gdb/remote: Use true/false instead of 1/0
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2/frame.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "inferior.h"
30 #include "infrun.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "target-float.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "gdbsupport/x86-xstate.h"
50 #include "x86-tdep.h"
51 #include "expop.h"
52
53 #include "record.h"
54 #include "record-full.h"
55 #include "target-descriptions.h"
56 #include "arch/i386.h"
57
58 #include "ax.h"
59 #include "ax-gdb.h"
60
61 #include "stap-probe.h"
62 #include "user-regs.h"
63 #include "cli/cli-utils.h"
64 #include "expression.h"
65 #include "parser-defs.h"
66 #include <ctype.h>
67 #include <algorithm>
68 #include <unordered_set>
69 #include "producer.h"
70
71 /* Register names. */
72
73 static const char * const i386_register_names[] =
74 {
75 "eax", "ecx", "edx", "ebx",
76 "esp", "ebp", "esi", "edi",
77 "eip", "eflags", "cs", "ss",
78 "ds", "es", "fs", "gs",
79 "st0", "st1", "st2", "st3",
80 "st4", "st5", "st6", "st7",
81 "fctrl", "fstat", "ftag", "fiseg",
82 "fioff", "foseg", "fooff", "fop",
83 "xmm0", "xmm1", "xmm2", "xmm3",
84 "xmm4", "xmm5", "xmm6", "xmm7",
85 "mxcsr"
86 };
87
88 static const char * const i386_zmm_names[] =
89 {
90 "zmm0", "zmm1", "zmm2", "zmm3",
91 "zmm4", "zmm5", "zmm6", "zmm7"
92 };
93
94 static const char * const i386_zmmh_names[] =
95 {
96 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
97 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
98 };
99
100 static const char * const i386_k_names[] =
101 {
102 "k0", "k1", "k2", "k3",
103 "k4", "k5", "k6", "k7"
104 };
105
106 static const char * const i386_ymm_names[] =
107 {
108 "ymm0", "ymm1", "ymm2", "ymm3",
109 "ymm4", "ymm5", "ymm6", "ymm7",
110 };
111
112 static const char * const i386_ymmh_names[] =
113 {
114 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
115 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
116 };
117
118 static const char * const i386_mpx_names[] =
119 {
120 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
121 };
122
123 static const char * const i386_pkeys_names[] =
124 {
125 "pkru"
126 };
127
128 /* Register names for MPX pseudo-registers. */
129
130 static const char * const i386_bnd_names[] =
131 {
132 "bnd0", "bnd1", "bnd2", "bnd3"
133 };
134
135 /* Register names for MMX pseudo-registers. */
136
137 static const char * const i386_mmx_names[] =
138 {
139 "mm0", "mm1", "mm2", "mm3",
140 "mm4", "mm5", "mm6", "mm7"
141 };
142
143 /* Register names for byte pseudo-registers. */
144
145 static const char * const i386_byte_names[] =
146 {
147 "al", "cl", "dl", "bl",
148 "ah", "ch", "dh", "bh"
149 };
150
151 /* Register names for word pseudo-registers. */
152
153 static const char * const i386_word_names[] =
154 {
155 "ax", "cx", "dx", "bx",
156 "", "bp", "si", "di"
157 };
158
159 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
160 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
161 we have 16 upper ZMM regs that have to be handled differently. */
162
163 const int num_lower_zmm_regs = 16;
164
165 /* MMX register? */
166
167 static int
168 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
169 {
170 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
171 int mm0_regnum = tdep->mm0_regnum;
172
173 if (mm0_regnum < 0)
174 return 0;
175
176 regnum -= mm0_regnum;
177 return regnum >= 0 && regnum < tdep->num_mmx_regs;
178 }
179
180 /* Byte register? */
181
182 int
183 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
184 {
185 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
186
187 regnum -= tdep->al_regnum;
188 return regnum >= 0 && regnum < tdep->num_byte_regs;
189 }
190
191 /* Word register? */
192
193 int
194 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
195 {
196 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
197
198 regnum -= tdep->ax_regnum;
199 return regnum >= 0 && regnum < tdep->num_word_regs;
200 }
201
202 /* Dword register? */
203
204 int
205 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
206 {
207 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
208 int eax_regnum = tdep->eax_regnum;
209
210 if (eax_regnum < 0)
211 return 0;
212
213 regnum -= eax_regnum;
214 return regnum >= 0 && regnum < tdep->num_dword_regs;
215 }
216
217 /* AVX512 register? */
218
219 int
220 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
221 {
222 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
223 int zmm0h_regnum = tdep->zmm0h_regnum;
224
225 if (zmm0h_regnum < 0)
226 return 0;
227
228 regnum -= zmm0h_regnum;
229 return regnum >= 0 && regnum < tdep->num_zmm_regs;
230 }
231
232 int
233 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
234 {
235 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236 int zmm0_regnum = tdep->zmm0_regnum;
237
238 if (zmm0_regnum < 0)
239 return 0;
240
241 regnum -= zmm0_regnum;
242 return regnum >= 0 && regnum < tdep->num_zmm_regs;
243 }
244
245 int
246 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
247 {
248 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
249 int k0_regnum = tdep->k0_regnum;
250
251 if (k0_regnum < 0)
252 return 0;
253
254 regnum -= k0_regnum;
255 return regnum >= 0 && regnum < I387_NUM_K_REGS;
256 }
257
258 static int
259 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
260 {
261 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
262 int ymm0h_regnum = tdep->ymm0h_regnum;
263
264 if (ymm0h_regnum < 0)
265 return 0;
266
267 regnum -= ymm0h_regnum;
268 return regnum >= 0 && regnum < tdep->num_ymm_regs;
269 }
270
271 /* AVX register? */
272
273 int
274 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
275 {
276 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
277 int ymm0_regnum = tdep->ymm0_regnum;
278
279 if (ymm0_regnum < 0)
280 return 0;
281
282 regnum -= ymm0_regnum;
283 return regnum >= 0 && regnum < tdep->num_ymm_regs;
284 }
285
286 static int
287 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
288 {
289 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
290 int ymm16h_regnum = tdep->ymm16h_regnum;
291
292 if (ymm16h_regnum < 0)
293 return 0;
294
295 regnum -= ymm16h_regnum;
296 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
297 }
298
299 int
300 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
301 {
302 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
303 int ymm16_regnum = tdep->ymm16_regnum;
304
305 if (ymm16_regnum < 0)
306 return 0;
307
308 regnum -= ymm16_regnum;
309 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
310 }
311
312 /* BND register? */
313
314 int
315 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
316 {
317 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
318 int bnd0_regnum = tdep->bnd0_regnum;
319
320 if (bnd0_regnum < 0)
321 return 0;
322
323 regnum -= bnd0_regnum;
324 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
325 }
326
327 /* SSE register? */
328
329 int
330 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
331 {
332 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
333 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
334
335 if (num_xmm_regs == 0)
336 return 0;
337
338 regnum -= I387_XMM0_REGNUM (tdep);
339 return regnum >= 0 && regnum < num_xmm_regs;
340 }
341
342 /* XMM_512 register? */
343
344 int
345 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
346 {
347 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
348 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
349
350 if (num_xmm_avx512_regs == 0)
351 return 0;
352
353 regnum -= I387_XMM16_REGNUM (tdep);
354 return regnum >= 0 && regnum < num_xmm_avx512_regs;
355 }
356
357 static int
358 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
359 {
360 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
361
362 if (I387_NUM_XMM_REGS (tdep) == 0)
363 return 0;
364
365 return (regnum == I387_MXCSR_REGNUM (tdep));
366 }
367
368 /* FP register? */
369
370 int
371 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
372 {
373 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
374
375 if (I387_ST0_REGNUM (tdep) < 0)
376 return 0;
377
378 return (I387_ST0_REGNUM (tdep) <= regnum
379 && regnum < I387_FCTRL_REGNUM (tdep));
380 }
381
382 int
383 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
384 {
385 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
386
387 if (I387_ST0_REGNUM (tdep) < 0)
388 return 0;
389
390 return (I387_FCTRL_REGNUM (tdep) <= regnum
391 && regnum < I387_XMM0_REGNUM (tdep));
392 }
393
394 /* BNDr (raw) register? */
395
396 static int
397 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
398 {
399 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
400
401 if (I387_BND0R_REGNUM (tdep) < 0)
402 return 0;
403
404 regnum -= tdep->bnd0r_regnum;
405 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
406 }
407
408 /* BND control register? */
409
410 static int
411 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
412 {
413 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
414
415 if (I387_BNDCFGU_REGNUM (tdep) < 0)
416 return 0;
417
418 regnum -= I387_BNDCFGU_REGNUM (tdep);
419 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
420 }
421
422 /* PKRU register? */
423
424 bool
425 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
426 {
427 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
428 int pkru_regnum = tdep->pkru_regnum;
429
430 if (pkru_regnum < 0)
431 return false;
432
433 regnum -= pkru_regnum;
434 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
435 }
436
437 /* Return the name of register REGNUM, or the empty string if it is
438 an anonymous register. */
439
440 static const char *
441 i386_register_name (struct gdbarch *gdbarch, int regnum)
442 {
443 /* Hide the upper YMM registers. */
444 if (i386_ymmh_regnum_p (gdbarch, regnum))
445 return "";
446
447 /* Hide the upper YMM16-31 registers. */
448 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
449 return "";
450
451 /* Hide the upper ZMM registers. */
452 if (i386_zmmh_regnum_p (gdbarch, regnum))
453 return "";
454
455 return tdesc_register_name (gdbarch, regnum);
456 }
457
458 /* Return the name of register REGNUM. */
459
460 const char *
461 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
462 {
463 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
464 if (i386_bnd_regnum_p (gdbarch, regnum))
465 return i386_bnd_names[regnum - tdep->bnd0_regnum];
466 if (i386_mmx_regnum_p (gdbarch, regnum))
467 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
468 else if (i386_ymm_regnum_p (gdbarch, regnum))
469 return i386_ymm_names[regnum - tdep->ymm0_regnum];
470 else if (i386_zmm_regnum_p (gdbarch, regnum))
471 return i386_zmm_names[regnum - tdep->zmm0_regnum];
472 else if (i386_byte_regnum_p (gdbarch, regnum))
473 return i386_byte_names[regnum - tdep->al_regnum];
474 else if (i386_word_regnum_p (gdbarch, regnum))
475 return i386_word_names[regnum - tdep->ax_regnum];
476
477 internal_error (__FILE__, __LINE__, _("invalid regnum"));
478 }
479
480 /* Convert a dbx register number REG to the appropriate register
481 number used by GDB. */
482
483 static int
484 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
485 {
486 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
487
488 /* This implements what GCC calls the "default" register map
489 (dbx_register_map[]). */
490
491 if (reg >= 0 && reg <= 7)
492 {
493 /* General-purpose registers. The debug info calls %ebp
494 register 4, and %esp register 5. */
495 if (reg == 4)
496 return 5;
497 else if (reg == 5)
498 return 4;
499 else return reg;
500 }
501 else if (reg >= 12 && reg <= 19)
502 {
503 /* Floating-point registers. */
504 return reg - 12 + I387_ST0_REGNUM (tdep);
505 }
506 else if (reg >= 21 && reg <= 28)
507 {
508 /* SSE registers. */
509 int ymm0_regnum = tdep->ymm0_regnum;
510
511 if (ymm0_regnum >= 0
512 && i386_xmm_regnum_p (gdbarch, reg))
513 return reg - 21 + ymm0_regnum;
514 else
515 return reg - 21 + I387_XMM0_REGNUM (tdep);
516 }
517 else if (reg >= 29 && reg <= 36)
518 {
519 /* MMX registers. */
520 return reg - 29 + I387_MM0_REGNUM (tdep);
521 }
522
523 /* This will hopefully provoke a warning. */
524 return gdbarch_num_cooked_regs (gdbarch);
525 }
526
527 /* Convert SVR4 DWARF register number REG to the appropriate register number
528 used by GDB. */
529
530 static int
531 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
532 {
533 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
534
535 /* This implements the GCC register map that tries to be compatible
536 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
537
538 /* The SVR4 register numbering includes %eip and %eflags, and
539 numbers the floating point registers differently. */
540 if (reg >= 0 && reg <= 9)
541 {
542 /* General-purpose registers. */
543 return reg;
544 }
545 else if (reg >= 11 && reg <= 18)
546 {
547 /* Floating-point registers. */
548 return reg - 11 + I387_ST0_REGNUM (tdep);
549 }
550 else if (reg >= 21 && reg <= 36)
551 {
552 /* The SSE and MMX registers have the same numbers as with dbx. */
553 return i386_dbx_reg_to_regnum (gdbarch, reg);
554 }
555
556 switch (reg)
557 {
558 case 37: return I387_FCTRL_REGNUM (tdep);
559 case 38: return I387_FSTAT_REGNUM (tdep);
560 case 39: return I387_MXCSR_REGNUM (tdep);
561 case 40: return I386_ES_REGNUM;
562 case 41: return I386_CS_REGNUM;
563 case 42: return I386_SS_REGNUM;
564 case 43: return I386_DS_REGNUM;
565 case 44: return I386_FS_REGNUM;
566 case 45: return I386_GS_REGNUM;
567 }
568
569 return -1;
570 }
571
572 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
573 num_regs + num_pseudo_regs for other debug formats. */
574
575 int
576 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
577 {
578 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
579
580 if (regnum == -1)
581 return gdbarch_num_cooked_regs (gdbarch);
582 return regnum;
583 }
584
585 \f
586
587 /* This is the variable that is set with "set disassembly-flavor", and
588 its legitimate values. */
589 static const char att_flavor[] = "att";
590 static const char intel_flavor[] = "intel";
591 static const char *const valid_flavors[] =
592 {
593 att_flavor,
594 intel_flavor,
595 NULL
596 };
597 static const char *disassembly_flavor = att_flavor;
598 \f
599
600 /* Use the program counter to determine the contents and size of a
601 breakpoint instruction. Return a pointer to a string of bytes that
602 encode a breakpoint instruction, store the length of the string in
603 *LEN and optionally adjust *PC to point to the correct memory
604 location for inserting the breakpoint.
605
606 On the i386 we have a single breakpoint that fits in a single byte
607 and can be inserted anywhere.
608
609 This function is 64-bit safe. */
610
611 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
612
613 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
614
615 \f
616 /* Displaced instruction handling. */
617
618 /* Skip the legacy instruction prefixes in INSN.
619 Not all prefixes are valid for any particular insn
620 but we needn't care, the insn will fault if it's invalid.
621 The result is a pointer to the first opcode byte,
622 or NULL if we run off the end of the buffer. */
623
624 static gdb_byte *
625 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
626 {
627 gdb_byte *end = insn + max_len;
628
629 while (insn < end)
630 {
631 switch (*insn)
632 {
633 case DATA_PREFIX_OPCODE:
634 case ADDR_PREFIX_OPCODE:
635 case CS_PREFIX_OPCODE:
636 case DS_PREFIX_OPCODE:
637 case ES_PREFIX_OPCODE:
638 case FS_PREFIX_OPCODE:
639 case GS_PREFIX_OPCODE:
640 case SS_PREFIX_OPCODE:
641 case LOCK_PREFIX_OPCODE:
642 case REPE_PREFIX_OPCODE:
643 case REPNE_PREFIX_OPCODE:
644 ++insn;
645 continue;
646 default:
647 return insn;
648 }
649 }
650
651 return NULL;
652 }
653
654 static int
655 i386_absolute_jmp_p (const gdb_byte *insn)
656 {
657 /* jmp far (absolute address in operand). */
658 if (insn[0] == 0xea)
659 return 1;
660
661 if (insn[0] == 0xff)
662 {
663 /* jump near, absolute indirect (/4). */
664 if ((insn[1] & 0x38) == 0x20)
665 return 1;
666
667 /* jump far, absolute indirect (/5). */
668 if ((insn[1] & 0x38) == 0x28)
669 return 1;
670 }
671
672 return 0;
673 }
674
675 /* Return non-zero if INSN is a jump, zero otherwise. */
676
677 static int
678 i386_jmp_p (const gdb_byte *insn)
679 {
680 /* jump short, relative. */
681 if (insn[0] == 0xeb)
682 return 1;
683
684 /* jump near, relative. */
685 if (insn[0] == 0xe9)
686 return 1;
687
688 return i386_absolute_jmp_p (insn);
689 }
690
691 static int
692 i386_absolute_call_p (const gdb_byte *insn)
693 {
694 /* call far, absolute. */
695 if (insn[0] == 0x9a)
696 return 1;
697
698 if (insn[0] == 0xff)
699 {
700 /* Call near, absolute indirect (/2). */
701 if ((insn[1] & 0x38) == 0x10)
702 return 1;
703
704 /* Call far, absolute indirect (/3). */
705 if ((insn[1] & 0x38) == 0x18)
706 return 1;
707 }
708
709 return 0;
710 }
711
712 static int
713 i386_ret_p (const gdb_byte *insn)
714 {
715 switch (insn[0])
716 {
717 case 0xc2: /* ret near, pop N bytes. */
718 case 0xc3: /* ret near */
719 case 0xca: /* ret far, pop N bytes. */
720 case 0xcb: /* ret far */
721 case 0xcf: /* iret */
722 return 1;
723
724 default:
725 return 0;
726 }
727 }
728
729 static int
730 i386_call_p (const gdb_byte *insn)
731 {
732 if (i386_absolute_call_p (insn))
733 return 1;
734
735 /* call near, relative. */
736 if (insn[0] == 0xe8)
737 return 1;
738
739 return 0;
740 }
741
742 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
743 length in bytes. Otherwise, return zero. */
744
745 static int
746 i386_syscall_p (const gdb_byte *insn, int *lengthp)
747 {
748 /* Is it 'int $0x80'? */
749 if ((insn[0] == 0xcd && insn[1] == 0x80)
750 /* Or is it 'sysenter'? */
751 || (insn[0] == 0x0f && insn[1] == 0x34)
752 /* Or is it 'syscall'? */
753 || (insn[0] == 0x0f && insn[1] == 0x05))
754 {
755 *lengthp = 2;
756 return 1;
757 }
758
759 return 0;
760 }
761
762 /* The gdbarch insn_is_call method. */
763
764 static int
765 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
766 {
767 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
768
769 read_code (addr, buf, I386_MAX_INSN_LEN);
770 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
771
772 return i386_call_p (insn);
773 }
774
775 /* The gdbarch insn_is_ret method. */
776
777 static int
778 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
779 {
780 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
781
782 read_code (addr, buf, I386_MAX_INSN_LEN);
783 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
784
785 return i386_ret_p (insn);
786 }
787
788 /* The gdbarch insn_is_jump method. */
789
790 static int
791 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
792 {
793 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
794
795 read_code (addr, buf, I386_MAX_INSN_LEN);
796 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
797
798 return i386_jmp_p (insn);
799 }
800
801 /* Some kernels may run one past a syscall insn, so we have to cope. */
802
803 displaced_step_copy_insn_closure_up
804 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
805 CORE_ADDR from, CORE_ADDR to,
806 struct regcache *regs)
807 {
808 size_t len = gdbarch_max_insn_length (gdbarch);
809 std::unique_ptr<i386_displaced_step_copy_insn_closure> closure
810 (new i386_displaced_step_copy_insn_closure (len));
811 gdb_byte *buf = closure->buf.data ();
812
813 read_memory (from, buf, len);
814
815 /* GDB may get control back after the insn after the syscall.
816 Presumably this is a kernel bug.
817 If this is a syscall, make sure there's a nop afterwards. */
818 {
819 int syscall_length;
820 gdb_byte *insn;
821
822 insn = i386_skip_prefixes (buf, len);
823 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
824 insn[syscall_length] = NOP_OPCODE;
825 }
826
827 write_memory (to, buf, len);
828
829 displaced_debug_printf ("%s->%s: %s",
830 paddress (gdbarch, from), paddress (gdbarch, to),
831 displaced_step_dump_bytes (buf, len).c_str ());
832
833 /* This is a work around for a problem with g++ 4.8. */
834 return displaced_step_copy_insn_closure_up (closure.release ());
835 }
836
837 /* Fix up the state of registers and memory after having single-stepped
838 a displaced instruction. */
839
840 void
841 i386_displaced_step_fixup (struct gdbarch *gdbarch,
842 struct displaced_step_copy_insn_closure *closure_,
843 CORE_ADDR from, CORE_ADDR to,
844 struct regcache *regs)
845 {
846 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
847
848 /* The offset we applied to the instruction's address.
849 This could well be negative (when viewed as a signed 32-bit
850 value), but ULONGEST won't reflect that, so take care when
851 applying it. */
852 ULONGEST insn_offset = to - from;
853
854 i386_displaced_step_copy_insn_closure *closure
855 = (i386_displaced_step_copy_insn_closure *) closure_;
856 gdb_byte *insn = closure->buf.data ();
857 /* The start of the insn, needed in case we see some prefixes. */
858 gdb_byte *insn_start = insn;
859
860 displaced_debug_printf ("fixup (%s, %s), insn = 0x%02x 0x%02x ...",
861 paddress (gdbarch, from), paddress (gdbarch, to),
862 insn[0], insn[1]);
863
864 /* The list of issues to contend with here is taken from
865 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
866 Yay for Free Software! */
867
868 /* Relocate the %eip, if necessary. */
869
870 /* The instruction recognizers we use assume any leading prefixes
871 have been skipped. */
872 {
873 /* This is the size of the buffer in closure. */
874 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
875 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
876 /* If there are too many prefixes, just ignore the insn.
877 It will fault when run. */
878 if (opcode != NULL)
879 insn = opcode;
880 }
881
882 /* Except in the case of absolute or indirect jump or call
883 instructions, or a return instruction, the new eip is relative to
884 the displaced instruction; make it relative. Well, signal
885 handler returns don't need relocation either, but we use the
886 value of %eip to recognize those; see below. */
887 if (! i386_absolute_jmp_p (insn)
888 && ! i386_absolute_call_p (insn)
889 && ! i386_ret_p (insn))
890 {
891 ULONGEST orig_eip;
892 int insn_len;
893
894 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
895
896 /* A signal trampoline system call changes the %eip, resuming
897 execution of the main program after the signal handler has
898 returned. That makes them like 'return' instructions; we
899 shouldn't relocate %eip.
900
901 But most system calls don't, and we do need to relocate %eip.
902
903 Our heuristic for distinguishing these cases: if stepping
904 over the system call instruction left control directly after
905 the instruction, the we relocate --- control almost certainly
906 doesn't belong in the displaced copy. Otherwise, we assume
907 the instruction has put control where it belongs, and leave
908 it unrelocated. Goodness help us if there are PC-relative
909 system calls. */
910 if (i386_syscall_p (insn, &insn_len)
911 && orig_eip != to + (insn - insn_start) + insn_len
912 /* GDB can get control back after the insn after the syscall.
913 Presumably this is a kernel bug.
914 i386_displaced_step_copy_insn ensures its a nop,
915 we add one to the length for it. */
916 && orig_eip != to + (insn - insn_start) + insn_len + 1)
917 displaced_debug_printf ("syscall changed %%eip; not relocating");
918 else
919 {
920 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
921
922 /* If we just stepped over a breakpoint insn, we don't backup
923 the pc on purpose; this is to match behaviour without
924 stepping. */
925
926 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
927
928 displaced_debug_printf ("relocated %%eip from %s to %s",
929 paddress (gdbarch, orig_eip),
930 paddress (gdbarch, eip));
931 }
932 }
933
934 /* If the instruction was PUSHFL, then the TF bit will be set in the
935 pushed value, and should be cleared. We'll leave this for later,
936 since GDB already messes up the TF flag when stepping over a
937 pushfl. */
938
939 /* If the instruction was a call, the return address now atop the
940 stack is the address following the copied instruction. We need
941 to make it the address following the original instruction. */
942 if (i386_call_p (insn))
943 {
944 ULONGEST esp;
945 ULONGEST retaddr;
946 const ULONGEST retaddr_len = 4;
947
948 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
949 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
950 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
951 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
952
953 displaced_debug_printf ("relocated return addr at %s to %s",
954 paddress (gdbarch, esp),
955 paddress (gdbarch, retaddr));
956 }
957 }
958
959 static void
960 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
961 {
962 target_write_memory (*to, buf, len);
963 *to += len;
964 }
965
966 static void
967 i386_relocate_instruction (struct gdbarch *gdbarch,
968 CORE_ADDR *to, CORE_ADDR oldloc)
969 {
970 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
971 gdb_byte buf[I386_MAX_INSN_LEN];
972 int offset = 0, rel32, newrel;
973 int insn_length;
974 gdb_byte *insn = buf;
975
976 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
977
978 insn_length = gdb_buffered_insn_length (gdbarch, insn,
979 I386_MAX_INSN_LEN, oldloc);
980
981 /* Get past the prefixes. */
982 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
983
984 /* Adjust calls with 32-bit relative addresses as push/jump, with
985 the address pushed being the location where the original call in
986 the user program would return to. */
987 if (insn[0] == 0xe8)
988 {
989 gdb_byte push_buf[16];
990 unsigned int ret_addr;
991
992 /* Where "ret" in the original code will return to. */
993 ret_addr = oldloc + insn_length;
994 push_buf[0] = 0x68; /* pushq $... */
995 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
996 /* Push the push. */
997 append_insns (to, 5, push_buf);
998
999 /* Convert the relative call to a relative jump. */
1000 insn[0] = 0xe9;
1001
1002 /* Adjust the destination offset. */
1003 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1004 newrel = (oldloc - *to) + rel32;
1005 store_signed_integer (insn + 1, 4, byte_order, newrel);
1006
1007 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1008 hex_string (rel32), paddress (gdbarch, oldloc),
1009 hex_string (newrel), paddress (gdbarch, *to));
1010
1011 /* Write the adjusted jump into its displaced location. */
1012 append_insns (to, 5, insn);
1013 return;
1014 }
1015
1016 /* Adjust jumps with 32-bit relative addresses. Calls are already
1017 handled above. */
1018 if (insn[0] == 0xe9)
1019 offset = 1;
1020 /* Adjust conditional jumps. */
1021 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1022 offset = 2;
1023
1024 if (offset)
1025 {
1026 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1027 newrel = (oldloc - *to) + rel32;
1028 store_signed_integer (insn + offset, 4, byte_order, newrel);
1029 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1030 hex_string (rel32), paddress (gdbarch, oldloc),
1031 hex_string (newrel), paddress (gdbarch, *to));
1032 }
1033
1034 /* Write the adjusted instructions into their displaced
1035 location. */
1036 append_insns (to, insn_length, buf);
1037 }
1038
1039 \f
1040 #ifdef I386_REGNO_TO_SYMMETRY
1041 #error "The Sequent Symmetry is no longer supported."
1042 #endif
1043
1044 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1045 and %esp "belong" to the calling function. Therefore these
1046 registers should be saved if they're going to be modified. */
1047
1048 /* The maximum number of saved registers. This should include all
1049 registers mentioned above, and %eip. */
1050 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1051
1052 struct i386_frame_cache
1053 {
1054 /* Base address. */
1055 CORE_ADDR base;
1056 int base_p;
1057 LONGEST sp_offset;
1058 CORE_ADDR pc;
1059
1060 /* Saved registers. */
1061 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1062 CORE_ADDR saved_sp;
1063 int saved_sp_reg;
1064 int pc_in_eax;
1065
1066 /* Stack space reserved for local variables. */
1067 long locals;
1068 };
1069
1070 /* Allocate and initialize a frame cache. */
1071
1072 static struct i386_frame_cache *
1073 i386_alloc_frame_cache (void)
1074 {
1075 struct i386_frame_cache *cache;
1076 int i;
1077
1078 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1079
1080 /* Base address. */
1081 cache->base_p = 0;
1082 cache->base = 0;
1083 cache->sp_offset = -4;
1084 cache->pc = 0;
1085
1086 /* Saved registers. We initialize these to -1 since zero is a valid
1087 offset (that's where %ebp is supposed to be stored). */
1088 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1089 cache->saved_regs[i] = -1;
1090 cache->saved_sp = 0;
1091 cache->saved_sp_reg = -1;
1092 cache->pc_in_eax = 0;
1093
1094 /* Frameless until proven otherwise. */
1095 cache->locals = -1;
1096
1097 return cache;
1098 }
1099
1100 /* If the instruction at PC is a jump, return the address of its
1101 target. Otherwise, return PC. */
1102
1103 static CORE_ADDR
1104 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1105 {
1106 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1107 gdb_byte op;
1108 long delta = 0;
1109 int data16 = 0;
1110
1111 if (target_read_code (pc, &op, 1))
1112 return pc;
1113
1114 if (op == 0x66)
1115 {
1116 data16 = 1;
1117
1118 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1119 }
1120
1121 switch (op)
1122 {
1123 case 0xe9:
1124 /* Relative jump: if data16 == 0, disp32, else disp16. */
1125 if (data16)
1126 {
1127 delta = read_memory_integer (pc + 2, 2, byte_order);
1128
1129 /* Include the size of the jmp instruction (including the
1130 0x66 prefix). */
1131 delta += 4;
1132 }
1133 else
1134 {
1135 delta = read_memory_integer (pc + 1, 4, byte_order);
1136
1137 /* Include the size of the jmp instruction. */
1138 delta += 5;
1139 }
1140 break;
1141 case 0xeb:
1142 /* Relative jump, disp8 (ignore data16). */
1143 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1144
1145 delta += data16 + 2;
1146 break;
1147 }
1148
1149 return pc + delta;
1150 }
1151
1152 /* Check whether PC points at a prologue for a function returning a
1153 structure or union. If so, it updates CACHE and returns the
1154 address of the first instruction after the code sequence that
1155 removes the "hidden" argument from the stack or CURRENT_PC,
1156 whichever is smaller. Otherwise, return PC. */
1157
1158 static CORE_ADDR
1159 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1160 struct i386_frame_cache *cache)
1161 {
1162 /* Functions that return a structure or union start with:
1163
1164 popl %eax 0x58
1165 xchgl %eax, (%esp) 0x87 0x04 0x24
1166 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1167
1168 (the System V compiler puts out the second `xchg' instruction,
1169 and the assembler doesn't try to optimize it, so the 'sib' form
1170 gets generated). This sequence is used to get the address of the
1171 return buffer for a function that returns a structure. */
1172 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1173 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1174 gdb_byte buf[4];
1175 gdb_byte op;
1176
1177 if (current_pc <= pc)
1178 return pc;
1179
1180 if (target_read_code (pc, &op, 1))
1181 return pc;
1182
1183 if (op != 0x58) /* popl %eax */
1184 return pc;
1185
1186 if (target_read_code (pc + 1, buf, 4))
1187 return pc;
1188
1189 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1190 return pc;
1191
1192 if (current_pc == pc)
1193 {
1194 cache->sp_offset += 4;
1195 return current_pc;
1196 }
1197
1198 if (current_pc == pc + 1)
1199 {
1200 cache->pc_in_eax = 1;
1201 return current_pc;
1202 }
1203
1204 if (buf[1] == proto1[1])
1205 return pc + 4;
1206 else
1207 return pc + 5;
1208 }
1209
1210 static CORE_ADDR
1211 i386_skip_probe (CORE_ADDR pc)
1212 {
1213 /* A function may start with
1214
1215 pushl constant
1216 call _probe
1217 addl $4, %esp
1218
1219 followed by
1220
1221 pushl %ebp
1222
1223 etc. */
1224 gdb_byte buf[8];
1225 gdb_byte op;
1226
1227 if (target_read_code (pc, &op, 1))
1228 return pc;
1229
1230 if (op == 0x68 || op == 0x6a)
1231 {
1232 int delta;
1233
1234 /* Skip past the `pushl' instruction; it has either a one-byte or a
1235 four-byte operand, depending on the opcode. */
1236 if (op == 0x68)
1237 delta = 5;
1238 else
1239 delta = 2;
1240
1241 /* Read the following 8 bytes, which should be `call _probe' (6
1242 bytes) followed by `addl $4,%esp' (2 bytes). */
1243 read_memory (pc + delta, buf, sizeof (buf));
1244 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1245 pc += delta + sizeof (buf);
1246 }
1247
1248 return pc;
1249 }
1250
1251 /* GCC 4.1 and later, can put code in the prologue to realign the
1252 stack pointer. Check whether PC points to such code, and update
1253 CACHE accordingly. Return the first instruction after the code
1254 sequence or CURRENT_PC, whichever is smaller. If we don't
1255 recognize the code, return PC. */
1256
1257 static CORE_ADDR
1258 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1259 struct i386_frame_cache *cache)
1260 {
1261 /* There are 2 code sequences to re-align stack before the frame
1262 gets set up:
1263
1264 1. Use a caller-saved saved register:
1265
1266 leal 4(%esp), %reg
1267 andl $-XXX, %esp
1268 pushl -4(%reg)
1269
1270 2. Use a callee-saved saved register:
1271
1272 pushl %reg
1273 leal 8(%esp), %reg
1274 andl $-XXX, %esp
1275 pushl -4(%reg)
1276
1277 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1278
1279 0x83 0xe4 0xf0 andl $-16, %esp
1280 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1281 */
1282
1283 gdb_byte buf[14];
1284 int reg;
1285 int offset, offset_and;
1286 static int regnums[8] = {
1287 I386_EAX_REGNUM, /* %eax */
1288 I386_ECX_REGNUM, /* %ecx */
1289 I386_EDX_REGNUM, /* %edx */
1290 I386_EBX_REGNUM, /* %ebx */
1291 I386_ESP_REGNUM, /* %esp */
1292 I386_EBP_REGNUM, /* %ebp */
1293 I386_ESI_REGNUM, /* %esi */
1294 I386_EDI_REGNUM /* %edi */
1295 };
1296
1297 if (target_read_code (pc, buf, sizeof buf))
1298 return pc;
1299
1300 /* Check caller-saved saved register. The first instruction has
1301 to be "leal 4(%esp), %reg". */
1302 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1303 {
1304 /* MOD must be binary 10 and R/M must be binary 100. */
1305 if ((buf[1] & 0xc7) != 0x44)
1306 return pc;
1307
1308 /* REG has register number. */
1309 reg = (buf[1] >> 3) & 7;
1310 offset = 4;
1311 }
1312 else
1313 {
1314 /* Check callee-saved saved register. The first instruction
1315 has to be "pushl %reg". */
1316 if ((buf[0] & 0xf8) != 0x50)
1317 return pc;
1318
1319 /* Get register. */
1320 reg = buf[0] & 0x7;
1321
1322 /* The next instruction has to be "leal 8(%esp), %reg". */
1323 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1324 return pc;
1325
1326 /* MOD must be binary 10 and R/M must be binary 100. */
1327 if ((buf[2] & 0xc7) != 0x44)
1328 return pc;
1329
1330 /* REG has register number. Registers in pushl and leal have to
1331 be the same. */
1332 if (reg != ((buf[2] >> 3) & 7))
1333 return pc;
1334
1335 offset = 5;
1336 }
1337
1338 /* Rigister can't be %esp nor %ebp. */
1339 if (reg == 4 || reg == 5)
1340 return pc;
1341
1342 /* The next instruction has to be "andl $-XXX, %esp". */
1343 if (buf[offset + 1] != 0xe4
1344 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1345 return pc;
1346
1347 offset_and = offset;
1348 offset += buf[offset] == 0x81 ? 6 : 3;
1349
1350 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1351 0xfc. REG must be binary 110 and MOD must be binary 01. */
1352 if (buf[offset] != 0xff
1353 || buf[offset + 2] != 0xfc
1354 || (buf[offset + 1] & 0xf8) != 0x70)
1355 return pc;
1356
1357 /* R/M has register. Registers in leal and pushl have to be the
1358 same. */
1359 if (reg != (buf[offset + 1] & 7))
1360 return pc;
1361
1362 if (current_pc > pc + offset_and)
1363 cache->saved_sp_reg = regnums[reg];
1364
1365 return std::min (pc + offset + 3, current_pc);
1366 }
1367
1368 /* Maximum instruction length we need to handle. */
1369 #define I386_MAX_MATCHED_INSN_LEN 6
1370
1371 /* Instruction description. */
1372 struct i386_insn
1373 {
1374 size_t len;
1375 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1376 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1377 };
1378
1379 /* Return whether instruction at PC matches PATTERN. */
1380
1381 static int
1382 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1383 {
1384 gdb_byte op;
1385
1386 if (target_read_code (pc, &op, 1))
1387 return 0;
1388
1389 if ((op & pattern.mask[0]) == pattern.insn[0])
1390 {
1391 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1392 int insn_matched = 1;
1393 size_t i;
1394
1395 gdb_assert (pattern.len > 1);
1396 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1397
1398 if (target_read_code (pc + 1, buf, pattern.len - 1))
1399 return 0;
1400
1401 for (i = 1; i < pattern.len; i++)
1402 {
1403 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1404 insn_matched = 0;
1405 }
1406 return insn_matched;
1407 }
1408 return 0;
1409 }
1410
1411 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1412 the first instruction description that matches. Otherwise, return
1413 NULL. */
1414
1415 static struct i386_insn *
1416 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1417 {
1418 struct i386_insn *pattern;
1419
1420 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1421 {
1422 if (i386_match_pattern (pc, *pattern))
1423 return pattern;
1424 }
1425
1426 return NULL;
1427 }
1428
1429 /* Return whether PC points inside a sequence of instructions that
1430 matches INSN_PATTERNS. */
1431
1432 static int
1433 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1434 {
1435 CORE_ADDR current_pc;
1436 int ix, i;
1437 struct i386_insn *insn;
1438
1439 insn = i386_match_insn (pc, insn_patterns);
1440 if (insn == NULL)
1441 return 0;
1442
1443 current_pc = pc;
1444 ix = insn - insn_patterns;
1445 for (i = ix - 1; i >= 0; i--)
1446 {
1447 current_pc -= insn_patterns[i].len;
1448
1449 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1450 return 0;
1451 }
1452
1453 current_pc = pc + insn->len;
1454 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1455 {
1456 if (!i386_match_pattern (current_pc, *insn))
1457 return 0;
1458
1459 current_pc += insn->len;
1460 }
1461
1462 return 1;
1463 }
1464
1465 /* Some special instructions that might be migrated by GCC into the
1466 part of the prologue that sets up the new stack frame. Because the
1467 stack frame hasn't been setup yet, no registers have been saved
1468 yet, and only the scratch registers %eax, %ecx and %edx can be
1469 touched. */
1470
1471 static i386_insn i386_frame_setup_skip_insns[] =
1472 {
1473 /* Check for `movb imm8, r' and `movl imm32, r'.
1474
1475 ??? Should we handle 16-bit operand-sizes here? */
1476
1477 /* `movb imm8, %al' and `movb imm8, %ah' */
1478 /* `movb imm8, %cl' and `movb imm8, %ch' */
1479 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1480 /* `movb imm8, %dl' and `movb imm8, %dh' */
1481 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1482 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1483 { 5, { 0xb8 }, { 0xfe } },
1484 /* `movl imm32, %edx' */
1485 { 5, { 0xba }, { 0xff } },
1486
1487 /* Check for `mov imm32, r32'. Note that there is an alternative
1488 encoding for `mov m32, %eax'.
1489
1490 ??? Should we handle SIB addressing here?
1491 ??? Should we handle 16-bit operand-sizes here? */
1492
1493 /* `movl m32, %eax' */
1494 { 5, { 0xa1 }, { 0xff } },
1495 /* `movl m32, %eax' and `mov; m32, %ecx' */
1496 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1497 /* `movl m32, %edx' */
1498 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1499
1500 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1501 Because of the symmetry, there are actually two ways to encode
1502 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1503 opcode bytes 0x31 and 0x33 for `xorl'. */
1504
1505 /* `subl %eax, %eax' */
1506 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1507 /* `subl %ecx, %ecx' */
1508 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1509 /* `subl %edx, %edx' */
1510 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1511 /* `xorl %eax, %eax' */
1512 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1513 /* `xorl %ecx, %ecx' */
1514 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1515 /* `xorl %edx, %edx' */
1516 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1517 { 0 }
1518 };
1519
1520 /* Check whether PC points to an endbr32 instruction. */
1521 static CORE_ADDR
1522 i386_skip_endbr (CORE_ADDR pc)
1523 {
1524 static const gdb_byte endbr32[] = { 0xf3, 0x0f, 0x1e, 0xfb };
1525
1526 gdb_byte buf[sizeof (endbr32)];
1527
1528 /* Stop there if we can't read the code */
1529 if (target_read_code (pc, buf, sizeof (endbr32)))
1530 return pc;
1531
1532 /* If the instruction isn't an endbr32, stop */
1533 if (memcmp (buf, endbr32, sizeof (endbr32)) != 0)
1534 return pc;
1535
1536 return pc + sizeof (endbr32);
1537 }
1538
1539 /* Check whether PC points to a no-op instruction. */
1540 static CORE_ADDR
1541 i386_skip_noop (CORE_ADDR pc)
1542 {
1543 gdb_byte op;
1544 int check = 1;
1545
1546 if (target_read_code (pc, &op, 1))
1547 return pc;
1548
1549 while (check)
1550 {
1551 check = 0;
1552 /* Ignore `nop' instruction. */
1553 if (op == 0x90)
1554 {
1555 pc += 1;
1556 if (target_read_code (pc, &op, 1))
1557 return pc;
1558 check = 1;
1559 }
1560 /* Ignore no-op instruction `mov %edi, %edi'.
1561 Microsoft system dlls often start with
1562 a `mov %edi,%edi' instruction.
1563 The 5 bytes before the function start are
1564 filled with `nop' instructions.
1565 This pattern can be used for hot-patching:
1566 The `mov %edi, %edi' instruction can be replaced by a
1567 near jump to the location of the 5 `nop' instructions
1568 which can be replaced by a 32-bit jump to anywhere
1569 in the 32-bit address space. */
1570
1571 else if (op == 0x8b)
1572 {
1573 if (target_read_code (pc + 1, &op, 1))
1574 return pc;
1575
1576 if (op == 0xff)
1577 {
1578 pc += 2;
1579 if (target_read_code (pc, &op, 1))
1580 return pc;
1581
1582 check = 1;
1583 }
1584 }
1585 }
1586 return pc;
1587 }
1588
1589 /* Check whether PC points at a code that sets up a new stack frame.
1590 If so, it updates CACHE and returns the address of the first
1591 instruction after the sequence that sets up the frame or LIMIT,
1592 whichever is smaller. If we don't recognize the code, return PC. */
1593
1594 static CORE_ADDR
1595 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1596 CORE_ADDR pc, CORE_ADDR limit,
1597 struct i386_frame_cache *cache)
1598 {
1599 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1600 struct i386_insn *insn;
1601 gdb_byte op;
1602 int skip = 0;
1603
1604 if (limit <= pc)
1605 return limit;
1606
1607 if (target_read_code (pc, &op, 1))
1608 return pc;
1609
1610 if (op == 0x55) /* pushl %ebp */
1611 {
1612 /* Take into account that we've executed the `pushl %ebp' that
1613 starts this instruction sequence. */
1614 cache->saved_regs[I386_EBP_REGNUM] = 0;
1615 cache->sp_offset += 4;
1616 pc++;
1617
1618 /* If that's all, return now. */
1619 if (limit <= pc)
1620 return limit;
1621
1622 /* Check for some special instructions that might be migrated by
1623 GCC into the prologue and skip them. At this point in the
1624 prologue, code should only touch the scratch registers %eax,
1625 %ecx and %edx, so while the number of possibilities is sheer,
1626 it is limited.
1627
1628 Make sure we only skip these instructions if we later see the
1629 `movl %esp, %ebp' that actually sets up the frame. */
1630 while (pc + skip < limit)
1631 {
1632 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1633 if (insn == NULL)
1634 break;
1635
1636 skip += insn->len;
1637 }
1638
1639 /* If that's all, return now. */
1640 if (limit <= pc + skip)
1641 return limit;
1642
1643 if (target_read_code (pc + skip, &op, 1))
1644 return pc + skip;
1645
1646 /* The i386 prologue looks like
1647
1648 push %ebp
1649 mov %esp,%ebp
1650 sub $0x10,%esp
1651
1652 and a different prologue can be generated for atom.
1653
1654 push %ebp
1655 lea (%esp),%ebp
1656 lea -0x10(%esp),%esp
1657
1658 We handle both of them here. */
1659
1660 switch (op)
1661 {
1662 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1663 case 0x8b:
1664 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1665 != 0xec)
1666 return pc;
1667 pc += (skip + 2);
1668 break;
1669 case 0x89:
1670 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1671 != 0xe5)
1672 return pc;
1673 pc += (skip + 2);
1674 break;
1675 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1676 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1677 != 0x242c)
1678 return pc;
1679 pc += (skip + 3);
1680 break;
1681 default:
1682 return pc;
1683 }
1684
1685 /* OK, we actually have a frame. We just don't know how large
1686 it is yet. Set its size to zero. We'll adjust it if
1687 necessary. We also now commit to skipping the special
1688 instructions mentioned before. */
1689 cache->locals = 0;
1690
1691 /* If that's all, return now. */
1692 if (limit <= pc)
1693 return limit;
1694
1695 /* Check for stack adjustment
1696
1697 subl $XXX, %esp
1698 or
1699 lea -XXX(%esp),%esp
1700
1701 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1702 reg, so we don't have to worry about a data16 prefix. */
1703 if (target_read_code (pc, &op, 1))
1704 return pc;
1705 if (op == 0x83)
1706 {
1707 /* `subl' with 8-bit immediate. */
1708 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1709 /* Some instruction starting with 0x83 other than `subl'. */
1710 return pc;
1711
1712 /* `subl' with signed 8-bit immediate (though it wouldn't
1713 make sense to be negative). */
1714 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1715 return pc + 3;
1716 }
1717 else if (op == 0x81)
1718 {
1719 /* Maybe it is `subl' with a 32-bit immediate. */
1720 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1721 /* Some instruction starting with 0x81 other than `subl'. */
1722 return pc;
1723
1724 /* It is `subl' with a 32-bit immediate. */
1725 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1726 return pc + 6;
1727 }
1728 else if (op == 0x8d)
1729 {
1730 /* The ModR/M byte is 0x64. */
1731 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1732 return pc;
1733 /* 'lea' with 8-bit displacement. */
1734 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1735 return pc + 4;
1736 }
1737 else
1738 {
1739 /* Some instruction other than `subl' nor 'lea'. */
1740 return pc;
1741 }
1742 }
1743 else if (op == 0xc8) /* enter */
1744 {
1745 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1746 return pc + 4;
1747 }
1748
1749 return pc;
1750 }
1751
1752 /* Check whether PC points at code that saves registers on the stack.
1753 If so, it updates CACHE and returns the address of the first
1754 instruction after the register saves or CURRENT_PC, whichever is
1755 smaller. Otherwise, return PC. */
1756
1757 static CORE_ADDR
1758 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1759 struct i386_frame_cache *cache)
1760 {
1761 CORE_ADDR offset = 0;
1762 gdb_byte op;
1763 int i;
1764
1765 if (cache->locals > 0)
1766 offset -= cache->locals;
1767 for (i = 0; i < 8 && pc < current_pc; i++)
1768 {
1769 if (target_read_code (pc, &op, 1))
1770 return pc;
1771 if (op < 0x50 || op > 0x57)
1772 break;
1773
1774 offset -= 4;
1775 cache->saved_regs[op - 0x50] = offset;
1776 cache->sp_offset += 4;
1777 pc++;
1778 }
1779
1780 return pc;
1781 }
1782
1783 /* Do a full analysis of the prologue at PC and update CACHE
1784 accordingly. Bail out early if CURRENT_PC is reached. Return the
1785 address where the analysis stopped.
1786
1787 We handle these cases:
1788
1789 The startup sequence can be at the start of the function, or the
1790 function can start with a branch to startup code at the end.
1791
1792 %ebp can be set up with either the 'enter' instruction, or "pushl
1793 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1794 once used in the System V compiler).
1795
1796 Local space is allocated just below the saved %ebp by either the
1797 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1798 16-bit unsigned argument for space to allocate, and the 'addl'
1799 instruction could have either a signed byte, or 32-bit immediate.
1800
1801 Next, the registers used by this function are pushed. With the
1802 System V compiler they will always be in the order: %edi, %esi,
1803 %ebx (and sometimes a harmless bug causes it to also save but not
1804 restore %eax); however, the code below is willing to see the pushes
1805 in any order, and will handle up to 8 of them.
1806
1807 If the setup sequence is at the end of the function, then the next
1808 instruction will be a branch back to the start. */
1809
1810 static CORE_ADDR
1811 i386_analyze_prologue (struct gdbarch *gdbarch,
1812 CORE_ADDR pc, CORE_ADDR current_pc,
1813 struct i386_frame_cache *cache)
1814 {
1815 pc = i386_skip_endbr (pc);
1816 pc = i386_skip_noop (pc);
1817 pc = i386_follow_jump (gdbarch, pc);
1818 pc = i386_analyze_struct_return (pc, current_pc, cache);
1819 pc = i386_skip_probe (pc);
1820 pc = i386_analyze_stack_align (pc, current_pc, cache);
1821 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1822 return i386_analyze_register_saves (pc, current_pc, cache);
1823 }
1824
1825 /* Return PC of first real instruction. */
1826
1827 static CORE_ADDR
1828 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1829 {
1830 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1831
1832 static gdb_byte pic_pat[6] =
1833 {
1834 0xe8, 0, 0, 0, 0, /* call 0x0 */
1835 0x5b, /* popl %ebx */
1836 };
1837 struct i386_frame_cache cache;
1838 CORE_ADDR pc;
1839 gdb_byte op;
1840 int i;
1841 CORE_ADDR func_addr;
1842
1843 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1844 {
1845 CORE_ADDR post_prologue_pc
1846 = skip_prologue_using_sal (gdbarch, func_addr);
1847 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1848
1849 /* LLVM backend (Clang/Flang) always emits a line note before the
1850 prologue and another one after. We trust clang and newer Intel
1851 compilers to emit usable line notes. */
1852 if (post_prologue_pc
1853 && (cust != NULL
1854 && COMPUNIT_PRODUCER (cust) != NULL
1855 && (producer_is_llvm (COMPUNIT_PRODUCER (cust))
1856 || producer_is_icc_ge_19 (COMPUNIT_PRODUCER (cust)))))
1857 return std::max (start_pc, post_prologue_pc);
1858 }
1859
1860 cache.locals = -1;
1861 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1862 if (cache.locals < 0)
1863 return start_pc;
1864
1865 /* Found valid frame setup. */
1866
1867 /* The native cc on SVR4 in -K PIC mode inserts the following code
1868 to get the address of the global offset table (GOT) into register
1869 %ebx:
1870
1871 call 0x0
1872 popl %ebx
1873 movl %ebx,x(%ebp) (optional)
1874 addl y,%ebx
1875
1876 This code is with the rest of the prologue (at the end of the
1877 function), so we have to skip it to get to the first real
1878 instruction at the start of the function. */
1879
1880 for (i = 0; i < 6; i++)
1881 {
1882 if (target_read_code (pc + i, &op, 1))
1883 return pc;
1884
1885 if (pic_pat[i] != op)
1886 break;
1887 }
1888 if (i == 6)
1889 {
1890 int delta = 6;
1891
1892 if (target_read_code (pc + delta, &op, 1))
1893 return pc;
1894
1895 if (op == 0x89) /* movl %ebx, x(%ebp) */
1896 {
1897 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1898
1899 if (op == 0x5d) /* One byte offset from %ebp. */
1900 delta += 3;
1901 else if (op == 0x9d) /* Four byte offset from %ebp. */
1902 delta += 6;
1903 else /* Unexpected instruction. */
1904 delta = 0;
1905
1906 if (target_read_code (pc + delta, &op, 1))
1907 return pc;
1908 }
1909
1910 /* addl y,%ebx */
1911 if (delta > 0 && op == 0x81
1912 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1913 == 0xc3)
1914 {
1915 pc += delta + 6;
1916 }
1917 }
1918
1919 /* If the function starts with a branch (to startup code at the end)
1920 the last instruction should bring us back to the first
1921 instruction of the real code. */
1922 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1923 pc = i386_follow_jump (gdbarch, pc);
1924
1925 return pc;
1926 }
1927
1928 /* Check that the code pointed to by PC corresponds to a call to
1929 __main, skip it if so. Return PC otherwise. */
1930
1931 CORE_ADDR
1932 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1933 {
1934 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1935 gdb_byte op;
1936
1937 if (target_read_code (pc, &op, 1))
1938 return pc;
1939 if (op == 0xe8)
1940 {
1941 gdb_byte buf[4];
1942
1943 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1944 {
1945 /* Make sure address is computed correctly as a 32bit
1946 integer even if CORE_ADDR is 64 bit wide. */
1947 struct bound_minimal_symbol s;
1948 CORE_ADDR call_dest;
1949
1950 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1951 call_dest = call_dest & 0xffffffffU;
1952 s = lookup_minimal_symbol_by_pc (call_dest);
1953 if (s.minsym != NULL
1954 && s.minsym->linkage_name () != NULL
1955 && strcmp (s.minsym->linkage_name (), "__main") == 0)
1956 pc += 5;
1957 }
1958 }
1959
1960 return pc;
1961 }
1962
1963 /* This function is 64-bit safe. */
1964
1965 static CORE_ADDR
1966 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1967 {
1968 gdb_byte buf[8];
1969
1970 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1971 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1972 }
1973 \f
1974
1975 /* Normal frames. */
1976
1977 static void
1978 i386_frame_cache_1 (struct frame_info *this_frame,
1979 struct i386_frame_cache *cache)
1980 {
1981 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1982 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1983 gdb_byte buf[4];
1984 int i;
1985
1986 cache->pc = get_frame_func (this_frame);
1987
1988 /* In principle, for normal frames, %ebp holds the frame pointer,
1989 which holds the base address for the current stack frame.
1990 However, for functions that don't need it, the frame pointer is
1991 optional. For these "frameless" functions the frame pointer is
1992 actually the frame pointer of the calling frame. Signal
1993 trampolines are just a special case of a "frameless" function.
1994 They (usually) share their frame pointer with the frame that was
1995 in progress when the signal occurred. */
1996
1997 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1998 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1999 if (cache->base == 0)
2000 {
2001 cache->base_p = 1;
2002 return;
2003 }
2004
2005 /* For normal frames, %eip is stored at 4(%ebp). */
2006 cache->saved_regs[I386_EIP_REGNUM] = 4;
2007
2008 if (cache->pc != 0)
2009 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2010 cache);
2011
2012 if (cache->locals < 0)
2013 {
2014 /* We didn't find a valid frame, which means that CACHE->base
2015 currently holds the frame pointer for our calling frame. If
2016 we're at the start of a function, or somewhere half-way its
2017 prologue, the function's frame probably hasn't been fully
2018 setup yet. Try to reconstruct the base address for the stack
2019 frame by looking at the stack pointer. For truly "frameless"
2020 functions this might work too. */
2021
2022 if (cache->saved_sp_reg != -1)
2023 {
2024 /* Saved stack pointer has been saved. */
2025 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2026 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2027
2028 /* We're halfway aligning the stack. */
2029 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2030 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2031
2032 /* This will be added back below. */
2033 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2034 }
2035 else if (cache->pc != 0
2036 || target_read_code (get_frame_pc (this_frame), buf, 1))
2037 {
2038 /* We're in a known function, but did not find a frame
2039 setup. Assume that the function does not use %ebp.
2040 Alternatively, we may have jumped to an invalid
2041 address; in that case there is definitely no new
2042 frame in %ebp. */
2043 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2044 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2045 + cache->sp_offset;
2046 }
2047 else
2048 /* We're in an unknown function. We could not find the start
2049 of the function to analyze the prologue; our best option is
2050 to assume a typical frame layout with the caller's %ebp
2051 saved. */
2052 cache->saved_regs[I386_EBP_REGNUM] = 0;
2053 }
2054
2055 if (cache->saved_sp_reg != -1)
2056 {
2057 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2058 register may be unavailable). */
2059 if (cache->saved_sp == 0
2060 && deprecated_frame_register_read (this_frame,
2061 cache->saved_sp_reg, buf))
2062 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2063 }
2064 /* Now that we have the base address for the stack frame we can
2065 calculate the value of %esp in the calling frame. */
2066 else if (cache->saved_sp == 0)
2067 cache->saved_sp = cache->base + 8;
2068
2069 /* Adjust all the saved registers such that they contain addresses
2070 instead of offsets. */
2071 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2072 if (cache->saved_regs[i] != -1)
2073 cache->saved_regs[i] += cache->base;
2074
2075 cache->base_p = 1;
2076 }
2077
2078 static struct i386_frame_cache *
2079 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2080 {
2081 struct i386_frame_cache *cache;
2082
2083 if (*this_cache)
2084 return (struct i386_frame_cache *) *this_cache;
2085
2086 cache = i386_alloc_frame_cache ();
2087 *this_cache = cache;
2088
2089 try
2090 {
2091 i386_frame_cache_1 (this_frame, cache);
2092 }
2093 catch (const gdb_exception_error &ex)
2094 {
2095 if (ex.error != NOT_AVAILABLE_ERROR)
2096 throw;
2097 }
2098
2099 return cache;
2100 }
2101
2102 static void
2103 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2104 struct frame_id *this_id)
2105 {
2106 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2107
2108 if (!cache->base_p)
2109 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2110 else if (cache->base == 0)
2111 {
2112 /* This marks the outermost frame. */
2113 }
2114 else
2115 {
2116 /* See the end of i386_push_dummy_call. */
2117 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2118 }
2119 }
2120
2121 static enum unwind_stop_reason
2122 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2123 void **this_cache)
2124 {
2125 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2126
2127 if (!cache->base_p)
2128 return UNWIND_UNAVAILABLE;
2129
2130 /* This marks the outermost frame. */
2131 if (cache->base == 0)
2132 return UNWIND_OUTERMOST;
2133
2134 return UNWIND_NO_REASON;
2135 }
2136
2137 static struct value *
2138 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2139 int regnum)
2140 {
2141 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2142
2143 gdb_assert (regnum >= 0);
2144
2145 /* The System V ABI says that:
2146
2147 "The flags register contains the system flags, such as the
2148 direction flag and the carry flag. The direction flag must be
2149 set to the forward (that is, zero) direction before entry and
2150 upon exit from a function. Other user flags have no specified
2151 role in the standard calling sequence and are not preserved."
2152
2153 To guarantee the "upon exit" part of that statement we fake a
2154 saved flags register that has its direction flag cleared.
2155
2156 Note that GCC doesn't seem to rely on the fact that the direction
2157 flag is cleared after a function return; it always explicitly
2158 clears the flag before operations where it matters.
2159
2160 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2161 right thing to do. The way we fake the flags register here makes
2162 it impossible to change it. */
2163
2164 if (regnum == I386_EFLAGS_REGNUM)
2165 {
2166 ULONGEST val;
2167
2168 val = get_frame_register_unsigned (this_frame, regnum);
2169 val &= ~(1 << 10);
2170 return frame_unwind_got_constant (this_frame, regnum, val);
2171 }
2172
2173 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2174 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2175
2176 if (regnum == I386_ESP_REGNUM
2177 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2178 {
2179 /* If the SP has been saved, but we don't know where, then this
2180 means that SAVED_SP_REG register was found unavailable back
2181 when we built the cache. */
2182 if (cache->saved_sp == 0)
2183 return frame_unwind_got_register (this_frame, regnum,
2184 cache->saved_sp_reg);
2185 else
2186 return frame_unwind_got_constant (this_frame, regnum,
2187 cache->saved_sp);
2188 }
2189
2190 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2191 return frame_unwind_got_memory (this_frame, regnum,
2192 cache->saved_regs[regnum]);
2193
2194 return frame_unwind_got_register (this_frame, regnum, regnum);
2195 }
2196
2197 static const struct frame_unwind i386_frame_unwind =
2198 {
2199 NORMAL_FRAME,
2200 i386_frame_unwind_stop_reason,
2201 i386_frame_this_id,
2202 i386_frame_prev_register,
2203 NULL,
2204 default_frame_sniffer
2205 };
2206
2207 /* Normal frames, but in a function epilogue. */
2208
2209 /* Implement the stack_frame_destroyed_p gdbarch method.
2210
2211 The epilogue is defined here as the 'ret' instruction, which will
2212 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2213 the function's stack frame. */
2214
2215 static int
2216 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2217 {
2218 gdb_byte insn;
2219 struct compunit_symtab *cust;
2220
2221 cust = find_pc_compunit_symtab (pc);
2222 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2223 return 0;
2224
2225 if (target_read_memory (pc, &insn, 1))
2226 return 0; /* Can't read memory at pc. */
2227
2228 if (insn != 0xc3) /* 'ret' instruction. */
2229 return 0;
2230
2231 return 1;
2232 }
2233
2234 static int
2235 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2236 struct frame_info *this_frame,
2237 void **this_prologue_cache)
2238 {
2239 if (frame_relative_level (this_frame) == 0)
2240 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2241 get_frame_pc (this_frame));
2242 else
2243 return 0;
2244 }
2245
2246 static struct i386_frame_cache *
2247 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2248 {
2249 struct i386_frame_cache *cache;
2250 CORE_ADDR sp;
2251
2252 if (*this_cache)
2253 return (struct i386_frame_cache *) *this_cache;
2254
2255 cache = i386_alloc_frame_cache ();
2256 *this_cache = cache;
2257
2258 try
2259 {
2260 cache->pc = get_frame_func (this_frame);
2261
2262 /* At this point the stack looks as if we just entered the
2263 function, with the return address at the top of the
2264 stack. */
2265 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2266 cache->base = sp + cache->sp_offset;
2267 cache->saved_sp = cache->base + 8;
2268 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2269
2270 cache->base_p = 1;
2271 }
2272 catch (const gdb_exception_error &ex)
2273 {
2274 if (ex.error != NOT_AVAILABLE_ERROR)
2275 throw;
2276 }
2277
2278 return cache;
2279 }
2280
2281 static enum unwind_stop_reason
2282 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2283 void **this_cache)
2284 {
2285 struct i386_frame_cache *cache =
2286 i386_epilogue_frame_cache (this_frame, this_cache);
2287
2288 if (!cache->base_p)
2289 return UNWIND_UNAVAILABLE;
2290
2291 return UNWIND_NO_REASON;
2292 }
2293
2294 static void
2295 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2296 void **this_cache,
2297 struct frame_id *this_id)
2298 {
2299 struct i386_frame_cache *cache =
2300 i386_epilogue_frame_cache (this_frame, this_cache);
2301
2302 if (!cache->base_p)
2303 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2304 else
2305 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2306 }
2307
2308 static struct value *
2309 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2310 void **this_cache, int regnum)
2311 {
2312 /* Make sure we've initialized the cache. */
2313 i386_epilogue_frame_cache (this_frame, this_cache);
2314
2315 return i386_frame_prev_register (this_frame, this_cache, regnum);
2316 }
2317
2318 static const struct frame_unwind i386_epilogue_frame_unwind =
2319 {
2320 NORMAL_FRAME,
2321 i386_epilogue_frame_unwind_stop_reason,
2322 i386_epilogue_frame_this_id,
2323 i386_epilogue_frame_prev_register,
2324 NULL,
2325 i386_epilogue_frame_sniffer
2326 };
2327 \f
2328
2329 /* Stack-based trampolines. */
2330
2331 /* These trampolines are used on cross x86 targets, when taking the
2332 address of a nested function. When executing these trampolines,
2333 no stack frame is set up, so we are in a similar situation as in
2334 epilogues and i386_epilogue_frame_this_id can be re-used. */
2335
2336 /* Static chain passed in register. */
2337
2338 static i386_insn i386_tramp_chain_in_reg_insns[] =
2339 {
2340 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2341 { 5, { 0xb8 }, { 0xfe } },
2342
2343 /* `jmp imm32' */
2344 { 5, { 0xe9 }, { 0xff } },
2345
2346 {0}
2347 };
2348
2349 /* Static chain passed on stack (when regparm=3). */
2350
2351 static i386_insn i386_tramp_chain_on_stack_insns[] =
2352 {
2353 /* `push imm32' */
2354 { 5, { 0x68 }, { 0xff } },
2355
2356 /* `jmp imm32' */
2357 { 5, { 0xe9 }, { 0xff } },
2358
2359 {0}
2360 };
2361
2362 /* Return whether PC points inside a stack trampoline. */
2363
2364 static int
2365 i386_in_stack_tramp_p (CORE_ADDR pc)
2366 {
2367 gdb_byte insn;
2368 const char *name;
2369
2370 /* A stack trampoline is detected if no name is associated
2371 to the current pc and if it points inside a trampoline
2372 sequence. */
2373
2374 find_pc_partial_function (pc, &name, NULL, NULL);
2375 if (name)
2376 return 0;
2377
2378 if (target_read_memory (pc, &insn, 1))
2379 return 0;
2380
2381 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2382 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2383 return 0;
2384
2385 return 1;
2386 }
2387
2388 static int
2389 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2390 struct frame_info *this_frame,
2391 void **this_cache)
2392 {
2393 if (frame_relative_level (this_frame) == 0)
2394 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2395 else
2396 return 0;
2397 }
2398
2399 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2400 {
2401 NORMAL_FRAME,
2402 i386_epilogue_frame_unwind_stop_reason,
2403 i386_epilogue_frame_this_id,
2404 i386_epilogue_frame_prev_register,
2405 NULL,
2406 i386_stack_tramp_frame_sniffer
2407 };
2408 \f
2409 /* Generate a bytecode expression to get the value of the saved PC. */
2410
2411 static void
2412 i386_gen_return_address (struct gdbarch *gdbarch,
2413 struct agent_expr *ax, struct axs_value *value,
2414 CORE_ADDR scope)
2415 {
2416 /* The following sequence assumes the traditional use of the base
2417 register. */
2418 ax_reg (ax, I386_EBP_REGNUM);
2419 ax_const_l (ax, 4);
2420 ax_simple (ax, aop_add);
2421 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2422 value->kind = axs_lvalue_memory;
2423 }
2424 \f
2425
2426 /* Signal trampolines. */
2427
2428 static struct i386_frame_cache *
2429 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2430 {
2431 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2432 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2433 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2434 struct i386_frame_cache *cache;
2435 CORE_ADDR addr;
2436 gdb_byte buf[4];
2437
2438 if (*this_cache)
2439 return (struct i386_frame_cache *) *this_cache;
2440
2441 cache = i386_alloc_frame_cache ();
2442
2443 try
2444 {
2445 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2446 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2447
2448 addr = tdep->sigcontext_addr (this_frame);
2449 if (tdep->sc_reg_offset)
2450 {
2451 int i;
2452
2453 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2454
2455 for (i = 0; i < tdep->sc_num_regs; i++)
2456 if (tdep->sc_reg_offset[i] != -1)
2457 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2458 }
2459 else
2460 {
2461 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2462 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2463 }
2464
2465 cache->base_p = 1;
2466 }
2467 catch (const gdb_exception_error &ex)
2468 {
2469 if (ex.error != NOT_AVAILABLE_ERROR)
2470 throw;
2471 }
2472
2473 *this_cache = cache;
2474 return cache;
2475 }
2476
2477 static enum unwind_stop_reason
2478 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2479 void **this_cache)
2480 {
2481 struct i386_frame_cache *cache =
2482 i386_sigtramp_frame_cache (this_frame, this_cache);
2483
2484 if (!cache->base_p)
2485 return UNWIND_UNAVAILABLE;
2486
2487 return UNWIND_NO_REASON;
2488 }
2489
2490 static void
2491 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2492 struct frame_id *this_id)
2493 {
2494 struct i386_frame_cache *cache =
2495 i386_sigtramp_frame_cache (this_frame, this_cache);
2496
2497 if (!cache->base_p)
2498 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2499 else
2500 {
2501 /* See the end of i386_push_dummy_call. */
2502 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2503 }
2504 }
2505
2506 static struct value *
2507 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2508 void **this_cache, int regnum)
2509 {
2510 /* Make sure we've initialized the cache. */
2511 i386_sigtramp_frame_cache (this_frame, this_cache);
2512
2513 return i386_frame_prev_register (this_frame, this_cache, regnum);
2514 }
2515
2516 static int
2517 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2518 struct frame_info *this_frame,
2519 void **this_prologue_cache)
2520 {
2521 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2522
2523 /* We shouldn't even bother if we don't have a sigcontext_addr
2524 handler. */
2525 if (tdep->sigcontext_addr == NULL)
2526 return 0;
2527
2528 if (tdep->sigtramp_p != NULL)
2529 {
2530 if (tdep->sigtramp_p (this_frame))
2531 return 1;
2532 }
2533
2534 if (tdep->sigtramp_start != 0)
2535 {
2536 CORE_ADDR pc = get_frame_pc (this_frame);
2537
2538 gdb_assert (tdep->sigtramp_end != 0);
2539 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2540 return 1;
2541 }
2542
2543 return 0;
2544 }
2545
2546 static const struct frame_unwind i386_sigtramp_frame_unwind =
2547 {
2548 SIGTRAMP_FRAME,
2549 i386_sigtramp_frame_unwind_stop_reason,
2550 i386_sigtramp_frame_this_id,
2551 i386_sigtramp_frame_prev_register,
2552 NULL,
2553 i386_sigtramp_frame_sniffer
2554 };
2555 \f
2556
2557 static CORE_ADDR
2558 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2559 {
2560 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2561
2562 return cache->base;
2563 }
2564
2565 static const struct frame_base i386_frame_base =
2566 {
2567 &i386_frame_unwind,
2568 i386_frame_base_address,
2569 i386_frame_base_address,
2570 i386_frame_base_address
2571 };
2572
2573 static struct frame_id
2574 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2575 {
2576 CORE_ADDR fp;
2577
2578 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2579
2580 /* See the end of i386_push_dummy_call. */
2581 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2582 }
2583
2584 /* _Decimal128 function return values need 16-byte alignment on the
2585 stack. */
2586
2587 static CORE_ADDR
2588 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2589 {
2590 return sp & -(CORE_ADDR)16;
2591 }
2592 \f
2593
2594 /* Figure out where the longjmp will land. Slurp the args out of the
2595 stack. We expect the first arg to be a pointer to the jmp_buf
2596 structure from which we extract the address that we will land at.
2597 This address is copied into PC. This routine returns non-zero on
2598 success. */
2599
2600 static int
2601 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2602 {
2603 gdb_byte buf[4];
2604 CORE_ADDR sp, jb_addr;
2605 struct gdbarch *gdbarch = get_frame_arch (frame);
2606 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2607 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2608
2609 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2610 longjmp will land. */
2611 if (jb_pc_offset == -1)
2612 return 0;
2613
2614 get_frame_register (frame, I386_ESP_REGNUM, buf);
2615 sp = extract_unsigned_integer (buf, 4, byte_order);
2616 if (target_read_memory (sp + 4, buf, 4))
2617 return 0;
2618
2619 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2620 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2621 return 0;
2622
2623 *pc = extract_unsigned_integer (buf, 4, byte_order);
2624 return 1;
2625 }
2626 \f
2627
2628 /* Check whether TYPE must be 16-byte-aligned when passed as a
2629 function argument. 16-byte vectors, _Decimal128 and structures or
2630 unions containing such types must be 16-byte-aligned; other
2631 arguments are 4-byte-aligned. */
2632
2633 static int
2634 i386_16_byte_align_p (struct type *type)
2635 {
2636 type = check_typedef (type);
2637 if ((type->code () == TYPE_CODE_DECFLOAT
2638 || (type->code () == TYPE_CODE_ARRAY && type->is_vector ()))
2639 && TYPE_LENGTH (type) == 16)
2640 return 1;
2641 if (type->code () == TYPE_CODE_ARRAY)
2642 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2643 if (type->code () == TYPE_CODE_STRUCT
2644 || type->code () == TYPE_CODE_UNION)
2645 {
2646 int i;
2647 for (i = 0; i < type->num_fields (); i++)
2648 {
2649 if (field_is_static (&type->field (i)))
2650 continue;
2651 if (i386_16_byte_align_p (type->field (i).type ()))
2652 return 1;
2653 }
2654 }
2655 return 0;
2656 }
2657
2658 /* Implementation for set_gdbarch_push_dummy_code. */
2659
2660 static CORE_ADDR
2661 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2662 struct value **args, int nargs, struct type *value_type,
2663 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2664 struct regcache *regcache)
2665 {
2666 /* Use 0xcc breakpoint - 1 byte. */
2667 *bp_addr = sp - 1;
2668 *real_pc = funaddr;
2669
2670 /* Keep the stack aligned. */
2671 return sp - 16;
2672 }
2673
2674 /* The "push_dummy_call" gdbarch method, optionally with the thiscall
2675 calling convention. */
2676
2677 CORE_ADDR
2678 i386_thiscall_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2679 struct regcache *regcache, CORE_ADDR bp_addr,
2680 int nargs, struct value **args, CORE_ADDR sp,
2681 function_call_return_method return_method,
2682 CORE_ADDR struct_addr, bool thiscall)
2683 {
2684 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2685 gdb_byte buf[4];
2686 int i;
2687 int write_pass;
2688 int args_space = 0;
2689
2690 /* BND registers can be in arbitrary values at the moment of the
2691 inferior call. This can cause boundary violations that are not
2692 due to a real bug or even desired by the user. The best to be done
2693 is set the BND registers to allow access to the whole memory, INIT
2694 state, before pushing the inferior call. */
2695 i387_reset_bnd_regs (gdbarch, regcache);
2696
2697 /* Determine the total space required for arguments and struct
2698 return address in a first pass (allowing for 16-byte-aligned
2699 arguments), then push arguments in a second pass. */
2700
2701 for (write_pass = 0; write_pass < 2; write_pass++)
2702 {
2703 int args_space_used = 0;
2704
2705 if (return_method == return_method_struct)
2706 {
2707 if (write_pass)
2708 {
2709 /* Push value address. */
2710 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2711 write_memory (sp, buf, 4);
2712 args_space_used += 4;
2713 }
2714 else
2715 args_space += 4;
2716 }
2717
2718 for (i = thiscall ? 1 : 0; i < nargs; i++)
2719 {
2720 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2721
2722 if (write_pass)
2723 {
2724 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2725 args_space_used = align_up (args_space_used, 16);
2726
2727 write_memory (sp + args_space_used,
2728 value_contents_all (args[i]), len);
2729 /* The System V ABI says that:
2730
2731 "An argument's size is increased, if necessary, to make it a
2732 multiple of [32-bit] words. This may require tail padding,
2733 depending on the size of the argument."
2734
2735 This makes sure the stack stays word-aligned. */
2736 args_space_used += align_up (len, 4);
2737 }
2738 else
2739 {
2740 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2741 args_space = align_up (args_space, 16);
2742 args_space += align_up (len, 4);
2743 }
2744 }
2745
2746 if (!write_pass)
2747 {
2748 sp -= args_space;
2749
2750 /* The original System V ABI only requires word alignment,
2751 but modern incarnations need 16-byte alignment in order
2752 to support SSE. Since wasting a few bytes here isn't
2753 harmful we unconditionally enforce 16-byte alignment. */
2754 sp &= ~0xf;
2755 }
2756 }
2757
2758 /* Store return address. */
2759 sp -= 4;
2760 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2761 write_memory (sp, buf, 4);
2762
2763 /* Finally, update the stack pointer... */
2764 store_unsigned_integer (buf, 4, byte_order, sp);
2765 regcache->cooked_write (I386_ESP_REGNUM, buf);
2766
2767 /* ...and fake a frame pointer. */
2768 regcache->cooked_write (I386_EBP_REGNUM, buf);
2769
2770 /* The 'this' pointer needs to be in ECX. */
2771 if (thiscall)
2772 regcache->cooked_write (I386_ECX_REGNUM, value_contents_all (args[0]));
2773
2774 /* MarkK wrote: This "+ 8" is all over the place:
2775 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2776 i386_dummy_id). It's there, since all frame unwinders for
2777 a given target have to agree (within a certain margin) on the
2778 definition of the stack address of a frame. Otherwise frame id
2779 comparison might not work correctly. Since DWARF2/GCC uses the
2780 stack address *before* the function call as a frame's CFA. On
2781 the i386, when %ebp is used as a frame pointer, the offset
2782 between the contents %ebp and the CFA as defined by GCC. */
2783 return sp + 8;
2784 }
2785
2786 /* Implement the "push_dummy_call" gdbarch method. */
2787
2788 static CORE_ADDR
2789 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2790 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2791 struct value **args, CORE_ADDR sp,
2792 function_call_return_method return_method,
2793 CORE_ADDR struct_addr)
2794 {
2795 return i386_thiscall_push_dummy_call (gdbarch, function, regcache, bp_addr,
2796 nargs, args, sp, return_method,
2797 struct_addr, false);
2798 }
2799
2800 /* These registers are used for returning integers (and on some
2801 targets also for returning `struct' and `union' values when their
2802 size and alignment match an integer type). */
2803 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2804 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2805
2806 /* Read, for architecture GDBARCH, a function return value of TYPE
2807 from REGCACHE, and copy that into VALBUF. */
2808
2809 static void
2810 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2811 struct regcache *regcache, gdb_byte *valbuf)
2812 {
2813 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2814 int len = TYPE_LENGTH (type);
2815 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2816
2817 if (type->code () == TYPE_CODE_FLT)
2818 {
2819 if (tdep->st0_regnum < 0)
2820 {
2821 warning (_("Cannot find floating-point return value."));
2822 memset (valbuf, 0, len);
2823 return;
2824 }
2825
2826 /* Floating-point return values can be found in %st(0). Convert
2827 its contents to the desired type. This is probably not
2828 exactly how it would happen on the target itself, but it is
2829 the best we can do. */
2830 regcache->raw_read (I386_ST0_REGNUM, buf);
2831 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
2832 }
2833 else
2834 {
2835 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2836 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2837
2838 if (len <= low_size)
2839 {
2840 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2841 memcpy (valbuf, buf, len);
2842 }
2843 else if (len <= (low_size + high_size))
2844 {
2845 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2846 memcpy (valbuf, buf, low_size);
2847 regcache->raw_read (HIGH_RETURN_REGNUM, buf);
2848 memcpy (valbuf + low_size, buf, len - low_size);
2849 }
2850 else
2851 internal_error (__FILE__, __LINE__,
2852 _("Cannot extract return value of %d bytes long."),
2853 len);
2854 }
2855 }
2856
2857 /* Write, for architecture GDBARCH, a function return value of TYPE
2858 from VALBUF into REGCACHE. */
2859
2860 static void
2861 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2862 struct regcache *regcache, const gdb_byte *valbuf)
2863 {
2864 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2865 int len = TYPE_LENGTH (type);
2866
2867 if (type->code () == TYPE_CODE_FLT)
2868 {
2869 ULONGEST fstat;
2870 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2871
2872 if (tdep->st0_regnum < 0)
2873 {
2874 warning (_("Cannot set floating-point return value."));
2875 return;
2876 }
2877
2878 /* Returning floating-point values is a bit tricky. Apart from
2879 storing the return value in %st(0), we have to simulate the
2880 state of the FPU at function return point. */
2881
2882 /* Convert the value found in VALBUF to the extended
2883 floating-point format used by the FPU. This is probably
2884 not exactly how it would happen on the target itself, but
2885 it is the best we can do. */
2886 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
2887 regcache->raw_write (I386_ST0_REGNUM, buf);
2888
2889 /* Set the top of the floating-point register stack to 7. The
2890 actual value doesn't really matter, but 7 is what a normal
2891 function return would end up with if the program started out
2892 with a freshly initialized FPU. */
2893 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2894 fstat |= (7 << 11);
2895 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2896
2897 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2898 the floating-point register stack to 7, the appropriate value
2899 for the tag word is 0x3fff. */
2900 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2901 }
2902 else
2903 {
2904 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2905 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2906
2907 if (len <= low_size)
2908 regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
2909 else if (len <= (low_size + high_size))
2910 {
2911 regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
2912 regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
2913 valbuf + low_size);
2914 }
2915 else
2916 internal_error (__FILE__, __LINE__,
2917 _("Cannot store return value of %d bytes long."), len);
2918 }
2919 }
2920 \f
2921
2922 /* This is the variable that is set with "set struct-convention", and
2923 its legitimate values. */
2924 static const char default_struct_convention[] = "default";
2925 static const char pcc_struct_convention[] = "pcc";
2926 static const char reg_struct_convention[] = "reg";
2927 static const char *const valid_conventions[] =
2928 {
2929 default_struct_convention,
2930 pcc_struct_convention,
2931 reg_struct_convention,
2932 NULL
2933 };
2934 static const char *struct_convention = default_struct_convention;
2935
2936 /* Return non-zero if TYPE, which is assumed to be a structure,
2937 a union type, or an array type, should be returned in registers
2938 for architecture GDBARCH. */
2939
2940 static int
2941 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2942 {
2943 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2944 enum type_code code = type->code ();
2945 int len = TYPE_LENGTH (type);
2946
2947 gdb_assert (code == TYPE_CODE_STRUCT
2948 || code == TYPE_CODE_UNION
2949 || code == TYPE_CODE_ARRAY);
2950
2951 if (struct_convention == pcc_struct_convention
2952 || (struct_convention == default_struct_convention
2953 && tdep->struct_return == pcc_struct_return))
2954 return 0;
2955
2956 /* Structures consisting of a single `float', `double' or 'long
2957 double' member are returned in %st(0). */
2958 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
2959 {
2960 type = check_typedef (type->field (0).type ());
2961 if (type->code () == TYPE_CODE_FLT)
2962 return (len == 4 || len == 8 || len == 12);
2963 }
2964
2965 return (len == 1 || len == 2 || len == 4 || len == 8);
2966 }
2967
2968 /* Determine, for architecture GDBARCH, how a return value of TYPE
2969 should be returned. If it is supposed to be returned in registers,
2970 and READBUF is non-zero, read the appropriate value from REGCACHE,
2971 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2972 from WRITEBUF into REGCACHE. */
2973
2974 static enum return_value_convention
2975 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2976 struct type *type, struct regcache *regcache,
2977 gdb_byte *readbuf, const gdb_byte *writebuf)
2978 {
2979 enum type_code code = type->code ();
2980
2981 if (((code == TYPE_CODE_STRUCT
2982 || code == TYPE_CODE_UNION
2983 || code == TYPE_CODE_ARRAY)
2984 && !i386_reg_struct_return_p (gdbarch, type))
2985 /* Complex double and long double uses the struct return convention. */
2986 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2987 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2988 /* 128-bit decimal float uses the struct return convention. */
2989 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2990 {
2991 /* The System V ABI says that:
2992
2993 "A function that returns a structure or union also sets %eax
2994 to the value of the original address of the caller's area
2995 before it returns. Thus when the caller receives control
2996 again, the address of the returned object resides in register
2997 %eax and can be used to access the object."
2998
2999 So the ABI guarantees that we can always find the return
3000 value just after the function has returned. */
3001
3002 /* Note that the ABI doesn't mention functions returning arrays,
3003 which is something possible in certain languages such as Ada.
3004 In this case, the value is returned as if it was wrapped in
3005 a record, so the convention applied to records also applies
3006 to arrays. */
3007
3008 if (readbuf)
3009 {
3010 ULONGEST addr;
3011
3012 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
3013 read_memory (addr, readbuf, TYPE_LENGTH (type));
3014 }
3015
3016 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
3017 }
3018
3019 /* This special case is for structures consisting of a single
3020 `float', `double' or 'long double' member. These structures are
3021 returned in %st(0). For these structures, we call ourselves
3022 recursively, changing TYPE into the type of the first member of
3023 the structure. Since that should work for all structures that
3024 have only one member, we don't bother to check the member's type
3025 here. */
3026 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
3027 {
3028 type = check_typedef (type->field (0).type ());
3029 return i386_return_value (gdbarch, function, type, regcache,
3030 readbuf, writebuf);
3031 }
3032
3033 if (readbuf)
3034 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3035 if (writebuf)
3036 i386_store_return_value (gdbarch, type, regcache, writebuf);
3037
3038 return RETURN_VALUE_REGISTER_CONVENTION;
3039 }
3040 \f
3041
3042 struct type *
3043 i387_ext_type (struct gdbarch *gdbarch)
3044 {
3045 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3046
3047 if (!tdep->i387_ext_type)
3048 {
3049 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3050 gdb_assert (tdep->i387_ext_type != NULL);
3051 }
3052
3053 return tdep->i387_ext_type;
3054 }
3055
3056 /* Construct type for pseudo BND registers. We can't use
3057 tdesc_find_type since a complement of one value has to be used
3058 to describe the upper bound. */
3059
3060 static struct type *
3061 i386_bnd_type (struct gdbarch *gdbarch)
3062 {
3063 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3064
3065
3066 if (!tdep->i386_bnd_type)
3067 {
3068 struct type *t;
3069 const struct builtin_type *bt = builtin_type (gdbarch);
3070
3071 /* The type we're building is described bellow: */
3072 #if 0
3073 struct __bound128
3074 {
3075 void *lbound;
3076 void *ubound; /* One complement of raw ubound field. */
3077 };
3078 #endif
3079
3080 t = arch_composite_type (gdbarch,
3081 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3082
3083 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3084 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3085
3086 t->set_name ("builtin_type_bound128");
3087 tdep->i386_bnd_type = t;
3088 }
3089
3090 return tdep->i386_bnd_type;
3091 }
3092
3093 /* Construct vector type for pseudo ZMM registers. We can't use
3094 tdesc_find_type since ZMM isn't described in target description. */
3095
3096 static struct type *
3097 i386_zmm_type (struct gdbarch *gdbarch)
3098 {
3099 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3100
3101 if (!tdep->i386_zmm_type)
3102 {
3103 const struct builtin_type *bt = builtin_type (gdbarch);
3104
3105 /* The type we're building is this: */
3106 #if 0
3107 union __gdb_builtin_type_vec512i
3108 {
3109 int128_t v4_int128[4];
3110 int64_t v8_int64[8];
3111 int32_t v16_int32[16];
3112 int16_t v32_int16[32];
3113 int8_t v64_int8[64];
3114 double v8_double[8];
3115 float v16_float[16];
3116 bfloat16_t v32_bfloat16[32];
3117 };
3118 #endif
3119
3120 struct type *t;
3121
3122 t = arch_composite_type (gdbarch,
3123 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3124 append_composite_type_field (t, "v32_bfloat16",
3125 init_vector_type (bt->builtin_bfloat16, 32));
3126 append_composite_type_field (t, "v16_float",
3127 init_vector_type (bt->builtin_float, 16));
3128 append_composite_type_field (t, "v8_double",
3129 init_vector_type (bt->builtin_double, 8));
3130 append_composite_type_field (t, "v64_int8",
3131 init_vector_type (bt->builtin_int8, 64));
3132 append_composite_type_field (t, "v32_int16",
3133 init_vector_type (bt->builtin_int16, 32));
3134 append_composite_type_field (t, "v16_int32",
3135 init_vector_type (bt->builtin_int32, 16));
3136 append_composite_type_field (t, "v8_int64",
3137 init_vector_type (bt->builtin_int64, 8));
3138 append_composite_type_field (t, "v4_int128",
3139 init_vector_type (bt->builtin_int128, 4));
3140
3141 t->set_is_vector (true);
3142 t->set_name ("builtin_type_vec512i");
3143 tdep->i386_zmm_type = t;
3144 }
3145
3146 return tdep->i386_zmm_type;
3147 }
3148
3149 /* Construct vector type for pseudo YMM registers. We can't use
3150 tdesc_find_type since YMM isn't described in target description. */
3151
3152 static struct type *
3153 i386_ymm_type (struct gdbarch *gdbarch)
3154 {
3155 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3156
3157 if (!tdep->i386_ymm_type)
3158 {
3159 const struct builtin_type *bt = builtin_type (gdbarch);
3160
3161 /* The type we're building is this: */
3162 #if 0
3163 union __gdb_builtin_type_vec256i
3164 {
3165 int128_t v2_int128[2];
3166 int64_t v4_int64[4];
3167 int32_t v8_int32[8];
3168 int16_t v16_int16[16];
3169 int8_t v32_int8[32];
3170 double v4_double[4];
3171 float v8_float[8];
3172 bfloat16_t v16_bfloat16[16];
3173 };
3174 #endif
3175
3176 struct type *t;
3177
3178 t = arch_composite_type (gdbarch,
3179 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3180 append_composite_type_field (t, "v16_bfloat16",
3181 init_vector_type (bt->builtin_bfloat16, 16));
3182 append_composite_type_field (t, "v8_float",
3183 init_vector_type (bt->builtin_float, 8));
3184 append_composite_type_field (t, "v4_double",
3185 init_vector_type (bt->builtin_double, 4));
3186 append_composite_type_field (t, "v32_int8",
3187 init_vector_type (bt->builtin_int8, 32));
3188 append_composite_type_field (t, "v16_int16",
3189 init_vector_type (bt->builtin_int16, 16));
3190 append_composite_type_field (t, "v8_int32",
3191 init_vector_type (bt->builtin_int32, 8));
3192 append_composite_type_field (t, "v4_int64",
3193 init_vector_type (bt->builtin_int64, 4));
3194 append_composite_type_field (t, "v2_int128",
3195 init_vector_type (bt->builtin_int128, 2));
3196
3197 t->set_is_vector (true);
3198 t->set_name ("builtin_type_vec256i");
3199 tdep->i386_ymm_type = t;
3200 }
3201
3202 return tdep->i386_ymm_type;
3203 }
3204
3205 /* Construct vector type for MMX registers. */
3206 static struct type *
3207 i386_mmx_type (struct gdbarch *gdbarch)
3208 {
3209 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3210
3211 if (!tdep->i386_mmx_type)
3212 {
3213 const struct builtin_type *bt = builtin_type (gdbarch);
3214
3215 /* The type we're building is this: */
3216 #if 0
3217 union __gdb_builtin_type_vec64i
3218 {
3219 int64_t uint64;
3220 int32_t v2_int32[2];
3221 int16_t v4_int16[4];
3222 int8_t v8_int8[8];
3223 };
3224 #endif
3225
3226 struct type *t;
3227
3228 t = arch_composite_type (gdbarch,
3229 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3230
3231 append_composite_type_field (t, "uint64", bt->builtin_int64);
3232 append_composite_type_field (t, "v2_int32",
3233 init_vector_type (bt->builtin_int32, 2));
3234 append_composite_type_field (t, "v4_int16",
3235 init_vector_type (bt->builtin_int16, 4));
3236 append_composite_type_field (t, "v8_int8",
3237 init_vector_type (bt->builtin_int8, 8));
3238
3239 t->set_is_vector (true);
3240 t->set_name ("builtin_type_vec64i");
3241 tdep->i386_mmx_type = t;
3242 }
3243
3244 return tdep->i386_mmx_type;
3245 }
3246
3247 /* Return the GDB type object for the "standard" data type of data in
3248 register REGNUM. */
3249
3250 struct type *
3251 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3252 {
3253 if (i386_bnd_regnum_p (gdbarch, regnum))
3254 return i386_bnd_type (gdbarch);
3255 if (i386_mmx_regnum_p (gdbarch, regnum))
3256 return i386_mmx_type (gdbarch);
3257 else if (i386_ymm_regnum_p (gdbarch, regnum))
3258 return i386_ymm_type (gdbarch);
3259 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3260 return i386_ymm_type (gdbarch);
3261 else if (i386_zmm_regnum_p (gdbarch, regnum))
3262 return i386_zmm_type (gdbarch);
3263 else
3264 {
3265 const struct builtin_type *bt = builtin_type (gdbarch);
3266 if (i386_byte_regnum_p (gdbarch, regnum))
3267 return bt->builtin_int8;
3268 else if (i386_word_regnum_p (gdbarch, regnum))
3269 return bt->builtin_int16;
3270 else if (i386_dword_regnum_p (gdbarch, regnum))
3271 return bt->builtin_int32;
3272 else if (i386_k_regnum_p (gdbarch, regnum))
3273 return bt->builtin_int64;
3274 }
3275
3276 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3277 }
3278
3279 /* Map a cooked register onto a raw register or memory. For the i386,
3280 the MMX registers need to be mapped onto floating point registers. */
3281
3282 static int
3283 i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
3284 {
3285 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
3286 int mmxreg, fpreg;
3287 ULONGEST fstat;
3288 int tos;
3289
3290 mmxreg = regnum - tdep->mm0_regnum;
3291 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
3292 tos = (fstat >> 11) & 0x7;
3293 fpreg = (mmxreg + tos) % 8;
3294
3295 return (I387_ST0_REGNUM (tdep) + fpreg);
3296 }
3297
3298 /* A helper function for us by i386_pseudo_register_read_value and
3299 amd64_pseudo_register_read_value. It does all the work but reads
3300 the data into an already-allocated value. */
3301
3302 void
3303 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3304 readable_regcache *regcache,
3305 int regnum,
3306 struct value *result_value)
3307 {
3308 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3309 enum register_status status;
3310 gdb_byte *buf = value_contents_raw (result_value);
3311
3312 if (i386_mmx_regnum_p (gdbarch, regnum))
3313 {
3314 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3315
3316 /* Extract (always little endian). */
3317 status = regcache->raw_read (fpnum, raw_buf);
3318 if (status != REG_VALID)
3319 mark_value_bytes_unavailable (result_value, 0,
3320 TYPE_LENGTH (value_type (result_value)));
3321 else
3322 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3323 }
3324 else
3325 {
3326 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3327 if (i386_bnd_regnum_p (gdbarch, regnum))
3328 {
3329 regnum -= tdep->bnd0_regnum;
3330
3331 /* Extract (always little endian). Read lower 128bits. */
3332 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3333 raw_buf);
3334 if (status != REG_VALID)
3335 mark_value_bytes_unavailable (result_value, 0, 16);
3336 else
3337 {
3338 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3339 LONGEST upper, lower;
3340 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3341
3342 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3343 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3344 upper = ~upper;
3345
3346 memcpy (buf, &lower, size);
3347 memcpy (buf + size, &upper, size);
3348 }
3349 }
3350 else if (i386_k_regnum_p (gdbarch, regnum))
3351 {
3352 regnum -= tdep->k0_regnum;
3353
3354 /* Extract (always little endian). */
3355 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
3356 if (status != REG_VALID)
3357 mark_value_bytes_unavailable (result_value, 0, 8);
3358 else
3359 memcpy (buf, raw_buf, 8);
3360 }
3361 else if (i386_zmm_regnum_p (gdbarch, regnum))
3362 {
3363 regnum -= tdep->zmm0_regnum;
3364
3365 if (regnum < num_lower_zmm_regs)
3366 {
3367 /* Extract (always little endian). Read lower 128bits. */
3368 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3369 raw_buf);
3370 if (status != REG_VALID)
3371 mark_value_bytes_unavailable (result_value, 0, 16);
3372 else
3373 memcpy (buf, raw_buf, 16);
3374
3375 /* Extract (always little endian). Read upper 128bits. */
3376 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3377 raw_buf);
3378 if (status != REG_VALID)
3379 mark_value_bytes_unavailable (result_value, 16, 16);
3380 else
3381 memcpy (buf + 16, raw_buf, 16);
3382 }
3383 else
3384 {
3385 /* Extract (always little endian). Read lower 128bits. */
3386 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3387 - num_lower_zmm_regs,
3388 raw_buf);
3389 if (status != REG_VALID)
3390 mark_value_bytes_unavailable (result_value, 0, 16);
3391 else
3392 memcpy (buf, raw_buf, 16);
3393
3394 /* Extract (always little endian). Read upper 128bits. */
3395 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3396 - num_lower_zmm_regs,
3397 raw_buf);
3398 if (status != REG_VALID)
3399 mark_value_bytes_unavailable (result_value, 16, 16);
3400 else
3401 memcpy (buf + 16, raw_buf, 16);
3402 }
3403
3404 /* Read upper 256bits. */
3405 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3406 raw_buf);
3407 if (status != REG_VALID)
3408 mark_value_bytes_unavailable (result_value, 32, 32);
3409 else
3410 memcpy (buf + 32, raw_buf, 32);
3411 }
3412 else if (i386_ymm_regnum_p (gdbarch, regnum))
3413 {
3414 regnum -= tdep->ymm0_regnum;
3415
3416 /* Extract (always little endian). Read lower 128bits. */
3417 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3418 raw_buf);
3419 if (status != REG_VALID)
3420 mark_value_bytes_unavailable (result_value, 0, 16);
3421 else
3422 memcpy (buf, raw_buf, 16);
3423 /* Read upper 128bits. */
3424 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3425 raw_buf);
3426 if (status != REG_VALID)
3427 mark_value_bytes_unavailable (result_value, 16, 32);
3428 else
3429 memcpy (buf + 16, raw_buf, 16);
3430 }
3431 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3432 {
3433 regnum -= tdep->ymm16_regnum;
3434 /* Extract (always little endian). Read lower 128bits. */
3435 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3436 raw_buf);
3437 if (status != REG_VALID)
3438 mark_value_bytes_unavailable (result_value, 0, 16);
3439 else
3440 memcpy (buf, raw_buf, 16);
3441 /* Read upper 128bits. */
3442 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3443 raw_buf);
3444 if (status != REG_VALID)
3445 mark_value_bytes_unavailable (result_value, 16, 16);
3446 else
3447 memcpy (buf + 16, raw_buf, 16);
3448 }
3449 else if (i386_word_regnum_p (gdbarch, regnum))
3450 {
3451 int gpnum = regnum - tdep->ax_regnum;
3452
3453 /* Extract (always little endian). */
3454 status = regcache->raw_read (gpnum, raw_buf);
3455 if (status != REG_VALID)
3456 mark_value_bytes_unavailable (result_value, 0,
3457 TYPE_LENGTH (value_type (result_value)));
3458 else
3459 memcpy (buf, raw_buf, 2);
3460 }
3461 else if (i386_byte_regnum_p (gdbarch, regnum))
3462 {
3463 int gpnum = regnum - tdep->al_regnum;
3464
3465 /* Extract (always little endian). We read both lower and
3466 upper registers. */
3467 status = regcache->raw_read (gpnum % 4, raw_buf);
3468 if (status != REG_VALID)
3469 mark_value_bytes_unavailable (result_value, 0,
3470 TYPE_LENGTH (value_type (result_value)));
3471 else if (gpnum >= 4)
3472 memcpy (buf, raw_buf + 1, 1);
3473 else
3474 memcpy (buf, raw_buf, 1);
3475 }
3476 else
3477 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3478 }
3479 }
3480
3481 static struct value *
3482 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3483 readable_regcache *regcache,
3484 int regnum)
3485 {
3486 struct value *result;
3487
3488 result = allocate_value (register_type (gdbarch, regnum));
3489 VALUE_LVAL (result) = lval_register;
3490 VALUE_REGNUM (result) = regnum;
3491
3492 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3493
3494 return result;
3495 }
3496
3497 void
3498 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3499 int regnum, const gdb_byte *buf)
3500 {
3501 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3502
3503 if (i386_mmx_regnum_p (gdbarch, regnum))
3504 {
3505 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3506
3507 /* Read ... */
3508 regcache->raw_read (fpnum, raw_buf);
3509 /* ... Modify ... (always little endian). */
3510 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3511 /* ... Write. */
3512 regcache->raw_write (fpnum, raw_buf);
3513 }
3514 else
3515 {
3516 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3517
3518 if (i386_bnd_regnum_p (gdbarch, regnum))
3519 {
3520 ULONGEST upper, lower;
3521 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3522 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3523
3524 /* New values from input value. */
3525 regnum -= tdep->bnd0_regnum;
3526 lower = extract_unsigned_integer (buf, size, byte_order);
3527 upper = extract_unsigned_integer (buf + size, size, byte_order);
3528
3529 /* Fetching register buffer. */
3530 regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3531 raw_buf);
3532
3533 upper = ~upper;
3534
3535 /* Set register bits. */
3536 memcpy (raw_buf, &lower, 8);
3537 memcpy (raw_buf + 8, &upper, 8);
3538
3539 regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
3540 }
3541 else if (i386_k_regnum_p (gdbarch, regnum))
3542 {
3543 regnum -= tdep->k0_regnum;
3544
3545 regcache->raw_write (tdep->k0_regnum + regnum, buf);
3546 }
3547 else if (i386_zmm_regnum_p (gdbarch, regnum))
3548 {
3549 regnum -= tdep->zmm0_regnum;
3550
3551 if (regnum < num_lower_zmm_regs)
3552 {
3553 /* Write lower 128bits. */
3554 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3555 /* Write upper 128bits. */
3556 regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
3557 }
3558 else
3559 {
3560 /* Write lower 128bits. */
3561 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
3562 - num_lower_zmm_regs, buf);
3563 /* Write upper 128bits. */
3564 regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
3565 - num_lower_zmm_regs, buf + 16);
3566 }
3567 /* Write upper 256bits. */
3568 regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
3569 }
3570 else if (i386_ymm_regnum_p (gdbarch, regnum))
3571 {
3572 regnum -= tdep->ymm0_regnum;
3573
3574 /* ... Write lower 128bits. */
3575 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3576 /* ... Write upper 128bits. */
3577 regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
3578 }
3579 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3580 {
3581 regnum -= tdep->ymm16_regnum;
3582
3583 /* ... Write lower 128bits. */
3584 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
3585 /* ... Write upper 128bits. */
3586 regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
3587 }
3588 else if (i386_word_regnum_p (gdbarch, regnum))
3589 {
3590 int gpnum = regnum - tdep->ax_regnum;
3591
3592 /* Read ... */
3593 regcache->raw_read (gpnum, raw_buf);
3594 /* ... Modify ... (always little endian). */
3595 memcpy (raw_buf, buf, 2);
3596 /* ... Write. */
3597 regcache->raw_write (gpnum, raw_buf);
3598 }
3599 else if (i386_byte_regnum_p (gdbarch, regnum))
3600 {
3601 int gpnum = regnum - tdep->al_regnum;
3602
3603 /* Read ... We read both lower and upper registers. */
3604 regcache->raw_read (gpnum % 4, raw_buf);
3605 /* ... Modify ... (always little endian). */
3606 if (gpnum >= 4)
3607 memcpy (raw_buf + 1, buf, 1);
3608 else
3609 memcpy (raw_buf, buf, 1);
3610 /* ... Write. */
3611 regcache->raw_write (gpnum % 4, raw_buf);
3612 }
3613 else
3614 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3615 }
3616 }
3617
3618 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3619
3620 int
3621 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3622 struct agent_expr *ax, int regnum)
3623 {
3624 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3625
3626 if (i386_mmx_regnum_p (gdbarch, regnum))
3627 {
3628 /* MMX to FPU register mapping depends on current TOS. Let's just
3629 not care and collect everything... */
3630 int i;
3631
3632 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3633 for (i = 0; i < 8; i++)
3634 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3635 return 0;
3636 }
3637 else if (i386_bnd_regnum_p (gdbarch, regnum))
3638 {
3639 regnum -= tdep->bnd0_regnum;
3640 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3641 return 0;
3642 }
3643 else if (i386_k_regnum_p (gdbarch, regnum))
3644 {
3645 regnum -= tdep->k0_regnum;
3646 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3647 return 0;
3648 }
3649 else if (i386_zmm_regnum_p (gdbarch, regnum))
3650 {
3651 regnum -= tdep->zmm0_regnum;
3652 if (regnum < num_lower_zmm_regs)
3653 {
3654 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3655 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3656 }
3657 else
3658 {
3659 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3660 - num_lower_zmm_regs);
3661 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3662 - num_lower_zmm_regs);
3663 }
3664 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3665 return 0;
3666 }
3667 else if (i386_ymm_regnum_p (gdbarch, regnum))
3668 {
3669 regnum -= tdep->ymm0_regnum;
3670 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3671 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3672 return 0;
3673 }
3674 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3675 {
3676 regnum -= tdep->ymm16_regnum;
3677 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3678 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3679 return 0;
3680 }
3681 else if (i386_word_regnum_p (gdbarch, regnum))
3682 {
3683 int gpnum = regnum - tdep->ax_regnum;
3684
3685 ax_reg_mask (ax, gpnum);
3686 return 0;
3687 }
3688 else if (i386_byte_regnum_p (gdbarch, regnum))
3689 {
3690 int gpnum = regnum - tdep->al_regnum;
3691
3692 ax_reg_mask (ax, gpnum % 4);
3693 return 0;
3694 }
3695 else
3696 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3697 return 1;
3698 }
3699 \f
3700
3701 /* Return the register number of the register allocated by GCC after
3702 REGNUM, or -1 if there is no such register. */
3703
3704 static int
3705 i386_next_regnum (int regnum)
3706 {
3707 /* GCC allocates the registers in the order:
3708
3709 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3710
3711 Since storing a variable in %esp doesn't make any sense we return
3712 -1 for %ebp and for %esp itself. */
3713 static int next_regnum[] =
3714 {
3715 I386_EDX_REGNUM, /* Slot for %eax. */
3716 I386_EBX_REGNUM, /* Slot for %ecx. */
3717 I386_ECX_REGNUM, /* Slot for %edx. */
3718 I386_ESI_REGNUM, /* Slot for %ebx. */
3719 -1, -1, /* Slots for %esp and %ebp. */
3720 I386_EDI_REGNUM, /* Slot for %esi. */
3721 I386_EBP_REGNUM /* Slot for %edi. */
3722 };
3723
3724 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3725 return next_regnum[regnum];
3726
3727 return -1;
3728 }
3729
3730 /* Return nonzero if a value of type TYPE stored in register REGNUM
3731 needs any special handling. */
3732
3733 static int
3734 i386_convert_register_p (struct gdbarch *gdbarch,
3735 int regnum, struct type *type)
3736 {
3737 int len = TYPE_LENGTH (type);
3738
3739 /* Values may be spread across multiple registers. Most debugging
3740 formats aren't expressive enough to specify the locations, so
3741 some heuristics is involved. Right now we only handle types that
3742 have a length that is a multiple of the word size, since GCC
3743 doesn't seem to put any other types into registers. */
3744 if (len > 4 && len % 4 == 0)
3745 {
3746 int last_regnum = regnum;
3747
3748 while (len > 4)
3749 {
3750 last_regnum = i386_next_regnum (last_regnum);
3751 len -= 4;
3752 }
3753
3754 if (last_regnum != -1)
3755 return 1;
3756 }
3757
3758 return i387_convert_register_p (gdbarch, regnum, type);
3759 }
3760
3761 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3762 return its contents in TO. */
3763
3764 static int
3765 i386_register_to_value (struct frame_info *frame, int regnum,
3766 struct type *type, gdb_byte *to,
3767 int *optimizedp, int *unavailablep)
3768 {
3769 struct gdbarch *gdbarch = get_frame_arch (frame);
3770 int len = TYPE_LENGTH (type);
3771
3772 if (i386_fp_regnum_p (gdbarch, regnum))
3773 return i387_register_to_value (frame, regnum, type, to,
3774 optimizedp, unavailablep);
3775
3776 /* Read a value spread across multiple registers. */
3777
3778 gdb_assert (len > 4 && len % 4 == 0);
3779
3780 while (len > 0)
3781 {
3782 gdb_assert (regnum != -1);
3783 gdb_assert (register_size (gdbarch, regnum) == 4);
3784
3785 if (!get_frame_register_bytes (frame, regnum, 0,
3786 gdb::make_array_view (to,
3787 register_size (gdbarch,
3788 regnum)),
3789 optimizedp, unavailablep))
3790 return 0;
3791
3792 regnum = i386_next_regnum (regnum);
3793 len -= 4;
3794 to += 4;
3795 }
3796
3797 *optimizedp = *unavailablep = 0;
3798 return 1;
3799 }
3800
3801 /* Write the contents FROM of a value of type TYPE into register
3802 REGNUM in frame FRAME. */
3803
3804 static void
3805 i386_value_to_register (struct frame_info *frame, int regnum,
3806 struct type *type, const gdb_byte *from)
3807 {
3808 int len = TYPE_LENGTH (type);
3809
3810 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3811 {
3812 i387_value_to_register (frame, regnum, type, from);
3813 return;
3814 }
3815
3816 /* Write a value spread across multiple registers. */
3817
3818 gdb_assert (len > 4 && len % 4 == 0);
3819
3820 while (len > 0)
3821 {
3822 gdb_assert (regnum != -1);
3823 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3824
3825 put_frame_register (frame, regnum, from);
3826 regnum = i386_next_regnum (regnum);
3827 len -= 4;
3828 from += 4;
3829 }
3830 }
3831 \f
3832 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3833 in the general-purpose register set REGSET to register cache
3834 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3835
3836 void
3837 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3838 int regnum, const void *gregs, size_t len)
3839 {
3840 struct gdbarch *gdbarch = regcache->arch ();
3841 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3842 const gdb_byte *regs = (const gdb_byte *) gregs;
3843 int i;
3844
3845 gdb_assert (len >= tdep->sizeof_gregset);
3846
3847 for (i = 0; i < tdep->gregset_num_regs; i++)
3848 {
3849 if ((regnum == i || regnum == -1)
3850 && tdep->gregset_reg_offset[i] != -1)
3851 regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
3852 }
3853 }
3854
3855 /* Collect register REGNUM from the register cache REGCACHE and store
3856 it in the buffer specified by GREGS and LEN as described by the
3857 general-purpose register set REGSET. If REGNUM is -1, do this for
3858 all registers in REGSET. */
3859
3860 static void
3861 i386_collect_gregset (const struct regset *regset,
3862 const struct regcache *regcache,
3863 int regnum, void *gregs, size_t len)
3864 {
3865 struct gdbarch *gdbarch = regcache->arch ();
3866 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3867 gdb_byte *regs = (gdb_byte *) gregs;
3868 int i;
3869
3870 gdb_assert (len >= tdep->sizeof_gregset);
3871
3872 for (i = 0; i < tdep->gregset_num_regs; i++)
3873 {
3874 if ((regnum == i || regnum == -1)
3875 && tdep->gregset_reg_offset[i] != -1)
3876 regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
3877 }
3878 }
3879
3880 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3881 in the floating-point register set REGSET to register cache
3882 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3883
3884 static void
3885 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3886 int regnum, const void *fpregs, size_t len)
3887 {
3888 struct gdbarch *gdbarch = regcache->arch ();
3889 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3890
3891 if (len == I387_SIZEOF_FXSAVE)
3892 {
3893 i387_supply_fxsave (regcache, regnum, fpregs);
3894 return;
3895 }
3896
3897 gdb_assert (len >= tdep->sizeof_fpregset);
3898 i387_supply_fsave (regcache, regnum, fpregs);
3899 }
3900
3901 /* Collect register REGNUM from the register cache REGCACHE and store
3902 it in the buffer specified by FPREGS and LEN as described by the
3903 floating-point register set REGSET. If REGNUM is -1, do this for
3904 all registers in REGSET. */
3905
3906 static void
3907 i386_collect_fpregset (const struct regset *regset,
3908 const struct regcache *regcache,
3909 int regnum, void *fpregs, size_t len)
3910 {
3911 struct gdbarch *gdbarch = regcache->arch ();
3912 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3913
3914 if (len == I387_SIZEOF_FXSAVE)
3915 {
3916 i387_collect_fxsave (regcache, regnum, fpregs);
3917 return;
3918 }
3919
3920 gdb_assert (len >= tdep->sizeof_fpregset);
3921 i387_collect_fsave (regcache, regnum, fpregs);
3922 }
3923
3924 /* Register set definitions. */
3925
3926 const struct regset i386_gregset =
3927 {
3928 NULL, i386_supply_gregset, i386_collect_gregset
3929 };
3930
3931 const struct regset i386_fpregset =
3932 {
3933 NULL, i386_supply_fpregset, i386_collect_fpregset
3934 };
3935
3936 /* Default iterator over core file register note sections. */
3937
3938 void
3939 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3940 iterate_over_regset_sections_cb *cb,
3941 void *cb_data,
3942 const struct regcache *regcache)
3943 {
3944 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3945
3946 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
3947 cb_data);
3948 if (tdep->sizeof_fpregset)
3949 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
3950 NULL, cb_data);
3951 }
3952 \f
3953
3954 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3955
3956 CORE_ADDR
3957 i386_pe_skip_trampoline_code (struct frame_info *frame,
3958 CORE_ADDR pc, char *name)
3959 {
3960 struct gdbarch *gdbarch = get_frame_arch (frame);
3961 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3962
3963 /* jmp *(dest) */
3964 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3965 {
3966 unsigned long indirect =
3967 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3968 struct minimal_symbol *indsym =
3969 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3970 const char *symname = indsym ? indsym->linkage_name () : 0;
3971
3972 if (symname)
3973 {
3974 if (startswith (symname, "__imp_")
3975 || startswith (symname, "_imp_"))
3976 return name ? 1 :
3977 read_memory_unsigned_integer (indirect, 4, byte_order);
3978 }
3979 }
3980 return 0; /* Not a trampoline. */
3981 }
3982 \f
3983
3984 /* Return whether the THIS_FRAME corresponds to a sigtramp
3985 routine. */
3986
3987 int
3988 i386_sigtramp_p (struct frame_info *this_frame)
3989 {
3990 CORE_ADDR pc = get_frame_pc (this_frame);
3991 const char *name;
3992
3993 find_pc_partial_function (pc, &name, NULL, NULL);
3994 return (name && strcmp ("_sigtramp", name) == 0);
3995 }
3996 \f
3997
3998 /* We have two flavours of disassembly. The machinery on this page
3999 deals with switching between those. */
4000
4001 static int
4002 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
4003 {
4004 gdb_assert (disassembly_flavor == att_flavor
4005 || disassembly_flavor == intel_flavor);
4006
4007 info->disassembler_options = disassembly_flavor;
4008
4009 return default_print_insn (pc, info);
4010 }
4011 \f
4012
4013 /* There are a few i386 architecture variants that differ only
4014 slightly from the generic i386 target. For now, we don't give them
4015 their own source file, but include them here. As a consequence,
4016 they'll always be included. */
4017
4018 /* System V Release 4 (SVR4). */
4019
4020 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4021 routine. */
4022
4023 static int
4024 i386_svr4_sigtramp_p (struct frame_info *this_frame)
4025 {
4026 CORE_ADDR pc = get_frame_pc (this_frame);
4027 const char *name;
4028
4029 /* The origin of these symbols is currently unknown. */
4030 find_pc_partial_function (pc, &name, NULL, NULL);
4031 return (name && (strcmp ("_sigreturn", name) == 0
4032 || strcmp ("sigvechandler", name) == 0));
4033 }
4034
4035 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4036 address of the associated sigcontext (ucontext) structure. */
4037
4038 static CORE_ADDR
4039 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4040 {
4041 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4042 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4043 gdb_byte buf[4];
4044 CORE_ADDR sp;
4045
4046 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4047 sp = extract_unsigned_integer (buf, 4, byte_order);
4048
4049 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4050 }
4051
4052 \f
4053
4054 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4055 gdbarch.h. */
4056
4057 int
4058 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4059 {
4060 return (*s == '$' /* Literal number. */
4061 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4062 || (*s == '(' && s[1] == '%') /* Register indirection. */
4063 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4064 }
4065
4066 /* Helper function for i386_stap_parse_special_token.
4067
4068 This function parses operands of the form `-8+3+1(%rbp)', which
4069 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4070
4071 Return true if the operand was parsed successfully, false
4072 otherwise. */
4073
4074 static expr::operation_up
4075 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4076 struct stap_parse_info *p)
4077 {
4078 const char *s = p->arg;
4079
4080 if (isdigit (*s) || *s == '-' || *s == '+')
4081 {
4082 bool got_minus[3];
4083 int i;
4084 long displacements[3];
4085 const char *start;
4086 int len;
4087 char *endp;
4088
4089 got_minus[0] = false;
4090 if (*s == '+')
4091 ++s;
4092 else if (*s == '-')
4093 {
4094 ++s;
4095 got_minus[0] = true;
4096 }
4097
4098 if (!isdigit ((unsigned char) *s))
4099 return {};
4100
4101 displacements[0] = strtol (s, &endp, 10);
4102 s = endp;
4103
4104 if (*s != '+' && *s != '-')
4105 {
4106 /* We are not dealing with a triplet. */
4107 return {};
4108 }
4109
4110 got_minus[1] = false;
4111 if (*s == '+')
4112 ++s;
4113 else
4114 {
4115 ++s;
4116 got_minus[1] = true;
4117 }
4118
4119 if (!isdigit ((unsigned char) *s))
4120 return {};
4121
4122 displacements[1] = strtol (s, &endp, 10);
4123 s = endp;
4124
4125 if (*s != '+' && *s != '-')
4126 {
4127 /* We are not dealing with a triplet. */
4128 return {};
4129 }
4130
4131 got_minus[2] = false;
4132 if (*s == '+')
4133 ++s;
4134 else
4135 {
4136 ++s;
4137 got_minus[2] = true;
4138 }
4139
4140 if (!isdigit ((unsigned char) *s))
4141 return {};
4142
4143 displacements[2] = strtol (s, &endp, 10);
4144 s = endp;
4145
4146 if (*s != '(' || s[1] != '%')
4147 return {};
4148
4149 s += 2;
4150 start = s;
4151
4152 while (isalnum (*s))
4153 ++s;
4154
4155 if (*s++ != ')')
4156 return {};
4157
4158 len = s - start - 1;
4159 std::string regname (start, len);
4160
4161 if (user_reg_map_name_to_regnum (gdbarch, regname.c_str (), len) == -1)
4162 error (_("Invalid register name `%s' on expression `%s'."),
4163 regname.c_str (), p->saved_arg);
4164
4165 LONGEST value = 0;
4166 for (i = 0; i < 3; i++)
4167 {
4168 LONGEST this_val = displacements[i];
4169 if (got_minus[i])
4170 this_val = -this_val;
4171 value += this_val;
4172 }
4173
4174 p->arg = s;
4175
4176 using namespace expr;
4177
4178 struct type *long_type = builtin_type (gdbarch)->builtin_long;
4179 operation_up offset
4180 = make_operation<long_const_operation> (long_type, value);
4181
4182 operation_up reg
4183 = make_operation<register_operation> (std::move (regname));
4184 struct type *void_ptr = builtin_type (gdbarch)->builtin_data_ptr;
4185 reg = make_operation<unop_cast_operation> (std::move (reg), void_ptr);
4186
4187 operation_up sum
4188 = make_operation<add_operation> (std::move (reg), std::move (offset));
4189 struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
4190 sum = make_operation<unop_cast_operation> (std::move (sum),
4191 arg_ptr_type);
4192 return make_operation<unop_ind_operation> (std::move (sum));
4193 }
4194
4195 return {};
4196 }
4197
4198 /* Helper function for i386_stap_parse_special_token.
4199
4200 This function parses operands of the form `register base +
4201 (register index * size) + offset', as represented in
4202 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4203
4204 Return true if the operand was parsed successfully, false
4205 otherwise. */
4206
4207 static expr::operation_up
4208 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4209 struct stap_parse_info *p)
4210 {
4211 const char *s = p->arg;
4212
4213 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4214 {
4215 bool offset_minus = false;
4216 long offset = 0;
4217 bool size_minus = false;
4218 long size = 0;
4219 const char *start;
4220 int len_base;
4221 int len_index;
4222
4223 if (*s == '+')
4224 ++s;
4225 else if (*s == '-')
4226 {
4227 ++s;
4228 offset_minus = true;
4229 }
4230
4231 if (offset_minus && !isdigit (*s))
4232 return {};
4233
4234 if (isdigit (*s))
4235 {
4236 char *endp;
4237
4238 offset = strtol (s, &endp, 10);
4239 s = endp;
4240 }
4241
4242 if (*s != '(' || s[1] != '%')
4243 return {};
4244
4245 s += 2;
4246 start = s;
4247
4248 while (isalnum (*s))
4249 ++s;
4250
4251 if (*s != ',' || s[1] != '%')
4252 return {};
4253
4254 len_base = s - start;
4255 std::string base (start, len_base);
4256
4257 if (user_reg_map_name_to_regnum (gdbarch, base.c_str (), len_base) == -1)
4258 error (_("Invalid register name `%s' on expression `%s'."),
4259 base.c_str (), p->saved_arg);
4260
4261 s += 2;
4262 start = s;
4263
4264 while (isalnum (*s))
4265 ++s;
4266
4267 len_index = s - start;
4268 std::string index (start, len_index);
4269
4270 if (user_reg_map_name_to_regnum (gdbarch, index.c_str (),
4271 len_index) == -1)
4272 error (_("Invalid register name `%s' on expression `%s'."),
4273 index.c_str (), p->saved_arg);
4274
4275 if (*s != ',' && *s != ')')
4276 return {};
4277
4278 if (*s == ',')
4279 {
4280 char *endp;
4281
4282 ++s;
4283 if (*s == '+')
4284 ++s;
4285 else if (*s == '-')
4286 {
4287 ++s;
4288 size_minus = true;
4289 }
4290
4291 size = strtol (s, &endp, 10);
4292 s = endp;
4293
4294 if (*s != ')')
4295 return {};
4296 }
4297
4298 ++s;
4299 p->arg = s;
4300
4301 using namespace expr;
4302
4303 struct type *long_type = builtin_type (gdbarch)->builtin_long;
4304 operation_up reg = make_operation<register_operation> (std::move (base));
4305
4306 if (offset != 0)
4307 {
4308 if (offset_minus)
4309 offset = -offset;
4310 operation_up value
4311 = make_operation<long_const_operation> (long_type, offset);
4312 reg = make_operation<add_operation> (std::move (reg),
4313 std::move (value));
4314 }
4315
4316 operation_up ind_reg
4317 = make_operation<register_operation> (std::move (index));
4318
4319 if (size != 0)
4320 {
4321 if (size_minus)
4322 size = -size;
4323 operation_up value
4324 = make_operation<long_const_operation> (long_type, size);
4325 ind_reg = make_operation<mul_operation> (std::move (ind_reg),
4326 std::move (value));
4327 }
4328
4329 operation_up sum
4330 = make_operation<add_operation> (std::move (reg),
4331 std::move (ind_reg));
4332
4333 struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
4334 sum = make_operation<unop_cast_operation> (std::move (sum),
4335 arg_ptr_type);
4336 return make_operation<unop_ind_operation> (std::move (sum));
4337 }
4338
4339 return {};
4340 }
4341
4342 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4343 gdbarch.h. */
4344
4345 expr::operation_up
4346 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4347 struct stap_parse_info *p)
4348 {
4349 /* The special tokens to be parsed here are:
4350
4351 - `register base + (register index * size) + offset', as represented
4352 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4353
4354 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4355 `*(-8 + 3 - 1 + (void *) $eax)'. */
4356
4357 expr::operation_up result
4358 = i386_stap_parse_special_token_triplet (gdbarch, p);
4359
4360 if (result == nullptr)
4361 result = i386_stap_parse_special_token_three_arg_disp (gdbarch, p);
4362
4363 return result;
4364 }
4365
4366 /* Implementation of 'gdbarch_stap_adjust_register', as defined in
4367 gdbarch.h. */
4368
4369 static std::string
4370 i386_stap_adjust_register (struct gdbarch *gdbarch, struct stap_parse_info *p,
4371 const std::string &regname, int regnum)
4372 {
4373 static const std::unordered_set<std::string> reg_assoc
4374 = { "ax", "bx", "cx", "dx",
4375 "si", "di", "bp", "sp" };
4376
4377 /* If we are dealing with a register whose size is less than the size
4378 specified by the "[-]N@" prefix, and it is one of the registers that
4379 we know has an extended variant available, then use the extended
4380 version of the register instead. */
4381 if (register_size (gdbarch, regnum) < TYPE_LENGTH (p->arg_type)
4382 && reg_assoc.find (regname) != reg_assoc.end ())
4383 return "e" + regname;
4384
4385 /* Otherwise, just use the requested register. */
4386 return regname;
4387 }
4388
4389 \f
4390
4391 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4392 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4393
4394 static const char *
4395 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4396 {
4397 return "(x86_64|i.86)";
4398 }
4399
4400 \f
4401
4402 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
4403
4404 static bool
4405 i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4406 {
4407 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4408 I386_EAX_REGNUM, I386_EIP_REGNUM);
4409 }
4410
4411 /* Generic ELF. */
4412
4413 void
4414 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4415 {
4416 static const char *const stap_integer_prefixes[] = { "$", NULL };
4417 static const char *const stap_register_prefixes[] = { "%", NULL };
4418 static const char *const stap_register_indirection_prefixes[] = { "(",
4419 NULL };
4420 static const char *const stap_register_indirection_suffixes[] = { ")",
4421 NULL };
4422
4423 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4424 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4425
4426 /* Registering SystemTap handlers. */
4427 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4428 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4429 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4430 stap_register_indirection_prefixes);
4431 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4432 stap_register_indirection_suffixes);
4433 set_gdbarch_stap_is_single_operand (gdbarch,
4434 i386_stap_is_single_operand);
4435 set_gdbarch_stap_parse_special_token (gdbarch,
4436 i386_stap_parse_special_token);
4437 set_gdbarch_stap_adjust_register (gdbarch,
4438 i386_stap_adjust_register);
4439
4440 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4441 i386_in_indirect_branch_thunk);
4442 }
4443
4444 /* System V Release 4 (SVR4). */
4445
4446 void
4447 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4448 {
4449 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4450
4451 /* System V Release 4 uses ELF. */
4452 i386_elf_init_abi (info, gdbarch);
4453
4454 /* System V Release 4 has shared libraries. */
4455 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4456
4457 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4458 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4459 tdep->sc_pc_offset = 36 + 14 * 4;
4460 tdep->sc_sp_offset = 36 + 17 * 4;
4461
4462 tdep->jb_pc_offset = 20;
4463 }
4464
4465 \f
4466
4467 /* i386 register groups. In addition to the normal groups, add "mmx"
4468 and "sse". */
4469
4470 static struct reggroup *i386_sse_reggroup;
4471 static struct reggroup *i386_mmx_reggroup;
4472
4473 static void
4474 i386_init_reggroups (void)
4475 {
4476 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4477 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4478 }
4479
4480 static void
4481 i386_add_reggroups (struct gdbarch *gdbarch)
4482 {
4483 reggroup_add (gdbarch, i386_sse_reggroup);
4484 reggroup_add (gdbarch, i386_mmx_reggroup);
4485 reggroup_add (gdbarch, general_reggroup);
4486 reggroup_add (gdbarch, float_reggroup);
4487 reggroup_add (gdbarch, all_reggroup);
4488 reggroup_add (gdbarch, save_reggroup);
4489 reggroup_add (gdbarch, restore_reggroup);
4490 reggroup_add (gdbarch, vector_reggroup);
4491 reggroup_add (gdbarch, system_reggroup);
4492 }
4493
4494 int
4495 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4496 struct reggroup *group)
4497 {
4498 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4499 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4500 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4501 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4502 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4503 avx512_p, avx_p, sse_p, pkru_regnum_p;
4504
4505 /* Don't include pseudo registers, except for MMX, in any register
4506 groups. */
4507 if (i386_byte_regnum_p (gdbarch, regnum))
4508 return 0;
4509
4510 if (i386_word_regnum_p (gdbarch, regnum))
4511 return 0;
4512
4513 if (i386_dword_regnum_p (gdbarch, regnum))
4514 return 0;
4515
4516 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4517 if (group == i386_mmx_reggroup)
4518 return mmx_regnum_p;
4519
4520 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4521 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4522 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4523 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4524 if (group == i386_sse_reggroup)
4525 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4526
4527 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4528 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4529 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4530
4531 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4532 == X86_XSTATE_AVX_AVX512_MASK);
4533 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4534 == X86_XSTATE_AVX_MASK) && !avx512_p;
4535 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4536 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4537
4538 if (group == vector_reggroup)
4539 return (mmx_regnum_p
4540 || (zmm_regnum_p && avx512_p)
4541 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4542 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4543 || mxcsr_regnum_p);
4544
4545 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4546 || i386_fpc_regnum_p (gdbarch, regnum));
4547 if (group == float_reggroup)
4548 return fp_regnum_p;
4549
4550 /* For "info reg all", don't include upper YMM registers nor XMM
4551 registers when AVX is supported. */
4552 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4553 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4554 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4555 if (group == all_reggroup
4556 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4557 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4558 || ymmh_regnum_p
4559 || ymmh_avx512_regnum_p
4560 || zmmh_regnum_p))
4561 return 0;
4562
4563 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4564 if (group == all_reggroup
4565 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4566 return bnd_regnum_p;
4567
4568 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4569 if (group == all_reggroup
4570 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4571 return 0;
4572
4573 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4574 if (group == all_reggroup
4575 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4576 return mpx_ctrl_regnum_p;
4577
4578 if (group == general_reggroup)
4579 return (!fp_regnum_p
4580 && !mmx_regnum_p
4581 && !mxcsr_regnum_p
4582 && !xmm_regnum_p
4583 && !xmm_avx512_regnum_p
4584 && !ymm_regnum_p
4585 && !ymmh_regnum_p
4586 && !ymm_avx512_regnum_p
4587 && !ymmh_avx512_regnum_p
4588 && !bndr_regnum_p
4589 && !bnd_regnum_p
4590 && !mpx_ctrl_regnum_p
4591 && !zmm_regnum_p
4592 && !zmmh_regnum_p
4593 && !pkru_regnum_p);
4594
4595 return default_register_reggroup_p (gdbarch, regnum, group);
4596 }
4597 \f
4598
4599 /* Get the ARGIth function argument for the current function. */
4600
4601 static CORE_ADDR
4602 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4603 struct type *type)
4604 {
4605 struct gdbarch *gdbarch = get_frame_arch (frame);
4606 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4607 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4608 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4609 }
4610
4611 #define PREFIX_REPZ 0x01
4612 #define PREFIX_REPNZ 0x02
4613 #define PREFIX_LOCK 0x04
4614 #define PREFIX_DATA 0x08
4615 #define PREFIX_ADDR 0x10
4616
4617 /* operand size */
4618 enum
4619 {
4620 OT_BYTE = 0,
4621 OT_WORD,
4622 OT_LONG,
4623 OT_QUAD,
4624 OT_DQUAD,
4625 };
4626
4627 /* i386 arith/logic operations */
4628 enum
4629 {
4630 OP_ADDL,
4631 OP_ORL,
4632 OP_ADCL,
4633 OP_SBBL,
4634 OP_ANDL,
4635 OP_SUBL,
4636 OP_XORL,
4637 OP_CMPL,
4638 };
4639
4640 struct i386_record_s
4641 {
4642 struct gdbarch *gdbarch;
4643 struct regcache *regcache;
4644 CORE_ADDR orig_addr;
4645 CORE_ADDR addr;
4646 int aflag;
4647 int dflag;
4648 int override;
4649 uint8_t modrm;
4650 uint8_t mod, reg, rm;
4651 int ot;
4652 uint8_t rex_x;
4653 uint8_t rex_b;
4654 int rip_offset;
4655 int popl_esp_hack;
4656 const int *regmap;
4657 };
4658
4659 /* Parse the "modrm" part of the memory address irp->addr points at.
4660 Returns -1 if something goes wrong, 0 otherwise. */
4661
4662 static int
4663 i386_record_modrm (struct i386_record_s *irp)
4664 {
4665 struct gdbarch *gdbarch = irp->gdbarch;
4666
4667 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4668 return -1;
4669
4670 irp->addr++;
4671 irp->mod = (irp->modrm >> 6) & 3;
4672 irp->reg = (irp->modrm >> 3) & 7;
4673 irp->rm = irp->modrm & 7;
4674
4675 return 0;
4676 }
4677
4678 /* Extract the memory address that the current instruction writes to,
4679 and return it in *ADDR. Return -1 if something goes wrong. */
4680
4681 static int
4682 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4683 {
4684 struct gdbarch *gdbarch = irp->gdbarch;
4685 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4686 gdb_byte buf[4];
4687 ULONGEST offset64;
4688
4689 *addr = 0;
4690 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4691 {
4692 /* 32/64 bits */
4693 int havesib = 0;
4694 uint8_t scale = 0;
4695 uint8_t byte;
4696 uint8_t index = 0;
4697 uint8_t base = irp->rm;
4698
4699 if (base == 4)
4700 {
4701 havesib = 1;
4702 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4703 return -1;
4704 irp->addr++;
4705 scale = (byte >> 6) & 3;
4706 index = ((byte >> 3) & 7) | irp->rex_x;
4707 base = (byte & 7);
4708 }
4709 base |= irp->rex_b;
4710
4711 switch (irp->mod)
4712 {
4713 case 0:
4714 if ((base & 7) == 5)
4715 {
4716 base = 0xff;
4717 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4718 return -1;
4719 irp->addr += 4;
4720 *addr = extract_signed_integer (buf, 4, byte_order);
4721 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4722 *addr += irp->addr + irp->rip_offset;
4723 }
4724 break;
4725 case 1:
4726 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4727 return -1;
4728 irp->addr++;
4729 *addr = (int8_t) buf[0];
4730 break;
4731 case 2:
4732 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4733 return -1;
4734 *addr = extract_signed_integer (buf, 4, byte_order);
4735 irp->addr += 4;
4736 break;
4737 }
4738
4739 offset64 = 0;
4740 if (base != 0xff)
4741 {
4742 if (base == 4 && irp->popl_esp_hack)
4743 *addr += irp->popl_esp_hack;
4744 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4745 &offset64);
4746 }
4747 if (irp->aflag == 2)
4748 {
4749 *addr += offset64;
4750 }
4751 else
4752 *addr = (uint32_t) (offset64 + *addr);
4753
4754 if (havesib && (index != 4 || scale != 0))
4755 {
4756 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4757 &offset64);
4758 if (irp->aflag == 2)
4759 *addr += offset64 << scale;
4760 else
4761 *addr = (uint32_t) (*addr + (offset64 << scale));
4762 }
4763
4764 if (!irp->aflag)
4765 {
4766 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4767 address from 32-bit to 64-bit. */
4768 *addr = (uint32_t) *addr;
4769 }
4770 }
4771 else
4772 {
4773 /* 16 bits */
4774 switch (irp->mod)
4775 {
4776 case 0:
4777 if (irp->rm == 6)
4778 {
4779 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4780 return -1;
4781 irp->addr += 2;
4782 *addr = extract_signed_integer (buf, 2, byte_order);
4783 irp->rm = 0;
4784 goto no_rm;
4785 }
4786 break;
4787 case 1:
4788 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4789 return -1;
4790 irp->addr++;
4791 *addr = (int8_t) buf[0];
4792 break;
4793 case 2:
4794 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4795 return -1;
4796 irp->addr += 2;
4797 *addr = extract_signed_integer (buf, 2, byte_order);
4798 break;
4799 }
4800
4801 switch (irp->rm)
4802 {
4803 case 0:
4804 regcache_raw_read_unsigned (irp->regcache,
4805 irp->regmap[X86_RECORD_REBX_REGNUM],
4806 &offset64);
4807 *addr = (uint32_t) (*addr + offset64);
4808 regcache_raw_read_unsigned (irp->regcache,
4809 irp->regmap[X86_RECORD_RESI_REGNUM],
4810 &offset64);
4811 *addr = (uint32_t) (*addr + offset64);
4812 break;
4813 case 1:
4814 regcache_raw_read_unsigned (irp->regcache,
4815 irp->regmap[X86_RECORD_REBX_REGNUM],
4816 &offset64);
4817 *addr = (uint32_t) (*addr + offset64);
4818 regcache_raw_read_unsigned (irp->regcache,
4819 irp->regmap[X86_RECORD_REDI_REGNUM],
4820 &offset64);
4821 *addr = (uint32_t) (*addr + offset64);
4822 break;
4823 case 2:
4824 regcache_raw_read_unsigned (irp->regcache,
4825 irp->regmap[X86_RECORD_REBP_REGNUM],
4826 &offset64);
4827 *addr = (uint32_t) (*addr + offset64);
4828 regcache_raw_read_unsigned (irp->regcache,
4829 irp->regmap[X86_RECORD_RESI_REGNUM],
4830 &offset64);
4831 *addr = (uint32_t) (*addr + offset64);
4832 break;
4833 case 3:
4834 regcache_raw_read_unsigned (irp->regcache,
4835 irp->regmap[X86_RECORD_REBP_REGNUM],
4836 &offset64);
4837 *addr = (uint32_t) (*addr + offset64);
4838 regcache_raw_read_unsigned (irp->regcache,
4839 irp->regmap[X86_RECORD_REDI_REGNUM],
4840 &offset64);
4841 *addr = (uint32_t) (*addr + offset64);
4842 break;
4843 case 4:
4844 regcache_raw_read_unsigned (irp->regcache,
4845 irp->regmap[X86_RECORD_RESI_REGNUM],
4846 &offset64);
4847 *addr = (uint32_t) (*addr + offset64);
4848 break;
4849 case 5:
4850 regcache_raw_read_unsigned (irp->regcache,
4851 irp->regmap[X86_RECORD_REDI_REGNUM],
4852 &offset64);
4853 *addr = (uint32_t) (*addr + offset64);
4854 break;
4855 case 6:
4856 regcache_raw_read_unsigned (irp->regcache,
4857 irp->regmap[X86_RECORD_REBP_REGNUM],
4858 &offset64);
4859 *addr = (uint32_t) (*addr + offset64);
4860 break;
4861 case 7:
4862 regcache_raw_read_unsigned (irp->regcache,
4863 irp->regmap[X86_RECORD_REBX_REGNUM],
4864 &offset64);
4865 *addr = (uint32_t) (*addr + offset64);
4866 break;
4867 }
4868 *addr &= 0xffff;
4869 }
4870
4871 no_rm:
4872 return 0;
4873 }
4874
4875 /* Record the address and contents of the memory that will be changed
4876 by the current instruction. Return -1 if something goes wrong, 0
4877 otherwise. */
4878
4879 static int
4880 i386_record_lea_modrm (struct i386_record_s *irp)
4881 {
4882 struct gdbarch *gdbarch = irp->gdbarch;
4883 uint64_t addr;
4884
4885 if (irp->override >= 0)
4886 {
4887 if (record_full_memory_query)
4888 {
4889 if (yquery (_("\
4890 Process record ignores the memory change of instruction at address %s\n\
4891 because it can't get the value of the segment register.\n\
4892 Do you want to stop the program?"),
4893 paddress (gdbarch, irp->orig_addr)))
4894 return -1;
4895 }
4896
4897 return 0;
4898 }
4899
4900 if (i386_record_lea_modrm_addr (irp, &addr))
4901 return -1;
4902
4903 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4904 return -1;
4905
4906 return 0;
4907 }
4908
4909 /* Record the effects of a push operation. Return -1 if something
4910 goes wrong, 0 otherwise. */
4911
4912 static int
4913 i386_record_push (struct i386_record_s *irp, int size)
4914 {
4915 ULONGEST addr;
4916
4917 if (record_full_arch_list_add_reg (irp->regcache,
4918 irp->regmap[X86_RECORD_RESP_REGNUM]))
4919 return -1;
4920 regcache_raw_read_unsigned (irp->regcache,
4921 irp->regmap[X86_RECORD_RESP_REGNUM],
4922 &addr);
4923 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4924 return -1;
4925
4926 return 0;
4927 }
4928
4929
4930 /* Defines contents to record. */
4931 #define I386_SAVE_FPU_REGS 0xfffd
4932 #define I386_SAVE_FPU_ENV 0xfffe
4933 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4934
4935 /* Record the values of the floating point registers which will be
4936 changed by the current instruction. Returns -1 if something is
4937 wrong, 0 otherwise. */
4938
4939 static int i386_record_floats (struct gdbarch *gdbarch,
4940 struct i386_record_s *ir,
4941 uint32_t iregnum)
4942 {
4943 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4944 int i;
4945
4946 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4947 happen. Currently we store st0-st7 registers, but we need not store all
4948 registers all the time, in future we use ftag register and record only
4949 those who are not marked as an empty. */
4950
4951 if (I386_SAVE_FPU_REGS == iregnum)
4952 {
4953 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4954 {
4955 if (record_full_arch_list_add_reg (ir->regcache, i))
4956 return -1;
4957 }
4958 }
4959 else if (I386_SAVE_FPU_ENV == iregnum)
4960 {
4961 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4962 {
4963 if (record_full_arch_list_add_reg (ir->regcache, i))
4964 return -1;
4965 }
4966 }
4967 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4968 {
4969 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4970 if (record_full_arch_list_add_reg (ir->regcache, i))
4971 return -1;
4972 }
4973 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4974 (iregnum <= I387_FOP_REGNUM (tdep)))
4975 {
4976 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
4977 return -1;
4978 }
4979 else
4980 {
4981 /* Parameter error. */
4982 return -1;
4983 }
4984 if(I386_SAVE_FPU_ENV != iregnum)
4985 {
4986 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4987 {
4988 if (record_full_arch_list_add_reg (ir->regcache, i))
4989 return -1;
4990 }
4991 }
4992 return 0;
4993 }
4994
4995 /* Parse the current instruction, and record the values of the
4996 registers and memory that will be changed by the current
4997 instruction. Returns -1 if something goes wrong, 0 otherwise. */
4998
4999 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5000 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5001
5002 int
5003 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5004 CORE_ADDR input_addr)
5005 {
5006 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5007 int prefixes = 0;
5008 int regnum = 0;
5009 uint32_t opcode;
5010 uint8_t opcode8;
5011 ULONGEST addr;
5012 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5013 struct i386_record_s ir;
5014 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5015 uint8_t rex_w = -1;
5016 uint8_t rex_r = 0;
5017
5018 memset (&ir, 0, sizeof (struct i386_record_s));
5019 ir.regcache = regcache;
5020 ir.addr = input_addr;
5021 ir.orig_addr = input_addr;
5022 ir.aflag = 1;
5023 ir.dflag = 1;
5024 ir.override = -1;
5025 ir.popl_esp_hack = 0;
5026 ir.regmap = tdep->record_regmap;
5027 ir.gdbarch = gdbarch;
5028
5029 if (record_debug > 1)
5030 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5031 "addr = %s\n",
5032 paddress (gdbarch, ir.addr));
5033
5034 /* prefixes */
5035 while (1)
5036 {
5037 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5038 return -1;
5039 ir.addr++;
5040 switch (opcode8) /* Instruction prefixes */
5041 {
5042 case REPE_PREFIX_OPCODE:
5043 prefixes |= PREFIX_REPZ;
5044 break;
5045 case REPNE_PREFIX_OPCODE:
5046 prefixes |= PREFIX_REPNZ;
5047 break;
5048 case LOCK_PREFIX_OPCODE:
5049 prefixes |= PREFIX_LOCK;
5050 break;
5051 case CS_PREFIX_OPCODE:
5052 ir.override = X86_RECORD_CS_REGNUM;
5053 break;
5054 case SS_PREFIX_OPCODE:
5055 ir.override = X86_RECORD_SS_REGNUM;
5056 break;
5057 case DS_PREFIX_OPCODE:
5058 ir.override = X86_RECORD_DS_REGNUM;
5059 break;
5060 case ES_PREFIX_OPCODE:
5061 ir.override = X86_RECORD_ES_REGNUM;
5062 break;
5063 case FS_PREFIX_OPCODE:
5064 ir.override = X86_RECORD_FS_REGNUM;
5065 break;
5066 case GS_PREFIX_OPCODE:
5067 ir.override = X86_RECORD_GS_REGNUM;
5068 break;
5069 case DATA_PREFIX_OPCODE:
5070 prefixes |= PREFIX_DATA;
5071 break;
5072 case ADDR_PREFIX_OPCODE:
5073 prefixes |= PREFIX_ADDR;
5074 break;
5075 case 0x40: /* i386 inc %eax */
5076 case 0x41: /* i386 inc %ecx */
5077 case 0x42: /* i386 inc %edx */
5078 case 0x43: /* i386 inc %ebx */
5079 case 0x44: /* i386 inc %esp */
5080 case 0x45: /* i386 inc %ebp */
5081 case 0x46: /* i386 inc %esi */
5082 case 0x47: /* i386 inc %edi */
5083 case 0x48: /* i386 dec %eax */
5084 case 0x49: /* i386 dec %ecx */
5085 case 0x4a: /* i386 dec %edx */
5086 case 0x4b: /* i386 dec %ebx */
5087 case 0x4c: /* i386 dec %esp */
5088 case 0x4d: /* i386 dec %ebp */
5089 case 0x4e: /* i386 dec %esi */
5090 case 0x4f: /* i386 dec %edi */
5091 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5092 {
5093 /* REX */
5094 rex_w = (opcode8 >> 3) & 1;
5095 rex_r = (opcode8 & 0x4) << 1;
5096 ir.rex_x = (opcode8 & 0x2) << 2;
5097 ir.rex_b = (opcode8 & 0x1) << 3;
5098 }
5099 else /* 32 bit target */
5100 goto out_prefixes;
5101 break;
5102 default:
5103 goto out_prefixes;
5104 break;
5105 }
5106 }
5107 out_prefixes:
5108 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5109 {
5110 ir.dflag = 2;
5111 }
5112 else
5113 {
5114 if (prefixes & PREFIX_DATA)
5115 ir.dflag ^= 1;
5116 }
5117 if (prefixes & PREFIX_ADDR)
5118 ir.aflag ^= 1;
5119 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5120 ir.aflag = 2;
5121
5122 /* Now check op code. */
5123 opcode = (uint32_t) opcode8;
5124 reswitch:
5125 switch (opcode)
5126 {
5127 case 0x0f:
5128 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5129 return -1;
5130 ir.addr++;
5131 opcode = (uint32_t) opcode8 | 0x0f00;
5132 goto reswitch;
5133 break;
5134
5135 case 0x00: /* arith & logic */
5136 case 0x01:
5137 case 0x02:
5138 case 0x03:
5139 case 0x04:
5140 case 0x05:
5141 case 0x08:
5142 case 0x09:
5143 case 0x0a:
5144 case 0x0b:
5145 case 0x0c:
5146 case 0x0d:
5147 case 0x10:
5148 case 0x11:
5149 case 0x12:
5150 case 0x13:
5151 case 0x14:
5152 case 0x15:
5153 case 0x18:
5154 case 0x19:
5155 case 0x1a:
5156 case 0x1b:
5157 case 0x1c:
5158 case 0x1d:
5159 case 0x20:
5160 case 0x21:
5161 case 0x22:
5162 case 0x23:
5163 case 0x24:
5164 case 0x25:
5165 case 0x28:
5166 case 0x29:
5167 case 0x2a:
5168 case 0x2b:
5169 case 0x2c:
5170 case 0x2d:
5171 case 0x30:
5172 case 0x31:
5173 case 0x32:
5174 case 0x33:
5175 case 0x34:
5176 case 0x35:
5177 case 0x38:
5178 case 0x39:
5179 case 0x3a:
5180 case 0x3b:
5181 case 0x3c:
5182 case 0x3d:
5183 if (((opcode >> 3) & 7) != OP_CMPL)
5184 {
5185 if ((opcode & 1) == 0)
5186 ir.ot = OT_BYTE;
5187 else
5188 ir.ot = ir.dflag + OT_WORD;
5189
5190 switch ((opcode >> 1) & 3)
5191 {
5192 case 0: /* OP Ev, Gv */
5193 if (i386_record_modrm (&ir))
5194 return -1;
5195 if (ir.mod != 3)
5196 {
5197 if (i386_record_lea_modrm (&ir))
5198 return -1;
5199 }
5200 else
5201 {
5202 ir.rm |= ir.rex_b;
5203 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5204 ir.rm &= 0x3;
5205 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5206 }
5207 break;
5208 case 1: /* OP Gv, Ev */
5209 if (i386_record_modrm (&ir))
5210 return -1;
5211 ir.reg |= rex_r;
5212 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5213 ir.reg &= 0x3;
5214 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5215 break;
5216 case 2: /* OP A, Iv */
5217 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5218 break;
5219 }
5220 }
5221 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5222 break;
5223
5224 case 0x80: /* GRP1 */
5225 case 0x81:
5226 case 0x82:
5227 case 0x83:
5228 if (i386_record_modrm (&ir))
5229 return -1;
5230
5231 if (ir.reg != OP_CMPL)
5232 {
5233 if ((opcode & 1) == 0)
5234 ir.ot = OT_BYTE;
5235 else
5236 ir.ot = ir.dflag + OT_WORD;
5237
5238 if (ir.mod != 3)
5239 {
5240 if (opcode == 0x83)
5241 ir.rip_offset = 1;
5242 else
5243 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5244 if (i386_record_lea_modrm (&ir))
5245 return -1;
5246 }
5247 else
5248 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5249 }
5250 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5251 break;
5252
5253 case 0x40: /* inc */
5254 case 0x41:
5255 case 0x42:
5256 case 0x43:
5257 case 0x44:
5258 case 0x45:
5259 case 0x46:
5260 case 0x47:
5261
5262 case 0x48: /* dec */
5263 case 0x49:
5264 case 0x4a:
5265 case 0x4b:
5266 case 0x4c:
5267 case 0x4d:
5268 case 0x4e:
5269 case 0x4f:
5270
5271 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5272 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5273 break;
5274
5275 case 0xf6: /* GRP3 */
5276 case 0xf7:
5277 if ((opcode & 1) == 0)
5278 ir.ot = OT_BYTE;
5279 else
5280 ir.ot = ir.dflag + OT_WORD;
5281 if (i386_record_modrm (&ir))
5282 return -1;
5283
5284 if (ir.mod != 3 && ir.reg == 0)
5285 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5286
5287 switch (ir.reg)
5288 {
5289 case 0: /* test */
5290 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5291 break;
5292 case 2: /* not */
5293 case 3: /* neg */
5294 if (ir.mod != 3)
5295 {
5296 if (i386_record_lea_modrm (&ir))
5297 return -1;
5298 }
5299 else
5300 {
5301 ir.rm |= ir.rex_b;
5302 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5303 ir.rm &= 0x3;
5304 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5305 }
5306 if (ir.reg == 3) /* neg */
5307 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5308 break;
5309 case 4: /* mul */
5310 case 5: /* imul */
5311 case 6: /* div */
5312 case 7: /* idiv */
5313 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5314 if (ir.ot != OT_BYTE)
5315 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5316 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5317 break;
5318 default:
5319 ir.addr -= 2;
5320 opcode = opcode << 8 | ir.modrm;
5321 goto no_support;
5322 break;
5323 }
5324 break;
5325
5326 case 0xfe: /* GRP4 */
5327 case 0xff: /* GRP5 */
5328 if (i386_record_modrm (&ir))
5329 return -1;
5330 if (ir.reg >= 2 && opcode == 0xfe)
5331 {
5332 ir.addr -= 2;
5333 opcode = opcode << 8 | ir.modrm;
5334 goto no_support;
5335 }
5336 switch (ir.reg)
5337 {
5338 case 0: /* inc */
5339 case 1: /* dec */
5340 if ((opcode & 1) == 0)
5341 ir.ot = OT_BYTE;
5342 else
5343 ir.ot = ir.dflag + OT_WORD;
5344 if (ir.mod != 3)
5345 {
5346 if (i386_record_lea_modrm (&ir))
5347 return -1;
5348 }
5349 else
5350 {
5351 ir.rm |= ir.rex_b;
5352 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5353 ir.rm &= 0x3;
5354 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5355 }
5356 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5357 break;
5358 case 2: /* call */
5359 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5360 ir.dflag = 2;
5361 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5362 return -1;
5363 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5364 break;
5365 case 3: /* lcall */
5366 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5367 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5368 return -1;
5369 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5370 break;
5371 case 4: /* jmp */
5372 case 5: /* ljmp */
5373 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5374 break;
5375 case 6: /* push */
5376 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5377 ir.dflag = 2;
5378 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5379 return -1;
5380 break;
5381 default:
5382 ir.addr -= 2;
5383 opcode = opcode << 8 | ir.modrm;
5384 goto no_support;
5385 break;
5386 }
5387 break;
5388
5389 case 0x84: /* test */
5390 case 0x85:
5391 case 0xa8:
5392 case 0xa9:
5393 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5394 break;
5395
5396 case 0x98: /* CWDE/CBW */
5397 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5398 break;
5399
5400 case 0x99: /* CDQ/CWD */
5401 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5402 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5403 break;
5404
5405 case 0x0faf: /* imul */
5406 case 0x69:
5407 case 0x6b:
5408 ir.ot = ir.dflag + OT_WORD;
5409 if (i386_record_modrm (&ir))
5410 return -1;
5411 if (opcode == 0x69)
5412 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5413 else if (opcode == 0x6b)
5414 ir.rip_offset = 1;
5415 ir.reg |= rex_r;
5416 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5417 ir.reg &= 0x3;
5418 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5419 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5420 break;
5421
5422 case 0x0fc0: /* xadd */
5423 case 0x0fc1:
5424 if ((opcode & 1) == 0)
5425 ir.ot = OT_BYTE;
5426 else
5427 ir.ot = ir.dflag + OT_WORD;
5428 if (i386_record_modrm (&ir))
5429 return -1;
5430 ir.reg |= rex_r;
5431 if (ir.mod == 3)
5432 {
5433 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5434 ir.reg &= 0x3;
5435 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5436 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5437 ir.rm &= 0x3;
5438 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5439 }
5440 else
5441 {
5442 if (i386_record_lea_modrm (&ir))
5443 return -1;
5444 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5445 ir.reg &= 0x3;
5446 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5447 }
5448 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5449 break;
5450
5451 case 0x0fb0: /* cmpxchg */
5452 case 0x0fb1:
5453 if ((opcode & 1) == 0)
5454 ir.ot = OT_BYTE;
5455 else
5456 ir.ot = ir.dflag + OT_WORD;
5457 if (i386_record_modrm (&ir))
5458 return -1;
5459 if (ir.mod == 3)
5460 {
5461 ir.reg |= rex_r;
5462 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5463 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5464 ir.reg &= 0x3;
5465 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5466 }
5467 else
5468 {
5469 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5470 if (i386_record_lea_modrm (&ir))
5471 return -1;
5472 }
5473 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5474 break;
5475
5476 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5477 if (i386_record_modrm (&ir))
5478 return -1;
5479 if (ir.mod == 3)
5480 {
5481 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5482 an extended opcode. rdrand has bits 110 (/6) and rdseed
5483 has bits 111 (/7). */
5484 if (ir.reg == 6 || ir.reg == 7)
5485 {
5486 /* The storage register is described by the 3 R/M bits, but the
5487 REX.B prefix may be used to give access to registers
5488 R8~R15. In this case ir.rex_b + R/M will give us the register
5489 in the range R8~R15.
5490
5491 REX.W may also be used to access 64-bit registers, but we
5492 already record entire registers and not just partial bits
5493 of them. */
5494 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5495 /* These instructions also set conditional bits. */
5496 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5497 break;
5498 }
5499 else
5500 {
5501 /* We don't handle this particular instruction yet. */
5502 ir.addr -= 2;
5503 opcode = opcode << 8 | ir.modrm;
5504 goto no_support;
5505 }
5506 }
5507 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5508 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5509 if (i386_record_lea_modrm (&ir))
5510 return -1;
5511 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5512 break;
5513
5514 case 0x50: /* push */
5515 case 0x51:
5516 case 0x52:
5517 case 0x53:
5518 case 0x54:
5519 case 0x55:
5520 case 0x56:
5521 case 0x57:
5522 case 0x68:
5523 case 0x6a:
5524 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5525 ir.dflag = 2;
5526 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5527 return -1;
5528 break;
5529
5530 case 0x06: /* push es */
5531 case 0x0e: /* push cs */
5532 case 0x16: /* push ss */
5533 case 0x1e: /* push ds */
5534 if (ir.regmap[X86_RECORD_R8_REGNUM])
5535 {
5536 ir.addr -= 1;
5537 goto no_support;
5538 }
5539 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5540 return -1;
5541 break;
5542
5543 case 0x0fa0: /* push fs */
5544 case 0x0fa8: /* push gs */
5545 if (ir.regmap[X86_RECORD_R8_REGNUM])
5546 {
5547 ir.addr -= 2;
5548 goto no_support;
5549 }
5550 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5551 return -1;
5552 break;
5553
5554 case 0x60: /* pusha */
5555 if (ir.regmap[X86_RECORD_R8_REGNUM])
5556 {
5557 ir.addr -= 1;
5558 goto no_support;
5559 }
5560 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5561 return -1;
5562 break;
5563
5564 case 0x58: /* pop */
5565 case 0x59:
5566 case 0x5a:
5567 case 0x5b:
5568 case 0x5c:
5569 case 0x5d:
5570 case 0x5e:
5571 case 0x5f:
5572 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5573 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5574 break;
5575
5576 case 0x61: /* popa */
5577 if (ir.regmap[X86_RECORD_R8_REGNUM])
5578 {
5579 ir.addr -= 1;
5580 goto no_support;
5581 }
5582 for (regnum = X86_RECORD_REAX_REGNUM;
5583 regnum <= X86_RECORD_REDI_REGNUM;
5584 regnum++)
5585 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5586 break;
5587
5588 case 0x8f: /* pop */
5589 if (ir.regmap[X86_RECORD_R8_REGNUM])
5590 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5591 else
5592 ir.ot = ir.dflag + OT_WORD;
5593 if (i386_record_modrm (&ir))
5594 return -1;
5595 if (ir.mod == 3)
5596 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5597 else
5598 {
5599 ir.popl_esp_hack = 1 << ir.ot;
5600 if (i386_record_lea_modrm (&ir))
5601 return -1;
5602 }
5603 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5604 break;
5605
5606 case 0xc8: /* enter */
5607 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5608 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5609 ir.dflag = 2;
5610 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5611 return -1;
5612 break;
5613
5614 case 0xc9: /* leave */
5615 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5616 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5617 break;
5618
5619 case 0x07: /* pop es */
5620 if (ir.regmap[X86_RECORD_R8_REGNUM])
5621 {
5622 ir.addr -= 1;
5623 goto no_support;
5624 }
5625 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5626 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5627 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5628 break;
5629
5630 case 0x17: /* pop ss */
5631 if (ir.regmap[X86_RECORD_R8_REGNUM])
5632 {
5633 ir.addr -= 1;
5634 goto no_support;
5635 }
5636 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5637 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5638 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5639 break;
5640
5641 case 0x1f: /* pop ds */
5642 if (ir.regmap[X86_RECORD_R8_REGNUM])
5643 {
5644 ir.addr -= 1;
5645 goto no_support;
5646 }
5647 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5648 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5649 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5650 break;
5651
5652 case 0x0fa1: /* pop fs */
5653 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5654 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5655 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5656 break;
5657
5658 case 0x0fa9: /* pop gs */
5659 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5660 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5661 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5662 break;
5663
5664 case 0x88: /* mov */
5665 case 0x89:
5666 case 0xc6:
5667 case 0xc7:
5668 if ((opcode & 1) == 0)
5669 ir.ot = OT_BYTE;
5670 else
5671 ir.ot = ir.dflag + OT_WORD;
5672
5673 if (i386_record_modrm (&ir))
5674 return -1;
5675
5676 if (ir.mod != 3)
5677 {
5678 if (opcode == 0xc6 || opcode == 0xc7)
5679 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5680 if (i386_record_lea_modrm (&ir))
5681 return -1;
5682 }
5683 else
5684 {
5685 if (opcode == 0xc6 || opcode == 0xc7)
5686 ir.rm |= ir.rex_b;
5687 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5688 ir.rm &= 0x3;
5689 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5690 }
5691 break;
5692
5693 case 0x8a: /* mov */
5694 case 0x8b:
5695 if ((opcode & 1) == 0)
5696 ir.ot = OT_BYTE;
5697 else
5698 ir.ot = ir.dflag + OT_WORD;
5699 if (i386_record_modrm (&ir))
5700 return -1;
5701 ir.reg |= rex_r;
5702 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5703 ir.reg &= 0x3;
5704 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5705 break;
5706
5707 case 0x8c: /* mov seg */
5708 if (i386_record_modrm (&ir))
5709 return -1;
5710 if (ir.reg > 5)
5711 {
5712 ir.addr -= 2;
5713 opcode = opcode << 8 | ir.modrm;
5714 goto no_support;
5715 }
5716
5717 if (ir.mod == 3)
5718 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5719 else
5720 {
5721 ir.ot = OT_WORD;
5722 if (i386_record_lea_modrm (&ir))
5723 return -1;
5724 }
5725 break;
5726
5727 case 0x8e: /* mov seg */
5728 if (i386_record_modrm (&ir))
5729 return -1;
5730 switch (ir.reg)
5731 {
5732 case 0:
5733 regnum = X86_RECORD_ES_REGNUM;
5734 break;
5735 case 2:
5736 regnum = X86_RECORD_SS_REGNUM;
5737 break;
5738 case 3:
5739 regnum = X86_RECORD_DS_REGNUM;
5740 break;
5741 case 4:
5742 regnum = X86_RECORD_FS_REGNUM;
5743 break;
5744 case 5:
5745 regnum = X86_RECORD_GS_REGNUM;
5746 break;
5747 default:
5748 ir.addr -= 2;
5749 opcode = opcode << 8 | ir.modrm;
5750 goto no_support;
5751 break;
5752 }
5753 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5754 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5755 break;
5756
5757 case 0x0fb6: /* movzbS */
5758 case 0x0fb7: /* movzwS */
5759 case 0x0fbe: /* movsbS */
5760 case 0x0fbf: /* movswS */
5761 if (i386_record_modrm (&ir))
5762 return -1;
5763 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5764 break;
5765
5766 case 0x8d: /* lea */
5767 if (i386_record_modrm (&ir))
5768 return -1;
5769 if (ir.mod == 3)
5770 {
5771 ir.addr -= 2;
5772 opcode = opcode << 8 | ir.modrm;
5773 goto no_support;
5774 }
5775 ir.ot = ir.dflag;
5776 ir.reg |= rex_r;
5777 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5778 ir.reg &= 0x3;
5779 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5780 break;
5781
5782 case 0xa0: /* mov EAX */
5783 case 0xa1:
5784
5785 case 0xd7: /* xlat */
5786 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5787 break;
5788
5789 case 0xa2: /* mov EAX */
5790 case 0xa3:
5791 if (ir.override >= 0)
5792 {
5793 if (record_full_memory_query)
5794 {
5795 if (yquery (_("\
5796 Process record ignores the memory change of instruction at address %s\n\
5797 because it can't get the value of the segment register.\n\
5798 Do you want to stop the program?"),
5799 paddress (gdbarch, ir.orig_addr)))
5800 return -1;
5801 }
5802 }
5803 else
5804 {
5805 if ((opcode & 1) == 0)
5806 ir.ot = OT_BYTE;
5807 else
5808 ir.ot = ir.dflag + OT_WORD;
5809 if (ir.aflag == 2)
5810 {
5811 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5812 return -1;
5813 ir.addr += 8;
5814 addr = extract_unsigned_integer (buf, 8, byte_order);
5815 }
5816 else if (ir.aflag)
5817 {
5818 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5819 return -1;
5820 ir.addr += 4;
5821 addr = extract_unsigned_integer (buf, 4, byte_order);
5822 }
5823 else
5824 {
5825 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5826 return -1;
5827 ir.addr += 2;
5828 addr = extract_unsigned_integer (buf, 2, byte_order);
5829 }
5830 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5831 return -1;
5832 }
5833 break;
5834
5835 case 0xb0: /* mov R, Ib */
5836 case 0xb1:
5837 case 0xb2:
5838 case 0xb3:
5839 case 0xb4:
5840 case 0xb5:
5841 case 0xb6:
5842 case 0xb7:
5843 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5844 ? ((opcode & 0x7) | ir.rex_b)
5845 : ((opcode & 0x7) & 0x3));
5846 break;
5847
5848 case 0xb8: /* mov R, Iv */
5849 case 0xb9:
5850 case 0xba:
5851 case 0xbb:
5852 case 0xbc:
5853 case 0xbd:
5854 case 0xbe:
5855 case 0xbf:
5856 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5857 break;
5858
5859 case 0x91: /* xchg R, EAX */
5860 case 0x92:
5861 case 0x93:
5862 case 0x94:
5863 case 0x95:
5864 case 0x96:
5865 case 0x97:
5866 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5867 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5868 break;
5869
5870 case 0x86: /* xchg Ev, Gv */
5871 case 0x87:
5872 if ((opcode & 1) == 0)
5873 ir.ot = OT_BYTE;
5874 else
5875 ir.ot = ir.dflag + OT_WORD;
5876 if (i386_record_modrm (&ir))
5877 return -1;
5878 if (ir.mod == 3)
5879 {
5880 ir.rm |= ir.rex_b;
5881 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5882 ir.rm &= 0x3;
5883 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5884 }
5885 else
5886 {
5887 if (i386_record_lea_modrm (&ir))
5888 return -1;
5889 }
5890 ir.reg |= rex_r;
5891 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5892 ir.reg &= 0x3;
5893 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5894 break;
5895
5896 case 0xc4: /* les Gv */
5897 case 0xc5: /* lds Gv */
5898 if (ir.regmap[X86_RECORD_R8_REGNUM])
5899 {
5900 ir.addr -= 1;
5901 goto no_support;
5902 }
5903 /* FALLTHROUGH */
5904 case 0x0fb2: /* lss Gv */
5905 case 0x0fb4: /* lfs Gv */
5906 case 0x0fb5: /* lgs Gv */
5907 if (i386_record_modrm (&ir))
5908 return -1;
5909 if (ir.mod == 3)
5910 {
5911 if (opcode > 0xff)
5912 ir.addr -= 3;
5913 else
5914 ir.addr -= 2;
5915 opcode = opcode << 8 | ir.modrm;
5916 goto no_support;
5917 }
5918 switch (opcode)
5919 {
5920 case 0xc4: /* les Gv */
5921 regnum = X86_RECORD_ES_REGNUM;
5922 break;
5923 case 0xc5: /* lds Gv */
5924 regnum = X86_RECORD_DS_REGNUM;
5925 break;
5926 case 0x0fb2: /* lss Gv */
5927 regnum = X86_RECORD_SS_REGNUM;
5928 break;
5929 case 0x0fb4: /* lfs Gv */
5930 regnum = X86_RECORD_FS_REGNUM;
5931 break;
5932 case 0x0fb5: /* lgs Gv */
5933 regnum = X86_RECORD_GS_REGNUM;
5934 break;
5935 }
5936 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5937 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5938 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5939 break;
5940
5941 case 0xc0: /* shifts */
5942 case 0xc1:
5943 case 0xd0:
5944 case 0xd1:
5945 case 0xd2:
5946 case 0xd3:
5947 if ((opcode & 1) == 0)
5948 ir.ot = OT_BYTE;
5949 else
5950 ir.ot = ir.dflag + OT_WORD;
5951 if (i386_record_modrm (&ir))
5952 return -1;
5953 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5954 {
5955 if (i386_record_lea_modrm (&ir))
5956 return -1;
5957 }
5958 else
5959 {
5960 ir.rm |= ir.rex_b;
5961 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5962 ir.rm &= 0x3;
5963 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5964 }
5965 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5966 break;
5967
5968 case 0x0fa4:
5969 case 0x0fa5:
5970 case 0x0fac:
5971 case 0x0fad:
5972 if (i386_record_modrm (&ir))
5973 return -1;
5974 if (ir.mod == 3)
5975 {
5976 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5977 return -1;
5978 }
5979 else
5980 {
5981 if (i386_record_lea_modrm (&ir))
5982 return -1;
5983 }
5984 break;
5985
5986 case 0xd8: /* Floats. */
5987 case 0xd9:
5988 case 0xda:
5989 case 0xdb:
5990 case 0xdc:
5991 case 0xdd:
5992 case 0xde:
5993 case 0xdf:
5994 if (i386_record_modrm (&ir))
5995 return -1;
5996 ir.reg |= ((opcode & 7) << 3);
5997 if (ir.mod != 3)
5998 {
5999 /* Memory. */
6000 uint64_t addr64;
6001
6002 if (i386_record_lea_modrm_addr (&ir, &addr64))
6003 return -1;
6004 switch (ir.reg)
6005 {
6006 case 0x02:
6007 case 0x12:
6008 case 0x22:
6009 case 0x32:
6010 /* For fcom, ficom nothing to do. */
6011 break;
6012 case 0x03:
6013 case 0x13:
6014 case 0x23:
6015 case 0x33:
6016 /* For fcomp, ficomp pop FPU stack, store all. */
6017 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6018 return -1;
6019 break;
6020 case 0x00:
6021 case 0x01:
6022 case 0x04:
6023 case 0x05:
6024 case 0x06:
6025 case 0x07:
6026 case 0x10:
6027 case 0x11:
6028 case 0x14:
6029 case 0x15:
6030 case 0x16:
6031 case 0x17:
6032 case 0x20:
6033 case 0x21:
6034 case 0x24:
6035 case 0x25:
6036 case 0x26:
6037 case 0x27:
6038 case 0x30:
6039 case 0x31:
6040 case 0x34:
6041 case 0x35:
6042 case 0x36:
6043 case 0x37:
6044 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6045 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6046 of code, always affects st(0) register. */
6047 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6048 return -1;
6049 break;
6050 case 0x08:
6051 case 0x0a:
6052 case 0x0b:
6053 case 0x18:
6054 case 0x19:
6055 case 0x1a:
6056 case 0x1b:
6057 case 0x1d:
6058 case 0x28:
6059 case 0x29:
6060 case 0x2a:
6061 case 0x2b:
6062 case 0x38:
6063 case 0x39:
6064 case 0x3a:
6065 case 0x3b:
6066 case 0x3c:
6067 case 0x3d:
6068 switch (ir.reg & 7)
6069 {
6070 case 0:
6071 /* Handling fld, fild. */
6072 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6073 return -1;
6074 break;
6075 case 1:
6076 switch (ir.reg >> 4)
6077 {
6078 case 0:
6079 if (record_full_arch_list_add_mem (addr64, 4))
6080 return -1;
6081 break;
6082 case 2:
6083 if (record_full_arch_list_add_mem (addr64, 8))
6084 return -1;
6085 break;
6086 case 3:
6087 break;
6088 default:
6089 if (record_full_arch_list_add_mem (addr64, 2))
6090 return -1;
6091 break;
6092 }
6093 break;
6094 default:
6095 switch (ir.reg >> 4)
6096 {
6097 case 0:
6098 if (record_full_arch_list_add_mem (addr64, 4))
6099 return -1;
6100 if (3 == (ir.reg & 7))
6101 {
6102 /* For fstp m32fp. */
6103 if (i386_record_floats (gdbarch, &ir,
6104 I386_SAVE_FPU_REGS))
6105 return -1;
6106 }
6107 break;
6108 case 1:
6109 if (record_full_arch_list_add_mem (addr64, 4))
6110 return -1;
6111 if ((3 == (ir.reg & 7))
6112 || (5 == (ir.reg & 7))
6113 || (7 == (ir.reg & 7)))
6114 {
6115 /* For fstp insn. */
6116 if (i386_record_floats (gdbarch, &ir,
6117 I386_SAVE_FPU_REGS))
6118 return -1;
6119 }
6120 break;
6121 case 2:
6122 if (record_full_arch_list_add_mem (addr64, 8))
6123 return -1;
6124 if (3 == (ir.reg & 7))
6125 {
6126 /* For fstp m64fp. */
6127 if (i386_record_floats (gdbarch, &ir,
6128 I386_SAVE_FPU_REGS))
6129 return -1;
6130 }
6131 break;
6132 case 3:
6133 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6134 {
6135 /* For fistp, fbld, fild, fbstp. */
6136 if (i386_record_floats (gdbarch, &ir,
6137 I386_SAVE_FPU_REGS))
6138 return -1;
6139 }
6140 /* Fall through */
6141 default:
6142 if (record_full_arch_list_add_mem (addr64, 2))
6143 return -1;
6144 break;
6145 }
6146 break;
6147 }
6148 break;
6149 case 0x0c:
6150 /* Insn fldenv. */
6151 if (i386_record_floats (gdbarch, &ir,
6152 I386_SAVE_FPU_ENV_REG_STACK))
6153 return -1;
6154 break;
6155 case 0x0d:
6156 /* Insn fldcw. */
6157 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6158 return -1;
6159 break;
6160 case 0x2c:
6161 /* Insn frstor. */
6162 if (i386_record_floats (gdbarch, &ir,
6163 I386_SAVE_FPU_ENV_REG_STACK))
6164 return -1;
6165 break;
6166 case 0x0e:
6167 if (ir.dflag)
6168 {
6169 if (record_full_arch_list_add_mem (addr64, 28))
6170 return -1;
6171 }
6172 else
6173 {
6174 if (record_full_arch_list_add_mem (addr64, 14))
6175 return -1;
6176 }
6177 break;
6178 case 0x0f:
6179 case 0x2f:
6180 if (record_full_arch_list_add_mem (addr64, 2))
6181 return -1;
6182 /* Insn fstp, fbstp. */
6183 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6184 return -1;
6185 break;
6186 case 0x1f:
6187 case 0x3e:
6188 if (record_full_arch_list_add_mem (addr64, 10))
6189 return -1;
6190 break;
6191 case 0x2e:
6192 if (ir.dflag)
6193 {
6194 if (record_full_arch_list_add_mem (addr64, 28))
6195 return -1;
6196 addr64 += 28;
6197 }
6198 else
6199 {
6200 if (record_full_arch_list_add_mem (addr64, 14))
6201 return -1;
6202 addr64 += 14;
6203 }
6204 if (record_full_arch_list_add_mem (addr64, 80))
6205 return -1;
6206 /* Insn fsave. */
6207 if (i386_record_floats (gdbarch, &ir,
6208 I386_SAVE_FPU_ENV_REG_STACK))
6209 return -1;
6210 break;
6211 case 0x3f:
6212 if (record_full_arch_list_add_mem (addr64, 8))
6213 return -1;
6214 /* Insn fistp. */
6215 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6216 return -1;
6217 break;
6218 default:
6219 ir.addr -= 2;
6220 opcode = opcode << 8 | ir.modrm;
6221 goto no_support;
6222 break;
6223 }
6224 }
6225 /* Opcode is an extension of modR/M byte. */
6226 else
6227 {
6228 switch (opcode)
6229 {
6230 case 0xd8:
6231 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6232 return -1;
6233 break;
6234 case 0xd9:
6235 if (0x0c == (ir.modrm >> 4))
6236 {
6237 if ((ir.modrm & 0x0f) <= 7)
6238 {
6239 if (i386_record_floats (gdbarch, &ir,
6240 I386_SAVE_FPU_REGS))
6241 return -1;
6242 }
6243 else
6244 {
6245 if (i386_record_floats (gdbarch, &ir,
6246 I387_ST0_REGNUM (tdep)))
6247 return -1;
6248 /* If only st(0) is changing, then we have already
6249 recorded. */
6250 if ((ir.modrm & 0x0f) - 0x08)
6251 {
6252 if (i386_record_floats (gdbarch, &ir,
6253 I387_ST0_REGNUM (tdep) +
6254 ((ir.modrm & 0x0f) - 0x08)))
6255 return -1;
6256 }
6257 }
6258 }
6259 else
6260 {
6261 switch (ir.modrm)
6262 {
6263 case 0xe0:
6264 case 0xe1:
6265 case 0xf0:
6266 case 0xf5:
6267 case 0xf8:
6268 case 0xfa:
6269 case 0xfc:
6270 case 0xfe:
6271 case 0xff:
6272 if (i386_record_floats (gdbarch, &ir,
6273 I387_ST0_REGNUM (tdep)))
6274 return -1;
6275 break;
6276 case 0xf1:
6277 case 0xf2:
6278 case 0xf3:
6279 case 0xf4:
6280 case 0xf6:
6281 case 0xf7:
6282 case 0xe8:
6283 case 0xe9:
6284 case 0xea:
6285 case 0xeb:
6286 case 0xec:
6287 case 0xed:
6288 case 0xee:
6289 case 0xf9:
6290 case 0xfb:
6291 if (i386_record_floats (gdbarch, &ir,
6292 I386_SAVE_FPU_REGS))
6293 return -1;
6294 break;
6295 case 0xfd:
6296 if (i386_record_floats (gdbarch, &ir,
6297 I387_ST0_REGNUM (tdep)))
6298 return -1;
6299 if (i386_record_floats (gdbarch, &ir,
6300 I387_ST0_REGNUM (tdep) + 1))
6301 return -1;
6302 break;
6303 }
6304 }
6305 break;
6306 case 0xda:
6307 if (0xe9 == ir.modrm)
6308 {
6309 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6310 return -1;
6311 }
6312 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6313 {
6314 if (i386_record_floats (gdbarch, &ir,
6315 I387_ST0_REGNUM (tdep)))
6316 return -1;
6317 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6318 {
6319 if (i386_record_floats (gdbarch, &ir,
6320 I387_ST0_REGNUM (tdep) +
6321 (ir.modrm & 0x0f)))
6322 return -1;
6323 }
6324 else if ((ir.modrm & 0x0f) - 0x08)
6325 {
6326 if (i386_record_floats (gdbarch, &ir,
6327 I387_ST0_REGNUM (tdep) +
6328 ((ir.modrm & 0x0f) - 0x08)))
6329 return -1;
6330 }
6331 }
6332 break;
6333 case 0xdb:
6334 if (0xe3 == ir.modrm)
6335 {
6336 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6337 return -1;
6338 }
6339 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6340 {
6341 if (i386_record_floats (gdbarch, &ir,
6342 I387_ST0_REGNUM (tdep)))
6343 return -1;
6344 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6345 {
6346 if (i386_record_floats (gdbarch, &ir,
6347 I387_ST0_REGNUM (tdep) +
6348 (ir.modrm & 0x0f)))
6349 return -1;
6350 }
6351 else if ((ir.modrm & 0x0f) - 0x08)
6352 {
6353 if (i386_record_floats (gdbarch, &ir,
6354 I387_ST0_REGNUM (tdep) +
6355 ((ir.modrm & 0x0f) - 0x08)))
6356 return -1;
6357 }
6358 }
6359 break;
6360 case 0xdc:
6361 if ((0x0c == ir.modrm >> 4)
6362 || (0x0d == ir.modrm >> 4)
6363 || (0x0f == ir.modrm >> 4))
6364 {
6365 if ((ir.modrm & 0x0f) <= 7)
6366 {
6367 if (i386_record_floats (gdbarch, &ir,
6368 I387_ST0_REGNUM (tdep) +
6369 (ir.modrm & 0x0f)))
6370 return -1;
6371 }
6372 else
6373 {
6374 if (i386_record_floats (gdbarch, &ir,
6375 I387_ST0_REGNUM (tdep) +
6376 ((ir.modrm & 0x0f) - 0x08)))
6377 return -1;
6378 }
6379 }
6380 break;
6381 case 0xdd:
6382 if (0x0c == ir.modrm >> 4)
6383 {
6384 if (i386_record_floats (gdbarch, &ir,
6385 I387_FTAG_REGNUM (tdep)))
6386 return -1;
6387 }
6388 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6389 {
6390 if ((ir.modrm & 0x0f) <= 7)
6391 {
6392 if (i386_record_floats (gdbarch, &ir,
6393 I387_ST0_REGNUM (tdep) +
6394 (ir.modrm & 0x0f)))
6395 return -1;
6396 }
6397 else
6398 {
6399 if (i386_record_floats (gdbarch, &ir,
6400 I386_SAVE_FPU_REGS))
6401 return -1;
6402 }
6403 }
6404 break;
6405 case 0xde:
6406 if ((0x0c == ir.modrm >> 4)
6407 || (0x0e == ir.modrm >> 4)
6408 || (0x0f == ir.modrm >> 4)
6409 || (0xd9 == ir.modrm))
6410 {
6411 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6412 return -1;
6413 }
6414 break;
6415 case 0xdf:
6416 if (0xe0 == ir.modrm)
6417 {
6418 if (record_full_arch_list_add_reg (ir.regcache,
6419 I386_EAX_REGNUM))
6420 return -1;
6421 }
6422 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6423 {
6424 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6425 return -1;
6426 }
6427 break;
6428 }
6429 }
6430 break;
6431 /* string ops */
6432 case 0xa4: /* movsS */
6433 case 0xa5:
6434 case 0xaa: /* stosS */
6435 case 0xab:
6436 case 0x6c: /* insS */
6437 case 0x6d:
6438 regcache_raw_read_unsigned (ir.regcache,
6439 ir.regmap[X86_RECORD_RECX_REGNUM],
6440 &addr);
6441 if (addr)
6442 {
6443 ULONGEST es, ds;
6444
6445 if ((opcode & 1) == 0)
6446 ir.ot = OT_BYTE;
6447 else
6448 ir.ot = ir.dflag + OT_WORD;
6449 regcache_raw_read_unsigned (ir.regcache,
6450 ir.regmap[X86_RECORD_REDI_REGNUM],
6451 &addr);
6452
6453 regcache_raw_read_unsigned (ir.regcache,
6454 ir.regmap[X86_RECORD_ES_REGNUM],
6455 &es);
6456 regcache_raw_read_unsigned (ir.regcache,
6457 ir.regmap[X86_RECORD_DS_REGNUM],
6458 &ds);
6459 if (ir.aflag && (es != ds))
6460 {
6461 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6462 if (record_full_memory_query)
6463 {
6464 if (yquery (_("\
6465 Process record ignores the memory change of instruction at address %s\n\
6466 because it can't get the value of the segment register.\n\
6467 Do you want to stop the program?"),
6468 paddress (gdbarch, ir.orig_addr)))
6469 return -1;
6470 }
6471 }
6472 else
6473 {
6474 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6475 return -1;
6476 }
6477
6478 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6479 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6480 if (opcode == 0xa4 || opcode == 0xa5)
6481 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6482 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6483 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6484 }
6485 break;
6486
6487 case 0xa6: /* cmpsS */
6488 case 0xa7:
6489 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6490 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6491 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6492 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6493 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6494 break;
6495
6496 case 0xac: /* lodsS */
6497 case 0xad:
6498 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6499 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6500 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6501 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6502 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6503 break;
6504
6505 case 0xae: /* scasS */
6506 case 0xaf:
6507 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6508 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6509 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6510 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6511 break;
6512
6513 case 0x6e: /* outsS */
6514 case 0x6f:
6515 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6516 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6518 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6519 break;
6520
6521 case 0xe4: /* port I/O */
6522 case 0xe5:
6523 case 0xec:
6524 case 0xed:
6525 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6526 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6527 break;
6528
6529 case 0xe6:
6530 case 0xe7:
6531 case 0xee:
6532 case 0xef:
6533 break;
6534
6535 /* control */
6536 case 0xc2: /* ret im */
6537 case 0xc3: /* ret */
6538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6539 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6540 break;
6541
6542 case 0xca: /* lret im */
6543 case 0xcb: /* lret */
6544 case 0xcf: /* iret */
6545 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6546 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6547 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6548 break;
6549
6550 case 0xe8: /* call im */
6551 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6552 ir.dflag = 2;
6553 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6554 return -1;
6555 break;
6556
6557 case 0x9a: /* lcall im */
6558 if (ir.regmap[X86_RECORD_R8_REGNUM])
6559 {
6560 ir.addr -= 1;
6561 goto no_support;
6562 }
6563 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6564 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6565 return -1;
6566 break;
6567
6568 case 0xe9: /* jmp im */
6569 case 0xea: /* ljmp im */
6570 case 0xeb: /* jmp Jb */
6571 case 0x70: /* jcc Jb */
6572 case 0x71:
6573 case 0x72:
6574 case 0x73:
6575 case 0x74:
6576 case 0x75:
6577 case 0x76:
6578 case 0x77:
6579 case 0x78:
6580 case 0x79:
6581 case 0x7a:
6582 case 0x7b:
6583 case 0x7c:
6584 case 0x7d:
6585 case 0x7e:
6586 case 0x7f:
6587 case 0x0f80: /* jcc Jv */
6588 case 0x0f81:
6589 case 0x0f82:
6590 case 0x0f83:
6591 case 0x0f84:
6592 case 0x0f85:
6593 case 0x0f86:
6594 case 0x0f87:
6595 case 0x0f88:
6596 case 0x0f89:
6597 case 0x0f8a:
6598 case 0x0f8b:
6599 case 0x0f8c:
6600 case 0x0f8d:
6601 case 0x0f8e:
6602 case 0x0f8f:
6603 break;
6604
6605 case 0x0f90: /* setcc Gv */
6606 case 0x0f91:
6607 case 0x0f92:
6608 case 0x0f93:
6609 case 0x0f94:
6610 case 0x0f95:
6611 case 0x0f96:
6612 case 0x0f97:
6613 case 0x0f98:
6614 case 0x0f99:
6615 case 0x0f9a:
6616 case 0x0f9b:
6617 case 0x0f9c:
6618 case 0x0f9d:
6619 case 0x0f9e:
6620 case 0x0f9f:
6621 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6622 ir.ot = OT_BYTE;
6623 if (i386_record_modrm (&ir))
6624 return -1;
6625 if (ir.mod == 3)
6626 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6627 : (ir.rm & 0x3));
6628 else
6629 {
6630 if (i386_record_lea_modrm (&ir))
6631 return -1;
6632 }
6633 break;
6634
6635 case 0x0f40: /* cmov Gv, Ev */
6636 case 0x0f41:
6637 case 0x0f42:
6638 case 0x0f43:
6639 case 0x0f44:
6640 case 0x0f45:
6641 case 0x0f46:
6642 case 0x0f47:
6643 case 0x0f48:
6644 case 0x0f49:
6645 case 0x0f4a:
6646 case 0x0f4b:
6647 case 0x0f4c:
6648 case 0x0f4d:
6649 case 0x0f4e:
6650 case 0x0f4f:
6651 if (i386_record_modrm (&ir))
6652 return -1;
6653 ir.reg |= rex_r;
6654 if (ir.dflag == OT_BYTE)
6655 ir.reg &= 0x3;
6656 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6657 break;
6658
6659 /* flags */
6660 case 0x9c: /* pushf */
6661 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6662 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6663 ir.dflag = 2;
6664 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6665 return -1;
6666 break;
6667
6668 case 0x9d: /* popf */
6669 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6670 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6671 break;
6672
6673 case 0x9e: /* sahf */
6674 if (ir.regmap[X86_RECORD_R8_REGNUM])
6675 {
6676 ir.addr -= 1;
6677 goto no_support;
6678 }
6679 /* FALLTHROUGH */
6680 case 0xf5: /* cmc */
6681 case 0xf8: /* clc */
6682 case 0xf9: /* stc */
6683 case 0xfc: /* cld */
6684 case 0xfd: /* std */
6685 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6686 break;
6687
6688 case 0x9f: /* lahf */
6689 if (ir.regmap[X86_RECORD_R8_REGNUM])
6690 {
6691 ir.addr -= 1;
6692 goto no_support;
6693 }
6694 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6695 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6696 break;
6697
6698 /* bit operations */
6699 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6700 ir.ot = ir.dflag + OT_WORD;
6701 if (i386_record_modrm (&ir))
6702 return -1;
6703 if (ir.reg < 4)
6704 {
6705 ir.addr -= 2;
6706 opcode = opcode << 8 | ir.modrm;
6707 goto no_support;
6708 }
6709 if (ir.reg != 4)
6710 {
6711 if (ir.mod == 3)
6712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6713 else
6714 {
6715 if (i386_record_lea_modrm (&ir))
6716 return -1;
6717 }
6718 }
6719 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6720 break;
6721
6722 case 0x0fa3: /* bt Gv, Ev */
6723 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6724 break;
6725
6726 case 0x0fab: /* bts */
6727 case 0x0fb3: /* btr */
6728 case 0x0fbb: /* btc */
6729 ir.ot = ir.dflag + OT_WORD;
6730 if (i386_record_modrm (&ir))
6731 return -1;
6732 if (ir.mod == 3)
6733 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6734 else
6735 {
6736 uint64_t addr64;
6737 if (i386_record_lea_modrm_addr (&ir, &addr64))
6738 return -1;
6739 regcache_raw_read_unsigned (ir.regcache,
6740 ir.regmap[ir.reg | rex_r],
6741 &addr);
6742 switch (ir.dflag)
6743 {
6744 case 0:
6745 addr64 += ((int16_t) addr >> 4) << 4;
6746 break;
6747 case 1:
6748 addr64 += ((int32_t) addr >> 5) << 5;
6749 break;
6750 case 2:
6751 addr64 += ((int64_t) addr >> 6) << 6;
6752 break;
6753 }
6754 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6755 return -1;
6756 if (i386_record_lea_modrm (&ir))
6757 return -1;
6758 }
6759 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6760 break;
6761
6762 case 0x0fbc: /* bsf */
6763 case 0x0fbd: /* bsr */
6764 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6765 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6766 break;
6767
6768 /* bcd */
6769 case 0x27: /* daa */
6770 case 0x2f: /* das */
6771 case 0x37: /* aaa */
6772 case 0x3f: /* aas */
6773 case 0xd4: /* aam */
6774 case 0xd5: /* aad */
6775 if (ir.regmap[X86_RECORD_R8_REGNUM])
6776 {
6777 ir.addr -= 1;
6778 goto no_support;
6779 }
6780 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6781 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6782 break;
6783
6784 /* misc */
6785 case 0x90: /* nop */
6786 if (prefixes & PREFIX_LOCK)
6787 {
6788 ir.addr -= 1;
6789 goto no_support;
6790 }
6791 break;
6792
6793 case 0x9b: /* fwait */
6794 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6795 return -1;
6796 opcode = (uint32_t) opcode8;
6797 ir.addr++;
6798 goto reswitch;
6799 break;
6800
6801 /* XXX */
6802 case 0xcc: /* int3 */
6803 printf_unfiltered (_("Process record does not support instruction "
6804 "int3.\n"));
6805 ir.addr -= 1;
6806 goto no_support;
6807 break;
6808
6809 /* XXX */
6810 case 0xcd: /* int */
6811 {
6812 int ret;
6813 uint8_t interrupt;
6814 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6815 return -1;
6816 ir.addr++;
6817 if (interrupt != 0x80
6818 || tdep->i386_intx80_record == NULL)
6819 {
6820 printf_unfiltered (_("Process record does not support "
6821 "instruction int 0x%02x.\n"),
6822 interrupt);
6823 ir.addr -= 2;
6824 goto no_support;
6825 }
6826 ret = tdep->i386_intx80_record (ir.regcache);
6827 if (ret)
6828 return ret;
6829 }
6830 break;
6831
6832 /* XXX */
6833 case 0xce: /* into */
6834 printf_unfiltered (_("Process record does not support "
6835 "instruction into.\n"));
6836 ir.addr -= 1;
6837 goto no_support;
6838 break;
6839
6840 case 0xfa: /* cli */
6841 case 0xfb: /* sti */
6842 break;
6843
6844 case 0x62: /* bound */
6845 printf_unfiltered (_("Process record does not support "
6846 "instruction bound.\n"));
6847 ir.addr -= 1;
6848 goto no_support;
6849 break;
6850
6851 case 0x0fc8: /* bswap reg */
6852 case 0x0fc9:
6853 case 0x0fca:
6854 case 0x0fcb:
6855 case 0x0fcc:
6856 case 0x0fcd:
6857 case 0x0fce:
6858 case 0x0fcf:
6859 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6860 break;
6861
6862 case 0xd6: /* salc */
6863 if (ir.regmap[X86_RECORD_R8_REGNUM])
6864 {
6865 ir.addr -= 1;
6866 goto no_support;
6867 }
6868 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6869 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6870 break;
6871
6872 case 0xe0: /* loopnz */
6873 case 0xe1: /* loopz */
6874 case 0xe2: /* loop */
6875 case 0xe3: /* jecxz */
6876 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6877 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6878 break;
6879
6880 case 0x0f30: /* wrmsr */
6881 printf_unfiltered (_("Process record does not support "
6882 "instruction wrmsr.\n"));
6883 ir.addr -= 2;
6884 goto no_support;
6885 break;
6886
6887 case 0x0f32: /* rdmsr */
6888 printf_unfiltered (_("Process record does not support "
6889 "instruction rdmsr.\n"));
6890 ir.addr -= 2;
6891 goto no_support;
6892 break;
6893
6894 case 0x0f31: /* rdtsc */
6895 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6896 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6897 break;
6898
6899 case 0x0f34: /* sysenter */
6900 {
6901 int ret;
6902 if (ir.regmap[X86_RECORD_R8_REGNUM])
6903 {
6904 ir.addr -= 2;
6905 goto no_support;
6906 }
6907 if (tdep->i386_sysenter_record == NULL)
6908 {
6909 printf_unfiltered (_("Process record does not support "
6910 "instruction sysenter.\n"));
6911 ir.addr -= 2;
6912 goto no_support;
6913 }
6914 ret = tdep->i386_sysenter_record (ir.regcache);
6915 if (ret)
6916 return ret;
6917 }
6918 break;
6919
6920 case 0x0f35: /* sysexit */
6921 printf_unfiltered (_("Process record does not support "
6922 "instruction sysexit.\n"));
6923 ir.addr -= 2;
6924 goto no_support;
6925 break;
6926
6927 case 0x0f05: /* syscall */
6928 {
6929 int ret;
6930 if (tdep->i386_syscall_record == NULL)
6931 {
6932 printf_unfiltered (_("Process record does not support "
6933 "instruction syscall.\n"));
6934 ir.addr -= 2;
6935 goto no_support;
6936 }
6937 ret = tdep->i386_syscall_record (ir.regcache);
6938 if (ret)
6939 return ret;
6940 }
6941 break;
6942
6943 case 0x0f07: /* sysret */
6944 printf_unfiltered (_("Process record does not support "
6945 "instruction sysret.\n"));
6946 ir.addr -= 2;
6947 goto no_support;
6948 break;
6949
6950 case 0x0fa2: /* cpuid */
6951 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6952 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6953 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6954 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6955 break;
6956
6957 case 0xf4: /* hlt */
6958 printf_unfiltered (_("Process record does not support "
6959 "instruction hlt.\n"));
6960 ir.addr -= 1;
6961 goto no_support;
6962 break;
6963
6964 case 0x0f00:
6965 if (i386_record_modrm (&ir))
6966 return -1;
6967 switch (ir.reg)
6968 {
6969 case 0: /* sldt */
6970 case 1: /* str */
6971 if (ir.mod == 3)
6972 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6973 else
6974 {
6975 ir.ot = OT_WORD;
6976 if (i386_record_lea_modrm (&ir))
6977 return -1;
6978 }
6979 break;
6980 case 2: /* lldt */
6981 case 3: /* ltr */
6982 break;
6983 case 4: /* verr */
6984 case 5: /* verw */
6985 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6986 break;
6987 default:
6988 ir.addr -= 3;
6989 opcode = opcode << 8 | ir.modrm;
6990 goto no_support;
6991 break;
6992 }
6993 break;
6994
6995 case 0x0f01:
6996 if (i386_record_modrm (&ir))
6997 return -1;
6998 switch (ir.reg)
6999 {
7000 case 0: /* sgdt */
7001 {
7002 uint64_t addr64;
7003
7004 if (ir.mod == 3)
7005 {
7006 ir.addr -= 3;
7007 opcode = opcode << 8 | ir.modrm;
7008 goto no_support;
7009 }
7010 if (ir.override >= 0)
7011 {
7012 if (record_full_memory_query)
7013 {
7014 if (yquery (_("\
7015 Process record ignores the memory change of instruction at address %s\n\
7016 because it can't get the value of the segment register.\n\
7017 Do you want to stop the program?"),
7018 paddress (gdbarch, ir.orig_addr)))
7019 return -1;
7020 }
7021 }
7022 else
7023 {
7024 if (i386_record_lea_modrm_addr (&ir, &addr64))
7025 return -1;
7026 if (record_full_arch_list_add_mem (addr64, 2))
7027 return -1;
7028 addr64 += 2;
7029 if (ir.regmap[X86_RECORD_R8_REGNUM])
7030 {
7031 if (record_full_arch_list_add_mem (addr64, 8))
7032 return -1;
7033 }
7034 else
7035 {
7036 if (record_full_arch_list_add_mem (addr64, 4))
7037 return -1;
7038 }
7039 }
7040 }
7041 break;
7042 case 1:
7043 if (ir.mod == 3)
7044 {
7045 switch (ir.rm)
7046 {
7047 case 0: /* monitor */
7048 break;
7049 case 1: /* mwait */
7050 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7051 break;
7052 default:
7053 ir.addr -= 3;
7054 opcode = opcode << 8 | ir.modrm;
7055 goto no_support;
7056 break;
7057 }
7058 }
7059 else
7060 {
7061 /* sidt */
7062 if (ir.override >= 0)
7063 {
7064 if (record_full_memory_query)
7065 {
7066 if (yquery (_("\
7067 Process record ignores the memory change of instruction at address %s\n\
7068 because it can't get the value of the segment register.\n\
7069 Do you want to stop the program?"),
7070 paddress (gdbarch, ir.orig_addr)))
7071 return -1;
7072 }
7073 }
7074 else
7075 {
7076 uint64_t addr64;
7077
7078 if (i386_record_lea_modrm_addr (&ir, &addr64))
7079 return -1;
7080 if (record_full_arch_list_add_mem (addr64, 2))
7081 return -1;
7082 addr64 += 2;
7083 if (ir.regmap[X86_RECORD_R8_REGNUM])
7084 {
7085 if (record_full_arch_list_add_mem (addr64, 8))
7086 return -1;
7087 }
7088 else
7089 {
7090 if (record_full_arch_list_add_mem (addr64, 4))
7091 return -1;
7092 }
7093 }
7094 }
7095 break;
7096 case 2: /* lgdt */
7097 if (ir.mod == 3)
7098 {
7099 /* xgetbv */
7100 if (ir.rm == 0)
7101 {
7102 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7103 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7104 break;
7105 }
7106 /* xsetbv */
7107 else if (ir.rm == 1)
7108 break;
7109 }
7110 /* Fall through. */
7111 case 3: /* lidt */
7112 if (ir.mod == 3)
7113 {
7114 ir.addr -= 3;
7115 opcode = opcode << 8 | ir.modrm;
7116 goto no_support;
7117 }
7118 break;
7119 case 4: /* smsw */
7120 if (ir.mod == 3)
7121 {
7122 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7123 return -1;
7124 }
7125 else
7126 {
7127 ir.ot = OT_WORD;
7128 if (i386_record_lea_modrm (&ir))
7129 return -1;
7130 }
7131 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7132 break;
7133 case 6: /* lmsw */
7134 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7135 break;
7136 case 7: /* invlpg */
7137 if (ir.mod == 3)
7138 {
7139 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7140 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7141 else
7142 {
7143 ir.addr -= 3;
7144 opcode = opcode << 8 | ir.modrm;
7145 goto no_support;
7146 }
7147 }
7148 else
7149 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7150 break;
7151 default:
7152 ir.addr -= 3;
7153 opcode = opcode << 8 | ir.modrm;
7154 goto no_support;
7155 break;
7156 }
7157 break;
7158
7159 case 0x0f08: /* invd */
7160 case 0x0f09: /* wbinvd */
7161 break;
7162
7163 case 0x63: /* arpl */
7164 if (i386_record_modrm (&ir))
7165 return -1;
7166 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7167 {
7168 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7169 ? (ir.reg | rex_r) : ir.rm);
7170 }
7171 else
7172 {
7173 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7174 if (i386_record_lea_modrm (&ir))
7175 return -1;
7176 }
7177 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7178 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7179 break;
7180
7181 case 0x0f02: /* lar */
7182 case 0x0f03: /* lsl */
7183 if (i386_record_modrm (&ir))
7184 return -1;
7185 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7186 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7187 break;
7188
7189 case 0x0f18:
7190 if (i386_record_modrm (&ir))
7191 return -1;
7192 if (ir.mod == 3 && ir.reg == 3)
7193 {
7194 ir.addr -= 3;
7195 opcode = opcode << 8 | ir.modrm;
7196 goto no_support;
7197 }
7198 break;
7199
7200 case 0x0f19:
7201 case 0x0f1a:
7202 case 0x0f1b:
7203 case 0x0f1c:
7204 case 0x0f1d:
7205 case 0x0f1e:
7206 case 0x0f1f:
7207 /* nop (multi byte) */
7208 break;
7209
7210 case 0x0f20: /* mov reg, crN */
7211 case 0x0f22: /* mov crN, reg */
7212 if (i386_record_modrm (&ir))
7213 return -1;
7214 if ((ir.modrm & 0xc0) != 0xc0)
7215 {
7216 ir.addr -= 3;
7217 opcode = opcode << 8 | ir.modrm;
7218 goto no_support;
7219 }
7220 switch (ir.reg)
7221 {
7222 case 0:
7223 case 2:
7224 case 3:
7225 case 4:
7226 case 8:
7227 if (opcode & 2)
7228 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7229 else
7230 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7231 break;
7232 default:
7233 ir.addr -= 3;
7234 opcode = opcode << 8 | ir.modrm;
7235 goto no_support;
7236 break;
7237 }
7238 break;
7239
7240 case 0x0f21: /* mov reg, drN */
7241 case 0x0f23: /* mov drN, reg */
7242 if (i386_record_modrm (&ir))
7243 return -1;
7244 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7245 || ir.reg == 5 || ir.reg >= 8)
7246 {
7247 ir.addr -= 3;
7248 opcode = opcode << 8 | ir.modrm;
7249 goto no_support;
7250 }
7251 if (opcode & 2)
7252 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7253 else
7254 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7255 break;
7256
7257 case 0x0f06: /* clts */
7258 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7259 break;
7260
7261 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7262
7263 case 0x0f0d: /* 3DNow! prefetch */
7264 break;
7265
7266 case 0x0f0e: /* 3DNow! femms */
7267 case 0x0f77: /* emms */
7268 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7269 goto no_support;
7270 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7271 break;
7272
7273 case 0x0f0f: /* 3DNow! data */
7274 if (i386_record_modrm (&ir))
7275 return -1;
7276 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7277 return -1;
7278 ir.addr++;
7279 switch (opcode8)
7280 {
7281 case 0x0c: /* 3DNow! pi2fw */
7282 case 0x0d: /* 3DNow! pi2fd */
7283 case 0x1c: /* 3DNow! pf2iw */
7284 case 0x1d: /* 3DNow! pf2id */
7285 case 0x8a: /* 3DNow! pfnacc */
7286 case 0x8e: /* 3DNow! pfpnacc */
7287 case 0x90: /* 3DNow! pfcmpge */
7288 case 0x94: /* 3DNow! pfmin */
7289 case 0x96: /* 3DNow! pfrcp */
7290 case 0x97: /* 3DNow! pfrsqrt */
7291 case 0x9a: /* 3DNow! pfsub */
7292 case 0x9e: /* 3DNow! pfadd */
7293 case 0xa0: /* 3DNow! pfcmpgt */
7294 case 0xa4: /* 3DNow! pfmax */
7295 case 0xa6: /* 3DNow! pfrcpit1 */
7296 case 0xa7: /* 3DNow! pfrsqit1 */
7297 case 0xaa: /* 3DNow! pfsubr */
7298 case 0xae: /* 3DNow! pfacc */
7299 case 0xb0: /* 3DNow! pfcmpeq */
7300 case 0xb4: /* 3DNow! pfmul */
7301 case 0xb6: /* 3DNow! pfrcpit2 */
7302 case 0xb7: /* 3DNow! pmulhrw */
7303 case 0xbb: /* 3DNow! pswapd */
7304 case 0xbf: /* 3DNow! pavgusb */
7305 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7306 goto no_support_3dnow_data;
7307 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7308 break;
7309
7310 default:
7311 no_support_3dnow_data:
7312 opcode = (opcode << 8) | opcode8;
7313 goto no_support;
7314 break;
7315 }
7316 break;
7317
7318 case 0x0faa: /* rsm */
7319 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7320 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7321 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7322 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7323 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7324 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7325 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7326 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7327 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7328 break;
7329
7330 case 0x0fae:
7331 if (i386_record_modrm (&ir))
7332 return -1;
7333 switch(ir.reg)
7334 {
7335 case 0: /* fxsave */
7336 {
7337 uint64_t tmpu64;
7338
7339 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7340 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7341 return -1;
7342 if (record_full_arch_list_add_mem (tmpu64, 512))
7343 return -1;
7344 }
7345 break;
7346
7347 case 1: /* fxrstor */
7348 {
7349 int i;
7350
7351 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7352
7353 for (i = I387_MM0_REGNUM (tdep);
7354 i386_mmx_regnum_p (gdbarch, i); i++)
7355 record_full_arch_list_add_reg (ir.regcache, i);
7356
7357 for (i = I387_XMM0_REGNUM (tdep);
7358 i386_xmm_regnum_p (gdbarch, i); i++)
7359 record_full_arch_list_add_reg (ir.regcache, i);
7360
7361 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7362 record_full_arch_list_add_reg (ir.regcache,
7363 I387_MXCSR_REGNUM(tdep));
7364
7365 for (i = I387_ST0_REGNUM (tdep);
7366 i386_fp_regnum_p (gdbarch, i); i++)
7367 record_full_arch_list_add_reg (ir.regcache, i);
7368
7369 for (i = I387_FCTRL_REGNUM (tdep);
7370 i386_fpc_regnum_p (gdbarch, i); i++)
7371 record_full_arch_list_add_reg (ir.regcache, i);
7372 }
7373 break;
7374
7375 case 2: /* ldmxcsr */
7376 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7377 goto no_support;
7378 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7379 break;
7380
7381 case 3: /* stmxcsr */
7382 ir.ot = OT_LONG;
7383 if (i386_record_lea_modrm (&ir))
7384 return -1;
7385 break;
7386
7387 case 5: /* lfence */
7388 case 6: /* mfence */
7389 case 7: /* sfence clflush */
7390 break;
7391
7392 default:
7393 opcode = (opcode << 8) | ir.modrm;
7394 goto no_support;
7395 break;
7396 }
7397 break;
7398
7399 case 0x0fc3: /* movnti */
7400 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7401 if (i386_record_modrm (&ir))
7402 return -1;
7403 if (ir.mod == 3)
7404 goto no_support;
7405 ir.reg |= rex_r;
7406 if (i386_record_lea_modrm (&ir))
7407 return -1;
7408 break;
7409
7410 /* Add prefix to opcode. */
7411 case 0x0f10:
7412 case 0x0f11:
7413 case 0x0f12:
7414 case 0x0f13:
7415 case 0x0f14:
7416 case 0x0f15:
7417 case 0x0f16:
7418 case 0x0f17:
7419 case 0x0f28:
7420 case 0x0f29:
7421 case 0x0f2a:
7422 case 0x0f2b:
7423 case 0x0f2c:
7424 case 0x0f2d:
7425 case 0x0f2e:
7426 case 0x0f2f:
7427 case 0x0f38:
7428 case 0x0f39:
7429 case 0x0f3a:
7430 case 0x0f50:
7431 case 0x0f51:
7432 case 0x0f52:
7433 case 0x0f53:
7434 case 0x0f54:
7435 case 0x0f55:
7436 case 0x0f56:
7437 case 0x0f57:
7438 case 0x0f58:
7439 case 0x0f59:
7440 case 0x0f5a:
7441 case 0x0f5b:
7442 case 0x0f5c:
7443 case 0x0f5d:
7444 case 0x0f5e:
7445 case 0x0f5f:
7446 case 0x0f60:
7447 case 0x0f61:
7448 case 0x0f62:
7449 case 0x0f63:
7450 case 0x0f64:
7451 case 0x0f65:
7452 case 0x0f66:
7453 case 0x0f67:
7454 case 0x0f68:
7455 case 0x0f69:
7456 case 0x0f6a:
7457 case 0x0f6b:
7458 case 0x0f6c:
7459 case 0x0f6d:
7460 case 0x0f6e:
7461 case 0x0f6f:
7462 case 0x0f70:
7463 case 0x0f71:
7464 case 0x0f72:
7465 case 0x0f73:
7466 case 0x0f74:
7467 case 0x0f75:
7468 case 0x0f76:
7469 case 0x0f7c:
7470 case 0x0f7d:
7471 case 0x0f7e:
7472 case 0x0f7f:
7473 case 0x0fb8:
7474 case 0x0fc2:
7475 case 0x0fc4:
7476 case 0x0fc5:
7477 case 0x0fc6:
7478 case 0x0fd0:
7479 case 0x0fd1:
7480 case 0x0fd2:
7481 case 0x0fd3:
7482 case 0x0fd4:
7483 case 0x0fd5:
7484 case 0x0fd6:
7485 case 0x0fd7:
7486 case 0x0fd8:
7487 case 0x0fd9:
7488 case 0x0fda:
7489 case 0x0fdb:
7490 case 0x0fdc:
7491 case 0x0fdd:
7492 case 0x0fde:
7493 case 0x0fdf:
7494 case 0x0fe0:
7495 case 0x0fe1:
7496 case 0x0fe2:
7497 case 0x0fe3:
7498 case 0x0fe4:
7499 case 0x0fe5:
7500 case 0x0fe6:
7501 case 0x0fe7:
7502 case 0x0fe8:
7503 case 0x0fe9:
7504 case 0x0fea:
7505 case 0x0feb:
7506 case 0x0fec:
7507 case 0x0fed:
7508 case 0x0fee:
7509 case 0x0fef:
7510 case 0x0ff0:
7511 case 0x0ff1:
7512 case 0x0ff2:
7513 case 0x0ff3:
7514 case 0x0ff4:
7515 case 0x0ff5:
7516 case 0x0ff6:
7517 case 0x0ff7:
7518 case 0x0ff8:
7519 case 0x0ff9:
7520 case 0x0ffa:
7521 case 0x0ffb:
7522 case 0x0ffc:
7523 case 0x0ffd:
7524 case 0x0ffe:
7525 /* Mask out PREFIX_ADDR. */
7526 switch ((prefixes & ~PREFIX_ADDR))
7527 {
7528 case PREFIX_REPNZ:
7529 opcode |= 0xf20000;
7530 break;
7531 case PREFIX_DATA:
7532 opcode |= 0x660000;
7533 break;
7534 case PREFIX_REPZ:
7535 opcode |= 0xf30000;
7536 break;
7537 }
7538 reswitch_prefix_add:
7539 switch (opcode)
7540 {
7541 case 0x0f38:
7542 case 0x660f38:
7543 case 0xf20f38:
7544 case 0x0f3a:
7545 case 0x660f3a:
7546 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7547 return -1;
7548 ir.addr++;
7549 opcode = (uint32_t) opcode8 | opcode << 8;
7550 goto reswitch_prefix_add;
7551 break;
7552
7553 case 0x0f10: /* movups */
7554 case 0x660f10: /* movupd */
7555 case 0xf30f10: /* movss */
7556 case 0xf20f10: /* movsd */
7557 case 0x0f12: /* movlps */
7558 case 0x660f12: /* movlpd */
7559 case 0xf30f12: /* movsldup */
7560 case 0xf20f12: /* movddup */
7561 case 0x0f14: /* unpcklps */
7562 case 0x660f14: /* unpcklpd */
7563 case 0x0f15: /* unpckhps */
7564 case 0x660f15: /* unpckhpd */
7565 case 0x0f16: /* movhps */
7566 case 0x660f16: /* movhpd */
7567 case 0xf30f16: /* movshdup */
7568 case 0x0f28: /* movaps */
7569 case 0x660f28: /* movapd */
7570 case 0x0f2a: /* cvtpi2ps */
7571 case 0x660f2a: /* cvtpi2pd */
7572 case 0xf30f2a: /* cvtsi2ss */
7573 case 0xf20f2a: /* cvtsi2sd */
7574 case 0x0f2c: /* cvttps2pi */
7575 case 0x660f2c: /* cvttpd2pi */
7576 case 0x0f2d: /* cvtps2pi */
7577 case 0x660f2d: /* cvtpd2pi */
7578 case 0x660f3800: /* pshufb */
7579 case 0x660f3801: /* phaddw */
7580 case 0x660f3802: /* phaddd */
7581 case 0x660f3803: /* phaddsw */
7582 case 0x660f3804: /* pmaddubsw */
7583 case 0x660f3805: /* phsubw */
7584 case 0x660f3806: /* phsubd */
7585 case 0x660f3807: /* phsubsw */
7586 case 0x660f3808: /* psignb */
7587 case 0x660f3809: /* psignw */
7588 case 0x660f380a: /* psignd */
7589 case 0x660f380b: /* pmulhrsw */
7590 case 0x660f3810: /* pblendvb */
7591 case 0x660f3814: /* blendvps */
7592 case 0x660f3815: /* blendvpd */
7593 case 0x660f381c: /* pabsb */
7594 case 0x660f381d: /* pabsw */
7595 case 0x660f381e: /* pabsd */
7596 case 0x660f3820: /* pmovsxbw */
7597 case 0x660f3821: /* pmovsxbd */
7598 case 0x660f3822: /* pmovsxbq */
7599 case 0x660f3823: /* pmovsxwd */
7600 case 0x660f3824: /* pmovsxwq */
7601 case 0x660f3825: /* pmovsxdq */
7602 case 0x660f3828: /* pmuldq */
7603 case 0x660f3829: /* pcmpeqq */
7604 case 0x660f382a: /* movntdqa */
7605 case 0x660f3a08: /* roundps */
7606 case 0x660f3a09: /* roundpd */
7607 case 0x660f3a0a: /* roundss */
7608 case 0x660f3a0b: /* roundsd */
7609 case 0x660f3a0c: /* blendps */
7610 case 0x660f3a0d: /* blendpd */
7611 case 0x660f3a0e: /* pblendw */
7612 case 0x660f3a0f: /* palignr */
7613 case 0x660f3a20: /* pinsrb */
7614 case 0x660f3a21: /* insertps */
7615 case 0x660f3a22: /* pinsrd pinsrq */
7616 case 0x660f3a40: /* dpps */
7617 case 0x660f3a41: /* dppd */
7618 case 0x660f3a42: /* mpsadbw */
7619 case 0x660f3a60: /* pcmpestrm */
7620 case 0x660f3a61: /* pcmpestri */
7621 case 0x660f3a62: /* pcmpistrm */
7622 case 0x660f3a63: /* pcmpistri */
7623 case 0x0f51: /* sqrtps */
7624 case 0x660f51: /* sqrtpd */
7625 case 0xf20f51: /* sqrtsd */
7626 case 0xf30f51: /* sqrtss */
7627 case 0x0f52: /* rsqrtps */
7628 case 0xf30f52: /* rsqrtss */
7629 case 0x0f53: /* rcpps */
7630 case 0xf30f53: /* rcpss */
7631 case 0x0f54: /* andps */
7632 case 0x660f54: /* andpd */
7633 case 0x0f55: /* andnps */
7634 case 0x660f55: /* andnpd */
7635 case 0x0f56: /* orps */
7636 case 0x660f56: /* orpd */
7637 case 0x0f57: /* xorps */
7638 case 0x660f57: /* xorpd */
7639 case 0x0f58: /* addps */
7640 case 0x660f58: /* addpd */
7641 case 0xf20f58: /* addsd */
7642 case 0xf30f58: /* addss */
7643 case 0x0f59: /* mulps */
7644 case 0x660f59: /* mulpd */
7645 case 0xf20f59: /* mulsd */
7646 case 0xf30f59: /* mulss */
7647 case 0x0f5a: /* cvtps2pd */
7648 case 0x660f5a: /* cvtpd2ps */
7649 case 0xf20f5a: /* cvtsd2ss */
7650 case 0xf30f5a: /* cvtss2sd */
7651 case 0x0f5b: /* cvtdq2ps */
7652 case 0x660f5b: /* cvtps2dq */
7653 case 0xf30f5b: /* cvttps2dq */
7654 case 0x0f5c: /* subps */
7655 case 0x660f5c: /* subpd */
7656 case 0xf20f5c: /* subsd */
7657 case 0xf30f5c: /* subss */
7658 case 0x0f5d: /* minps */
7659 case 0x660f5d: /* minpd */
7660 case 0xf20f5d: /* minsd */
7661 case 0xf30f5d: /* minss */
7662 case 0x0f5e: /* divps */
7663 case 0x660f5e: /* divpd */
7664 case 0xf20f5e: /* divsd */
7665 case 0xf30f5e: /* divss */
7666 case 0x0f5f: /* maxps */
7667 case 0x660f5f: /* maxpd */
7668 case 0xf20f5f: /* maxsd */
7669 case 0xf30f5f: /* maxss */
7670 case 0x660f60: /* punpcklbw */
7671 case 0x660f61: /* punpcklwd */
7672 case 0x660f62: /* punpckldq */
7673 case 0x660f63: /* packsswb */
7674 case 0x660f64: /* pcmpgtb */
7675 case 0x660f65: /* pcmpgtw */
7676 case 0x660f66: /* pcmpgtd */
7677 case 0x660f67: /* packuswb */
7678 case 0x660f68: /* punpckhbw */
7679 case 0x660f69: /* punpckhwd */
7680 case 0x660f6a: /* punpckhdq */
7681 case 0x660f6b: /* packssdw */
7682 case 0x660f6c: /* punpcklqdq */
7683 case 0x660f6d: /* punpckhqdq */
7684 case 0x660f6e: /* movd */
7685 case 0x660f6f: /* movdqa */
7686 case 0xf30f6f: /* movdqu */
7687 case 0x660f70: /* pshufd */
7688 case 0xf20f70: /* pshuflw */
7689 case 0xf30f70: /* pshufhw */
7690 case 0x660f74: /* pcmpeqb */
7691 case 0x660f75: /* pcmpeqw */
7692 case 0x660f76: /* pcmpeqd */
7693 case 0x660f7c: /* haddpd */
7694 case 0xf20f7c: /* haddps */
7695 case 0x660f7d: /* hsubpd */
7696 case 0xf20f7d: /* hsubps */
7697 case 0xf30f7e: /* movq */
7698 case 0x0fc2: /* cmpps */
7699 case 0x660fc2: /* cmppd */
7700 case 0xf20fc2: /* cmpsd */
7701 case 0xf30fc2: /* cmpss */
7702 case 0x660fc4: /* pinsrw */
7703 case 0x0fc6: /* shufps */
7704 case 0x660fc6: /* shufpd */
7705 case 0x660fd0: /* addsubpd */
7706 case 0xf20fd0: /* addsubps */
7707 case 0x660fd1: /* psrlw */
7708 case 0x660fd2: /* psrld */
7709 case 0x660fd3: /* psrlq */
7710 case 0x660fd4: /* paddq */
7711 case 0x660fd5: /* pmullw */
7712 case 0xf30fd6: /* movq2dq */
7713 case 0x660fd8: /* psubusb */
7714 case 0x660fd9: /* psubusw */
7715 case 0x660fda: /* pminub */
7716 case 0x660fdb: /* pand */
7717 case 0x660fdc: /* paddusb */
7718 case 0x660fdd: /* paddusw */
7719 case 0x660fde: /* pmaxub */
7720 case 0x660fdf: /* pandn */
7721 case 0x660fe0: /* pavgb */
7722 case 0x660fe1: /* psraw */
7723 case 0x660fe2: /* psrad */
7724 case 0x660fe3: /* pavgw */
7725 case 0x660fe4: /* pmulhuw */
7726 case 0x660fe5: /* pmulhw */
7727 case 0x660fe6: /* cvttpd2dq */
7728 case 0xf20fe6: /* cvtpd2dq */
7729 case 0xf30fe6: /* cvtdq2pd */
7730 case 0x660fe8: /* psubsb */
7731 case 0x660fe9: /* psubsw */
7732 case 0x660fea: /* pminsw */
7733 case 0x660feb: /* por */
7734 case 0x660fec: /* paddsb */
7735 case 0x660fed: /* paddsw */
7736 case 0x660fee: /* pmaxsw */
7737 case 0x660fef: /* pxor */
7738 case 0xf20ff0: /* lddqu */
7739 case 0x660ff1: /* psllw */
7740 case 0x660ff2: /* pslld */
7741 case 0x660ff3: /* psllq */
7742 case 0x660ff4: /* pmuludq */
7743 case 0x660ff5: /* pmaddwd */
7744 case 0x660ff6: /* psadbw */
7745 case 0x660ff8: /* psubb */
7746 case 0x660ff9: /* psubw */
7747 case 0x660ffa: /* psubd */
7748 case 0x660ffb: /* psubq */
7749 case 0x660ffc: /* paddb */
7750 case 0x660ffd: /* paddw */
7751 case 0x660ffe: /* paddd */
7752 if (i386_record_modrm (&ir))
7753 return -1;
7754 ir.reg |= rex_r;
7755 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7756 goto no_support;
7757 record_full_arch_list_add_reg (ir.regcache,
7758 I387_XMM0_REGNUM (tdep) + ir.reg);
7759 if ((opcode & 0xfffffffc) == 0x660f3a60)
7760 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7761 break;
7762
7763 case 0x0f11: /* movups */
7764 case 0x660f11: /* movupd */
7765 case 0xf30f11: /* movss */
7766 case 0xf20f11: /* movsd */
7767 case 0x0f13: /* movlps */
7768 case 0x660f13: /* movlpd */
7769 case 0x0f17: /* movhps */
7770 case 0x660f17: /* movhpd */
7771 case 0x0f29: /* movaps */
7772 case 0x660f29: /* movapd */
7773 case 0x660f3a14: /* pextrb */
7774 case 0x660f3a15: /* pextrw */
7775 case 0x660f3a16: /* pextrd pextrq */
7776 case 0x660f3a17: /* extractps */
7777 case 0x660f7f: /* movdqa */
7778 case 0xf30f7f: /* movdqu */
7779 if (i386_record_modrm (&ir))
7780 return -1;
7781 if (ir.mod == 3)
7782 {
7783 if (opcode == 0x0f13 || opcode == 0x660f13
7784 || opcode == 0x0f17 || opcode == 0x660f17)
7785 goto no_support;
7786 ir.rm |= ir.rex_b;
7787 if (!i386_xmm_regnum_p (gdbarch,
7788 I387_XMM0_REGNUM (tdep) + ir.rm))
7789 goto no_support;
7790 record_full_arch_list_add_reg (ir.regcache,
7791 I387_XMM0_REGNUM (tdep) + ir.rm);
7792 }
7793 else
7794 {
7795 switch (opcode)
7796 {
7797 case 0x660f3a14:
7798 ir.ot = OT_BYTE;
7799 break;
7800 case 0x660f3a15:
7801 ir.ot = OT_WORD;
7802 break;
7803 case 0x660f3a16:
7804 ir.ot = OT_LONG;
7805 break;
7806 case 0x660f3a17:
7807 ir.ot = OT_QUAD;
7808 break;
7809 default:
7810 ir.ot = OT_DQUAD;
7811 break;
7812 }
7813 if (i386_record_lea_modrm (&ir))
7814 return -1;
7815 }
7816 break;
7817
7818 case 0x0f2b: /* movntps */
7819 case 0x660f2b: /* movntpd */
7820 case 0x0fe7: /* movntq */
7821 case 0x660fe7: /* movntdq */
7822 if (ir.mod == 3)
7823 goto no_support;
7824 if (opcode == 0x0fe7)
7825 ir.ot = OT_QUAD;
7826 else
7827 ir.ot = OT_DQUAD;
7828 if (i386_record_lea_modrm (&ir))
7829 return -1;
7830 break;
7831
7832 case 0xf30f2c: /* cvttss2si */
7833 case 0xf20f2c: /* cvttsd2si */
7834 case 0xf30f2d: /* cvtss2si */
7835 case 0xf20f2d: /* cvtsd2si */
7836 case 0xf20f38f0: /* crc32 */
7837 case 0xf20f38f1: /* crc32 */
7838 case 0x0f50: /* movmskps */
7839 case 0x660f50: /* movmskpd */
7840 case 0x0fc5: /* pextrw */
7841 case 0x660fc5: /* pextrw */
7842 case 0x0fd7: /* pmovmskb */
7843 case 0x660fd7: /* pmovmskb */
7844 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7845 break;
7846
7847 case 0x0f3800: /* pshufb */
7848 case 0x0f3801: /* phaddw */
7849 case 0x0f3802: /* phaddd */
7850 case 0x0f3803: /* phaddsw */
7851 case 0x0f3804: /* pmaddubsw */
7852 case 0x0f3805: /* phsubw */
7853 case 0x0f3806: /* phsubd */
7854 case 0x0f3807: /* phsubsw */
7855 case 0x0f3808: /* psignb */
7856 case 0x0f3809: /* psignw */
7857 case 0x0f380a: /* psignd */
7858 case 0x0f380b: /* pmulhrsw */
7859 case 0x0f381c: /* pabsb */
7860 case 0x0f381d: /* pabsw */
7861 case 0x0f381e: /* pabsd */
7862 case 0x0f382b: /* packusdw */
7863 case 0x0f3830: /* pmovzxbw */
7864 case 0x0f3831: /* pmovzxbd */
7865 case 0x0f3832: /* pmovzxbq */
7866 case 0x0f3833: /* pmovzxwd */
7867 case 0x0f3834: /* pmovzxwq */
7868 case 0x0f3835: /* pmovzxdq */
7869 case 0x0f3837: /* pcmpgtq */
7870 case 0x0f3838: /* pminsb */
7871 case 0x0f3839: /* pminsd */
7872 case 0x0f383a: /* pminuw */
7873 case 0x0f383b: /* pminud */
7874 case 0x0f383c: /* pmaxsb */
7875 case 0x0f383d: /* pmaxsd */
7876 case 0x0f383e: /* pmaxuw */
7877 case 0x0f383f: /* pmaxud */
7878 case 0x0f3840: /* pmulld */
7879 case 0x0f3841: /* phminposuw */
7880 case 0x0f3a0f: /* palignr */
7881 case 0x0f60: /* punpcklbw */
7882 case 0x0f61: /* punpcklwd */
7883 case 0x0f62: /* punpckldq */
7884 case 0x0f63: /* packsswb */
7885 case 0x0f64: /* pcmpgtb */
7886 case 0x0f65: /* pcmpgtw */
7887 case 0x0f66: /* pcmpgtd */
7888 case 0x0f67: /* packuswb */
7889 case 0x0f68: /* punpckhbw */
7890 case 0x0f69: /* punpckhwd */
7891 case 0x0f6a: /* punpckhdq */
7892 case 0x0f6b: /* packssdw */
7893 case 0x0f6e: /* movd */
7894 case 0x0f6f: /* movq */
7895 case 0x0f70: /* pshufw */
7896 case 0x0f74: /* pcmpeqb */
7897 case 0x0f75: /* pcmpeqw */
7898 case 0x0f76: /* pcmpeqd */
7899 case 0x0fc4: /* pinsrw */
7900 case 0x0fd1: /* psrlw */
7901 case 0x0fd2: /* psrld */
7902 case 0x0fd3: /* psrlq */
7903 case 0x0fd4: /* paddq */
7904 case 0x0fd5: /* pmullw */
7905 case 0xf20fd6: /* movdq2q */
7906 case 0x0fd8: /* psubusb */
7907 case 0x0fd9: /* psubusw */
7908 case 0x0fda: /* pminub */
7909 case 0x0fdb: /* pand */
7910 case 0x0fdc: /* paddusb */
7911 case 0x0fdd: /* paddusw */
7912 case 0x0fde: /* pmaxub */
7913 case 0x0fdf: /* pandn */
7914 case 0x0fe0: /* pavgb */
7915 case 0x0fe1: /* psraw */
7916 case 0x0fe2: /* psrad */
7917 case 0x0fe3: /* pavgw */
7918 case 0x0fe4: /* pmulhuw */
7919 case 0x0fe5: /* pmulhw */
7920 case 0x0fe8: /* psubsb */
7921 case 0x0fe9: /* psubsw */
7922 case 0x0fea: /* pminsw */
7923 case 0x0feb: /* por */
7924 case 0x0fec: /* paddsb */
7925 case 0x0fed: /* paddsw */
7926 case 0x0fee: /* pmaxsw */
7927 case 0x0fef: /* pxor */
7928 case 0x0ff1: /* psllw */
7929 case 0x0ff2: /* pslld */
7930 case 0x0ff3: /* psllq */
7931 case 0x0ff4: /* pmuludq */
7932 case 0x0ff5: /* pmaddwd */
7933 case 0x0ff6: /* psadbw */
7934 case 0x0ff8: /* psubb */
7935 case 0x0ff9: /* psubw */
7936 case 0x0ffa: /* psubd */
7937 case 0x0ffb: /* psubq */
7938 case 0x0ffc: /* paddb */
7939 case 0x0ffd: /* paddw */
7940 case 0x0ffe: /* paddd */
7941 if (i386_record_modrm (&ir))
7942 return -1;
7943 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7944 goto no_support;
7945 record_full_arch_list_add_reg (ir.regcache,
7946 I387_MM0_REGNUM (tdep) + ir.reg);
7947 break;
7948
7949 case 0x0f71: /* psllw */
7950 case 0x0f72: /* pslld */
7951 case 0x0f73: /* psllq */
7952 if (i386_record_modrm (&ir))
7953 return -1;
7954 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7955 goto no_support;
7956 record_full_arch_list_add_reg (ir.regcache,
7957 I387_MM0_REGNUM (tdep) + ir.rm);
7958 break;
7959
7960 case 0x660f71: /* psllw */
7961 case 0x660f72: /* pslld */
7962 case 0x660f73: /* psllq */
7963 if (i386_record_modrm (&ir))
7964 return -1;
7965 ir.rm |= ir.rex_b;
7966 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7967 goto no_support;
7968 record_full_arch_list_add_reg (ir.regcache,
7969 I387_XMM0_REGNUM (tdep) + ir.rm);
7970 break;
7971
7972 case 0x0f7e: /* movd */
7973 case 0x660f7e: /* movd */
7974 if (i386_record_modrm (&ir))
7975 return -1;
7976 if (ir.mod == 3)
7977 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7978 else
7979 {
7980 if (ir.dflag == 2)
7981 ir.ot = OT_QUAD;
7982 else
7983 ir.ot = OT_LONG;
7984 if (i386_record_lea_modrm (&ir))
7985 return -1;
7986 }
7987 break;
7988
7989 case 0x0f7f: /* movq */
7990 if (i386_record_modrm (&ir))
7991 return -1;
7992 if (ir.mod == 3)
7993 {
7994 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7995 goto no_support;
7996 record_full_arch_list_add_reg (ir.regcache,
7997 I387_MM0_REGNUM (tdep) + ir.rm);
7998 }
7999 else
8000 {
8001 ir.ot = OT_QUAD;
8002 if (i386_record_lea_modrm (&ir))
8003 return -1;
8004 }
8005 break;
8006
8007 case 0xf30fb8: /* popcnt */
8008 if (i386_record_modrm (&ir))
8009 return -1;
8010 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8011 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8012 break;
8013
8014 case 0x660fd6: /* movq */
8015 if (i386_record_modrm (&ir))
8016 return -1;
8017 if (ir.mod == 3)
8018 {
8019 ir.rm |= ir.rex_b;
8020 if (!i386_xmm_regnum_p (gdbarch,
8021 I387_XMM0_REGNUM (tdep) + ir.rm))
8022 goto no_support;
8023 record_full_arch_list_add_reg (ir.regcache,
8024 I387_XMM0_REGNUM (tdep) + ir.rm);
8025 }
8026 else
8027 {
8028 ir.ot = OT_QUAD;
8029 if (i386_record_lea_modrm (&ir))
8030 return -1;
8031 }
8032 break;
8033
8034 case 0x660f3817: /* ptest */
8035 case 0x0f2e: /* ucomiss */
8036 case 0x660f2e: /* ucomisd */
8037 case 0x0f2f: /* comiss */
8038 case 0x660f2f: /* comisd */
8039 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8040 break;
8041
8042 case 0x0ff7: /* maskmovq */
8043 regcache_raw_read_unsigned (ir.regcache,
8044 ir.regmap[X86_RECORD_REDI_REGNUM],
8045 &addr);
8046 if (record_full_arch_list_add_mem (addr, 64))
8047 return -1;
8048 break;
8049
8050 case 0x660ff7: /* maskmovdqu */
8051 regcache_raw_read_unsigned (ir.regcache,
8052 ir.regmap[X86_RECORD_REDI_REGNUM],
8053 &addr);
8054 if (record_full_arch_list_add_mem (addr, 128))
8055 return -1;
8056 break;
8057
8058 default:
8059 goto no_support;
8060 break;
8061 }
8062 break;
8063
8064 default:
8065 goto no_support;
8066 break;
8067 }
8068
8069 /* In the future, maybe still need to deal with need_dasm. */
8070 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8071 if (record_full_arch_list_add_end ())
8072 return -1;
8073
8074 return 0;
8075
8076 no_support:
8077 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8078 "at address %s.\n"),
8079 (unsigned int) (opcode),
8080 paddress (gdbarch, ir.orig_addr));
8081 return -1;
8082 }
8083
8084 static const int i386_record_regmap[] =
8085 {
8086 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8087 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8088 0, 0, 0, 0, 0, 0, 0, 0,
8089 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8090 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8091 };
8092
8093 /* Check that the given address appears suitable for a fast
8094 tracepoint, which on x86-64 means that we need an instruction of at
8095 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8096 jump and not have to worry about program jumps to an address in the
8097 middle of the tracepoint jump. On x86, it may be possible to use
8098 4-byte jumps with a 2-byte offset to a trampoline located in the
8099 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8100 of instruction to replace, and 0 if not, plus an explanatory
8101 string. */
8102
8103 static int
8104 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8105 std::string *msg)
8106 {
8107 int len, jumplen;
8108
8109 /* Ask the target for the minimum instruction length supported. */
8110 jumplen = target_get_min_fast_tracepoint_insn_len ();
8111
8112 if (jumplen < 0)
8113 {
8114 /* If the target does not support the get_min_fast_tracepoint_insn_len
8115 operation, assume that fast tracepoints will always be implemented
8116 using 4-byte relative jumps on both x86 and x86-64. */
8117 jumplen = 5;
8118 }
8119 else if (jumplen == 0)
8120 {
8121 /* If the target does support get_min_fast_tracepoint_insn_len but
8122 returns zero, then the IPA has not loaded yet. In this case,
8123 we optimistically assume that truncated 2-byte relative jumps
8124 will be available on x86, and compensate later if this assumption
8125 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8126 jumps will always be used. */
8127 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8128 }
8129
8130 /* Check for fit. */
8131 len = gdb_insn_length (gdbarch, addr);
8132
8133 if (len < jumplen)
8134 {
8135 /* Return a bit of target-specific detail to add to the caller's
8136 generic failure message. */
8137 if (msg)
8138 *msg = string_printf (_("; instruction is only %d bytes long, "
8139 "need at least %d bytes for the jump"),
8140 len, jumplen);
8141 return 0;
8142 }
8143 else
8144 {
8145 if (msg)
8146 msg->clear ();
8147 return 1;
8148 }
8149 }
8150
8151 /* Return a floating-point format for a floating-point variable of
8152 length LEN in bits. If non-NULL, NAME is the name of its type.
8153 If no suitable type is found, return NULL. */
8154
8155 static const struct floatformat **
8156 i386_floatformat_for_type (struct gdbarch *gdbarch,
8157 const char *name, int len)
8158 {
8159 if (len == 128 && name)
8160 if (strcmp (name, "__float128") == 0
8161 || strcmp (name, "_Float128") == 0
8162 || strcmp (name, "complex _Float128") == 0
8163 || strcmp (name, "complex(kind=16)") == 0
8164 || strcmp (name, "complex*32") == 0
8165 || strcmp (name, "COMPLEX*32") == 0
8166 || strcmp (name, "quad complex") == 0
8167 || strcmp (name, "real(kind=16)") == 0
8168 || strcmp (name, "real*16") == 0
8169 || strcmp (name, "REAL*16") == 0)
8170 return floatformats_ia64_quad;
8171
8172 return default_floatformat_for_type (gdbarch, name, len);
8173 }
8174
8175 static int
8176 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8177 struct tdesc_arch_data *tdesc_data)
8178 {
8179 const struct target_desc *tdesc = tdep->tdesc;
8180 const struct tdesc_feature *feature_core;
8181
8182 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8183 *feature_avx512, *feature_pkeys, *feature_segments;
8184 int i, num_regs, valid_p;
8185
8186 if (! tdesc_has_registers (tdesc))
8187 return 0;
8188
8189 /* Get core registers. */
8190 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8191 if (feature_core == NULL)
8192 return 0;
8193
8194 /* Get SSE registers. */
8195 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8196
8197 /* Try AVX registers. */
8198 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8199
8200 /* Try MPX registers. */
8201 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8202
8203 /* Try AVX512 registers. */
8204 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8205
8206 /* Try segment base registers. */
8207 feature_segments = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
8208
8209 /* Try PKEYS */
8210 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8211
8212 valid_p = 1;
8213
8214 /* The XCR0 bits. */
8215 if (feature_avx512)
8216 {
8217 /* AVX512 register description requires AVX register description. */
8218 if (!feature_avx)
8219 return 0;
8220
8221 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8222
8223 /* It may have been set by OSABI initialization function. */
8224 if (tdep->k0_regnum < 0)
8225 {
8226 tdep->k_register_names = i386_k_names;
8227 tdep->k0_regnum = I386_K0_REGNUM;
8228 }
8229
8230 for (i = 0; i < I387_NUM_K_REGS; i++)
8231 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8232 tdep->k0_regnum + i,
8233 i386_k_names[i]);
8234
8235 if (tdep->num_zmm_regs == 0)
8236 {
8237 tdep->zmmh_register_names = i386_zmmh_names;
8238 tdep->num_zmm_regs = 8;
8239 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8240 }
8241
8242 for (i = 0; i < tdep->num_zmm_regs; i++)
8243 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8244 tdep->zmm0h_regnum + i,
8245 tdep->zmmh_register_names[i]);
8246
8247 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8248 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8249 tdep->xmm16_regnum + i,
8250 tdep->xmm_avx512_register_names[i]);
8251
8252 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8253 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8254 tdep->ymm16h_regnum + i,
8255 tdep->ymm16h_register_names[i]);
8256 }
8257 if (feature_avx)
8258 {
8259 /* AVX register description requires SSE register description. */
8260 if (!feature_sse)
8261 return 0;
8262
8263 if (!feature_avx512)
8264 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8265
8266 /* It may have been set by OSABI initialization function. */
8267 if (tdep->num_ymm_regs == 0)
8268 {
8269 tdep->ymmh_register_names = i386_ymmh_names;
8270 tdep->num_ymm_regs = 8;
8271 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8272 }
8273
8274 for (i = 0; i < tdep->num_ymm_regs; i++)
8275 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8276 tdep->ymm0h_regnum + i,
8277 tdep->ymmh_register_names[i]);
8278 }
8279 else if (feature_sse)
8280 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8281 else
8282 {
8283 tdep->xcr0 = X86_XSTATE_X87_MASK;
8284 tdep->num_xmm_regs = 0;
8285 }
8286
8287 num_regs = tdep->num_core_regs;
8288 for (i = 0; i < num_regs; i++)
8289 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8290 tdep->register_names[i]);
8291
8292 if (feature_sse)
8293 {
8294 /* Need to include %mxcsr, so add one. */
8295 num_regs += tdep->num_xmm_regs + 1;
8296 for (; i < num_regs; i++)
8297 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8298 tdep->register_names[i]);
8299 }
8300
8301 if (feature_mpx)
8302 {
8303 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8304
8305 if (tdep->bnd0r_regnum < 0)
8306 {
8307 tdep->mpx_register_names = i386_mpx_names;
8308 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8309 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8310 }
8311
8312 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8313 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8314 I387_BND0R_REGNUM (tdep) + i,
8315 tdep->mpx_register_names[i]);
8316 }
8317
8318 if (feature_segments)
8319 {
8320 if (tdep->fsbase_regnum < 0)
8321 tdep->fsbase_regnum = I386_FSBASE_REGNUM;
8322 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8323 tdep->fsbase_regnum, "fs_base");
8324 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8325 tdep->fsbase_regnum + 1, "gs_base");
8326 }
8327
8328 if (feature_pkeys)
8329 {
8330 tdep->xcr0 |= X86_XSTATE_PKRU;
8331 if (tdep->pkru_regnum < 0)
8332 {
8333 tdep->pkeys_register_names = i386_pkeys_names;
8334 tdep->pkru_regnum = I386_PKRU_REGNUM;
8335 tdep->num_pkeys_regs = 1;
8336 }
8337
8338 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8339 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8340 I387_PKRU_REGNUM (tdep) + i,
8341 tdep->pkeys_register_names[i]);
8342 }
8343
8344 return valid_p;
8345 }
8346
8347 \f
8348
8349 /* Implement the type_align gdbarch function. */
8350
8351 static ULONGEST
8352 i386_type_align (struct gdbarch *gdbarch, struct type *type)
8353 {
8354 type = check_typedef (type);
8355
8356 if (gdbarch_ptr_bit (gdbarch) == 32)
8357 {
8358 if ((type->code () == TYPE_CODE_INT
8359 || type->code () == TYPE_CODE_FLT)
8360 && TYPE_LENGTH (type) > 4)
8361 return 4;
8362
8363 /* Handle x86's funny long double. */
8364 if (type->code () == TYPE_CODE_FLT
8365 && gdbarch_long_double_bit (gdbarch) == TYPE_LENGTH (type) * 8)
8366 return 4;
8367 }
8368
8369 return 0;
8370 }
8371
8372 \f
8373 /* Note: This is called for both i386 and amd64. */
8374
8375 static struct gdbarch *
8376 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8377 {
8378 struct gdbarch_tdep *tdep;
8379 struct gdbarch *gdbarch;
8380 const struct target_desc *tdesc;
8381 int mm0_regnum;
8382 int ymm0_regnum;
8383 int bnd0_regnum;
8384 int num_bnd_cooked;
8385
8386 /* If there is already a candidate, use it. */
8387 arches = gdbarch_list_lookup_by_info (arches, &info);
8388 if (arches != NULL)
8389 return arches->gdbarch;
8390
8391 /* Allocate space for the new architecture. Assume i386 for now. */
8392 tdep = XCNEW (struct gdbarch_tdep);
8393 gdbarch = gdbarch_alloc (&info, tdep);
8394
8395 /* General-purpose registers. */
8396 tdep->gregset_reg_offset = NULL;
8397 tdep->gregset_num_regs = I386_NUM_GREGS;
8398 tdep->sizeof_gregset = 0;
8399
8400 /* Floating-point registers. */
8401 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8402 tdep->fpregset = &i386_fpregset;
8403
8404 /* The default settings include the FPU registers, the MMX registers
8405 and the SSE registers. This can be overridden for a specific ABI
8406 by adjusting the members `st0_regnum', `mm0_regnum' and
8407 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8408 will show up in the output of "info all-registers". */
8409
8410 tdep->st0_regnum = I386_ST0_REGNUM;
8411
8412 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8413 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8414
8415 tdep->jb_pc_offset = -1;
8416 tdep->struct_return = pcc_struct_return;
8417 tdep->sigtramp_start = 0;
8418 tdep->sigtramp_end = 0;
8419 tdep->sigtramp_p = i386_sigtramp_p;
8420 tdep->sigcontext_addr = NULL;
8421 tdep->sc_reg_offset = NULL;
8422 tdep->sc_pc_offset = -1;
8423 tdep->sc_sp_offset = -1;
8424
8425 tdep->xsave_xcr0_offset = -1;
8426
8427 tdep->record_regmap = i386_record_regmap;
8428
8429 set_gdbarch_type_align (gdbarch, i386_type_align);
8430
8431 /* The format used for `long double' on almost all i386 targets is
8432 the i387 extended floating-point format. In fact, of all targets
8433 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8434 on having a `long double' that's not `long' at all. */
8435 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8436
8437 /* Although the i387 extended floating-point has only 80 significant
8438 bits, a `long double' actually takes up 96, probably to enforce
8439 alignment. */
8440 set_gdbarch_long_double_bit (gdbarch, 96);
8441
8442 /* Support of bfloat16 format. */
8443 set_gdbarch_bfloat16_format (gdbarch, floatformats_bfloat16);
8444
8445 /* Support for floating-point data type variants. */
8446 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8447
8448 /* Register numbers of various important registers. */
8449 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8450 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8451 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8452 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8453
8454 /* NOTE: kettenis/20040418: GCC does have two possible register
8455 numbering schemes on the i386: dbx and SVR4. These schemes
8456 differ in how they number %ebp, %esp, %eflags, and the
8457 floating-point registers, and are implemented by the arrays
8458 dbx_register_map[] and svr4_dbx_register_map in
8459 gcc/config/i386.c. GCC also defines a third numbering scheme in
8460 gcc/config/i386.c, which it designates as the "default" register
8461 map used in 64bit mode. This last register numbering scheme is
8462 implemented in dbx64_register_map, and is used for AMD64; see
8463 amd64-tdep.c.
8464
8465 Currently, each GCC i386 target always uses the same register
8466 numbering scheme across all its supported debugging formats
8467 i.e. SDB (COFF), stabs and DWARF 2. This is because
8468 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8469 DBX_REGISTER_NUMBER macro which is defined by each target's
8470 respective config header in a manner independent of the requested
8471 output debugging format.
8472
8473 This does not match the arrangement below, which presumes that
8474 the SDB and stabs numbering schemes differ from the DWARF and
8475 DWARF 2 ones. The reason for this arrangement is that it is
8476 likely to get the numbering scheme for the target's
8477 default/native debug format right. For targets where GCC is the
8478 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8479 targets where the native toolchain uses a different numbering
8480 scheme for a particular debug format (stabs-in-ELF on Solaris)
8481 the defaults below will have to be overridden, like
8482 i386_elf_init_abi() does. */
8483
8484 /* Use the dbx register numbering scheme for stabs and COFF. */
8485 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8486 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8487
8488 /* Use the SVR4 register numbering scheme for DWARF 2. */
8489 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8490
8491 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8492 be in use on any of the supported i386 targets. */
8493
8494 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8495
8496 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8497
8498 /* Call dummy code. */
8499 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8500 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8501 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8502 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8503
8504 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8505 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8506 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8507
8508 set_gdbarch_return_value (gdbarch, i386_return_value);
8509
8510 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8511
8512 /* Stack grows downward. */
8513 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8514
8515 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8516 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8517
8518 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8519 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8520
8521 set_gdbarch_frame_args_skip (gdbarch, 8);
8522
8523 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8524
8525 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8526
8527 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8528
8529 /* Add the i386 register groups. */
8530 i386_add_reggroups (gdbarch);
8531 tdep->register_reggroup_p = i386_register_reggroup_p;
8532
8533 /* Helper for function argument information. */
8534 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8535
8536 /* Hook the function epilogue frame unwinder. This unwinder is
8537 appended to the list first, so that it supercedes the DWARF
8538 unwinder in function epilogues (where the DWARF unwinder
8539 currently fails). */
8540 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8541
8542 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8543 to the list before the prologue-based unwinders, so that DWARF
8544 CFI info will be used if it is available. */
8545 dwarf2_append_unwinders (gdbarch);
8546
8547 frame_base_set_default (gdbarch, &i386_frame_base);
8548
8549 /* Pseudo registers may be changed by amd64_init_abi. */
8550 set_gdbarch_pseudo_register_read_value (gdbarch,
8551 i386_pseudo_register_read_value);
8552 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8553 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8554 i386_ax_pseudo_register_collect);
8555
8556 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8557 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8558
8559 /* Override the normal target description method to make the AVX
8560 upper halves anonymous. */
8561 set_gdbarch_register_name (gdbarch, i386_register_name);
8562
8563 /* Even though the default ABI only includes general-purpose registers,
8564 floating-point registers and the SSE registers, we have to leave a
8565 gap for the upper AVX, MPX and AVX512 registers. */
8566 set_gdbarch_num_regs (gdbarch, I386_NUM_REGS);
8567
8568 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8569
8570 /* Get the x86 target description from INFO. */
8571 tdesc = info.target_desc;
8572 if (! tdesc_has_registers (tdesc))
8573 tdesc = i386_target_description (X86_XSTATE_SSE_MASK, false);
8574 tdep->tdesc = tdesc;
8575
8576 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8577 tdep->register_names = i386_register_names;
8578
8579 /* No upper YMM registers. */
8580 tdep->ymmh_register_names = NULL;
8581 tdep->ymm0h_regnum = -1;
8582
8583 /* No upper ZMM registers. */
8584 tdep->zmmh_register_names = NULL;
8585 tdep->zmm0h_regnum = -1;
8586
8587 /* No high XMM registers. */
8588 tdep->xmm_avx512_register_names = NULL;
8589 tdep->xmm16_regnum = -1;
8590
8591 /* No upper YMM16-31 registers. */
8592 tdep->ymm16h_register_names = NULL;
8593 tdep->ymm16h_regnum = -1;
8594
8595 tdep->num_byte_regs = 8;
8596 tdep->num_word_regs = 8;
8597 tdep->num_dword_regs = 0;
8598 tdep->num_mmx_regs = 8;
8599 tdep->num_ymm_regs = 0;
8600
8601 /* No MPX registers. */
8602 tdep->bnd0r_regnum = -1;
8603 tdep->bndcfgu_regnum = -1;
8604
8605 /* No AVX512 registers. */
8606 tdep->k0_regnum = -1;
8607 tdep->num_zmm_regs = 0;
8608 tdep->num_ymm_avx512_regs = 0;
8609 tdep->num_xmm_avx512_regs = 0;
8610
8611 /* No PKEYS registers */
8612 tdep->pkru_regnum = -1;
8613 tdep->num_pkeys_regs = 0;
8614
8615 /* No segment base registers. */
8616 tdep->fsbase_regnum = -1;
8617
8618 tdesc_arch_data_up tdesc_data = tdesc_data_alloc ();
8619
8620 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8621
8622 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8623
8624 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8625 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8626 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8627
8628 /* Hook in ABI-specific overrides, if they have been registered.
8629 Note: If INFO specifies a 64 bit arch, this is where we turn
8630 a 32-bit i386 into a 64-bit amd64. */
8631 info.tdesc_data = tdesc_data.get ();
8632 gdbarch_init_osabi (info, gdbarch);
8633
8634 if (!i386_validate_tdesc_p (tdep, tdesc_data.get ()))
8635 {
8636 xfree (tdep);
8637 gdbarch_free (gdbarch);
8638 return NULL;
8639 }
8640
8641 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8642
8643 /* Wire in pseudo registers. Number of pseudo registers may be
8644 changed. */
8645 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8646 + tdep->num_word_regs
8647 + tdep->num_dword_regs
8648 + tdep->num_mmx_regs
8649 + tdep->num_ymm_regs
8650 + num_bnd_cooked
8651 + tdep->num_ymm_avx512_regs
8652 + tdep->num_zmm_regs));
8653
8654 /* Target description may be changed. */
8655 tdesc = tdep->tdesc;
8656
8657 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
8658
8659 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8660 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8661
8662 /* Make %al the first pseudo-register. */
8663 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8664 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8665
8666 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8667 if (tdep->num_dword_regs)
8668 {
8669 /* Support dword pseudo-register if it hasn't been disabled. */
8670 tdep->eax_regnum = ymm0_regnum;
8671 ymm0_regnum += tdep->num_dword_regs;
8672 }
8673 else
8674 tdep->eax_regnum = -1;
8675
8676 mm0_regnum = ymm0_regnum;
8677 if (tdep->num_ymm_regs)
8678 {
8679 /* Support YMM pseudo-register if it is available. */
8680 tdep->ymm0_regnum = ymm0_regnum;
8681 mm0_regnum += tdep->num_ymm_regs;
8682 }
8683 else
8684 tdep->ymm0_regnum = -1;
8685
8686 if (tdep->num_ymm_avx512_regs)
8687 {
8688 /* Support YMM16-31 pseudo registers if available. */
8689 tdep->ymm16_regnum = mm0_regnum;
8690 mm0_regnum += tdep->num_ymm_avx512_regs;
8691 }
8692 else
8693 tdep->ymm16_regnum = -1;
8694
8695 if (tdep->num_zmm_regs)
8696 {
8697 /* Support ZMM pseudo-register if it is available. */
8698 tdep->zmm0_regnum = mm0_regnum;
8699 mm0_regnum += tdep->num_zmm_regs;
8700 }
8701 else
8702 tdep->zmm0_regnum = -1;
8703
8704 bnd0_regnum = mm0_regnum;
8705 if (tdep->num_mmx_regs != 0)
8706 {
8707 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8708 tdep->mm0_regnum = mm0_regnum;
8709 bnd0_regnum += tdep->num_mmx_regs;
8710 }
8711 else
8712 tdep->mm0_regnum = -1;
8713
8714 if (tdep->bnd0r_regnum > 0)
8715 tdep->bnd0_regnum = bnd0_regnum;
8716 else
8717 tdep-> bnd0_regnum = -1;
8718
8719 /* Hook in the legacy prologue-based unwinders last (fallback). */
8720 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8721 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8722 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8723
8724 /* If we have a register mapping, enable the generic core file
8725 support, unless it has already been enabled. */
8726 if (tdep->gregset_reg_offset
8727 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8728 set_gdbarch_iterate_over_regset_sections
8729 (gdbarch, i386_iterate_over_regset_sections);
8730
8731 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8732 i386_fast_tracepoint_valid_at);
8733
8734 return gdbarch;
8735 }
8736
8737 \f
8738
8739 /* Return the target description for a specified XSAVE feature mask. */
8740
8741 const struct target_desc *
8742 i386_target_description (uint64_t xcr0, bool segments)
8743 {
8744 static target_desc *i386_tdescs \
8745 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
8746 target_desc **tdesc;
8747
8748 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8749 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8750 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8751 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
8752 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
8753 [segments ? 1 : 0];
8754
8755 if (*tdesc == NULL)
8756 *tdesc = i386_create_target_description (xcr0, false, segments);
8757
8758 return *tdesc;
8759 }
8760
8761 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8762
8763 /* Find the bound directory base address. */
8764
8765 static unsigned long
8766 i386_mpx_bd_base (void)
8767 {
8768 struct regcache *rcache;
8769 struct gdbarch_tdep *tdep;
8770 ULONGEST ret;
8771 enum register_status regstatus;
8772
8773 rcache = get_current_regcache ();
8774 tdep = gdbarch_tdep (rcache->arch ());
8775
8776 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8777
8778 if (regstatus != REG_VALID)
8779 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8780
8781 return ret & MPX_BASE_MASK;
8782 }
8783
8784 int
8785 i386_mpx_enabled (void)
8786 {
8787 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8788 const struct target_desc *tdesc = tdep->tdesc;
8789
8790 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8791 }
8792
8793 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8794 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8795 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8796 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8797
8798 /* Find the bound table entry given the pointer location and the base
8799 address of the table. */
8800
8801 static CORE_ADDR
8802 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8803 {
8804 CORE_ADDR offset1;
8805 CORE_ADDR offset2;
8806 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8807 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8808 CORE_ADDR bd_entry_addr;
8809 CORE_ADDR bt_addr;
8810 CORE_ADDR bd_entry;
8811 struct gdbarch *gdbarch = get_current_arch ();
8812 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8813
8814
8815 if (gdbarch_ptr_bit (gdbarch) == 64)
8816 {
8817 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8818 bd_ptr_r_shift = 20;
8819 bd_ptr_l_shift = 3;
8820 bt_select_r_shift = 3;
8821 bt_select_l_shift = 5;
8822 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8823
8824 if ( sizeof (CORE_ADDR) == 4)
8825 error (_("bound table examination not supported\
8826 for 64-bit process with 32-bit GDB"));
8827 }
8828 else
8829 {
8830 mpx_bd_mask = MPX_BD_MASK_32;
8831 bd_ptr_r_shift = 12;
8832 bd_ptr_l_shift = 2;
8833 bt_select_r_shift = 2;
8834 bt_select_l_shift = 4;
8835 bt_mask = MPX_BT_MASK_32;
8836 }
8837
8838 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8839 bd_entry_addr = bd_base + offset1;
8840 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8841
8842 if ((bd_entry & 0x1) == 0)
8843 error (_("Invalid bounds directory entry at %s."),
8844 paddress (get_current_arch (), bd_entry_addr));
8845
8846 /* Clearing status bit. */
8847 bd_entry--;
8848 bt_addr = bd_entry & ~bt_select_r_shift;
8849 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8850
8851 return bt_addr + offset2;
8852 }
8853
8854 /* Print routine for the mpx bounds. */
8855
8856 static void
8857 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8858 {
8859 struct ui_out *uiout = current_uiout;
8860 LONGEST size;
8861 struct gdbarch *gdbarch = get_current_arch ();
8862 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8863 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8864
8865 if (bounds_in_map == 1)
8866 {
8867 uiout->text ("Null bounds on map:");
8868 uiout->text (" pointer value = ");
8869 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8870 uiout->text (".");
8871 uiout->text ("\n");
8872 }
8873 else
8874 {
8875 uiout->text ("{lbound = ");
8876 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8877 uiout->text (", ubound = ");
8878
8879 /* The upper bound is stored in 1's complement. */
8880 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8881 uiout->text ("}: pointer value = ");
8882 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8883
8884 if (gdbarch_ptr_bit (gdbarch) == 64)
8885 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8886 else
8887 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8888
8889 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8890 -1 represents in this sense full memory access, and there is no need
8891 one to the size. */
8892
8893 size = (size > -1 ? size + 1 : size);
8894 uiout->text (", size = ");
8895 uiout->field_string ("size", plongest (size));
8896
8897 uiout->text (", metadata = ");
8898 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8899 uiout->text ("\n");
8900 }
8901 }
8902
8903 /* Implement the command "show mpx bound". */
8904
8905 static void
8906 i386_mpx_info_bounds (const char *args, int from_tty)
8907 {
8908 CORE_ADDR bd_base = 0;
8909 CORE_ADDR addr;
8910 CORE_ADDR bt_entry_addr = 0;
8911 CORE_ADDR bt_entry[4];
8912 int i;
8913 struct gdbarch *gdbarch = get_current_arch ();
8914 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8915
8916 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8917 || !i386_mpx_enabled ())
8918 {
8919 printf_unfiltered (_("Intel Memory Protection Extensions not "
8920 "supported on this target.\n"));
8921 return;
8922 }
8923
8924 if (args == NULL)
8925 {
8926 printf_unfiltered (_("Address of pointer variable expected.\n"));
8927 return;
8928 }
8929
8930 addr = parse_and_eval_address (args);
8931
8932 bd_base = i386_mpx_bd_base ();
8933 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8934
8935 memset (bt_entry, 0, sizeof (bt_entry));
8936
8937 for (i = 0; i < 4; i++)
8938 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8939 + i * TYPE_LENGTH (data_ptr_type),
8940 data_ptr_type);
8941
8942 i386_mpx_print_bounds (bt_entry);
8943 }
8944
8945 /* Implement the command "set mpx bound". */
8946
8947 static void
8948 i386_mpx_set_bounds (const char *args, int from_tty)
8949 {
8950 CORE_ADDR bd_base = 0;
8951 CORE_ADDR addr, lower, upper;
8952 CORE_ADDR bt_entry_addr = 0;
8953 CORE_ADDR bt_entry[2];
8954 const char *input = args;
8955 int i;
8956 struct gdbarch *gdbarch = get_current_arch ();
8957 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8958 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8959
8960 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8961 || !i386_mpx_enabled ())
8962 error (_("Intel Memory Protection Extensions not supported\
8963 on this target."));
8964
8965 if (args == NULL)
8966 error (_("Pointer value expected."));
8967
8968 addr = value_as_address (parse_to_comma_and_eval (&input));
8969
8970 if (input[0] == ',')
8971 ++input;
8972 if (input[0] == '\0')
8973 error (_("wrong number of arguments: missing lower and upper bound."));
8974 lower = value_as_address (parse_to_comma_and_eval (&input));
8975
8976 if (input[0] == ',')
8977 ++input;
8978 if (input[0] == '\0')
8979 error (_("Wrong number of arguments; Missing upper bound."));
8980 upper = value_as_address (parse_to_comma_and_eval (&input));
8981
8982 bd_base = i386_mpx_bd_base ();
8983 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8984 for (i = 0; i < 2; i++)
8985 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8986 + i * TYPE_LENGTH (data_ptr_type),
8987 data_ptr_type);
8988 bt_entry[0] = (uint64_t) lower;
8989 bt_entry[1] = ~(uint64_t) upper;
8990
8991 for (i = 0; i < 2; i++)
8992 write_memory_unsigned_integer (bt_entry_addr
8993 + i * TYPE_LENGTH (data_ptr_type),
8994 TYPE_LENGTH (data_ptr_type), byte_order,
8995 bt_entry[i]);
8996 }
8997
8998 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
8999
9000 void _initialize_i386_tdep ();
9001 void
9002 _initialize_i386_tdep ()
9003 {
9004 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9005
9006 /* Add the variable that controls the disassembly flavor. */
9007 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9008 &disassembly_flavor, _("\
9009 Set the disassembly flavor."), _("\
9010 Show the disassembly flavor."), _("\
9011 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9012 NULL,
9013 NULL, /* FIXME: i18n: */
9014 &setlist, &showlist);
9015
9016 /* Add the variable that controls the convention for returning
9017 structs. */
9018 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9019 &struct_convention, _("\
9020 Set the convention for returning small structs."), _("\
9021 Show the convention for returning small structs."), _("\
9022 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9023 is \"default\"."),
9024 NULL,
9025 NULL, /* FIXME: i18n: */
9026 &setlist, &showlist);
9027
9028 /* Add "mpx" prefix for the set commands. */
9029
9030 add_basic_prefix_cmd ("mpx", class_support, _("\
9031 Set Intel Memory Protection Extensions specific variables."),
9032 &mpx_set_cmdlist,
9033 0 /* allow-unknown */, &setlist);
9034
9035 /* Add "mpx" prefix for the show commands. */
9036
9037 add_show_prefix_cmd ("mpx", class_support, _("\
9038 Show Intel Memory Protection Extensions specific variables."),
9039 &mpx_show_cmdlist,
9040 0 /* allow-unknown */, &showlist);
9041
9042 /* Add "bound" command for the show mpx commands list. */
9043
9044 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9045 "Show the memory bounds for a given array/pointer storage\
9046 in the bound table.",
9047 &mpx_show_cmdlist);
9048
9049 /* Add "bound" command for the set mpx commands list. */
9050
9051 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9052 "Set the memory bounds for a given array/pointer storage\
9053 in the bound table.",
9054 &mpx_set_cmdlist);
9055
9056 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9057 i386_svr4_init_abi);
9058
9059 /* Initialize the i386-specific register groups. */
9060 i386_init_reggroups ();
9061
9062 /* Tell remote stub that we support XML target description. */
9063 register_remote_support_xml ("i386");
9064 }
This page took 0.2511 seconds and 4 git commands to generate.