MXCSR_REGNUM);
123
124 #undef I387_ST0_REGNUM
125 #undef I387_NUM_XMM_REGS
126 }
127
128 #define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum)
129 #define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum)
130 #define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
131
132 /* FP register? */
133
134 int
135 i386_fp_regnum_p (int regnum)
136 {
137 if (I387_ST0_REGNUM < 0)
138 return 0;
139
140 return (I387_ST0_REGNUM <= regnum && regnum < I387_FCTRL_REGNUM);
141 }
142
143 int
144 i386_fpc_regnum_p (int regnum)
145 {
146 if (I387_ST0_REGNUM < 0)
147 return 0;
148
149 return (I387_FCTRL_REGNUM <= regnum && regnum < I387_XMM0_REGNUM);
150 }
151
152 /* Return the name of register REGNUM. */
153
154 const char *
155 i386_register_name (struct gdbarch *gdbarch, int regnum)
156 {
157 if (i386_mmx_regnum_p (gdbarch, regnum))
158 return i386_mmx_names[regnum - I387_MM0_REGNUM];
159
160 if (regnum >= 0 && regnum < i386_num_register_names)
161 return i386_register_names[regnum];
162
163 return NULL;
164 }
165
166 /* Convert a dbx register number REG to the appropriate register
167 number used by GDB. */
168
169 static int
170 i386_dbx_reg_to_regnum (int reg)
171 {
172 /* This implements what GCC calls the "default" register map
173 (dbx_register_map[]). */
174
175 if (reg >= 0 && reg <= 7)
176 {
177 /* General-purpose registers. The debug info calls %ebp
178 register 4, and %esp register 5. */
179 if (reg == 4)
180 return 5;
181 else if (reg == 5)
182 return 4;
183 else return reg;
184 }
185 else if (reg >= 12 && reg <= 19)
186 {
187 /* Floating-point registers. */
188 return reg - 12 + I387_ST0_REGNUM;
189 }
190 else if (reg >= 21 && reg <= 28)
191 {
192 /* SSE registers. */
193 return reg - 21 + I387_XMM0_REGNUM;
194 }
195 else if (reg >= 29 && reg <= 36)
196 {
197 /* MMX registers. */
198 return reg - 29 + I387_MM0_REGNUM;
199 }
200
201 /* This will hopefully provoke a warning. */
202 return gdbarch_num_regs (current_gdbarch)
203 + gdbarch_num_pseudo_regs (current_gdbarch);
204 }
205
206 /* Convert SVR4 register number REG to the appropriate register number
207 used by GDB. */
208
209 static int
210 i386_svr4_reg_to_regnum (int reg)
211 {
212 /* This implements the GCC register map that tries to be compatible
213 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
214
215 /* The SVR4 register numbering includes %eip and %eflags, and
216 numbers the floating point registers differently. */
217 if (reg >= 0 && reg <= 9)
218 {
219 /* General-purpose registers. */
220 return reg;
221 }
222 else if (reg >= 11 && reg <= 18)
223 {
224 /* Floating-point registers. */
225 return reg - 11 + I387_ST0_REGNUM;
226 }
227 else if (reg >= 21 && reg <= 36)
228 {
229 /* The SSE and MMX registers have the same numbers as with dbx. */
230 return i386_dbx_reg_to_regnum (reg);
231 }
232
233 switch (reg)
234 {
235 case 37: return I387_FCTRL_REGNUM;
236 case 38: return I387_FSTAT_REGNUM;
237 case 39: return I387_MXCSR_REGNUM;
238 case 40: return I386_ES_REGNUM;
239 case 41: return I386_CS_REGNUM;
240 case 42: return I386_SS_REGNUM;
241 case 43: return I386_DS_REGNUM;
242 case 44: return I386_FS_REGNUM;
243 case 45: return I386_GS_REGNUM;
244 }
245
246 /* This will hopefully provoke a warning. */
247 return gdbarch_num_regs (current_gdbarch)
248 + gdbarch_num_pseudo_regs (current_gdbarch);
249 }
250
251 #undef I387_ST0_REGNUM
252 #undef I387_MM0_REGNUM
253 #undef I387_NUM_XMM_REGS
254 \f
255
256 /* This is the variable that is set with "set disassembly-flavor", and
257 its legitimate values. */
258 static const char att_flavor[] = "att";
259 static const char intel_flavor[] = "intel";
260 static const char *valid_flavors[] =
261 {
262 att_flavor,
263 intel_flavor,
264 NULL
265 };
266 static const char *disassembly_flavor = att_flavor;
267 \f
268
269 /* Use the program counter to determine the contents and size of a
270 breakpoint instruction. Return a pointer to a string of bytes that
271 encode a breakpoint instruction, store the length of the string in
272 *LEN and optionally adjust *PC to point to the correct memory
273 location for inserting the breakpoint.
274
275 On the i386 we have a single breakpoint that fits in a single byte
276 and can be inserted anywhere.
277
278 This function is 64-bit safe. */
279
280 static const gdb_byte *
281 i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
282 {
283 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
284
285 *len = sizeof (break_insn);
286 return break_insn;
287 }
288 \f
289 #ifdef I386_REGNO_TO_SYMMETRY
290 #error "The Sequent Symmetry is no longer supported."
291 #endif
292
293 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
294 and %esp "belong" to the calling function. Therefore these
295 registers should be saved if they're going to be modified. */
296
297 /* The maximum number of saved registers. This should include all
298 registers mentioned above, and %eip. */
299 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
300
301 struct i386_frame_cache
302 {
303 /* Base address. */
304 CORE_ADDR base;
305 LONGEST sp_offset;
306 CORE_ADDR pc;
307
308 /* Saved registers. */
309 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
310 CORE_ADDR saved_sp;
311 int stack_align;
312 int pc_in_eax;
313
314 /* Stack space reserved for local variables. */
315 long locals;
316 };
317
318 /* Allocate and initialize a frame cache. */
319
320 static struct i386_frame_cache *
321 i386_alloc_frame_cache (void)
322 {
323 struct i386_frame_cache *cache;
324 int i;
325
326 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
327
328 /* Base address. */
329 cache->base = 0;
330 cache->sp_offset = -4;
331 cache->pc = 0;
332
333 /* Saved registers. We initialize these to -1 since zero is a valid
334 offset (that's where %ebp is supposed to be stored). */
335 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
336 cache->saved_regs[i] = -1;
337 cache->saved_sp = 0;
338 cache->stack_align = 0;
339 cache->pc_in_eax = 0;
340
341 /* Frameless until proven otherwise. */
342 cache->locals = -1;
343
344 return cache;
345 }
346
347 /* If the instruction at PC is a jump, return the address of its
348 target. Otherwise, return PC. */
349
350 static CORE_ADDR
351 i386_follow_jump (CORE_ADDR pc)
352 {
353 gdb_byte op;
354 long delta = 0;
355 int data16 = 0;
356
357 read_memory_nobpt (pc, &op, 1);
358 if (op == 0x66)
359 {
360 data16 = 1;
361 op = read_memory_unsigned_integer (pc + 1, 1);
362 }
363
364 switch (op)
365 {
366 case 0xe9:
367 /* Relative jump: if data16 == 0, disp32, else disp16. */
368 if (data16)
369 {
370 delta = read_memory_integer (pc + 2, 2);
371
372 /* Include the size of the jmp instruction (including the
373 0x66 prefix). */
374 delta += 4;
375 }
376 else
377 {
378 delta = read_memory_integer (pc + 1, 4);
379
380 /* Include the size of the jmp instruction. */
381 delta += 5;
382 }
383 break;
384 case 0xeb:
385 /* Relative jump, disp8 (ignore data16). */
386 delta = read_memory_integer (pc + data16 + 1, 1);
387
388 delta += data16 + 2;
389 break;
390 }
391
392 return pc + delta;
393 }
394
395 /* Check whether PC points at a prologue for a function returning a
396 structure or union. If so, it updates CACHE and returns the
397 address of the first instruction after the code sequence that
398 removes the "hidden" argument from the stack or CURRENT_PC,
399 whichever is smaller. Otherwise, return PC. */
400
401 static CORE_ADDR
402 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
403 struct i386_frame_cache *cache)
404 {
405 /* Functions that return a structure or union start with:
406
407 popl %eax 0x58
408 xchgl %eax, (%esp) 0x87 0x04 0x24
409 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
410
411 (the System V compiler puts out the second `xchg' instruction,
412 and the assembler doesn't try to optimize it, so the 'sib' form
413 gets generated). This sequence is used to get the address of the
414 return buffer for a function that returns a structure. */
415 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
416 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
417 gdb_byte buf[4];
418 gdb_byte op;
419
420 if (current_pc <= pc)
421 return pc;
422
423 read_memory_nobpt (pc, &op, 1);
424
425 if (op != 0x58) /* popl %eax */
426 return pc;
427
428 read_memory_nobpt (pc + 1, buf, 4);
429 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
430 return pc;
431
432 if (current_pc == pc)
433 {
434 cache->sp_offset += 4;
435 return current_pc;
436 }
437
438 if (current_pc == pc + 1)
439 {
440 cache->pc_in_eax = 1;
441 return current_pc;
442 }
443
444 if (buf[1] == proto1[1])
445 return pc + 4;
446 else
447 return pc + 5;
448 }
449
450 static CORE_ADDR
451 i386_skip_probe (CORE_ADDR pc)
452 {
453 /* A function may start with
454
455 pushl constant
456 call _probe
457 addl $4, %esp
458
459 followed by
460
461 pushl %ebp
462
463 etc. */
464 gdb_byte buf[8];
465 gdb_byte op;
466
467 read_memory_nobpt (pc, &op, 1);
468
469 if (op == 0x68 || op == 0x6a)
470 {
471 int delta;
472
473 /* Skip past the `pushl' instruction; it has either a one-byte or a
474 four-byte operand, depending on the opcode. */
475 if (op == 0x68)
476 delta = 5;
477 else
478 delta = 2;
479
480 /* Read the following 8 bytes, which should be `call _probe' (6
481 bytes) followed by `addl $4,%esp' (2 bytes). */
482 read_memory (pc + delta, buf, sizeof (buf));
483 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
484 pc += delta + sizeof (buf);
485 }
486
487 return pc;
488 }
489
490 /* GCC 4.1 and later, can put code in the prologue to realign the
491 stack pointer. Check whether PC points to such code, and update
492 CACHE accordingly. Return the first instruction after the code
493 sequence or CURRENT_PC, whichever is smaller. If we don't
494 recognize the code, return PC. */
495
496 static CORE_ADDR
497 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
498 struct i386_frame_cache *cache)
499 {
500 /* The register used by the compiler to perform the stack re-alignment
501 is, in order of preference, either %ecx, %edx, or %eax. GCC should
502 never use %ebx as it always treats it as callee-saved, whereas
503 the compiler can only use caller-saved registers. */
504 static const gdb_byte insns_ecx[10] = {
505 0x8d, 0x4c, 0x24, 0x04, /* leal 4(%esp), %ecx */
506 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
507 0xff, 0x71, 0xfc /* pushl -4(%ecx) */
508 };
509 static const gdb_byte insns_edx[10] = {
510 0x8d, 0x54, 0x24, 0x04, /* leal 4(%esp), %edx */
511 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
512 0xff, 0x72, 0xfc /* pushl -4(%edx) */
513 };
514 static const gdb_byte insns_eax[10] = {
515 0x8d, 0x44, 0x24, 0x04, /* leal 4(%esp), %eax */
516 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
517 0xff, 0x70, 0xfc /* pushl -4(%eax) */
518 };
519 gdb_byte buf[10];
520
521 if (target_read_memory (pc, buf, sizeof buf)
522 || (memcmp (buf, insns_ecx, sizeof buf) != 0
523 && memcmp (buf, insns_edx, sizeof buf) != 0
524 && memcmp (buf, insns_eax, sizeof buf) != 0))
525 return pc;
526
527 if (current_pc > pc + 4)
528 cache->stack_align = 1;
529
530 return min (pc + 10, current_pc);
531 }
532
533 /* Maximum instruction length we need to handle. */
534 #define I386_MAX_INSN_LEN 6
535
536 /* Instruction description. */
537 struct i386_insn
538 {
539 size_t len;
540 gdb_byte insn[I386_MAX_INSN_LEN];
541 gdb_byte mask[I386_MAX_INSN_LEN];
542 };
543
544 /* Search for the instruction at PC in the list SKIP_INSNS. Return
545 the first instruction description that matches. Otherwise, return
546 NULL. */
547
548 static struct i386_insn *
549 i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
550 {
551 struct i386_insn *insn;
552 gdb_byte op;
553
554 read_memory_nobpt (pc, &op, 1);
555
556 for (insn = skip_insns; insn->len > 0; insn++)
557 {
558 if ((op & insn->mask[0]) == insn->insn[0])
559 {
560 gdb_byte buf[I386_MAX_INSN_LEN - 1];
561 int insn_matched = 1;
562 size_t i;
563
564 gdb_assert (insn->len > 1);
565 gdb_assert (insn->len <= I386_MAX_INSN_LEN);
566
567 read_memory_nobpt (pc + 1, buf, insn->len - 1);
568 for (i = 1; i < insn->len; i++)
569 {
570 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
571 insn_matched = 0;
572 }
573
574 if (insn_matched)
575 return insn;
576 }
577 }
578
579 return NULL;
580 }
581
582 /* Some special instructions that might be migrated by GCC into the
583 part of the prologue that sets up the new stack frame. Because the
584 stack frame hasn't been setup yet, no registers have been saved
585 yet, and only the scratch registers %eax, %ecx and %edx can be
586 touched. */
587
588 struct i386_insn i386_frame_setup_skip_insns[] =
589 {
590 /* Check for `movb imm8, r' and `movl imm32, r'.
591
592 ??? Should we handle 16-bit operand-sizes here? */
593
594 /* `movb imm8, %al' and `movb imm8, %ah' */
595 /* `movb imm8, %cl' and `movb imm8, %ch' */
596 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
597 /* `movb imm8, %dl' and `movb imm8, %dh' */
598 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
599 /* `movl imm32, %eax' and `movl imm32, %ecx' */
600 { 5, { 0xb8 }, { 0xfe } },
601 /* `movl imm32, %edx' */
602 { 5, { 0xba }, { 0xff } },
603
604 /* Check for `mov imm32, r32'. Note that there is an alternative
605 encoding for `mov m32, %eax'.
606
607 ??? Should we handle SIB adressing here?
608 ??? Should we handle 16-bit operand-sizes here? */
609
610 /* `movl m32, %eax' */
611 { 5, { 0xa1 }, { 0xff } },
612 /* `movl m32, %eax' and `mov; m32, %ecx' */
613 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
614 /* `movl m32, %edx' */
615 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
616
617 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
618 Because of the symmetry, there are actually two ways to encode
619 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
620 opcode bytes 0x31 and 0x33 for `xorl'. */
621
622 /* `subl %eax, %eax' */
623 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
624 /* `subl %ecx, %ecx' */
625 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
626 /* `subl %edx, %edx' */
627 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
628 /* `xorl %eax, %eax' */
629 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
630 /* `xorl %ecx, %ecx' */
631 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
632 /* `xorl %edx, %edx' */
633 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
634 { 0 }
635 };
636
637 /* Check whether PC points at a code that sets up a new stack frame.
638 If so, it updates CACHE and returns the address of the first
639 instruction after the sequence that sets up the frame or LIMIT,
640 whichever is smaller. If we don't recognize the code, return PC. */
641
642 static CORE_ADDR
643 i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
644 struct i386_frame_cache *cache)
645 {
646 struct i386_insn *insn;
647 gdb_byte op;
648 int skip = 0;
649
650 if (limit <= pc)
651 return limit;
652
653 read_memory_nobpt (pc, &op, 1);
654
655 if (op == 0x55) /* pushl %ebp */
656 {
657 /* Take into account that we've executed the `pushl %ebp' that
658 starts this instruction sequence. */
659 cache->saved_regs[I386_EBP_REGNUM] = 0;
660 cache->sp_offset += 4;
661 pc++;
662
663 /* If that's all, return now. */
664 if (limit <= pc)
665 return limit;
666
667 /* Check for some special instructions that might be migrated by
668 GCC into the prologue and skip them. At this point in the
669 prologue, code should only touch the scratch registers %eax,
670 %ecx and %edx, so while the number of posibilities is sheer,
671 it is limited.
672
673 Make sure we only skip these instructions if we later see the
674 `movl %esp, %ebp' that actually sets up the frame. */
675 while (pc + skip < limit)
676 {
677 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
678 if (insn == NULL)
679 break;
680
681 skip += insn->len;
682 }
683
684 /* If that's all, return now. */
685 if (limit <= pc + skip)
686 return limit;
687
688 read_memory_nobpt (pc + skip, &op, 1);
689
690 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
691 switch (op)
692 {
693 case 0x8b:
694 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
695 return pc;
696 break;
697 case 0x89:
698 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
699 return pc;
700 break;
701 default:
702 return pc;
703 }
704
705 /* OK, we actually have a frame. We just don't know how large
706 it is yet. Set its size to zero. We'll adjust it if
707 necessary. We also now commit to skipping the special
708 instructions mentioned before. */
709 cache->locals = 0;
710 pc += (skip + 2);
711
712 /* If that's all, return now. */
713 if (limit <= pc)
714 return limit;
715
716 /* Check for stack adjustment
717
718 subl $XXX, %esp
719
720 NOTE: You can't subtract a 16-bit immediate from a 32-bit
721 reg, so we don't have to worry about a data16 prefix. */
722 read_memory_nobpt (pc, &op, 1);
723 if (op == 0x83)
724 {
725 /* `subl' with 8-bit immediate. */
726 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
727 /* Some instruction starting with 0x83 other than `subl'. */
728 return pc;
729
730 /* `subl' with signed 8-bit immediate (though it wouldn't
731 make sense to be negative). */
732 cache->locals = read_memory_integer (pc + 2, 1);
733 return pc + 3;
734 }
735 else if (op == 0x81)
736 {
737 /* Maybe it is `subl' with a 32-bit immediate. */
738 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
739 /* Some instruction starting with 0x81 other than `subl'. */
740 return pc;
741
742 /* It is `subl' with a 32-bit immediate. */
743 cache->locals = read_memory_integer (pc + 2, 4);
744 return pc + 6;
745 }
746 else
747 {
748 /* Some instruction other than `subl'. */
749 return pc;
750 }
751 }
752 else if (op == 0xc8) /* enter */
753 {
754 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
755 return pc + 4;
756 }
757
758 return pc;
759 }
760
761 /* Check whether PC points at code that saves registers on the stack.
762 If so, it updates CACHE and returns the address of the first
763 instruction after the register saves or CURRENT_PC, whichever is
764 smaller. Otherwise, return PC. */
765
766 static CORE_ADDR
767 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
768 struct i386_frame_cache *cache)
769 {
770 CORE_ADDR offset = 0;
771 gdb_byte op;
772 int i;
773
774 if (cache->locals > 0)
775 offset -= cache->locals;
776 for (i = 0; i < 8 && pc < current_pc; i++)
777 {
778 read_memory_nobpt (pc, &op, 1);
779 if (op < 0x50 || op > 0x57)
780 break;
781
782 offset -= 4;
783 cache->saved_regs[op - 0x50] = offset;
784 cache->sp_offset += 4;
785 pc++;
786 }
787
788 return pc;
789 }
790
791 /* Do a full analysis of the prologue at PC and update CACHE
792 accordingly. Bail out early if CURRENT_PC is reached. Return the
793 address where the analysis stopped.
794
795 We handle these cases:
796
797 The startup sequence can be at the start of the function, or the
798 function can start with a branch to startup code at the end.
799
800 %ebp can be set up with either the 'enter' instruction, or "pushl
801 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
802 once used in the System V compiler).
803
804 Local space is allocated just below the saved %ebp by either the
805 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
806 16-bit unsigned argument for space to allocate, and the 'addl'
807 instruction could have either a signed byte, or 32-bit immediate.
808
809 Next, the registers used by this function are pushed. With the
810 System V compiler they will always be in the order: %edi, %esi,
811 %ebx (and sometimes a harmless bug causes it to also save but not
812 restore %eax); however, the code below is willing to see the pushes
813 in any order, and will handle up to 8 of them.
814
815 If the setup sequence is at the end of the function, then the next
816 instruction will be a branch back to the start. */
817
818 static CORE_ADDR
819 i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
820 struct i386_frame_cache *cache)
821 {
822 pc = i386_follow_jump (pc);
823 pc = i386_analyze_struct_return (pc, current_pc, cache);
824 pc = i386_skip_probe (pc);
825 pc = i386_analyze_stack_align (pc, current_pc, cache);
826 pc = i386_analyze_frame_setup (pc, current_pc, cache);
827 return i386_analyze_register_saves (pc, current_pc, cache);
828 }
829
830 /* Return PC of first real instruction. */
831
832 static CORE_ADDR
833 i386_skip_prologue (CORE_ADDR start_pc)
834 {
835 static gdb_byte pic_pat[6] =
836 {
837 0xe8, 0, 0, 0, 0, /* call 0x0 */
838 0x5b, /* popl %ebx */
839 };
840 struct i386_frame_cache cache;
841 CORE_ADDR pc;
842 gdb_byte op;
843 int i;
844
845 cache.locals = -1;
846 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
847 if (cache.locals < 0)
848 return start_pc;
849
850 /* Found valid frame setup. */
851
852 /* The native cc on SVR4 in -K PIC mode inserts the following code
853 to get the address of the global offset table (GOT) into register
854 %ebx:
855
856 call 0x0
857 popl %ebx
858 movl %ebx,x(%ebp) (optional)
859 addl y,%ebx
860
861 This code is with the rest of the prologue (at the end of the
862 function), so we have to skip it to get to the first real
863 instruction at the start of the function. */
864
865 for (i = 0; i < 6; i++)
866 {
867 read_memory_nobpt (pc + i, &op, 1);
868 if (pic_pat[i] != op)
869 break;
870 }
871 if (i == 6)
872 {
873 int delta = 6;
874
875 read_memory_nobpt (pc + delta, &op, 1);
876
877 if (op == 0x89) /* movl %ebx, x(%ebp) */
878 {
879 op = read_memory_unsigned_integer (pc + delta + 1, 1);
880
881 if (op == 0x5d) /* One byte offset from %ebp. */
882 delta += 3;
883 else if (op == 0x9d) /* Four byte offset from %ebp. */
884 delta += 6;
885 else /* Unexpected instruction. */
886 delta = 0;
887
888 read_memory_nobpt (pc + delta, &op, 1);
889 }
890
891 /* addl y,%ebx */
892 if (delta > 0 && op == 0x81
893 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3)
894 {
895 pc += delta + 6;
896 }
897 }
898
899 /* If the function starts with a branch (to startup code at the end)
900 the last instruction should bring us back to the first
901 instruction of the real code. */
902 if (i386_follow_jump (start_pc) != start_pc)
903 pc = i386_follow_jump (pc);
904
905 return pc;
906 }
907
908 /* This function is 64-bit safe. */
909
910 static CORE_ADDR
911 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
912 {
913 gdb_byte buf[8];
914
915 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
916 return extract_typed_address (buf, builtin_type_void_func_ptr);
917 }
918 \f
919
920 /* Normal frames. */
921
922 static struct i386_frame_cache *
923 i386_frame_cache (struct frame_info *next_frame, void **this_cache)
924 {
925 struct i386_frame_cache *cache;
926 gdb_byte buf[4];
927 int i;
928
929 if (*this_cache)
930 return *this_cache;
931
932 cache = i386_alloc_frame_cache ();
933 *this_cache = cache;
934
935 /* In principle, for normal frames, %ebp holds the frame pointer,
936 which holds the base address for the current stack frame.
937 However, for functions that don't need it, the frame pointer is
938 optional. For these "frameless" functions the frame pointer is
939 actually the frame pointer of the calling frame. Signal
940 trampolines are just a special case of a "frameless" function.
941 They (usually) share their frame pointer with the frame that was
942 in progress when the signal occurred. */
943
944 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
945 cache->base = extract_unsigned_integer (buf, 4);
946 if (cache->base == 0)
947 return cache;
948
949 /* For normal frames, %eip is stored at 4(%ebp). */
950 cache->saved_regs[I386_EIP_REGNUM] = 4;
951
952 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
953 if (cache->pc != 0)
954 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
955
956 if (cache->stack_align)
957 {
958 /* Saved stack pointer has been saved in %ecx. */
959 frame_unwind_register (next_frame, I386_ECX_REGNUM, buf);
960 cache->saved_sp = extract_unsigned_integer(buf, 4);
961 }
962
963 if (cache->locals < 0)
964 {
965 /* We didn't find a valid frame, which means that CACHE->base
966 currently holds the frame pointer for our calling frame. If
967 we're at the start of a function, or somewhere half-way its
968 prologue, the function's frame probably hasn't been fully
969 setup yet. Try to reconstruct the base address for the stack
970 frame by looking at the stack pointer. For truly "frameless"
971 functions this might work too. */
972
973 if (cache->stack_align)
974 {
975 /* We're halfway aligning the stack. */
976 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
977 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
978
979 /* This will be added back below. */
980 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
981 }
982 else
983 {
984 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
985 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
986 }
987 }
988
989 /* Now that we have the base address for the stack frame we can
990 calculate the value of %esp in the calling frame. */
991 if (cache->saved_sp == 0)
992 cache->saved_sp = cache->base + 8;
993
994 /* Adjust all the saved registers such that they contain addresses
995 instead of offsets. */
996 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
997 if (cache->saved_regs[i] != -1)
998 cache->saved_regs[i] += cache->base;
999
1000 return cache;
1001 }
1002
1003 static void
1004 i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
1005 struct frame_id *this_id)
1006 {
1007 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1008
1009 /* This marks the outermost frame. */
1010 if (cache->base == 0)
1011 return;
1012
1013 /* See the end of i386_push_dummy_call. */
1014 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1015 }
1016
1017 static void
1018 i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
1019 int regnum, int *optimizedp,
1020 enum lval_type *lvalp, CORE_ADDR *addrp,
1021 int *realnump, gdb_byte *valuep)
1022 {
1023 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1024
1025 gdb_assert (regnum >= 0);
1026
1027 /* The System V ABI says that:
1028
1029 "The flags register contains the system flags, such as the
1030 direction flag and the carry flag. The direction flag must be
1031 set to the forward (that is, zero) direction before entry and
1032 upon exit from a function. Other user flags have no specified
1033 role in the standard calling sequence and are not preserved."
1034
1035 To guarantee the "upon exit" part of that statement we fake a
1036 saved flags register that has its direction flag cleared.
1037
1038 Note that GCC doesn't seem to rely on the fact that the direction
1039 flag is cleared after a function return; it always explicitly
1040 clears the flag before operations where it matters.
1041
1042 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1043 right thing to do. The way we fake the flags register here makes
1044 it impossible to change it. */
1045
1046 if (regnum == I386_EFLAGS_REGNUM)
1047 {
1048 *optimizedp = 0;
1049 *lvalp = not_lval;
1050 *addrp = 0;
1051 *realnump = -1;
1052 if (valuep)
1053 {
1054 ULONGEST val;
1055
1056 /* Clear the direction flag. */
1057 val = frame_unwind_register_unsigned (next_frame,
1058 I386_EFLAGS_REGNUM);
1059 val &= ~(1 << 10);
1060 store_unsigned_integer (valuep, 4, val);
1061 }
1062
1063 return;
1064 }
1065
1066 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1067 {
1068 *optimizedp = 0;
1069 *lvalp = lval_register;
1070 *addrp = 0;
1071 *realnump = I386_EAX_REGNUM;
1072 if (valuep)
1073 frame_unwind_register (next_frame, (*realnump), valuep);
1074 return;
1075 }
1076
1077 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
1078 {
1079 *optimizedp = 0;
1080 *lvalp = not_lval;
1081 *addrp = 0;
1082 *realnump = -1;
1083 if (valuep)
1084 {
1085 /* Store the value. */
1086 store_unsigned_integer (valuep, 4, cache->saved_sp);
1087 }
1088 return;
1089 }
1090
1091 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1092 {
1093 *optimizedp = 0;
1094 *lvalp = lval_memory;
1095 *addrp = cache->saved_regs[regnum];
1096 *realnump = -1;
1097 if (valuep)
1098 {
1099 /* Read the value in from memory. */
1100 read_memory (*addrp, valuep,
1101 register_size (get_frame_arch (next_frame), regnum));
1102 }
1103 return;
1104 }
1105
1106 *optimizedp = 0;
1107 *lvalp = lval_register;
1108 *addrp = 0;
1109 *realnump = regnum;
1110 if (valuep)
1111 frame_unwind_register (next_frame, (*realnump), valuep);
1112 }
1113
1114 static const struct frame_unwind i386_frame_unwind =
1115 {
1116 NORMAL_FRAME,
1117 i386_frame_this_id,
1118 i386_frame_prev_register
1119 };
1120
1121 static const struct frame_unwind *
1122 i386_frame_sniffer (struct frame_info *next_frame)
1123 {
1124 return &i386_frame_unwind;
1125 }
1126 \f
1127
1128 /* Signal trampolines. */
1129
1130 static struct i386_frame_cache *
1131 i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
1132 {
1133 struct i386_frame_cache *cache;
1134 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
1135 CORE_ADDR addr;
1136 gdb_byte buf[4];
1137
1138 if (*this_cache)
1139 return *this_cache;
1140
1141 cache = i386_alloc_frame_cache ();
1142
1143 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1144 cache->base = extract_unsigned_integer (buf, 4) - 4;
1145
1146 addr = tdep->sigcontext_addr (next_frame);
1147 if (tdep->sc_reg_offset)
1148 {
1149 int i;
1150
1151 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1152
1153 for (i = 0; i < tdep->sc_num_regs; i++)
1154 if (tdep->sc_reg_offset[i] != -1)
1155 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1156 }
1157 else
1158 {
1159 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1160 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
1161 }
1162
1163 *this_cache = cache;
1164 return cache;
1165 }
1166
1167 static void
1168 i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
1169 struct frame_id *this_id)
1170 {
1171 struct i386_frame_cache *cache =
1172 i386_sigtramp_frame_cache (next_frame, this_cache);
1173
1174 /* See the end of i386_push_dummy_call. */
1175 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
1176 }
1177
1178 static void
1179 i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
1180 void **this_cache,
1181 int regnum, int *optimizedp,
1182 enum lval_type *lvalp, CORE_ADDR *addrp,
1183 int *realnump, gdb_byte *valuep)
1184 {
1185 /* Make sure we've initialized the cache. */
1186 i386_sigtramp_frame_cache (next_frame, this_cache);
1187
1188 i386_frame_prev_register (next_frame, this_cache, regnum,
1189 optimizedp, lvalp, addrp, realnump, valuep);
1190 }
1191
1192 static const struct frame_unwind i386_sigtramp_frame_unwind =
1193 {
1194 SIGTRAMP_FRAME,
1195 i386_sigtramp_frame_this_id,
1196 i386_sigtramp_frame_prev_register
1197 };
1198
1199 static const struct frame_unwind *
1200 i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
1201 {
1202 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
1203
1204 /* We shouldn't even bother if we don't have a sigcontext_addr
1205 handler. */
1206 if (tdep->sigcontext_addr == NULL)
1207 return NULL;
1208
1209 if (tdep->sigtramp_p != NULL)
1210 {
1211 if (tdep->sigtramp_p (next_frame))
1212 return &i386_sigtramp_frame_unwind;
1213 }
1214
1215 if (tdep->sigtramp_start != 0)
1216 {
1217 CORE_ADDR pc = frame_pc_unwind (next_frame);
1218
1219 gdb_assert (tdep->sigtramp_end != 0);
1220 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1221 return &i386_sigtramp_frame_unwind;
1222 }
1223
1224 return NULL;
1225 }
1226 \f
1227
1228 static CORE_ADDR
1229 i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1230 {
1231 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1232
1233 return cache->base;
1234 }
1235
1236 static const struct frame_base i386_frame_base =
1237 {
1238 &i386_frame_unwind,
1239 i386_frame_base_address,
1240 i386_frame_base_address,
1241 i386_frame_base_address
1242 };
1243
1244 static struct frame_id
1245 i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1246 {
1247 gdb_byte buf[4];
1248 CORE_ADDR fp;
1249
1250 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1251 fp = extract_unsigned_integer (buf, 4);
1252
1253 /* See the end of i386_push_dummy_call. */
1254 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
1255 }
1256 \f
1257
1258 /* Figure out where the longjmp will land. Slurp the args out of the
1259 stack. We expect the first arg to be a pointer to the jmp_buf
1260 structure from which we extract the address that we will land at.
1261 This address is copied into PC. This routine returns non-zero on
1262 success.
1263
1264 This function is 64-bit safe. */
1265
1266 static int
1267 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1268 {
1269 gdb_byte buf[8];
1270 CORE_ADDR sp, jb_addr;
1271 int jb_pc_offset = gdbarch_tdep (get_frame_arch (frame))->jb_pc_offset;
1272 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
1273
1274 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1275 longjmp will land. */
1276 if (jb_pc_offset == -1)
1277 return 0;
1278
1279 /* Don't use I386_ESP_REGNUM here, since this function is also used
1280 for AMD64. */
1281 get_frame_register (frame, gdbarch_sp_regnum (get_frame_arch (frame)), buf);
1282 sp = extract_typed_address (buf, builtin_type_void_data_ptr);
1283 if (target_read_memory (sp + len, buf, len))
1284 return 0;
1285
1286 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
1287 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
1288 return 0;
1289
1290 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
1291 return 1;
1292 }
1293 \f
1294
1295 static CORE_ADDR
1296 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1297 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1298 struct value **args, CORE_ADDR sp, int struct_return,
1299 CORE_ADDR struct_addr)
1300 {
1301 gdb_byte buf[4];
1302 int i;
1303
1304 /* Push arguments in reverse order. */
1305 for (i = nargs - 1; i >= 0; i--)
1306 {
1307 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
1308
1309 /* The System V ABI says that:
1310
1311 "An argument's size is increased, if necessary, to make it a
1312 multiple of [32-bit] words. This may require tail padding,
1313 depending on the size of the argument."
1314
1315 This makes sure the stack stays word-aligned. */
1316 sp -= (len + 3) & ~3;
1317 write_memory (sp, value_contents_all (args[i]), len);
1318 }
1319
1320 /* Push value address. */
1321 if (struct_return)
1322 {
1323 sp -= 4;
1324 store_unsigned_integer (buf, 4, struct_addr);
1325 write_memory (sp, buf, 4);
1326 }
1327
1328 /* Store return address. */
1329 sp -= 4;
1330 store_unsigned_integer (buf, 4, bp_addr);
1331 write_memory (sp, buf, 4);
1332
1333 /* Finally, update the stack pointer... */
1334 store_unsigned_integer (buf, 4, sp);
1335 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1336
1337 /* ...and fake a frame pointer. */
1338 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1339
1340 /* MarkK wrote: This "+ 8" is all over the place:
1341 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1342 i386_unwind_dummy_id). It's there, since all frame unwinders for
1343 a given target have to agree (within a certain margin) on the
1344 definition of the stack address of a frame. Otherwise
1345 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1346 stack address *before* the function call as a frame's CFA. On
1347 the i386, when %ebp is used as a frame pointer, the offset
1348 between the contents %ebp and the CFA as defined by GCC. */
1349 return sp + 8;
1350 }
1351
1352 /* These registers are used for returning integers (and on some
1353 targets also for returning `struct' and `union' values when their
1354 size and alignment match an integer type). */
1355 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1356 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1357
1358 /* Read, for architecture GDBARCH, a function return value of TYPE
1359 from REGCACHE, and copy that into VALBUF. */
1360
1361 static void
1362 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
1363 struct regcache *regcache, gdb_byte *valbuf)
1364 {
1365 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1366 int len = TYPE_LENGTH (type);
1367 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1368
1369 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1370 {
1371 if (tdep->st0_regnum < 0)
1372 {
1373 warning (_("Cannot find floating-point return value."));
1374 memset (valbuf, 0, len);
1375 return;
1376 }
1377
1378 /* Floating-point return values can be found in %st(0). Convert
1379 its contents to the desired type. This is probably not
1380 exactly how it would happen on the target itself, but it is
1381 the best we can do. */
1382 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
1383 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
1384 }
1385 else
1386 {
1387 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1388 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
1389
1390 if (len <= low_size)
1391 {
1392 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1393 memcpy (valbuf, buf, len);
1394 }
1395 else if (len <= (low_size + high_size))
1396 {
1397 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1398 memcpy (valbuf, buf, low_size);
1399 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
1400 memcpy (valbuf + low_size, buf, len - low_size);
1401 }
1402 else
1403 internal_error (__FILE__, __LINE__,
1404 _("Cannot extract return value of %d bytes long."), len);
1405 }
1406 }
1407
1408 /* Write, for architecture GDBARCH, a function return value of TYPE
1409 from VALBUF into REGCACHE. */
1410
1411 static void
1412 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
1413 struct regcache *regcache, const gdb_byte *valbuf)
1414 {
1415 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1416 int len = TYPE_LENGTH (type);
1417
1418 /* Define I387_ST0_REGNUM such that we use the proper definitions
1419 for the architecture. */
1420 #define I387_ST0_REGNUM I386_ST0_REGNUM
1421
1422 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1423 {
1424 ULONGEST fstat;
1425 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1426
1427 if (tdep->st0_regnum < 0)
1428 {
1429 warning (_("Cannot set floating-point return value."));
1430 return;
1431 }
1432
1433 /* Returning floating-point values is a bit tricky. Apart from
1434 storing the return value in %st(0), we have to simulate the
1435 state of the FPU at function return point. */
1436
1437 /* Convert the value found in VALBUF to the extended
1438 floating-point format used by the FPU. This is probably
1439 not exactly how it would happen on the target itself, but
1440 it is the best we can do. */
1441 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1442 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
1443
1444 /* Set the top of the floating-point register stack to 7. The
1445 actual value doesn't really matter, but 7 is what a normal
1446 function return would end up with if the program started out
1447 with a freshly initialized FPU. */
1448 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
1449 fstat |= (7 << 11);
1450 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat);
1451
1452 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1453 the floating-point register stack to 7, the appropriate value
1454 for the tag word is 0x3fff. */
1455 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff);
1456 }
1457 else
1458 {
1459 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1460 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
1461
1462 if (len <= low_size)
1463 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1464 else if (len <= (low_size + high_size))
1465 {
1466 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1467 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1468 len - low_size, valbuf + low_size);
1469 }
1470 else
1471 internal_error (__FILE__, __LINE__,
1472 _("Cannot store return value of %d bytes long."), len);
1473 }
1474
1475 #undef I387_ST0_REGNUM
1476 }
1477 \f
1478
1479 /* This is the variable that is set with "set struct-convention", and
1480 its legitimate values. */
1481 static const char default_struct_convention[] = "default";
1482 static const char pcc_struct_convention[] = "pcc";
1483 static const char reg_struct_convention[] = "reg";
1484 static const char *valid_conventions[] =
1485 {
1486 default_struct_convention,
1487 pcc_struct_convention,
1488 reg_struct_convention,
1489 NULL
1490 };
1491 static const char *struct_convention = default_struct_convention;
1492
1493 /* Return non-zero if TYPE, which is assumed to be a structure,
1494 a union type, or an array type, should be returned in registers
1495 for architecture GDBARCH. */
1496
1497 static int
1498 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
1499 {
1500 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1501 enum type_code code = TYPE_CODE (type);
1502 int len = TYPE_LENGTH (type);
1503
1504 gdb_assert (code == TYPE_CODE_STRUCT
1505 || code == TYPE_CODE_UNION
1506 || code == TYPE_CODE_ARRAY);
1507
1508 if (struct_convention == pcc_struct_convention
1509 || (struct_convention == default_struct_convention
1510 && tdep->struct_return == pcc_struct_return))
1511 return 0;
1512
1513 /* Structures consisting of a single `float', `double' or 'long
1514 double' member are returned in %st(0). */
1515 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1516 {
1517 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1518 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1519 return (len == 4 || len == 8 || len == 12);
1520 }
1521
1522 return (len == 1 || len == 2 || len == 4 || len == 8);
1523 }
1524
1525 /* Determine, for architecture GDBARCH, how a return value of TYPE
1526 should be returned. If it is supposed to be returned in registers,
1527 and READBUF is non-zero, read the appropriate value from REGCACHE,
1528 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1529 from WRITEBUF into REGCACHE. */
1530
1531 static enum return_value_convention
1532 i386_return_value (struct gdbarch *gdbarch, struct type *type,
1533 struct regcache *regcache, gdb_byte *readbuf,
1534 const gdb_byte *writebuf)
1535 {
1536 enum type_code code = TYPE_CODE (type);
1537
1538 if ((code == TYPE_CODE_STRUCT
1539 || code == TYPE_CODE_UNION
1540 || code == TYPE_CODE_ARRAY)
1541 && !i386_reg_struct_return_p (gdbarch, type))
1542 {
1543 /* The System V ABI says that:
1544
1545 "A function that returns a structure or union also sets %eax
1546 to the value of the original address of the caller's area
1547 before it returns. Thus when the caller receives control
1548 again, the address of the returned object resides in register
1549 %eax and can be used to access the object."
1550
1551 So the ABI guarantees that we can always find the return
1552 value just after the function has returned. */
1553
1554 /* Note that the ABI doesn't mention functions returning arrays,
1555 which is something possible in certain languages such as Ada.
1556 In this case, the value is returned as if it was wrapped in
1557 a record, so the convention applied to records also applies
1558 to arrays. */
1559
1560 if (readbuf)
1561 {
1562 ULONGEST addr;
1563
1564 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1565 read_memory (addr, readbuf, TYPE_LENGTH (type));
1566 }
1567
1568 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1569 }
1570
1571 /* This special case is for structures consisting of a single
1572 `float', `double' or 'long double' member. These structures are
1573 returned in %st(0). For these structures, we call ourselves
1574 recursively, changing TYPE into the type of the first member of
1575 the structure. Since that should work for all structures that
1576 have only one member, we don't bother to check the member's type
1577 here. */
1578 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1579 {
1580 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1581 return i386_return_value (gdbarch, type, regcache, readbuf, writebuf);
1582 }
1583
1584 if (readbuf)
1585 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1586 if (writebuf)
1587 i386_store_return_value (gdbarch, type, regcache, writebuf);
1588
1589 return RETURN_VALUE_REGISTER_CONVENTION;
1590 }
1591 \f
1592
1593 /* Type for %eflags. */
1594 struct type *i386_eflags_type;
1595
1596 /* Type for %mxcsr. */
1597 struct type *i386_mxcsr_type;
1598
1599 /* Construct types for ISA-specific registers. */
1600 static void
1601 i386_init_types (void)
1602 {
1603 struct type *type;
1604
1605 type = init_flags_type ("builtin_type_i386_eflags", 4);
1606 append_flags_type_flag (type, 0, "CF");
1607 append_flags_type_flag (type, 1, NULL);
1608 append_flags_type_flag (type, 2, "PF");
1609 append_flags_type_flag (type, 4, "AF");
1610 append_flags_type_flag (type, 6, "ZF");
1611 append_flags_type_flag (type, 7, "SF");
1612 append_flags_type_flag (type, 8, "TF");
1613 append_flags_type_flag (type, 9, "IF");
1614 append_flags_type_flag (type, 10, "DF");
1615 append_flags_type_flag (type, 11, "OF");
1616 append_flags_type_flag (type, 14, "NT");
1617 append_flags_type_flag (type, 16, "RF");
1618 append_flags_type_flag (type, 17, "VM");
1619 append_flags_type_flag (type, 18, "AC");
1620 append_flags_type_flag (type, 19, "VIF");
1621 append_flags_type_flag (type, 20, "VIP");
1622 append_flags_type_flag (type, 21, "ID");
1623 i386_eflags_type = type;
1624
1625 type = init_flags_type ("builtin_type_i386_mxcsr", 4);
1626 append_flags_type_flag (type, 0, "IE");
1627 append_flags_type_flag (type, 1, "DE");
1628 append_flags_type_flag (type, 2, "ZE");
1629 append_flags_type_flag (type, 3, "OE");
1630 append_flags_type_flag (type, 4, "UE");
1631 append_flags_type_flag (type, 5, "PE");
1632 append_flags_type_flag (type, 6, "DAZ");
1633 append_flags_type_flag (type, 7, "IM");
1634 append_flags_type_flag (type, 8, "DM");
1635 append_flags_type_flag (type, 9, "ZM");
1636 append_flags_type_flag (type, 10, "OM");
1637 append_flags_type_flag (type, 11, "UM");
1638 append_flags_type_flag (type, 12, "PM");
1639 append_flags_type_flag (type, 15, "FZ");
1640 i386_mxcsr_type = type;
1641 }
1642
1643 /* Construct vector type for MMX registers. */
1644 struct type *
1645 i386_mmx_type (struct gdbarch *gdbarch)
1646 {
1647 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1648
1649 if (!tdep->i386_mmx_type)
1650 {
1651 /* The type we're building is this: */
1652 #if 0
1653 union __gdb_builtin_type_vec64i
1654 {
1655 int64_t uint64;
1656 int32_t v2_int32[2];
1657 int16_t v4_int16[4];
1658 int8_t v8_int8[8];
1659 };
1660 #endif
1661
1662 struct type *t;
1663
1664 t = init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
1665 append_composite_type_field (t, "uint64", builtin_type_int64);
1666 append_composite_type_field (t, "v2_int32",
1667 init_vector_type (builtin_type_int32, 2));
1668 append_composite_type_field (t, "v4_int16",
1669 init_vector_type (builtin_type_int16, 4));
1670 append_composite_type_field (t, "v8_int8",
1671 init_vector_type (builtin_type_int8, 8));
1672
1673 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1674 TYPE_NAME (t) = "builtin_type_vec64i";
1675 tdep->i386_mmx_type = t;
1676 }
1677
1678 return tdep->i386_mmx_type;
1679 }
1680
1681 struct type *
1682 i386_sse_type (struct gdbarch *gdbarch)
1683 {
1684 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1685
1686 if (!tdep->i386_sse_type)
1687 {
1688 /* The type we're building is this: */
1689 #if 0
1690 union __gdb_builtin_type_vec128i
1691 {
1692 int128_t uint128;
1693 int64_t v2_int64[2];
1694 int32_t v4_int32[4];
1695 int16_t v8_int16[8];
1696 int8_t v16_int8[16];
1697 double v2_double[2];
1698 float v4_float[4];
1699 };
1700 #endif
1701
1702 struct type *t;
1703
1704 t = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
1705 append_composite_type_field (t, "v4_float",
1706 init_vector_type (builtin_type_float, 4));
1707 append_composite_type_field (t, "v2_double",
1708 init_vector_type (builtin_type_double, 2));
1709 append_composite_type_field (t, "v16_int8",
1710 init_vector_type (builtin_type_int8, 16));
1711 append_composite_type_field (t, "v8_int16",
1712 init_vector_type (builtin_type_int16, 8));
1713 append_composite_type_field (t, "v4_int32",
1714 init_vector_type (builtin_type_int32, 4));
1715 append_composite_type_field (t, "v2_int64",
1716 init_vector_type (builtin_type_int64, 2));
1717 append_composite_type_field (t, "uint128", builtin_type_int128);
1718
1719 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1720 TYPE_NAME (t) = "builtin_type_vec128i";
1721 tdep->i386_sse_type = t;
1722 }
1723
1724 return tdep->i386_sse_type;
1725 }
1726
1727 /* Return the GDB type object for the "standard" data type of data in
1728 register REGNUM. Perhaps %esi and %edi should go here, but
1729 potentially they could be used for things other than address. */
1730
1731 static struct type *
1732 i386_register_type (struct gdbarch *gdbarch, int regnum)
1733 {
1734 if (regnum == I386_EIP_REGNUM)
1735 return builtin_type_void_func_ptr;
1736
1737 if (regnum == I386_EFLAGS_REGNUM)
1738 return i386_eflags_type;
1739
1740 if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1741 return builtin_type_void_data_ptr;
1742
1743 if (i386_fp_regnum_p (regnum))
1744 return builtin_type_i387_ext;
1745
1746 if (i386_mmx_regnum_p (gdbarch, regnum))
1747 return i386_mmx_type (gdbarch);
1748
1749 if (i386_sse_regnum_p (gdbarch, regnum))
1750 return i386_sse_type (gdbarch);
1751
1752 #define I387_ST0_REGNUM I386_ST0_REGNUM
1753 #define I387_NUM_XMM_REGS (gdbarch_tdep (gdbarch)->num_xmm_regs)
1754
1755 if (regnum == I387_MXCSR_REGNUM)
1756 return i386_mxcsr_type;
1757
1758 #undef I387_ST0_REGNUM
1759 #undef I387_NUM_XMM_REGS
1760
1761 return builtin_type_int;
1762 }
1763
1764 /* Map a cooked register onto a raw register or memory. For the i386,
1765 the MMX registers need to be mapped onto floating point registers. */
1766
1767 static int
1768 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1769 {
1770 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1771 int mmxreg, fpreg;
1772 ULONGEST fstat;
1773 int tos;
1774
1775 /* Define I387_ST0_REGNUM such that we use the proper definitions
1776 for REGCACHE's architecture. */
1777 #define I387_ST0_REGNUM tdep->st0_regnum
1778
1779 mmxreg = regnum - tdep->mm0_regnum;
1780 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
1781 tos = (fstat >> 11) & 0x7;
1782 fpreg = (mmxreg + tos) % 8;
1783
1784 return (I387_ST0_REGNUM + fpreg);
1785
1786 #undef I387_ST0_REGNUM
1787 }
1788
1789 static void
1790 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1791 int regnum, gdb_byte *buf)
1792 {
1793 if (i386_mmx_regnum_p (gdbarch, regnum))
1794 {
1795 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
1796 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1797
1798 /* Extract (always little endian). */
1799 regcache_raw_read (regcache, fpnum, mmx_buf);
1800 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
1801 }
1802 else
1803 regcache_raw_read (regcache, regnum, buf);
1804 }
1805
1806 static void
1807 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1808 int regnum, const gdb_byte *buf)
1809 {
1810 if (i386_mmx_regnum_p (gdbarch, regnum))
1811 {
1812 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
1813 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1814
1815 /* Read ... */
1816 regcache_raw_read (regcache, fpnum, mmx_buf);
1817 /* ... Modify ... (always little endian). */
1818 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
1819 /* ... Write. */
1820 regcache_raw_write (regcache, fpnum, mmx_buf);
1821 }
1822 else
1823 regcache_raw_write (regcache, regnum, buf);
1824 }
1825 \f
1826
1827 /* Return the register number of the register allocated by GCC after
1828 REGNUM, or -1 if there is no such register. */
1829
1830 static int
1831 i386_next_regnum (int regnum)
1832 {
1833 /* GCC allocates the registers in the order:
1834
1835 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1836
1837 Since storing a variable in %esp doesn't make any sense we return
1838 -1 for %ebp and for %esp itself. */
1839 static int next_regnum[] =
1840 {
1841 I386_EDX_REGNUM, /* Slot for %eax. */
1842 I386_EBX_REGNUM, /* Slot for %ecx. */
1843 I386_ECX_REGNUM, /* Slot for %edx. */
1844 I386_ESI_REGNUM, /* Slot for %ebx. */
1845 -1, -1, /* Slots for %esp and %ebp. */
1846 I386_EDI_REGNUM, /* Slot for %esi. */
1847 I386_EBP_REGNUM /* Slot for %edi. */
1848 };
1849
1850 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
1851 return next_regnum[regnum];
1852
1853 return -1;
1854 }
1855
1856 /* Return nonzero if a value of type TYPE stored in register REGNUM
1857 needs any special handling. */
1858
1859 static int
1860 i386_convert_register_p (int regnum, struct type *type)
1861 {
1862 int len = TYPE_LENGTH (type);
1863
1864 /* Values may be spread across multiple registers. Most debugging
1865 formats aren't expressive enough to specify the locations, so
1866 some heuristics is involved. Right now we only handle types that
1867 have a length that is a multiple of the word size, since GCC
1868 doesn't seem to put any other types into registers. */
1869 if (len > 4 && len % 4 == 0)
1870 {
1871 int last_regnum = regnum;
1872
1873 while (len > 4)
1874 {
1875 last_regnum = i386_next_regnum (last_regnum);
1876 len -= 4;
1877 }
1878
1879 if (last_regnum != -1)
1880 return 1;
1881 }
1882
1883 return i387_convert_register_p (regnum, type);
1884 }
1885
1886 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
1887 return its contents in TO. */
1888
1889 static void
1890 i386_register_to_value (struct frame_info *frame, int regnum,
1891 struct type *type, gdb_byte *to)
1892 {
1893 int len = TYPE_LENGTH (type);
1894
1895 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1896 available in FRAME (i.e. if it wasn't saved)? */
1897
1898 if (i386_fp_regnum_p (regnum))
1899 {
1900 i387_register_to_value (frame, regnum, type, to);
1901 return;
1902 }
1903
1904 /* Read a value spread across multiple registers. */
1905
1906 gdb_assert (len > 4 && len % 4 == 0);
1907
1908 while (len > 0)
1909 {
1910 gdb_assert (regnum != -1);
1911 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
1912
1913 get_frame_register (frame, regnum, to);
1914 regnum = i386_next_regnum (regnum);
1915 len -= 4;
1916 to += 4;
1917 }
1918 }
1919
1920 /* Write the contents FROM of a value of type TYPE into register
1921 REGNUM in frame FRAME. */
1922
1923 static void
1924 i386_value_to_register (struct frame_info *frame, int regnum,
1925 struct type *type, const gdb_byte *from)
1926 {
1927 int len = TYPE_LENGTH (type);
1928
1929 if (i386_fp_regnum_p (regnum))
1930 {
1931 i387_value_to_register (frame, regnum, type, from);
1932 return;
1933 }
1934
1935 /* Write a value spread across multiple registers. */
1936
1937 gdb_assert (len > 4 && len % 4 == 0);
1938
1939 while (len > 0)
1940 {
1941 gdb_assert (regnum != -1);
1942 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
1943
1944 put_frame_register (frame, regnum, from);
1945 regnum = i386_next_regnum (regnum);
1946 len -= 4;
1947 from += 4;
1948 }
1949 }
1950 \f
1951 /* Supply register REGNUM from the buffer specified by GREGS and LEN
1952 in the general-purpose register set REGSET to register cache
1953 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
1954
1955 void
1956 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1957 int regnum, const void *gregs, size_t len)
1958 {
1959 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1960 const gdb_byte *regs = gregs;
1961 int i;
1962
1963 gdb_assert (len == tdep->sizeof_gregset);
1964
1965 for (i = 0; i < tdep->gregset_num_regs; i++)
1966 {
1967 if ((regnum == i || regnum == -1)
1968 && tdep->gregset_reg_offset[i] != -1)
1969 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1970 }
1971 }
1972
1973 /* Collect register REGNUM from the register cache REGCACHE and store
1974 it in the buffer specified by GREGS and LEN as described by the
1975 general-purpose register set REGSET. If REGNUM is -1, do this for
1976 all registers in REGSET. */
1977
1978 void
1979 i386_collect_gregset (const struct regset *regset,
1980 const struct regcache *regcache,
1981 int regnum, void *gregs, size_t len)
1982 {
1983 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1984 gdb_byte *regs = gregs;
1985 int i;
1986
1987 gdb_assert (len == tdep->sizeof_gregset);
1988
1989 for (i = 0; i < tdep->gregset_num_regs; i++)
1990 {
1991 if ((regnum == i || regnum == -1)
1992 && tdep->gregset_reg_offset[i] != -1)
1993 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
1994 }
1995 }
1996
1997 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
1998 in the floating-point register set REGSET to register cache
1999 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2000
2001 static void
2002 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2003 int regnum, const void *fpregs, size_t len)
2004 {
2005 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2006
2007 if (len == I387_SIZEOF_FXSAVE)
2008 {
2009 i387_supply_fxsave (regcache, regnum, fpregs);
2010 return;
2011 }
2012
2013 gdb_assert (len == tdep->sizeof_fpregset);
2014 i387_supply_fsave (regcache, regnum, fpregs);
2015 }
2016
2017 /* Collect register REGNUM from the register cache REGCACHE and store
2018 it in the buffer specified by FPREGS and LEN as described by the
2019 floating-point register set REGSET. If REGNUM is -1, do this for
2020 all registers in REGSET. */
2021
2022 static void
2023 i386_collect_fpregset (const struct regset *regset,
2024 const struct regcache *regcache,
2025 int regnum, void *fpregs, size_t len)
2026 {
2027 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2028
2029 if (len == I387_SIZEOF_FXSAVE)
2030 {
2031 i387_collect_fxsave (regcache, regnum, fpregs);
2032 return;
2033 }
2034
2035 gdb_assert (len == tdep->sizeof_fpregset);
2036 i387_collect_fsave (regcache, regnum, fpregs);
2037 }
2038
2039 /* Return the appropriate register set for the core section identified
2040 by SECT_NAME and SECT_SIZE. */
2041
2042 const struct regset *
2043 i386_regset_from_core_section (struct gdbarch *gdbarch,
2044 const char *sect_name, size_t sect_size)
2045 {
2046 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2047
2048 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2049 {
2050 if (tdep->gregset == NULL)
2051 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2052 i386_collect_gregset);
2053 return tdep->gregset;
2054 }
2055
2056 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2057 || (strcmp (sect_name, ".reg-xfp") == 0
2058 && sect_size == I387_SIZEOF_FXSAVE))
2059 {
2060 if (tdep->fpregset == NULL)
2061 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2062 i386_collect_fpregset);
2063 return tdep->fpregset;
2064 }
2065
2066 return NULL;
2067 }
2068 \f
2069
2070 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
2071
2072 CORE_ADDR
2073 i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
2074 {
2075 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
2076 {
2077 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
2078 struct minimal_symbol *indsym =
2079 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
2080 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
2081
2082 if (symname)
2083 {
2084 if (strncmp (symname, "__imp_", 6) == 0
2085 || strncmp (symname, "_imp_", 5) == 0)
2086 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
2087 }
2088 }
2089 return 0; /* Not a trampoline. */
2090 }
2091 \f
2092
2093 /* Return whether the frame preceding NEXT_FRAME corresponds to a
2094 sigtramp routine. */
2095
2096 static int
2097 i386_sigtramp_p (struct frame_info *next_frame)
2098 {
2099 CORE_ADDR pc = frame_pc_unwind (next_frame);
2100 char *name;
2101
2102 find_pc_partial_function (pc, &name, NULL, NULL);
2103 return (name && strcmp ("_sigtramp", name) == 0);
2104 }
2105 \f
2106
2107 /* We have two flavours of disassembly. The machinery on this page
2108 deals with switching between those. */
2109
2110 static int
2111 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
2112 {
2113 gdb_assert (disassembly_flavor == att_flavor
2114 || disassembly_flavor == intel_flavor);
2115
2116 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2117 constified, cast to prevent a compiler warning. */
2118 info->disassembler_options = (char *) disassembly_flavor;
2119 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
2120
2121 return print_insn_i386 (pc, info);
2122 }
2123 \f
2124
2125 /* There are a few i386 architecture variants that differ only
2126 slightly from the generic i386 target. For now, we don't give them
2127 their own source file, but include them here. As a consequence,
2128 they'll always be included. */
2129
2130 /* System V Release 4 (SVR4). */
2131
2132 /* Return whether the frame preceding NEXT_FRAME corresponds to a SVR4
2133 sigtramp routine. */
2134
2135 static int
2136 i386_svr4_sigtramp_p (struct frame_info *next_frame)
2137 {
2138 CORE_ADDR pc = frame_pc_unwind (next_frame);
2139 char *name;
2140
2141 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2142 currently unknown. */
2143 find_pc_partial_function (pc, &name, NULL, NULL);
2144 return (name && (strcmp ("_sigreturn", name) == 0
2145 || strcmp ("_sigacthandler", name) == 0
2146 || strcmp ("sigvechandler", name) == 0));
2147 }
2148
2149 /* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
2150 routine, return the address of the associated sigcontext (ucontext)
2151 structure. */
2152
2153 static CORE_ADDR
2154 i386_svr4_sigcontext_addr (struct frame_info *next_frame)
2155 {
2156 gdb_byte buf[4];
2157 CORE_ADDR sp;
2158
2159 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
2160 sp = extract_unsigned_integer (buf, 4);
2161
2162 return read_memory_unsigned_integer (sp + 8, 4);
2163 }
2164 \f
2165
2166 /* Generic ELF. */
2167
2168 void
2169 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2170 {
2171 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2172 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2173 }
2174
2175 /* System V Release 4 (SVR4). */
2176
2177 void
2178 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2179 {
2180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2181
2182 /* System V Release 4 uses ELF. */
2183 i386_elf_init_abi (info, gdbarch);
2184
2185 /* System V Release 4 has shared libraries. */
2186 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2187
2188 tdep->sigtramp_p = i386_svr4_sigtramp_p;
2189 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
2190 tdep->sc_pc_offset = 36 + 14 * 4;
2191 tdep->sc_sp_offset = 36 + 17 * 4;
2192
2193 tdep->jb_pc_offset = 20;
2194 }
2195
2196 /* DJGPP. */
2197
2198 static void
2199 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2200 {
2201 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2202
2203 /* DJGPP doesn't have any special frames for signal handlers. */
2204 tdep->sigtramp_p = NULL;
2205
2206 tdep->jb_pc_offset = 36;
2207 }
2208 \f
2209
2210 /* i386 register groups. In addition to the normal groups, add "mmx"
2211 and "sse". */
2212
2213 static struct reggroup *i386_sse_reggroup;
2214 static struct reggroup *i386_mmx_reggroup;
2215
2216 static void
2217 i386_init_reggroups (void)
2218 {
2219 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2220 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2221 }
2222
2223 static void
2224 i386_add_reggroups (struct gdbarch *gdbarch)
2225 {
2226 reggroup_add (gdbarch, i386_sse_reggroup);
2227 reggroup_add (gdbarch, i386_mmx_reggroup);
2228 reggroup_add (gdbarch, general_reggroup);
2229 reggroup_add (gdbarch, float_reggroup);
2230 reggroup_add (gdbarch, all_reggroup);
2231 reggroup_add (gdbarch, save_reggroup);
2232 reggroup_add (gdbarch, restore_reggroup);
2233 reggroup_add (gdbarch, vector_reggroup);
2234 reggroup_add (gdbarch, system_reggroup);
2235 }
2236
2237 int
2238 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2239 struct reggroup *group)
2240 {
2241 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2242 || i386_mxcsr_regnum_p (gdbarch, regnum));
2243 int fp_regnum_p = (i386_fp_regnum_p (regnum)
2244 || i386_fpc_regnum_p (regnum));
2245 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
2246
2247 if (group == i386_mmx_reggroup)
2248 return mmx_regnum_p;
2249 if (group == i386_sse_reggroup)
2250 return sse_regnum_p;
2251 if (group == vector_reggroup)
2252 return (mmx_regnum_p || sse_regnum_p);
2253 if (group == float_reggroup)
2254 return fp_regnum_p;
2255 if (group == general_reggroup)
2256 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
2257
2258 return default_register_reggroup_p (gdbarch, regnum, group);
2259 }
2260 \f
2261
2262 /* Get the ARGIth function argument for the current function. */
2263
2264 static CORE_ADDR
2265 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2266 struct type *type)
2267 {
2268 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2269 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
2270 }
2271
2272 \f
2273 static struct gdbarch *
2274 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2275 {
2276 struct gdbarch_tdep *tdep;
2277 struct gdbarch *gdbarch;
2278
2279 /* If there is already a candidate, use it. */
2280 arches = gdbarch_list_lookup_by_info (arches, &info);
2281 if (arches != NULL)
2282 return arches->gdbarch;
2283
2284 /* Allocate space for the new architecture. */
2285 tdep = XCALLOC (1, struct gdbarch_tdep);
2286 gdbarch = gdbarch_alloc (&info, tdep);
2287
2288 /* General-purpose registers. */
2289 tdep->gregset = NULL;
2290 tdep->gregset_reg_offset = NULL;
2291 tdep->gregset_num_regs = I386_NUM_GREGS;
2292 tdep->sizeof_gregset = 0;
2293
2294 /* Floating-point registers. */
2295 tdep->fpregset = NULL;
2296 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2297
2298 /* The default settings include the FPU registers, the MMX registers
2299 and the SSE registers. This can be overridden for a specific ABI
2300 by adjusting the members `st0_regnum', `mm0_regnum' and
2301 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2302 will show up in the output of "info all-registers". Ideally we
2303 should try to autodetect whether they are available, such that we
2304 can prevent "info all-registers" from displaying registers that
2305 aren't available.
2306
2307 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2308 [the SSE registers] always (even when they don't exist) or never
2309 showing them to the user (even when they do exist), I prefer the
2310 former over the latter. */
2311
2312 tdep->st0_regnum = I386_ST0_REGNUM;
2313
2314 /* The MMX registers are implemented as pseudo-registers. Put off
2315 calculating the register number for %mm0 until we know the number
2316 of raw registers. */
2317 tdep->mm0_regnum = 0;
2318
2319 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
2320 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
2321
2322 tdep->jb_pc_offset = -1;
2323 tdep->struct_return = pcc_struct_return;
2324 tdep->sigtramp_start = 0;
2325 tdep->sigtramp_end = 0;
2326 tdep->sigtramp_p = i386_sigtramp_p;
2327 tdep->sigcontext_addr = NULL;
2328 tdep->sc_reg_offset = NULL;
2329 tdep->sc_pc_offset = -1;
2330 tdep->sc_sp_offset = -1;
2331
2332 /* The format used for `long double' on almost all i386 targets is
2333 the i387 extended floating-point format. In fact, of all targets
2334 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2335 on having a `long double' that's not `long' at all. */
2336 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
2337
2338 /* Although the i387 extended floating-point has only 80 significant
2339 bits, a `long double' actually takes up 96, probably to enforce
2340 alignment. */
2341 set_gdbarch_long_double_bit (gdbarch, 96);
2342
2343 /* The default ABI includes general-purpose registers,
2344 floating-point registers, and the SSE registers. */
2345 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
2346 set_gdbarch_register_name (gdbarch, i386_register_name);
2347 set_gdbarch_register_type (gdbarch, i386_register_type);
2348
2349 /* Register numbers of various important registers. */
2350 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2351 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2352 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2353 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
2354
2355 /* NOTE: kettenis/20040418: GCC does have two possible register
2356 numbering schemes on the i386: dbx and SVR4. These schemes
2357 differ in how they number %ebp, %esp, %eflags, and the
2358 floating-point registers, and are implemented by the arrays
2359 dbx_register_map[] and svr4_dbx_register_map in
2360 gcc/config/i386.c. GCC also defines a third numbering scheme in
2361 gcc/config/i386.c, which it designates as the "default" register
2362 map used in 64bit mode. This last register numbering scheme is
2363 implemented in dbx64_register_map, and is used for AMD64; see
2364 amd64-tdep.c.
2365
2366 Currently, each GCC i386 target always uses the same register
2367 numbering scheme across all its supported debugging formats
2368 i.e. SDB (COFF), stabs and DWARF 2. This is because
2369 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2370 DBX_REGISTER_NUMBER macro which is defined by each target's
2371 respective config header in a manner independent of the requested
2372 output debugging format.
2373
2374 This does not match the arrangement below, which presumes that
2375 the SDB and stabs numbering schemes differ from the DWARF and
2376 DWARF 2 ones. The reason for this arrangement is that it is
2377 likely to get the numbering scheme for the target's
2378 default/native debug format right. For targets where GCC is the
2379 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2380 targets where the native toolchain uses a different numbering
2381 scheme for a particular debug format (stabs-in-ELF on Solaris)
2382 the defaults below will have to be overridden, like
2383 i386_elf_init_abi() does. */
2384
2385 /* Use the dbx register numbering scheme for stabs and COFF. */
2386 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2387 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2388
2389 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */
2390 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2391 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2392
2393 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
2394 be in use on any of the supported i386 targets. */
2395
2396 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2397
2398 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
2399
2400 /* Call dummy code. */
2401 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
2402
2403 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2404 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2405 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
2406
2407 set_gdbarch_return_value (gdbarch, i386_return_value);
2408
2409 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2410
2411 /* Stack grows downward. */
2412 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2413
2414 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2415 set_gdbarch_decr_pc_after_break (gdbarch, 1);
2416
2417 set_gdbarch_frame_args_skip (gdbarch, 8);
2418
2419 /* Wire in the MMX registers. */
2420 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
2421 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2422 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2423
2424 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2425
2426 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
2427
2428 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2429
2430 /* Add the i386 register groups. */
2431 i386_add_reggroups (gdbarch);
2432 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2433
2434 /* Helper for function argument information. */
2435 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2436
2437 /* Hook in the DWARF CFI frame unwinder. */
2438 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2439
2440 frame_base_set_default (gdbarch, &i386_frame_base);
2441
2442 /* Hook in ABI-specific overrides, if they have been registered. */
2443 gdbarch_init_osabi (info, gdbarch);
2444
2445 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
2446 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
2447
2448 /* If we have a register mapping, enable the generic core file
2449 support, unless it has already been enabled. */
2450 if (tdep->gregset_reg_offset
2451 && !gdbarch_regset_from_core_section_p (gdbarch))
2452 set_gdbarch_regset_from_core_section (gdbarch,
2453 i386_regset_from_core_section);
2454
2455 /* Unless support for MMX has been disabled, make %mm0 the first
2456 pseudo-register. */
2457 if (tdep->mm0_regnum == 0)
2458 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2459
2460 return gdbarch;
2461 }
2462
2463 static enum gdb_osabi
2464 i386_coff_osabi_sniffer (bfd *abfd)
2465 {
2466 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2467 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
2468 return GDB_OSABI_GO32;
2469
2470 return GDB_OSABI_UNKNOWN;
2471 }
2472 \f
2473
2474 /* Provide a prototype to silence -Wmissing-prototypes. */
2475 void _initialize_i386_tdep (void);
2476
2477 void
2478 _initialize_i386_tdep (void)
2479 {
2480 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2481
2482 /* Add the variable that controls the disassembly flavor. */
2483 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
2484 &disassembly_flavor, _("\
2485 Set the disassembly flavor."), _("\
2486 Show the disassembly flavor."), _("\
2487 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
2488 NULL,
2489 NULL, /* FIXME: i18n: */
2490 &setlist, &showlist);
2491
2492 /* Add the variable that controls the convention for returning
2493 structs. */
2494 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
2495 &struct_convention, _("\
2496 Set the convention for returning small structs."), _("\
2497 Show the convention for returning small structs."), _("\
2498 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
2499 is \"default\"."),
2500 NULL,
2501 NULL, /* FIXME: i18n: */
2502 &setlist, &showlist);
2503
2504 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2505 i386_coff_osabi_sniffer);
2506
2507 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
2508 i386_svr4_init_abi);
2509 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
2510 i386_go32_init_abi);
2511
2512 /* Initialize the i386-specific register groups & types. */
2513 i386_init_reggroups ();
2514 i386_init_types();
2515 }
This page took 0.109749 seconds and 4 git commands to generate.