Replace most calls to help_list and cmd_show_list
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2/frame.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "inferior.h"
30 #include "infrun.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "target-float.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "gdbsupport/x86-xstate.h"
50 #include "x86-tdep.h"
51
52 #include "record.h"
53 #include "record-full.h"
54 #include "target-descriptions.h"
55 #include "arch/i386.h"
56
57 #include "ax.h"
58 #include "ax-gdb.h"
59
60 #include "stap-probe.h"
61 #include "user-regs.h"
62 #include "cli/cli-utils.h"
63 #include "expression.h"
64 #include "parser-defs.h"
65 #include <ctype.h>
66 #include <algorithm>
67 #include <unordered_set>
68
69 /* Register names. */
70
71 static const char *i386_register_names[] =
72 {
73 "eax", "ecx", "edx", "ebx",
74 "esp", "ebp", "esi", "edi",
75 "eip", "eflags", "cs", "ss",
76 "ds", "es", "fs", "gs",
77 "st0", "st1", "st2", "st3",
78 "st4", "st5", "st6", "st7",
79 "fctrl", "fstat", "ftag", "fiseg",
80 "fioff", "foseg", "fooff", "fop",
81 "xmm0", "xmm1", "xmm2", "xmm3",
82 "xmm4", "xmm5", "xmm6", "xmm7",
83 "mxcsr"
84 };
85
86 static const char *i386_zmm_names[] =
87 {
88 "zmm0", "zmm1", "zmm2", "zmm3",
89 "zmm4", "zmm5", "zmm6", "zmm7"
90 };
91
92 static const char *i386_zmmh_names[] =
93 {
94 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
95 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
96 };
97
98 static const char *i386_k_names[] =
99 {
100 "k0", "k1", "k2", "k3",
101 "k4", "k5", "k6", "k7"
102 };
103
104 static const char *i386_ymm_names[] =
105 {
106 "ymm0", "ymm1", "ymm2", "ymm3",
107 "ymm4", "ymm5", "ymm6", "ymm7",
108 };
109
110 static const char *i386_ymmh_names[] =
111 {
112 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
113 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
114 };
115
116 static const char *i386_mpx_names[] =
117 {
118 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
119 };
120
121 static const char* i386_pkeys_names[] =
122 {
123 "pkru"
124 };
125
126 /* Register names for MPX pseudo-registers. */
127
128 static const char *i386_bnd_names[] =
129 {
130 "bnd0", "bnd1", "bnd2", "bnd3"
131 };
132
133 /* Register names for MMX pseudo-registers. */
134
135 static const char *i386_mmx_names[] =
136 {
137 "mm0", "mm1", "mm2", "mm3",
138 "mm4", "mm5", "mm6", "mm7"
139 };
140
141 /* Register names for byte pseudo-registers. */
142
143 static const char *i386_byte_names[] =
144 {
145 "al", "cl", "dl", "bl",
146 "ah", "ch", "dh", "bh"
147 };
148
149 /* Register names for word pseudo-registers. */
150
151 static const char *i386_word_names[] =
152 {
153 "ax", "cx", "dx", "bx",
154 "", "bp", "si", "di"
155 };
156
157 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
158 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
159 we have 16 upper ZMM regs that have to be handled differently. */
160
161 const int num_lower_zmm_regs = 16;
162
163 /* MMX register? */
164
165 static int
166 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
167 {
168 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
169 int mm0_regnum = tdep->mm0_regnum;
170
171 if (mm0_regnum < 0)
172 return 0;
173
174 regnum -= mm0_regnum;
175 return regnum >= 0 && regnum < tdep->num_mmx_regs;
176 }
177
178 /* Byte register? */
179
180 int
181 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
182 {
183 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
184
185 regnum -= tdep->al_regnum;
186 return regnum >= 0 && regnum < tdep->num_byte_regs;
187 }
188
189 /* Word register? */
190
191 int
192 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
193 {
194 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
195
196 regnum -= tdep->ax_regnum;
197 return regnum >= 0 && regnum < tdep->num_word_regs;
198 }
199
200 /* Dword register? */
201
202 int
203 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
204 {
205 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
206 int eax_regnum = tdep->eax_regnum;
207
208 if (eax_regnum < 0)
209 return 0;
210
211 regnum -= eax_regnum;
212 return regnum >= 0 && regnum < tdep->num_dword_regs;
213 }
214
215 /* AVX512 register? */
216
217 int
218 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
219 {
220 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
221 int zmm0h_regnum = tdep->zmm0h_regnum;
222
223 if (zmm0h_regnum < 0)
224 return 0;
225
226 regnum -= zmm0h_regnum;
227 return regnum >= 0 && regnum < tdep->num_zmm_regs;
228 }
229
230 int
231 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
232 {
233 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
234 int zmm0_regnum = tdep->zmm0_regnum;
235
236 if (zmm0_regnum < 0)
237 return 0;
238
239 regnum -= zmm0_regnum;
240 return regnum >= 0 && regnum < tdep->num_zmm_regs;
241 }
242
243 int
244 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
245 {
246 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
247 int k0_regnum = tdep->k0_regnum;
248
249 if (k0_regnum < 0)
250 return 0;
251
252 regnum -= k0_regnum;
253 return regnum >= 0 && regnum < I387_NUM_K_REGS;
254 }
255
256 static int
257 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
258 {
259 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
260 int ymm0h_regnum = tdep->ymm0h_regnum;
261
262 if (ymm0h_regnum < 0)
263 return 0;
264
265 regnum -= ymm0h_regnum;
266 return regnum >= 0 && regnum < tdep->num_ymm_regs;
267 }
268
269 /* AVX register? */
270
271 int
272 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
273 {
274 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
275 int ymm0_regnum = tdep->ymm0_regnum;
276
277 if (ymm0_regnum < 0)
278 return 0;
279
280 regnum -= ymm0_regnum;
281 return regnum >= 0 && regnum < tdep->num_ymm_regs;
282 }
283
284 static int
285 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
286 {
287 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
288 int ymm16h_regnum = tdep->ymm16h_regnum;
289
290 if (ymm16h_regnum < 0)
291 return 0;
292
293 regnum -= ymm16h_regnum;
294 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
295 }
296
297 int
298 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
299 {
300 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
301 int ymm16_regnum = tdep->ymm16_regnum;
302
303 if (ymm16_regnum < 0)
304 return 0;
305
306 regnum -= ymm16_regnum;
307 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
308 }
309
310 /* BND register? */
311
312 int
313 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
314 {
315 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
316 int bnd0_regnum = tdep->bnd0_regnum;
317
318 if (bnd0_regnum < 0)
319 return 0;
320
321 regnum -= bnd0_regnum;
322 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
323 }
324
325 /* SSE register? */
326
327 int
328 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
329 {
330 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
331 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
332
333 if (num_xmm_regs == 0)
334 return 0;
335
336 regnum -= I387_XMM0_REGNUM (tdep);
337 return regnum >= 0 && regnum < num_xmm_regs;
338 }
339
340 /* XMM_512 register? */
341
342 int
343 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
344 {
345 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
346 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
347
348 if (num_xmm_avx512_regs == 0)
349 return 0;
350
351 regnum -= I387_XMM16_REGNUM (tdep);
352 return regnum >= 0 && regnum < num_xmm_avx512_regs;
353 }
354
355 static int
356 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
357 {
358 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
359
360 if (I387_NUM_XMM_REGS (tdep) == 0)
361 return 0;
362
363 return (regnum == I387_MXCSR_REGNUM (tdep));
364 }
365
366 /* FP register? */
367
368 int
369 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
370 {
371 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
372
373 if (I387_ST0_REGNUM (tdep) < 0)
374 return 0;
375
376 return (I387_ST0_REGNUM (tdep) <= regnum
377 && regnum < I387_FCTRL_REGNUM (tdep));
378 }
379
380 int
381 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
382 {
383 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
384
385 if (I387_ST0_REGNUM (tdep) < 0)
386 return 0;
387
388 return (I387_FCTRL_REGNUM (tdep) <= regnum
389 && regnum < I387_XMM0_REGNUM (tdep));
390 }
391
392 /* BNDr (raw) register? */
393
394 static int
395 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
396 {
397 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
398
399 if (I387_BND0R_REGNUM (tdep) < 0)
400 return 0;
401
402 regnum -= tdep->bnd0r_regnum;
403 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
404 }
405
406 /* BND control register? */
407
408 static int
409 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
410 {
411 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
412
413 if (I387_BNDCFGU_REGNUM (tdep) < 0)
414 return 0;
415
416 regnum -= I387_BNDCFGU_REGNUM (tdep);
417 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
418 }
419
420 /* PKRU register? */
421
422 bool
423 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
424 {
425 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
426 int pkru_regnum = tdep->pkru_regnum;
427
428 if (pkru_regnum < 0)
429 return false;
430
431 regnum -= pkru_regnum;
432 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
433 }
434
435 /* Return the name of register REGNUM, or the empty string if it is
436 an anonymous register. */
437
438 static const char *
439 i386_register_name (struct gdbarch *gdbarch, int regnum)
440 {
441 /* Hide the upper YMM registers. */
442 if (i386_ymmh_regnum_p (gdbarch, regnum))
443 return "";
444
445 /* Hide the upper YMM16-31 registers. */
446 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
447 return "";
448
449 /* Hide the upper ZMM registers. */
450 if (i386_zmmh_regnum_p (gdbarch, regnum))
451 return "";
452
453 return tdesc_register_name (gdbarch, regnum);
454 }
455
456 /* Return the name of register REGNUM. */
457
458 const char *
459 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
460 {
461 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
462 if (i386_bnd_regnum_p (gdbarch, regnum))
463 return i386_bnd_names[regnum - tdep->bnd0_regnum];
464 if (i386_mmx_regnum_p (gdbarch, regnum))
465 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
466 else if (i386_ymm_regnum_p (gdbarch, regnum))
467 return i386_ymm_names[regnum - tdep->ymm0_regnum];
468 else if (i386_zmm_regnum_p (gdbarch, regnum))
469 return i386_zmm_names[regnum - tdep->zmm0_regnum];
470 else if (i386_byte_regnum_p (gdbarch, regnum))
471 return i386_byte_names[regnum - tdep->al_regnum];
472 else if (i386_word_regnum_p (gdbarch, regnum))
473 return i386_word_names[regnum - tdep->ax_regnum];
474
475 internal_error (__FILE__, __LINE__, _("invalid regnum"));
476 }
477
478 /* Convert a dbx register number REG to the appropriate register
479 number used by GDB. */
480
481 static int
482 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
483 {
484 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
485
486 /* This implements what GCC calls the "default" register map
487 (dbx_register_map[]). */
488
489 if (reg >= 0 && reg <= 7)
490 {
491 /* General-purpose registers. The debug info calls %ebp
492 register 4, and %esp register 5. */
493 if (reg == 4)
494 return 5;
495 else if (reg == 5)
496 return 4;
497 else return reg;
498 }
499 else if (reg >= 12 && reg <= 19)
500 {
501 /* Floating-point registers. */
502 return reg - 12 + I387_ST0_REGNUM (tdep);
503 }
504 else if (reg >= 21 && reg <= 28)
505 {
506 /* SSE registers. */
507 int ymm0_regnum = tdep->ymm0_regnum;
508
509 if (ymm0_regnum >= 0
510 && i386_xmm_regnum_p (gdbarch, reg))
511 return reg - 21 + ymm0_regnum;
512 else
513 return reg - 21 + I387_XMM0_REGNUM (tdep);
514 }
515 else if (reg >= 29 && reg <= 36)
516 {
517 /* MMX registers. */
518 return reg - 29 + I387_MM0_REGNUM (tdep);
519 }
520
521 /* This will hopefully provoke a warning. */
522 return gdbarch_num_cooked_regs (gdbarch);
523 }
524
525 /* Convert SVR4 DWARF register number REG to the appropriate register number
526 used by GDB. */
527
528 static int
529 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
530 {
531 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
532
533 /* This implements the GCC register map that tries to be compatible
534 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
535
536 /* The SVR4 register numbering includes %eip and %eflags, and
537 numbers the floating point registers differently. */
538 if (reg >= 0 && reg <= 9)
539 {
540 /* General-purpose registers. */
541 return reg;
542 }
543 else if (reg >= 11 && reg <= 18)
544 {
545 /* Floating-point registers. */
546 return reg - 11 + I387_ST0_REGNUM (tdep);
547 }
548 else if (reg >= 21 && reg <= 36)
549 {
550 /* The SSE and MMX registers have the same numbers as with dbx. */
551 return i386_dbx_reg_to_regnum (gdbarch, reg);
552 }
553
554 switch (reg)
555 {
556 case 37: return I387_FCTRL_REGNUM (tdep);
557 case 38: return I387_FSTAT_REGNUM (tdep);
558 case 39: return I387_MXCSR_REGNUM (tdep);
559 case 40: return I386_ES_REGNUM;
560 case 41: return I386_CS_REGNUM;
561 case 42: return I386_SS_REGNUM;
562 case 43: return I386_DS_REGNUM;
563 case 44: return I386_FS_REGNUM;
564 case 45: return I386_GS_REGNUM;
565 }
566
567 return -1;
568 }
569
570 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
571 num_regs + num_pseudo_regs for other debug formats. */
572
573 int
574 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
575 {
576 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
577
578 if (regnum == -1)
579 return gdbarch_num_cooked_regs (gdbarch);
580 return regnum;
581 }
582
583 \f
584
585 /* This is the variable that is set with "set disassembly-flavor", and
586 its legitimate values. */
587 static const char att_flavor[] = "att";
588 static const char intel_flavor[] = "intel";
589 static const char *const valid_flavors[] =
590 {
591 att_flavor,
592 intel_flavor,
593 NULL
594 };
595 static const char *disassembly_flavor = att_flavor;
596 \f
597
598 /* Use the program counter to determine the contents and size of a
599 breakpoint instruction. Return a pointer to a string of bytes that
600 encode a breakpoint instruction, store the length of the string in
601 *LEN and optionally adjust *PC to point to the correct memory
602 location for inserting the breakpoint.
603
604 On the i386 we have a single breakpoint that fits in a single byte
605 and can be inserted anywhere.
606
607 This function is 64-bit safe. */
608
609 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
610
611 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
612
613 \f
614 /* Displaced instruction handling. */
615
616 /* Skip the legacy instruction prefixes in INSN.
617 Not all prefixes are valid for any particular insn
618 but we needn't care, the insn will fault if it's invalid.
619 The result is a pointer to the first opcode byte,
620 or NULL if we run off the end of the buffer. */
621
622 static gdb_byte *
623 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
624 {
625 gdb_byte *end = insn + max_len;
626
627 while (insn < end)
628 {
629 switch (*insn)
630 {
631 case DATA_PREFIX_OPCODE:
632 case ADDR_PREFIX_OPCODE:
633 case CS_PREFIX_OPCODE:
634 case DS_PREFIX_OPCODE:
635 case ES_PREFIX_OPCODE:
636 case FS_PREFIX_OPCODE:
637 case GS_PREFIX_OPCODE:
638 case SS_PREFIX_OPCODE:
639 case LOCK_PREFIX_OPCODE:
640 case REPE_PREFIX_OPCODE:
641 case REPNE_PREFIX_OPCODE:
642 ++insn;
643 continue;
644 default:
645 return insn;
646 }
647 }
648
649 return NULL;
650 }
651
652 static int
653 i386_absolute_jmp_p (const gdb_byte *insn)
654 {
655 /* jmp far (absolute address in operand). */
656 if (insn[0] == 0xea)
657 return 1;
658
659 if (insn[0] == 0xff)
660 {
661 /* jump near, absolute indirect (/4). */
662 if ((insn[1] & 0x38) == 0x20)
663 return 1;
664
665 /* jump far, absolute indirect (/5). */
666 if ((insn[1] & 0x38) == 0x28)
667 return 1;
668 }
669
670 return 0;
671 }
672
673 /* Return non-zero if INSN is a jump, zero otherwise. */
674
675 static int
676 i386_jmp_p (const gdb_byte *insn)
677 {
678 /* jump short, relative. */
679 if (insn[0] == 0xeb)
680 return 1;
681
682 /* jump near, relative. */
683 if (insn[0] == 0xe9)
684 return 1;
685
686 return i386_absolute_jmp_p (insn);
687 }
688
689 static int
690 i386_absolute_call_p (const gdb_byte *insn)
691 {
692 /* call far, absolute. */
693 if (insn[0] == 0x9a)
694 return 1;
695
696 if (insn[0] == 0xff)
697 {
698 /* Call near, absolute indirect (/2). */
699 if ((insn[1] & 0x38) == 0x10)
700 return 1;
701
702 /* Call far, absolute indirect (/3). */
703 if ((insn[1] & 0x38) == 0x18)
704 return 1;
705 }
706
707 return 0;
708 }
709
710 static int
711 i386_ret_p (const gdb_byte *insn)
712 {
713 switch (insn[0])
714 {
715 case 0xc2: /* ret near, pop N bytes. */
716 case 0xc3: /* ret near */
717 case 0xca: /* ret far, pop N bytes. */
718 case 0xcb: /* ret far */
719 case 0xcf: /* iret */
720 return 1;
721
722 default:
723 return 0;
724 }
725 }
726
727 static int
728 i386_call_p (const gdb_byte *insn)
729 {
730 if (i386_absolute_call_p (insn))
731 return 1;
732
733 /* call near, relative. */
734 if (insn[0] == 0xe8)
735 return 1;
736
737 return 0;
738 }
739
740 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
741 length in bytes. Otherwise, return zero. */
742
743 static int
744 i386_syscall_p (const gdb_byte *insn, int *lengthp)
745 {
746 /* Is it 'int $0x80'? */
747 if ((insn[0] == 0xcd && insn[1] == 0x80)
748 /* Or is it 'sysenter'? */
749 || (insn[0] == 0x0f && insn[1] == 0x34)
750 /* Or is it 'syscall'? */
751 || (insn[0] == 0x0f && insn[1] == 0x05))
752 {
753 *lengthp = 2;
754 return 1;
755 }
756
757 return 0;
758 }
759
760 /* The gdbarch insn_is_call method. */
761
762 static int
763 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
764 {
765 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
766
767 read_code (addr, buf, I386_MAX_INSN_LEN);
768 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
769
770 return i386_call_p (insn);
771 }
772
773 /* The gdbarch insn_is_ret method. */
774
775 static int
776 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
777 {
778 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
779
780 read_code (addr, buf, I386_MAX_INSN_LEN);
781 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
782
783 return i386_ret_p (insn);
784 }
785
786 /* The gdbarch insn_is_jump method. */
787
788 static int
789 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
790 {
791 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
792
793 read_code (addr, buf, I386_MAX_INSN_LEN);
794 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
795
796 return i386_jmp_p (insn);
797 }
798
799 /* Some kernels may run one past a syscall insn, so we have to cope. */
800
801 displaced_step_closure_up
802 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
803 CORE_ADDR from, CORE_ADDR to,
804 struct regcache *regs)
805 {
806 size_t len = gdbarch_max_insn_length (gdbarch);
807 std::unique_ptr<i386_displaced_step_closure> closure
808 (new i386_displaced_step_closure (len));
809 gdb_byte *buf = closure->buf.data ();
810
811 read_memory (from, buf, len);
812
813 /* GDB may get control back after the insn after the syscall.
814 Presumably this is a kernel bug.
815 If this is a syscall, make sure there's a nop afterwards. */
816 {
817 int syscall_length;
818 gdb_byte *insn;
819
820 insn = i386_skip_prefixes (buf, len);
821 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
822 insn[syscall_length] = NOP_OPCODE;
823 }
824
825 write_memory (to, buf, len);
826
827 if (debug_displaced)
828 {
829 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
830 paddress (gdbarch, from), paddress (gdbarch, to));
831 displaced_step_dump_bytes (gdb_stdlog, buf, len);
832 }
833
834 /* This is a work around for a problem with g++ 4.8. */
835 return displaced_step_closure_up (closure.release ());
836 }
837
838 /* Fix up the state of registers and memory after having single-stepped
839 a displaced instruction. */
840
841 void
842 i386_displaced_step_fixup (struct gdbarch *gdbarch,
843 struct displaced_step_closure *closure_,
844 CORE_ADDR from, CORE_ADDR to,
845 struct regcache *regs)
846 {
847 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
848
849 /* The offset we applied to the instruction's address.
850 This could well be negative (when viewed as a signed 32-bit
851 value), but ULONGEST won't reflect that, so take care when
852 applying it. */
853 ULONGEST insn_offset = to - from;
854
855 i386_displaced_step_closure *closure
856 = (i386_displaced_step_closure *) closure_;
857 gdb_byte *insn = closure->buf.data ();
858 /* The start of the insn, needed in case we see some prefixes. */
859 gdb_byte *insn_start = insn;
860
861 if (debug_displaced)
862 fprintf_unfiltered (gdb_stdlog,
863 "displaced: fixup (%s, %s), "
864 "insn = 0x%02x 0x%02x ...\n",
865 paddress (gdbarch, from), paddress (gdbarch, to),
866 insn[0], insn[1]);
867
868 /* The list of issues to contend with here is taken from
869 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
870 Yay for Free Software! */
871
872 /* Relocate the %eip, if necessary. */
873
874 /* The instruction recognizers we use assume any leading prefixes
875 have been skipped. */
876 {
877 /* This is the size of the buffer in closure. */
878 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
879 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
880 /* If there are too many prefixes, just ignore the insn.
881 It will fault when run. */
882 if (opcode != NULL)
883 insn = opcode;
884 }
885
886 /* Except in the case of absolute or indirect jump or call
887 instructions, or a return instruction, the new eip is relative to
888 the displaced instruction; make it relative. Well, signal
889 handler returns don't need relocation either, but we use the
890 value of %eip to recognize those; see below. */
891 if (! i386_absolute_jmp_p (insn)
892 && ! i386_absolute_call_p (insn)
893 && ! i386_ret_p (insn))
894 {
895 ULONGEST orig_eip;
896 int insn_len;
897
898 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
899
900 /* A signal trampoline system call changes the %eip, resuming
901 execution of the main program after the signal handler has
902 returned. That makes them like 'return' instructions; we
903 shouldn't relocate %eip.
904
905 But most system calls don't, and we do need to relocate %eip.
906
907 Our heuristic for distinguishing these cases: if stepping
908 over the system call instruction left control directly after
909 the instruction, the we relocate --- control almost certainly
910 doesn't belong in the displaced copy. Otherwise, we assume
911 the instruction has put control where it belongs, and leave
912 it unrelocated. Goodness help us if there are PC-relative
913 system calls. */
914 if (i386_syscall_p (insn, &insn_len)
915 && orig_eip != to + (insn - insn_start) + insn_len
916 /* GDB can get control back after the insn after the syscall.
917 Presumably this is a kernel bug.
918 i386_displaced_step_copy_insn ensures its a nop,
919 we add one to the length for it. */
920 && orig_eip != to + (insn - insn_start) + insn_len + 1)
921 {
922 if (debug_displaced)
923 fprintf_unfiltered (gdb_stdlog,
924 "displaced: syscall changed %%eip; "
925 "not relocating\n");
926 }
927 else
928 {
929 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
930
931 /* If we just stepped over a breakpoint insn, we don't backup
932 the pc on purpose; this is to match behaviour without
933 stepping. */
934
935 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
936
937 if (debug_displaced)
938 fprintf_unfiltered (gdb_stdlog,
939 "displaced: "
940 "relocated %%eip from %s to %s\n",
941 paddress (gdbarch, orig_eip),
942 paddress (gdbarch, eip));
943 }
944 }
945
946 /* If the instruction was PUSHFL, then the TF bit will be set in the
947 pushed value, and should be cleared. We'll leave this for later,
948 since GDB already messes up the TF flag when stepping over a
949 pushfl. */
950
951 /* If the instruction was a call, the return address now atop the
952 stack is the address following the copied instruction. We need
953 to make it the address following the original instruction. */
954 if (i386_call_p (insn))
955 {
956 ULONGEST esp;
957 ULONGEST retaddr;
958 const ULONGEST retaddr_len = 4;
959
960 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
961 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
962 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
963 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
964
965 if (debug_displaced)
966 fprintf_unfiltered (gdb_stdlog,
967 "displaced: relocated return addr at %s to %s\n",
968 paddress (gdbarch, esp),
969 paddress (gdbarch, retaddr));
970 }
971 }
972
973 static void
974 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
975 {
976 target_write_memory (*to, buf, len);
977 *to += len;
978 }
979
980 static void
981 i386_relocate_instruction (struct gdbarch *gdbarch,
982 CORE_ADDR *to, CORE_ADDR oldloc)
983 {
984 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
985 gdb_byte buf[I386_MAX_INSN_LEN];
986 int offset = 0, rel32, newrel;
987 int insn_length;
988 gdb_byte *insn = buf;
989
990 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
991
992 insn_length = gdb_buffered_insn_length (gdbarch, insn,
993 I386_MAX_INSN_LEN, oldloc);
994
995 /* Get past the prefixes. */
996 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
997
998 /* Adjust calls with 32-bit relative addresses as push/jump, with
999 the address pushed being the location where the original call in
1000 the user program would return to. */
1001 if (insn[0] == 0xe8)
1002 {
1003 gdb_byte push_buf[16];
1004 unsigned int ret_addr;
1005
1006 /* Where "ret" in the original code will return to. */
1007 ret_addr = oldloc + insn_length;
1008 push_buf[0] = 0x68; /* pushq $... */
1009 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1010 /* Push the push. */
1011 append_insns (to, 5, push_buf);
1012
1013 /* Convert the relative call to a relative jump. */
1014 insn[0] = 0xe9;
1015
1016 /* Adjust the destination offset. */
1017 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1018 newrel = (oldloc - *to) + rel32;
1019 store_signed_integer (insn + 1, 4, byte_order, newrel);
1020
1021 if (debug_displaced)
1022 fprintf_unfiltered (gdb_stdlog,
1023 "Adjusted insn rel32=%s at %s to"
1024 " rel32=%s at %s\n",
1025 hex_string (rel32), paddress (gdbarch, oldloc),
1026 hex_string (newrel), paddress (gdbarch, *to));
1027
1028 /* Write the adjusted jump into its displaced location. */
1029 append_insns (to, 5, insn);
1030 return;
1031 }
1032
1033 /* Adjust jumps with 32-bit relative addresses. Calls are already
1034 handled above. */
1035 if (insn[0] == 0xe9)
1036 offset = 1;
1037 /* Adjust conditional jumps. */
1038 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1039 offset = 2;
1040
1041 if (offset)
1042 {
1043 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1044 newrel = (oldloc - *to) + rel32;
1045 store_signed_integer (insn + offset, 4, byte_order, newrel);
1046 if (debug_displaced)
1047 fprintf_unfiltered (gdb_stdlog,
1048 "Adjusted insn rel32=%s at %s to"
1049 " rel32=%s at %s\n",
1050 hex_string (rel32), paddress (gdbarch, oldloc),
1051 hex_string (newrel), paddress (gdbarch, *to));
1052 }
1053
1054 /* Write the adjusted instructions into their displaced
1055 location. */
1056 append_insns (to, insn_length, buf);
1057 }
1058
1059 \f
1060 #ifdef I386_REGNO_TO_SYMMETRY
1061 #error "The Sequent Symmetry is no longer supported."
1062 #endif
1063
1064 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1065 and %esp "belong" to the calling function. Therefore these
1066 registers should be saved if they're going to be modified. */
1067
1068 /* The maximum number of saved registers. This should include all
1069 registers mentioned above, and %eip. */
1070 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1071
1072 struct i386_frame_cache
1073 {
1074 /* Base address. */
1075 CORE_ADDR base;
1076 int base_p;
1077 LONGEST sp_offset;
1078 CORE_ADDR pc;
1079
1080 /* Saved registers. */
1081 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1082 CORE_ADDR saved_sp;
1083 int saved_sp_reg;
1084 int pc_in_eax;
1085
1086 /* Stack space reserved for local variables. */
1087 long locals;
1088 };
1089
1090 /* Allocate and initialize a frame cache. */
1091
1092 static struct i386_frame_cache *
1093 i386_alloc_frame_cache (void)
1094 {
1095 struct i386_frame_cache *cache;
1096 int i;
1097
1098 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1099
1100 /* Base address. */
1101 cache->base_p = 0;
1102 cache->base = 0;
1103 cache->sp_offset = -4;
1104 cache->pc = 0;
1105
1106 /* Saved registers. We initialize these to -1 since zero is a valid
1107 offset (that's where %ebp is supposed to be stored). */
1108 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1109 cache->saved_regs[i] = -1;
1110 cache->saved_sp = 0;
1111 cache->saved_sp_reg = -1;
1112 cache->pc_in_eax = 0;
1113
1114 /* Frameless until proven otherwise. */
1115 cache->locals = -1;
1116
1117 return cache;
1118 }
1119
1120 /* If the instruction at PC is a jump, return the address of its
1121 target. Otherwise, return PC. */
1122
1123 static CORE_ADDR
1124 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1125 {
1126 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1127 gdb_byte op;
1128 long delta = 0;
1129 int data16 = 0;
1130
1131 if (target_read_code (pc, &op, 1))
1132 return pc;
1133
1134 if (op == 0x66)
1135 {
1136 data16 = 1;
1137
1138 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1139 }
1140
1141 switch (op)
1142 {
1143 case 0xe9:
1144 /* Relative jump: if data16 == 0, disp32, else disp16. */
1145 if (data16)
1146 {
1147 delta = read_memory_integer (pc + 2, 2, byte_order);
1148
1149 /* Include the size of the jmp instruction (including the
1150 0x66 prefix). */
1151 delta += 4;
1152 }
1153 else
1154 {
1155 delta = read_memory_integer (pc + 1, 4, byte_order);
1156
1157 /* Include the size of the jmp instruction. */
1158 delta += 5;
1159 }
1160 break;
1161 case 0xeb:
1162 /* Relative jump, disp8 (ignore data16). */
1163 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1164
1165 delta += data16 + 2;
1166 break;
1167 }
1168
1169 return pc + delta;
1170 }
1171
1172 /* Check whether PC points at a prologue for a function returning a
1173 structure or union. If so, it updates CACHE and returns the
1174 address of the first instruction after the code sequence that
1175 removes the "hidden" argument from the stack or CURRENT_PC,
1176 whichever is smaller. Otherwise, return PC. */
1177
1178 static CORE_ADDR
1179 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1180 struct i386_frame_cache *cache)
1181 {
1182 /* Functions that return a structure or union start with:
1183
1184 popl %eax 0x58
1185 xchgl %eax, (%esp) 0x87 0x04 0x24
1186 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1187
1188 (the System V compiler puts out the second `xchg' instruction,
1189 and the assembler doesn't try to optimize it, so the 'sib' form
1190 gets generated). This sequence is used to get the address of the
1191 return buffer for a function that returns a structure. */
1192 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1193 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1194 gdb_byte buf[4];
1195 gdb_byte op;
1196
1197 if (current_pc <= pc)
1198 return pc;
1199
1200 if (target_read_code (pc, &op, 1))
1201 return pc;
1202
1203 if (op != 0x58) /* popl %eax */
1204 return pc;
1205
1206 if (target_read_code (pc + 1, buf, 4))
1207 return pc;
1208
1209 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1210 return pc;
1211
1212 if (current_pc == pc)
1213 {
1214 cache->sp_offset += 4;
1215 return current_pc;
1216 }
1217
1218 if (current_pc == pc + 1)
1219 {
1220 cache->pc_in_eax = 1;
1221 return current_pc;
1222 }
1223
1224 if (buf[1] == proto1[1])
1225 return pc + 4;
1226 else
1227 return pc + 5;
1228 }
1229
1230 static CORE_ADDR
1231 i386_skip_probe (CORE_ADDR pc)
1232 {
1233 /* A function may start with
1234
1235 pushl constant
1236 call _probe
1237 addl $4, %esp
1238
1239 followed by
1240
1241 pushl %ebp
1242
1243 etc. */
1244 gdb_byte buf[8];
1245 gdb_byte op;
1246
1247 if (target_read_code (pc, &op, 1))
1248 return pc;
1249
1250 if (op == 0x68 || op == 0x6a)
1251 {
1252 int delta;
1253
1254 /* Skip past the `pushl' instruction; it has either a one-byte or a
1255 four-byte operand, depending on the opcode. */
1256 if (op == 0x68)
1257 delta = 5;
1258 else
1259 delta = 2;
1260
1261 /* Read the following 8 bytes, which should be `call _probe' (6
1262 bytes) followed by `addl $4,%esp' (2 bytes). */
1263 read_memory (pc + delta, buf, sizeof (buf));
1264 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1265 pc += delta + sizeof (buf);
1266 }
1267
1268 return pc;
1269 }
1270
1271 /* GCC 4.1 and later, can put code in the prologue to realign the
1272 stack pointer. Check whether PC points to such code, and update
1273 CACHE accordingly. Return the first instruction after the code
1274 sequence or CURRENT_PC, whichever is smaller. If we don't
1275 recognize the code, return PC. */
1276
1277 static CORE_ADDR
1278 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1279 struct i386_frame_cache *cache)
1280 {
1281 /* There are 2 code sequences to re-align stack before the frame
1282 gets set up:
1283
1284 1. Use a caller-saved saved register:
1285
1286 leal 4(%esp), %reg
1287 andl $-XXX, %esp
1288 pushl -4(%reg)
1289
1290 2. Use a callee-saved saved register:
1291
1292 pushl %reg
1293 leal 8(%esp), %reg
1294 andl $-XXX, %esp
1295 pushl -4(%reg)
1296
1297 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1298
1299 0x83 0xe4 0xf0 andl $-16, %esp
1300 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1301 */
1302
1303 gdb_byte buf[14];
1304 int reg;
1305 int offset, offset_and;
1306 static int regnums[8] = {
1307 I386_EAX_REGNUM, /* %eax */
1308 I386_ECX_REGNUM, /* %ecx */
1309 I386_EDX_REGNUM, /* %edx */
1310 I386_EBX_REGNUM, /* %ebx */
1311 I386_ESP_REGNUM, /* %esp */
1312 I386_EBP_REGNUM, /* %ebp */
1313 I386_ESI_REGNUM, /* %esi */
1314 I386_EDI_REGNUM /* %edi */
1315 };
1316
1317 if (target_read_code (pc, buf, sizeof buf))
1318 return pc;
1319
1320 /* Check caller-saved saved register. The first instruction has
1321 to be "leal 4(%esp), %reg". */
1322 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1323 {
1324 /* MOD must be binary 10 and R/M must be binary 100. */
1325 if ((buf[1] & 0xc7) != 0x44)
1326 return pc;
1327
1328 /* REG has register number. */
1329 reg = (buf[1] >> 3) & 7;
1330 offset = 4;
1331 }
1332 else
1333 {
1334 /* Check callee-saved saved register. The first instruction
1335 has to be "pushl %reg". */
1336 if ((buf[0] & 0xf8) != 0x50)
1337 return pc;
1338
1339 /* Get register. */
1340 reg = buf[0] & 0x7;
1341
1342 /* The next instruction has to be "leal 8(%esp), %reg". */
1343 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1344 return pc;
1345
1346 /* MOD must be binary 10 and R/M must be binary 100. */
1347 if ((buf[2] & 0xc7) != 0x44)
1348 return pc;
1349
1350 /* REG has register number. Registers in pushl and leal have to
1351 be the same. */
1352 if (reg != ((buf[2] >> 3) & 7))
1353 return pc;
1354
1355 offset = 5;
1356 }
1357
1358 /* Rigister can't be %esp nor %ebp. */
1359 if (reg == 4 || reg == 5)
1360 return pc;
1361
1362 /* The next instruction has to be "andl $-XXX, %esp". */
1363 if (buf[offset + 1] != 0xe4
1364 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1365 return pc;
1366
1367 offset_and = offset;
1368 offset += buf[offset] == 0x81 ? 6 : 3;
1369
1370 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1371 0xfc. REG must be binary 110 and MOD must be binary 01. */
1372 if (buf[offset] != 0xff
1373 || buf[offset + 2] != 0xfc
1374 || (buf[offset + 1] & 0xf8) != 0x70)
1375 return pc;
1376
1377 /* R/M has register. Registers in leal and pushl have to be the
1378 same. */
1379 if (reg != (buf[offset + 1] & 7))
1380 return pc;
1381
1382 if (current_pc > pc + offset_and)
1383 cache->saved_sp_reg = regnums[reg];
1384
1385 return std::min (pc + offset + 3, current_pc);
1386 }
1387
1388 /* Maximum instruction length we need to handle. */
1389 #define I386_MAX_MATCHED_INSN_LEN 6
1390
1391 /* Instruction description. */
1392 struct i386_insn
1393 {
1394 size_t len;
1395 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1396 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1397 };
1398
1399 /* Return whether instruction at PC matches PATTERN. */
1400
1401 static int
1402 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1403 {
1404 gdb_byte op;
1405
1406 if (target_read_code (pc, &op, 1))
1407 return 0;
1408
1409 if ((op & pattern.mask[0]) == pattern.insn[0])
1410 {
1411 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1412 int insn_matched = 1;
1413 size_t i;
1414
1415 gdb_assert (pattern.len > 1);
1416 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1417
1418 if (target_read_code (pc + 1, buf, pattern.len - 1))
1419 return 0;
1420
1421 for (i = 1; i < pattern.len; i++)
1422 {
1423 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1424 insn_matched = 0;
1425 }
1426 return insn_matched;
1427 }
1428 return 0;
1429 }
1430
1431 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1432 the first instruction description that matches. Otherwise, return
1433 NULL. */
1434
1435 static struct i386_insn *
1436 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1437 {
1438 struct i386_insn *pattern;
1439
1440 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1441 {
1442 if (i386_match_pattern (pc, *pattern))
1443 return pattern;
1444 }
1445
1446 return NULL;
1447 }
1448
1449 /* Return whether PC points inside a sequence of instructions that
1450 matches INSN_PATTERNS. */
1451
1452 static int
1453 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1454 {
1455 CORE_ADDR current_pc;
1456 int ix, i;
1457 struct i386_insn *insn;
1458
1459 insn = i386_match_insn (pc, insn_patterns);
1460 if (insn == NULL)
1461 return 0;
1462
1463 current_pc = pc;
1464 ix = insn - insn_patterns;
1465 for (i = ix - 1; i >= 0; i--)
1466 {
1467 current_pc -= insn_patterns[i].len;
1468
1469 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1470 return 0;
1471 }
1472
1473 current_pc = pc + insn->len;
1474 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1475 {
1476 if (!i386_match_pattern (current_pc, *insn))
1477 return 0;
1478
1479 current_pc += insn->len;
1480 }
1481
1482 return 1;
1483 }
1484
1485 /* Some special instructions that might be migrated by GCC into the
1486 part of the prologue that sets up the new stack frame. Because the
1487 stack frame hasn't been setup yet, no registers have been saved
1488 yet, and only the scratch registers %eax, %ecx and %edx can be
1489 touched. */
1490
1491 struct i386_insn i386_frame_setup_skip_insns[] =
1492 {
1493 /* Check for `movb imm8, r' and `movl imm32, r'.
1494
1495 ??? Should we handle 16-bit operand-sizes here? */
1496
1497 /* `movb imm8, %al' and `movb imm8, %ah' */
1498 /* `movb imm8, %cl' and `movb imm8, %ch' */
1499 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1500 /* `movb imm8, %dl' and `movb imm8, %dh' */
1501 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1502 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1503 { 5, { 0xb8 }, { 0xfe } },
1504 /* `movl imm32, %edx' */
1505 { 5, { 0xba }, { 0xff } },
1506
1507 /* Check for `mov imm32, r32'. Note that there is an alternative
1508 encoding for `mov m32, %eax'.
1509
1510 ??? Should we handle SIB addressing here?
1511 ??? Should we handle 16-bit operand-sizes here? */
1512
1513 /* `movl m32, %eax' */
1514 { 5, { 0xa1 }, { 0xff } },
1515 /* `movl m32, %eax' and `mov; m32, %ecx' */
1516 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1517 /* `movl m32, %edx' */
1518 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1519
1520 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1521 Because of the symmetry, there are actually two ways to encode
1522 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1523 opcode bytes 0x31 and 0x33 for `xorl'. */
1524
1525 /* `subl %eax, %eax' */
1526 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1527 /* `subl %ecx, %ecx' */
1528 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1529 /* `subl %edx, %edx' */
1530 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1531 /* `xorl %eax, %eax' */
1532 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1533 /* `xorl %ecx, %ecx' */
1534 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1535 /* `xorl %edx, %edx' */
1536 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1537 { 0 }
1538 };
1539
1540
1541 /* Check whether PC points to a no-op instruction. */
1542 static CORE_ADDR
1543 i386_skip_noop (CORE_ADDR pc)
1544 {
1545 gdb_byte op;
1546 int check = 1;
1547
1548 if (target_read_code (pc, &op, 1))
1549 return pc;
1550
1551 while (check)
1552 {
1553 check = 0;
1554 /* Ignore `nop' instruction. */
1555 if (op == 0x90)
1556 {
1557 pc += 1;
1558 if (target_read_code (pc, &op, 1))
1559 return pc;
1560 check = 1;
1561 }
1562 /* Ignore no-op instruction `mov %edi, %edi'.
1563 Microsoft system dlls often start with
1564 a `mov %edi,%edi' instruction.
1565 The 5 bytes before the function start are
1566 filled with `nop' instructions.
1567 This pattern can be used for hot-patching:
1568 The `mov %edi, %edi' instruction can be replaced by a
1569 near jump to the location of the 5 `nop' instructions
1570 which can be replaced by a 32-bit jump to anywhere
1571 in the 32-bit address space. */
1572
1573 else if (op == 0x8b)
1574 {
1575 if (target_read_code (pc + 1, &op, 1))
1576 return pc;
1577
1578 if (op == 0xff)
1579 {
1580 pc += 2;
1581 if (target_read_code (pc, &op, 1))
1582 return pc;
1583
1584 check = 1;
1585 }
1586 }
1587 }
1588 return pc;
1589 }
1590
1591 /* Check whether PC points at a code that sets up a new stack frame.
1592 If so, it updates CACHE and returns the address of the first
1593 instruction after the sequence that sets up the frame or LIMIT,
1594 whichever is smaller. If we don't recognize the code, return PC. */
1595
1596 static CORE_ADDR
1597 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1598 CORE_ADDR pc, CORE_ADDR limit,
1599 struct i386_frame_cache *cache)
1600 {
1601 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1602 struct i386_insn *insn;
1603 gdb_byte op;
1604 int skip = 0;
1605
1606 if (limit <= pc)
1607 return limit;
1608
1609 if (target_read_code (pc, &op, 1))
1610 return pc;
1611
1612 if (op == 0x55) /* pushl %ebp */
1613 {
1614 /* Take into account that we've executed the `pushl %ebp' that
1615 starts this instruction sequence. */
1616 cache->saved_regs[I386_EBP_REGNUM] = 0;
1617 cache->sp_offset += 4;
1618 pc++;
1619
1620 /* If that's all, return now. */
1621 if (limit <= pc)
1622 return limit;
1623
1624 /* Check for some special instructions that might be migrated by
1625 GCC into the prologue and skip them. At this point in the
1626 prologue, code should only touch the scratch registers %eax,
1627 %ecx and %edx, so while the number of possibilities is sheer,
1628 it is limited.
1629
1630 Make sure we only skip these instructions if we later see the
1631 `movl %esp, %ebp' that actually sets up the frame. */
1632 while (pc + skip < limit)
1633 {
1634 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1635 if (insn == NULL)
1636 break;
1637
1638 skip += insn->len;
1639 }
1640
1641 /* If that's all, return now. */
1642 if (limit <= pc + skip)
1643 return limit;
1644
1645 if (target_read_code (pc + skip, &op, 1))
1646 return pc + skip;
1647
1648 /* The i386 prologue looks like
1649
1650 push %ebp
1651 mov %esp,%ebp
1652 sub $0x10,%esp
1653
1654 and a different prologue can be generated for atom.
1655
1656 push %ebp
1657 lea (%esp),%ebp
1658 lea -0x10(%esp),%esp
1659
1660 We handle both of them here. */
1661
1662 switch (op)
1663 {
1664 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1665 case 0x8b:
1666 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1667 != 0xec)
1668 return pc;
1669 pc += (skip + 2);
1670 break;
1671 case 0x89:
1672 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1673 != 0xe5)
1674 return pc;
1675 pc += (skip + 2);
1676 break;
1677 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1678 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1679 != 0x242c)
1680 return pc;
1681 pc += (skip + 3);
1682 break;
1683 default:
1684 return pc;
1685 }
1686
1687 /* OK, we actually have a frame. We just don't know how large
1688 it is yet. Set its size to zero. We'll adjust it if
1689 necessary. We also now commit to skipping the special
1690 instructions mentioned before. */
1691 cache->locals = 0;
1692
1693 /* If that's all, return now. */
1694 if (limit <= pc)
1695 return limit;
1696
1697 /* Check for stack adjustment
1698
1699 subl $XXX, %esp
1700 or
1701 lea -XXX(%esp),%esp
1702
1703 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1704 reg, so we don't have to worry about a data16 prefix. */
1705 if (target_read_code (pc, &op, 1))
1706 return pc;
1707 if (op == 0x83)
1708 {
1709 /* `subl' with 8-bit immediate. */
1710 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1711 /* Some instruction starting with 0x83 other than `subl'. */
1712 return pc;
1713
1714 /* `subl' with signed 8-bit immediate (though it wouldn't
1715 make sense to be negative). */
1716 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1717 return pc + 3;
1718 }
1719 else if (op == 0x81)
1720 {
1721 /* Maybe it is `subl' with a 32-bit immediate. */
1722 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1723 /* Some instruction starting with 0x81 other than `subl'. */
1724 return pc;
1725
1726 /* It is `subl' with a 32-bit immediate. */
1727 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1728 return pc + 6;
1729 }
1730 else if (op == 0x8d)
1731 {
1732 /* The ModR/M byte is 0x64. */
1733 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1734 return pc;
1735 /* 'lea' with 8-bit displacement. */
1736 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1737 return pc + 4;
1738 }
1739 else
1740 {
1741 /* Some instruction other than `subl' nor 'lea'. */
1742 return pc;
1743 }
1744 }
1745 else if (op == 0xc8) /* enter */
1746 {
1747 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1748 return pc + 4;
1749 }
1750
1751 return pc;
1752 }
1753
1754 /* Check whether PC points at code that saves registers on the stack.
1755 If so, it updates CACHE and returns the address of the first
1756 instruction after the register saves or CURRENT_PC, whichever is
1757 smaller. Otherwise, return PC. */
1758
1759 static CORE_ADDR
1760 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1761 struct i386_frame_cache *cache)
1762 {
1763 CORE_ADDR offset = 0;
1764 gdb_byte op;
1765 int i;
1766
1767 if (cache->locals > 0)
1768 offset -= cache->locals;
1769 for (i = 0; i < 8 && pc < current_pc; i++)
1770 {
1771 if (target_read_code (pc, &op, 1))
1772 return pc;
1773 if (op < 0x50 || op > 0x57)
1774 break;
1775
1776 offset -= 4;
1777 cache->saved_regs[op - 0x50] = offset;
1778 cache->sp_offset += 4;
1779 pc++;
1780 }
1781
1782 return pc;
1783 }
1784
1785 /* Do a full analysis of the prologue at PC and update CACHE
1786 accordingly. Bail out early if CURRENT_PC is reached. Return the
1787 address where the analysis stopped.
1788
1789 We handle these cases:
1790
1791 The startup sequence can be at the start of the function, or the
1792 function can start with a branch to startup code at the end.
1793
1794 %ebp can be set up with either the 'enter' instruction, or "pushl
1795 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1796 once used in the System V compiler).
1797
1798 Local space is allocated just below the saved %ebp by either the
1799 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1800 16-bit unsigned argument for space to allocate, and the 'addl'
1801 instruction could have either a signed byte, or 32-bit immediate.
1802
1803 Next, the registers used by this function are pushed. With the
1804 System V compiler they will always be in the order: %edi, %esi,
1805 %ebx (and sometimes a harmless bug causes it to also save but not
1806 restore %eax); however, the code below is willing to see the pushes
1807 in any order, and will handle up to 8 of them.
1808
1809 If the setup sequence is at the end of the function, then the next
1810 instruction will be a branch back to the start. */
1811
1812 static CORE_ADDR
1813 i386_analyze_prologue (struct gdbarch *gdbarch,
1814 CORE_ADDR pc, CORE_ADDR current_pc,
1815 struct i386_frame_cache *cache)
1816 {
1817 pc = i386_skip_noop (pc);
1818 pc = i386_follow_jump (gdbarch, pc);
1819 pc = i386_analyze_struct_return (pc, current_pc, cache);
1820 pc = i386_skip_probe (pc);
1821 pc = i386_analyze_stack_align (pc, current_pc, cache);
1822 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1823 return i386_analyze_register_saves (pc, current_pc, cache);
1824 }
1825
1826 /* Return PC of first real instruction. */
1827
1828 static CORE_ADDR
1829 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1830 {
1831 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1832
1833 static gdb_byte pic_pat[6] =
1834 {
1835 0xe8, 0, 0, 0, 0, /* call 0x0 */
1836 0x5b, /* popl %ebx */
1837 };
1838 struct i386_frame_cache cache;
1839 CORE_ADDR pc;
1840 gdb_byte op;
1841 int i;
1842 CORE_ADDR func_addr;
1843
1844 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1845 {
1846 CORE_ADDR post_prologue_pc
1847 = skip_prologue_using_sal (gdbarch, func_addr);
1848 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1849
1850 /* Clang always emits a line note before the prologue and another
1851 one after. We trust clang to emit usable line notes. */
1852 if (post_prologue_pc
1853 && (cust != NULL
1854 && COMPUNIT_PRODUCER (cust) != NULL
1855 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1856 return std::max (start_pc, post_prologue_pc);
1857 }
1858
1859 cache.locals = -1;
1860 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1861 if (cache.locals < 0)
1862 return start_pc;
1863
1864 /* Found valid frame setup. */
1865
1866 /* The native cc on SVR4 in -K PIC mode inserts the following code
1867 to get the address of the global offset table (GOT) into register
1868 %ebx:
1869
1870 call 0x0
1871 popl %ebx
1872 movl %ebx,x(%ebp) (optional)
1873 addl y,%ebx
1874
1875 This code is with the rest of the prologue (at the end of the
1876 function), so we have to skip it to get to the first real
1877 instruction at the start of the function. */
1878
1879 for (i = 0; i < 6; i++)
1880 {
1881 if (target_read_code (pc + i, &op, 1))
1882 return pc;
1883
1884 if (pic_pat[i] != op)
1885 break;
1886 }
1887 if (i == 6)
1888 {
1889 int delta = 6;
1890
1891 if (target_read_code (pc + delta, &op, 1))
1892 return pc;
1893
1894 if (op == 0x89) /* movl %ebx, x(%ebp) */
1895 {
1896 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1897
1898 if (op == 0x5d) /* One byte offset from %ebp. */
1899 delta += 3;
1900 else if (op == 0x9d) /* Four byte offset from %ebp. */
1901 delta += 6;
1902 else /* Unexpected instruction. */
1903 delta = 0;
1904
1905 if (target_read_code (pc + delta, &op, 1))
1906 return pc;
1907 }
1908
1909 /* addl y,%ebx */
1910 if (delta > 0 && op == 0x81
1911 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1912 == 0xc3)
1913 {
1914 pc += delta + 6;
1915 }
1916 }
1917
1918 /* If the function starts with a branch (to startup code at the end)
1919 the last instruction should bring us back to the first
1920 instruction of the real code. */
1921 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1922 pc = i386_follow_jump (gdbarch, pc);
1923
1924 return pc;
1925 }
1926
1927 /* Check that the code pointed to by PC corresponds to a call to
1928 __main, skip it if so. Return PC otherwise. */
1929
1930 CORE_ADDR
1931 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1932 {
1933 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1934 gdb_byte op;
1935
1936 if (target_read_code (pc, &op, 1))
1937 return pc;
1938 if (op == 0xe8)
1939 {
1940 gdb_byte buf[4];
1941
1942 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1943 {
1944 /* Make sure address is computed correctly as a 32bit
1945 integer even if CORE_ADDR is 64 bit wide. */
1946 struct bound_minimal_symbol s;
1947 CORE_ADDR call_dest;
1948
1949 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1950 call_dest = call_dest & 0xffffffffU;
1951 s = lookup_minimal_symbol_by_pc (call_dest);
1952 if (s.minsym != NULL
1953 && s.minsym->linkage_name () != NULL
1954 && strcmp (s.minsym->linkage_name (), "__main") == 0)
1955 pc += 5;
1956 }
1957 }
1958
1959 return pc;
1960 }
1961
1962 /* This function is 64-bit safe. */
1963
1964 static CORE_ADDR
1965 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1966 {
1967 gdb_byte buf[8];
1968
1969 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1970 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1971 }
1972 \f
1973
1974 /* Normal frames. */
1975
1976 static void
1977 i386_frame_cache_1 (struct frame_info *this_frame,
1978 struct i386_frame_cache *cache)
1979 {
1980 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1981 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1982 gdb_byte buf[4];
1983 int i;
1984
1985 cache->pc = get_frame_func (this_frame);
1986
1987 /* In principle, for normal frames, %ebp holds the frame pointer,
1988 which holds the base address for the current stack frame.
1989 However, for functions that don't need it, the frame pointer is
1990 optional. For these "frameless" functions the frame pointer is
1991 actually the frame pointer of the calling frame. Signal
1992 trampolines are just a special case of a "frameless" function.
1993 They (usually) share their frame pointer with the frame that was
1994 in progress when the signal occurred. */
1995
1996 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1997 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1998 if (cache->base == 0)
1999 {
2000 cache->base_p = 1;
2001 return;
2002 }
2003
2004 /* For normal frames, %eip is stored at 4(%ebp). */
2005 cache->saved_regs[I386_EIP_REGNUM] = 4;
2006
2007 if (cache->pc != 0)
2008 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2009 cache);
2010
2011 if (cache->locals < 0)
2012 {
2013 /* We didn't find a valid frame, which means that CACHE->base
2014 currently holds the frame pointer for our calling frame. If
2015 we're at the start of a function, or somewhere half-way its
2016 prologue, the function's frame probably hasn't been fully
2017 setup yet. Try to reconstruct the base address for the stack
2018 frame by looking at the stack pointer. For truly "frameless"
2019 functions this might work too. */
2020
2021 if (cache->saved_sp_reg != -1)
2022 {
2023 /* Saved stack pointer has been saved. */
2024 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2025 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2026
2027 /* We're halfway aligning the stack. */
2028 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2029 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2030
2031 /* This will be added back below. */
2032 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2033 }
2034 else if (cache->pc != 0
2035 || target_read_code (get_frame_pc (this_frame), buf, 1))
2036 {
2037 /* We're in a known function, but did not find a frame
2038 setup. Assume that the function does not use %ebp.
2039 Alternatively, we may have jumped to an invalid
2040 address; in that case there is definitely no new
2041 frame in %ebp. */
2042 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2043 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2044 + cache->sp_offset;
2045 }
2046 else
2047 /* We're in an unknown function. We could not find the start
2048 of the function to analyze the prologue; our best option is
2049 to assume a typical frame layout with the caller's %ebp
2050 saved. */
2051 cache->saved_regs[I386_EBP_REGNUM] = 0;
2052 }
2053
2054 if (cache->saved_sp_reg != -1)
2055 {
2056 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2057 register may be unavailable). */
2058 if (cache->saved_sp == 0
2059 && deprecated_frame_register_read (this_frame,
2060 cache->saved_sp_reg, buf))
2061 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2062 }
2063 /* Now that we have the base address for the stack frame we can
2064 calculate the value of %esp in the calling frame. */
2065 else if (cache->saved_sp == 0)
2066 cache->saved_sp = cache->base + 8;
2067
2068 /* Adjust all the saved registers such that they contain addresses
2069 instead of offsets. */
2070 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2071 if (cache->saved_regs[i] != -1)
2072 cache->saved_regs[i] += cache->base;
2073
2074 cache->base_p = 1;
2075 }
2076
2077 static struct i386_frame_cache *
2078 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2079 {
2080 struct i386_frame_cache *cache;
2081
2082 if (*this_cache)
2083 return (struct i386_frame_cache *) *this_cache;
2084
2085 cache = i386_alloc_frame_cache ();
2086 *this_cache = cache;
2087
2088 try
2089 {
2090 i386_frame_cache_1 (this_frame, cache);
2091 }
2092 catch (const gdb_exception_error &ex)
2093 {
2094 if (ex.error != NOT_AVAILABLE_ERROR)
2095 throw;
2096 }
2097
2098 return cache;
2099 }
2100
2101 static void
2102 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2103 struct frame_id *this_id)
2104 {
2105 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2106
2107 if (!cache->base_p)
2108 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2109 else if (cache->base == 0)
2110 {
2111 /* This marks the outermost frame. */
2112 }
2113 else
2114 {
2115 /* See the end of i386_push_dummy_call. */
2116 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2117 }
2118 }
2119
2120 static enum unwind_stop_reason
2121 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2122 void **this_cache)
2123 {
2124 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2125
2126 if (!cache->base_p)
2127 return UNWIND_UNAVAILABLE;
2128
2129 /* This marks the outermost frame. */
2130 if (cache->base == 0)
2131 return UNWIND_OUTERMOST;
2132
2133 return UNWIND_NO_REASON;
2134 }
2135
2136 static struct value *
2137 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2138 int regnum)
2139 {
2140 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2141
2142 gdb_assert (regnum >= 0);
2143
2144 /* The System V ABI says that:
2145
2146 "The flags register contains the system flags, such as the
2147 direction flag and the carry flag. The direction flag must be
2148 set to the forward (that is, zero) direction before entry and
2149 upon exit from a function. Other user flags have no specified
2150 role in the standard calling sequence and are not preserved."
2151
2152 To guarantee the "upon exit" part of that statement we fake a
2153 saved flags register that has its direction flag cleared.
2154
2155 Note that GCC doesn't seem to rely on the fact that the direction
2156 flag is cleared after a function return; it always explicitly
2157 clears the flag before operations where it matters.
2158
2159 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2160 right thing to do. The way we fake the flags register here makes
2161 it impossible to change it. */
2162
2163 if (regnum == I386_EFLAGS_REGNUM)
2164 {
2165 ULONGEST val;
2166
2167 val = get_frame_register_unsigned (this_frame, regnum);
2168 val &= ~(1 << 10);
2169 return frame_unwind_got_constant (this_frame, regnum, val);
2170 }
2171
2172 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2173 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2174
2175 if (regnum == I386_ESP_REGNUM
2176 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2177 {
2178 /* If the SP has been saved, but we don't know where, then this
2179 means that SAVED_SP_REG register was found unavailable back
2180 when we built the cache. */
2181 if (cache->saved_sp == 0)
2182 return frame_unwind_got_register (this_frame, regnum,
2183 cache->saved_sp_reg);
2184 else
2185 return frame_unwind_got_constant (this_frame, regnum,
2186 cache->saved_sp);
2187 }
2188
2189 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2190 return frame_unwind_got_memory (this_frame, regnum,
2191 cache->saved_regs[regnum]);
2192
2193 return frame_unwind_got_register (this_frame, regnum, regnum);
2194 }
2195
2196 static const struct frame_unwind i386_frame_unwind =
2197 {
2198 NORMAL_FRAME,
2199 i386_frame_unwind_stop_reason,
2200 i386_frame_this_id,
2201 i386_frame_prev_register,
2202 NULL,
2203 default_frame_sniffer
2204 };
2205
2206 /* Normal frames, but in a function epilogue. */
2207
2208 /* Implement the stack_frame_destroyed_p gdbarch method.
2209
2210 The epilogue is defined here as the 'ret' instruction, which will
2211 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2212 the function's stack frame. */
2213
2214 static int
2215 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2216 {
2217 gdb_byte insn;
2218 struct compunit_symtab *cust;
2219
2220 cust = find_pc_compunit_symtab (pc);
2221 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2222 return 0;
2223
2224 if (target_read_memory (pc, &insn, 1))
2225 return 0; /* Can't read memory at pc. */
2226
2227 if (insn != 0xc3) /* 'ret' instruction. */
2228 return 0;
2229
2230 return 1;
2231 }
2232
2233 static int
2234 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2235 struct frame_info *this_frame,
2236 void **this_prologue_cache)
2237 {
2238 if (frame_relative_level (this_frame) == 0)
2239 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2240 get_frame_pc (this_frame));
2241 else
2242 return 0;
2243 }
2244
2245 static struct i386_frame_cache *
2246 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2247 {
2248 struct i386_frame_cache *cache;
2249 CORE_ADDR sp;
2250
2251 if (*this_cache)
2252 return (struct i386_frame_cache *) *this_cache;
2253
2254 cache = i386_alloc_frame_cache ();
2255 *this_cache = cache;
2256
2257 try
2258 {
2259 cache->pc = get_frame_func (this_frame);
2260
2261 /* At this point the stack looks as if we just entered the
2262 function, with the return address at the top of the
2263 stack. */
2264 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2265 cache->base = sp + cache->sp_offset;
2266 cache->saved_sp = cache->base + 8;
2267 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2268
2269 cache->base_p = 1;
2270 }
2271 catch (const gdb_exception_error &ex)
2272 {
2273 if (ex.error != NOT_AVAILABLE_ERROR)
2274 throw;
2275 }
2276
2277 return cache;
2278 }
2279
2280 static enum unwind_stop_reason
2281 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2282 void **this_cache)
2283 {
2284 struct i386_frame_cache *cache =
2285 i386_epilogue_frame_cache (this_frame, this_cache);
2286
2287 if (!cache->base_p)
2288 return UNWIND_UNAVAILABLE;
2289
2290 return UNWIND_NO_REASON;
2291 }
2292
2293 static void
2294 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2295 void **this_cache,
2296 struct frame_id *this_id)
2297 {
2298 struct i386_frame_cache *cache =
2299 i386_epilogue_frame_cache (this_frame, this_cache);
2300
2301 if (!cache->base_p)
2302 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2303 else
2304 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2305 }
2306
2307 static struct value *
2308 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2309 void **this_cache, int regnum)
2310 {
2311 /* Make sure we've initialized the cache. */
2312 i386_epilogue_frame_cache (this_frame, this_cache);
2313
2314 return i386_frame_prev_register (this_frame, this_cache, regnum);
2315 }
2316
2317 static const struct frame_unwind i386_epilogue_frame_unwind =
2318 {
2319 NORMAL_FRAME,
2320 i386_epilogue_frame_unwind_stop_reason,
2321 i386_epilogue_frame_this_id,
2322 i386_epilogue_frame_prev_register,
2323 NULL,
2324 i386_epilogue_frame_sniffer
2325 };
2326 \f
2327
2328 /* Stack-based trampolines. */
2329
2330 /* These trampolines are used on cross x86 targets, when taking the
2331 address of a nested function. When executing these trampolines,
2332 no stack frame is set up, so we are in a similar situation as in
2333 epilogues and i386_epilogue_frame_this_id can be re-used. */
2334
2335 /* Static chain passed in register. */
2336
2337 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2338 {
2339 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2340 { 5, { 0xb8 }, { 0xfe } },
2341
2342 /* `jmp imm32' */
2343 { 5, { 0xe9 }, { 0xff } },
2344
2345 {0}
2346 };
2347
2348 /* Static chain passed on stack (when regparm=3). */
2349
2350 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2351 {
2352 /* `push imm32' */
2353 { 5, { 0x68 }, { 0xff } },
2354
2355 /* `jmp imm32' */
2356 { 5, { 0xe9 }, { 0xff } },
2357
2358 {0}
2359 };
2360
2361 /* Return whether PC points inside a stack trampoline. */
2362
2363 static int
2364 i386_in_stack_tramp_p (CORE_ADDR pc)
2365 {
2366 gdb_byte insn;
2367 const char *name;
2368
2369 /* A stack trampoline is detected if no name is associated
2370 to the current pc and if it points inside a trampoline
2371 sequence. */
2372
2373 find_pc_partial_function (pc, &name, NULL, NULL);
2374 if (name)
2375 return 0;
2376
2377 if (target_read_memory (pc, &insn, 1))
2378 return 0;
2379
2380 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2381 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2382 return 0;
2383
2384 return 1;
2385 }
2386
2387 static int
2388 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2389 struct frame_info *this_frame,
2390 void **this_cache)
2391 {
2392 if (frame_relative_level (this_frame) == 0)
2393 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2394 else
2395 return 0;
2396 }
2397
2398 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2399 {
2400 NORMAL_FRAME,
2401 i386_epilogue_frame_unwind_stop_reason,
2402 i386_epilogue_frame_this_id,
2403 i386_epilogue_frame_prev_register,
2404 NULL,
2405 i386_stack_tramp_frame_sniffer
2406 };
2407 \f
2408 /* Generate a bytecode expression to get the value of the saved PC. */
2409
2410 static void
2411 i386_gen_return_address (struct gdbarch *gdbarch,
2412 struct agent_expr *ax, struct axs_value *value,
2413 CORE_ADDR scope)
2414 {
2415 /* The following sequence assumes the traditional use of the base
2416 register. */
2417 ax_reg (ax, I386_EBP_REGNUM);
2418 ax_const_l (ax, 4);
2419 ax_simple (ax, aop_add);
2420 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2421 value->kind = axs_lvalue_memory;
2422 }
2423 \f
2424
2425 /* Signal trampolines. */
2426
2427 static struct i386_frame_cache *
2428 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2429 {
2430 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2431 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2432 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2433 struct i386_frame_cache *cache;
2434 CORE_ADDR addr;
2435 gdb_byte buf[4];
2436
2437 if (*this_cache)
2438 return (struct i386_frame_cache *) *this_cache;
2439
2440 cache = i386_alloc_frame_cache ();
2441
2442 try
2443 {
2444 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2445 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2446
2447 addr = tdep->sigcontext_addr (this_frame);
2448 if (tdep->sc_reg_offset)
2449 {
2450 int i;
2451
2452 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2453
2454 for (i = 0; i < tdep->sc_num_regs; i++)
2455 if (tdep->sc_reg_offset[i] != -1)
2456 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2457 }
2458 else
2459 {
2460 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2461 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2462 }
2463
2464 cache->base_p = 1;
2465 }
2466 catch (const gdb_exception_error &ex)
2467 {
2468 if (ex.error != NOT_AVAILABLE_ERROR)
2469 throw;
2470 }
2471
2472 *this_cache = cache;
2473 return cache;
2474 }
2475
2476 static enum unwind_stop_reason
2477 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2478 void **this_cache)
2479 {
2480 struct i386_frame_cache *cache =
2481 i386_sigtramp_frame_cache (this_frame, this_cache);
2482
2483 if (!cache->base_p)
2484 return UNWIND_UNAVAILABLE;
2485
2486 return UNWIND_NO_REASON;
2487 }
2488
2489 static void
2490 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2491 struct frame_id *this_id)
2492 {
2493 struct i386_frame_cache *cache =
2494 i386_sigtramp_frame_cache (this_frame, this_cache);
2495
2496 if (!cache->base_p)
2497 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2498 else
2499 {
2500 /* See the end of i386_push_dummy_call. */
2501 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2502 }
2503 }
2504
2505 static struct value *
2506 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2507 void **this_cache, int regnum)
2508 {
2509 /* Make sure we've initialized the cache. */
2510 i386_sigtramp_frame_cache (this_frame, this_cache);
2511
2512 return i386_frame_prev_register (this_frame, this_cache, regnum);
2513 }
2514
2515 static int
2516 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2517 struct frame_info *this_frame,
2518 void **this_prologue_cache)
2519 {
2520 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2521
2522 /* We shouldn't even bother if we don't have a sigcontext_addr
2523 handler. */
2524 if (tdep->sigcontext_addr == NULL)
2525 return 0;
2526
2527 if (tdep->sigtramp_p != NULL)
2528 {
2529 if (tdep->sigtramp_p (this_frame))
2530 return 1;
2531 }
2532
2533 if (tdep->sigtramp_start != 0)
2534 {
2535 CORE_ADDR pc = get_frame_pc (this_frame);
2536
2537 gdb_assert (tdep->sigtramp_end != 0);
2538 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2539 return 1;
2540 }
2541
2542 return 0;
2543 }
2544
2545 static const struct frame_unwind i386_sigtramp_frame_unwind =
2546 {
2547 SIGTRAMP_FRAME,
2548 i386_sigtramp_frame_unwind_stop_reason,
2549 i386_sigtramp_frame_this_id,
2550 i386_sigtramp_frame_prev_register,
2551 NULL,
2552 i386_sigtramp_frame_sniffer
2553 };
2554 \f
2555
2556 static CORE_ADDR
2557 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2558 {
2559 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2560
2561 return cache->base;
2562 }
2563
2564 static const struct frame_base i386_frame_base =
2565 {
2566 &i386_frame_unwind,
2567 i386_frame_base_address,
2568 i386_frame_base_address,
2569 i386_frame_base_address
2570 };
2571
2572 static struct frame_id
2573 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2574 {
2575 CORE_ADDR fp;
2576
2577 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2578
2579 /* See the end of i386_push_dummy_call. */
2580 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2581 }
2582
2583 /* _Decimal128 function return values need 16-byte alignment on the
2584 stack. */
2585
2586 static CORE_ADDR
2587 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2588 {
2589 return sp & -(CORE_ADDR)16;
2590 }
2591 \f
2592
2593 /* Figure out where the longjmp will land. Slurp the args out of the
2594 stack. We expect the first arg to be a pointer to the jmp_buf
2595 structure from which we extract the address that we will land at.
2596 This address is copied into PC. This routine returns non-zero on
2597 success. */
2598
2599 static int
2600 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2601 {
2602 gdb_byte buf[4];
2603 CORE_ADDR sp, jb_addr;
2604 struct gdbarch *gdbarch = get_frame_arch (frame);
2605 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2606 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2607
2608 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2609 longjmp will land. */
2610 if (jb_pc_offset == -1)
2611 return 0;
2612
2613 get_frame_register (frame, I386_ESP_REGNUM, buf);
2614 sp = extract_unsigned_integer (buf, 4, byte_order);
2615 if (target_read_memory (sp + 4, buf, 4))
2616 return 0;
2617
2618 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2619 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2620 return 0;
2621
2622 *pc = extract_unsigned_integer (buf, 4, byte_order);
2623 return 1;
2624 }
2625 \f
2626
2627 /* Check whether TYPE must be 16-byte-aligned when passed as a
2628 function argument. 16-byte vectors, _Decimal128 and structures or
2629 unions containing such types must be 16-byte-aligned; other
2630 arguments are 4-byte-aligned. */
2631
2632 static int
2633 i386_16_byte_align_p (struct type *type)
2634 {
2635 type = check_typedef (type);
2636 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2637 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2638 && TYPE_LENGTH (type) == 16)
2639 return 1;
2640 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2641 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2642 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2643 || TYPE_CODE (type) == TYPE_CODE_UNION)
2644 {
2645 int i;
2646 for (i = 0; i < TYPE_NFIELDS (type); i++)
2647 {
2648 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2649 return 1;
2650 }
2651 }
2652 return 0;
2653 }
2654
2655 /* Implementation for set_gdbarch_push_dummy_code. */
2656
2657 static CORE_ADDR
2658 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2659 struct value **args, int nargs, struct type *value_type,
2660 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2661 struct regcache *regcache)
2662 {
2663 /* Use 0xcc breakpoint - 1 byte. */
2664 *bp_addr = sp - 1;
2665 *real_pc = funaddr;
2666
2667 /* Keep the stack aligned. */
2668 return sp - 16;
2669 }
2670
2671 static CORE_ADDR
2672 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2673 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2674 struct value **args, CORE_ADDR sp,
2675 function_call_return_method return_method,
2676 CORE_ADDR struct_addr)
2677 {
2678 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2679 gdb_byte buf[4];
2680 int i;
2681 int write_pass;
2682 int args_space = 0;
2683
2684 /* BND registers can be in arbitrary values at the moment of the
2685 inferior call. This can cause boundary violations that are not
2686 due to a real bug or even desired by the user. The best to be done
2687 is set the BND registers to allow access to the whole memory, INIT
2688 state, before pushing the inferior call. */
2689 i387_reset_bnd_regs (gdbarch, regcache);
2690
2691 /* Determine the total space required for arguments and struct
2692 return address in a first pass (allowing for 16-byte-aligned
2693 arguments), then push arguments in a second pass. */
2694
2695 for (write_pass = 0; write_pass < 2; write_pass++)
2696 {
2697 int args_space_used = 0;
2698
2699 if (return_method == return_method_struct)
2700 {
2701 if (write_pass)
2702 {
2703 /* Push value address. */
2704 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2705 write_memory (sp, buf, 4);
2706 args_space_used += 4;
2707 }
2708 else
2709 args_space += 4;
2710 }
2711
2712 for (i = 0; i < nargs; i++)
2713 {
2714 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2715
2716 if (write_pass)
2717 {
2718 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2719 args_space_used = align_up (args_space_used, 16);
2720
2721 write_memory (sp + args_space_used,
2722 value_contents_all (args[i]), len);
2723 /* The System V ABI says that:
2724
2725 "An argument's size is increased, if necessary, to make it a
2726 multiple of [32-bit] words. This may require tail padding,
2727 depending on the size of the argument."
2728
2729 This makes sure the stack stays word-aligned. */
2730 args_space_used += align_up (len, 4);
2731 }
2732 else
2733 {
2734 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2735 args_space = align_up (args_space, 16);
2736 args_space += align_up (len, 4);
2737 }
2738 }
2739
2740 if (!write_pass)
2741 {
2742 sp -= args_space;
2743
2744 /* The original System V ABI only requires word alignment,
2745 but modern incarnations need 16-byte alignment in order
2746 to support SSE. Since wasting a few bytes here isn't
2747 harmful we unconditionally enforce 16-byte alignment. */
2748 sp &= ~0xf;
2749 }
2750 }
2751
2752 /* Store return address. */
2753 sp -= 4;
2754 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2755 write_memory (sp, buf, 4);
2756
2757 /* Finally, update the stack pointer... */
2758 store_unsigned_integer (buf, 4, byte_order, sp);
2759 regcache->cooked_write (I386_ESP_REGNUM, buf);
2760
2761 /* ...and fake a frame pointer. */
2762 regcache->cooked_write (I386_EBP_REGNUM, buf);
2763
2764 /* MarkK wrote: This "+ 8" is all over the place:
2765 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2766 i386_dummy_id). It's there, since all frame unwinders for
2767 a given target have to agree (within a certain margin) on the
2768 definition of the stack address of a frame. Otherwise frame id
2769 comparison might not work correctly. Since DWARF2/GCC uses the
2770 stack address *before* the function call as a frame's CFA. On
2771 the i386, when %ebp is used as a frame pointer, the offset
2772 between the contents %ebp and the CFA as defined by GCC. */
2773 return sp + 8;
2774 }
2775
2776 /* These registers are used for returning integers (and on some
2777 targets also for returning `struct' and `union' values when their
2778 size and alignment match an integer type). */
2779 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2780 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2781
2782 /* Read, for architecture GDBARCH, a function return value of TYPE
2783 from REGCACHE, and copy that into VALBUF. */
2784
2785 static void
2786 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2787 struct regcache *regcache, gdb_byte *valbuf)
2788 {
2789 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2790 int len = TYPE_LENGTH (type);
2791 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2792
2793 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2794 {
2795 if (tdep->st0_regnum < 0)
2796 {
2797 warning (_("Cannot find floating-point return value."));
2798 memset (valbuf, 0, len);
2799 return;
2800 }
2801
2802 /* Floating-point return values can be found in %st(0). Convert
2803 its contents to the desired type. This is probably not
2804 exactly how it would happen on the target itself, but it is
2805 the best we can do. */
2806 regcache->raw_read (I386_ST0_REGNUM, buf);
2807 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
2808 }
2809 else
2810 {
2811 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2812 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2813
2814 if (len <= low_size)
2815 {
2816 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2817 memcpy (valbuf, buf, len);
2818 }
2819 else if (len <= (low_size + high_size))
2820 {
2821 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2822 memcpy (valbuf, buf, low_size);
2823 regcache->raw_read (HIGH_RETURN_REGNUM, buf);
2824 memcpy (valbuf + low_size, buf, len - low_size);
2825 }
2826 else
2827 internal_error (__FILE__, __LINE__,
2828 _("Cannot extract return value of %d bytes long."),
2829 len);
2830 }
2831 }
2832
2833 /* Write, for architecture GDBARCH, a function return value of TYPE
2834 from VALBUF into REGCACHE. */
2835
2836 static void
2837 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2838 struct regcache *regcache, const gdb_byte *valbuf)
2839 {
2840 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2841 int len = TYPE_LENGTH (type);
2842
2843 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2844 {
2845 ULONGEST fstat;
2846 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2847
2848 if (tdep->st0_regnum < 0)
2849 {
2850 warning (_("Cannot set floating-point return value."));
2851 return;
2852 }
2853
2854 /* Returning floating-point values is a bit tricky. Apart from
2855 storing the return value in %st(0), we have to simulate the
2856 state of the FPU at function return point. */
2857
2858 /* Convert the value found in VALBUF to the extended
2859 floating-point format used by the FPU. This is probably
2860 not exactly how it would happen on the target itself, but
2861 it is the best we can do. */
2862 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
2863 regcache->raw_write (I386_ST0_REGNUM, buf);
2864
2865 /* Set the top of the floating-point register stack to 7. The
2866 actual value doesn't really matter, but 7 is what a normal
2867 function return would end up with if the program started out
2868 with a freshly initialized FPU. */
2869 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2870 fstat |= (7 << 11);
2871 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2872
2873 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2874 the floating-point register stack to 7, the appropriate value
2875 for the tag word is 0x3fff. */
2876 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2877 }
2878 else
2879 {
2880 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2881 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2882
2883 if (len <= low_size)
2884 regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
2885 else if (len <= (low_size + high_size))
2886 {
2887 regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
2888 regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
2889 valbuf + low_size);
2890 }
2891 else
2892 internal_error (__FILE__, __LINE__,
2893 _("Cannot store return value of %d bytes long."), len);
2894 }
2895 }
2896 \f
2897
2898 /* This is the variable that is set with "set struct-convention", and
2899 its legitimate values. */
2900 static const char default_struct_convention[] = "default";
2901 static const char pcc_struct_convention[] = "pcc";
2902 static const char reg_struct_convention[] = "reg";
2903 static const char *const valid_conventions[] =
2904 {
2905 default_struct_convention,
2906 pcc_struct_convention,
2907 reg_struct_convention,
2908 NULL
2909 };
2910 static const char *struct_convention = default_struct_convention;
2911
2912 /* Return non-zero if TYPE, which is assumed to be a structure,
2913 a union type, or an array type, should be returned in registers
2914 for architecture GDBARCH. */
2915
2916 static int
2917 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2918 {
2919 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2920 enum type_code code = TYPE_CODE (type);
2921 int len = TYPE_LENGTH (type);
2922
2923 gdb_assert (code == TYPE_CODE_STRUCT
2924 || code == TYPE_CODE_UNION
2925 || code == TYPE_CODE_ARRAY);
2926
2927 if (struct_convention == pcc_struct_convention
2928 || (struct_convention == default_struct_convention
2929 && tdep->struct_return == pcc_struct_return))
2930 return 0;
2931
2932 /* Structures consisting of a single `float', `double' or 'long
2933 double' member are returned in %st(0). */
2934 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2935 {
2936 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2937 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2938 return (len == 4 || len == 8 || len == 12);
2939 }
2940
2941 return (len == 1 || len == 2 || len == 4 || len == 8);
2942 }
2943
2944 /* Determine, for architecture GDBARCH, how a return value of TYPE
2945 should be returned. If it is supposed to be returned in registers,
2946 and READBUF is non-zero, read the appropriate value from REGCACHE,
2947 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2948 from WRITEBUF into REGCACHE. */
2949
2950 static enum return_value_convention
2951 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2952 struct type *type, struct regcache *regcache,
2953 gdb_byte *readbuf, const gdb_byte *writebuf)
2954 {
2955 enum type_code code = TYPE_CODE (type);
2956
2957 if (((code == TYPE_CODE_STRUCT
2958 || code == TYPE_CODE_UNION
2959 || code == TYPE_CODE_ARRAY)
2960 && !i386_reg_struct_return_p (gdbarch, type))
2961 /* Complex double and long double uses the struct return convention. */
2962 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2963 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2964 /* 128-bit decimal float uses the struct return convention. */
2965 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2966 {
2967 /* The System V ABI says that:
2968
2969 "A function that returns a structure or union also sets %eax
2970 to the value of the original address of the caller's area
2971 before it returns. Thus when the caller receives control
2972 again, the address of the returned object resides in register
2973 %eax and can be used to access the object."
2974
2975 So the ABI guarantees that we can always find the return
2976 value just after the function has returned. */
2977
2978 /* Note that the ABI doesn't mention functions returning arrays,
2979 which is something possible in certain languages such as Ada.
2980 In this case, the value is returned as if it was wrapped in
2981 a record, so the convention applied to records also applies
2982 to arrays. */
2983
2984 if (readbuf)
2985 {
2986 ULONGEST addr;
2987
2988 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2989 read_memory (addr, readbuf, TYPE_LENGTH (type));
2990 }
2991
2992 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2993 }
2994
2995 /* This special case is for structures consisting of a single
2996 `float', `double' or 'long double' member. These structures are
2997 returned in %st(0). For these structures, we call ourselves
2998 recursively, changing TYPE into the type of the first member of
2999 the structure. Since that should work for all structures that
3000 have only one member, we don't bother to check the member's type
3001 here. */
3002 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
3003 {
3004 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
3005 return i386_return_value (gdbarch, function, type, regcache,
3006 readbuf, writebuf);
3007 }
3008
3009 if (readbuf)
3010 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3011 if (writebuf)
3012 i386_store_return_value (gdbarch, type, regcache, writebuf);
3013
3014 return RETURN_VALUE_REGISTER_CONVENTION;
3015 }
3016 \f
3017
3018 struct type *
3019 i387_ext_type (struct gdbarch *gdbarch)
3020 {
3021 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3022
3023 if (!tdep->i387_ext_type)
3024 {
3025 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3026 gdb_assert (tdep->i387_ext_type != NULL);
3027 }
3028
3029 return tdep->i387_ext_type;
3030 }
3031
3032 /* Construct type for pseudo BND registers. We can't use
3033 tdesc_find_type since a complement of one value has to be used
3034 to describe the upper bound. */
3035
3036 static struct type *
3037 i386_bnd_type (struct gdbarch *gdbarch)
3038 {
3039 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3040
3041
3042 if (!tdep->i386_bnd_type)
3043 {
3044 struct type *t;
3045 const struct builtin_type *bt = builtin_type (gdbarch);
3046
3047 /* The type we're building is described bellow: */
3048 #if 0
3049 struct __bound128
3050 {
3051 void *lbound;
3052 void *ubound; /* One complement of raw ubound field. */
3053 };
3054 #endif
3055
3056 t = arch_composite_type (gdbarch,
3057 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3058
3059 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3060 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3061
3062 TYPE_NAME (t) = "builtin_type_bound128";
3063 tdep->i386_bnd_type = t;
3064 }
3065
3066 return tdep->i386_bnd_type;
3067 }
3068
3069 /* Construct vector type for pseudo ZMM registers. We can't use
3070 tdesc_find_type since ZMM isn't described in target description. */
3071
3072 static struct type *
3073 i386_zmm_type (struct gdbarch *gdbarch)
3074 {
3075 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3076
3077 if (!tdep->i386_zmm_type)
3078 {
3079 const struct builtin_type *bt = builtin_type (gdbarch);
3080
3081 /* The type we're building is this: */
3082 #if 0
3083 union __gdb_builtin_type_vec512i
3084 {
3085 int128_t uint128[4];
3086 int64_t v4_int64[8];
3087 int32_t v8_int32[16];
3088 int16_t v16_int16[32];
3089 int8_t v32_int8[64];
3090 double v4_double[8];
3091 float v8_float[16];
3092 };
3093 #endif
3094
3095 struct type *t;
3096
3097 t = arch_composite_type (gdbarch,
3098 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3099 append_composite_type_field (t, "v16_float",
3100 init_vector_type (bt->builtin_float, 16));
3101 append_composite_type_field (t, "v8_double",
3102 init_vector_type (bt->builtin_double, 8));
3103 append_composite_type_field (t, "v64_int8",
3104 init_vector_type (bt->builtin_int8, 64));
3105 append_composite_type_field (t, "v32_int16",
3106 init_vector_type (bt->builtin_int16, 32));
3107 append_composite_type_field (t, "v16_int32",
3108 init_vector_type (bt->builtin_int32, 16));
3109 append_composite_type_field (t, "v8_int64",
3110 init_vector_type (bt->builtin_int64, 8));
3111 append_composite_type_field (t, "v4_int128",
3112 init_vector_type (bt->builtin_int128, 4));
3113
3114 TYPE_VECTOR (t) = 1;
3115 TYPE_NAME (t) = "builtin_type_vec512i";
3116 tdep->i386_zmm_type = t;
3117 }
3118
3119 return tdep->i386_zmm_type;
3120 }
3121
3122 /* Construct vector type for pseudo YMM registers. We can't use
3123 tdesc_find_type since YMM isn't described in target description. */
3124
3125 static struct type *
3126 i386_ymm_type (struct gdbarch *gdbarch)
3127 {
3128 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3129
3130 if (!tdep->i386_ymm_type)
3131 {
3132 const struct builtin_type *bt = builtin_type (gdbarch);
3133
3134 /* The type we're building is this: */
3135 #if 0
3136 union __gdb_builtin_type_vec256i
3137 {
3138 int128_t uint128[2];
3139 int64_t v2_int64[4];
3140 int32_t v4_int32[8];
3141 int16_t v8_int16[16];
3142 int8_t v16_int8[32];
3143 double v2_double[4];
3144 float v4_float[8];
3145 };
3146 #endif
3147
3148 struct type *t;
3149
3150 t = arch_composite_type (gdbarch,
3151 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3152 append_composite_type_field (t, "v8_float",
3153 init_vector_type (bt->builtin_float, 8));
3154 append_composite_type_field (t, "v4_double",
3155 init_vector_type (bt->builtin_double, 4));
3156 append_composite_type_field (t, "v32_int8",
3157 init_vector_type (bt->builtin_int8, 32));
3158 append_composite_type_field (t, "v16_int16",
3159 init_vector_type (bt->builtin_int16, 16));
3160 append_composite_type_field (t, "v8_int32",
3161 init_vector_type (bt->builtin_int32, 8));
3162 append_composite_type_field (t, "v4_int64",
3163 init_vector_type (bt->builtin_int64, 4));
3164 append_composite_type_field (t, "v2_int128",
3165 init_vector_type (bt->builtin_int128, 2));
3166
3167 TYPE_VECTOR (t) = 1;
3168 TYPE_NAME (t) = "builtin_type_vec256i";
3169 tdep->i386_ymm_type = t;
3170 }
3171
3172 return tdep->i386_ymm_type;
3173 }
3174
3175 /* Construct vector type for MMX registers. */
3176 static struct type *
3177 i386_mmx_type (struct gdbarch *gdbarch)
3178 {
3179 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3180
3181 if (!tdep->i386_mmx_type)
3182 {
3183 const struct builtin_type *bt = builtin_type (gdbarch);
3184
3185 /* The type we're building is this: */
3186 #if 0
3187 union __gdb_builtin_type_vec64i
3188 {
3189 int64_t uint64;
3190 int32_t v2_int32[2];
3191 int16_t v4_int16[4];
3192 int8_t v8_int8[8];
3193 };
3194 #endif
3195
3196 struct type *t;
3197
3198 t = arch_composite_type (gdbarch,
3199 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3200
3201 append_composite_type_field (t, "uint64", bt->builtin_int64);
3202 append_composite_type_field (t, "v2_int32",
3203 init_vector_type (bt->builtin_int32, 2));
3204 append_composite_type_field (t, "v4_int16",
3205 init_vector_type (bt->builtin_int16, 4));
3206 append_composite_type_field (t, "v8_int8",
3207 init_vector_type (bt->builtin_int8, 8));
3208
3209 TYPE_VECTOR (t) = 1;
3210 TYPE_NAME (t) = "builtin_type_vec64i";
3211 tdep->i386_mmx_type = t;
3212 }
3213
3214 return tdep->i386_mmx_type;
3215 }
3216
3217 /* Return the GDB type object for the "standard" data type of data in
3218 register REGNUM. */
3219
3220 struct type *
3221 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3222 {
3223 if (i386_bnd_regnum_p (gdbarch, regnum))
3224 return i386_bnd_type (gdbarch);
3225 if (i386_mmx_regnum_p (gdbarch, regnum))
3226 return i386_mmx_type (gdbarch);
3227 else if (i386_ymm_regnum_p (gdbarch, regnum))
3228 return i386_ymm_type (gdbarch);
3229 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3230 return i386_ymm_type (gdbarch);
3231 else if (i386_zmm_regnum_p (gdbarch, regnum))
3232 return i386_zmm_type (gdbarch);
3233 else
3234 {
3235 const struct builtin_type *bt = builtin_type (gdbarch);
3236 if (i386_byte_regnum_p (gdbarch, regnum))
3237 return bt->builtin_int8;
3238 else if (i386_word_regnum_p (gdbarch, regnum))
3239 return bt->builtin_int16;
3240 else if (i386_dword_regnum_p (gdbarch, regnum))
3241 return bt->builtin_int32;
3242 else if (i386_k_regnum_p (gdbarch, regnum))
3243 return bt->builtin_int64;
3244 }
3245
3246 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3247 }
3248
3249 /* Map a cooked register onto a raw register or memory. For the i386,
3250 the MMX registers need to be mapped onto floating point registers. */
3251
3252 static int
3253 i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
3254 {
3255 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
3256 int mmxreg, fpreg;
3257 ULONGEST fstat;
3258 int tos;
3259
3260 mmxreg = regnum - tdep->mm0_regnum;
3261 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
3262 tos = (fstat >> 11) & 0x7;
3263 fpreg = (mmxreg + tos) % 8;
3264
3265 return (I387_ST0_REGNUM (tdep) + fpreg);
3266 }
3267
3268 /* A helper function for us by i386_pseudo_register_read_value and
3269 amd64_pseudo_register_read_value. It does all the work but reads
3270 the data into an already-allocated value. */
3271
3272 void
3273 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3274 readable_regcache *regcache,
3275 int regnum,
3276 struct value *result_value)
3277 {
3278 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3279 enum register_status status;
3280 gdb_byte *buf = value_contents_raw (result_value);
3281
3282 if (i386_mmx_regnum_p (gdbarch, regnum))
3283 {
3284 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3285
3286 /* Extract (always little endian). */
3287 status = regcache->raw_read (fpnum, raw_buf);
3288 if (status != REG_VALID)
3289 mark_value_bytes_unavailable (result_value, 0,
3290 TYPE_LENGTH (value_type (result_value)));
3291 else
3292 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3293 }
3294 else
3295 {
3296 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3297 if (i386_bnd_regnum_p (gdbarch, regnum))
3298 {
3299 regnum -= tdep->bnd0_regnum;
3300
3301 /* Extract (always little endian). Read lower 128bits. */
3302 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3303 raw_buf);
3304 if (status != REG_VALID)
3305 mark_value_bytes_unavailable (result_value, 0, 16);
3306 else
3307 {
3308 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3309 LONGEST upper, lower;
3310 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3311
3312 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3313 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3314 upper = ~upper;
3315
3316 memcpy (buf, &lower, size);
3317 memcpy (buf + size, &upper, size);
3318 }
3319 }
3320 else if (i386_k_regnum_p (gdbarch, regnum))
3321 {
3322 regnum -= tdep->k0_regnum;
3323
3324 /* Extract (always little endian). */
3325 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
3326 if (status != REG_VALID)
3327 mark_value_bytes_unavailable (result_value, 0, 8);
3328 else
3329 memcpy (buf, raw_buf, 8);
3330 }
3331 else if (i386_zmm_regnum_p (gdbarch, regnum))
3332 {
3333 regnum -= tdep->zmm0_regnum;
3334
3335 if (regnum < num_lower_zmm_regs)
3336 {
3337 /* Extract (always little endian). Read lower 128bits. */
3338 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3339 raw_buf);
3340 if (status != REG_VALID)
3341 mark_value_bytes_unavailable (result_value, 0, 16);
3342 else
3343 memcpy (buf, raw_buf, 16);
3344
3345 /* Extract (always little endian). Read upper 128bits. */
3346 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3347 raw_buf);
3348 if (status != REG_VALID)
3349 mark_value_bytes_unavailable (result_value, 16, 16);
3350 else
3351 memcpy (buf + 16, raw_buf, 16);
3352 }
3353 else
3354 {
3355 /* Extract (always little endian). Read lower 128bits. */
3356 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3357 - num_lower_zmm_regs,
3358 raw_buf);
3359 if (status != REG_VALID)
3360 mark_value_bytes_unavailable (result_value, 0, 16);
3361 else
3362 memcpy (buf, raw_buf, 16);
3363
3364 /* Extract (always little endian). Read upper 128bits. */
3365 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3366 - num_lower_zmm_regs,
3367 raw_buf);
3368 if (status != REG_VALID)
3369 mark_value_bytes_unavailable (result_value, 16, 16);
3370 else
3371 memcpy (buf + 16, raw_buf, 16);
3372 }
3373
3374 /* Read upper 256bits. */
3375 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3376 raw_buf);
3377 if (status != REG_VALID)
3378 mark_value_bytes_unavailable (result_value, 32, 32);
3379 else
3380 memcpy (buf + 32, raw_buf, 32);
3381 }
3382 else if (i386_ymm_regnum_p (gdbarch, regnum))
3383 {
3384 regnum -= tdep->ymm0_regnum;
3385
3386 /* Extract (always little endian). Read lower 128bits. */
3387 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3388 raw_buf);
3389 if (status != REG_VALID)
3390 mark_value_bytes_unavailable (result_value, 0, 16);
3391 else
3392 memcpy (buf, raw_buf, 16);
3393 /* Read upper 128bits. */
3394 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3395 raw_buf);
3396 if (status != REG_VALID)
3397 mark_value_bytes_unavailable (result_value, 16, 32);
3398 else
3399 memcpy (buf + 16, raw_buf, 16);
3400 }
3401 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3402 {
3403 regnum -= tdep->ymm16_regnum;
3404 /* Extract (always little endian). Read lower 128bits. */
3405 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3406 raw_buf);
3407 if (status != REG_VALID)
3408 mark_value_bytes_unavailable (result_value, 0, 16);
3409 else
3410 memcpy (buf, raw_buf, 16);
3411 /* Read upper 128bits. */
3412 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3413 raw_buf);
3414 if (status != REG_VALID)
3415 mark_value_bytes_unavailable (result_value, 16, 16);
3416 else
3417 memcpy (buf + 16, raw_buf, 16);
3418 }
3419 else if (i386_word_regnum_p (gdbarch, regnum))
3420 {
3421 int gpnum = regnum - tdep->ax_regnum;
3422
3423 /* Extract (always little endian). */
3424 status = regcache->raw_read (gpnum, raw_buf);
3425 if (status != REG_VALID)
3426 mark_value_bytes_unavailable (result_value, 0,
3427 TYPE_LENGTH (value_type (result_value)));
3428 else
3429 memcpy (buf, raw_buf, 2);
3430 }
3431 else if (i386_byte_regnum_p (gdbarch, regnum))
3432 {
3433 int gpnum = regnum - tdep->al_regnum;
3434
3435 /* Extract (always little endian). We read both lower and
3436 upper registers. */
3437 status = regcache->raw_read (gpnum % 4, raw_buf);
3438 if (status != REG_VALID)
3439 mark_value_bytes_unavailable (result_value, 0,
3440 TYPE_LENGTH (value_type (result_value)));
3441 else if (gpnum >= 4)
3442 memcpy (buf, raw_buf + 1, 1);
3443 else
3444 memcpy (buf, raw_buf, 1);
3445 }
3446 else
3447 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3448 }
3449 }
3450
3451 static struct value *
3452 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3453 readable_regcache *regcache,
3454 int regnum)
3455 {
3456 struct value *result;
3457
3458 result = allocate_value (register_type (gdbarch, regnum));
3459 VALUE_LVAL (result) = lval_register;
3460 VALUE_REGNUM (result) = regnum;
3461
3462 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3463
3464 return result;
3465 }
3466
3467 void
3468 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3469 int regnum, const gdb_byte *buf)
3470 {
3471 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3472
3473 if (i386_mmx_regnum_p (gdbarch, regnum))
3474 {
3475 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3476
3477 /* Read ... */
3478 regcache->raw_read (fpnum, raw_buf);
3479 /* ... Modify ... (always little endian). */
3480 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3481 /* ... Write. */
3482 regcache->raw_write (fpnum, raw_buf);
3483 }
3484 else
3485 {
3486 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3487
3488 if (i386_bnd_regnum_p (gdbarch, regnum))
3489 {
3490 ULONGEST upper, lower;
3491 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3492 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3493
3494 /* New values from input value. */
3495 regnum -= tdep->bnd0_regnum;
3496 lower = extract_unsigned_integer (buf, size, byte_order);
3497 upper = extract_unsigned_integer (buf + size, size, byte_order);
3498
3499 /* Fetching register buffer. */
3500 regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3501 raw_buf);
3502
3503 upper = ~upper;
3504
3505 /* Set register bits. */
3506 memcpy (raw_buf, &lower, 8);
3507 memcpy (raw_buf + 8, &upper, 8);
3508
3509 regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
3510 }
3511 else if (i386_k_regnum_p (gdbarch, regnum))
3512 {
3513 regnum -= tdep->k0_regnum;
3514
3515 regcache->raw_write (tdep->k0_regnum + regnum, buf);
3516 }
3517 else if (i386_zmm_regnum_p (gdbarch, regnum))
3518 {
3519 regnum -= tdep->zmm0_regnum;
3520
3521 if (regnum < num_lower_zmm_regs)
3522 {
3523 /* Write lower 128bits. */
3524 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3525 /* Write upper 128bits. */
3526 regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
3527 }
3528 else
3529 {
3530 /* Write lower 128bits. */
3531 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
3532 - num_lower_zmm_regs, buf);
3533 /* Write upper 128bits. */
3534 regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
3535 - num_lower_zmm_regs, buf + 16);
3536 }
3537 /* Write upper 256bits. */
3538 regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
3539 }
3540 else if (i386_ymm_regnum_p (gdbarch, regnum))
3541 {
3542 regnum -= tdep->ymm0_regnum;
3543
3544 /* ... Write lower 128bits. */
3545 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3546 /* ... Write upper 128bits. */
3547 regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
3548 }
3549 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3550 {
3551 regnum -= tdep->ymm16_regnum;
3552
3553 /* ... Write lower 128bits. */
3554 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
3555 /* ... Write upper 128bits. */
3556 regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
3557 }
3558 else if (i386_word_regnum_p (gdbarch, regnum))
3559 {
3560 int gpnum = regnum - tdep->ax_regnum;
3561
3562 /* Read ... */
3563 regcache->raw_read (gpnum, raw_buf);
3564 /* ... Modify ... (always little endian). */
3565 memcpy (raw_buf, buf, 2);
3566 /* ... Write. */
3567 regcache->raw_write (gpnum, raw_buf);
3568 }
3569 else if (i386_byte_regnum_p (gdbarch, regnum))
3570 {
3571 int gpnum = regnum - tdep->al_regnum;
3572
3573 /* Read ... We read both lower and upper registers. */
3574 regcache->raw_read (gpnum % 4, raw_buf);
3575 /* ... Modify ... (always little endian). */
3576 if (gpnum >= 4)
3577 memcpy (raw_buf + 1, buf, 1);
3578 else
3579 memcpy (raw_buf, buf, 1);
3580 /* ... Write. */
3581 regcache->raw_write (gpnum % 4, raw_buf);
3582 }
3583 else
3584 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3585 }
3586 }
3587
3588 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3589
3590 int
3591 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3592 struct agent_expr *ax, int regnum)
3593 {
3594 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3595
3596 if (i386_mmx_regnum_p (gdbarch, regnum))
3597 {
3598 /* MMX to FPU register mapping depends on current TOS. Let's just
3599 not care and collect everything... */
3600 int i;
3601
3602 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3603 for (i = 0; i < 8; i++)
3604 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3605 return 0;
3606 }
3607 else if (i386_bnd_regnum_p (gdbarch, regnum))
3608 {
3609 regnum -= tdep->bnd0_regnum;
3610 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3611 return 0;
3612 }
3613 else if (i386_k_regnum_p (gdbarch, regnum))
3614 {
3615 regnum -= tdep->k0_regnum;
3616 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3617 return 0;
3618 }
3619 else if (i386_zmm_regnum_p (gdbarch, regnum))
3620 {
3621 regnum -= tdep->zmm0_regnum;
3622 if (regnum < num_lower_zmm_regs)
3623 {
3624 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3625 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3626 }
3627 else
3628 {
3629 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3630 - num_lower_zmm_regs);
3631 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3632 - num_lower_zmm_regs);
3633 }
3634 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3635 return 0;
3636 }
3637 else if (i386_ymm_regnum_p (gdbarch, regnum))
3638 {
3639 regnum -= tdep->ymm0_regnum;
3640 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3641 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3642 return 0;
3643 }
3644 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3645 {
3646 regnum -= tdep->ymm16_regnum;
3647 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3648 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3649 return 0;
3650 }
3651 else if (i386_word_regnum_p (gdbarch, regnum))
3652 {
3653 int gpnum = regnum - tdep->ax_regnum;
3654
3655 ax_reg_mask (ax, gpnum);
3656 return 0;
3657 }
3658 else if (i386_byte_regnum_p (gdbarch, regnum))
3659 {
3660 int gpnum = regnum - tdep->al_regnum;
3661
3662 ax_reg_mask (ax, gpnum % 4);
3663 return 0;
3664 }
3665 else
3666 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3667 return 1;
3668 }
3669 \f
3670
3671 /* Return the register number of the register allocated by GCC after
3672 REGNUM, or -1 if there is no such register. */
3673
3674 static int
3675 i386_next_regnum (int regnum)
3676 {
3677 /* GCC allocates the registers in the order:
3678
3679 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3680
3681 Since storing a variable in %esp doesn't make any sense we return
3682 -1 for %ebp and for %esp itself. */
3683 static int next_regnum[] =
3684 {
3685 I386_EDX_REGNUM, /* Slot for %eax. */
3686 I386_EBX_REGNUM, /* Slot for %ecx. */
3687 I386_ECX_REGNUM, /* Slot for %edx. */
3688 I386_ESI_REGNUM, /* Slot for %ebx. */
3689 -1, -1, /* Slots for %esp and %ebp. */
3690 I386_EDI_REGNUM, /* Slot for %esi. */
3691 I386_EBP_REGNUM /* Slot for %edi. */
3692 };
3693
3694 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3695 return next_regnum[regnum];
3696
3697 return -1;
3698 }
3699
3700 /* Return nonzero if a value of type TYPE stored in register REGNUM
3701 needs any special handling. */
3702
3703 static int
3704 i386_convert_register_p (struct gdbarch *gdbarch,
3705 int regnum, struct type *type)
3706 {
3707 int len = TYPE_LENGTH (type);
3708
3709 /* Values may be spread across multiple registers. Most debugging
3710 formats aren't expressive enough to specify the locations, so
3711 some heuristics is involved. Right now we only handle types that
3712 have a length that is a multiple of the word size, since GCC
3713 doesn't seem to put any other types into registers. */
3714 if (len > 4 && len % 4 == 0)
3715 {
3716 int last_regnum = regnum;
3717
3718 while (len > 4)
3719 {
3720 last_regnum = i386_next_regnum (last_regnum);
3721 len -= 4;
3722 }
3723
3724 if (last_regnum != -1)
3725 return 1;
3726 }
3727
3728 return i387_convert_register_p (gdbarch, regnum, type);
3729 }
3730
3731 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3732 return its contents in TO. */
3733
3734 static int
3735 i386_register_to_value (struct frame_info *frame, int regnum,
3736 struct type *type, gdb_byte *to,
3737 int *optimizedp, int *unavailablep)
3738 {
3739 struct gdbarch *gdbarch = get_frame_arch (frame);
3740 int len = TYPE_LENGTH (type);
3741
3742 if (i386_fp_regnum_p (gdbarch, regnum))
3743 return i387_register_to_value (frame, regnum, type, to,
3744 optimizedp, unavailablep);
3745
3746 /* Read a value spread across multiple registers. */
3747
3748 gdb_assert (len > 4 && len % 4 == 0);
3749
3750 while (len > 0)
3751 {
3752 gdb_assert (regnum != -1);
3753 gdb_assert (register_size (gdbarch, regnum) == 4);
3754
3755 if (!get_frame_register_bytes (frame, regnum, 0,
3756 register_size (gdbarch, regnum),
3757 to, optimizedp, unavailablep))
3758 return 0;
3759
3760 regnum = i386_next_regnum (regnum);
3761 len -= 4;
3762 to += 4;
3763 }
3764
3765 *optimizedp = *unavailablep = 0;
3766 return 1;
3767 }
3768
3769 /* Write the contents FROM of a value of type TYPE into register
3770 REGNUM in frame FRAME. */
3771
3772 static void
3773 i386_value_to_register (struct frame_info *frame, int regnum,
3774 struct type *type, const gdb_byte *from)
3775 {
3776 int len = TYPE_LENGTH (type);
3777
3778 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3779 {
3780 i387_value_to_register (frame, regnum, type, from);
3781 return;
3782 }
3783
3784 /* Write a value spread across multiple registers. */
3785
3786 gdb_assert (len > 4 && len % 4 == 0);
3787
3788 while (len > 0)
3789 {
3790 gdb_assert (regnum != -1);
3791 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3792
3793 put_frame_register (frame, regnum, from);
3794 regnum = i386_next_regnum (regnum);
3795 len -= 4;
3796 from += 4;
3797 }
3798 }
3799 \f
3800 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3801 in the general-purpose register set REGSET to register cache
3802 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3803
3804 void
3805 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3806 int regnum, const void *gregs, size_t len)
3807 {
3808 struct gdbarch *gdbarch = regcache->arch ();
3809 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3810 const gdb_byte *regs = (const gdb_byte *) gregs;
3811 int i;
3812
3813 gdb_assert (len >= tdep->sizeof_gregset);
3814
3815 for (i = 0; i < tdep->gregset_num_regs; i++)
3816 {
3817 if ((regnum == i || regnum == -1)
3818 && tdep->gregset_reg_offset[i] != -1)
3819 regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
3820 }
3821 }
3822
3823 /* Collect register REGNUM from the register cache REGCACHE and store
3824 it in the buffer specified by GREGS and LEN as described by the
3825 general-purpose register set REGSET. If REGNUM is -1, do this for
3826 all registers in REGSET. */
3827
3828 static void
3829 i386_collect_gregset (const struct regset *regset,
3830 const struct regcache *regcache,
3831 int regnum, void *gregs, size_t len)
3832 {
3833 struct gdbarch *gdbarch = regcache->arch ();
3834 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3835 gdb_byte *regs = (gdb_byte *) gregs;
3836 int i;
3837
3838 gdb_assert (len >= tdep->sizeof_gregset);
3839
3840 for (i = 0; i < tdep->gregset_num_regs; i++)
3841 {
3842 if ((regnum == i || regnum == -1)
3843 && tdep->gregset_reg_offset[i] != -1)
3844 regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
3845 }
3846 }
3847
3848 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3849 in the floating-point register set REGSET to register cache
3850 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3851
3852 static void
3853 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3854 int regnum, const void *fpregs, size_t len)
3855 {
3856 struct gdbarch *gdbarch = regcache->arch ();
3857 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3858
3859 if (len == I387_SIZEOF_FXSAVE)
3860 {
3861 i387_supply_fxsave (regcache, regnum, fpregs);
3862 return;
3863 }
3864
3865 gdb_assert (len >= tdep->sizeof_fpregset);
3866 i387_supply_fsave (regcache, regnum, fpregs);
3867 }
3868
3869 /* Collect register REGNUM from the register cache REGCACHE and store
3870 it in the buffer specified by FPREGS and LEN as described by the
3871 floating-point register set REGSET. If REGNUM is -1, do this for
3872 all registers in REGSET. */
3873
3874 static void
3875 i386_collect_fpregset (const struct regset *regset,
3876 const struct regcache *regcache,
3877 int regnum, void *fpregs, size_t len)
3878 {
3879 struct gdbarch *gdbarch = regcache->arch ();
3880 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3881
3882 if (len == I387_SIZEOF_FXSAVE)
3883 {
3884 i387_collect_fxsave (regcache, regnum, fpregs);
3885 return;
3886 }
3887
3888 gdb_assert (len >= tdep->sizeof_fpregset);
3889 i387_collect_fsave (regcache, regnum, fpregs);
3890 }
3891
3892 /* Register set definitions. */
3893
3894 const struct regset i386_gregset =
3895 {
3896 NULL, i386_supply_gregset, i386_collect_gregset
3897 };
3898
3899 const struct regset i386_fpregset =
3900 {
3901 NULL, i386_supply_fpregset, i386_collect_fpregset
3902 };
3903
3904 /* Default iterator over core file register note sections. */
3905
3906 void
3907 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3908 iterate_over_regset_sections_cb *cb,
3909 void *cb_data,
3910 const struct regcache *regcache)
3911 {
3912 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3913
3914 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
3915 cb_data);
3916 if (tdep->sizeof_fpregset)
3917 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
3918 NULL, cb_data);
3919 }
3920 \f
3921
3922 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3923
3924 CORE_ADDR
3925 i386_pe_skip_trampoline_code (struct frame_info *frame,
3926 CORE_ADDR pc, char *name)
3927 {
3928 struct gdbarch *gdbarch = get_frame_arch (frame);
3929 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3930
3931 /* jmp *(dest) */
3932 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3933 {
3934 unsigned long indirect =
3935 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3936 struct minimal_symbol *indsym =
3937 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3938 const char *symname = indsym ? indsym->linkage_name () : 0;
3939
3940 if (symname)
3941 {
3942 if (startswith (symname, "__imp_")
3943 || startswith (symname, "_imp_"))
3944 return name ? 1 :
3945 read_memory_unsigned_integer (indirect, 4, byte_order);
3946 }
3947 }
3948 return 0; /* Not a trampoline. */
3949 }
3950 \f
3951
3952 /* Return whether the THIS_FRAME corresponds to a sigtramp
3953 routine. */
3954
3955 int
3956 i386_sigtramp_p (struct frame_info *this_frame)
3957 {
3958 CORE_ADDR pc = get_frame_pc (this_frame);
3959 const char *name;
3960
3961 find_pc_partial_function (pc, &name, NULL, NULL);
3962 return (name && strcmp ("_sigtramp", name) == 0);
3963 }
3964 \f
3965
3966 /* We have two flavours of disassembly. The machinery on this page
3967 deals with switching between those. */
3968
3969 static int
3970 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3971 {
3972 gdb_assert (disassembly_flavor == att_flavor
3973 || disassembly_flavor == intel_flavor);
3974
3975 info->disassembler_options = disassembly_flavor;
3976
3977 return default_print_insn (pc, info);
3978 }
3979 \f
3980
3981 /* There are a few i386 architecture variants that differ only
3982 slightly from the generic i386 target. For now, we don't give them
3983 their own source file, but include them here. As a consequence,
3984 they'll always be included. */
3985
3986 /* System V Release 4 (SVR4). */
3987
3988 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3989 routine. */
3990
3991 static int
3992 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3993 {
3994 CORE_ADDR pc = get_frame_pc (this_frame);
3995 const char *name;
3996
3997 /* The origin of these symbols is currently unknown. */
3998 find_pc_partial_function (pc, &name, NULL, NULL);
3999 return (name && (strcmp ("_sigreturn", name) == 0
4000 || strcmp ("sigvechandler", name) == 0));
4001 }
4002
4003 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4004 address of the associated sigcontext (ucontext) structure. */
4005
4006 static CORE_ADDR
4007 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4008 {
4009 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4010 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4011 gdb_byte buf[4];
4012 CORE_ADDR sp;
4013
4014 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4015 sp = extract_unsigned_integer (buf, 4, byte_order);
4016
4017 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4018 }
4019
4020 \f
4021
4022 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4023 gdbarch.h. */
4024
4025 int
4026 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4027 {
4028 return (*s == '$' /* Literal number. */
4029 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4030 || (*s == '(' && s[1] == '%') /* Register indirection. */
4031 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4032 }
4033
4034 /* Helper function for i386_stap_parse_special_token.
4035
4036 This function parses operands of the form `-8+3+1(%rbp)', which
4037 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4038
4039 Return true if the operand was parsed successfully, false
4040 otherwise. */
4041
4042 static bool
4043 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4044 struct stap_parse_info *p)
4045 {
4046 const char *s = p->arg;
4047
4048 if (isdigit (*s) || *s == '-' || *s == '+')
4049 {
4050 bool got_minus[3];
4051 int i;
4052 long displacements[3];
4053 const char *start;
4054 char *regname;
4055 int len;
4056 struct stoken str;
4057 char *endp;
4058
4059 got_minus[0] = false;
4060 if (*s == '+')
4061 ++s;
4062 else if (*s == '-')
4063 {
4064 ++s;
4065 got_minus[0] = true;
4066 }
4067
4068 if (!isdigit ((unsigned char) *s))
4069 return false;
4070
4071 displacements[0] = strtol (s, &endp, 10);
4072 s = endp;
4073
4074 if (*s != '+' && *s != '-')
4075 {
4076 /* We are not dealing with a triplet. */
4077 return false;
4078 }
4079
4080 got_minus[1] = false;
4081 if (*s == '+')
4082 ++s;
4083 else
4084 {
4085 ++s;
4086 got_minus[1] = true;
4087 }
4088
4089 if (!isdigit ((unsigned char) *s))
4090 return false;
4091
4092 displacements[1] = strtol (s, &endp, 10);
4093 s = endp;
4094
4095 if (*s != '+' && *s != '-')
4096 {
4097 /* We are not dealing with a triplet. */
4098 return false;
4099 }
4100
4101 got_minus[2] = false;
4102 if (*s == '+')
4103 ++s;
4104 else
4105 {
4106 ++s;
4107 got_minus[2] = true;
4108 }
4109
4110 if (!isdigit ((unsigned char) *s))
4111 return false;
4112
4113 displacements[2] = strtol (s, &endp, 10);
4114 s = endp;
4115
4116 if (*s != '(' || s[1] != '%')
4117 return false;
4118
4119 s += 2;
4120 start = s;
4121
4122 while (isalnum (*s))
4123 ++s;
4124
4125 if (*s++ != ')')
4126 return false;
4127
4128 len = s - start - 1;
4129 regname = (char *) alloca (len + 1);
4130
4131 strncpy (regname, start, len);
4132 regname[len] = '\0';
4133
4134 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4135 error (_("Invalid register name `%s' on expression `%s'."),
4136 regname, p->saved_arg);
4137
4138 for (i = 0; i < 3; i++)
4139 {
4140 write_exp_elt_opcode (&p->pstate, OP_LONG);
4141 write_exp_elt_type
4142 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4143 write_exp_elt_longcst (&p->pstate, displacements[i]);
4144 write_exp_elt_opcode (&p->pstate, OP_LONG);
4145 if (got_minus[i])
4146 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4147 }
4148
4149 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4150 str.ptr = regname;
4151 str.length = len;
4152 write_exp_string (&p->pstate, str);
4153 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4154
4155 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4156 write_exp_elt_type (&p->pstate,
4157 builtin_type (gdbarch)->builtin_data_ptr);
4158 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4159
4160 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4161 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4162 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4163
4164 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4165 write_exp_elt_type (&p->pstate,
4166 lookup_pointer_type (p->arg_type));
4167 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4168
4169 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4170
4171 p->arg = s;
4172
4173 return true;
4174 }
4175
4176 return false;
4177 }
4178
4179 /* Helper function for i386_stap_parse_special_token.
4180
4181 This function parses operands of the form `register base +
4182 (register index * size) + offset', as represented in
4183 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4184
4185 Return true if the operand was parsed successfully, false
4186 otherwise. */
4187
4188 static bool
4189 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4190 struct stap_parse_info *p)
4191 {
4192 const char *s = p->arg;
4193
4194 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4195 {
4196 bool offset_minus = false;
4197 long offset = 0;
4198 bool size_minus = false;
4199 long size = 0;
4200 const char *start;
4201 char *base;
4202 int len_base;
4203 char *index;
4204 int len_index;
4205 struct stoken base_token, index_token;
4206
4207 if (*s == '+')
4208 ++s;
4209 else if (*s == '-')
4210 {
4211 ++s;
4212 offset_minus = true;
4213 }
4214
4215 if (offset_minus && !isdigit (*s))
4216 return false;
4217
4218 if (isdigit (*s))
4219 {
4220 char *endp;
4221
4222 offset = strtol (s, &endp, 10);
4223 s = endp;
4224 }
4225
4226 if (*s != '(' || s[1] != '%')
4227 return false;
4228
4229 s += 2;
4230 start = s;
4231
4232 while (isalnum (*s))
4233 ++s;
4234
4235 if (*s != ',' || s[1] != '%')
4236 return false;
4237
4238 len_base = s - start;
4239 base = (char *) alloca (len_base + 1);
4240 strncpy (base, start, len_base);
4241 base[len_base] = '\0';
4242
4243 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4244 error (_("Invalid register name `%s' on expression `%s'."),
4245 base, p->saved_arg);
4246
4247 s += 2;
4248 start = s;
4249
4250 while (isalnum (*s))
4251 ++s;
4252
4253 len_index = s - start;
4254 index = (char *) alloca (len_index + 1);
4255 strncpy (index, start, len_index);
4256 index[len_index] = '\0';
4257
4258 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4259 error (_("Invalid register name `%s' on expression `%s'."),
4260 index, p->saved_arg);
4261
4262 if (*s != ',' && *s != ')')
4263 return false;
4264
4265 if (*s == ',')
4266 {
4267 char *endp;
4268
4269 ++s;
4270 if (*s == '+')
4271 ++s;
4272 else if (*s == '-')
4273 {
4274 ++s;
4275 size_minus = true;
4276 }
4277
4278 size = strtol (s, &endp, 10);
4279 s = endp;
4280
4281 if (*s != ')')
4282 return false;
4283 }
4284
4285 ++s;
4286
4287 if (offset)
4288 {
4289 write_exp_elt_opcode (&p->pstate, OP_LONG);
4290 write_exp_elt_type (&p->pstate,
4291 builtin_type (gdbarch)->builtin_long);
4292 write_exp_elt_longcst (&p->pstate, offset);
4293 write_exp_elt_opcode (&p->pstate, OP_LONG);
4294 if (offset_minus)
4295 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4296 }
4297
4298 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4299 base_token.ptr = base;
4300 base_token.length = len_base;
4301 write_exp_string (&p->pstate, base_token);
4302 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4303
4304 if (offset)
4305 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4306
4307 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4308 index_token.ptr = index;
4309 index_token.length = len_index;
4310 write_exp_string (&p->pstate, index_token);
4311 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4312
4313 if (size)
4314 {
4315 write_exp_elt_opcode (&p->pstate, OP_LONG);
4316 write_exp_elt_type (&p->pstate,
4317 builtin_type (gdbarch)->builtin_long);
4318 write_exp_elt_longcst (&p->pstate, size);
4319 write_exp_elt_opcode (&p->pstate, OP_LONG);
4320 if (size_minus)
4321 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4322 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4323 }
4324
4325 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4326
4327 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4328 write_exp_elt_type (&p->pstate,
4329 lookup_pointer_type (p->arg_type));
4330 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4331
4332 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4333
4334 p->arg = s;
4335
4336 return true;
4337 }
4338
4339 return false;
4340 }
4341
4342 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4343 gdbarch.h. */
4344
4345 int
4346 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4347 struct stap_parse_info *p)
4348 {
4349 /* In order to parse special tokens, we use a state-machine that go
4350 through every known token and try to get a match. */
4351 enum
4352 {
4353 TRIPLET,
4354 THREE_ARG_DISPLACEMENT,
4355 DONE
4356 };
4357 int current_state;
4358
4359 current_state = TRIPLET;
4360
4361 /* The special tokens to be parsed here are:
4362
4363 - `register base + (register index * size) + offset', as represented
4364 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4365
4366 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4367 `*(-8 + 3 - 1 + (void *) $eax)'. */
4368
4369 while (current_state != DONE)
4370 {
4371 switch (current_state)
4372 {
4373 case TRIPLET:
4374 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4375 return 1;
4376 break;
4377
4378 case THREE_ARG_DISPLACEMENT:
4379 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4380 return 1;
4381 break;
4382 }
4383
4384 /* Advancing to the next state. */
4385 ++current_state;
4386 }
4387
4388 return 0;
4389 }
4390
4391 /* Implementation of 'gdbarch_stap_adjust_register', as defined in
4392 gdbarch.h. */
4393
4394 static std::string
4395 i386_stap_adjust_register (struct gdbarch *gdbarch, struct stap_parse_info *p,
4396 const std::string &regname, int regnum)
4397 {
4398 static const std::unordered_set<std::string> reg_assoc
4399 = { "ax", "bx", "cx", "dx",
4400 "si", "di", "bp", "sp" };
4401
4402 /* If we are dealing with a register whose size is less than the size
4403 specified by the "[-]N@" prefix, and it is one of the registers that
4404 we know has an extended variant available, then use the extended
4405 version of the register instead. */
4406 if (register_size (gdbarch, regnum) < TYPE_LENGTH (p->arg_type)
4407 && reg_assoc.find (regname) != reg_assoc.end ())
4408 return "e" + regname;
4409
4410 /* Otherwise, just use the requested register. */
4411 return regname;
4412 }
4413
4414 \f
4415
4416 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4417 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4418
4419 static const char *
4420 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4421 {
4422 return "(x86_64|i.86)";
4423 }
4424
4425 \f
4426
4427 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
4428
4429 static bool
4430 i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4431 {
4432 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4433 I386_EAX_REGNUM, I386_EIP_REGNUM);
4434 }
4435
4436 /* Generic ELF. */
4437
4438 void
4439 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4440 {
4441 static const char *const stap_integer_prefixes[] = { "$", NULL };
4442 static const char *const stap_register_prefixes[] = { "%", NULL };
4443 static const char *const stap_register_indirection_prefixes[] = { "(",
4444 NULL };
4445 static const char *const stap_register_indirection_suffixes[] = { ")",
4446 NULL };
4447
4448 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4449 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4450
4451 /* Registering SystemTap handlers. */
4452 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4453 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4454 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4455 stap_register_indirection_prefixes);
4456 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4457 stap_register_indirection_suffixes);
4458 set_gdbarch_stap_is_single_operand (gdbarch,
4459 i386_stap_is_single_operand);
4460 set_gdbarch_stap_parse_special_token (gdbarch,
4461 i386_stap_parse_special_token);
4462 set_gdbarch_stap_adjust_register (gdbarch,
4463 i386_stap_adjust_register);
4464
4465 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4466 i386_in_indirect_branch_thunk);
4467 }
4468
4469 /* System V Release 4 (SVR4). */
4470
4471 void
4472 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4473 {
4474 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4475
4476 /* System V Release 4 uses ELF. */
4477 i386_elf_init_abi (info, gdbarch);
4478
4479 /* System V Release 4 has shared libraries. */
4480 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4481
4482 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4483 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4484 tdep->sc_pc_offset = 36 + 14 * 4;
4485 tdep->sc_sp_offset = 36 + 17 * 4;
4486
4487 tdep->jb_pc_offset = 20;
4488 }
4489
4490 \f
4491
4492 /* i386 register groups. In addition to the normal groups, add "mmx"
4493 and "sse". */
4494
4495 static struct reggroup *i386_sse_reggroup;
4496 static struct reggroup *i386_mmx_reggroup;
4497
4498 static void
4499 i386_init_reggroups (void)
4500 {
4501 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4502 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4503 }
4504
4505 static void
4506 i386_add_reggroups (struct gdbarch *gdbarch)
4507 {
4508 reggroup_add (gdbarch, i386_sse_reggroup);
4509 reggroup_add (gdbarch, i386_mmx_reggroup);
4510 reggroup_add (gdbarch, general_reggroup);
4511 reggroup_add (gdbarch, float_reggroup);
4512 reggroup_add (gdbarch, all_reggroup);
4513 reggroup_add (gdbarch, save_reggroup);
4514 reggroup_add (gdbarch, restore_reggroup);
4515 reggroup_add (gdbarch, vector_reggroup);
4516 reggroup_add (gdbarch, system_reggroup);
4517 }
4518
4519 int
4520 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4521 struct reggroup *group)
4522 {
4523 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4524 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4525 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4526 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4527 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4528 avx512_p, avx_p, sse_p, pkru_regnum_p;
4529
4530 /* Don't include pseudo registers, except for MMX, in any register
4531 groups. */
4532 if (i386_byte_regnum_p (gdbarch, regnum))
4533 return 0;
4534
4535 if (i386_word_regnum_p (gdbarch, regnum))
4536 return 0;
4537
4538 if (i386_dword_regnum_p (gdbarch, regnum))
4539 return 0;
4540
4541 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4542 if (group == i386_mmx_reggroup)
4543 return mmx_regnum_p;
4544
4545 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4546 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4547 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4548 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4549 if (group == i386_sse_reggroup)
4550 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4551
4552 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4553 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4554 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4555
4556 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4557 == X86_XSTATE_AVX_AVX512_MASK);
4558 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4559 == X86_XSTATE_AVX_MASK) && !avx512_p;
4560 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4561 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4562
4563 if (group == vector_reggroup)
4564 return (mmx_regnum_p
4565 || (zmm_regnum_p && avx512_p)
4566 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4567 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4568 || mxcsr_regnum_p);
4569
4570 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4571 || i386_fpc_regnum_p (gdbarch, regnum));
4572 if (group == float_reggroup)
4573 return fp_regnum_p;
4574
4575 /* For "info reg all", don't include upper YMM registers nor XMM
4576 registers when AVX is supported. */
4577 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4578 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4579 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4580 if (group == all_reggroup
4581 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4582 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4583 || ymmh_regnum_p
4584 || ymmh_avx512_regnum_p
4585 || zmmh_regnum_p))
4586 return 0;
4587
4588 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4589 if (group == all_reggroup
4590 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4591 return bnd_regnum_p;
4592
4593 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4594 if (group == all_reggroup
4595 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4596 return 0;
4597
4598 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4599 if (group == all_reggroup
4600 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4601 return mpx_ctrl_regnum_p;
4602
4603 if (group == general_reggroup)
4604 return (!fp_regnum_p
4605 && !mmx_regnum_p
4606 && !mxcsr_regnum_p
4607 && !xmm_regnum_p
4608 && !xmm_avx512_regnum_p
4609 && !ymm_regnum_p
4610 && !ymmh_regnum_p
4611 && !ymm_avx512_regnum_p
4612 && !ymmh_avx512_regnum_p
4613 && !bndr_regnum_p
4614 && !bnd_regnum_p
4615 && !mpx_ctrl_regnum_p
4616 && !zmm_regnum_p
4617 && !zmmh_regnum_p
4618 && !pkru_regnum_p);
4619
4620 return default_register_reggroup_p (gdbarch, regnum, group);
4621 }
4622 \f
4623
4624 /* Get the ARGIth function argument for the current function. */
4625
4626 static CORE_ADDR
4627 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4628 struct type *type)
4629 {
4630 struct gdbarch *gdbarch = get_frame_arch (frame);
4631 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4632 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4633 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4634 }
4635
4636 #define PREFIX_REPZ 0x01
4637 #define PREFIX_REPNZ 0x02
4638 #define PREFIX_LOCK 0x04
4639 #define PREFIX_DATA 0x08
4640 #define PREFIX_ADDR 0x10
4641
4642 /* operand size */
4643 enum
4644 {
4645 OT_BYTE = 0,
4646 OT_WORD,
4647 OT_LONG,
4648 OT_QUAD,
4649 OT_DQUAD,
4650 };
4651
4652 /* i386 arith/logic operations */
4653 enum
4654 {
4655 OP_ADDL,
4656 OP_ORL,
4657 OP_ADCL,
4658 OP_SBBL,
4659 OP_ANDL,
4660 OP_SUBL,
4661 OP_XORL,
4662 OP_CMPL,
4663 };
4664
4665 struct i386_record_s
4666 {
4667 struct gdbarch *gdbarch;
4668 struct regcache *regcache;
4669 CORE_ADDR orig_addr;
4670 CORE_ADDR addr;
4671 int aflag;
4672 int dflag;
4673 int override;
4674 uint8_t modrm;
4675 uint8_t mod, reg, rm;
4676 int ot;
4677 uint8_t rex_x;
4678 uint8_t rex_b;
4679 int rip_offset;
4680 int popl_esp_hack;
4681 const int *regmap;
4682 };
4683
4684 /* Parse the "modrm" part of the memory address irp->addr points at.
4685 Returns -1 if something goes wrong, 0 otherwise. */
4686
4687 static int
4688 i386_record_modrm (struct i386_record_s *irp)
4689 {
4690 struct gdbarch *gdbarch = irp->gdbarch;
4691
4692 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4693 return -1;
4694
4695 irp->addr++;
4696 irp->mod = (irp->modrm >> 6) & 3;
4697 irp->reg = (irp->modrm >> 3) & 7;
4698 irp->rm = irp->modrm & 7;
4699
4700 return 0;
4701 }
4702
4703 /* Extract the memory address that the current instruction writes to,
4704 and return it in *ADDR. Return -1 if something goes wrong. */
4705
4706 static int
4707 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4708 {
4709 struct gdbarch *gdbarch = irp->gdbarch;
4710 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4711 gdb_byte buf[4];
4712 ULONGEST offset64;
4713
4714 *addr = 0;
4715 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4716 {
4717 /* 32/64 bits */
4718 int havesib = 0;
4719 uint8_t scale = 0;
4720 uint8_t byte;
4721 uint8_t index = 0;
4722 uint8_t base = irp->rm;
4723
4724 if (base == 4)
4725 {
4726 havesib = 1;
4727 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4728 return -1;
4729 irp->addr++;
4730 scale = (byte >> 6) & 3;
4731 index = ((byte >> 3) & 7) | irp->rex_x;
4732 base = (byte & 7);
4733 }
4734 base |= irp->rex_b;
4735
4736 switch (irp->mod)
4737 {
4738 case 0:
4739 if ((base & 7) == 5)
4740 {
4741 base = 0xff;
4742 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4743 return -1;
4744 irp->addr += 4;
4745 *addr = extract_signed_integer (buf, 4, byte_order);
4746 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4747 *addr += irp->addr + irp->rip_offset;
4748 }
4749 break;
4750 case 1:
4751 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4752 return -1;
4753 irp->addr++;
4754 *addr = (int8_t) buf[0];
4755 break;
4756 case 2:
4757 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4758 return -1;
4759 *addr = extract_signed_integer (buf, 4, byte_order);
4760 irp->addr += 4;
4761 break;
4762 }
4763
4764 offset64 = 0;
4765 if (base != 0xff)
4766 {
4767 if (base == 4 && irp->popl_esp_hack)
4768 *addr += irp->popl_esp_hack;
4769 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4770 &offset64);
4771 }
4772 if (irp->aflag == 2)
4773 {
4774 *addr += offset64;
4775 }
4776 else
4777 *addr = (uint32_t) (offset64 + *addr);
4778
4779 if (havesib && (index != 4 || scale != 0))
4780 {
4781 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4782 &offset64);
4783 if (irp->aflag == 2)
4784 *addr += offset64 << scale;
4785 else
4786 *addr = (uint32_t) (*addr + (offset64 << scale));
4787 }
4788
4789 if (!irp->aflag)
4790 {
4791 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4792 address from 32-bit to 64-bit. */
4793 *addr = (uint32_t) *addr;
4794 }
4795 }
4796 else
4797 {
4798 /* 16 bits */
4799 switch (irp->mod)
4800 {
4801 case 0:
4802 if (irp->rm == 6)
4803 {
4804 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4805 return -1;
4806 irp->addr += 2;
4807 *addr = extract_signed_integer (buf, 2, byte_order);
4808 irp->rm = 0;
4809 goto no_rm;
4810 }
4811 break;
4812 case 1:
4813 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4814 return -1;
4815 irp->addr++;
4816 *addr = (int8_t) buf[0];
4817 break;
4818 case 2:
4819 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4820 return -1;
4821 irp->addr += 2;
4822 *addr = extract_signed_integer (buf, 2, byte_order);
4823 break;
4824 }
4825
4826 switch (irp->rm)
4827 {
4828 case 0:
4829 regcache_raw_read_unsigned (irp->regcache,
4830 irp->regmap[X86_RECORD_REBX_REGNUM],
4831 &offset64);
4832 *addr = (uint32_t) (*addr + offset64);
4833 regcache_raw_read_unsigned (irp->regcache,
4834 irp->regmap[X86_RECORD_RESI_REGNUM],
4835 &offset64);
4836 *addr = (uint32_t) (*addr + offset64);
4837 break;
4838 case 1:
4839 regcache_raw_read_unsigned (irp->regcache,
4840 irp->regmap[X86_RECORD_REBX_REGNUM],
4841 &offset64);
4842 *addr = (uint32_t) (*addr + offset64);
4843 regcache_raw_read_unsigned (irp->regcache,
4844 irp->regmap[X86_RECORD_REDI_REGNUM],
4845 &offset64);
4846 *addr = (uint32_t) (*addr + offset64);
4847 break;
4848 case 2:
4849 regcache_raw_read_unsigned (irp->regcache,
4850 irp->regmap[X86_RECORD_REBP_REGNUM],
4851 &offset64);
4852 *addr = (uint32_t) (*addr + offset64);
4853 regcache_raw_read_unsigned (irp->regcache,
4854 irp->regmap[X86_RECORD_RESI_REGNUM],
4855 &offset64);
4856 *addr = (uint32_t) (*addr + offset64);
4857 break;
4858 case 3:
4859 regcache_raw_read_unsigned (irp->regcache,
4860 irp->regmap[X86_RECORD_REBP_REGNUM],
4861 &offset64);
4862 *addr = (uint32_t) (*addr + offset64);
4863 regcache_raw_read_unsigned (irp->regcache,
4864 irp->regmap[X86_RECORD_REDI_REGNUM],
4865 &offset64);
4866 *addr = (uint32_t) (*addr + offset64);
4867 break;
4868 case 4:
4869 regcache_raw_read_unsigned (irp->regcache,
4870 irp->regmap[X86_RECORD_RESI_REGNUM],
4871 &offset64);
4872 *addr = (uint32_t) (*addr + offset64);
4873 break;
4874 case 5:
4875 regcache_raw_read_unsigned (irp->regcache,
4876 irp->regmap[X86_RECORD_REDI_REGNUM],
4877 &offset64);
4878 *addr = (uint32_t) (*addr + offset64);
4879 break;
4880 case 6:
4881 regcache_raw_read_unsigned (irp->regcache,
4882 irp->regmap[X86_RECORD_REBP_REGNUM],
4883 &offset64);
4884 *addr = (uint32_t) (*addr + offset64);
4885 break;
4886 case 7:
4887 regcache_raw_read_unsigned (irp->regcache,
4888 irp->regmap[X86_RECORD_REBX_REGNUM],
4889 &offset64);
4890 *addr = (uint32_t) (*addr + offset64);
4891 break;
4892 }
4893 *addr &= 0xffff;
4894 }
4895
4896 no_rm:
4897 return 0;
4898 }
4899
4900 /* Record the address and contents of the memory that will be changed
4901 by the current instruction. Return -1 if something goes wrong, 0
4902 otherwise. */
4903
4904 static int
4905 i386_record_lea_modrm (struct i386_record_s *irp)
4906 {
4907 struct gdbarch *gdbarch = irp->gdbarch;
4908 uint64_t addr;
4909
4910 if (irp->override >= 0)
4911 {
4912 if (record_full_memory_query)
4913 {
4914 if (yquery (_("\
4915 Process record ignores the memory change of instruction at address %s\n\
4916 because it can't get the value of the segment register.\n\
4917 Do you want to stop the program?"),
4918 paddress (gdbarch, irp->orig_addr)))
4919 return -1;
4920 }
4921
4922 return 0;
4923 }
4924
4925 if (i386_record_lea_modrm_addr (irp, &addr))
4926 return -1;
4927
4928 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4929 return -1;
4930
4931 return 0;
4932 }
4933
4934 /* Record the effects of a push operation. Return -1 if something
4935 goes wrong, 0 otherwise. */
4936
4937 static int
4938 i386_record_push (struct i386_record_s *irp, int size)
4939 {
4940 ULONGEST addr;
4941
4942 if (record_full_arch_list_add_reg (irp->regcache,
4943 irp->regmap[X86_RECORD_RESP_REGNUM]))
4944 return -1;
4945 regcache_raw_read_unsigned (irp->regcache,
4946 irp->regmap[X86_RECORD_RESP_REGNUM],
4947 &addr);
4948 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4949 return -1;
4950
4951 return 0;
4952 }
4953
4954
4955 /* Defines contents to record. */
4956 #define I386_SAVE_FPU_REGS 0xfffd
4957 #define I386_SAVE_FPU_ENV 0xfffe
4958 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4959
4960 /* Record the values of the floating point registers which will be
4961 changed by the current instruction. Returns -1 if something is
4962 wrong, 0 otherwise. */
4963
4964 static int i386_record_floats (struct gdbarch *gdbarch,
4965 struct i386_record_s *ir,
4966 uint32_t iregnum)
4967 {
4968 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4969 int i;
4970
4971 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4972 happen. Currently we store st0-st7 registers, but we need not store all
4973 registers all the time, in future we use ftag register and record only
4974 those who are not marked as an empty. */
4975
4976 if (I386_SAVE_FPU_REGS == iregnum)
4977 {
4978 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4979 {
4980 if (record_full_arch_list_add_reg (ir->regcache, i))
4981 return -1;
4982 }
4983 }
4984 else if (I386_SAVE_FPU_ENV == iregnum)
4985 {
4986 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4987 {
4988 if (record_full_arch_list_add_reg (ir->regcache, i))
4989 return -1;
4990 }
4991 }
4992 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4993 {
4994 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4995 {
4996 if (record_full_arch_list_add_reg (ir->regcache, i))
4997 return -1;
4998 }
4999 }
5000 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5001 (iregnum <= I387_FOP_REGNUM (tdep)))
5002 {
5003 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
5004 return -1;
5005 }
5006 else
5007 {
5008 /* Parameter error. */
5009 return -1;
5010 }
5011 if(I386_SAVE_FPU_ENV != iregnum)
5012 {
5013 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5014 {
5015 if (record_full_arch_list_add_reg (ir->regcache, i))
5016 return -1;
5017 }
5018 }
5019 return 0;
5020 }
5021
5022 /* Parse the current instruction, and record the values of the
5023 registers and memory that will be changed by the current
5024 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5025
5026 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5027 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5028
5029 int
5030 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5031 CORE_ADDR input_addr)
5032 {
5033 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5034 int prefixes = 0;
5035 int regnum = 0;
5036 uint32_t opcode;
5037 uint8_t opcode8;
5038 ULONGEST addr;
5039 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5040 struct i386_record_s ir;
5041 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5042 uint8_t rex_w = -1;
5043 uint8_t rex_r = 0;
5044
5045 memset (&ir, 0, sizeof (struct i386_record_s));
5046 ir.regcache = regcache;
5047 ir.addr = input_addr;
5048 ir.orig_addr = input_addr;
5049 ir.aflag = 1;
5050 ir.dflag = 1;
5051 ir.override = -1;
5052 ir.popl_esp_hack = 0;
5053 ir.regmap = tdep->record_regmap;
5054 ir.gdbarch = gdbarch;
5055
5056 if (record_debug > 1)
5057 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5058 "addr = %s\n",
5059 paddress (gdbarch, ir.addr));
5060
5061 /* prefixes */
5062 while (1)
5063 {
5064 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5065 return -1;
5066 ir.addr++;
5067 switch (opcode8) /* Instruction prefixes */
5068 {
5069 case REPE_PREFIX_OPCODE:
5070 prefixes |= PREFIX_REPZ;
5071 break;
5072 case REPNE_PREFIX_OPCODE:
5073 prefixes |= PREFIX_REPNZ;
5074 break;
5075 case LOCK_PREFIX_OPCODE:
5076 prefixes |= PREFIX_LOCK;
5077 break;
5078 case CS_PREFIX_OPCODE:
5079 ir.override = X86_RECORD_CS_REGNUM;
5080 break;
5081 case SS_PREFIX_OPCODE:
5082 ir.override = X86_RECORD_SS_REGNUM;
5083 break;
5084 case DS_PREFIX_OPCODE:
5085 ir.override = X86_RECORD_DS_REGNUM;
5086 break;
5087 case ES_PREFIX_OPCODE:
5088 ir.override = X86_RECORD_ES_REGNUM;
5089 break;
5090 case FS_PREFIX_OPCODE:
5091 ir.override = X86_RECORD_FS_REGNUM;
5092 break;
5093 case GS_PREFIX_OPCODE:
5094 ir.override = X86_RECORD_GS_REGNUM;
5095 break;
5096 case DATA_PREFIX_OPCODE:
5097 prefixes |= PREFIX_DATA;
5098 break;
5099 case ADDR_PREFIX_OPCODE:
5100 prefixes |= PREFIX_ADDR;
5101 break;
5102 case 0x40: /* i386 inc %eax */
5103 case 0x41: /* i386 inc %ecx */
5104 case 0x42: /* i386 inc %edx */
5105 case 0x43: /* i386 inc %ebx */
5106 case 0x44: /* i386 inc %esp */
5107 case 0x45: /* i386 inc %ebp */
5108 case 0x46: /* i386 inc %esi */
5109 case 0x47: /* i386 inc %edi */
5110 case 0x48: /* i386 dec %eax */
5111 case 0x49: /* i386 dec %ecx */
5112 case 0x4a: /* i386 dec %edx */
5113 case 0x4b: /* i386 dec %ebx */
5114 case 0x4c: /* i386 dec %esp */
5115 case 0x4d: /* i386 dec %ebp */
5116 case 0x4e: /* i386 dec %esi */
5117 case 0x4f: /* i386 dec %edi */
5118 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5119 {
5120 /* REX */
5121 rex_w = (opcode8 >> 3) & 1;
5122 rex_r = (opcode8 & 0x4) << 1;
5123 ir.rex_x = (opcode8 & 0x2) << 2;
5124 ir.rex_b = (opcode8 & 0x1) << 3;
5125 }
5126 else /* 32 bit target */
5127 goto out_prefixes;
5128 break;
5129 default:
5130 goto out_prefixes;
5131 break;
5132 }
5133 }
5134 out_prefixes:
5135 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5136 {
5137 ir.dflag = 2;
5138 }
5139 else
5140 {
5141 if (prefixes & PREFIX_DATA)
5142 ir.dflag ^= 1;
5143 }
5144 if (prefixes & PREFIX_ADDR)
5145 ir.aflag ^= 1;
5146 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5147 ir.aflag = 2;
5148
5149 /* Now check op code. */
5150 opcode = (uint32_t) opcode8;
5151 reswitch:
5152 switch (opcode)
5153 {
5154 case 0x0f:
5155 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5156 return -1;
5157 ir.addr++;
5158 opcode = (uint32_t) opcode8 | 0x0f00;
5159 goto reswitch;
5160 break;
5161
5162 case 0x00: /* arith & logic */
5163 case 0x01:
5164 case 0x02:
5165 case 0x03:
5166 case 0x04:
5167 case 0x05:
5168 case 0x08:
5169 case 0x09:
5170 case 0x0a:
5171 case 0x0b:
5172 case 0x0c:
5173 case 0x0d:
5174 case 0x10:
5175 case 0x11:
5176 case 0x12:
5177 case 0x13:
5178 case 0x14:
5179 case 0x15:
5180 case 0x18:
5181 case 0x19:
5182 case 0x1a:
5183 case 0x1b:
5184 case 0x1c:
5185 case 0x1d:
5186 case 0x20:
5187 case 0x21:
5188 case 0x22:
5189 case 0x23:
5190 case 0x24:
5191 case 0x25:
5192 case 0x28:
5193 case 0x29:
5194 case 0x2a:
5195 case 0x2b:
5196 case 0x2c:
5197 case 0x2d:
5198 case 0x30:
5199 case 0x31:
5200 case 0x32:
5201 case 0x33:
5202 case 0x34:
5203 case 0x35:
5204 case 0x38:
5205 case 0x39:
5206 case 0x3a:
5207 case 0x3b:
5208 case 0x3c:
5209 case 0x3d:
5210 if (((opcode >> 3) & 7) != OP_CMPL)
5211 {
5212 if ((opcode & 1) == 0)
5213 ir.ot = OT_BYTE;
5214 else
5215 ir.ot = ir.dflag + OT_WORD;
5216
5217 switch ((opcode >> 1) & 3)
5218 {
5219 case 0: /* OP Ev, Gv */
5220 if (i386_record_modrm (&ir))
5221 return -1;
5222 if (ir.mod != 3)
5223 {
5224 if (i386_record_lea_modrm (&ir))
5225 return -1;
5226 }
5227 else
5228 {
5229 ir.rm |= ir.rex_b;
5230 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5231 ir.rm &= 0x3;
5232 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5233 }
5234 break;
5235 case 1: /* OP Gv, Ev */
5236 if (i386_record_modrm (&ir))
5237 return -1;
5238 ir.reg |= rex_r;
5239 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5240 ir.reg &= 0x3;
5241 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5242 break;
5243 case 2: /* OP A, Iv */
5244 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5245 break;
5246 }
5247 }
5248 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5249 break;
5250
5251 case 0x80: /* GRP1 */
5252 case 0x81:
5253 case 0x82:
5254 case 0x83:
5255 if (i386_record_modrm (&ir))
5256 return -1;
5257
5258 if (ir.reg != OP_CMPL)
5259 {
5260 if ((opcode & 1) == 0)
5261 ir.ot = OT_BYTE;
5262 else
5263 ir.ot = ir.dflag + OT_WORD;
5264
5265 if (ir.mod != 3)
5266 {
5267 if (opcode == 0x83)
5268 ir.rip_offset = 1;
5269 else
5270 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5271 if (i386_record_lea_modrm (&ir))
5272 return -1;
5273 }
5274 else
5275 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5276 }
5277 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5278 break;
5279
5280 case 0x40: /* inc */
5281 case 0x41:
5282 case 0x42:
5283 case 0x43:
5284 case 0x44:
5285 case 0x45:
5286 case 0x46:
5287 case 0x47:
5288
5289 case 0x48: /* dec */
5290 case 0x49:
5291 case 0x4a:
5292 case 0x4b:
5293 case 0x4c:
5294 case 0x4d:
5295 case 0x4e:
5296 case 0x4f:
5297
5298 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5299 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5300 break;
5301
5302 case 0xf6: /* GRP3 */
5303 case 0xf7:
5304 if ((opcode & 1) == 0)
5305 ir.ot = OT_BYTE;
5306 else
5307 ir.ot = ir.dflag + OT_WORD;
5308 if (i386_record_modrm (&ir))
5309 return -1;
5310
5311 if (ir.mod != 3 && ir.reg == 0)
5312 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5313
5314 switch (ir.reg)
5315 {
5316 case 0: /* test */
5317 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5318 break;
5319 case 2: /* not */
5320 case 3: /* neg */
5321 if (ir.mod != 3)
5322 {
5323 if (i386_record_lea_modrm (&ir))
5324 return -1;
5325 }
5326 else
5327 {
5328 ir.rm |= ir.rex_b;
5329 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5330 ir.rm &= 0x3;
5331 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5332 }
5333 if (ir.reg == 3) /* neg */
5334 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5335 break;
5336 case 4: /* mul */
5337 case 5: /* imul */
5338 case 6: /* div */
5339 case 7: /* idiv */
5340 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5341 if (ir.ot != OT_BYTE)
5342 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5343 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5344 break;
5345 default:
5346 ir.addr -= 2;
5347 opcode = opcode << 8 | ir.modrm;
5348 goto no_support;
5349 break;
5350 }
5351 break;
5352
5353 case 0xfe: /* GRP4 */
5354 case 0xff: /* GRP5 */
5355 if (i386_record_modrm (&ir))
5356 return -1;
5357 if (ir.reg >= 2 && opcode == 0xfe)
5358 {
5359 ir.addr -= 2;
5360 opcode = opcode << 8 | ir.modrm;
5361 goto no_support;
5362 }
5363 switch (ir.reg)
5364 {
5365 case 0: /* inc */
5366 case 1: /* dec */
5367 if ((opcode & 1) == 0)
5368 ir.ot = OT_BYTE;
5369 else
5370 ir.ot = ir.dflag + OT_WORD;
5371 if (ir.mod != 3)
5372 {
5373 if (i386_record_lea_modrm (&ir))
5374 return -1;
5375 }
5376 else
5377 {
5378 ir.rm |= ir.rex_b;
5379 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5380 ir.rm &= 0x3;
5381 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5382 }
5383 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5384 break;
5385 case 2: /* call */
5386 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5387 ir.dflag = 2;
5388 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5389 return -1;
5390 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5391 break;
5392 case 3: /* lcall */
5393 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5394 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5395 return -1;
5396 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5397 break;
5398 case 4: /* jmp */
5399 case 5: /* ljmp */
5400 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5401 break;
5402 case 6: /* push */
5403 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5404 ir.dflag = 2;
5405 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5406 return -1;
5407 break;
5408 default:
5409 ir.addr -= 2;
5410 opcode = opcode << 8 | ir.modrm;
5411 goto no_support;
5412 break;
5413 }
5414 break;
5415
5416 case 0x84: /* test */
5417 case 0x85:
5418 case 0xa8:
5419 case 0xa9:
5420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5421 break;
5422
5423 case 0x98: /* CWDE/CBW */
5424 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5425 break;
5426
5427 case 0x99: /* CDQ/CWD */
5428 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5429 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5430 break;
5431
5432 case 0x0faf: /* imul */
5433 case 0x69:
5434 case 0x6b:
5435 ir.ot = ir.dflag + OT_WORD;
5436 if (i386_record_modrm (&ir))
5437 return -1;
5438 if (opcode == 0x69)
5439 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5440 else if (opcode == 0x6b)
5441 ir.rip_offset = 1;
5442 ir.reg |= rex_r;
5443 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5444 ir.reg &= 0x3;
5445 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5446 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5447 break;
5448
5449 case 0x0fc0: /* xadd */
5450 case 0x0fc1:
5451 if ((opcode & 1) == 0)
5452 ir.ot = OT_BYTE;
5453 else
5454 ir.ot = ir.dflag + OT_WORD;
5455 if (i386_record_modrm (&ir))
5456 return -1;
5457 ir.reg |= rex_r;
5458 if (ir.mod == 3)
5459 {
5460 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5461 ir.reg &= 0x3;
5462 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5463 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5464 ir.rm &= 0x3;
5465 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5466 }
5467 else
5468 {
5469 if (i386_record_lea_modrm (&ir))
5470 return -1;
5471 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5472 ir.reg &= 0x3;
5473 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5474 }
5475 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5476 break;
5477
5478 case 0x0fb0: /* cmpxchg */
5479 case 0x0fb1:
5480 if ((opcode & 1) == 0)
5481 ir.ot = OT_BYTE;
5482 else
5483 ir.ot = ir.dflag + OT_WORD;
5484 if (i386_record_modrm (&ir))
5485 return -1;
5486 if (ir.mod == 3)
5487 {
5488 ir.reg |= rex_r;
5489 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5490 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5491 ir.reg &= 0x3;
5492 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5493 }
5494 else
5495 {
5496 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5497 if (i386_record_lea_modrm (&ir))
5498 return -1;
5499 }
5500 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5501 break;
5502
5503 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5504 if (i386_record_modrm (&ir))
5505 return -1;
5506 if (ir.mod == 3)
5507 {
5508 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5509 an extended opcode. rdrand has bits 110 (/6) and rdseed
5510 has bits 111 (/7). */
5511 if (ir.reg == 6 || ir.reg == 7)
5512 {
5513 /* The storage register is described by the 3 R/M bits, but the
5514 REX.B prefix may be used to give access to registers
5515 R8~R15. In this case ir.rex_b + R/M will give us the register
5516 in the range R8~R15.
5517
5518 REX.W may also be used to access 64-bit registers, but we
5519 already record entire registers and not just partial bits
5520 of them. */
5521 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5522 /* These instructions also set conditional bits. */
5523 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5524 break;
5525 }
5526 else
5527 {
5528 /* We don't handle this particular instruction yet. */
5529 ir.addr -= 2;
5530 opcode = opcode << 8 | ir.modrm;
5531 goto no_support;
5532 }
5533 }
5534 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5535 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5536 if (i386_record_lea_modrm (&ir))
5537 return -1;
5538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5539 break;
5540
5541 case 0x50: /* push */
5542 case 0x51:
5543 case 0x52:
5544 case 0x53:
5545 case 0x54:
5546 case 0x55:
5547 case 0x56:
5548 case 0x57:
5549 case 0x68:
5550 case 0x6a:
5551 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5552 ir.dflag = 2;
5553 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5554 return -1;
5555 break;
5556
5557 case 0x06: /* push es */
5558 case 0x0e: /* push cs */
5559 case 0x16: /* push ss */
5560 case 0x1e: /* push ds */
5561 if (ir.regmap[X86_RECORD_R8_REGNUM])
5562 {
5563 ir.addr -= 1;
5564 goto no_support;
5565 }
5566 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5567 return -1;
5568 break;
5569
5570 case 0x0fa0: /* push fs */
5571 case 0x0fa8: /* push gs */
5572 if (ir.regmap[X86_RECORD_R8_REGNUM])
5573 {
5574 ir.addr -= 2;
5575 goto no_support;
5576 }
5577 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5578 return -1;
5579 break;
5580
5581 case 0x60: /* pusha */
5582 if (ir.regmap[X86_RECORD_R8_REGNUM])
5583 {
5584 ir.addr -= 1;
5585 goto no_support;
5586 }
5587 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5588 return -1;
5589 break;
5590
5591 case 0x58: /* pop */
5592 case 0x59:
5593 case 0x5a:
5594 case 0x5b:
5595 case 0x5c:
5596 case 0x5d:
5597 case 0x5e:
5598 case 0x5f:
5599 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5600 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5601 break;
5602
5603 case 0x61: /* popa */
5604 if (ir.regmap[X86_RECORD_R8_REGNUM])
5605 {
5606 ir.addr -= 1;
5607 goto no_support;
5608 }
5609 for (regnum = X86_RECORD_REAX_REGNUM;
5610 regnum <= X86_RECORD_REDI_REGNUM;
5611 regnum++)
5612 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5613 break;
5614
5615 case 0x8f: /* pop */
5616 if (ir.regmap[X86_RECORD_R8_REGNUM])
5617 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5618 else
5619 ir.ot = ir.dflag + OT_WORD;
5620 if (i386_record_modrm (&ir))
5621 return -1;
5622 if (ir.mod == 3)
5623 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5624 else
5625 {
5626 ir.popl_esp_hack = 1 << ir.ot;
5627 if (i386_record_lea_modrm (&ir))
5628 return -1;
5629 }
5630 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5631 break;
5632
5633 case 0xc8: /* enter */
5634 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5635 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5636 ir.dflag = 2;
5637 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5638 return -1;
5639 break;
5640
5641 case 0xc9: /* leave */
5642 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5643 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5644 break;
5645
5646 case 0x07: /* pop es */
5647 if (ir.regmap[X86_RECORD_R8_REGNUM])
5648 {
5649 ir.addr -= 1;
5650 goto no_support;
5651 }
5652 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5653 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5654 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5655 break;
5656
5657 case 0x17: /* pop ss */
5658 if (ir.regmap[X86_RECORD_R8_REGNUM])
5659 {
5660 ir.addr -= 1;
5661 goto no_support;
5662 }
5663 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5664 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5665 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5666 break;
5667
5668 case 0x1f: /* pop ds */
5669 if (ir.regmap[X86_RECORD_R8_REGNUM])
5670 {
5671 ir.addr -= 1;
5672 goto no_support;
5673 }
5674 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5675 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5676 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5677 break;
5678
5679 case 0x0fa1: /* pop fs */
5680 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5681 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5682 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5683 break;
5684
5685 case 0x0fa9: /* pop gs */
5686 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5687 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5688 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5689 break;
5690
5691 case 0x88: /* mov */
5692 case 0x89:
5693 case 0xc6:
5694 case 0xc7:
5695 if ((opcode & 1) == 0)
5696 ir.ot = OT_BYTE;
5697 else
5698 ir.ot = ir.dflag + OT_WORD;
5699
5700 if (i386_record_modrm (&ir))
5701 return -1;
5702
5703 if (ir.mod != 3)
5704 {
5705 if (opcode == 0xc6 || opcode == 0xc7)
5706 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5707 if (i386_record_lea_modrm (&ir))
5708 return -1;
5709 }
5710 else
5711 {
5712 if (opcode == 0xc6 || opcode == 0xc7)
5713 ir.rm |= ir.rex_b;
5714 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5715 ir.rm &= 0x3;
5716 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5717 }
5718 break;
5719
5720 case 0x8a: /* mov */
5721 case 0x8b:
5722 if ((opcode & 1) == 0)
5723 ir.ot = OT_BYTE;
5724 else
5725 ir.ot = ir.dflag + OT_WORD;
5726 if (i386_record_modrm (&ir))
5727 return -1;
5728 ir.reg |= rex_r;
5729 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5730 ir.reg &= 0x3;
5731 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5732 break;
5733
5734 case 0x8c: /* mov seg */
5735 if (i386_record_modrm (&ir))
5736 return -1;
5737 if (ir.reg > 5)
5738 {
5739 ir.addr -= 2;
5740 opcode = opcode << 8 | ir.modrm;
5741 goto no_support;
5742 }
5743
5744 if (ir.mod == 3)
5745 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5746 else
5747 {
5748 ir.ot = OT_WORD;
5749 if (i386_record_lea_modrm (&ir))
5750 return -1;
5751 }
5752 break;
5753
5754 case 0x8e: /* mov seg */
5755 if (i386_record_modrm (&ir))
5756 return -1;
5757 switch (ir.reg)
5758 {
5759 case 0:
5760 regnum = X86_RECORD_ES_REGNUM;
5761 break;
5762 case 2:
5763 regnum = X86_RECORD_SS_REGNUM;
5764 break;
5765 case 3:
5766 regnum = X86_RECORD_DS_REGNUM;
5767 break;
5768 case 4:
5769 regnum = X86_RECORD_FS_REGNUM;
5770 break;
5771 case 5:
5772 regnum = X86_RECORD_GS_REGNUM;
5773 break;
5774 default:
5775 ir.addr -= 2;
5776 opcode = opcode << 8 | ir.modrm;
5777 goto no_support;
5778 break;
5779 }
5780 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5781 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5782 break;
5783
5784 case 0x0fb6: /* movzbS */
5785 case 0x0fb7: /* movzwS */
5786 case 0x0fbe: /* movsbS */
5787 case 0x0fbf: /* movswS */
5788 if (i386_record_modrm (&ir))
5789 return -1;
5790 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5791 break;
5792
5793 case 0x8d: /* lea */
5794 if (i386_record_modrm (&ir))
5795 return -1;
5796 if (ir.mod == 3)
5797 {
5798 ir.addr -= 2;
5799 opcode = opcode << 8 | ir.modrm;
5800 goto no_support;
5801 }
5802 ir.ot = ir.dflag;
5803 ir.reg |= rex_r;
5804 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5805 ir.reg &= 0x3;
5806 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5807 break;
5808
5809 case 0xa0: /* mov EAX */
5810 case 0xa1:
5811
5812 case 0xd7: /* xlat */
5813 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5814 break;
5815
5816 case 0xa2: /* mov EAX */
5817 case 0xa3:
5818 if (ir.override >= 0)
5819 {
5820 if (record_full_memory_query)
5821 {
5822 if (yquery (_("\
5823 Process record ignores the memory change of instruction at address %s\n\
5824 because it can't get the value of the segment register.\n\
5825 Do you want to stop the program?"),
5826 paddress (gdbarch, ir.orig_addr)))
5827 return -1;
5828 }
5829 }
5830 else
5831 {
5832 if ((opcode & 1) == 0)
5833 ir.ot = OT_BYTE;
5834 else
5835 ir.ot = ir.dflag + OT_WORD;
5836 if (ir.aflag == 2)
5837 {
5838 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5839 return -1;
5840 ir.addr += 8;
5841 addr = extract_unsigned_integer (buf, 8, byte_order);
5842 }
5843 else if (ir.aflag)
5844 {
5845 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5846 return -1;
5847 ir.addr += 4;
5848 addr = extract_unsigned_integer (buf, 4, byte_order);
5849 }
5850 else
5851 {
5852 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5853 return -1;
5854 ir.addr += 2;
5855 addr = extract_unsigned_integer (buf, 2, byte_order);
5856 }
5857 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5858 return -1;
5859 }
5860 break;
5861
5862 case 0xb0: /* mov R, Ib */
5863 case 0xb1:
5864 case 0xb2:
5865 case 0xb3:
5866 case 0xb4:
5867 case 0xb5:
5868 case 0xb6:
5869 case 0xb7:
5870 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5871 ? ((opcode & 0x7) | ir.rex_b)
5872 : ((opcode & 0x7) & 0x3));
5873 break;
5874
5875 case 0xb8: /* mov R, Iv */
5876 case 0xb9:
5877 case 0xba:
5878 case 0xbb:
5879 case 0xbc:
5880 case 0xbd:
5881 case 0xbe:
5882 case 0xbf:
5883 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5884 break;
5885
5886 case 0x91: /* xchg R, EAX */
5887 case 0x92:
5888 case 0x93:
5889 case 0x94:
5890 case 0x95:
5891 case 0x96:
5892 case 0x97:
5893 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5894 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5895 break;
5896
5897 case 0x86: /* xchg Ev, Gv */
5898 case 0x87:
5899 if ((opcode & 1) == 0)
5900 ir.ot = OT_BYTE;
5901 else
5902 ir.ot = ir.dflag + OT_WORD;
5903 if (i386_record_modrm (&ir))
5904 return -1;
5905 if (ir.mod == 3)
5906 {
5907 ir.rm |= ir.rex_b;
5908 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5909 ir.rm &= 0x3;
5910 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5911 }
5912 else
5913 {
5914 if (i386_record_lea_modrm (&ir))
5915 return -1;
5916 }
5917 ir.reg |= rex_r;
5918 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5919 ir.reg &= 0x3;
5920 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5921 break;
5922
5923 case 0xc4: /* les Gv */
5924 case 0xc5: /* lds Gv */
5925 if (ir.regmap[X86_RECORD_R8_REGNUM])
5926 {
5927 ir.addr -= 1;
5928 goto no_support;
5929 }
5930 /* FALLTHROUGH */
5931 case 0x0fb2: /* lss Gv */
5932 case 0x0fb4: /* lfs Gv */
5933 case 0x0fb5: /* lgs Gv */
5934 if (i386_record_modrm (&ir))
5935 return -1;
5936 if (ir.mod == 3)
5937 {
5938 if (opcode > 0xff)
5939 ir.addr -= 3;
5940 else
5941 ir.addr -= 2;
5942 opcode = opcode << 8 | ir.modrm;
5943 goto no_support;
5944 }
5945 switch (opcode)
5946 {
5947 case 0xc4: /* les Gv */
5948 regnum = X86_RECORD_ES_REGNUM;
5949 break;
5950 case 0xc5: /* lds Gv */
5951 regnum = X86_RECORD_DS_REGNUM;
5952 break;
5953 case 0x0fb2: /* lss Gv */
5954 regnum = X86_RECORD_SS_REGNUM;
5955 break;
5956 case 0x0fb4: /* lfs Gv */
5957 regnum = X86_RECORD_FS_REGNUM;
5958 break;
5959 case 0x0fb5: /* lgs Gv */
5960 regnum = X86_RECORD_GS_REGNUM;
5961 break;
5962 }
5963 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5964 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5965 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5966 break;
5967
5968 case 0xc0: /* shifts */
5969 case 0xc1:
5970 case 0xd0:
5971 case 0xd1:
5972 case 0xd2:
5973 case 0xd3:
5974 if ((opcode & 1) == 0)
5975 ir.ot = OT_BYTE;
5976 else
5977 ir.ot = ir.dflag + OT_WORD;
5978 if (i386_record_modrm (&ir))
5979 return -1;
5980 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5981 {
5982 if (i386_record_lea_modrm (&ir))
5983 return -1;
5984 }
5985 else
5986 {
5987 ir.rm |= ir.rex_b;
5988 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5989 ir.rm &= 0x3;
5990 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5991 }
5992 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5993 break;
5994
5995 case 0x0fa4:
5996 case 0x0fa5:
5997 case 0x0fac:
5998 case 0x0fad:
5999 if (i386_record_modrm (&ir))
6000 return -1;
6001 if (ir.mod == 3)
6002 {
6003 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
6004 return -1;
6005 }
6006 else
6007 {
6008 if (i386_record_lea_modrm (&ir))
6009 return -1;
6010 }
6011 break;
6012
6013 case 0xd8: /* Floats. */
6014 case 0xd9:
6015 case 0xda:
6016 case 0xdb:
6017 case 0xdc:
6018 case 0xdd:
6019 case 0xde:
6020 case 0xdf:
6021 if (i386_record_modrm (&ir))
6022 return -1;
6023 ir.reg |= ((opcode & 7) << 3);
6024 if (ir.mod != 3)
6025 {
6026 /* Memory. */
6027 uint64_t addr64;
6028
6029 if (i386_record_lea_modrm_addr (&ir, &addr64))
6030 return -1;
6031 switch (ir.reg)
6032 {
6033 case 0x02:
6034 case 0x12:
6035 case 0x22:
6036 case 0x32:
6037 /* For fcom, ficom nothing to do. */
6038 break;
6039 case 0x03:
6040 case 0x13:
6041 case 0x23:
6042 case 0x33:
6043 /* For fcomp, ficomp pop FPU stack, store all. */
6044 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6045 return -1;
6046 break;
6047 case 0x00:
6048 case 0x01:
6049 case 0x04:
6050 case 0x05:
6051 case 0x06:
6052 case 0x07:
6053 case 0x10:
6054 case 0x11:
6055 case 0x14:
6056 case 0x15:
6057 case 0x16:
6058 case 0x17:
6059 case 0x20:
6060 case 0x21:
6061 case 0x24:
6062 case 0x25:
6063 case 0x26:
6064 case 0x27:
6065 case 0x30:
6066 case 0x31:
6067 case 0x34:
6068 case 0x35:
6069 case 0x36:
6070 case 0x37:
6071 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6072 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6073 of code, always affects st(0) register. */
6074 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6075 return -1;
6076 break;
6077 case 0x08:
6078 case 0x0a:
6079 case 0x0b:
6080 case 0x18:
6081 case 0x19:
6082 case 0x1a:
6083 case 0x1b:
6084 case 0x1d:
6085 case 0x28:
6086 case 0x29:
6087 case 0x2a:
6088 case 0x2b:
6089 case 0x38:
6090 case 0x39:
6091 case 0x3a:
6092 case 0x3b:
6093 case 0x3c:
6094 case 0x3d:
6095 switch (ir.reg & 7)
6096 {
6097 case 0:
6098 /* Handling fld, fild. */
6099 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6100 return -1;
6101 break;
6102 case 1:
6103 switch (ir.reg >> 4)
6104 {
6105 case 0:
6106 if (record_full_arch_list_add_mem (addr64, 4))
6107 return -1;
6108 break;
6109 case 2:
6110 if (record_full_arch_list_add_mem (addr64, 8))
6111 return -1;
6112 break;
6113 case 3:
6114 break;
6115 default:
6116 if (record_full_arch_list_add_mem (addr64, 2))
6117 return -1;
6118 break;
6119 }
6120 break;
6121 default:
6122 switch (ir.reg >> 4)
6123 {
6124 case 0:
6125 if (record_full_arch_list_add_mem (addr64, 4))
6126 return -1;
6127 if (3 == (ir.reg & 7))
6128 {
6129 /* For fstp m32fp. */
6130 if (i386_record_floats (gdbarch, &ir,
6131 I386_SAVE_FPU_REGS))
6132 return -1;
6133 }
6134 break;
6135 case 1:
6136 if (record_full_arch_list_add_mem (addr64, 4))
6137 return -1;
6138 if ((3 == (ir.reg & 7))
6139 || (5 == (ir.reg & 7))
6140 || (7 == (ir.reg & 7)))
6141 {
6142 /* For fstp insn. */
6143 if (i386_record_floats (gdbarch, &ir,
6144 I386_SAVE_FPU_REGS))
6145 return -1;
6146 }
6147 break;
6148 case 2:
6149 if (record_full_arch_list_add_mem (addr64, 8))
6150 return -1;
6151 if (3 == (ir.reg & 7))
6152 {
6153 /* For fstp m64fp. */
6154 if (i386_record_floats (gdbarch, &ir,
6155 I386_SAVE_FPU_REGS))
6156 return -1;
6157 }
6158 break;
6159 case 3:
6160 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6161 {
6162 /* For fistp, fbld, fild, fbstp. */
6163 if (i386_record_floats (gdbarch, &ir,
6164 I386_SAVE_FPU_REGS))
6165 return -1;
6166 }
6167 /* Fall through */
6168 default:
6169 if (record_full_arch_list_add_mem (addr64, 2))
6170 return -1;
6171 break;
6172 }
6173 break;
6174 }
6175 break;
6176 case 0x0c:
6177 /* Insn fldenv. */
6178 if (i386_record_floats (gdbarch, &ir,
6179 I386_SAVE_FPU_ENV_REG_STACK))
6180 return -1;
6181 break;
6182 case 0x0d:
6183 /* Insn fldcw. */
6184 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6185 return -1;
6186 break;
6187 case 0x2c:
6188 /* Insn frstor. */
6189 if (i386_record_floats (gdbarch, &ir,
6190 I386_SAVE_FPU_ENV_REG_STACK))
6191 return -1;
6192 break;
6193 case 0x0e:
6194 if (ir.dflag)
6195 {
6196 if (record_full_arch_list_add_mem (addr64, 28))
6197 return -1;
6198 }
6199 else
6200 {
6201 if (record_full_arch_list_add_mem (addr64, 14))
6202 return -1;
6203 }
6204 break;
6205 case 0x0f:
6206 case 0x2f:
6207 if (record_full_arch_list_add_mem (addr64, 2))
6208 return -1;
6209 /* Insn fstp, fbstp. */
6210 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6211 return -1;
6212 break;
6213 case 0x1f:
6214 case 0x3e:
6215 if (record_full_arch_list_add_mem (addr64, 10))
6216 return -1;
6217 break;
6218 case 0x2e:
6219 if (ir.dflag)
6220 {
6221 if (record_full_arch_list_add_mem (addr64, 28))
6222 return -1;
6223 addr64 += 28;
6224 }
6225 else
6226 {
6227 if (record_full_arch_list_add_mem (addr64, 14))
6228 return -1;
6229 addr64 += 14;
6230 }
6231 if (record_full_arch_list_add_mem (addr64, 80))
6232 return -1;
6233 /* Insn fsave. */
6234 if (i386_record_floats (gdbarch, &ir,
6235 I386_SAVE_FPU_ENV_REG_STACK))
6236 return -1;
6237 break;
6238 case 0x3f:
6239 if (record_full_arch_list_add_mem (addr64, 8))
6240 return -1;
6241 /* Insn fistp. */
6242 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6243 return -1;
6244 break;
6245 default:
6246 ir.addr -= 2;
6247 opcode = opcode << 8 | ir.modrm;
6248 goto no_support;
6249 break;
6250 }
6251 }
6252 /* Opcode is an extension of modR/M byte. */
6253 else
6254 {
6255 switch (opcode)
6256 {
6257 case 0xd8:
6258 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6259 return -1;
6260 break;
6261 case 0xd9:
6262 if (0x0c == (ir.modrm >> 4))
6263 {
6264 if ((ir.modrm & 0x0f) <= 7)
6265 {
6266 if (i386_record_floats (gdbarch, &ir,
6267 I386_SAVE_FPU_REGS))
6268 return -1;
6269 }
6270 else
6271 {
6272 if (i386_record_floats (gdbarch, &ir,
6273 I387_ST0_REGNUM (tdep)))
6274 return -1;
6275 /* If only st(0) is changing, then we have already
6276 recorded. */
6277 if ((ir.modrm & 0x0f) - 0x08)
6278 {
6279 if (i386_record_floats (gdbarch, &ir,
6280 I387_ST0_REGNUM (tdep) +
6281 ((ir.modrm & 0x0f) - 0x08)))
6282 return -1;
6283 }
6284 }
6285 }
6286 else
6287 {
6288 switch (ir.modrm)
6289 {
6290 case 0xe0:
6291 case 0xe1:
6292 case 0xf0:
6293 case 0xf5:
6294 case 0xf8:
6295 case 0xfa:
6296 case 0xfc:
6297 case 0xfe:
6298 case 0xff:
6299 if (i386_record_floats (gdbarch, &ir,
6300 I387_ST0_REGNUM (tdep)))
6301 return -1;
6302 break;
6303 case 0xf1:
6304 case 0xf2:
6305 case 0xf3:
6306 case 0xf4:
6307 case 0xf6:
6308 case 0xf7:
6309 case 0xe8:
6310 case 0xe9:
6311 case 0xea:
6312 case 0xeb:
6313 case 0xec:
6314 case 0xed:
6315 case 0xee:
6316 case 0xf9:
6317 case 0xfb:
6318 if (i386_record_floats (gdbarch, &ir,
6319 I386_SAVE_FPU_REGS))
6320 return -1;
6321 break;
6322 case 0xfd:
6323 if (i386_record_floats (gdbarch, &ir,
6324 I387_ST0_REGNUM (tdep)))
6325 return -1;
6326 if (i386_record_floats (gdbarch, &ir,
6327 I387_ST0_REGNUM (tdep) + 1))
6328 return -1;
6329 break;
6330 }
6331 }
6332 break;
6333 case 0xda:
6334 if (0xe9 == ir.modrm)
6335 {
6336 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6337 return -1;
6338 }
6339 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6340 {
6341 if (i386_record_floats (gdbarch, &ir,
6342 I387_ST0_REGNUM (tdep)))
6343 return -1;
6344 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6345 {
6346 if (i386_record_floats (gdbarch, &ir,
6347 I387_ST0_REGNUM (tdep) +
6348 (ir.modrm & 0x0f)))
6349 return -1;
6350 }
6351 else if ((ir.modrm & 0x0f) - 0x08)
6352 {
6353 if (i386_record_floats (gdbarch, &ir,
6354 I387_ST0_REGNUM (tdep) +
6355 ((ir.modrm & 0x0f) - 0x08)))
6356 return -1;
6357 }
6358 }
6359 break;
6360 case 0xdb:
6361 if (0xe3 == ir.modrm)
6362 {
6363 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6364 return -1;
6365 }
6366 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6367 {
6368 if (i386_record_floats (gdbarch, &ir,
6369 I387_ST0_REGNUM (tdep)))
6370 return -1;
6371 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6372 {
6373 if (i386_record_floats (gdbarch, &ir,
6374 I387_ST0_REGNUM (tdep) +
6375 (ir.modrm & 0x0f)))
6376 return -1;
6377 }
6378 else if ((ir.modrm & 0x0f) - 0x08)
6379 {
6380 if (i386_record_floats (gdbarch, &ir,
6381 I387_ST0_REGNUM (tdep) +
6382 ((ir.modrm & 0x0f) - 0x08)))
6383 return -1;
6384 }
6385 }
6386 break;
6387 case 0xdc:
6388 if ((0x0c == ir.modrm >> 4)
6389 || (0x0d == ir.modrm >> 4)
6390 || (0x0f == ir.modrm >> 4))
6391 {
6392 if ((ir.modrm & 0x0f) <= 7)
6393 {
6394 if (i386_record_floats (gdbarch, &ir,
6395 I387_ST0_REGNUM (tdep) +
6396 (ir.modrm & 0x0f)))
6397 return -1;
6398 }
6399 else
6400 {
6401 if (i386_record_floats (gdbarch, &ir,
6402 I387_ST0_REGNUM (tdep) +
6403 ((ir.modrm & 0x0f) - 0x08)))
6404 return -1;
6405 }
6406 }
6407 break;
6408 case 0xdd:
6409 if (0x0c == ir.modrm >> 4)
6410 {
6411 if (i386_record_floats (gdbarch, &ir,
6412 I387_FTAG_REGNUM (tdep)))
6413 return -1;
6414 }
6415 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6416 {
6417 if ((ir.modrm & 0x0f) <= 7)
6418 {
6419 if (i386_record_floats (gdbarch, &ir,
6420 I387_ST0_REGNUM (tdep) +
6421 (ir.modrm & 0x0f)))
6422 return -1;
6423 }
6424 else
6425 {
6426 if (i386_record_floats (gdbarch, &ir,
6427 I386_SAVE_FPU_REGS))
6428 return -1;
6429 }
6430 }
6431 break;
6432 case 0xde:
6433 if ((0x0c == ir.modrm >> 4)
6434 || (0x0e == ir.modrm >> 4)
6435 || (0x0f == ir.modrm >> 4)
6436 || (0xd9 == ir.modrm))
6437 {
6438 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6439 return -1;
6440 }
6441 break;
6442 case 0xdf:
6443 if (0xe0 == ir.modrm)
6444 {
6445 if (record_full_arch_list_add_reg (ir.regcache,
6446 I386_EAX_REGNUM))
6447 return -1;
6448 }
6449 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6450 {
6451 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6452 return -1;
6453 }
6454 break;
6455 }
6456 }
6457 break;
6458 /* string ops */
6459 case 0xa4: /* movsS */
6460 case 0xa5:
6461 case 0xaa: /* stosS */
6462 case 0xab:
6463 case 0x6c: /* insS */
6464 case 0x6d:
6465 regcache_raw_read_unsigned (ir.regcache,
6466 ir.regmap[X86_RECORD_RECX_REGNUM],
6467 &addr);
6468 if (addr)
6469 {
6470 ULONGEST es, ds;
6471
6472 if ((opcode & 1) == 0)
6473 ir.ot = OT_BYTE;
6474 else
6475 ir.ot = ir.dflag + OT_WORD;
6476 regcache_raw_read_unsigned (ir.regcache,
6477 ir.regmap[X86_RECORD_REDI_REGNUM],
6478 &addr);
6479
6480 regcache_raw_read_unsigned (ir.regcache,
6481 ir.regmap[X86_RECORD_ES_REGNUM],
6482 &es);
6483 regcache_raw_read_unsigned (ir.regcache,
6484 ir.regmap[X86_RECORD_DS_REGNUM],
6485 &ds);
6486 if (ir.aflag && (es != ds))
6487 {
6488 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6489 if (record_full_memory_query)
6490 {
6491 if (yquery (_("\
6492 Process record ignores the memory change of instruction at address %s\n\
6493 because it can't get the value of the segment register.\n\
6494 Do you want to stop the program?"),
6495 paddress (gdbarch, ir.orig_addr)))
6496 return -1;
6497 }
6498 }
6499 else
6500 {
6501 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6502 return -1;
6503 }
6504
6505 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6506 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6507 if (opcode == 0xa4 || opcode == 0xa5)
6508 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6509 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6510 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6511 }
6512 break;
6513
6514 case 0xa6: /* cmpsS */
6515 case 0xa7:
6516 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6518 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6520 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6521 break;
6522
6523 case 0xac: /* lodsS */
6524 case 0xad:
6525 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6526 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6527 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6528 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6529 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6530 break;
6531
6532 case 0xae: /* scasS */
6533 case 0xaf:
6534 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6535 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6536 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6537 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6538 break;
6539
6540 case 0x6e: /* outsS */
6541 case 0x6f:
6542 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6543 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6544 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6545 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6546 break;
6547
6548 case 0xe4: /* port I/O */
6549 case 0xe5:
6550 case 0xec:
6551 case 0xed:
6552 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6553 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6554 break;
6555
6556 case 0xe6:
6557 case 0xe7:
6558 case 0xee:
6559 case 0xef:
6560 break;
6561
6562 /* control */
6563 case 0xc2: /* ret im */
6564 case 0xc3: /* ret */
6565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6567 break;
6568
6569 case 0xca: /* lret im */
6570 case 0xcb: /* lret */
6571 case 0xcf: /* iret */
6572 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6574 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6575 break;
6576
6577 case 0xe8: /* call im */
6578 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6579 ir.dflag = 2;
6580 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6581 return -1;
6582 break;
6583
6584 case 0x9a: /* lcall im */
6585 if (ir.regmap[X86_RECORD_R8_REGNUM])
6586 {
6587 ir.addr -= 1;
6588 goto no_support;
6589 }
6590 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6591 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6592 return -1;
6593 break;
6594
6595 case 0xe9: /* jmp im */
6596 case 0xea: /* ljmp im */
6597 case 0xeb: /* jmp Jb */
6598 case 0x70: /* jcc Jb */
6599 case 0x71:
6600 case 0x72:
6601 case 0x73:
6602 case 0x74:
6603 case 0x75:
6604 case 0x76:
6605 case 0x77:
6606 case 0x78:
6607 case 0x79:
6608 case 0x7a:
6609 case 0x7b:
6610 case 0x7c:
6611 case 0x7d:
6612 case 0x7e:
6613 case 0x7f:
6614 case 0x0f80: /* jcc Jv */
6615 case 0x0f81:
6616 case 0x0f82:
6617 case 0x0f83:
6618 case 0x0f84:
6619 case 0x0f85:
6620 case 0x0f86:
6621 case 0x0f87:
6622 case 0x0f88:
6623 case 0x0f89:
6624 case 0x0f8a:
6625 case 0x0f8b:
6626 case 0x0f8c:
6627 case 0x0f8d:
6628 case 0x0f8e:
6629 case 0x0f8f:
6630 break;
6631
6632 case 0x0f90: /* setcc Gv */
6633 case 0x0f91:
6634 case 0x0f92:
6635 case 0x0f93:
6636 case 0x0f94:
6637 case 0x0f95:
6638 case 0x0f96:
6639 case 0x0f97:
6640 case 0x0f98:
6641 case 0x0f99:
6642 case 0x0f9a:
6643 case 0x0f9b:
6644 case 0x0f9c:
6645 case 0x0f9d:
6646 case 0x0f9e:
6647 case 0x0f9f:
6648 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6649 ir.ot = OT_BYTE;
6650 if (i386_record_modrm (&ir))
6651 return -1;
6652 if (ir.mod == 3)
6653 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6654 : (ir.rm & 0x3));
6655 else
6656 {
6657 if (i386_record_lea_modrm (&ir))
6658 return -1;
6659 }
6660 break;
6661
6662 case 0x0f40: /* cmov Gv, Ev */
6663 case 0x0f41:
6664 case 0x0f42:
6665 case 0x0f43:
6666 case 0x0f44:
6667 case 0x0f45:
6668 case 0x0f46:
6669 case 0x0f47:
6670 case 0x0f48:
6671 case 0x0f49:
6672 case 0x0f4a:
6673 case 0x0f4b:
6674 case 0x0f4c:
6675 case 0x0f4d:
6676 case 0x0f4e:
6677 case 0x0f4f:
6678 if (i386_record_modrm (&ir))
6679 return -1;
6680 ir.reg |= rex_r;
6681 if (ir.dflag == OT_BYTE)
6682 ir.reg &= 0x3;
6683 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6684 break;
6685
6686 /* flags */
6687 case 0x9c: /* pushf */
6688 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6689 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6690 ir.dflag = 2;
6691 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6692 return -1;
6693 break;
6694
6695 case 0x9d: /* popf */
6696 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6697 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6698 break;
6699
6700 case 0x9e: /* sahf */
6701 if (ir.regmap[X86_RECORD_R8_REGNUM])
6702 {
6703 ir.addr -= 1;
6704 goto no_support;
6705 }
6706 /* FALLTHROUGH */
6707 case 0xf5: /* cmc */
6708 case 0xf8: /* clc */
6709 case 0xf9: /* stc */
6710 case 0xfc: /* cld */
6711 case 0xfd: /* std */
6712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6713 break;
6714
6715 case 0x9f: /* lahf */
6716 if (ir.regmap[X86_RECORD_R8_REGNUM])
6717 {
6718 ir.addr -= 1;
6719 goto no_support;
6720 }
6721 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6722 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6723 break;
6724
6725 /* bit operations */
6726 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6727 ir.ot = ir.dflag + OT_WORD;
6728 if (i386_record_modrm (&ir))
6729 return -1;
6730 if (ir.reg < 4)
6731 {
6732 ir.addr -= 2;
6733 opcode = opcode << 8 | ir.modrm;
6734 goto no_support;
6735 }
6736 if (ir.reg != 4)
6737 {
6738 if (ir.mod == 3)
6739 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6740 else
6741 {
6742 if (i386_record_lea_modrm (&ir))
6743 return -1;
6744 }
6745 }
6746 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6747 break;
6748
6749 case 0x0fa3: /* bt Gv, Ev */
6750 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6751 break;
6752
6753 case 0x0fab: /* bts */
6754 case 0x0fb3: /* btr */
6755 case 0x0fbb: /* btc */
6756 ir.ot = ir.dflag + OT_WORD;
6757 if (i386_record_modrm (&ir))
6758 return -1;
6759 if (ir.mod == 3)
6760 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6761 else
6762 {
6763 uint64_t addr64;
6764 if (i386_record_lea_modrm_addr (&ir, &addr64))
6765 return -1;
6766 regcache_raw_read_unsigned (ir.regcache,
6767 ir.regmap[ir.reg | rex_r],
6768 &addr);
6769 switch (ir.dflag)
6770 {
6771 case 0:
6772 addr64 += ((int16_t) addr >> 4) << 4;
6773 break;
6774 case 1:
6775 addr64 += ((int32_t) addr >> 5) << 5;
6776 break;
6777 case 2:
6778 addr64 += ((int64_t) addr >> 6) << 6;
6779 break;
6780 }
6781 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6782 return -1;
6783 if (i386_record_lea_modrm (&ir))
6784 return -1;
6785 }
6786 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6787 break;
6788
6789 case 0x0fbc: /* bsf */
6790 case 0x0fbd: /* bsr */
6791 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6792 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6793 break;
6794
6795 /* bcd */
6796 case 0x27: /* daa */
6797 case 0x2f: /* das */
6798 case 0x37: /* aaa */
6799 case 0x3f: /* aas */
6800 case 0xd4: /* aam */
6801 case 0xd5: /* aad */
6802 if (ir.regmap[X86_RECORD_R8_REGNUM])
6803 {
6804 ir.addr -= 1;
6805 goto no_support;
6806 }
6807 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6808 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6809 break;
6810
6811 /* misc */
6812 case 0x90: /* nop */
6813 if (prefixes & PREFIX_LOCK)
6814 {
6815 ir.addr -= 1;
6816 goto no_support;
6817 }
6818 break;
6819
6820 case 0x9b: /* fwait */
6821 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6822 return -1;
6823 opcode = (uint32_t) opcode8;
6824 ir.addr++;
6825 goto reswitch;
6826 break;
6827
6828 /* XXX */
6829 case 0xcc: /* int3 */
6830 printf_unfiltered (_("Process record does not support instruction "
6831 "int3.\n"));
6832 ir.addr -= 1;
6833 goto no_support;
6834 break;
6835
6836 /* XXX */
6837 case 0xcd: /* int */
6838 {
6839 int ret;
6840 uint8_t interrupt;
6841 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6842 return -1;
6843 ir.addr++;
6844 if (interrupt != 0x80
6845 || tdep->i386_intx80_record == NULL)
6846 {
6847 printf_unfiltered (_("Process record does not support "
6848 "instruction int 0x%02x.\n"),
6849 interrupt);
6850 ir.addr -= 2;
6851 goto no_support;
6852 }
6853 ret = tdep->i386_intx80_record (ir.regcache);
6854 if (ret)
6855 return ret;
6856 }
6857 break;
6858
6859 /* XXX */
6860 case 0xce: /* into */
6861 printf_unfiltered (_("Process record does not support "
6862 "instruction into.\n"));
6863 ir.addr -= 1;
6864 goto no_support;
6865 break;
6866
6867 case 0xfa: /* cli */
6868 case 0xfb: /* sti */
6869 break;
6870
6871 case 0x62: /* bound */
6872 printf_unfiltered (_("Process record does not support "
6873 "instruction bound.\n"));
6874 ir.addr -= 1;
6875 goto no_support;
6876 break;
6877
6878 case 0x0fc8: /* bswap reg */
6879 case 0x0fc9:
6880 case 0x0fca:
6881 case 0x0fcb:
6882 case 0x0fcc:
6883 case 0x0fcd:
6884 case 0x0fce:
6885 case 0x0fcf:
6886 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6887 break;
6888
6889 case 0xd6: /* salc */
6890 if (ir.regmap[X86_RECORD_R8_REGNUM])
6891 {
6892 ir.addr -= 1;
6893 goto no_support;
6894 }
6895 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6896 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6897 break;
6898
6899 case 0xe0: /* loopnz */
6900 case 0xe1: /* loopz */
6901 case 0xe2: /* loop */
6902 case 0xe3: /* jecxz */
6903 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6904 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6905 break;
6906
6907 case 0x0f30: /* wrmsr */
6908 printf_unfiltered (_("Process record does not support "
6909 "instruction wrmsr.\n"));
6910 ir.addr -= 2;
6911 goto no_support;
6912 break;
6913
6914 case 0x0f32: /* rdmsr */
6915 printf_unfiltered (_("Process record does not support "
6916 "instruction rdmsr.\n"));
6917 ir.addr -= 2;
6918 goto no_support;
6919 break;
6920
6921 case 0x0f31: /* rdtsc */
6922 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6923 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6924 break;
6925
6926 case 0x0f34: /* sysenter */
6927 {
6928 int ret;
6929 if (ir.regmap[X86_RECORD_R8_REGNUM])
6930 {
6931 ir.addr -= 2;
6932 goto no_support;
6933 }
6934 if (tdep->i386_sysenter_record == NULL)
6935 {
6936 printf_unfiltered (_("Process record does not support "
6937 "instruction sysenter.\n"));
6938 ir.addr -= 2;
6939 goto no_support;
6940 }
6941 ret = tdep->i386_sysenter_record (ir.regcache);
6942 if (ret)
6943 return ret;
6944 }
6945 break;
6946
6947 case 0x0f35: /* sysexit */
6948 printf_unfiltered (_("Process record does not support "
6949 "instruction sysexit.\n"));
6950 ir.addr -= 2;
6951 goto no_support;
6952 break;
6953
6954 case 0x0f05: /* syscall */
6955 {
6956 int ret;
6957 if (tdep->i386_syscall_record == NULL)
6958 {
6959 printf_unfiltered (_("Process record does not support "
6960 "instruction syscall.\n"));
6961 ir.addr -= 2;
6962 goto no_support;
6963 }
6964 ret = tdep->i386_syscall_record (ir.regcache);
6965 if (ret)
6966 return ret;
6967 }
6968 break;
6969
6970 case 0x0f07: /* sysret */
6971 printf_unfiltered (_("Process record does not support "
6972 "instruction sysret.\n"));
6973 ir.addr -= 2;
6974 goto no_support;
6975 break;
6976
6977 case 0x0fa2: /* cpuid */
6978 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6979 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6980 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6981 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6982 break;
6983
6984 case 0xf4: /* hlt */
6985 printf_unfiltered (_("Process record does not support "
6986 "instruction hlt.\n"));
6987 ir.addr -= 1;
6988 goto no_support;
6989 break;
6990
6991 case 0x0f00:
6992 if (i386_record_modrm (&ir))
6993 return -1;
6994 switch (ir.reg)
6995 {
6996 case 0: /* sldt */
6997 case 1: /* str */
6998 if (ir.mod == 3)
6999 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7000 else
7001 {
7002 ir.ot = OT_WORD;
7003 if (i386_record_lea_modrm (&ir))
7004 return -1;
7005 }
7006 break;
7007 case 2: /* lldt */
7008 case 3: /* ltr */
7009 break;
7010 case 4: /* verr */
7011 case 5: /* verw */
7012 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7013 break;
7014 default:
7015 ir.addr -= 3;
7016 opcode = opcode << 8 | ir.modrm;
7017 goto no_support;
7018 break;
7019 }
7020 break;
7021
7022 case 0x0f01:
7023 if (i386_record_modrm (&ir))
7024 return -1;
7025 switch (ir.reg)
7026 {
7027 case 0: /* sgdt */
7028 {
7029 uint64_t addr64;
7030
7031 if (ir.mod == 3)
7032 {
7033 ir.addr -= 3;
7034 opcode = opcode << 8 | ir.modrm;
7035 goto no_support;
7036 }
7037 if (ir.override >= 0)
7038 {
7039 if (record_full_memory_query)
7040 {
7041 if (yquery (_("\
7042 Process record ignores the memory change of instruction at address %s\n\
7043 because it can't get the value of the segment register.\n\
7044 Do you want to stop the program?"),
7045 paddress (gdbarch, ir.orig_addr)))
7046 return -1;
7047 }
7048 }
7049 else
7050 {
7051 if (i386_record_lea_modrm_addr (&ir, &addr64))
7052 return -1;
7053 if (record_full_arch_list_add_mem (addr64, 2))
7054 return -1;
7055 addr64 += 2;
7056 if (ir.regmap[X86_RECORD_R8_REGNUM])
7057 {
7058 if (record_full_arch_list_add_mem (addr64, 8))
7059 return -1;
7060 }
7061 else
7062 {
7063 if (record_full_arch_list_add_mem (addr64, 4))
7064 return -1;
7065 }
7066 }
7067 }
7068 break;
7069 case 1:
7070 if (ir.mod == 3)
7071 {
7072 switch (ir.rm)
7073 {
7074 case 0: /* monitor */
7075 break;
7076 case 1: /* mwait */
7077 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7078 break;
7079 default:
7080 ir.addr -= 3;
7081 opcode = opcode << 8 | ir.modrm;
7082 goto no_support;
7083 break;
7084 }
7085 }
7086 else
7087 {
7088 /* sidt */
7089 if (ir.override >= 0)
7090 {
7091 if (record_full_memory_query)
7092 {
7093 if (yquery (_("\
7094 Process record ignores the memory change of instruction at address %s\n\
7095 because it can't get the value of the segment register.\n\
7096 Do you want to stop the program?"),
7097 paddress (gdbarch, ir.orig_addr)))
7098 return -1;
7099 }
7100 }
7101 else
7102 {
7103 uint64_t addr64;
7104
7105 if (i386_record_lea_modrm_addr (&ir, &addr64))
7106 return -1;
7107 if (record_full_arch_list_add_mem (addr64, 2))
7108 return -1;
7109 addr64 += 2;
7110 if (ir.regmap[X86_RECORD_R8_REGNUM])
7111 {
7112 if (record_full_arch_list_add_mem (addr64, 8))
7113 return -1;
7114 }
7115 else
7116 {
7117 if (record_full_arch_list_add_mem (addr64, 4))
7118 return -1;
7119 }
7120 }
7121 }
7122 break;
7123 case 2: /* lgdt */
7124 if (ir.mod == 3)
7125 {
7126 /* xgetbv */
7127 if (ir.rm == 0)
7128 {
7129 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7130 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7131 break;
7132 }
7133 /* xsetbv */
7134 else if (ir.rm == 1)
7135 break;
7136 }
7137 /* Fall through. */
7138 case 3: /* lidt */
7139 if (ir.mod == 3)
7140 {
7141 ir.addr -= 3;
7142 opcode = opcode << 8 | ir.modrm;
7143 goto no_support;
7144 }
7145 break;
7146 case 4: /* smsw */
7147 if (ir.mod == 3)
7148 {
7149 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7150 return -1;
7151 }
7152 else
7153 {
7154 ir.ot = OT_WORD;
7155 if (i386_record_lea_modrm (&ir))
7156 return -1;
7157 }
7158 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7159 break;
7160 case 6: /* lmsw */
7161 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7162 break;
7163 case 7: /* invlpg */
7164 if (ir.mod == 3)
7165 {
7166 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7167 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7168 else
7169 {
7170 ir.addr -= 3;
7171 opcode = opcode << 8 | ir.modrm;
7172 goto no_support;
7173 }
7174 }
7175 else
7176 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7177 break;
7178 default:
7179 ir.addr -= 3;
7180 opcode = opcode << 8 | ir.modrm;
7181 goto no_support;
7182 break;
7183 }
7184 break;
7185
7186 case 0x0f08: /* invd */
7187 case 0x0f09: /* wbinvd */
7188 break;
7189
7190 case 0x63: /* arpl */
7191 if (i386_record_modrm (&ir))
7192 return -1;
7193 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7194 {
7195 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7196 ? (ir.reg | rex_r) : ir.rm);
7197 }
7198 else
7199 {
7200 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7201 if (i386_record_lea_modrm (&ir))
7202 return -1;
7203 }
7204 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7205 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7206 break;
7207
7208 case 0x0f02: /* lar */
7209 case 0x0f03: /* lsl */
7210 if (i386_record_modrm (&ir))
7211 return -1;
7212 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7213 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7214 break;
7215
7216 case 0x0f18:
7217 if (i386_record_modrm (&ir))
7218 return -1;
7219 if (ir.mod == 3 && ir.reg == 3)
7220 {
7221 ir.addr -= 3;
7222 opcode = opcode << 8 | ir.modrm;
7223 goto no_support;
7224 }
7225 break;
7226
7227 case 0x0f19:
7228 case 0x0f1a:
7229 case 0x0f1b:
7230 case 0x0f1c:
7231 case 0x0f1d:
7232 case 0x0f1e:
7233 case 0x0f1f:
7234 /* nop (multi byte) */
7235 break;
7236
7237 case 0x0f20: /* mov reg, crN */
7238 case 0x0f22: /* mov crN, reg */
7239 if (i386_record_modrm (&ir))
7240 return -1;
7241 if ((ir.modrm & 0xc0) != 0xc0)
7242 {
7243 ir.addr -= 3;
7244 opcode = opcode << 8 | ir.modrm;
7245 goto no_support;
7246 }
7247 switch (ir.reg)
7248 {
7249 case 0:
7250 case 2:
7251 case 3:
7252 case 4:
7253 case 8:
7254 if (opcode & 2)
7255 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7256 else
7257 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7258 break;
7259 default:
7260 ir.addr -= 3;
7261 opcode = opcode << 8 | ir.modrm;
7262 goto no_support;
7263 break;
7264 }
7265 break;
7266
7267 case 0x0f21: /* mov reg, drN */
7268 case 0x0f23: /* mov drN, reg */
7269 if (i386_record_modrm (&ir))
7270 return -1;
7271 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7272 || ir.reg == 5 || ir.reg >= 8)
7273 {
7274 ir.addr -= 3;
7275 opcode = opcode << 8 | ir.modrm;
7276 goto no_support;
7277 }
7278 if (opcode & 2)
7279 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7280 else
7281 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7282 break;
7283
7284 case 0x0f06: /* clts */
7285 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7286 break;
7287
7288 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7289
7290 case 0x0f0d: /* 3DNow! prefetch */
7291 break;
7292
7293 case 0x0f0e: /* 3DNow! femms */
7294 case 0x0f77: /* emms */
7295 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7296 goto no_support;
7297 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7298 break;
7299
7300 case 0x0f0f: /* 3DNow! data */
7301 if (i386_record_modrm (&ir))
7302 return -1;
7303 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7304 return -1;
7305 ir.addr++;
7306 switch (opcode8)
7307 {
7308 case 0x0c: /* 3DNow! pi2fw */
7309 case 0x0d: /* 3DNow! pi2fd */
7310 case 0x1c: /* 3DNow! pf2iw */
7311 case 0x1d: /* 3DNow! pf2id */
7312 case 0x8a: /* 3DNow! pfnacc */
7313 case 0x8e: /* 3DNow! pfpnacc */
7314 case 0x90: /* 3DNow! pfcmpge */
7315 case 0x94: /* 3DNow! pfmin */
7316 case 0x96: /* 3DNow! pfrcp */
7317 case 0x97: /* 3DNow! pfrsqrt */
7318 case 0x9a: /* 3DNow! pfsub */
7319 case 0x9e: /* 3DNow! pfadd */
7320 case 0xa0: /* 3DNow! pfcmpgt */
7321 case 0xa4: /* 3DNow! pfmax */
7322 case 0xa6: /* 3DNow! pfrcpit1 */
7323 case 0xa7: /* 3DNow! pfrsqit1 */
7324 case 0xaa: /* 3DNow! pfsubr */
7325 case 0xae: /* 3DNow! pfacc */
7326 case 0xb0: /* 3DNow! pfcmpeq */
7327 case 0xb4: /* 3DNow! pfmul */
7328 case 0xb6: /* 3DNow! pfrcpit2 */
7329 case 0xb7: /* 3DNow! pmulhrw */
7330 case 0xbb: /* 3DNow! pswapd */
7331 case 0xbf: /* 3DNow! pavgusb */
7332 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7333 goto no_support_3dnow_data;
7334 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7335 break;
7336
7337 default:
7338 no_support_3dnow_data:
7339 opcode = (opcode << 8) | opcode8;
7340 goto no_support;
7341 break;
7342 }
7343 break;
7344
7345 case 0x0faa: /* rsm */
7346 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7347 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7348 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7349 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7350 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7351 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7352 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7353 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7354 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7355 break;
7356
7357 case 0x0fae:
7358 if (i386_record_modrm (&ir))
7359 return -1;
7360 switch(ir.reg)
7361 {
7362 case 0: /* fxsave */
7363 {
7364 uint64_t tmpu64;
7365
7366 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7367 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7368 return -1;
7369 if (record_full_arch_list_add_mem (tmpu64, 512))
7370 return -1;
7371 }
7372 break;
7373
7374 case 1: /* fxrstor */
7375 {
7376 int i;
7377
7378 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7379
7380 for (i = I387_MM0_REGNUM (tdep);
7381 i386_mmx_regnum_p (gdbarch, i); i++)
7382 record_full_arch_list_add_reg (ir.regcache, i);
7383
7384 for (i = I387_XMM0_REGNUM (tdep);
7385 i386_xmm_regnum_p (gdbarch, i); i++)
7386 record_full_arch_list_add_reg (ir.regcache, i);
7387
7388 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7389 record_full_arch_list_add_reg (ir.regcache,
7390 I387_MXCSR_REGNUM(tdep));
7391
7392 for (i = I387_ST0_REGNUM (tdep);
7393 i386_fp_regnum_p (gdbarch, i); i++)
7394 record_full_arch_list_add_reg (ir.regcache, i);
7395
7396 for (i = I387_FCTRL_REGNUM (tdep);
7397 i386_fpc_regnum_p (gdbarch, i); i++)
7398 record_full_arch_list_add_reg (ir.regcache, i);
7399 }
7400 break;
7401
7402 case 2: /* ldmxcsr */
7403 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7404 goto no_support;
7405 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7406 break;
7407
7408 case 3: /* stmxcsr */
7409 ir.ot = OT_LONG;
7410 if (i386_record_lea_modrm (&ir))
7411 return -1;
7412 break;
7413
7414 case 5: /* lfence */
7415 case 6: /* mfence */
7416 case 7: /* sfence clflush */
7417 break;
7418
7419 default:
7420 opcode = (opcode << 8) | ir.modrm;
7421 goto no_support;
7422 break;
7423 }
7424 break;
7425
7426 case 0x0fc3: /* movnti */
7427 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7428 if (i386_record_modrm (&ir))
7429 return -1;
7430 if (ir.mod == 3)
7431 goto no_support;
7432 ir.reg |= rex_r;
7433 if (i386_record_lea_modrm (&ir))
7434 return -1;
7435 break;
7436
7437 /* Add prefix to opcode. */
7438 case 0x0f10:
7439 case 0x0f11:
7440 case 0x0f12:
7441 case 0x0f13:
7442 case 0x0f14:
7443 case 0x0f15:
7444 case 0x0f16:
7445 case 0x0f17:
7446 case 0x0f28:
7447 case 0x0f29:
7448 case 0x0f2a:
7449 case 0x0f2b:
7450 case 0x0f2c:
7451 case 0x0f2d:
7452 case 0x0f2e:
7453 case 0x0f2f:
7454 case 0x0f38:
7455 case 0x0f39:
7456 case 0x0f3a:
7457 case 0x0f50:
7458 case 0x0f51:
7459 case 0x0f52:
7460 case 0x0f53:
7461 case 0x0f54:
7462 case 0x0f55:
7463 case 0x0f56:
7464 case 0x0f57:
7465 case 0x0f58:
7466 case 0x0f59:
7467 case 0x0f5a:
7468 case 0x0f5b:
7469 case 0x0f5c:
7470 case 0x0f5d:
7471 case 0x0f5e:
7472 case 0x0f5f:
7473 case 0x0f60:
7474 case 0x0f61:
7475 case 0x0f62:
7476 case 0x0f63:
7477 case 0x0f64:
7478 case 0x0f65:
7479 case 0x0f66:
7480 case 0x0f67:
7481 case 0x0f68:
7482 case 0x0f69:
7483 case 0x0f6a:
7484 case 0x0f6b:
7485 case 0x0f6c:
7486 case 0x0f6d:
7487 case 0x0f6e:
7488 case 0x0f6f:
7489 case 0x0f70:
7490 case 0x0f71:
7491 case 0x0f72:
7492 case 0x0f73:
7493 case 0x0f74:
7494 case 0x0f75:
7495 case 0x0f76:
7496 case 0x0f7c:
7497 case 0x0f7d:
7498 case 0x0f7e:
7499 case 0x0f7f:
7500 case 0x0fb8:
7501 case 0x0fc2:
7502 case 0x0fc4:
7503 case 0x0fc5:
7504 case 0x0fc6:
7505 case 0x0fd0:
7506 case 0x0fd1:
7507 case 0x0fd2:
7508 case 0x0fd3:
7509 case 0x0fd4:
7510 case 0x0fd5:
7511 case 0x0fd6:
7512 case 0x0fd7:
7513 case 0x0fd8:
7514 case 0x0fd9:
7515 case 0x0fda:
7516 case 0x0fdb:
7517 case 0x0fdc:
7518 case 0x0fdd:
7519 case 0x0fde:
7520 case 0x0fdf:
7521 case 0x0fe0:
7522 case 0x0fe1:
7523 case 0x0fe2:
7524 case 0x0fe3:
7525 case 0x0fe4:
7526 case 0x0fe5:
7527 case 0x0fe6:
7528 case 0x0fe7:
7529 case 0x0fe8:
7530 case 0x0fe9:
7531 case 0x0fea:
7532 case 0x0feb:
7533 case 0x0fec:
7534 case 0x0fed:
7535 case 0x0fee:
7536 case 0x0fef:
7537 case 0x0ff0:
7538 case 0x0ff1:
7539 case 0x0ff2:
7540 case 0x0ff3:
7541 case 0x0ff4:
7542 case 0x0ff5:
7543 case 0x0ff6:
7544 case 0x0ff7:
7545 case 0x0ff8:
7546 case 0x0ff9:
7547 case 0x0ffa:
7548 case 0x0ffb:
7549 case 0x0ffc:
7550 case 0x0ffd:
7551 case 0x0ffe:
7552 /* Mask out PREFIX_ADDR. */
7553 switch ((prefixes & ~PREFIX_ADDR))
7554 {
7555 case PREFIX_REPNZ:
7556 opcode |= 0xf20000;
7557 break;
7558 case PREFIX_DATA:
7559 opcode |= 0x660000;
7560 break;
7561 case PREFIX_REPZ:
7562 opcode |= 0xf30000;
7563 break;
7564 }
7565 reswitch_prefix_add:
7566 switch (opcode)
7567 {
7568 case 0x0f38:
7569 case 0x660f38:
7570 case 0xf20f38:
7571 case 0x0f3a:
7572 case 0x660f3a:
7573 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7574 return -1;
7575 ir.addr++;
7576 opcode = (uint32_t) opcode8 | opcode << 8;
7577 goto reswitch_prefix_add;
7578 break;
7579
7580 case 0x0f10: /* movups */
7581 case 0x660f10: /* movupd */
7582 case 0xf30f10: /* movss */
7583 case 0xf20f10: /* movsd */
7584 case 0x0f12: /* movlps */
7585 case 0x660f12: /* movlpd */
7586 case 0xf30f12: /* movsldup */
7587 case 0xf20f12: /* movddup */
7588 case 0x0f14: /* unpcklps */
7589 case 0x660f14: /* unpcklpd */
7590 case 0x0f15: /* unpckhps */
7591 case 0x660f15: /* unpckhpd */
7592 case 0x0f16: /* movhps */
7593 case 0x660f16: /* movhpd */
7594 case 0xf30f16: /* movshdup */
7595 case 0x0f28: /* movaps */
7596 case 0x660f28: /* movapd */
7597 case 0x0f2a: /* cvtpi2ps */
7598 case 0x660f2a: /* cvtpi2pd */
7599 case 0xf30f2a: /* cvtsi2ss */
7600 case 0xf20f2a: /* cvtsi2sd */
7601 case 0x0f2c: /* cvttps2pi */
7602 case 0x660f2c: /* cvttpd2pi */
7603 case 0x0f2d: /* cvtps2pi */
7604 case 0x660f2d: /* cvtpd2pi */
7605 case 0x660f3800: /* pshufb */
7606 case 0x660f3801: /* phaddw */
7607 case 0x660f3802: /* phaddd */
7608 case 0x660f3803: /* phaddsw */
7609 case 0x660f3804: /* pmaddubsw */
7610 case 0x660f3805: /* phsubw */
7611 case 0x660f3806: /* phsubd */
7612 case 0x660f3807: /* phsubsw */
7613 case 0x660f3808: /* psignb */
7614 case 0x660f3809: /* psignw */
7615 case 0x660f380a: /* psignd */
7616 case 0x660f380b: /* pmulhrsw */
7617 case 0x660f3810: /* pblendvb */
7618 case 0x660f3814: /* blendvps */
7619 case 0x660f3815: /* blendvpd */
7620 case 0x660f381c: /* pabsb */
7621 case 0x660f381d: /* pabsw */
7622 case 0x660f381e: /* pabsd */
7623 case 0x660f3820: /* pmovsxbw */
7624 case 0x660f3821: /* pmovsxbd */
7625 case 0x660f3822: /* pmovsxbq */
7626 case 0x660f3823: /* pmovsxwd */
7627 case 0x660f3824: /* pmovsxwq */
7628 case 0x660f3825: /* pmovsxdq */
7629 case 0x660f3828: /* pmuldq */
7630 case 0x660f3829: /* pcmpeqq */
7631 case 0x660f382a: /* movntdqa */
7632 case 0x660f3a08: /* roundps */
7633 case 0x660f3a09: /* roundpd */
7634 case 0x660f3a0a: /* roundss */
7635 case 0x660f3a0b: /* roundsd */
7636 case 0x660f3a0c: /* blendps */
7637 case 0x660f3a0d: /* blendpd */
7638 case 0x660f3a0e: /* pblendw */
7639 case 0x660f3a0f: /* palignr */
7640 case 0x660f3a20: /* pinsrb */
7641 case 0x660f3a21: /* insertps */
7642 case 0x660f3a22: /* pinsrd pinsrq */
7643 case 0x660f3a40: /* dpps */
7644 case 0x660f3a41: /* dppd */
7645 case 0x660f3a42: /* mpsadbw */
7646 case 0x660f3a60: /* pcmpestrm */
7647 case 0x660f3a61: /* pcmpestri */
7648 case 0x660f3a62: /* pcmpistrm */
7649 case 0x660f3a63: /* pcmpistri */
7650 case 0x0f51: /* sqrtps */
7651 case 0x660f51: /* sqrtpd */
7652 case 0xf20f51: /* sqrtsd */
7653 case 0xf30f51: /* sqrtss */
7654 case 0x0f52: /* rsqrtps */
7655 case 0xf30f52: /* rsqrtss */
7656 case 0x0f53: /* rcpps */
7657 case 0xf30f53: /* rcpss */
7658 case 0x0f54: /* andps */
7659 case 0x660f54: /* andpd */
7660 case 0x0f55: /* andnps */
7661 case 0x660f55: /* andnpd */
7662 case 0x0f56: /* orps */
7663 case 0x660f56: /* orpd */
7664 case 0x0f57: /* xorps */
7665 case 0x660f57: /* xorpd */
7666 case 0x0f58: /* addps */
7667 case 0x660f58: /* addpd */
7668 case 0xf20f58: /* addsd */
7669 case 0xf30f58: /* addss */
7670 case 0x0f59: /* mulps */
7671 case 0x660f59: /* mulpd */
7672 case 0xf20f59: /* mulsd */
7673 case 0xf30f59: /* mulss */
7674 case 0x0f5a: /* cvtps2pd */
7675 case 0x660f5a: /* cvtpd2ps */
7676 case 0xf20f5a: /* cvtsd2ss */
7677 case 0xf30f5a: /* cvtss2sd */
7678 case 0x0f5b: /* cvtdq2ps */
7679 case 0x660f5b: /* cvtps2dq */
7680 case 0xf30f5b: /* cvttps2dq */
7681 case 0x0f5c: /* subps */
7682 case 0x660f5c: /* subpd */
7683 case 0xf20f5c: /* subsd */
7684 case 0xf30f5c: /* subss */
7685 case 0x0f5d: /* minps */
7686 case 0x660f5d: /* minpd */
7687 case 0xf20f5d: /* minsd */
7688 case 0xf30f5d: /* minss */
7689 case 0x0f5e: /* divps */
7690 case 0x660f5e: /* divpd */
7691 case 0xf20f5e: /* divsd */
7692 case 0xf30f5e: /* divss */
7693 case 0x0f5f: /* maxps */
7694 case 0x660f5f: /* maxpd */
7695 case 0xf20f5f: /* maxsd */
7696 case 0xf30f5f: /* maxss */
7697 case 0x660f60: /* punpcklbw */
7698 case 0x660f61: /* punpcklwd */
7699 case 0x660f62: /* punpckldq */
7700 case 0x660f63: /* packsswb */
7701 case 0x660f64: /* pcmpgtb */
7702 case 0x660f65: /* pcmpgtw */
7703 case 0x660f66: /* pcmpgtd */
7704 case 0x660f67: /* packuswb */
7705 case 0x660f68: /* punpckhbw */
7706 case 0x660f69: /* punpckhwd */
7707 case 0x660f6a: /* punpckhdq */
7708 case 0x660f6b: /* packssdw */
7709 case 0x660f6c: /* punpcklqdq */
7710 case 0x660f6d: /* punpckhqdq */
7711 case 0x660f6e: /* movd */
7712 case 0x660f6f: /* movdqa */
7713 case 0xf30f6f: /* movdqu */
7714 case 0x660f70: /* pshufd */
7715 case 0xf20f70: /* pshuflw */
7716 case 0xf30f70: /* pshufhw */
7717 case 0x660f74: /* pcmpeqb */
7718 case 0x660f75: /* pcmpeqw */
7719 case 0x660f76: /* pcmpeqd */
7720 case 0x660f7c: /* haddpd */
7721 case 0xf20f7c: /* haddps */
7722 case 0x660f7d: /* hsubpd */
7723 case 0xf20f7d: /* hsubps */
7724 case 0xf30f7e: /* movq */
7725 case 0x0fc2: /* cmpps */
7726 case 0x660fc2: /* cmppd */
7727 case 0xf20fc2: /* cmpsd */
7728 case 0xf30fc2: /* cmpss */
7729 case 0x660fc4: /* pinsrw */
7730 case 0x0fc6: /* shufps */
7731 case 0x660fc6: /* shufpd */
7732 case 0x660fd0: /* addsubpd */
7733 case 0xf20fd0: /* addsubps */
7734 case 0x660fd1: /* psrlw */
7735 case 0x660fd2: /* psrld */
7736 case 0x660fd3: /* psrlq */
7737 case 0x660fd4: /* paddq */
7738 case 0x660fd5: /* pmullw */
7739 case 0xf30fd6: /* movq2dq */
7740 case 0x660fd8: /* psubusb */
7741 case 0x660fd9: /* psubusw */
7742 case 0x660fda: /* pminub */
7743 case 0x660fdb: /* pand */
7744 case 0x660fdc: /* paddusb */
7745 case 0x660fdd: /* paddusw */
7746 case 0x660fde: /* pmaxub */
7747 case 0x660fdf: /* pandn */
7748 case 0x660fe0: /* pavgb */
7749 case 0x660fe1: /* psraw */
7750 case 0x660fe2: /* psrad */
7751 case 0x660fe3: /* pavgw */
7752 case 0x660fe4: /* pmulhuw */
7753 case 0x660fe5: /* pmulhw */
7754 case 0x660fe6: /* cvttpd2dq */
7755 case 0xf20fe6: /* cvtpd2dq */
7756 case 0xf30fe6: /* cvtdq2pd */
7757 case 0x660fe8: /* psubsb */
7758 case 0x660fe9: /* psubsw */
7759 case 0x660fea: /* pminsw */
7760 case 0x660feb: /* por */
7761 case 0x660fec: /* paddsb */
7762 case 0x660fed: /* paddsw */
7763 case 0x660fee: /* pmaxsw */
7764 case 0x660fef: /* pxor */
7765 case 0xf20ff0: /* lddqu */
7766 case 0x660ff1: /* psllw */
7767 case 0x660ff2: /* pslld */
7768 case 0x660ff3: /* psllq */
7769 case 0x660ff4: /* pmuludq */
7770 case 0x660ff5: /* pmaddwd */
7771 case 0x660ff6: /* psadbw */
7772 case 0x660ff8: /* psubb */
7773 case 0x660ff9: /* psubw */
7774 case 0x660ffa: /* psubd */
7775 case 0x660ffb: /* psubq */
7776 case 0x660ffc: /* paddb */
7777 case 0x660ffd: /* paddw */
7778 case 0x660ffe: /* paddd */
7779 if (i386_record_modrm (&ir))
7780 return -1;
7781 ir.reg |= rex_r;
7782 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7783 goto no_support;
7784 record_full_arch_list_add_reg (ir.regcache,
7785 I387_XMM0_REGNUM (tdep) + ir.reg);
7786 if ((opcode & 0xfffffffc) == 0x660f3a60)
7787 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7788 break;
7789
7790 case 0x0f11: /* movups */
7791 case 0x660f11: /* movupd */
7792 case 0xf30f11: /* movss */
7793 case 0xf20f11: /* movsd */
7794 case 0x0f13: /* movlps */
7795 case 0x660f13: /* movlpd */
7796 case 0x0f17: /* movhps */
7797 case 0x660f17: /* movhpd */
7798 case 0x0f29: /* movaps */
7799 case 0x660f29: /* movapd */
7800 case 0x660f3a14: /* pextrb */
7801 case 0x660f3a15: /* pextrw */
7802 case 0x660f3a16: /* pextrd pextrq */
7803 case 0x660f3a17: /* extractps */
7804 case 0x660f7f: /* movdqa */
7805 case 0xf30f7f: /* movdqu */
7806 if (i386_record_modrm (&ir))
7807 return -1;
7808 if (ir.mod == 3)
7809 {
7810 if (opcode == 0x0f13 || opcode == 0x660f13
7811 || opcode == 0x0f17 || opcode == 0x660f17)
7812 goto no_support;
7813 ir.rm |= ir.rex_b;
7814 if (!i386_xmm_regnum_p (gdbarch,
7815 I387_XMM0_REGNUM (tdep) + ir.rm))
7816 goto no_support;
7817 record_full_arch_list_add_reg (ir.regcache,
7818 I387_XMM0_REGNUM (tdep) + ir.rm);
7819 }
7820 else
7821 {
7822 switch (opcode)
7823 {
7824 case 0x660f3a14:
7825 ir.ot = OT_BYTE;
7826 break;
7827 case 0x660f3a15:
7828 ir.ot = OT_WORD;
7829 break;
7830 case 0x660f3a16:
7831 ir.ot = OT_LONG;
7832 break;
7833 case 0x660f3a17:
7834 ir.ot = OT_QUAD;
7835 break;
7836 default:
7837 ir.ot = OT_DQUAD;
7838 break;
7839 }
7840 if (i386_record_lea_modrm (&ir))
7841 return -1;
7842 }
7843 break;
7844
7845 case 0x0f2b: /* movntps */
7846 case 0x660f2b: /* movntpd */
7847 case 0x0fe7: /* movntq */
7848 case 0x660fe7: /* movntdq */
7849 if (ir.mod == 3)
7850 goto no_support;
7851 if (opcode == 0x0fe7)
7852 ir.ot = OT_QUAD;
7853 else
7854 ir.ot = OT_DQUAD;
7855 if (i386_record_lea_modrm (&ir))
7856 return -1;
7857 break;
7858
7859 case 0xf30f2c: /* cvttss2si */
7860 case 0xf20f2c: /* cvttsd2si */
7861 case 0xf30f2d: /* cvtss2si */
7862 case 0xf20f2d: /* cvtsd2si */
7863 case 0xf20f38f0: /* crc32 */
7864 case 0xf20f38f1: /* crc32 */
7865 case 0x0f50: /* movmskps */
7866 case 0x660f50: /* movmskpd */
7867 case 0x0fc5: /* pextrw */
7868 case 0x660fc5: /* pextrw */
7869 case 0x0fd7: /* pmovmskb */
7870 case 0x660fd7: /* pmovmskb */
7871 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7872 break;
7873
7874 case 0x0f3800: /* pshufb */
7875 case 0x0f3801: /* phaddw */
7876 case 0x0f3802: /* phaddd */
7877 case 0x0f3803: /* phaddsw */
7878 case 0x0f3804: /* pmaddubsw */
7879 case 0x0f3805: /* phsubw */
7880 case 0x0f3806: /* phsubd */
7881 case 0x0f3807: /* phsubsw */
7882 case 0x0f3808: /* psignb */
7883 case 0x0f3809: /* psignw */
7884 case 0x0f380a: /* psignd */
7885 case 0x0f380b: /* pmulhrsw */
7886 case 0x0f381c: /* pabsb */
7887 case 0x0f381d: /* pabsw */
7888 case 0x0f381e: /* pabsd */
7889 case 0x0f382b: /* packusdw */
7890 case 0x0f3830: /* pmovzxbw */
7891 case 0x0f3831: /* pmovzxbd */
7892 case 0x0f3832: /* pmovzxbq */
7893 case 0x0f3833: /* pmovzxwd */
7894 case 0x0f3834: /* pmovzxwq */
7895 case 0x0f3835: /* pmovzxdq */
7896 case 0x0f3837: /* pcmpgtq */
7897 case 0x0f3838: /* pminsb */
7898 case 0x0f3839: /* pminsd */
7899 case 0x0f383a: /* pminuw */
7900 case 0x0f383b: /* pminud */
7901 case 0x0f383c: /* pmaxsb */
7902 case 0x0f383d: /* pmaxsd */
7903 case 0x0f383e: /* pmaxuw */
7904 case 0x0f383f: /* pmaxud */
7905 case 0x0f3840: /* pmulld */
7906 case 0x0f3841: /* phminposuw */
7907 case 0x0f3a0f: /* palignr */
7908 case 0x0f60: /* punpcklbw */
7909 case 0x0f61: /* punpcklwd */
7910 case 0x0f62: /* punpckldq */
7911 case 0x0f63: /* packsswb */
7912 case 0x0f64: /* pcmpgtb */
7913 case 0x0f65: /* pcmpgtw */
7914 case 0x0f66: /* pcmpgtd */
7915 case 0x0f67: /* packuswb */
7916 case 0x0f68: /* punpckhbw */
7917 case 0x0f69: /* punpckhwd */
7918 case 0x0f6a: /* punpckhdq */
7919 case 0x0f6b: /* packssdw */
7920 case 0x0f6e: /* movd */
7921 case 0x0f6f: /* movq */
7922 case 0x0f70: /* pshufw */
7923 case 0x0f74: /* pcmpeqb */
7924 case 0x0f75: /* pcmpeqw */
7925 case 0x0f76: /* pcmpeqd */
7926 case 0x0fc4: /* pinsrw */
7927 case 0x0fd1: /* psrlw */
7928 case 0x0fd2: /* psrld */
7929 case 0x0fd3: /* psrlq */
7930 case 0x0fd4: /* paddq */
7931 case 0x0fd5: /* pmullw */
7932 case 0xf20fd6: /* movdq2q */
7933 case 0x0fd8: /* psubusb */
7934 case 0x0fd9: /* psubusw */
7935 case 0x0fda: /* pminub */
7936 case 0x0fdb: /* pand */
7937 case 0x0fdc: /* paddusb */
7938 case 0x0fdd: /* paddusw */
7939 case 0x0fde: /* pmaxub */
7940 case 0x0fdf: /* pandn */
7941 case 0x0fe0: /* pavgb */
7942 case 0x0fe1: /* psraw */
7943 case 0x0fe2: /* psrad */
7944 case 0x0fe3: /* pavgw */
7945 case 0x0fe4: /* pmulhuw */
7946 case 0x0fe5: /* pmulhw */
7947 case 0x0fe8: /* psubsb */
7948 case 0x0fe9: /* psubsw */
7949 case 0x0fea: /* pminsw */
7950 case 0x0feb: /* por */
7951 case 0x0fec: /* paddsb */
7952 case 0x0fed: /* paddsw */
7953 case 0x0fee: /* pmaxsw */
7954 case 0x0fef: /* pxor */
7955 case 0x0ff1: /* psllw */
7956 case 0x0ff2: /* pslld */
7957 case 0x0ff3: /* psllq */
7958 case 0x0ff4: /* pmuludq */
7959 case 0x0ff5: /* pmaddwd */
7960 case 0x0ff6: /* psadbw */
7961 case 0x0ff8: /* psubb */
7962 case 0x0ff9: /* psubw */
7963 case 0x0ffa: /* psubd */
7964 case 0x0ffb: /* psubq */
7965 case 0x0ffc: /* paddb */
7966 case 0x0ffd: /* paddw */
7967 case 0x0ffe: /* paddd */
7968 if (i386_record_modrm (&ir))
7969 return -1;
7970 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7971 goto no_support;
7972 record_full_arch_list_add_reg (ir.regcache,
7973 I387_MM0_REGNUM (tdep) + ir.reg);
7974 break;
7975
7976 case 0x0f71: /* psllw */
7977 case 0x0f72: /* pslld */
7978 case 0x0f73: /* psllq */
7979 if (i386_record_modrm (&ir))
7980 return -1;
7981 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7982 goto no_support;
7983 record_full_arch_list_add_reg (ir.regcache,
7984 I387_MM0_REGNUM (tdep) + ir.rm);
7985 break;
7986
7987 case 0x660f71: /* psllw */
7988 case 0x660f72: /* pslld */
7989 case 0x660f73: /* psllq */
7990 if (i386_record_modrm (&ir))
7991 return -1;
7992 ir.rm |= ir.rex_b;
7993 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7994 goto no_support;
7995 record_full_arch_list_add_reg (ir.regcache,
7996 I387_XMM0_REGNUM (tdep) + ir.rm);
7997 break;
7998
7999 case 0x0f7e: /* movd */
8000 case 0x660f7e: /* movd */
8001 if (i386_record_modrm (&ir))
8002 return -1;
8003 if (ir.mod == 3)
8004 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
8005 else
8006 {
8007 if (ir.dflag == 2)
8008 ir.ot = OT_QUAD;
8009 else
8010 ir.ot = OT_LONG;
8011 if (i386_record_lea_modrm (&ir))
8012 return -1;
8013 }
8014 break;
8015
8016 case 0x0f7f: /* movq */
8017 if (i386_record_modrm (&ir))
8018 return -1;
8019 if (ir.mod == 3)
8020 {
8021 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8022 goto no_support;
8023 record_full_arch_list_add_reg (ir.regcache,
8024 I387_MM0_REGNUM (tdep) + ir.rm);
8025 }
8026 else
8027 {
8028 ir.ot = OT_QUAD;
8029 if (i386_record_lea_modrm (&ir))
8030 return -1;
8031 }
8032 break;
8033
8034 case 0xf30fb8: /* popcnt */
8035 if (i386_record_modrm (&ir))
8036 return -1;
8037 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8038 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8039 break;
8040
8041 case 0x660fd6: /* movq */
8042 if (i386_record_modrm (&ir))
8043 return -1;
8044 if (ir.mod == 3)
8045 {
8046 ir.rm |= ir.rex_b;
8047 if (!i386_xmm_regnum_p (gdbarch,
8048 I387_XMM0_REGNUM (tdep) + ir.rm))
8049 goto no_support;
8050 record_full_arch_list_add_reg (ir.regcache,
8051 I387_XMM0_REGNUM (tdep) + ir.rm);
8052 }
8053 else
8054 {
8055 ir.ot = OT_QUAD;
8056 if (i386_record_lea_modrm (&ir))
8057 return -1;
8058 }
8059 break;
8060
8061 case 0x660f3817: /* ptest */
8062 case 0x0f2e: /* ucomiss */
8063 case 0x660f2e: /* ucomisd */
8064 case 0x0f2f: /* comiss */
8065 case 0x660f2f: /* comisd */
8066 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8067 break;
8068
8069 case 0x0ff7: /* maskmovq */
8070 regcache_raw_read_unsigned (ir.regcache,
8071 ir.regmap[X86_RECORD_REDI_REGNUM],
8072 &addr);
8073 if (record_full_arch_list_add_mem (addr, 64))
8074 return -1;
8075 break;
8076
8077 case 0x660ff7: /* maskmovdqu */
8078 regcache_raw_read_unsigned (ir.regcache,
8079 ir.regmap[X86_RECORD_REDI_REGNUM],
8080 &addr);
8081 if (record_full_arch_list_add_mem (addr, 128))
8082 return -1;
8083 break;
8084
8085 default:
8086 goto no_support;
8087 break;
8088 }
8089 break;
8090
8091 default:
8092 goto no_support;
8093 break;
8094 }
8095
8096 /* In the future, maybe still need to deal with need_dasm. */
8097 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8098 if (record_full_arch_list_add_end ())
8099 return -1;
8100
8101 return 0;
8102
8103 no_support:
8104 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8105 "at address %s.\n"),
8106 (unsigned int) (opcode),
8107 paddress (gdbarch, ir.orig_addr));
8108 return -1;
8109 }
8110
8111 static const int i386_record_regmap[] =
8112 {
8113 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8114 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8115 0, 0, 0, 0, 0, 0, 0, 0,
8116 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8117 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8118 };
8119
8120 /* Check that the given address appears suitable for a fast
8121 tracepoint, which on x86-64 means that we need an instruction of at
8122 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8123 jump and not have to worry about program jumps to an address in the
8124 middle of the tracepoint jump. On x86, it may be possible to use
8125 4-byte jumps with a 2-byte offset to a trampoline located in the
8126 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8127 of instruction to replace, and 0 if not, plus an explanatory
8128 string. */
8129
8130 static int
8131 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8132 std::string *msg)
8133 {
8134 int len, jumplen;
8135
8136 /* Ask the target for the minimum instruction length supported. */
8137 jumplen = target_get_min_fast_tracepoint_insn_len ();
8138
8139 if (jumplen < 0)
8140 {
8141 /* If the target does not support the get_min_fast_tracepoint_insn_len
8142 operation, assume that fast tracepoints will always be implemented
8143 using 4-byte relative jumps on both x86 and x86-64. */
8144 jumplen = 5;
8145 }
8146 else if (jumplen == 0)
8147 {
8148 /* If the target does support get_min_fast_tracepoint_insn_len but
8149 returns zero, then the IPA has not loaded yet. In this case,
8150 we optimistically assume that truncated 2-byte relative jumps
8151 will be available on x86, and compensate later if this assumption
8152 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8153 jumps will always be used. */
8154 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8155 }
8156
8157 /* Check for fit. */
8158 len = gdb_insn_length (gdbarch, addr);
8159
8160 if (len < jumplen)
8161 {
8162 /* Return a bit of target-specific detail to add to the caller's
8163 generic failure message. */
8164 if (msg)
8165 *msg = string_printf (_("; instruction is only %d bytes long, "
8166 "need at least %d bytes for the jump"),
8167 len, jumplen);
8168 return 0;
8169 }
8170 else
8171 {
8172 if (msg)
8173 msg->clear ();
8174 return 1;
8175 }
8176 }
8177
8178 /* Return a floating-point format for a floating-point variable of
8179 length LEN in bits. If non-NULL, NAME is the name of its type.
8180 If no suitable type is found, return NULL. */
8181
8182 static const struct floatformat **
8183 i386_floatformat_for_type (struct gdbarch *gdbarch,
8184 const char *name, int len)
8185 {
8186 if (len == 128 && name)
8187 if (strcmp (name, "__float128") == 0
8188 || strcmp (name, "_Float128") == 0
8189 || strcmp (name, "complex _Float128") == 0
8190 || strcmp (name, "complex(kind=16)") == 0
8191 || strcmp (name, "real(kind=16)") == 0)
8192 return floatformats_ia64_quad;
8193
8194 return default_floatformat_for_type (gdbarch, name, len);
8195 }
8196
8197 static int
8198 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8199 struct tdesc_arch_data *tdesc_data)
8200 {
8201 const struct target_desc *tdesc = tdep->tdesc;
8202 const struct tdesc_feature *feature_core;
8203
8204 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8205 *feature_avx512, *feature_pkeys, *feature_segments;
8206 int i, num_regs, valid_p;
8207
8208 if (! tdesc_has_registers (tdesc))
8209 return 0;
8210
8211 /* Get core registers. */
8212 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8213 if (feature_core == NULL)
8214 return 0;
8215
8216 /* Get SSE registers. */
8217 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8218
8219 /* Try AVX registers. */
8220 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8221
8222 /* Try MPX registers. */
8223 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8224
8225 /* Try AVX512 registers. */
8226 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8227
8228 /* Try segment base registers. */
8229 feature_segments = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
8230
8231 /* Try PKEYS */
8232 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8233
8234 valid_p = 1;
8235
8236 /* The XCR0 bits. */
8237 if (feature_avx512)
8238 {
8239 /* AVX512 register description requires AVX register description. */
8240 if (!feature_avx)
8241 return 0;
8242
8243 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8244
8245 /* It may have been set by OSABI initialization function. */
8246 if (tdep->k0_regnum < 0)
8247 {
8248 tdep->k_register_names = i386_k_names;
8249 tdep->k0_regnum = I386_K0_REGNUM;
8250 }
8251
8252 for (i = 0; i < I387_NUM_K_REGS; i++)
8253 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8254 tdep->k0_regnum + i,
8255 i386_k_names[i]);
8256
8257 if (tdep->num_zmm_regs == 0)
8258 {
8259 tdep->zmmh_register_names = i386_zmmh_names;
8260 tdep->num_zmm_regs = 8;
8261 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8262 }
8263
8264 for (i = 0; i < tdep->num_zmm_regs; i++)
8265 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8266 tdep->zmm0h_regnum + i,
8267 tdep->zmmh_register_names[i]);
8268
8269 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8270 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8271 tdep->xmm16_regnum + i,
8272 tdep->xmm_avx512_register_names[i]);
8273
8274 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8275 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8276 tdep->ymm16h_regnum + i,
8277 tdep->ymm16h_register_names[i]);
8278 }
8279 if (feature_avx)
8280 {
8281 /* AVX register description requires SSE register description. */
8282 if (!feature_sse)
8283 return 0;
8284
8285 if (!feature_avx512)
8286 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8287
8288 /* It may have been set by OSABI initialization function. */
8289 if (tdep->num_ymm_regs == 0)
8290 {
8291 tdep->ymmh_register_names = i386_ymmh_names;
8292 tdep->num_ymm_regs = 8;
8293 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8294 }
8295
8296 for (i = 0; i < tdep->num_ymm_regs; i++)
8297 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8298 tdep->ymm0h_regnum + i,
8299 tdep->ymmh_register_names[i]);
8300 }
8301 else if (feature_sse)
8302 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8303 else
8304 {
8305 tdep->xcr0 = X86_XSTATE_X87_MASK;
8306 tdep->num_xmm_regs = 0;
8307 }
8308
8309 num_regs = tdep->num_core_regs;
8310 for (i = 0; i < num_regs; i++)
8311 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8312 tdep->register_names[i]);
8313
8314 if (feature_sse)
8315 {
8316 /* Need to include %mxcsr, so add one. */
8317 num_regs += tdep->num_xmm_regs + 1;
8318 for (; i < num_regs; i++)
8319 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8320 tdep->register_names[i]);
8321 }
8322
8323 if (feature_mpx)
8324 {
8325 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8326
8327 if (tdep->bnd0r_regnum < 0)
8328 {
8329 tdep->mpx_register_names = i386_mpx_names;
8330 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8331 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8332 }
8333
8334 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8335 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8336 I387_BND0R_REGNUM (tdep) + i,
8337 tdep->mpx_register_names[i]);
8338 }
8339
8340 if (feature_segments)
8341 {
8342 if (tdep->fsbase_regnum < 0)
8343 tdep->fsbase_regnum = I386_FSBASE_REGNUM;
8344 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8345 tdep->fsbase_regnum, "fs_base");
8346 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8347 tdep->fsbase_regnum + 1, "gs_base");
8348 }
8349
8350 if (feature_pkeys)
8351 {
8352 tdep->xcr0 |= X86_XSTATE_PKRU;
8353 if (tdep->pkru_regnum < 0)
8354 {
8355 tdep->pkeys_register_names = i386_pkeys_names;
8356 tdep->pkru_regnum = I386_PKRU_REGNUM;
8357 tdep->num_pkeys_regs = 1;
8358 }
8359
8360 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8361 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8362 I387_PKRU_REGNUM (tdep) + i,
8363 tdep->pkeys_register_names[i]);
8364 }
8365
8366 return valid_p;
8367 }
8368
8369 \f
8370
8371 /* Implement the type_align gdbarch function. */
8372
8373 static ULONGEST
8374 i386_type_align (struct gdbarch *gdbarch, struct type *type)
8375 {
8376 type = check_typedef (type);
8377
8378 if (gdbarch_ptr_bit (gdbarch) == 32)
8379 {
8380 if ((TYPE_CODE (type) == TYPE_CODE_INT
8381 || TYPE_CODE (type) == TYPE_CODE_FLT)
8382 && TYPE_LENGTH (type) > 4)
8383 return 4;
8384
8385 /* Handle x86's funny long double. */
8386 if (TYPE_CODE (type) == TYPE_CODE_FLT
8387 && gdbarch_long_double_bit (gdbarch) == TYPE_LENGTH (type) * 8)
8388 return 4;
8389 }
8390
8391 return 0;
8392 }
8393
8394 \f
8395 /* Note: This is called for both i386 and amd64. */
8396
8397 static struct gdbarch *
8398 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8399 {
8400 struct gdbarch_tdep *tdep;
8401 struct gdbarch *gdbarch;
8402 struct tdesc_arch_data *tdesc_data;
8403 const struct target_desc *tdesc;
8404 int mm0_regnum;
8405 int ymm0_regnum;
8406 int bnd0_regnum;
8407 int num_bnd_cooked;
8408
8409 /* If there is already a candidate, use it. */
8410 arches = gdbarch_list_lookup_by_info (arches, &info);
8411 if (arches != NULL)
8412 return arches->gdbarch;
8413
8414 /* Allocate space for the new architecture. Assume i386 for now. */
8415 tdep = XCNEW (struct gdbarch_tdep);
8416 gdbarch = gdbarch_alloc (&info, tdep);
8417
8418 /* General-purpose registers. */
8419 tdep->gregset_reg_offset = NULL;
8420 tdep->gregset_num_regs = I386_NUM_GREGS;
8421 tdep->sizeof_gregset = 0;
8422
8423 /* Floating-point registers. */
8424 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8425 tdep->fpregset = &i386_fpregset;
8426
8427 /* The default settings include the FPU registers, the MMX registers
8428 and the SSE registers. This can be overridden for a specific ABI
8429 by adjusting the members `st0_regnum', `mm0_regnum' and
8430 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8431 will show up in the output of "info all-registers". */
8432
8433 tdep->st0_regnum = I386_ST0_REGNUM;
8434
8435 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8436 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8437
8438 tdep->jb_pc_offset = -1;
8439 tdep->struct_return = pcc_struct_return;
8440 tdep->sigtramp_start = 0;
8441 tdep->sigtramp_end = 0;
8442 tdep->sigtramp_p = i386_sigtramp_p;
8443 tdep->sigcontext_addr = NULL;
8444 tdep->sc_reg_offset = NULL;
8445 tdep->sc_pc_offset = -1;
8446 tdep->sc_sp_offset = -1;
8447
8448 tdep->xsave_xcr0_offset = -1;
8449
8450 tdep->record_regmap = i386_record_regmap;
8451
8452 set_gdbarch_type_align (gdbarch, i386_type_align);
8453
8454 /* The format used for `long double' on almost all i386 targets is
8455 the i387 extended floating-point format. In fact, of all targets
8456 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8457 on having a `long double' that's not `long' at all. */
8458 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8459
8460 /* Although the i387 extended floating-point has only 80 significant
8461 bits, a `long double' actually takes up 96, probably to enforce
8462 alignment. */
8463 set_gdbarch_long_double_bit (gdbarch, 96);
8464
8465 /* Support for floating-point data type variants. */
8466 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8467
8468 /* Register numbers of various important registers. */
8469 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8470 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8471 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8472 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8473
8474 /* NOTE: kettenis/20040418: GCC does have two possible register
8475 numbering schemes on the i386: dbx and SVR4. These schemes
8476 differ in how they number %ebp, %esp, %eflags, and the
8477 floating-point registers, and are implemented by the arrays
8478 dbx_register_map[] and svr4_dbx_register_map in
8479 gcc/config/i386.c. GCC also defines a third numbering scheme in
8480 gcc/config/i386.c, which it designates as the "default" register
8481 map used in 64bit mode. This last register numbering scheme is
8482 implemented in dbx64_register_map, and is used for AMD64; see
8483 amd64-tdep.c.
8484
8485 Currently, each GCC i386 target always uses the same register
8486 numbering scheme across all its supported debugging formats
8487 i.e. SDB (COFF), stabs and DWARF 2. This is because
8488 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8489 DBX_REGISTER_NUMBER macro which is defined by each target's
8490 respective config header in a manner independent of the requested
8491 output debugging format.
8492
8493 This does not match the arrangement below, which presumes that
8494 the SDB and stabs numbering schemes differ from the DWARF and
8495 DWARF 2 ones. The reason for this arrangement is that it is
8496 likely to get the numbering scheme for the target's
8497 default/native debug format right. For targets where GCC is the
8498 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8499 targets where the native toolchain uses a different numbering
8500 scheme for a particular debug format (stabs-in-ELF on Solaris)
8501 the defaults below will have to be overridden, like
8502 i386_elf_init_abi() does. */
8503
8504 /* Use the dbx register numbering scheme for stabs and COFF. */
8505 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8506 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8507
8508 /* Use the SVR4 register numbering scheme for DWARF 2. */
8509 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8510
8511 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8512 be in use on any of the supported i386 targets. */
8513
8514 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8515
8516 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8517
8518 /* Call dummy code. */
8519 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8520 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8521 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8522 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8523
8524 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8525 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8526 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8527
8528 set_gdbarch_return_value (gdbarch, i386_return_value);
8529
8530 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8531
8532 /* Stack grows downward. */
8533 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8534
8535 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8536 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8537
8538 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8539 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8540
8541 set_gdbarch_frame_args_skip (gdbarch, 8);
8542
8543 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8544
8545 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8546
8547 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8548
8549 /* Add the i386 register groups. */
8550 i386_add_reggroups (gdbarch);
8551 tdep->register_reggroup_p = i386_register_reggroup_p;
8552
8553 /* Helper for function argument information. */
8554 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8555
8556 /* Hook the function epilogue frame unwinder. This unwinder is
8557 appended to the list first, so that it supercedes the DWARF
8558 unwinder in function epilogues (where the DWARF unwinder
8559 currently fails). */
8560 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8561
8562 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8563 to the list before the prologue-based unwinders, so that DWARF
8564 CFI info will be used if it is available. */
8565 dwarf2_append_unwinders (gdbarch);
8566
8567 frame_base_set_default (gdbarch, &i386_frame_base);
8568
8569 /* Pseudo registers may be changed by amd64_init_abi. */
8570 set_gdbarch_pseudo_register_read_value (gdbarch,
8571 i386_pseudo_register_read_value);
8572 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8573 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8574 i386_ax_pseudo_register_collect);
8575
8576 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8577 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8578
8579 /* Override the normal target description method to make the AVX
8580 upper halves anonymous. */
8581 set_gdbarch_register_name (gdbarch, i386_register_name);
8582
8583 /* Even though the default ABI only includes general-purpose registers,
8584 floating-point registers and the SSE registers, we have to leave a
8585 gap for the upper AVX, MPX and AVX512 registers. */
8586 set_gdbarch_num_regs (gdbarch, I386_NUM_REGS);
8587
8588 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8589
8590 /* Get the x86 target description from INFO. */
8591 tdesc = info.target_desc;
8592 if (! tdesc_has_registers (tdesc))
8593 tdesc = i386_target_description (X86_XSTATE_SSE_MASK, false);
8594 tdep->tdesc = tdesc;
8595
8596 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8597 tdep->register_names = i386_register_names;
8598
8599 /* No upper YMM registers. */
8600 tdep->ymmh_register_names = NULL;
8601 tdep->ymm0h_regnum = -1;
8602
8603 /* No upper ZMM registers. */
8604 tdep->zmmh_register_names = NULL;
8605 tdep->zmm0h_regnum = -1;
8606
8607 /* No high XMM registers. */
8608 tdep->xmm_avx512_register_names = NULL;
8609 tdep->xmm16_regnum = -1;
8610
8611 /* No upper YMM16-31 registers. */
8612 tdep->ymm16h_register_names = NULL;
8613 tdep->ymm16h_regnum = -1;
8614
8615 tdep->num_byte_regs = 8;
8616 tdep->num_word_regs = 8;
8617 tdep->num_dword_regs = 0;
8618 tdep->num_mmx_regs = 8;
8619 tdep->num_ymm_regs = 0;
8620
8621 /* No MPX registers. */
8622 tdep->bnd0r_regnum = -1;
8623 tdep->bndcfgu_regnum = -1;
8624
8625 /* No AVX512 registers. */
8626 tdep->k0_regnum = -1;
8627 tdep->num_zmm_regs = 0;
8628 tdep->num_ymm_avx512_regs = 0;
8629 tdep->num_xmm_avx512_regs = 0;
8630
8631 /* No PKEYS registers */
8632 tdep->pkru_regnum = -1;
8633 tdep->num_pkeys_regs = 0;
8634
8635 /* No segment base registers. */
8636 tdep->fsbase_regnum = -1;
8637
8638 tdesc_data = tdesc_data_alloc ();
8639
8640 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8641
8642 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8643
8644 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8645 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8646 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8647
8648 /* Hook in ABI-specific overrides, if they have been registered.
8649 Note: If INFO specifies a 64 bit arch, this is where we turn
8650 a 32-bit i386 into a 64-bit amd64. */
8651 info.tdesc_data = tdesc_data;
8652 gdbarch_init_osabi (info, gdbarch);
8653
8654 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8655 {
8656 tdesc_data_cleanup (tdesc_data);
8657 xfree (tdep);
8658 gdbarch_free (gdbarch);
8659 return NULL;
8660 }
8661
8662 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8663
8664 /* Wire in pseudo registers. Number of pseudo registers may be
8665 changed. */
8666 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8667 + tdep->num_word_regs
8668 + tdep->num_dword_regs
8669 + tdep->num_mmx_regs
8670 + tdep->num_ymm_regs
8671 + num_bnd_cooked
8672 + tdep->num_ymm_avx512_regs
8673 + tdep->num_zmm_regs));
8674
8675 /* Target description may be changed. */
8676 tdesc = tdep->tdesc;
8677
8678 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8679
8680 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8681 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8682
8683 /* Make %al the first pseudo-register. */
8684 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8685 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8686
8687 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8688 if (tdep->num_dword_regs)
8689 {
8690 /* Support dword pseudo-register if it hasn't been disabled. */
8691 tdep->eax_regnum = ymm0_regnum;
8692 ymm0_regnum += tdep->num_dword_regs;
8693 }
8694 else
8695 tdep->eax_regnum = -1;
8696
8697 mm0_regnum = ymm0_regnum;
8698 if (tdep->num_ymm_regs)
8699 {
8700 /* Support YMM pseudo-register if it is available. */
8701 tdep->ymm0_regnum = ymm0_regnum;
8702 mm0_regnum += tdep->num_ymm_regs;
8703 }
8704 else
8705 tdep->ymm0_regnum = -1;
8706
8707 if (tdep->num_ymm_avx512_regs)
8708 {
8709 /* Support YMM16-31 pseudo registers if available. */
8710 tdep->ymm16_regnum = mm0_regnum;
8711 mm0_regnum += tdep->num_ymm_avx512_regs;
8712 }
8713 else
8714 tdep->ymm16_regnum = -1;
8715
8716 if (tdep->num_zmm_regs)
8717 {
8718 /* Support ZMM pseudo-register if it is available. */
8719 tdep->zmm0_regnum = mm0_regnum;
8720 mm0_regnum += tdep->num_zmm_regs;
8721 }
8722 else
8723 tdep->zmm0_regnum = -1;
8724
8725 bnd0_regnum = mm0_regnum;
8726 if (tdep->num_mmx_regs != 0)
8727 {
8728 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8729 tdep->mm0_regnum = mm0_regnum;
8730 bnd0_regnum += tdep->num_mmx_regs;
8731 }
8732 else
8733 tdep->mm0_regnum = -1;
8734
8735 if (tdep->bnd0r_regnum > 0)
8736 tdep->bnd0_regnum = bnd0_regnum;
8737 else
8738 tdep-> bnd0_regnum = -1;
8739
8740 /* Hook in the legacy prologue-based unwinders last (fallback). */
8741 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8742 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8743 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8744
8745 /* If we have a register mapping, enable the generic core file
8746 support, unless it has already been enabled. */
8747 if (tdep->gregset_reg_offset
8748 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8749 set_gdbarch_iterate_over_regset_sections
8750 (gdbarch, i386_iterate_over_regset_sections);
8751
8752 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8753 i386_fast_tracepoint_valid_at);
8754
8755 return gdbarch;
8756 }
8757
8758 \f
8759
8760 /* Return the target description for a specified XSAVE feature mask. */
8761
8762 const struct target_desc *
8763 i386_target_description (uint64_t xcr0, bool segments)
8764 {
8765 static target_desc *i386_tdescs \
8766 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
8767 target_desc **tdesc;
8768
8769 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8770 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8771 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8772 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
8773 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
8774 [segments ? 1 : 0];
8775
8776 if (*tdesc == NULL)
8777 *tdesc = i386_create_target_description (xcr0, false, segments);
8778
8779 return *tdesc;
8780 }
8781
8782 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8783
8784 /* Find the bound directory base address. */
8785
8786 static unsigned long
8787 i386_mpx_bd_base (void)
8788 {
8789 struct regcache *rcache;
8790 struct gdbarch_tdep *tdep;
8791 ULONGEST ret;
8792 enum register_status regstatus;
8793
8794 rcache = get_current_regcache ();
8795 tdep = gdbarch_tdep (rcache->arch ());
8796
8797 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8798
8799 if (regstatus != REG_VALID)
8800 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8801
8802 return ret & MPX_BASE_MASK;
8803 }
8804
8805 int
8806 i386_mpx_enabled (void)
8807 {
8808 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8809 const struct target_desc *tdesc = tdep->tdesc;
8810
8811 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8812 }
8813
8814 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8815 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8816 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8817 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8818
8819 /* Find the bound table entry given the pointer location and the base
8820 address of the table. */
8821
8822 static CORE_ADDR
8823 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8824 {
8825 CORE_ADDR offset1;
8826 CORE_ADDR offset2;
8827 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8828 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8829 CORE_ADDR bd_entry_addr;
8830 CORE_ADDR bt_addr;
8831 CORE_ADDR bd_entry;
8832 struct gdbarch *gdbarch = get_current_arch ();
8833 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8834
8835
8836 if (gdbarch_ptr_bit (gdbarch) == 64)
8837 {
8838 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8839 bd_ptr_r_shift = 20;
8840 bd_ptr_l_shift = 3;
8841 bt_select_r_shift = 3;
8842 bt_select_l_shift = 5;
8843 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8844
8845 if ( sizeof (CORE_ADDR) == 4)
8846 error (_("bound table examination not supported\
8847 for 64-bit process with 32-bit GDB"));
8848 }
8849 else
8850 {
8851 mpx_bd_mask = MPX_BD_MASK_32;
8852 bd_ptr_r_shift = 12;
8853 bd_ptr_l_shift = 2;
8854 bt_select_r_shift = 2;
8855 bt_select_l_shift = 4;
8856 bt_mask = MPX_BT_MASK_32;
8857 }
8858
8859 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8860 bd_entry_addr = bd_base + offset1;
8861 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8862
8863 if ((bd_entry & 0x1) == 0)
8864 error (_("Invalid bounds directory entry at %s."),
8865 paddress (get_current_arch (), bd_entry_addr));
8866
8867 /* Clearing status bit. */
8868 bd_entry--;
8869 bt_addr = bd_entry & ~bt_select_r_shift;
8870 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8871
8872 return bt_addr + offset2;
8873 }
8874
8875 /* Print routine for the mpx bounds. */
8876
8877 static void
8878 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8879 {
8880 struct ui_out *uiout = current_uiout;
8881 LONGEST size;
8882 struct gdbarch *gdbarch = get_current_arch ();
8883 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8884 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8885
8886 if (bounds_in_map == 1)
8887 {
8888 uiout->text ("Null bounds on map:");
8889 uiout->text (" pointer value = ");
8890 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8891 uiout->text (".");
8892 uiout->text ("\n");
8893 }
8894 else
8895 {
8896 uiout->text ("{lbound = ");
8897 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8898 uiout->text (", ubound = ");
8899
8900 /* The upper bound is stored in 1's complement. */
8901 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8902 uiout->text ("}: pointer value = ");
8903 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8904
8905 if (gdbarch_ptr_bit (gdbarch) == 64)
8906 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8907 else
8908 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8909
8910 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8911 -1 represents in this sense full memory access, and there is no need
8912 one to the size. */
8913
8914 size = (size > -1 ? size + 1 : size);
8915 uiout->text (", size = ");
8916 uiout->field_string ("size", plongest (size));
8917
8918 uiout->text (", metadata = ");
8919 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8920 uiout->text ("\n");
8921 }
8922 }
8923
8924 /* Implement the command "show mpx bound". */
8925
8926 static void
8927 i386_mpx_info_bounds (const char *args, int from_tty)
8928 {
8929 CORE_ADDR bd_base = 0;
8930 CORE_ADDR addr;
8931 CORE_ADDR bt_entry_addr = 0;
8932 CORE_ADDR bt_entry[4];
8933 int i;
8934 struct gdbarch *gdbarch = get_current_arch ();
8935 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8936
8937 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8938 || !i386_mpx_enabled ())
8939 {
8940 printf_unfiltered (_("Intel Memory Protection Extensions not "
8941 "supported on this target.\n"));
8942 return;
8943 }
8944
8945 if (args == NULL)
8946 {
8947 printf_unfiltered (_("Address of pointer variable expected.\n"));
8948 return;
8949 }
8950
8951 addr = parse_and_eval_address (args);
8952
8953 bd_base = i386_mpx_bd_base ();
8954 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8955
8956 memset (bt_entry, 0, sizeof (bt_entry));
8957
8958 for (i = 0; i < 4; i++)
8959 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8960 + i * TYPE_LENGTH (data_ptr_type),
8961 data_ptr_type);
8962
8963 i386_mpx_print_bounds (bt_entry);
8964 }
8965
8966 /* Implement the command "set mpx bound". */
8967
8968 static void
8969 i386_mpx_set_bounds (const char *args, int from_tty)
8970 {
8971 CORE_ADDR bd_base = 0;
8972 CORE_ADDR addr, lower, upper;
8973 CORE_ADDR bt_entry_addr = 0;
8974 CORE_ADDR bt_entry[2];
8975 const char *input = args;
8976 int i;
8977 struct gdbarch *gdbarch = get_current_arch ();
8978 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8979 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8980
8981 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8982 || !i386_mpx_enabled ())
8983 error (_("Intel Memory Protection Extensions not supported\
8984 on this target."));
8985
8986 if (args == NULL)
8987 error (_("Pointer value expected."));
8988
8989 addr = value_as_address (parse_to_comma_and_eval (&input));
8990
8991 if (input[0] == ',')
8992 ++input;
8993 if (input[0] == '\0')
8994 error (_("wrong number of arguments: missing lower and upper bound."));
8995 lower = value_as_address (parse_to_comma_and_eval (&input));
8996
8997 if (input[0] == ',')
8998 ++input;
8999 if (input[0] == '\0')
9000 error (_("Wrong number of arguments; Missing upper bound."));
9001 upper = value_as_address (parse_to_comma_and_eval (&input));
9002
9003 bd_base = i386_mpx_bd_base ();
9004 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9005 for (i = 0; i < 2; i++)
9006 bt_entry[i] = read_memory_typed_address (bt_entry_addr
9007 + i * TYPE_LENGTH (data_ptr_type),
9008 data_ptr_type);
9009 bt_entry[0] = (uint64_t) lower;
9010 bt_entry[1] = ~(uint64_t) upper;
9011
9012 for (i = 0; i < 2; i++)
9013 write_memory_unsigned_integer (bt_entry_addr
9014 + i * TYPE_LENGTH (data_ptr_type),
9015 TYPE_LENGTH (data_ptr_type), byte_order,
9016 bt_entry[i]);
9017 }
9018
9019 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
9020
9021 void _initialize_i386_tdep ();
9022 void
9023 _initialize_i386_tdep ()
9024 {
9025 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9026
9027 /* Add the variable that controls the disassembly flavor. */
9028 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9029 &disassembly_flavor, _("\
9030 Set the disassembly flavor."), _("\
9031 Show the disassembly flavor."), _("\
9032 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9033 NULL,
9034 NULL, /* FIXME: i18n: */
9035 &setlist, &showlist);
9036
9037 /* Add the variable that controls the convention for returning
9038 structs. */
9039 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9040 &struct_convention, _("\
9041 Set the convention for returning small structs."), _("\
9042 Show the convention for returning small structs."), _("\
9043 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9044 is \"default\"."),
9045 NULL,
9046 NULL, /* FIXME: i18n: */
9047 &setlist, &showlist);
9048
9049 /* Add "mpx" prefix for the set commands. */
9050
9051 add_basic_prefix_cmd ("mpx", class_support, _("\
9052 Set Intel Memory Protection Extensions specific variables."),
9053 &mpx_set_cmdlist, "set mpx ",
9054 0 /* allow-unknown */, &setlist);
9055
9056 /* Add "mpx" prefix for the show commands. */
9057
9058 add_show_prefix_cmd ("mpx", class_support, _("\
9059 Show Intel Memory Protection Extensions specific variables."),
9060 &mpx_show_cmdlist, "show mpx ",
9061 0 /* allow-unknown */, &showlist);
9062
9063 /* Add "bound" command for the show mpx commands list. */
9064
9065 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9066 "Show the memory bounds for a given array/pointer storage\
9067 in the bound table.",
9068 &mpx_show_cmdlist);
9069
9070 /* Add "bound" command for the set mpx commands list. */
9071
9072 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9073 "Set the memory bounds for a given array/pointer storage\
9074 in the bound table.",
9075 &mpx_set_cmdlist);
9076
9077 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9078 i386_svr4_init_abi);
9079
9080 /* Initialize the i386-specific register groups. */
9081 i386_init_reggroups ();
9082
9083 /* Tell remote stub that we support XML target description. */
9084 register_remote_support_xml ("i386");
9085 }
This page took 0.219352 seconds and 4 git commands to generate.