Remove GDBARCH_BREAKPOINT_MANIPULATION and SET_GDBARCH_BREAKPOINT_MANIPULATION
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "infrun.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "osabi.h"
37 #include "regcache.h"
38 #include "reggroups.h"
39 #include "regset.h"
40 #include "symfile.h"
41 #include "symtab.h"
42 #include "target.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "x86-xstate.h"
50
51 #include "record.h"
52 #include "record-full.h"
53 #include "features/i386/i386.c"
54 #include "features/i386/i386-avx.c"
55 #include "features/i386/i386-mpx.c"
56 #include "features/i386/i386-avx-mpx.c"
57 #include "features/i386/i386-avx512.c"
58 #include "features/i386/i386-mmx.c"
59
60 #include "ax.h"
61 #include "ax-gdb.h"
62
63 #include "stap-probe.h"
64 #include "user-regs.h"
65 #include "cli/cli-utils.h"
66 #include "expression.h"
67 #include "parser-defs.h"
68 #include <ctype.h>
69 #include <algorithm>
70
71 /* Register names. */
72
73 static const char *i386_register_names[] =
74 {
75 "eax", "ecx", "edx", "ebx",
76 "esp", "ebp", "esi", "edi",
77 "eip", "eflags", "cs", "ss",
78 "ds", "es", "fs", "gs",
79 "st0", "st1", "st2", "st3",
80 "st4", "st5", "st6", "st7",
81 "fctrl", "fstat", "ftag", "fiseg",
82 "fioff", "foseg", "fooff", "fop",
83 "xmm0", "xmm1", "xmm2", "xmm3",
84 "xmm4", "xmm5", "xmm6", "xmm7",
85 "mxcsr"
86 };
87
88 static const char *i386_zmm_names[] =
89 {
90 "zmm0", "zmm1", "zmm2", "zmm3",
91 "zmm4", "zmm5", "zmm6", "zmm7"
92 };
93
94 static const char *i386_zmmh_names[] =
95 {
96 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
97 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
98 };
99
100 static const char *i386_k_names[] =
101 {
102 "k0", "k1", "k2", "k3",
103 "k4", "k5", "k6", "k7"
104 };
105
106 static const char *i386_ymm_names[] =
107 {
108 "ymm0", "ymm1", "ymm2", "ymm3",
109 "ymm4", "ymm5", "ymm6", "ymm7",
110 };
111
112 static const char *i386_ymmh_names[] =
113 {
114 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
115 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
116 };
117
118 static const char *i386_mpx_names[] =
119 {
120 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
121 };
122
123 /* Register names for MPX pseudo-registers. */
124
125 static const char *i386_bnd_names[] =
126 {
127 "bnd0", "bnd1", "bnd2", "bnd3"
128 };
129
130 /* Register names for MMX pseudo-registers. */
131
132 static const char *i386_mmx_names[] =
133 {
134 "mm0", "mm1", "mm2", "mm3",
135 "mm4", "mm5", "mm6", "mm7"
136 };
137
138 /* Register names for byte pseudo-registers. */
139
140 static const char *i386_byte_names[] =
141 {
142 "al", "cl", "dl", "bl",
143 "ah", "ch", "dh", "bh"
144 };
145
146 /* Register names for word pseudo-registers. */
147
148 static const char *i386_word_names[] =
149 {
150 "ax", "cx", "dx", "bx",
151 "", "bp", "si", "di"
152 };
153
154 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
155 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
156 we have 16 upper ZMM regs that have to be handled differently. */
157
158 const int num_lower_zmm_regs = 16;
159
160 /* MMX register? */
161
162 static int
163 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
164 {
165 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
166 int mm0_regnum = tdep->mm0_regnum;
167
168 if (mm0_regnum < 0)
169 return 0;
170
171 regnum -= mm0_regnum;
172 return regnum >= 0 && regnum < tdep->num_mmx_regs;
173 }
174
175 /* Byte register? */
176
177 int
178 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
179 {
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181
182 regnum -= tdep->al_regnum;
183 return regnum >= 0 && regnum < tdep->num_byte_regs;
184 }
185
186 /* Word register? */
187
188 int
189 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
190 {
191 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
192
193 regnum -= tdep->ax_regnum;
194 return regnum >= 0 && regnum < tdep->num_word_regs;
195 }
196
197 /* Dword register? */
198
199 int
200 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
201 {
202 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
203 int eax_regnum = tdep->eax_regnum;
204
205 if (eax_regnum < 0)
206 return 0;
207
208 regnum -= eax_regnum;
209 return regnum >= 0 && regnum < tdep->num_dword_regs;
210 }
211
212 /* AVX512 register? */
213
214 int
215 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
216 {
217 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
218 int zmm0h_regnum = tdep->zmm0h_regnum;
219
220 if (zmm0h_regnum < 0)
221 return 0;
222
223 regnum -= zmm0h_regnum;
224 return regnum >= 0 && regnum < tdep->num_zmm_regs;
225 }
226
227 int
228 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
229 {
230 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
231 int zmm0_regnum = tdep->zmm0_regnum;
232
233 if (zmm0_regnum < 0)
234 return 0;
235
236 regnum -= zmm0_regnum;
237 return regnum >= 0 && regnum < tdep->num_zmm_regs;
238 }
239
240 int
241 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
242 {
243 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
244 int k0_regnum = tdep->k0_regnum;
245
246 if (k0_regnum < 0)
247 return 0;
248
249 regnum -= k0_regnum;
250 return regnum >= 0 && regnum < I387_NUM_K_REGS;
251 }
252
253 static int
254 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
255 {
256 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
257 int ymm0h_regnum = tdep->ymm0h_regnum;
258
259 if (ymm0h_regnum < 0)
260 return 0;
261
262 regnum -= ymm0h_regnum;
263 return regnum >= 0 && regnum < tdep->num_ymm_regs;
264 }
265
266 /* AVX register? */
267
268 int
269 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
270 {
271 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
272 int ymm0_regnum = tdep->ymm0_regnum;
273
274 if (ymm0_regnum < 0)
275 return 0;
276
277 regnum -= ymm0_regnum;
278 return regnum >= 0 && regnum < tdep->num_ymm_regs;
279 }
280
281 static int
282 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
283 {
284 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
285 int ymm16h_regnum = tdep->ymm16h_regnum;
286
287 if (ymm16h_regnum < 0)
288 return 0;
289
290 regnum -= ymm16h_regnum;
291 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
292 }
293
294 int
295 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
296 {
297 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
298 int ymm16_regnum = tdep->ymm16_regnum;
299
300 if (ymm16_regnum < 0)
301 return 0;
302
303 regnum -= ymm16_regnum;
304 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
305 }
306
307 /* BND register? */
308
309 int
310 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
311 {
312 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
313 int bnd0_regnum = tdep->bnd0_regnum;
314
315 if (bnd0_regnum < 0)
316 return 0;
317
318 regnum -= bnd0_regnum;
319 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
320 }
321
322 /* SSE register? */
323
324 int
325 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
326 {
327 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
328 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
329
330 if (num_xmm_regs == 0)
331 return 0;
332
333 regnum -= I387_XMM0_REGNUM (tdep);
334 return regnum >= 0 && regnum < num_xmm_regs;
335 }
336
337 /* XMM_512 register? */
338
339 int
340 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
341 {
342 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
343 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
344
345 if (num_xmm_avx512_regs == 0)
346 return 0;
347
348 regnum -= I387_XMM16_REGNUM (tdep);
349 return regnum >= 0 && regnum < num_xmm_avx512_regs;
350 }
351
352 static int
353 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
354 {
355 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
356
357 if (I387_NUM_XMM_REGS (tdep) == 0)
358 return 0;
359
360 return (regnum == I387_MXCSR_REGNUM (tdep));
361 }
362
363 /* FP register? */
364
365 int
366 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
367 {
368 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
369
370 if (I387_ST0_REGNUM (tdep) < 0)
371 return 0;
372
373 return (I387_ST0_REGNUM (tdep) <= regnum
374 && regnum < I387_FCTRL_REGNUM (tdep));
375 }
376
377 int
378 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
379 {
380 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
381
382 if (I387_ST0_REGNUM (tdep) < 0)
383 return 0;
384
385 return (I387_FCTRL_REGNUM (tdep) <= regnum
386 && regnum < I387_XMM0_REGNUM (tdep));
387 }
388
389 /* BNDr (raw) register? */
390
391 static int
392 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
393 {
394 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
395
396 if (I387_BND0R_REGNUM (tdep) < 0)
397 return 0;
398
399 regnum -= tdep->bnd0r_regnum;
400 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
401 }
402
403 /* BND control register? */
404
405 static int
406 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
407 {
408 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
409
410 if (I387_BNDCFGU_REGNUM (tdep) < 0)
411 return 0;
412
413 regnum -= I387_BNDCFGU_REGNUM (tdep);
414 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
415 }
416
417 /* Return the name of register REGNUM, or the empty string if it is
418 an anonymous register. */
419
420 static const char *
421 i386_register_name (struct gdbarch *gdbarch, int regnum)
422 {
423 /* Hide the upper YMM registers. */
424 if (i386_ymmh_regnum_p (gdbarch, regnum))
425 return "";
426
427 /* Hide the upper YMM16-31 registers. */
428 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
429 return "";
430
431 /* Hide the upper ZMM registers. */
432 if (i386_zmmh_regnum_p (gdbarch, regnum))
433 return "";
434
435 return tdesc_register_name (gdbarch, regnum);
436 }
437
438 /* Return the name of register REGNUM. */
439
440 const char *
441 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
442 {
443 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
444 if (i386_bnd_regnum_p (gdbarch, regnum))
445 return i386_bnd_names[regnum - tdep->bnd0_regnum];
446 if (i386_mmx_regnum_p (gdbarch, regnum))
447 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
448 else if (i386_ymm_regnum_p (gdbarch, regnum))
449 return i386_ymm_names[regnum - tdep->ymm0_regnum];
450 else if (i386_zmm_regnum_p (gdbarch, regnum))
451 return i386_zmm_names[regnum - tdep->zmm0_regnum];
452 else if (i386_byte_regnum_p (gdbarch, regnum))
453 return i386_byte_names[regnum - tdep->al_regnum];
454 else if (i386_word_regnum_p (gdbarch, regnum))
455 return i386_word_names[regnum - tdep->ax_regnum];
456
457 internal_error (__FILE__, __LINE__, _("invalid regnum"));
458 }
459
460 /* Convert a dbx register number REG to the appropriate register
461 number used by GDB. */
462
463 static int
464 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
465 {
466 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
467
468 /* This implements what GCC calls the "default" register map
469 (dbx_register_map[]). */
470
471 if (reg >= 0 && reg <= 7)
472 {
473 /* General-purpose registers. The debug info calls %ebp
474 register 4, and %esp register 5. */
475 if (reg == 4)
476 return 5;
477 else if (reg == 5)
478 return 4;
479 else return reg;
480 }
481 else if (reg >= 12 && reg <= 19)
482 {
483 /* Floating-point registers. */
484 return reg - 12 + I387_ST0_REGNUM (tdep);
485 }
486 else if (reg >= 21 && reg <= 28)
487 {
488 /* SSE registers. */
489 int ymm0_regnum = tdep->ymm0_regnum;
490
491 if (ymm0_regnum >= 0
492 && i386_xmm_regnum_p (gdbarch, reg))
493 return reg - 21 + ymm0_regnum;
494 else
495 return reg - 21 + I387_XMM0_REGNUM (tdep);
496 }
497 else if (reg >= 29 && reg <= 36)
498 {
499 /* MMX registers. */
500 return reg - 29 + I387_MM0_REGNUM (tdep);
501 }
502
503 /* This will hopefully provoke a warning. */
504 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
505 }
506
507 /* Convert SVR4 DWARF register number REG to the appropriate register number
508 used by GDB. */
509
510 static int
511 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
512 {
513 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
514
515 /* This implements the GCC register map that tries to be compatible
516 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
517
518 /* The SVR4 register numbering includes %eip and %eflags, and
519 numbers the floating point registers differently. */
520 if (reg >= 0 && reg <= 9)
521 {
522 /* General-purpose registers. */
523 return reg;
524 }
525 else if (reg >= 11 && reg <= 18)
526 {
527 /* Floating-point registers. */
528 return reg - 11 + I387_ST0_REGNUM (tdep);
529 }
530 else if (reg >= 21 && reg <= 36)
531 {
532 /* The SSE and MMX registers have the same numbers as with dbx. */
533 return i386_dbx_reg_to_regnum (gdbarch, reg);
534 }
535
536 switch (reg)
537 {
538 case 37: return I387_FCTRL_REGNUM (tdep);
539 case 38: return I387_FSTAT_REGNUM (tdep);
540 case 39: return I387_MXCSR_REGNUM (tdep);
541 case 40: return I386_ES_REGNUM;
542 case 41: return I386_CS_REGNUM;
543 case 42: return I386_SS_REGNUM;
544 case 43: return I386_DS_REGNUM;
545 case 44: return I386_FS_REGNUM;
546 case 45: return I386_GS_REGNUM;
547 }
548
549 return -1;
550 }
551
552 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
553 num_regs + num_pseudo_regs for other debug formats. */
554
555 static int
556 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
557 {
558 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
559
560 if (regnum == -1)
561 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
562 return regnum;
563 }
564
565 \f
566
567 /* This is the variable that is set with "set disassembly-flavor", and
568 its legitimate values. */
569 static const char att_flavor[] = "att";
570 static const char intel_flavor[] = "intel";
571 static const char *const valid_flavors[] =
572 {
573 att_flavor,
574 intel_flavor,
575 NULL
576 };
577 static const char *disassembly_flavor = att_flavor;
578 \f
579
580 /* Use the program counter to determine the contents and size of a
581 breakpoint instruction. Return a pointer to a string of bytes that
582 encode a breakpoint instruction, store the length of the string in
583 *LEN and optionally adjust *PC to point to the correct memory
584 location for inserting the breakpoint.
585
586 On the i386 we have a single breakpoint that fits in a single byte
587 and can be inserted anywhere.
588
589 This function is 64-bit safe. */
590
591 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
592
593 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
594
595 \f
596 /* Displaced instruction handling. */
597
598 /* Skip the legacy instruction prefixes in INSN.
599 Not all prefixes are valid for any particular insn
600 but we needn't care, the insn will fault if it's invalid.
601 The result is a pointer to the first opcode byte,
602 or NULL if we run off the end of the buffer. */
603
604 static gdb_byte *
605 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
606 {
607 gdb_byte *end = insn + max_len;
608
609 while (insn < end)
610 {
611 switch (*insn)
612 {
613 case DATA_PREFIX_OPCODE:
614 case ADDR_PREFIX_OPCODE:
615 case CS_PREFIX_OPCODE:
616 case DS_PREFIX_OPCODE:
617 case ES_PREFIX_OPCODE:
618 case FS_PREFIX_OPCODE:
619 case GS_PREFIX_OPCODE:
620 case SS_PREFIX_OPCODE:
621 case LOCK_PREFIX_OPCODE:
622 case REPE_PREFIX_OPCODE:
623 case REPNE_PREFIX_OPCODE:
624 ++insn;
625 continue;
626 default:
627 return insn;
628 }
629 }
630
631 return NULL;
632 }
633
634 static int
635 i386_absolute_jmp_p (const gdb_byte *insn)
636 {
637 /* jmp far (absolute address in operand). */
638 if (insn[0] == 0xea)
639 return 1;
640
641 if (insn[0] == 0xff)
642 {
643 /* jump near, absolute indirect (/4). */
644 if ((insn[1] & 0x38) == 0x20)
645 return 1;
646
647 /* jump far, absolute indirect (/5). */
648 if ((insn[1] & 0x38) == 0x28)
649 return 1;
650 }
651
652 return 0;
653 }
654
655 /* Return non-zero if INSN is a jump, zero otherwise. */
656
657 static int
658 i386_jmp_p (const gdb_byte *insn)
659 {
660 /* jump short, relative. */
661 if (insn[0] == 0xeb)
662 return 1;
663
664 /* jump near, relative. */
665 if (insn[0] == 0xe9)
666 return 1;
667
668 return i386_absolute_jmp_p (insn);
669 }
670
671 static int
672 i386_absolute_call_p (const gdb_byte *insn)
673 {
674 /* call far, absolute. */
675 if (insn[0] == 0x9a)
676 return 1;
677
678 if (insn[0] == 0xff)
679 {
680 /* Call near, absolute indirect (/2). */
681 if ((insn[1] & 0x38) == 0x10)
682 return 1;
683
684 /* Call far, absolute indirect (/3). */
685 if ((insn[1] & 0x38) == 0x18)
686 return 1;
687 }
688
689 return 0;
690 }
691
692 static int
693 i386_ret_p (const gdb_byte *insn)
694 {
695 switch (insn[0])
696 {
697 case 0xc2: /* ret near, pop N bytes. */
698 case 0xc3: /* ret near */
699 case 0xca: /* ret far, pop N bytes. */
700 case 0xcb: /* ret far */
701 case 0xcf: /* iret */
702 return 1;
703
704 default:
705 return 0;
706 }
707 }
708
709 static int
710 i386_call_p (const gdb_byte *insn)
711 {
712 if (i386_absolute_call_p (insn))
713 return 1;
714
715 /* call near, relative. */
716 if (insn[0] == 0xe8)
717 return 1;
718
719 return 0;
720 }
721
722 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
723 length in bytes. Otherwise, return zero. */
724
725 static int
726 i386_syscall_p (const gdb_byte *insn, int *lengthp)
727 {
728 /* Is it 'int $0x80'? */
729 if ((insn[0] == 0xcd && insn[1] == 0x80)
730 /* Or is it 'sysenter'? */
731 || (insn[0] == 0x0f && insn[1] == 0x34)
732 /* Or is it 'syscall'? */
733 || (insn[0] == 0x0f && insn[1] == 0x05))
734 {
735 *lengthp = 2;
736 return 1;
737 }
738
739 return 0;
740 }
741
742 /* The gdbarch insn_is_call method. */
743
744 static int
745 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
746 {
747 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
748
749 read_code (addr, buf, I386_MAX_INSN_LEN);
750 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
751
752 return i386_call_p (insn);
753 }
754
755 /* The gdbarch insn_is_ret method. */
756
757 static int
758 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
759 {
760 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
761
762 read_code (addr, buf, I386_MAX_INSN_LEN);
763 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
764
765 return i386_ret_p (insn);
766 }
767
768 /* The gdbarch insn_is_jump method. */
769
770 static int
771 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
772 {
773 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
774
775 read_code (addr, buf, I386_MAX_INSN_LEN);
776 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
777
778 return i386_jmp_p (insn);
779 }
780
781 /* Some kernels may run one past a syscall insn, so we have to cope.
782 Otherwise this is just simple_displaced_step_copy_insn. */
783
784 struct displaced_step_closure *
785 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
786 CORE_ADDR from, CORE_ADDR to,
787 struct regcache *regs)
788 {
789 size_t len = gdbarch_max_insn_length (gdbarch);
790 gdb_byte *buf = (gdb_byte *) xmalloc (len);
791
792 read_memory (from, buf, len);
793
794 /* GDB may get control back after the insn after the syscall.
795 Presumably this is a kernel bug.
796 If this is a syscall, make sure there's a nop afterwards. */
797 {
798 int syscall_length;
799 gdb_byte *insn;
800
801 insn = i386_skip_prefixes (buf, len);
802 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
803 insn[syscall_length] = NOP_OPCODE;
804 }
805
806 write_memory (to, buf, len);
807
808 if (debug_displaced)
809 {
810 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
811 paddress (gdbarch, from), paddress (gdbarch, to));
812 displaced_step_dump_bytes (gdb_stdlog, buf, len);
813 }
814
815 return (struct displaced_step_closure *) buf;
816 }
817
818 /* Fix up the state of registers and memory after having single-stepped
819 a displaced instruction. */
820
821 void
822 i386_displaced_step_fixup (struct gdbarch *gdbarch,
823 struct displaced_step_closure *closure,
824 CORE_ADDR from, CORE_ADDR to,
825 struct regcache *regs)
826 {
827 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
828
829 /* The offset we applied to the instruction's address.
830 This could well be negative (when viewed as a signed 32-bit
831 value), but ULONGEST won't reflect that, so take care when
832 applying it. */
833 ULONGEST insn_offset = to - from;
834
835 /* Since we use simple_displaced_step_copy_insn, our closure is a
836 copy of the instruction. */
837 gdb_byte *insn = (gdb_byte *) closure;
838 /* The start of the insn, needed in case we see some prefixes. */
839 gdb_byte *insn_start = insn;
840
841 if (debug_displaced)
842 fprintf_unfiltered (gdb_stdlog,
843 "displaced: fixup (%s, %s), "
844 "insn = 0x%02x 0x%02x ...\n",
845 paddress (gdbarch, from), paddress (gdbarch, to),
846 insn[0], insn[1]);
847
848 /* The list of issues to contend with here is taken from
849 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
850 Yay for Free Software! */
851
852 /* Relocate the %eip, if necessary. */
853
854 /* The instruction recognizers we use assume any leading prefixes
855 have been skipped. */
856 {
857 /* This is the size of the buffer in closure. */
858 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
859 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
860 /* If there are too many prefixes, just ignore the insn.
861 It will fault when run. */
862 if (opcode != NULL)
863 insn = opcode;
864 }
865
866 /* Except in the case of absolute or indirect jump or call
867 instructions, or a return instruction, the new eip is relative to
868 the displaced instruction; make it relative. Well, signal
869 handler returns don't need relocation either, but we use the
870 value of %eip to recognize those; see below. */
871 if (! i386_absolute_jmp_p (insn)
872 && ! i386_absolute_call_p (insn)
873 && ! i386_ret_p (insn))
874 {
875 ULONGEST orig_eip;
876 int insn_len;
877
878 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
879
880 /* A signal trampoline system call changes the %eip, resuming
881 execution of the main program after the signal handler has
882 returned. That makes them like 'return' instructions; we
883 shouldn't relocate %eip.
884
885 But most system calls don't, and we do need to relocate %eip.
886
887 Our heuristic for distinguishing these cases: if stepping
888 over the system call instruction left control directly after
889 the instruction, the we relocate --- control almost certainly
890 doesn't belong in the displaced copy. Otherwise, we assume
891 the instruction has put control where it belongs, and leave
892 it unrelocated. Goodness help us if there are PC-relative
893 system calls. */
894 if (i386_syscall_p (insn, &insn_len)
895 && orig_eip != to + (insn - insn_start) + insn_len
896 /* GDB can get control back after the insn after the syscall.
897 Presumably this is a kernel bug.
898 i386_displaced_step_copy_insn ensures its a nop,
899 we add one to the length for it. */
900 && orig_eip != to + (insn - insn_start) + insn_len + 1)
901 {
902 if (debug_displaced)
903 fprintf_unfiltered (gdb_stdlog,
904 "displaced: syscall changed %%eip; "
905 "not relocating\n");
906 }
907 else
908 {
909 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
910
911 /* If we just stepped over a breakpoint insn, we don't backup
912 the pc on purpose; this is to match behaviour without
913 stepping. */
914
915 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
916
917 if (debug_displaced)
918 fprintf_unfiltered (gdb_stdlog,
919 "displaced: "
920 "relocated %%eip from %s to %s\n",
921 paddress (gdbarch, orig_eip),
922 paddress (gdbarch, eip));
923 }
924 }
925
926 /* If the instruction was PUSHFL, then the TF bit will be set in the
927 pushed value, and should be cleared. We'll leave this for later,
928 since GDB already messes up the TF flag when stepping over a
929 pushfl. */
930
931 /* If the instruction was a call, the return address now atop the
932 stack is the address following the copied instruction. We need
933 to make it the address following the original instruction. */
934 if (i386_call_p (insn))
935 {
936 ULONGEST esp;
937 ULONGEST retaddr;
938 const ULONGEST retaddr_len = 4;
939
940 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
941 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
942 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
943 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
944
945 if (debug_displaced)
946 fprintf_unfiltered (gdb_stdlog,
947 "displaced: relocated return addr at %s to %s\n",
948 paddress (gdbarch, esp),
949 paddress (gdbarch, retaddr));
950 }
951 }
952
953 static void
954 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
955 {
956 target_write_memory (*to, buf, len);
957 *to += len;
958 }
959
960 static void
961 i386_relocate_instruction (struct gdbarch *gdbarch,
962 CORE_ADDR *to, CORE_ADDR oldloc)
963 {
964 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
965 gdb_byte buf[I386_MAX_INSN_LEN];
966 int offset = 0, rel32, newrel;
967 int insn_length;
968 gdb_byte *insn = buf;
969
970 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
971
972 insn_length = gdb_buffered_insn_length (gdbarch, insn,
973 I386_MAX_INSN_LEN, oldloc);
974
975 /* Get past the prefixes. */
976 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
977
978 /* Adjust calls with 32-bit relative addresses as push/jump, with
979 the address pushed being the location where the original call in
980 the user program would return to. */
981 if (insn[0] == 0xe8)
982 {
983 gdb_byte push_buf[16];
984 unsigned int ret_addr;
985
986 /* Where "ret" in the original code will return to. */
987 ret_addr = oldloc + insn_length;
988 push_buf[0] = 0x68; /* pushq $... */
989 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
990 /* Push the push. */
991 append_insns (to, 5, push_buf);
992
993 /* Convert the relative call to a relative jump. */
994 insn[0] = 0xe9;
995
996 /* Adjust the destination offset. */
997 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
998 newrel = (oldloc - *to) + rel32;
999 store_signed_integer (insn + 1, 4, byte_order, newrel);
1000
1001 if (debug_displaced)
1002 fprintf_unfiltered (gdb_stdlog,
1003 "Adjusted insn rel32=%s at %s to"
1004 " rel32=%s at %s\n",
1005 hex_string (rel32), paddress (gdbarch, oldloc),
1006 hex_string (newrel), paddress (gdbarch, *to));
1007
1008 /* Write the adjusted jump into its displaced location. */
1009 append_insns (to, 5, insn);
1010 return;
1011 }
1012
1013 /* Adjust jumps with 32-bit relative addresses. Calls are already
1014 handled above. */
1015 if (insn[0] == 0xe9)
1016 offset = 1;
1017 /* Adjust conditional jumps. */
1018 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1019 offset = 2;
1020
1021 if (offset)
1022 {
1023 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1024 newrel = (oldloc - *to) + rel32;
1025 store_signed_integer (insn + offset, 4, byte_order, newrel);
1026 if (debug_displaced)
1027 fprintf_unfiltered (gdb_stdlog,
1028 "Adjusted insn rel32=%s at %s to"
1029 " rel32=%s at %s\n",
1030 hex_string (rel32), paddress (gdbarch, oldloc),
1031 hex_string (newrel), paddress (gdbarch, *to));
1032 }
1033
1034 /* Write the adjusted instructions into their displaced
1035 location. */
1036 append_insns (to, insn_length, buf);
1037 }
1038
1039 \f
1040 #ifdef I386_REGNO_TO_SYMMETRY
1041 #error "The Sequent Symmetry is no longer supported."
1042 #endif
1043
1044 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1045 and %esp "belong" to the calling function. Therefore these
1046 registers should be saved if they're going to be modified. */
1047
1048 /* The maximum number of saved registers. This should include all
1049 registers mentioned above, and %eip. */
1050 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1051
1052 struct i386_frame_cache
1053 {
1054 /* Base address. */
1055 CORE_ADDR base;
1056 int base_p;
1057 LONGEST sp_offset;
1058 CORE_ADDR pc;
1059
1060 /* Saved registers. */
1061 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1062 CORE_ADDR saved_sp;
1063 int saved_sp_reg;
1064 int pc_in_eax;
1065
1066 /* Stack space reserved for local variables. */
1067 long locals;
1068 };
1069
1070 /* Allocate and initialize a frame cache. */
1071
1072 static struct i386_frame_cache *
1073 i386_alloc_frame_cache (void)
1074 {
1075 struct i386_frame_cache *cache;
1076 int i;
1077
1078 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1079
1080 /* Base address. */
1081 cache->base_p = 0;
1082 cache->base = 0;
1083 cache->sp_offset = -4;
1084 cache->pc = 0;
1085
1086 /* Saved registers. We initialize these to -1 since zero is a valid
1087 offset (that's where %ebp is supposed to be stored). */
1088 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1089 cache->saved_regs[i] = -1;
1090 cache->saved_sp = 0;
1091 cache->saved_sp_reg = -1;
1092 cache->pc_in_eax = 0;
1093
1094 /* Frameless until proven otherwise. */
1095 cache->locals = -1;
1096
1097 return cache;
1098 }
1099
1100 /* If the instruction at PC is a jump, return the address of its
1101 target. Otherwise, return PC. */
1102
1103 static CORE_ADDR
1104 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1105 {
1106 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1107 gdb_byte op;
1108 long delta = 0;
1109 int data16 = 0;
1110
1111 if (target_read_code (pc, &op, 1))
1112 return pc;
1113
1114 if (op == 0x66)
1115 {
1116 data16 = 1;
1117
1118 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1119 }
1120
1121 switch (op)
1122 {
1123 case 0xe9:
1124 /* Relative jump: if data16 == 0, disp32, else disp16. */
1125 if (data16)
1126 {
1127 delta = read_memory_integer (pc + 2, 2, byte_order);
1128
1129 /* Include the size of the jmp instruction (including the
1130 0x66 prefix). */
1131 delta += 4;
1132 }
1133 else
1134 {
1135 delta = read_memory_integer (pc + 1, 4, byte_order);
1136
1137 /* Include the size of the jmp instruction. */
1138 delta += 5;
1139 }
1140 break;
1141 case 0xeb:
1142 /* Relative jump, disp8 (ignore data16). */
1143 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1144
1145 delta += data16 + 2;
1146 break;
1147 }
1148
1149 return pc + delta;
1150 }
1151
1152 /* Check whether PC points at a prologue for a function returning a
1153 structure or union. If so, it updates CACHE and returns the
1154 address of the first instruction after the code sequence that
1155 removes the "hidden" argument from the stack or CURRENT_PC,
1156 whichever is smaller. Otherwise, return PC. */
1157
1158 static CORE_ADDR
1159 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1160 struct i386_frame_cache *cache)
1161 {
1162 /* Functions that return a structure or union start with:
1163
1164 popl %eax 0x58
1165 xchgl %eax, (%esp) 0x87 0x04 0x24
1166 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1167
1168 (the System V compiler puts out the second `xchg' instruction,
1169 and the assembler doesn't try to optimize it, so the 'sib' form
1170 gets generated). This sequence is used to get the address of the
1171 return buffer for a function that returns a structure. */
1172 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1173 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1174 gdb_byte buf[4];
1175 gdb_byte op;
1176
1177 if (current_pc <= pc)
1178 return pc;
1179
1180 if (target_read_code (pc, &op, 1))
1181 return pc;
1182
1183 if (op != 0x58) /* popl %eax */
1184 return pc;
1185
1186 if (target_read_code (pc + 1, buf, 4))
1187 return pc;
1188
1189 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1190 return pc;
1191
1192 if (current_pc == pc)
1193 {
1194 cache->sp_offset += 4;
1195 return current_pc;
1196 }
1197
1198 if (current_pc == pc + 1)
1199 {
1200 cache->pc_in_eax = 1;
1201 return current_pc;
1202 }
1203
1204 if (buf[1] == proto1[1])
1205 return pc + 4;
1206 else
1207 return pc + 5;
1208 }
1209
1210 static CORE_ADDR
1211 i386_skip_probe (CORE_ADDR pc)
1212 {
1213 /* A function may start with
1214
1215 pushl constant
1216 call _probe
1217 addl $4, %esp
1218
1219 followed by
1220
1221 pushl %ebp
1222
1223 etc. */
1224 gdb_byte buf[8];
1225 gdb_byte op;
1226
1227 if (target_read_code (pc, &op, 1))
1228 return pc;
1229
1230 if (op == 0x68 || op == 0x6a)
1231 {
1232 int delta;
1233
1234 /* Skip past the `pushl' instruction; it has either a one-byte or a
1235 four-byte operand, depending on the opcode. */
1236 if (op == 0x68)
1237 delta = 5;
1238 else
1239 delta = 2;
1240
1241 /* Read the following 8 bytes, which should be `call _probe' (6
1242 bytes) followed by `addl $4,%esp' (2 bytes). */
1243 read_memory (pc + delta, buf, sizeof (buf));
1244 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1245 pc += delta + sizeof (buf);
1246 }
1247
1248 return pc;
1249 }
1250
1251 /* GCC 4.1 and later, can put code in the prologue to realign the
1252 stack pointer. Check whether PC points to such code, and update
1253 CACHE accordingly. Return the first instruction after the code
1254 sequence or CURRENT_PC, whichever is smaller. If we don't
1255 recognize the code, return PC. */
1256
1257 static CORE_ADDR
1258 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1259 struct i386_frame_cache *cache)
1260 {
1261 /* There are 2 code sequences to re-align stack before the frame
1262 gets set up:
1263
1264 1. Use a caller-saved saved register:
1265
1266 leal 4(%esp), %reg
1267 andl $-XXX, %esp
1268 pushl -4(%reg)
1269
1270 2. Use a callee-saved saved register:
1271
1272 pushl %reg
1273 leal 8(%esp), %reg
1274 andl $-XXX, %esp
1275 pushl -4(%reg)
1276
1277 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1278
1279 0x83 0xe4 0xf0 andl $-16, %esp
1280 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1281 */
1282
1283 gdb_byte buf[14];
1284 int reg;
1285 int offset, offset_and;
1286 static int regnums[8] = {
1287 I386_EAX_REGNUM, /* %eax */
1288 I386_ECX_REGNUM, /* %ecx */
1289 I386_EDX_REGNUM, /* %edx */
1290 I386_EBX_REGNUM, /* %ebx */
1291 I386_ESP_REGNUM, /* %esp */
1292 I386_EBP_REGNUM, /* %ebp */
1293 I386_ESI_REGNUM, /* %esi */
1294 I386_EDI_REGNUM /* %edi */
1295 };
1296
1297 if (target_read_code (pc, buf, sizeof buf))
1298 return pc;
1299
1300 /* Check caller-saved saved register. The first instruction has
1301 to be "leal 4(%esp), %reg". */
1302 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1303 {
1304 /* MOD must be binary 10 and R/M must be binary 100. */
1305 if ((buf[1] & 0xc7) != 0x44)
1306 return pc;
1307
1308 /* REG has register number. */
1309 reg = (buf[1] >> 3) & 7;
1310 offset = 4;
1311 }
1312 else
1313 {
1314 /* Check callee-saved saved register. The first instruction
1315 has to be "pushl %reg". */
1316 if ((buf[0] & 0xf8) != 0x50)
1317 return pc;
1318
1319 /* Get register. */
1320 reg = buf[0] & 0x7;
1321
1322 /* The next instruction has to be "leal 8(%esp), %reg". */
1323 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1324 return pc;
1325
1326 /* MOD must be binary 10 and R/M must be binary 100. */
1327 if ((buf[2] & 0xc7) != 0x44)
1328 return pc;
1329
1330 /* REG has register number. Registers in pushl and leal have to
1331 be the same. */
1332 if (reg != ((buf[2] >> 3) & 7))
1333 return pc;
1334
1335 offset = 5;
1336 }
1337
1338 /* Rigister can't be %esp nor %ebp. */
1339 if (reg == 4 || reg == 5)
1340 return pc;
1341
1342 /* The next instruction has to be "andl $-XXX, %esp". */
1343 if (buf[offset + 1] != 0xe4
1344 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1345 return pc;
1346
1347 offset_and = offset;
1348 offset += buf[offset] == 0x81 ? 6 : 3;
1349
1350 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1351 0xfc. REG must be binary 110 and MOD must be binary 01. */
1352 if (buf[offset] != 0xff
1353 || buf[offset + 2] != 0xfc
1354 || (buf[offset + 1] & 0xf8) != 0x70)
1355 return pc;
1356
1357 /* R/M has register. Registers in leal and pushl have to be the
1358 same. */
1359 if (reg != (buf[offset + 1] & 7))
1360 return pc;
1361
1362 if (current_pc > pc + offset_and)
1363 cache->saved_sp_reg = regnums[reg];
1364
1365 return std::min (pc + offset + 3, current_pc);
1366 }
1367
1368 /* Maximum instruction length we need to handle. */
1369 #define I386_MAX_MATCHED_INSN_LEN 6
1370
1371 /* Instruction description. */
1372 struct i386_insn
1373 {
1374 size_t len;
1375 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1376 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1377 };
1378
1379 /* Return whether instruction at PC matches PATTERN. */
1380
1381 static int
1382 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1383 {
1384 gdb_byte op;
1385
1386 if (target_read_code (pc, &op, 1))
1387 return 0;
1388
1389 if ((op & pattern.mask[0]) == pattern.insn[0])
1390 {
1391 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1392 int insn_matched = 1;
1393 size_t i;
1394
1395 gdb_assert (pattern.len > 1);
1396 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1397
1398 if (target_read_code (pc + 1, buf, pattern.len - 1))
1399 return 0;
1400
1401 for (i = 1; i < pattern.len; i++)
1402 {
1403 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1404 insn_matched = 0;
1405 }
1406 return insn_matched;
1407 }
1408 return 0;
1409 }
1410
1411 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1412 the first instruction description that matches. Otherwise, return
1413 NULL. */
1414
1415 static struct i386_insn *
1416 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1417 {
1418 struct i386_insn *pattern;
1419
1420 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1421 {
1422 if (i386_match_pattern (pc, *pattern))
1423 return pattern;
1424 }
1425
1426 return NULL;
1427 }
1428
1429 /* Return whether PC points inside a sequence of instructions that
1430 matches INSN_PATTERNS. */
1431
1432 static int
1433 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1434 {
1435 CORE_ADDR current_pc;
1436 int ix, i;
1437 struct i386_insn *insn;
1438
1439 insn = i386_match_insn (pc, insn_patterns);
1440 if (insn == NULL)
1441 return 0;
1442
1443 current_pc = pc;
1444 ix = insn - insn_patterns;
1445 for (i = ix - 1; i >= 0; i--)
1446 {
1447 current_pc -= insn_patterns[i].len;
1448
1449 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1450 return 0;
1451 }
1452
1453 current_pc = pc + insn->len;
1454 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1455 {
1456 if (!i386_match_pattern (current_pc, *insn))
1457 return 0;
1458
1459 current_pc += insn->len;
1460 }
1461
1462 return 1;
1463 }
1464
1465 /* Some special instructions that might be migrated by GCC into the
1466 part of the prologue that sets up the new stack frame. Because the
1467 stack frame hasn't been setup yet, no registers have been saved
1468 yet, and only the scratch registers %eax, %ecx and %edx can be
1469 touched. */
1470
1471 struct i386_insn i386_frame_setup_skip_insns[] =
1472 {
1473 /* Check for `movb imm8, r' and `movl imm32, r'.
1474
1475 ??? Should we handle 16-bit operand-sizes here? */
1476
1477 /* `movb imm8, %al' and `movb imm8, %ah' */
1478 /* `movb imm8, %cl' and `movb imm8, %ch' */
1479 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1480 /* `movb imm8, %dl' and `movb imm8, %dh' */
1481 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1482 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1483 { 5, { 0xb8 }, { 0xfe } },
1484 /* `movl imm32, %edx' */
1485 { 5, { 0xba }, { 0xff } },
1486
1487 /* Check for `mov imm32, r32'. Note that there is an alternative
1488 encoding for `mov m32, %eax'.
1489
1490 ??? Should we handle SIB adressing here?
1491 ??? Should we handle 16-bit operand-sizes here? */
1492
1493 /* `movl m32, %eax' */
1494 { 5, { 0xa1 }, { 0xff } },
1495 /* `movl m32, %eax' and `mov; m32, %ecx' */
1496 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1497 /* `movl m32, %edx' */
1498 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1499
1500 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1501 Because of the symmetry, there are actually two ways to encode
1502 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1503 opcode bytes 0x31 and 0x33 for `xorl'. */
1504
1505 /* `subl %eax, %eax' */
1506 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1507 /* `subl %ecx, %ecx' */
1508 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1509 /* `subl %edx, %edx' */
1510 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1511 /* `xorl %eax, %eax' */
1512 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1513 /* `xorl %ecx, %ecx' */
1514 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1515 /* `xorl %edx, %edx' */
1516 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1517 { 0 }
1518 };
1519
1520
1521 /* Check whether PC points to a no-op instruction. */
1522 static CORE_ADDR
1523 i386_skip_noop (CORE_ADDR pc)
1524 {
1525 gdb_byte op;
1526 int check = 1;
1527
1528 if (target_read_code (pc, &op, 1))
1529 return pc;
1530
1531 while (check)
1532 {
1533 check = 0;
1534 /* Ignore `nop' instruction. */
1535 if (op == 0x90)
1536 {
1537 pc += 1;
1538 if (target_read_code (pc, &op, 1))
1539 return pc;
1540 check = 1;
1541 }
1542 /* Ignore no-op instruction `mov %edi, %edi'.
1543 Microsoft system dlls often start with
1544 a `mov %edi,%edi' instruction.
1545 The 5 bytes before the function start are
1546 filled with `nop' instructions.
1547 This pattern can be used for hot-patching:
1548 The `mov %edi, %edi' instruction can be replaced by a
1549 near jump to the location of the 5 `nop' instructions
1550 which can be replaced by a 32-bit jump to anywhere
1551 in the 32-bit address space. */
1552
1553 else if (op == 0x8b)
1554 {
1555 if (target_read_code (pc + 1, &op, 1))
1556 return pc;
1557
1558 if (op == 0xff)
1559 {
1560 pc += 2;
1561 if (target_read_code (pc, &op, 1))
1562 return pc;
1563
1564 check = 1;
1565 }
1566 }
1567 }
1568 return pc;
1569 }
1570
1571 /* Check whether PC points at a code that sets up a new stack frame.
1572 If so, it updates CACHE and returns the address of the first
1573 instruction after the sequence that sets up the frame or LIMIT,
1574 whichever is smaller. If we don't recognize the code, return PC. */
1575
1576 static CORE_ADDR
1577 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1578 CORE_ADDR pc, CORE_ADDR limit,
1579 struct i386_frame_cache *cache)
1580 {
1581 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1582 struct i386_insn *insn;
1583 gdb_byte op;
1584 int skip = 0;
1585
1586 if (limit <= pc)
1587 return limit;
1588
1589 if (target_read_code (pc, &op, 1))
1590 return pc;
1591
1592 if (op == 0x55) /* pushl %ebp */
1593 {
1594 /* Take into account that we've executed the `pushl %ebp' that
1595 starts this instruction sequence. */
1596 cache->saved_regs[I386_EBP_REGNUM] = 0;
1597 cache->sp_offset += 4;
1598 pc++;
1599
1600 /* If that's all, return now. */
1601 if (limit <= pc)
1602 return limit;
1603
1604 /* Check for some special instructions that might be migrated by
1605 GCC into the prologue and skip them. At this point in the
1606 prologue, code should only touch the scratch registers %eax,
1607 %ecx and %edx, so while the number of posibilities is sheer,
1608 it is limited.
1609
1610 Make sure we only skip these instructions if we later see the
1611 `movl %esp, %ebp' that actually sets up the frame. */
1612 while (pc + skip < limit)
1613 {
1614 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1615 if (insn == NULL)
1616 break;
1617
1618 skip += insn->len;
1619 }
1620
1621 /* If that's all, return now. */
1622 if (limit <= pc + skip)
1623 return limit;
1624
1625 if (target_read_code (pc + skip, &op, 1))
1626 return pc + skip;
1627
1628 /* The i386 prologue looks like
1629
1630 push %ebp
1631 mov %esp,%ebp
1632 sub $0x10,%esp
1633
1634 and a different prologue can be generated for atom.
1635
1636 push %ebp
1637 lea (%esp),%ebp
1638 lea -0x10(%esp),%esp
1639
1640 We handle both of them here. */
1641
1642 switch (op)
1643 {
1644 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1645 case 0x8b:
1646 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1647 != 0xec)
1648 return pc;
1649 pc += (skip + 2);
1650 break;
1651 case 0x89:
1652 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1653 != 0xe5)
1654 return pc;
1655 pc += (skip + 2);
1656 break;
1657 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1658 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1659 != 0x242c)
1660 return pc;
1661 pc += (skip + 3);
1662 break;
1663 default:
1664 return pc;
1665 }
1666
1667 /* OK, we actually have a frame. We just don't know how large
1668 it is yet. Set its size to zero. We'll adjust it if
1669 necessary. We also now commit to skipping the special
1670 instructions mentioned before. */
1671 cache->locals = 0;
1672
1673 /* If that's all, return now. */
1674 if (limit <= pc)
1675 return limit;
1676
1677 /* Check for stack adjustment
1678
1679 subl $XXX, %esp
1680 or
1681 lea -XXX(%esp),%esp
1682
1683 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1684 reg, so we don't have to worry about a data16 prefix. */
1685 if (target_read_code (pc, &op, 1))
1686 return pc;
1687 if (op == 0x83)
1688 {
1689 /* `subl' with 8-bit immediate. */
1690 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1691 /* Some instruction starting with 0x83 other than `subl'. */
1692 return pc;
1693
1694 /* `subl' with signed 8-bit immediate (though it wouldn't
1695 make sense to be negative). */
1696 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1697 return pc + 3;
1698 }
1699 else if (op == 0x81)
1700 {
1701 /* Maybe it is `subl' with a 32-bit immediate. */
1702 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1703 /* Some instruction starting with 0x81 other than `subl'. */
1704 return pc;
1705
1706 /* It is `subl' with a 32-bit immediate. */
1707 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1708 return pc + 6;
1709 }
1710 else if (op == 0x8d)
1711 {
1712 /* The ModR/M byte is 0x64. */
1713 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1714 return pc;
1715 /* 'lea' with 8-bit displacement. */
1716 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1717 return pc + 4;
1718 }
1719 else
1720 {
1721 /* Some instruction other than `subl' nor 'lea'. */
1722 return pc;
1723 }
1724 }
1725 else if (op == 0xc8) /* enter */
1726 {
1727 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1728 return pc + 4;
1729 }
1730
1731 return pc;
1732 }
1733
1734 /* Check whether PC points at code that saves registers on the stack.
1735 If so, it updates CACHE and returns the address of the first
1736 instruction after the register saves or CURRENT_PC, whichever is
1737 smaller. Otherwise, return PC. */
1738
1739 static CORE_ADDR
1740 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1741 struct i386_frame_cache *cache)
1742 {
1743 CORE_ADDR offset = 0;
1744 gdb_byte op;
1745 int i;
1746
1747 if (cache->locals > 0)
1748 offset -= cache->locals;
1749 for (i = 0; i < 8 && pc < current_pc; i++)
1750 {
1751 if (target_read_code (pc, &op, 1))
1752 return pc;
1753 if (op < 0x50 || op > 0x57)
1754 break;
1755
1756 offset -= 4;
1757 cache->saved_regs[op - 0x50] = offset;
1758 cache->sp_offset += 4;
1759 pc++;
1760 }
1761
1762 return pc;
1763 }
1764
1765 /* Do a full analysis of the prologue at PC and update CACHE
1766 accordingly. Bail out early if CURRENT_PC is reached. Return the
1767 address where the analysis stopped.
1768
1769 We handle these cases:
1770
1771 The startup sequence can be at the start of the function, or the
1772 function can start with a branch to startup code at the end.
1773
1774 %ebp can be set up with either the 'enter' instruction, or "pushl
1775 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1776 once used in the System V compiler).
1777
1778 Local space is allocated just below the saved %ebp by either the
1779 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1780 16-bit unsigned argument for space to allocate, and the 'addl'
1781 instruction could have either a signed byte, or 32-bit immediate.
1782
1783 Next, the registers used by this function are pushed. With the
1784 System V compiler they will always be in the order: %edi, %esi,
1785 %ebx (and sometimes a harmless bug causes it to also save but not
1786 restore %eax); however, the code below is willing to see the pushes
1787 in any order, and will handle up to 8 of them.
1788
1789 If the setup sequence is at the end of the function, then the next
1790 instruction will be a branch back to the start. */
1791
1792 static CORE_ADDR
1793 i386_analyze_prologue (struct gdbarch *gdbarch,
1794 CORE_ADDR pc, CORE_ADDR current_pc,
1795 struct i386_frame_cache *cache)
1796 {
1797 pc = i386_skip_noop (pc);
1798 pc = i386_follow_jump (gdbarch, pc);
1799 pc = i386_analyze_struct_return (pc, current_pc, cache);
1800 pc = i386_skip_probe (pc);
1801 pc = i386_analyze_stack_align (pc, current_pc, cache);
1802 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1803 return i386_analyze_register_saves (pc, current_pc, cache);
1804 }
1805
1806 /* Return PC of first real instruction. */
1807
1808 static CORE_ADDR
1809 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1810 {
1811 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1812
1813 static gdb_byte pic_pat[6] =
1814 {
1815 0xe8, 0, 0, 0, 0, /* call 0x0 */
1816 0x5b, /* popl %ebx */
1817 };
1818 struct i386_frame_cache cache;
1819 CORE_ADDR pc;
1820 gdb_byte op;
1821 int i;
1822 CORE_ADDR func_addr;
1823
1824 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1825 {
1826 CORE_ADDR post_prologue_pc
1827 = skip_prologue_using_sal (gdbarch, func_addr);
1828 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1829
1830 /* Clang always emits a line note before the prologue and another
1831 one after. We trust clang to emit usable line notes. */
1832 if (post_prologue_pc
1833 && (cust != NULL
1834 && COMPUNIT_PRODUCER (cust) != NULL
1835 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1836 return std::max (start_pc, post_prologue_pc);
1837 }
1838
1839 cache.locals = -1;
1840 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1841 if (cache.locals < 0)
1842 return start_pc;
1843
1844 /* Found valid frame setup. */
1845
1846 /* The native cc on SVR4 in -K PIC mode inserts the following code
1847 to get the address of the global offset table (GOT) into register
1848 %ebx:
1849
1850 call 0x0
1851 popl %ebx
1852 movl %ebx,x(%ebp) (optional)
1853 addl y,%ebx
1854
1855 This code is with the rest of the prologue (at the end of the
1856 function), so we have to skip it to get to the first real
1857 instruction at the start of the function. */
1858
1859 for (i = 0; i < 6; i++)
1860 {
1861 if (target_read_code (pc + i, &op, 1))
1862 return pc;
1863
1864 if (pic_pat[i] != op)
1865 break;
1866 }
1867 if (i == 6)
1868 {
1869 int delta = 6;
1870
1871 if (target_read_code (pc + delta, &op, 1))
1872 return pc;
1873
1874 if (op == 0x89) /* movl %ebx, x(%ebp) */
1875 {
1876 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1877
1878 if (op == 0x5d) /* One byte offset from %ebp. */
1879 delta += 3;
1880 else if (op == 0x9d) /* Four byte offset from %ebp. */
1881 delta += 6;
1882 else /* Unexpected instruction. */
1883 delta = 0;
1884
1885 if (target_read_code (pc + delta, &op, 1))
1886 return pc;
1887 }
1888
1889 /* addl y,%ebx */
1890 if (delta > 0 && op == 0x81
1891 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1892 == 0xc3)
1893 {
1894 pc += delta + 6;
1895 }
1896 }
1897
1898 /* If the function starts with a branch (to startup code at the end)
1899 the last instruction should bring us back to the first
1900 instruction of the real code. */
1901 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1902 pc = i386_follow_jump (gdbarch, pc);
1903
1904 return pc;
1905 }
1906
1907 /* Check that the code pointed to by PC corresponds to a call to
1908 __main, skip it if so. Return PC otherwise. */
1909
1910 CORE_ADDR
1911 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1912 {
1913 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1914 gdb_byte op;
1915
1916 if (target_read_code (pc, &op, 1))
1917 return pc;
1918 if (op == 0xe8)
1919 {
1920 gdb_byte buf[4];
1921
1922 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1923 {
1924 /* Make sure address is computed correctly as a 32bit
1925 integer even if CORE_ADDR is 64 bit wide. */
1926 struct bound_minimal_symbol s;
1927 CORE_ADDR call_dest;
1928
1929 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1930 call_dest = call_dest & 0xffffffffU;
1931 s = lookup_minimal_symbol_by_pc (call_dest);
1932 if (s.minsym != NULL
1933 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1934 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1935 pc += 5;
1936 }
1937 }
1938
1939 return pc;
1940 }
1941
1942 /* This function is 64-bit safe. */
1943
1944 static CORE_ADDR
1945 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1946 {
1947 gdb_byte buf[8];
1948
1949 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1950 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1951 }
1952 \f
1953
1954 /* Normal frames. */
1955
1956 static void
1957 i386_frame_cache_1 (struct frame_info *this_frame,
1958 struct i386_frame_cache *cache)
1959 {
1960 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1961 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1962 gdb_byte buf[4];
1963 int i;
1964
1965 cache->pc = get_frame_func (this_frame);
1966
1967 /* In principle, for normal frames, %ebp holds the frame pointer,
1968 which holds the base address for the current stack frame.
1969 However, for functions that don't need it, the frame pointer is
1970 optional. For these "frameless" functions the frame pointer is
1971 actually the frame pointer of the calling frame. Signal
1972 trampolines are just a special case of a "frameless" function.
1973 They (usually) share their frame pointer with the frame that was
1974 in progress when the signal occurred. */
1975
1976 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1977 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1978 if (cache->base == 0)
1979 {
1980 cache->base_p = 1;
1981 return;
1982 }
1983
1984 /* For normal frames, %eip is stored at 4(%ebp). */
1985 cache->saved_regs[I386_EIP_REGNUM] = 4;
1986
1987 if (cache->pc != 0)
1988 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1989 cache);
1990
1991 if (cache->locals < 0)
1992 {
1993 /* We didn't find a valid frame, which means that CACHE->base
1994 currently holds the frame pointer for our calling frame. If
1995 we're at the start of a function, or somewhere half-way its
1996 prologue, the function's frame probably hasn't been fully
1997 setup yet. Try to reconstruct the base address for the stack
1998 frame by looking at the stack pointer. For truly "frameless"
1999 functions this might work too. */
2000
2001 if (cache->saved_sp_reg != -1)
2002 {
2003 /* Saved stack pointer has been saved. */
2004 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2005 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2006
2007 /* We're halfway aligning the stack. */
2008 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2009 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2010
2011 /* This will be added back below. */
2012 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2013 }
2014 else if (cache->pc != 0
2015 || target_read_code (get_frame_pc (this_frame), buf, 1))
2016 {
2017 /* We're in a known function, but did not find a frame
2018 setup. Assume that the function does not use %ebp.
2019 Alternatively, we may have jumped to an invalid
2020 address; in that case there is definitely no new
2021 frame in %ebp. */
2022 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2023 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2024 + cache->sp_offset;
2025 }
2026 else
2027 /* We're in an unknown function. We could not find the start
2028 of the function to analyze the prologue; our best option is
2029 to assume a typical frame layout with the caller's %ebp
2030 saved. */
2031 cache->saved_regs[I386_EBP_REGNUM] = 0;
2032 }
2033
2034 if (cache->saved_sp_reg != -1)
2035 {
2036 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2037 register may be unavailable). */
2038 if (cache->saved_sp == 0
2039 && deprecated_frame_register_read (this_frame,
2040 cache->saved_sp_reg, buf))
2041 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2042 }
2043 /* Now that we have the base address for the stack frame we can
2044 calculate the value of %esp in the calling frame. */
2045 else if (cache->saved_sp == 0)
2046 cache->saved_sp = cache->base + 8;
2047
2048 /* Adjust all the saved registers such that they contain addresses
2049 instead of offsets. */
2050 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2051 if (cache->saved_regs[i] != -1)
2052 cache->saved_regs[i] += cache->base;
2053
2054 cache->base_p = 1;
2055 }
2056
2057 static struct i386_frame_cache *
2058 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2059 {
2060 struct i386_frame_cache *cache;
2061
2062 if (*this_cache)
2063 return (struct i386_frame_cache *) *this_cache;
2064
2065 cache = i386_alloc_frame_cache ();
2066 *this_cache = cache;
2067
2068 TRY
2069 {
2070 i386_frame_cache_1 (this_frame, cache);
2071 }
2072 CATCH (ex, RETURN_MASK_ERROR)
2073 {
2074 if (ex.error != NOT_AVAILABLE_ERROR)
2075 throw_exception (ex);
2076 }
2077 END_CATCH
2078
2079 return cache;
2080 }
2081
2082 static void
2083 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2084 struct frame_id *this_id)
2085 {
2086 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2087
2088 if (!cache->base_p)
2089 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2090 else if (cache->base == 0)
2091 {
2092 /* This marks the outermost frame. */
2093 }
2094 else
2095 {
2096 /* See the end of i386_push_dummy_call. */
2097 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2098 }
2099 }
2100
2101 static enum unwind_stop_reason
2102 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2103 void **this_cache)
2104 {
2105 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2106
2107 if (!cache->base_p)
2108 return UNWIND_UNAVAILABLE;
2109
2110 /* This marks the outermost frame. */
2111 if (cache->base == 0)
2112 return UNWIND_OUTERMOST;
2113
2114 return UNWIND_NO_REASON;
2115 }
2116
2117 static struct value *
2118 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2119 int regnum)
2120 {
2121 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2122
2123 gdb_assert (regnum >= 0);
2124
2125 /* The System V ABI says that:
2126
2127 "The flags register contains the system flags, such as the
2128 direction flag and the carry flag. The direction flag must be
2129 set to the forward (that is, zero) direction before entry and
2130 upon exit from a function. Other user flags have no specified
2131 role in the standard calling sequence and are not preserved."
2132
2133 To guarantee the "upon exit" part of that statement we fake a
2134 saved flags register that has its direction flag cleared.
2135
2136 Note that GCC doesn't seem to rely on the fact that the direction
2137 flag is cleared after a function return; it always explicitly
2138 clears the flag before operations where it matters.
2139
2140 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2141 right thing to do. The way we fake the flags register here makes
2142 it impossible to change it. */
2143
2144 if (regnum == I386_EFLAGS_REGNUM)
2145 {
2146 ULONGEST val;
2147
2148 val = get_frame_register_unsigned (this_frame, regnum);
2149 val &= ~(1 << 10);
2150 return frame_unwind_got_constant (this_frame, regnum, val);
2151 }
2152
2153 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2154 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2155
2156 if (regnum == I386_ESP_REGNUM
2157 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2158 {
2159 /* If the SP has been saved, but we don't know where, then this
2160 means that SAVED_SP_REG register was found unavailable back
2161 when we built the cache. */
2162 if (cache->saved_sp == 0)
2163 return frame_unwind_got_register (this_frame, regnum,
2164 cache->saved_sp_reg);
2165 else
2166 return frame_unwind_got_constant (this_frame, regnum,
2167 cache->saved_sp);
2168 }
2169
2170 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2171 return frame_unwind_got_memory (this_frame, regnum,
2172 cache->saved_regs[regnum]);
2173
2174 return frame_unwind_got_register (this_frame, regnum, regnum);
2175 }
2176
2177 static const struct frame_unwind i386_frame_unwind =
2178 {
2179 NORMAL_FRAME,
2180 i386_frame_unwind_stop_reason,
2181 i386_frame_this_id,
2182 i386_frame_prev_register,
2183 NULL,
2184 default_frame_sniffer
2185 };
2186
2187 /* Normal frames, but in a function epilogue. */
2188
2189 /* Implement the stack_frame_destroyed_p gdbarch method.
2190
2191 The epilogue is defined here as the 'ret' instruction, which will
2192 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2193 the function's stack frame. */
2194
2195 static int
2196 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2197 {
2198 gdb_byte insn;
2199 struct compunit_symtab *cust;
2200
2201 cust = find_pc_compunit_symtab (pc);
2202 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2203 return 0;
2204
2205 if (target_read_memory (pc, &insn, 1))
2206 return 0; /* Can't read memory at pc. */
2207
2208 if (insn != 0xc3) /* 'ret' instruction. */
2209 return 0;
2210
2211 return 1;
2212 }
2213
2214 static int
2215 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2216 struct frame_info *this_frame,
2217 void **this_prologue_cache)
2218 {
2219 if (frame_relative_level (this_frame) == 0)
2220 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2221 get_frame_pc (this_frame));
2222 else
2223 return 0;
2224 }
2225
2226 static struct i386_frame_cache *
2227 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2228 {
2229 struct i386_frame_cache *cache;
2230 CORE_ADDR sp;
2231
2232 if (*this_cache)
2233 return (struct i386_frame_cache *) *this_cache;
2234
2235 cache = i386_alloc_frame_cache ();
2236 *this_cache = cache;
2237
2238 TRY
2239 {
2240 cache->pc = get_frame_func (this_frame);
2241
2242 /* At this point the stack looks as if we just entered the
2243 function, with the return address at the top of the
2244 stack. */
2245 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2246 cache->base = sp + cache->sp_offset;
2247 cache->saved_sp = cache->base + 8;
2248 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2249
2250 cache->base_p = 1;
2251 }
2252 CATCH (ex, RETURN_MASK_ERROR)
2253 {
2254 if (ex.error != NOT_AVAILABLE_ERROR)
2255 throw_exception (ex);
2256 }
2257 END_CATCH
2258
2259 return cache;
2260 }
2261
2262 static enum unwind_stop_reason
2263 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2264 void **this_cache)
2265 {
2266 struct i386_frame_cache *cache =
2267 i386_epilogue_frame_cache (this_frame, this_cache);
2268
2269 if (!cache->base_p)
2270 return UNWIND_UNAVAILABLE;
2271
2272 return UNWIND_NO_REASON;
2273 }
2274
2275 static void
2276 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2277 void **this_cache,
2278 struct frame_id *this_id)
2279 {
2280 struct i386_frame_cache *cache =
2281 i386_epilogue_frame_cache (this_frame, this_cache);
2282
2283 if (!cache->base_p)
2284 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2285 else
2286 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2287 }
2288
2289 static struct value *
2290 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2291 void **this_cache, int regnum)
2292 {
2293 /* Make sure we've initialized the cache. */
2294 i386_epilogue_frame_cache (this_frame, this_cache);
2295
2296 return i386_frame_prev_register (this_frame, this_cache, regnum);
2297 }
2298
2299 static const struct frame_unwind i386_epilogue_frame_unwind =
2300 {
2301 NORMAL_FRAME,
2302 i386_epilogue_frame_unwind_stop_reason,
2303 i386_epilogue_frame_this_id,
2304 i386_epilogue_frame_prev_register,
2305 NULL,
2306 i386_epilogue_frame_sniffer
2307 };
2308 \f
2309
2310 /* Stack-based trampolines. */
2311
2312 /* These trampolines are used on cross x86 targets, when taking the
2313 address of a nested function. When executing these trampolines,
2314 no stack frame is set up, so we are in a similar situation as in
2315 epilogues and i386_epilogue_frame_this_id can be re-used. */
2316
2317 /* Static chain passed in register. */
2318
2319 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2320 {
2321 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2322 { 5, { 0xb8 }, { 0xfe } },
2323
2324 /* `jmp imm32' */
2325 { 5, { 0xe9 }, { 0xff } },
2326
2327 {0}
2328 };
2329
2330 /* Static chain passed on stack (when regparm=3). */
2331
2332 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2333 {
2334 /* `push imm32' */
2335 { 5, { 0x68 }, { 0xff } },
2336
2337 /* `jmp imm32' */
2338 { 5, { 0xe9 }, { 0xff } },
2339
2340 {0}
2341 };
2342
2343 /* Return whether PC points inside a stack trampoline. */
2344
2345 static int
2346 i386_in_stack_tramp_p (CORE_ADDR pc)
2347 {
2348 gdb_byte insn;
2349 const char *name;
2350
2351 /* A stack trampoline is detected if no name is associated
2352 to the current pc and if it points inside a trampoline
2353 sequence. */
2354
2355 find_pc_partial_function (pc, &name, NULL, NULL);
2356 if (name)
2357 return 0;
2358
2359 if (target_read_memory (pc, &insn, 1))
2360 return 0;
2361
2362 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2363 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2364 return 0;
2365
2366 return 1;
2367 }
2368
2369 static int
2370 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2371 struct frame_info *this_frame,
2372 void **this_cache)
2373 {
2374 if (frame_relative_level (this_frame) == 0)
2375 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2376 else
2377 return 0;
2378 }
2379
2380 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2381 {
2382 NORMAL_FRAME,
2383 i386_epilogue_frame_unwind_stop_reason,
2384 i386_epilogue_frame_this_id,
2385 i386_epilogue_frame_prev_register,
2386 NULL,
2387 i386_stack_tramp_frame_sniffer
2388 };
2389 \f
2390 /* Generate a bytecode expression to get the value of the saved PC. */
2391
2392 static void
2393 i386_gen_return_address (struct gdbarch *gdbarch,
2394 struct agent_expr *ax, struct axs_value *value,
2395 CORE_ADDR scope)
2396 {
2397 /* The following sequence assumes the traditional use of the base
2398 register. */
2399 ax_reg (ax, I386_EBP_REGNUM);
2400 ax_const_l (ax, 4);
2401 ax_simple (ax, aop_add);
2402 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2403 value->kind = axs_lvalue_memory;
2404 }
2405 \f
2406
2407 /* Signal trampolines. */
2408
2409 static struct i386_frame_cache *
2410 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2411 {
2412 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2413 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2414 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2415 struct i386_frame_cache *cache;
2416 CORE_ADDR addr;
2417 gdb_byte buf[4];
2418
2419 if (*this_cache)
2420 return (struct i386_frame_cache *) *this_cache;
2421
2422 cache = i386_alloc_frame_cache ();
2423
2424 TRY
2425 {
2426 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2427 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2428
2429 addr = tdep->sigcontext_addr (this_frame);
2430 if (tdep->sc_reg_offset)
2431 {
2432 int i;
2433
2434 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2435
2436 for (i = 0; i < tdep->sc_num_regs; i++)
2437 if (tdep->sc_reg_offset[i] != -1)
2438 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2439 }
2440 else
2441 {
2442 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2443 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2444 }
2445
2446 cache->base_p = 1;
2447 }
2448 CATCH (ex, RETURN_MASK_ERROR)
2449 {
2450 if (ex.error != NOT_AVAILABLE_ERROR)
2451 throw_exception (ex);
2452 }
2453 END_CATCH
2454
2455 *this_cache = cache;
2456 return cache;
2457 }
2458
2459 static enum unwind_stop_reason
2460 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2461 void **this_cache)
2462 {
2463 struct i386_frame_cache *cache =
2464 i386_sigtramp_frame_cache (this_frame, this_cache);
2465
2466 if (!cache->base_p)
2467 return UNWIND_UNAVAILABLE;
2468
2469 return UNWIND_NO_REASON;
2470 }
2471
2472 static void
2473 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2474 struct frame_id *this_id)
2475 {
2476 struct i386_frame_cache *cache =
2477 i386_sigtramp_frame_cache (this_frame, this_cache);
2478
2479 if (!cache->base_p)
2480 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2481 else
2482 {
2483 /* See the end of i386_push_dummy_call. */
2484 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2485 }
2486 }
2487
2488 static struct value *
2489 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2490 void **this_cache, int regnum)
2491 {
2492 /* Make sure we've initialized the cache. */
2493 i386_sigtramp_frame_cache (this_frame, this_cache);
2494
2495 return i386_frame_prev_register (this_frame, this_cache, regnum);
2496 }
2497
2498 static int
2499 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2500 struct frame_info *this_frame,
2501 void **this_prologue_cache)
2502 {
2503 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2504
2505 /* We shouldn't even bother if we don't have a sigcontext_addr
2506 handler. */
2507 if (tdep->sigcontext_addr == NULL)
2508 return 0;
2509
2510 if (tdep->sigtramp_p != NULL)
2511 {
2512 if (tdep->sigtramp_p (this_frame))
2513 return 1;
2514 }
2515
2516 if (tdep->sigtramp_start != 0)
2517 {
2518 CORE_ADDR pc = get_frame_pc (this_frame);
2519
2520 gdb_assert (tdep->sigtramp_end != 0);
2521 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2522 return 1;
2523 }
2524
2525 return 0;
2526 }
2527
2528 static const struct frame_unwind i386_sigtramp_frame_unwind =
2529 {
2530 SIGTRAMP_FRAME,
2531 i386_sigtramp_frame_unwind_stop_reason,
2532 i386_sigtramp_frame_this_id,
2533 i386_sigtramp_frame_prev_register,
2534 NULL,
2535 i386_sigtramp_frame_sniffer
2536 };
2537 \f
2538
2539 static CORE_ADDR
2540 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2541 {
2542 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2543
2544 return cache->base;
2545 }
2546
2547 static const struct frame_base i386_frame_base =
2548 {
2549 &i386_frame_unwind,
2550 i386_frame_base_address,
2551 i386_frame_base_address,
2552 i386_frame_base_address
2553 };
2554
2555 static struct frame_id
2556 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2557 {
2558 CORE_ADDR fp;
2559
2560 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2561
2562 /* See the end of i386_push_dummy_call. */
2563 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2564 }
2565
2566 /* _Decimal128 function return values need 16-byte alignment on the
2567 stack. */
2568
2569 static CORE_ADDR
2570 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2571 {
2572 return sp & -(CORE_ADDR)16;
2573 }
2574 \f
2575
2576 /* Figure out where the longjmp will land. Slurp the args out of the
2577 stack. We expect the first arg to be a pointer to the jmp_buf
2578 structure from which we extract the address that we will land at.
2579 This address is copied into PC. This routine returns non-zero on
2580 success. */
2581
2582 static int
2583 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2584 {
2585 gdb_byte buf[4];
2586 CORE_ADDR sp, jb_addr;
2587 struct gdbarch *gdbarch = get_frame_arch (frame);
2588 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2589 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2590
2591 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2592 longjmp will land. */
2593 if (jb_pc_offset == -1)
2594 return 0;
2595
2596 get_frame_register (frame, I386_ESP_REGNUM, buf);
2597 sp = extract_unsigned_integer (buf, 4, byte_order);
2598 if (target_read_memory (sp + 4, buf, 4))
2599 return 0;
2600
2601 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2602 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2603 return 0;
2604
2605 *pc = extract_unsigned_integer (buf, 4, byte_order);
2606 return 1;
2607 }
2608 \f
2609
2610 /* Check whether TYPE must be 16-byte-aligned when passed as a
2611 function argument. 16-byte vectors, _Decimal128 and structures or
2612 unions containing such types must be 16-byte-aligned; other
2613 arguments are 4-byte-aligned. */
2614
2615 static int
2616 i386_16_byte_align_p (struct type *type)
2617 {
2618 type = check_typedef (type);
2619 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2620 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2621 && TYPE_LENGTH (type) == 16)
2622 return 1;
2623 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2624 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2625 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2626 || TYPE_CODE (type) == TYPE_CODE_UNION)
2627 {
2628 int i;
2629 for (i = 0; i < TYPE_NFIELDS (type); i++)
2630 {
2631 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2632 return 1;
2633 }
2634 }
2635 return 0;
2636 }
2637
2638 /* Implementation for set_gdbarch_push_dummy_code. */
2639
2640 static CORE_ADDR
2641 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2642 struct value **args, int nargs, struct type *value_type,
2643 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2644 struct regcache *regcache)
2645 {
2646 /* Use 0xcc breakpoint - 1 byte. */
2647 *bp_addr = sp - 1;
2648 *real_pc = funaddr;
2649
2650 /* Keep the stack aligned. */
2651 return sp - 16;
2652 }
2653
2654 static CORE_ADDR
2655 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2656 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2657 struct value **args, CORE_ADDR sp, int struct_return,
2658 CORE_ADDR struct_addr)
2659 {
2660 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2661 gdb_byte buf[4];
2662 int i;
2663 int write_pass;
2664 int args_space = 0;
2665
2666 /* Determine the total space required for arguments and struct
2667 return address in a first pass (allowing for 16-byte-aligned
2668 arguments), then push arguments in a second pass. */
2669
2670 for (write_pass = 0; write_pass < 2; write_pass++)
2671 {
2672 int args_space_used = 0;
2673
2674 if (struct_return)
2675 {
2676 if (write_pass)
2677 {
2678 /* Push value address. */
2679 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2680 write_memory (sp, buf, 4);
2681 args_space_used += 4;
2682 }
2683 else
2684 args_space += 4;
2685 }
2686
2687 for (i = 0; i < nargs; i++)
2688 {
2689 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2690
2691 if (write_pass)
2692 {
2693 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2694 args_space_used = align_up (args_space_used, 16);
2695
2696 write_memory (sp + args_space_used,
2697 value_contents_all (args[i]), len);
2698 /* The System V ABI says that:
2699
2700 "An argument's size is increased, if necessary, to make it a
2701 multiple of [32-bit] words. This may require tail padding,
2702 depending on the size of the argument."
2703
2704 This makes sure the stack stays word-aligned. */
2705 args_space_used += align_up (len, 4);
2706 }
2707 else
2708 {
2709 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2710 args_space = align_up (args_space, 16);
2711 args_space += align_up (len, 4);
2712 }
2713 }
2714
2715 if (!write_pass)
2716 {
2717 sp -= args_space;
2718
2719 /* The original System V ABI only requires word alignment,
2720 but modern incarnations need 16-byte alignment in order
2721 to support SSE. Since wasting a few bytes here isn't
2722 harmful we unconditionally enforce 16-byte alignment. */
2723 sp &= ~0xf;
2724 }
2725 }
2726
2727 /* Store return address. */
2728 sp -= 4;
2729 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2730 write_memory (sp, buf, 4);
2731
2732 /* Finally, update the stack pointer... */
2733 store_unsigned_integer (buf, 4, byte_order, sp);
2734 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2735
2736 /* ...and fake a frame pointer. */
2737 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2738
2739 /* MarkK wrote: This "+ 8" is all over the place:
2740 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2741 i386_dummy_id). It's there, since all frame unwinders for
2742 a given target have to agree (within a certain margin) on the
2743 definition of the stack address of a frame. Otherwise frame id
2744 comparison might not work correctly. Since DWARF2/GCC uses the
2745 stack address *before* the function call as a frame's CFA. On
2746 the i386, when %ebp is used as a frame pointer, the offset
2747 between the contents %ebp and the CFA as defined by GCC. */
2748 return sp + 8;
2749 }
2750
2751 /* These registers are used for returning integers (and on some
2752 targets also for returning `struct' and `union' values when their
2753 size and alignment match an integer type). */
2754 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2755 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2756
2757 /* Read, for architecture GDBARCH, a function return value of TYPE
2758 from REGCACHE, and copy that into VALBUF. */
2759
2760 static void
2761 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2762 struct regcache *regcache, gdb_byte *valbuf)
2763 {
2764 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2765 int len = TYPE_LENGTH (type);
2766 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2767
2768 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2769 {
2770 if (tdep->st0_regnum < 0)
2771 {
2772 warning (_("Cannot find floating-point return value."));
2773 memset (valbuf, 0, len);
2774 return;
2775 }
2776
2777 /* Floating-point return values can be found in %st(0). Convert
2778 its contents to the desired type. This is probably not
2779 exactly how it would happen on the target itself, but it is
2780 the best we can do. */
2781 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2782 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2783 }
2784 else
2785 {
2786 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2787 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2788
2789 if (len <= low_size)
2790 {
2791 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2792 memcpy (valbuf, buf, len);
2793 }
2794 else if (len <= (low_size + high_size))
2795 {
2796 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2797 memcpy (valbuf, buf, low_size);
2798 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2799 memcpy (valbuf + low_size, buf, len - low_size);
2800 }
2801 else
2802 internal_error (__FILE__, __LINE__,
2803 _("Cannot extract return value of %d bytes long."),
2804 len);
2805 }
2806 }
2807
2808 /* Write, for architecture GDBARCH, a function return value of TYPE
2809 from VALBUF into REGCACHE. */
2810
2811 static void
2812 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2813 struct regcache *regcache, const gdb_byte *valbuf)
2814 {
2815 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2816 int len = TYPE_LENGTH (type);
2817
2818 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2819 {
2820 ULONGEST fstat;
2821 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2822
2823 if (tdep->st0_regnum < 0)
2824 {
2825 warning (_("Cannot set floating-point return value."));
2826 return;
2827 }
2828
2829 /* Returning floating-point values is a bit tricky. Apart from
2830 storing the return value in %st(0), we have to simulate the
2831 state of the FPU at function return point. */
2832
2833 /* Convert the value found in VALBUF to the extended
2834 floating-point format used by the FPU. This is probably
2835 not exactly how it would happen on the target itself, but
2836 it is the best we can do. */
2837 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2838 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2839
2840 /* Set the top of the floating-point register stack to 7. The
2841 actual value doesn't really matter, but 7 is what a normal
2842 function return would end up with if the program started out
2843 with a freshly initialized FPU. */
2844 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2845 fstat |= (7 << 11);
2846 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2847
2848 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2849 the floating-point register stack to 7, the appropriate value
2850 for the tag word is 0x3fff. */
2851 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2852 }
2853 else
2854 {
2855 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2856 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2857
2858 if (len <= low_size)
2859 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2860 else if (len <= (low_size + high_size))
2861 {
2862 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2863 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2864 len - low_size, valbuf + low_size);
2865 }
2866 else
2867 internal_error (__FILE__, __LINE__,
2868 _("Cannot store return value of %d bytes long."), len);
2869 }
2870 }
2871 \f
2872
2873 /* This is the variable that is set with "set struct-convention", and
2874 its legitimate values. */
2875 static const char default_struct_convention[] = "default";
2876 static const char pcc_struct_convention[] = "pcc";
2877 static const char reg_struct_convention[] = "reg";
2878 static const char *const valid_conventions[] =
2879 {
2880 default_struct_convention,
2881 pcc_struct_convention,
2882 reg_struct_convention,
2883 NULL
2884 };
2885 static const char *struct_convention = default_struct_convention;
2886
2887 /* Return non-zero if TYPE, which is assumed to be a structure,
2888 a union type, or an array type, should be returned in registers
2889 for architecture GDBARCH. */
2890
2891 static int
2892 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2893 {
2894 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2895 enum type_code code = TYPE_CODE (type);
2896 int len = TYPE_LENGTH (type);
2897
2898 gdb_assert (code == TYPE_CODE_STRUCT
2899 || code == TYPE_CODE_UNION
2900 || code == TYPE_CODE_ARRAY);
2901
2902 if (struct_convention == pcc_struct_convention
2903 || (struct_convention == default_struct_convention
2904 && tdep->struct_return == pcc_struct_return))
2905 return 0;
2906
2907 /* Structures consisting of a single `float', `double' or 'long
2908 double' member are returned in %st(0). */
2909 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2910 {
2911 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2912 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2913 return (len == 4 || len == 8 || len == 12);
2914 }
2915
2916 return (len == 1 || len == 2 || len == 4 || len == 8);
2917 }
2918
2919 /* Determine, for architecture GDBARCH, how a return value of TYPE
2920 should be returned. If it is supposed to be returned in registers,
2921 and READBUF is non-zero, read the appropriate value from REGCACHE,
2922 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2923 from WRITEBUF into REGCACHE. */
2924
2925 static enum return_value_convention
2926 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2927 struct type *type, struct regcache *regcache,
2928 gdb_byte *readbuf, const gdb_byte *writebuf)
2929 {
2930 enum type_code code = TYPE_CODE (type);
2931
2932 if (((code == TYPE_CODE_STRUCT
2933 || code == TYPE_CODE_UNION
2934 || code == TYPE_CODE_ARRAY)
2935 && !i386_reg_struct_return_p (gdbarch, type))
2936 /* Complex double and long double uses the struct return covention. */
2937 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2938 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2939 /* 128-bit decimal float uses the struct return convention. */
2940 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2941 {
2942 /* The System V ABI says that:
2943
2944 "A function that returns a structure or union also sets %eax
2945 to the value of the original address of the caller's area
2946 before it returns. Thus when the caller receives control
2947 again, the address of the returned object resides in register
2948 %eax and can be used to access the object."
2949
2950 So the ABI guarantees that we can always find the return
2951 value just after the function has returned. */
2952
2953 /* Note that the ABI doesn't mention functions returning arrays,
2954 which is something possible in certain languages such as Ada.
2955 In this case, the value is returned as if it was wrapped in
2956 a record, so the convention applied to records also applies
2957 to arrays. */
2958
2959 if (readbuf)
2960 {
2961 ULONGEST addr;
2962
2963 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2964 read_memory (addr, readbuf, TYPE_LENGTH (type));
2965 }
2966
2967 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2968 }
2969
2970 /* This special case is for structures consisting of a single
2971 `float', `double' or 'long double' member. These structures are
2972 returned in %st(0). For these structures, we call ourselves
2973 recursively, changing TYPE into the type of the first member of
2974 the structure. Since that should work for all structures that
2975 have only one member, we don't bother to check the member's type
2976 here. */
2977 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2978 {
2979 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2980 return i386_return_value (gdbarch, function, type, regcache,
2981 readbuf, writebuf);
2982 }
2983
2984 if (readbuf)
2985 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2986 if (writebuf)
2987 i386_store_return_value (gdbarch, type, regcache, writebuf);
2988
2989 return RETURN_VALUE_REGISTER_CONVENTION;
2990 }
2991 \f
2992
2993 struct type *
2994 i387_ext_type (struct gdbarch *gdbarch)
2995 {
2996 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2997
2998 if (!tdep->i387_ext_type)
2999 {
3000 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3001 gdb_assert (tdep->i387_ext_type != NULL);
3002 }
3003
3004 return tdep->i387_ext_type;
3005 }
3006
3007 /* Construct type for pseudo BND registers. We can't use
3008 tdesc_find_type since a complement of one value has to be used
3009 to describe the upper bound. */
3010
3011 static struct type *
3012 i386_bnd_type (struct gdbarch *gdbarch)
3013 {
3014 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3015
3016
3017 if (!tdep->i386_bnd_type)
3018 {
3019 struct type *t;
3020 const struct builtin_type *bt = builtin_type (gdbarch);
3021
3022 /* The type we're building is described bellow: */
3023 #if 0
3024 struct __bound128
3025 {
3026 void *lbound;
3027 void *ubound; /* One complement of raw ubound field. */
3028 };
3029 #endif
3030
3031 t = arch_composite_type (gdbarch,
3032 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3033
3034 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3035 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3036
3037 TYPE_NAME (t) = "builtin_type_bound128";
3038 tdep->i386_bnd_type = t;
3039 }
3040
3041 return tdep->i386_bnd_type;
3042 }
3043
3044 /* Construct vector type for pseudo ZMM registers. We can't use
3045 tdesc_find_type since ZMM isn't described in target description. */
3046
3047 static struct type *
3048 i386_zmm_type (struct gdbarch *gdbarch)
3049 {
3050 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3051
3052 if (!tdep->i386_zmm_type)
3053 {
3054 const struct builtin_type *bt = builtin_type (gdbarch);
3055
3056 /* The type we're building is this: */
3057 #if 0
3058 union __gdb_builtin_type_vec512i
3059 {
3060 int128_t uint128[4];
3061 int64_t v4_int64[8];
3062 int32_t v8_int32[16];
3063 int16_t v16_int16[32];
3064 int8_t v32_int8[64];
3065 double v4_double[8];
3066 float v8_float[16];
3067 };
3068 #endif
3069
3070 struct type *t;
3071
3072 t = arch_composite_type (gdbarch,
3073 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3074 append_composite_type_field (t, "v16_float",
3075 init_vector_type (bt->builtin_float, 16));
3076 append_composite_type_field (t, "v8_double",
3077 init_vector_type (bt->builtin_double, 8));
3078 append_composite_type_field (t, "v64_int8",
3079 init_vector_type (bt->builtin_int8, 64));
3080 append_composite_type_field (t, "v32_int16",
3081 init_vector_type (bt->builtin_int16, 32));
3082 append_composite_type_field (t, "v16_int32",
3083 init_vector_type (bt->builtin_int32, 16));
3084 append_composite_type_field (t, "v8_int64",
3085 init_vector_type (bt->builtin_int64, 8));
3086 append_composite_type_field (t, "v4_int128",
3087 init_vector_type (bt->builtin_int128, 4));
3088
3089 TYPE_VECTOR (t) = 1;
3090 TYPE_NAME (t) = "builtin_type_vec512i";
3091 tdep->i386_zmm_type = t;
3092 }
3093
3094 return tdep->i386_zmm_type;
3095 }
3096
3097 /* Construct vector type for pseudo YMM registers. We can't use
3098 tdesc_find_type since YMM isn't described in target description. */
3099
3100 static struct type *
3101 i386_ymm_type (struct gdbarch *gdbarch)
3102 {
3103 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3104
3105 if (!tdep->i386_ymm_type)
3106 {
3107 const struct builtin_type *bt = builtin_type (gdbarch);
3108
3109 /* The type we're building is this: */
3110 #if 0
3111 union __gdb_builtin_type_vec256i
3112 {
3113 int128_t uint128[2];
3114 int64_t v2_int64[4];
3115 int32_t v4_int32[8];
3116 int16_t v8_int16[16];
3117 int8_t v16_int8[32];
3118 double v2_double[4];
3119 float v4_float[8];
3120 };
3121 #endif
3122
3123 struct type *t;
3124
3125 t = arch_composite_type (gdbarch,
3126 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3127 append_composite_type_field (t, "v8_float",
3128 init_vector_type (bt->builtin_float, 8));
3129 append_composite_type_field (t, "v4_double",
3130 init_vector_type (bt->builtin_double, 4));
3131 append_composite_type_field (t, "v32_int8",
3132 init_vector_type (bt->builtin_int8, 32));
3133 append_composite_type_field (t, "v16_int16",
3134 init_vector_type (bt->builtin_int16, 16));
3135 append_composite_type_field (t, "v8_int32",
3136 init_vector_type (bt->builtin_int32, 8));
3137 append_composite_type_field (t, "v4_int64",
3138 init_vector_type (bt->builtin_int64, 4));
3139 append_composite_type_field (t, "v2_int128",
3140 init_vector_type (bt->builtin_int128, 2));
3141
3142 TYPE_VECTOR (t) = 1;
3143 TYPE_NAME (t) = "builtin_type_vec256i";
3144 tdep->i386_ymm_type = t;
3145 }
3146
3147 return tdep->i386_ymm_type;
3148 }
3149
3150 /* Construct vector type for MMX registers. */
3151 static struct type *
3152 i386_mmx_type (struct gdbarch *gdbarch)
3153 {
3154 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3155
3156 if (!tdep->i386_mmx_type)
3157 {
3158 const struct builtin_type *bt = builtin_type (gdbarch);
3159
3160 /* The type we're building is this: */
3161 #if 0
3162 union __gdb_builtin_type_vec64i
3163 {
3164 int64_t uint64;
3165 int32_t v2_int32[2];
3166 int16_t v4_int16[4];
3167 int8_t v8_int8[8];
3168 };
3169 #endif
3170
3171 struct type *t;
3172
3173 t = arch_composite_type (gdbarch,
3174 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3175
3176 append_composite_type_field (t, "uint64", bt->builtin_int64);
3177 append_composite_type_field (t, "v2_int32",
3178 init_vector_type (bt->builtin_int32, 2));
3179 append_composite_type_field (t, "v4_int16",
3180 init_vector_type (bt->builtin_int16, 4));
3181 append_composite_type_field (t, "v8_int8",
3182 init_vector_type (bt->builtin_int8, 8));
3183
3184 TYPE_VECTOR (t) = 1;
3185 TYPE_NAME (t) = "builtin_type_vec64i";
3186 tdep->i386_mmx_type = t;
3187 }
3188
3189 return tdep->i386_mmx_type;
3190 }
3191
3192 /* Return the GDB type object for the "standard" data type of data in
3193 register REGNUM. */
3194
3195 struct type *
3196 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3197 {
3198 if (i386_bnd_regnum_p (gdbarch, regnum))
3199 return i386_bnd_type (gdbarch);
3200 if (i386_mmx_regnum_p (gdbarch, regnum))
3201 return i386_mmx_type (gdbarch);
3202 else if (i386_ymm_regnum_p (gdbarch, regnum))
3203 return i386_ymm_type (gdbarch);
3204 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3205 return i386_ymm_type (gdbarch);
3206 else if (i386_zmm_regnum_p (gdbarch, regnum))
3207 return i386_zmm_type (gdbarch);
3208 else
3209 {
3210 const struct builtin_type *bt = builtin_type (gdbarch);
3211 if (i386_byte_regnum_p (gdbarch, regnum))
3212 return bt->builtin_int8;
3213 else if (i386_word_regnum_p (gdbarch, regnum))
3214 return bt->builtin_int16;
3215 else if (i386_dword_regnum_p (gdbarch, regnum))
3216 return bt->builtin_int32;
3217 else if (i386_k_regnum_p (gdbarch, regnum))
3218 return bt->builtin_int64;
3219 }
3220
3221 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3222 }
3223
3224 /* Map a cooked register onto a raw register or memory. For the i386,
3225 the MMX registers need to be mapped onto floating point registers. */
3226
3227 static int
3228 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
3229 {
3230 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3231 int mmxreg, fpreg;
3232 ULONGEST fstat;
3233 int tos;
3234
3235 mmxreg = regnum - tdep->mm0_regnum;
3236 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
3237 tos = (fstat >> 11) & 0x7;
3238 fpreg = (mmxreg + tos) % 8;
3239
3240 return (I387_ST0_REGNUM (tdep) + fpreg);
3241 }
3242
3243 /* A helper function for us by i386_pseudo_register_read_value and
3244 amd64_pseudo_register_read_value. It does all the work but reads
3245 the data into an already-allocated value. */
3246
3247 void
3248 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3249 struct regcache *regcache,
3250 int regnum,
3251 struct value *result_value)
3252 {
3253 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3254 enum register_status status;
3255 gdb_byte *buf = value_contents_raw (result_value);
3256
3257 if (i386_mmx_regnum_p (gdbarch, regnum))
3258 {
3259 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3260
3261 /* Extract (always little endian). */
3262 status = regcache_raw_read (regcache, fpnum, raw_buf);
3263 if (status != REG_VALID)
3264 mark_value_bytes_unavailable (result_value, 0,
3265 TYPE_LENGTH (value_type (result_value)));
3266 else
3267 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3268 }
3269 else
3270 {
3271 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3272 if (i386_bnd_regnum_p (gdbarch, regnum))
3273 {
3274 regnum -= tdep->bnd0_regnum;
3275
3276 /* Extract (always little endian). Read lower 128bits. */
3277 status = regcache_raw_read (regcache,
3278 I387_BND0R_REGNUM (tdep) + regnum,
3279 raw_buf);
3280 if (status != REG_VALID)
3281 mark_value_bytes_unavailable (result_value, 0, 16);
3282 else
3283 {
3284 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3285 LONGEST upper, lower;
3286 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3287
3288 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3289 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3290 upper = ~upper;
3291
3292 memcpy (buf, &lower, size);
3293 memcpy (buf + size, &upper, size);
3294 }
3295 }
3296 else if (i386_k_regnum_p (gdbarch, regnum))
3297 {
3298 regnum -= tdep->k0_regnum;
3299
3300 /* Extract (always little endian). */
3301 status = regcache_raw_read (regcache,
3302 tdep->k0_regnum + regnum,
3303 raw_buf);
3304 if (status != REG_VALID)
3305 mark_value_bytes_unavailable (result_value, 0, 8);
3306 else
3307 memcpy (buf, raw_buf, 8);
3308 }
3309 else if (i386_zmm_regnum_p (gdbarch, regnum))
3310 {
3311 regnum -= tdep->zmm0_regnum;
3312
3313 if (regnum < num_lower_zmm_regs)
3314 {
3315 /* Extract (always little endian). Read lower 128bits. */
3316 status = regcache_raw_read (regcache,
3317 I387_XMM0_REGNUM (tdep) + regnum,
3318 raw_buf);
3319 if (status != REG_VALID)
3320 mark_value_bytes_unavailable (result_value, 0, 16);
3321 else
3322 memcpy (buf, raw_buf, 16);
3323
3324 /* Extract (always little endian). Read upper 128bits. */
3325 status = regcache_raw_read (regcache,
3326 tdep->ymm0h_regnum + regnum,
3327 raw_buf);
3328 if (status != REG_VALID)
3329 mark_value_bytes_unavailable (result_value, 16, 16);
3330 else
3331 memcpy (buf + 16, raw_buf, 16);
3332 }
3333 else
3334 {
3335 /* Extract (always little endian). Read lower 128bits. */
3336 status = regcache_raw_read (regcache,
3337 I387_XMM16_REGNUM (tdep) + regnum
3338 - num_lower_zmm_regs,
3339 raw_buf);
3340 if (status != REG_VALID)
3341 mark_value_bytes_unavailable (result_value, 0, 16);
3342 else
3343 memcpy (buf, raw_buf, 16);
3344
3345 /* Extract (always little endian). Read upper 128bits. */
3346 status = regcache_raw_read (regcache,
3347 I387_YMM16H_REGNUM (tdep) + regnum
3348 - num_lower_zmm_regs,
3349 raw_buf);
3350 if (status != REG_VALID)
3351 mark_value_bytes_unavailable (result_value, 16, 16);
3352 else
3353 memcpy (buf + 16, raw_buf, 16);
3354 }
3355
3356 /* Read upper 256bits. */
3357 status = regcache_raw_read (regcache,
3358 tdep->zmm0h_regnum + regnum,
3359 raw_buf);
3360 if (status != REG_VALID)
3361 mark_value_bytes_unavailable (result_value, 32, 32);
3362 else
3363 memcpy (buf + 32, raw_buf, 32);
3364 }
3365 else if (i386_ymm_regnum_p (gdbarch, regnum))
3366 {
3367 regnum -= tdep->ymm0_regnum;
3368
3369 /* Extract (always little endian). Read lower 128bits. */
3370 status = regcache_raw_read (regcache,
3371 I387_XMM0_REGNUM (tdep) + regnum,
3372 raw_buf);
3373 if (status != REG_VALID)
3374 mark_value_bytes_unavailable (result_value, 0, 16);
3375 else
3376 memcpy (buf, raw_buf, 16);
3377 /* Read upper 128bits. */
3378 status = regcache_raw_read (regcache,
3379 tdep->ymm0h_regnum + regnum,
3380 raw_buf);
3381 if (status != REG_VALID)
3382 mark_value_bytes_unavailable (result_value, 16, 32);
3383 else
3384 memcpy (buf + 16, raw_buf, 16);
3385 }
3386 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3387 {
3388 regnum -= tdep->ymm16_regnum;
3389 /* Extract (always little endian). Read lower 128bits. */
3390 status = regcache_raw_read (regcache,
3391 I387_XMM16_REGNUM (tdep) + regnum,
3392 raw_buf);
3393 if (status != REG_VALID)
3394 mark_value_bytes_unavailable (result_value, 0, 16);
3395 else
3396 memcpy (buf, raw_buf, 16);
3397 /* Read upper 128bits. */
3398 status = regcache_raw_read (regcache,
3399 tdep->ymm16h_regnum + regnum,
3400 raw_buf);
3401 if (status != REG_VALID)
3402 mark_value_bytes_unavailable (result_value, 16, 16);
3403 else
3404 memcpy (buf + 16, raw_buf, 16);
3405 }
3406 else if (i386_word_regnum_p (gdbarch, regnum))
3407 {
3408 int gpnum = regnum - tdep->ax_regnum;
3409
3410 /* Extract (always little endian). */
3411 status = regcache_raw_read (regcache, gpnum, raw_buf);
3412 if (status != REG_VALID)
3413 mark_value_bytes_unavailable (result_value, 0,
3414 TYPE_LENGTH (value_type (result_value)));
3415 else
3416 memcpy (buf, raw_buf, 2);
3417 }
3418 else if (i386_byte_regnum_p (gdbarch, regnum))
3419 {
3420 int gpnum = regnum - tdep->al_regnum;
3421
3422 /* Extract (always little endian). We read both lower and
3423 upper registers. */
3424 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3425 if (status != REG_VALID)
3426 mark_value_bytes_unavailable (result_value, 0,
3427 TYPE_LENGTH (value_type (result_value)));
3428 else if (gpnum >= 4)
3429 memcpy (buf, raw_buf + 1, 1);
3430 else
3431 memcpy (buf, raw_buf, 1);
3432 }
3433 else
3434 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3435 }
3436 }
3437
3438 static struct value *
3439 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3440 struct regcache *regcache,
3441 int regnum)
3442 {
3443 struct value *result;
3444
3445 result = allocate_value (register_type (gdbarch, regnum));
3446 VALUE_LVAL (result) = lval_register;
3447 VALUE_REGNUM (result) = regnum;
3448
3449 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3450
3451 return result;
3452 }
3453
3454 void
3455 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3456 int regnum, const gdb_byte *buf)
3457 {
3458 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3459
3460 if (i386_mmx_regnum_p (gdbarch, regnum))
3461 {
3462 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3463
3464 /* Read ... */
3465 regcache_raw_read (regcache, fpnum, raw_buf);
3466 /* ... Modify ... (always little endian). */
3467 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3468 /* ... Write. */
3469 regcache_raw_write (regcache, fpnum, raw_buf);
3470 }
3471 else
3472 {
3473 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3474
3475 if (i386_bnd_regnum_p (gdbarch, regnum))
3476 {
3477 ULONGEST upper, lower;
3478 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3479 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3480
3481 /* New values from input value. */
3482 regnum -= tdep->bnd0_regnum;
3483 lower = extract_unsigned_integer (buf, size, byte_order);
3484 upper = extract_unsigned_integer (buf + size, size, byte_order);
3485
3486 /* Fetching register buffer. */
3487 regcache_raw_read (regcache,
3488 I387_BND0R_REGNUM (tdep) + regnum,
3489 raw_buf);
3490
3491 upper = ~upper;
3492
3493 /* Set register bits. */
3494 memcpy (raw_buf, &lower, 8);
3495 memcpy (raw_buf + 8, &upper, 8);
3496
3497
3498 regcache_raw_write (regcache,
3499 I387_BND0R_REGNUM (tdep) + regnum,
3500 raw_buf);
3501 }
3502 else if (i386_k_regnum_p (gdbarch, regnum))
3503 {
3504 regnum -= tdep->k0_regnum;
3505
3506 regcache_raw_write (regcache,
3507 tdep->k0_regnum + regnum,
3508 buf);
3509 }
3510 else if (i386_zmm_regnum_p (gdbarch, regnum))
3511 {
3512 regnum -= tdep->zmm0_regnum;
3513
3514 if (regnum < num_lower_zmm_regs)
3515 {
3516 /* Write lower 128bits. */
3517 regcache_raw_write (regcache,
3518 I387_XMM0_REGNUM (tdep) + regnum,
3519 buf);
3520 /* Write upper 128bits. */
3521 regcache_raw_write (regcache,
3522 I387_YMM0_REGNUM (tdep) + regnum,
3523 buf + 16);
3524 }
3525 else
3526 {
3527 /* Write lower 128bits. */
3528 regcache_raw_write (regcache,
3529 I387_XMM16_REGNUM (tdep) + regnum
3530 - num_lower_zmm_regs,
3531 buf);
3532 /* Write upper 128bits. */
3533 regcache_raw_write (regcache,
3534 I387_YMM16H_REGNUM (tdep) + regnum
3535 - num_lower_zmm_regs,
3536 buf + 16);
3537 }
3538 /* Write upper 256bits. */
3539 regcache_raw_write (regcache,
3540 tdep->zmm0h_regnum + regnum,
3541 buf + 32);
3542 }
3543 else if (i386_ymm_regnum_p (gdbarch, regnum))
3544 {
3545 regnum -= tdep->ymm0_regnum;
3546
3547 /* ... Write lower 128bits. */
3548 regcache_raw_write (regcache,
3549 I387_XMM0_REGNUM (tdep) + regnum,
3550 buf);
3551 /* ... Write upper 128bits. */
3552 regcache_raw_write (regcache,
3553 tdep->ymm0h_regnum + regnum,
3554 buf + 16);
3555 }
3556 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3557 {
3558 regnum -= tdep->ymm16_regnum;
3559
3560 /* ... Write lower 128bits. */
3561 regcache_raw_write (regcache,
3562 I387_XMM16_REGNUM (tdep) + regnum,
3563 buf);
3564 /* ... Write upper 128bits. */
3565 regcache_raw_write (regcache,
3566 tdep->ymm16h_regnum + regnum,
3567 buf + 16);
3568 }
3569 else if (i386_word_regnum_p (gdbarch, regnum))
3570 {
3571 int gpnum = regnum - tdep->ax_regnum;
3572
3573 /* Read ... */
3574 regcache_raw_read (regcache, gpnum, raw_buf);
3575 /* ... Modify ... (always little endian). */
3576 memcpy (raw_buf, buf, 2);
3577 /* ... Write. */
3578 regcache_raw_write (regcache, gpnum, raw_buf);
3579 }
3580 else if (i386_byte_regnum_p (gdbarch, regnum))
3581 {
3582 int gpnum = regnum - tdep->al_regnum;
3583
3584 /* Read ... We read both lower and upper registers. */
3585 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3586 /* ... Modify ... (always little endian). */
3587 if (gpnum >= 4)
3588 memcpy (raw_buf + 1, buf, 1);
3589 else
3590 memcpy (raw_buf, buf, 1);
3591 /* ... Write. */
3592 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3593 }
3594 else
3595 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3596 }
3597 }
3598
3599 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3600
3601 int
3602 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3603 struct agent_expr *ax, int regnum)
3604 {
3605 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3606
3607 if (i386_mmx_regnum_p (gdbarch, regnum))
3608 {
3609 /* MMX to FPU register mapping depends on current TOS. Let's just
3610 not care and collect everything... */
3611 int i;
3612
3613 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3614 for (i = 0; i < 8; i++)
3615 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3616 return 0;
3617 }
3618 else if (i386_bnd_regnum_p (gdbarch, regnum))
3619 {
3620 regnum -= tdep->bnd0_regnum;
3621 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3622 return 0;
3623 }
3624 else if (i386_k_regnum_p (gdbarch, regnum))
3625 {
3626 regnum -= tdep->k0_regnum;
3627 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3628 return 0;
3629 }
3630 else if (i386_zmm_regnum_p (gdbarch, regnum))
3631 {
3632 regnum -= tdep->zmm0_regnum;
3633 if (regnum < num_lower_zmm_regs)
3634 {
3635 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3636 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3637 }
3638 else
3639 {
3640 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3641 - num_lower_zmm_regs);
3642 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3643 - num_lower_zmm_regs);
3644 }
3645 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3646 return 0;
3647 }
3648 else if (i386_ymm_regnum_p (gdbarch, regnum))
3649 {
3650 regnum -= tdep->ymm0_regnum;
3651 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3652 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3653 return 0;
3654 }
3655 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3656 {
3657 regnum -= tdep->ymm16_regnum;
3658 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3659 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3660 return 0;
3661 }
3662 else if (i386_word_regnum_p (gdbarch, regnum))
3663 {
3664 int gpnum = regnum - tdep->ax_regnum;
3665
3666 ax_reg_mask (ax, gpnum);
3667 return 0;
3668 }
3669 else if (i386_byte_regnum_p (gdbarch, regnum))
3670 {
3671 int gpnum = regnum - tdep->al_regnum;
3672
3673 ax_reg_mask (ax, gpnum % 4);
3674 return 0;
3675 }
3676 else
3677 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3678 return 1;
3679 }
3680 \f
3681
3682 /* Return the register number of the register allocated by GCC after
3683 REGNUM, or -1 if there is no such register. */
3684
3685 static int
3686 i386_next_regnum (int regnum)
3687 {
3688 /* GCC allocates the registers in the order:
3689
3690 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3691
3692 Since storing a variable in %esp doesn't make any sense we return
3693 -1 for %ebp and for %esp itself. */
3694 static int next_regnum[] =
3695 {
3696 I386_EDX_REGNUM, /* Slot for %eax. */
3697 I386_EBX_REGNUM, /* Slot for %ecx. */
3698 I386_ECX_REGNUM, /* Slot for %edx. */
3699 I386_ESI_REGNUM, /* Slot for %ebx. */
3700 -1, -1, /* Slots for %esp and %ebp. */
3701 I386_EDI_REGNUM, /* Slot for %esi. */
3702 I386_EBP_REGNUM /* Slot for %edi. */
3703 };
3704
3705 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3706 return next_regnum[regnum];
3707
3708 return -1;
3709 }
3710
3711 /* Return nonzero if a value of type TYPE stored in register REGNUM
3712 needs any special handling. */
3713
3714 static int
3715 i386_convert_register_p (struct gdbarch *gdbarch,
3716 int regnum, struct type *type)
3717 {
3718 int len = TYPE_LENGTH (type);
3719
3720 /* Values may be spread across multiple registers. Most debugging
3721 formats aren't expressive enough to specify the locations, so
3722 some heuristics is involved. Right now we only handle types that
3723 have a length that is a multiple of the word size, since GCC
3724 doesn't seem to put any other types into registers. */
3725 if (len > 4 && len % 4 == 0)
3726 {
3727 int last_regnum = regnum;
3728
3729 while (len > 4)
3730 {
3731 last_regnum = i386_next_regnum (last_regnum);
3732 len -= 4;
3733 }
3734
3735 if (last_regnum != -1)
3736 return 1;
3737 }
3738
3739 return i387_convert_register_p (gdbarch, regnum, type);
3740 }
3741
3742 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3743 return its contents in TO. */
3744
3745 static int
3746 i386_register_to_value (struct frame_info *frame, int regnum,
3747 struct type *type, gdb_byte *to,
3748 int *optimizedp, int *unavailablep)
3749 {
3750 struct gdbarch *gdbarch = get_frame_arch (frame);
3751 int len = TYPE_LENGTH (type);
3752
3753 if (i386_fp_regnum_p (gdbarch, regnum))
3754 return i387_register_to_value (frame, regnum, type, to,
3755 optimizedp, unavailablep);
3756
3757 /* Read a value spread across multiple registers. */
3758
3759 gdb_assert (len > 4 && len % 4 == 0);
3760
3761 while (len > 0)
3762 {
3763 gdb_assert (regnum != -1);
3764 gdb_assert (register_size (gdbarch, regnum) == 4);
3765
3766 if (!get_frame_register_bytes (frame, regnum, 0,
3767 register_size (gdbarch, regnum),
3768 to, optimizedp, unavailablep))
3769 return 0;
3770
3771 regnum = i386_next_regnum (regnum);
3772 len -= 4;
3773 to += 4;
3774 }
3775
3776 *optimizedp = *unavailablep = 0;
3777 return 1;
3778 }
3779
3780 /* Write the contents FROM of a value of type TYPE into register
3781 REGNUM in frame FRAME. */
3782
3783 static void
3784 i386_value_to_register (struct frame_info *frame, int regnum,
3785 struct type *type, const gdb_byte *from)
3786 {
3787 int len = TYPE_LENGTH (type);
3788
3789 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3790 {
3791 i387_value_to_register (frame, regnum, type, from);
3792 return;
3793 }
3794
3795 /* Write a value spread across multiple registers. */
3796
3797 gdb_assert (len > 4 && len % 4 == 0);
3798
3799 while (len > 0)
3800 {
3801 gdb_assert (regnum != -1);
3802 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3803
3804 put_frame_register (frame, regnum, from);
3805 regnum = i386_next_regnum (regnum);
3806 len -= 4;
3807 from += 4;
3808 }
3809 }
3810 \f
3811 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3812 in the general-purpose register set REGSET to register cache
3813 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3814
3815 void
3816 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3817 int regnum, const void *gregs, size_t len)
3818 {
3819 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3820 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3821 const gdb_byte *regs = (const gdb_byte *) gregs;
3822 int i;
3823
3824 gdb_assert (len >= tdep->sizeof_gregset);
3825
3826 for (i = 0; i < tdep->gregset_num_regs; i++)
3827 {
3828 if ((regnum == i || regnum == -1)
3829 && tdep->gregset_reg_offset[i] != -1)
3830 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3831 }
3832 }
3833
3834 /* Collect register REGNUM from the register cache REGCACHE and store
3835 it in the buffer specified by GREGS and LEN as described by the
3836 general-purpose register set REGSET. If REGNUM is -1, do this for
3837 all registers in REGSET. */
3838
3839 static void
3840 i386_collect_gregset (const struct regset *regset,
3841 const struct regcache *regcache,
3842 int regnum, void *gregs, size_t len)
3843 {
3844 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3845 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3846 gdb_byte *regs = (gdb_byte *) gregs;
3847 int i;
3848
3849 gdb_assert (len >= tdep->sizeof_gregset);
3850
3851 for (i = 0; i < tdep->gregset_num_regs; i++)
3852 {
3853 if ((regnum == i || regnum == -1)
3854 && tdep->gregset_reg_offset[i] != -1)
3855 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3856 }
3857 }
3858
3859 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3860 in the floating-point register set REGSET to register cache
3861 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3862
3863 static void
3864 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3865 int regnum, const void *fpregs, size_t len)
3866 {
3867 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3868 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3869
3870 if (len == I387_SIZEOF_FXSAVE)
3871 {
3872 i387_supply_fxsave (regcache, regnum, fpregs);
3873 return;
3874 }
3875
3876 gdb_assert (len >= tdep->sizeof_fpregset);
3877 i387_supply_fsave (regcache, regnum, fpregs);
3878 }
3879
3880 /* Collect register REGNUM from the register cache REGCACHE and store
3881 it in the buffer specified by FPREGS and LEN as described by the
3882 floating-point register set REGSET. If REGNUM is -1, do this for
3883 all registers in REGSET. */
3884
3885 static void
3886 i386_collect_fpregset (const struct regset *regset,
3887 const struct regcache *regcache,
3888 int regnum, void *fpregs, size_t len)
3889 {
3890 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3891 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3892
3893 if (len == I387_SIZEOF_FXSAVE)
3894 {
3895 i387_collect_fxsave (regcache, regnum, fpregs);
3896 return;
3897 }
3898
3899 gdb_assert (len >= tdep->sizeof_fpregset);
3900 i387_collect_fsave (regcache, regnum, fpregs);
3901 }
3902
3903 /* Register set definitions. */
3904
3905 const struct regset i386_gregset =
3906 {
3907 NULL, i386_supply_gregset, i386_collect_gregset
3908 };
3909
3910 const struct regset i386_fpregset =
3911 {
3912 NULL, i386_supply_fpregset, i386_collect_fpregset
3913 };
3914
3915 /* Default iterator over core file register note sections. */
3916
3917 void
3918 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3919 iterate_over_regset_sections_cb *cb,
3920 void *cb_data,
3921 const struct regcache *regcache)
3922 {
3923 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3924
3925 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3926 if (tdep->sizeof_fpregset)
3927 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
3928 }
3929 \f
3930
3931 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3932
3933 CORE_ADDR
3934 i386_pe_skip_trampoline_code (struct frame_info *frame,
3935 CORE_ADDR pc, char *name)
3936 {
3937 struct gdbarch *gdbarch = get_frame_arch (frame);
3938 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3939
3940 /* jmp *(dest) */
3941 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3942 {
3943 unsigned long indirect =
3944 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3945 struct minimal_symbol *indsym =
3946 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3947 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3948
3949 if (symname)
3950 {
3951 if (startswith (symname, "__imp_")
3952 || startswith (symname, "_imp_"))
3953 return name ? 1 :
3954 read_memory_unsigned_integer (indirect, 4, byte_order);
3955 }
3956 }
3957 return 0; /* Not a trampoline. */
3958 }
3959 \f
3960
3961 /* Return whether the THIS_FRAME corresponds to a sigtramp
3962 routine. */
3963
3964 int
3965 i386_sigtramp_p (struct frame_info *this_frame)
3966 {
3967 CORE_ADDR pc = get_frame_pc (this_frame);
3968 const char *name;
3969
3970 find_pc_partial_function (pc, &name, NULL, NULL);
3971 return (name && strcmp ("_sigtramp", name) == 0);
3972 }
3973 \f
3974
3975 /* We have two flavours of disassembly. The machinery on this page
3976 deals with switching between those. */
3977
3978 static int
3979 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3980 {
3981 gdb_assert (disassembly_flavor == att_flavor
3982 || disassembly_flavor == intel_flavor);
3983
3984 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3985 constified, cast to prevent a compiler warning. */
3986 info->disassembler_options = (char *) disassembly_flavor;
3987
3988 return print_insn_i386 (pc, info);
3989 }
3990 \f
3991
3992 /* There are a few i386 architecture variants that differ only
3993 slightly from the generic i386 target. For now, we don't give them
3994 their own source file, but include them here. As a consequence,
3995 they'll always be included. */
3996
3997 /* System V Release 4 (SVR4). */
3998
3999 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4000 routine. */
4001
4002 static int
4003 i386_svr4_sigtramp_p (struct frame_info *this_frame)
4004 {
4005 CORE_ADDR pc = get_frame_pc (this_frame);
4006 const char *name;
4007
4008 /* The origin of these symbols is currently unknown. */
4009 find_pc_partial_function (pc, &name, NULL, NULL);
4010 return (name && (strcmp ("_sigreturn", name) == 0
4011 || strcmp ("sigvechandler", name) == 0));
4012 }
4013
4014 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4015 address of the associated sigcontext (ucontext) structure. */
4016
4017 static CORE_ADDR
4018 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4019 {
4020 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4021 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4022 gdb_byte buf[4];
4023 CORE_ADDR sp;
4024
4025 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4026 sp = extract_unsigned_integer (buf, 4, byte_order);
4027
4028 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4029 }
4030
4031 \f
4032
4033 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4034 gdbarch.h. */
4035
4036 int
4037 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4038 {
4039 return (*s == '$' /* Literal number. */
4040 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4041 || (*s == '(' && s[1] == '%') /* Register indirection. */
4042 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4043 }
4044
4045 /* Helper function for i386_stap_parse_special_token.
4046
4047 This function parses operands of the form `-8+3+1(%rbp)', which
4048 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4049
4050 Return 1 if the operand was parsed successfully, zero
4051 otherwise. */
4052
4053 static int
4054 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4055 struct stap_parse_info *p)
4056 {
4057 const char *s = p->arg;
4058
4059 if (isdigit (*s) || *s == '-' || *s == '+')
4060 {
4061 int got_minus[3];
4062 int i;
4063 long displacements[3];
4064 const char *start;
4065 char *regname;
4066 int len;
4067 struct stoken str;
4068 char *endp;
4069
4070 got_minus[0] = 0;
4071 if (*s == '+')
4072 ++s;
4073 else if (*s == '-')
4074 {
4075 ++s;
4076 got_minus[0] = 1;
4077 }
4078
4079 if (!isdigit ((unsigned char) *s))
4080 return 0;
4081
4082 displacements[0] = strtol (s, &endp, 10);
4083 s = endp;
4084
4085 if (*s != '+' && *s != '-')
4086 {
4087 /* We are not dealing with a triplet. */
4088 return 0;
4089 }
4090
4091 got_minus[1] = 0;
4092 if (*s == '+')
4093 ++s;
4094 else
4095 {
4096 ++s;
4097 got_minus[1] = 1;
4098 }
4099
4100 if (!isdigit ((unsigned char) *s))
4101 return 0;
4102
4103 displacements[1] = strtol (s, &endp, 10);
4104 s = endp;
4105
4106 if (*s != '+' && *s != '-')
4107 {
4108 /* We are not dealing with a triplet. */
4109 return 0;
4110 }
4111
4112 got_minus[2] = 0;
4113 if (*s == '+')
4114 ++s;
4115 else
4116 {
4117 ++s;
4118 got_minus[2] = 1;
4119 }
4120
4121 if (!isdigit ((unsigned char) *s))
4122 return 0;
4123
4124 displacements[2] = strtol (s, &endp, 10);
4125 s = endp;
4126
4127 if (*s != '(' || s[1] != '%')
4128 return 0;
4129
4130 s += 2;
4131 start = s;
4132
4133 while (isalnum (*s))
4134 ++s;
4135
4136 if (*s++ != ')')
4137 return 0;
4138
4139 len = s - start - 1;
4140 regname = (char *) alloca (len + 1);
4141
4142 strncpy (regname, start, len);
4143 regname[len] = '\0';
4144
4145 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4146 error (_("Invalid register name `%s' on expression `%s'."),
4147 regname, p->saved_arg);
4148
4149 for (i = 0; i < 3; i++)
4150 {
4151 write_exp_elt_opcode (&p->pstate, OP_LONG);
4152 write_exp_elt_type
4153 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4154 write_exp_elt_longcst (&p->pstate, displacements[i]);
4155 write_exp_elt_opcode (&p->pstate, OP_LONG);
4156 if (got_minus[i])
4157 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4158 }
4159
4160 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4161 str.ptr = regname;
4162 str.length = len;
4163 write_exp_string (&p->pstate, str);
4164 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4165
4166 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4167 write_exp_elt_type (&p->pstate,
4168 builtin_type (gdbarch)->builtin_data_ptr);
4169 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4170
4171 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4172 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4173 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4174
4175 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4176 write_exp_elt_type (&p->pstate,
4177 lookup_pointer_type (p->arg_type));
4178 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4179
4180 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4181
4182 p->arg = s;
4183
4184 return 1;
4185 }
4186
4187 return 0;
4188 }
4189
4190 /* Helper function for i386_stap_parse_special_token.
4191
4192 This function parses operands of the form `register base +
4193 (register index * size) + offset', as represented in
4194 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4195
4196 Return 1 if the operand was parsed successfully, zero
4197 otherwise. */
4198
4199 static int
4200 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4201 struct stap_parse_info *p)
4202 {
4203 const char *s = p->arg;
4204
4205 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4206 {
4207 int offset_minus = 0;
4208 long offset = 0;
4209 int size_minus = 0;
4210 long size = 0;
4211 const char *start;
4212 char *base;
4213 int len_base;
4214 char *index;
4215 int len_index;
4216 struct stoken base_token, index_token;
4217
4218 if (*s == '+')
4219 ++s;
4220 else if (*s == '-')
4221 {
4222 ++s;
4223 offset_minus = 1;
4224 }
4225
4226 if (offset_minus && !isdigit (*s))
4227 return 0;
4228
4229 if (isdigit (*s))
4230 {
4231 char *endp;
4232
4233 offset = strtol (s, &endp, 10);
4234 s = endp;
4235 }
4236
4237 if (*s != '(' || s[1] != '%')
4238 return 0;
4239
4240 s += 2;
4241 start = s;
4242
4243 while (isalnum (*s))
4244 ++s;
4245
4246 if (*s != ',' || s[1] != '%')
4247 return 0;
4248
4249 len_base = s - start;
4250 base = (char *) alloca (len_base + 1);
4251 strncpy (base, start, len_base);
4252 base[len_base] = '\0';
4253
4254 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4255 error (_("Invalid register name `%s' on expression `%s'."),
4256 base, p->saved_arg);
4257
4258 s += 2;
4259 start = s;
4260
4261 while (isalnum (*s))
4262 ++s;
4263
4264 len_index = s - start;
4265 index = (char *) alloca (len_index + 1);
4266 strncpy (index, start, len_index);
4267 index[len_index] = '\0';
4268
4269 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4270 error (_("Invalid register name `%s' on expression `%s'."),
4271 index, p->saved_arg);
4272
4273 if (*s != ',' && *s != ')')
4274 return 0;
4275
4276 if (*s == ',')
4277 {
4278 char *endp;
4279
4280 ++s;
4281 if (*s == '+')
4282 ++s;
4283 else if (*s == '-')
4284 {
4285 ++s;
4286 size_minus = 1;
4287 }
4288
4289 size = strtol (s, &endp, 10);
4290 s = endp;
4291
4292 if (*s != ')')
4293 return 0;
4294 }
4295
4296 ++s;
4297
4298 if (offset)
4299 {
4300 write_exp_elt_opcode (&p->pstate, OP_LONG);
4301 write_exp_elt_type (&p->pstate,
4302 builtin_type (gdbarch)->builtin_long);
4303 write_exp_elt_longcst (&p->pstate, offset);
4304 write_exp_elt_opcode (&p->pstate, OP_LONG);
4305 if (offset_minus)
4306 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4307 }
4308
4309 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4310 base_token.ptr = base;
4311 base_token.length = len_base;
4312 write_exp_string (&p->pstate, base_token);
4313 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4314
4315 if (offset)
4316 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4317
4318 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4319 index_token.ptr = index;
4320 index_token.length = len_index;
4321 write_exp_string (&p->pstate, index_token);
4322 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4323
4324 if (size)
4325 {
4326 write_exp_elt_opcode (&p->pstate, OP_LONG);
4327 write_exp_elt_type (&p->pstate,
4328 builtin_type (gdbarch)->builtin_long);
4329 write_exp_elt_longcst (&p->pstate, size);
4330 write_exp_elt_opcode (&p->pstate, OP_LONG);
4331 if (size_minus)
4332 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4333 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4334 }
4335
4336 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4337
4338 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4339 write_exp_elt_type (&p->pstate,
4340 lookup_pointer_type (p->arg_type));
4341 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4342
4343 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4344
4345 p->arg = s;
4346
4347 return 1;
4348 }
4349
4350 return 0;
4351 }
4352
4353 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4354 gdbarch.h. */
4355
4356 int
4357 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4358 struct stap_parse_info *p)
4359 {
4360 /* In order to parse special tokens, we use a state-machine that go
4361 through every known token and try to get a match. */
4362 enum
4363 {
4364 TRIPLET,
4365 THREE_ARG_DISPLACEMENT,
4366 DONE
4367 };
4368 int current_state;
4369
4370 current_state = TRIPLET;
4371
4372 /* The special tokens to be parsed here are:
4373
4374 - `register base + (register index * size) + offset', as represented
4375 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4376
4377 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4378 `*(-8 + 3 - 1 + (void *) $eax)'. */
4379
4380 while (current_state != DONE)
4381 {
4382 switch (current_state)
4383 {
4384 case TRIPLET:
4385 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4386 return 1;
4387 break;
4388
4389 case THREE_ARG_DISPLACEMENT:
4390 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4391 return 1;
4392 break;
4393 }
4394
4395 /* Advancing to the next state. */
4396 ++current_state;
4397 }
4398
4399 return 0;
4400 }
4401
4402 \f
4403
4404 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4405 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4406
4407 static const char *
4408 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4409 {
4410 return "(x86_64|i.86)";
4411 }
4412
4413 \f
4414
4415 /* Generic ELF. */
4416
4417 void
4418 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4419 {
4420 static const char *const stap_integer_prefixes[] = { "$", NULL };
4421 static const char *const stap_register_prefixes[] = { "%", NULL };
4422 static const char *const stap_register_indirection_prefixes[] = { "(",
4423 NULL };
4424 static const char *const stap_register_indirection_suffixes[] = { ")",
4425 NULL };
4426
4427 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4428 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4429
4430 /* Registering SystemTap handlers. */
4431 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4432 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4433 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4434 stap_register_indirection_prefixes);
4435 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4436 stap_register_indirection_suffixes);
4437 set_gdbarch_stap_is_single_operand (gdbarch,
4438 i386_stap_is_single_operand);
4439 set_gdbarch_stap_parse_special_token (gdbarch,
4440 i386_stap_parse_special_token);
4441
4442 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
4443 }
4444
4445 /* System V Release 4 (SVR4). */
4446
4447 void
4448 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4449 {
4450 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4451
4452 /* System V Release 4 uses ELF. */
4453 i386_elf_init_abi (info, gdbarch);
4454
4455 /* System V Release 4 has shared libraries. */
4456 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4457
4458 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4459 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4460 tdep->sc_pc_offset = 36 + 14 * 4;
4461 tdep->sc_sp_offset = 36 + 17 * 4;
4462
4463 tdep->jb_pc_offset = 20;
4464 }
4465
4466 /* DJGPP. */
4467
4468 static void
4469 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4470 {
4471 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4472
4473 /* DJGPP doesn't have any special frames for signal handlers. */
4474 tdep->sigtramp_p = NULL;
4475
4476 tdep->jb_pc_offset = 36;
4477
4478 /* DJGPP does not support the SSE registers. */
4479 if (! tdesc_has_registers (info.target_desc))
4480 tdep->tdesc = tdesc_i386_mmx;
4481
4482 /* Native compiler is GCC, which uses the SVR4 register numbering
4483 even in COFF and STABS. See the comment in i386_gdbarch_init,
4484 before the calls to set_gdbarch_stab_reg_to_regnum and
4485 set_gdbarch_sdb_reg_to_regnum. */
4486 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4487 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4488
4489 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
4490
4491 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
4492 }
4493 \f
4494
4495 /* i386 register groups. In addition to the normal groups, add "mmx"
4496 and "sse". */
4497
4498 static struct reggroup *i386_sse_reggroup;
4499 static struct reggroup *i386_mmx_reggroup;
4500
4501 static void
4502 i386_init_reggroups (void)
4503 {
4504 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4505 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4506 }
4507
4508 static void
4509 i386_add_reggroups (struct gdbarch *gdbarch)
4510 {
4511 reggroup_add (gdbarch, i386_sse_reggroup);
4512 reggroup_add (gdbarch, i386_mmx_reggroup);
4513 reggroup_add (gdbarch, general_reggroup);
4514 reggroup_add (gdbarch, float_reggroup);
4515 reggroup_add (gdbarch, all_reggroup);
4516 reggroup_add (gdbarch, save_reggroup);
4517 reggroup_add (gdbarch, restore_reggroup);
4518 reggroup_add (gdbarch, vector_reggroup);
4519 reggroup_add (gdbarch, system_reggroup);
4520 }
4521
4522 int
4523 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4524 struct reggroup *group)
4525 {
4526 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4527 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4528 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4529 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4530 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4531 avx512_p, avx_p, sse_p;
4532
4533 /* Don't include pseudo registers, except for MMX, in any register
4534 groups. */
4535 if (i386_byte_regnum_p (gdbarch, regnum))
4536 return 0;
4537
4538 if (i386_word_regnum_p (gdbarch, regnum))
4539 return 0;
4540
4541 if (i386_dword_regnum_p (gdbarch, regnum))
4542 return 0;
4543
4544 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4545 if (group == i386_mmx_reggroup)
4546 return mmx_regnum_p;
4547
4548 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4549 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4550 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4551 if (group == i386_sse_reggroup)
4552 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4553
4554 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4555 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4556 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4557
4558 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4559 == X86_XSTATE_AVX512_MASK);
4560 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4561 == X86_XSTATE_AVX_MASK) && !avx512_p;
4562 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4563 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4564
4565 if (group == vector_reggroup)
4566 return (mmx_regnum_p
4567 || (zmm_regnum_p && avx512_p)
4568 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4569 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4570 || mxcsr_regnum_p);
4571
4572 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4573 || i386_fpc_regnum_p (gdbarch, regnum));
4574 if (group == float_reggroup)
4575 return fp_regnum_p;
4576
4577 /* For "info reg all", don't include upper YMM registers nor XMM
4578 registers when AVX is supported. */
4579 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4580 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4581 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4582 if (group == all_reggroup
4583 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4584 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4585 || ymmh_regnum_p
4586 || ymmh_avx512_regnum_p
4587 || zmmh_regnum_p))
4588 return 0;
4589
4590 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4591 if (group == all_reggroup
4592 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4593 return bnd_regnum_p;
4594
4595 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4596 if (group == all_reggroup
4597 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4598 return 0;
4599
4600 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4601 if (group == all_reggroup
4602 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4603 return mpx_ctrl_regnum_p;
4604
4605 if (group == general_reggroup)
4606 return (!fp_regnum_p
4607 && !mmx_regnum_p
4608 && !mxcsr_regnum_p
4609 && !xmm_regnum_p
4610 && !xmm_avx512_regnum_p
4611 && !ymm_regnum_p
4612 && !ymmh_regnum_p
4613 && !ymm_avx512_regnum_p
4614 && !ymmh_avx512_regnum_p
4615 && !bndr_regnum_p
4616 && !bnd_regnum_p
4617 && !mpx_ctrl_regnum_p
4618 && !zmm_regnum_p
4619 && !zmmh_regnum_p);
4620
4621 return default_register_reggroup_p (gdbarch, regnum, group);
4622 }
4623 \f
4624
4625 /* Get the ARGIth function argument for the current function. */
4626
4627 static CORE_ADDR
4628 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4629 struct type *type)
4630 {
4631 struct gdbarch *gdbarch = get_frame_arch (frame);
4632 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4633 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4634 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4635 }
4636
4637 #define PREFIX_REPZ 0x01
4638 #define PREFIX_REPNZ 0x02
4639 #define PREFIX_LOCK 0x04
4640 #define PREFIX_DATA 0x08
4641 #define PREFIX_ADDR 0x10
4642
4643 /* operand size */
4644 enum
4645 {
4646 OT_BYTE = 0,
4647 OT_WORD,
4648 OT_LONG,
4649 OT_QUAD,
4650 OT_DQUAD,
4651 };
4652
4653 /* i386 arith/logic operations */
4654 enum
4655 {
4656 OP_ADDL,
4657 OP_ORL,
4658 OP_ADCL,
4659 OP_SBBL,
4660 OP_ANDL,
4661 OP_SUBL,
4662 OP_XORL,
4663 OP_CMPL,
4664 };
4665
4666 struct i386_record_s
4667 {
4668 struct gdbarch *gdbarch;
4669 struct regcache *regcache;
4670 CORE_ADDR orig_addr;
4671 CORE_ADDR addr;
4672 int aflag;
4673 int dflag;
4674 int override;
4675 uint8_t modrm;
4676 uint8_t mod, reg, rm;
4677 int ot;
4678 uint8_t rex_x;
4679 uint8_t rex_b;
4680 int rip_offset;
4681 int popl_esp_hack;
4682 const int *regmap;
4683 };
4684
4685 /* Parse the "modrm" part of the memory address irp->addr points at.
4686 Returns -1 if something goes wrong, 0 otherwise. */
4687
4688 static int
4689 i386_record_modrm (struct i386_record_s *irp)
4690 {
4691 struct gdbarch *gdbarch = irp->gdbarch;
4692
4693 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4694 return -1;
4695
4696 irp->addr++;
4697 irp->mod = (irp->modrm >> 6) & 3;
4698 irp->reg = (irp->modrm >> 3) & 7;
4699 irp->rm = irp->modrm & 7;
4700
4701 return 0;
4702 }
4703
4704 /* Extract the memory address that the current instruction writes to,
4705 and return it in *ADDR. Return -1 if something goes wrong. */
4706
4707 static int
4708 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4709 {
4710 struct gdbarch *gdbarch = irp->gdbarch;
4711 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4712 gdb_byte buf[4];
4713 ULONGEST offset64;
4714
4715 *addr = 0;
4716 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4717 {
4718 /* 32/64 bits */
4719 int havesib = 0;
4720 uint8_t scale = 0;
4721 uint8_t byte;
4722 uint8_t index = 0;
4723 uint8_t base = irp->rm;
4724
4725 if (base == 4)
4726 {
4727 havesib = 1;
4728 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4729 return -1;
4730 irp->addr++;
4731 scale = (byte >> 6) & 3;
4732 index = ((byte >> 3) & 7) | irp->rex_x;
4733 base = (byte & 7);
4734 }
4735 base |= irp->rex_b;
4736
4737 switch (irp->mod)
4738 {
4739 case 0:
4740 if ((base & 7) == 5)
4741 {
4742 base = 0xff;
4743 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4744 return -1;
4745 irp->addr += 4;
4746 *addr = extract_signed_integer (buf, 4, byte_order);
4747 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4748 *addr += irp->addr + irp->rip_offset;
4749 }
4750 break;
4751 case 1:
4752 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4753 return -1;
4754 irp->addr++;
4755 *addr = (int8_t) buf[0];
4756 break;
4757 case 2:
4758 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4759 return -1;
4760 *addr = extract_signed_integer (buf, 4, byte_order);
4761 irp->addr += 4;
4762 break;
4763 }
4764
4765 offset64 = 0;
4766 if (base != 0xff)
4767 {
4768 if (base == 4 && irp->popl_esp_hack)
4769 *addr += irp->popl_esp_hack;
4770 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4771 &offset64);
4772 }
4773 if (irp->aflag == 2)
4774 {
4775 *addr += offset64;
4776 }
4777 else
4778 *addr = (uint32_t) (offset64 + *addr);
4779
4780 if (havesib && (index != 4 || scale != 0))
4781 {
4782 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4783 &offset64);
4784 if (irp->aflag == 2)
4785 *addr += offset64 << scale;
4786 else
4787 *addr = (uint32_t) (*addr + (offset64 << scale));
4788 }
4789
4790 if (!irp->aflag)
4791 {
4792 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4793 address from 32-bit to 64-bit. */
4794 *addr = (uint32_t) *addr;
4795 }
4796 }
4797 else
4798 {
4799 /* 16 bits */
4800 switch (irp->mod)
4801 {
4802 case 0:
4803 if (irp->rm == 6)
4804 {
4805 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4806 return -1;
4807 irp->addr += 2;
4808 *addr = extract_signed_integer (buf, 2, byte_order);
4809 irp->rm = 0;
4810 goto no_rm;
4811 }
4812 break;
4813 case 1:
4814 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4815 return -1;
4816 irp->addr++;
4817 *addr = (int8_t) buf[0];
4818 break;
4819 case 2:
4820 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4821 return -1;
4822 irp->addr += 2;
4823 *addr = extract_signed_integer (buf, 2, byte_order);
4824 break;
4825 }
4826
4827 switch (irp->rm)
4828 {
4829 case 0:
4830 regcache_raw_read_unsigned (irp->regcache,
4831 irp->regmap[X86_RECORD_REBX_REGNUM],
4832 &offset64);
4833 *addr = (uint32_t) (*addr + offset64);
4834 regcache_raw_read_unsigned (irp->regcache,
4835 irp->regmap[X86_RECORD_RESI_REGNUM],
4836 &offset64);
4837 *addr = (uint32_t) (*addr + offset64);
4838 break;
4839 case 1:
4840 regcache_raw_read_unsigned (irp->regcache,
4841 irp->regmap[X86_RECORD_REBX_REGNUM],
4842 &offset64);
4843 *addr = (uint32_t) (*addr + offset64);
4844 regcache_raw_read_unsigned (irp->regcache,
4845 irp->regmap[X86_RECORD_REDI_REGNUM],
4846 &offset64);
4847 *addr = (uint32_t) (*addr + offset64);
4848 break;
4849 case 2:
4850 regcache_raw_read_unsigned (irp->regcache,
4851 irp->regmap[X86_RECORD_REBP_REGNUM],
4852 &offset64);
4853 *addr = (uint32_t) (*addr + offset64);
4854 regcache_raw_read_unsigned (irp->regcache,
4855 irp->regmap[X86_RECORD_RESI_REGNUM],
4856 &offset64);
4857 *addr = (uint32_t) (*addr + offset64);
4858 break;
4859 case 3:
4860 regcache_raw_read_unsigned (irp->regcache,
4861 irp->regmap[X86_RECORD_REBP_REGNUM],
4862 &offset64);
4863 *addr = (uint32_t) (*addr + offset64);
4864 regcache_raw_read_unsigned (irp->regcache,
4865 irp->regmap[X86_RECORD_REDI_REGNUM],
4866 &offset64);
4867 *addr = (uint32_t) (*addr + offset64);
4868 break;
4869 case 4:
4870 regcache_raw_read_unsigned (irp->regcache,
4871 irp->regmap[X86_RECORD_RESI_REGNUM],
4872 &offset64);
4873 *addr = (uint32_t) (*addr + offset64);
4874 break;
4875 case 5:
4876 regcache_raw_read_unsigned (irp->regcache,
4877 irp->regmap[X86_RECORD_REDI_REGNUM],
4878 &offset64);
4879 *addr = (uint32_t) (*addr + offset64);
4880 break;
4881 case 6:
4882 regcache_raw_read_unsigned (irp->regcache,
4883 irp->regmap[X86_RECORD_REBP_REGNUM],
4884 &offset64);
4885 *addr = (uint32_t) (*addr + offset64);
4886 break;
4887 case 7:
4888 regcache_raw_read_unsigned (irp->regcache,
4889 irp->regmap[X86_RECORD_REBX_REGNUM],
4890 &offset64);
4891 *addr = (uint32_t) (*addr + offset64);
4892 break;
4893 }
4894 *addr &= 0xffff;
4895 }
4896
4897 no_rm:
4898 return 0;
4899 }
4900
4901 /* Record the address and contents of the memory that will be changed
4902 by the current instruction. Return -1 if something goes wrong, 0
4903 otherwise. */
4904
4905 static int
4906 i386_record_lea_modrm (struct i386_record_s *irp)
4907 {
4908 struct gdbarch *gdbarch = irp->gdbarch;
4909 uint64_t addr;
4910
4911 if (irp->override >= 0)
4912 {
4913 if (record_full_memory_query)
4914 {
4915 if (yquery (_("\
4916 Process record ignores the memory change of instruction at address %s\n\
4917 because it can't get the value of the segment register.\n\
4918 Do you want to stop the program?"),
4919 paddress (gdbarch, irp->orig_addr)))
4920 return -1;
4921 }
4922
4923 return 0;
4924 }
4925
4926 if (i386_record_lea_modrm_addr (irp, &addr))
4927 return -1;
4928
4929 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4930 return -1;
4931
4932 return 0;
4933 }
4934
4935 /* Record the effects of a push operation. Return -1 if something
4936 goes wrong, 0 otherwise. */
4937
4938 static int
4939 i386_record_push (struct i386_record_s *irp, int size)
4940 {
4941 ULONGEST addr;
4942
4943 if (record_full_arch_list_add_reg (irp->regcache,
4944 irp->regmap[X86_RECORD_RESP_REGNUM]))
4945 return -1;
4946 regcache_raw_read_unsigned (irp->regcache,
4947 irp->regmap[X86_RECORD_RESP_REGNUM],
4948 &addr);
4949 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4950 return -1;
4951
4952 return 0;
4953 }
4954
4955
4956 /* Defines contents to record. */
4957 #define I386_SAVE_FPU_REGS 0xfffd
4958 #define I386_SAVE_FPU_ENV 0xfffe
4959 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4960
4961 /* Record the values of the floating point registers which will be
4962 changed by the current instruction. Returns -1 if something is
4963 wrong, 0 otherwise. */
4964
4965 static int i386_record_floats (struct gdbarch *gdbarch,
4966 struct i386_record_s *ir,
4967 uint32_t iregnum)
4968 {
4969 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4970 int i;
4971
4972 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4973 happen. Currently we store st0-st7 registers, but we need not store all
4974 registers all the time, in future we use ftag register and record only
4975 those who are not marked as an empty. */
4976
4977 if (I386_SAVE_FPU_REGS == iregnum)
4978 {
4979 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4980 {
4981 if (record_full_arch_list_add_reg (ir->regcache, i))
4982 return -1;
4983 }
4984 }
4985 else if (I386_SAVE_FPU_ENV == iregnum)
4986 {
4987 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4988 {
4989 if (record_full_arch_list_add_reg (ir->regcache, i))
4990 return -1;
4991 }
4992 }
4993 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4994 {
4995 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4996 {
4997 if (record_full_arch_list_add_reg (ir->regcache, i))
4998 return -1;
4999 }
5000 }
5001 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5002 (iregnum <= I387_FOP_REGNUM (tdep)))
5003 {
5004 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
5005 return -1;
5006 }
5007 else
5008 {
5009 /* Parameter error. */
5010 return -1;
5011 }
5012 if(I386_SAVE_FPU_ENV != iregnum)
5013 {
5014 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5015 {
5016 if (record_full_arch_list_add_reg (ir->regcache, i))
5017 return -1;
5018 }
5019 }
5020 return 0;
5021 }
5022
5023 /* Parse the current instruction, and record the values of the
5024 registers and memory that will be changed by the current
5025 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5026
5027 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5028 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5029
5030 int
5031 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5032 CORE_ADDR input_addr)
5033 {
5034 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5035 int prefixes = 0;
5036 int regnum = 0;
5037 uint32_t opcode;
5038 uint8_t opcode8;
5039 ULONGEST addr;
5040 gdb_byte buf[MAX_REGISTER_SIZE];
5041 struct i386_record_s ir;
5042 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5043 uint8_t rex_w = -1;
5044 uint8_t rex_r = 0;
5045
5046 memset (&ir, 0, sizeof (struct i386_record_s));
5047 ir.regcache = regcache;
5048 ir.addr = input_addr;
5049 ir.orig_addr = input_addr;
5050 ir.aflag = 1;
5051 ir.dflag = 1;
5052 ir.override = -1;
5053 ir.popl_esp_hack = 0;
5054 ir.regmap = tdep->record_regmap;
5055 ir.gdbarch = gdbarch;
5056
5057 if (record_debug > 1)
5058 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5059 "addr = %s\n",
5060 paddress (gdbarch, ir.addr));
5061
5062 /* prefixes */
5063 while (1)
5064 {
5065 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5066 return -1;
5067 ir.addr++;
5068 switch (opcode8) /* Instruction prefixes */
5069 {
5070 case REPE_PREFIX_OPCODE:
5071 prefixes |= PREFIX_REPZ;
5072 break;
5073 case REPNE_PREFIX_OPCODE:
5074 prefixes |= PREFIX_REPNZ;
5075 break;
5076 case LOCK_PREFIX_OPCODE:
5077 prefixes |= PREFIX_LOCK;
5078 break;
5079 case CS_PREFIX_OPCODE:
5080 ir.override = X86_RECORD_CS_REGNUM;
5081 break;
5082 case SS_PREFIX_OPCODE:
5083 ir.override = X86_RECORD_SS_REGNUM;
5084 break;
5085 case DS_PREFIX_OPCODE:
5086 ir.override = X86_RECORD_DS_REGNUM;
5087 break;
5088 case ES_PREFIX_OPCODE:
5089 ir.override = X86_RECORD_ES_REGNUM;
5090 break;
5091 case FS_PREFIX_OPCODE:
5092 ir.override = X86_RECORD_FS_REGNUM;
5093 break;
5094 case GS_PREFIX_OPCODE:
5095 ir.override = X86_RECORD_GS_REGNUM;
5096 break;
5097 case DATA_PREFIX_OPCODE:
5098 prefixes |= PREFIX_DATA;
5099 break;
5100 case ADDR_PREFIX_OPCODE:
5101 prefixes |= PREFIX_ADDR;
5102 break;
5103 case 0x40: /* i386 inc %eax */
5104 case 0x41: /* i386 inc %ecx */
5105 case 0x42: /* i386 inc %edx */
5106 case 0x43: /* i386 inc %ebx */
5107 case 0x44: /* i386 inc %esp */
5108 case 0x45: /* i386 inc %ebp */
5109 case 0x46: /* i386 inc %esi */
5110 case 0x47: /* i386 inc %edi */
5111 case 0x48: /* i386 dec %eax */
5112 case 0x49: /* i386 dec %ecx */
5113 case 0x4a: /* i386 dec %edx */
5114 case 0x4b: /* i386 dec %ebx */
5115 case 0x4c: /* i386 dec %esp */
5116 case 0x4d: /* i386 dec %ebp */
5117 case 0x4e: /* i386 dec %esi */
5118 case 0x4f: /* i386 dec %edi */
5119 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5120 {
5121 /* REX */
5122 rex_w = (opcode8 >> 3) & 1;
5123 rex_r = (opcode8 & 0x4) << 1;
5124 ir.rex_x = (opcode8 & 0x2) << 2;
5125 ir.rex_b = (opcode8 & 0x1) << 3;
5126 }
5127 else /* 32 bit target */
5128 goto out_prefixes;
5129 break;
5130 default:
5131 goto out_prefixes;
5132 break;
5133 }
5134 }
5135 out_prefixes:
5136 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5137 {
5138 ir.dflag = 2;
5139 }
5140 else
5141 {
5142 if (prefixes & PREFIX_DATA)
5143 ir.dflag ^= 1;
5144 }
5145 if (prefixes & PREFIX_ADDR)
5146 ir.aflag ^= 1;
5147 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5148 ir.aflag = 2;
5149
5150 /* Now check op code. */
5151 opcode = (uint32_t) opcode8;
5152 reswitch:
5153 switch (opcode)
5154 {
5155 case 0x0f:
5156 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5157 return -1;
5158 ir.addr++;
5159 opcode = (uint32_t) opcode8 | 0x0f00;
5160 goto reswitch;
5161 break;
5162
5163 case 0x00: /* arith & logic */
5164 case 0x01:
5165 case 0x02:
5166 case 0x03:
5167 case 0x04:
5168 case 0x05:
5169 case 0x08:
5170 case 0x09:
5171 case 0x0a:
5172 case 0x0b:
5173 case 0x0c:
5174 case 0x0d:
5175 case 0x10:
5176 case 0x11:
5177 case 0x12:
5178 case 0x13:
5179 case 0x14:
5180 case 0x15:
5181 case 0x18:
5182 case 0x19:
5183 case 0x1a:
5184 case 0x1b:
5185 case 0x1c:
5186 case 0x1d:
5187 case 0x20:
5188 case 0x21:
5189 case 0x22:
5190 case 0x23:
5191 case 0x24:
5192 case 0x25:
5193 case 0x28:
5194 case 0x29:
5195 case 0x2a:
5196 case 0x2b:
5197 case 0x2c:
5198 case 0x2d:
5199 case 0x30:
5200 case 0x31:
5201 case 0x32:
5202 case 0x33:
5203 case 0x34:
5204 case 0x35:
5205 case 0x38:
5206 case 0x39:
5207 case 0x3a:
5208 case 0x3b:
5209 case 0x3c:
5210 case 0x3d:
5211 if (((opcode >> 3) & 7) != OP_CMPL)
5212 {
5213 if ((opcode & 1) == 0)
5214 ir.ot = OT_BYTE;
5215 else
5216 ir.ot = ir.dflag + OT_WORD;
5217
5218 switch ((opcode >> 1) & 3)
5219 {
5220 case 0: /* OP Ev, Gv */
5221 if (i386_record_modrm (&ir))
5222 return -1;
5223 if (ir.mod != 3)
5224 {
5225 if (i386_record_lea_modrm (&ir))
5226 return -1;
5227 }
5228 else
5229 {
5230 ir.rm |= ir.rex_b;
5231 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5232 ir.rm &= 0x3;
5233 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5234 }
5235 break;
5236 case 1: /* OP Gv, Ev */
5237 if (i386_record_modrm (&ir))
5238 return -1;
5239 ir.reg |= rex_r;
5240 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5241 ir.reg &= 0x3;
5242 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5243 break;
5244 case 2: /* OP A, Iv */
5245 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5246 break;
5247 }
5248 }
5249 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5250 break;
5251
5252 case 0x80: /* GRP1 */
5253 case 0x81:
5254 case 0x82:
5255 case 0x83:
5256 if (i386_record_modrm (&ir))
5257 return -1;
5258
5259 if (ir.reg != OP_CMPL)
5260 {
5261 if ((opcode & 1) == 0)
5262 ir.ot = OT_BYTE;
5263 else
5264 ir.ot = ir.dflag + OT_WORD;
5265
5266 if (ir.mod != 3)
5267 {
5268 if (opcode == 0x83)
5269 ir.rip_offset = 1;
5270 else
5271 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5272 if (i386_record_lea_modrm (&ir))
5273 return -1;
5274 }
5275 else
5276 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5277 }
5278 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5279 break;
5280
5281 case 0x40: /* inc */
5282 case 0x41:
5283 case 0x42:
5284 case 0x43:
5285 case 0x44:
5286 case 0x45:
5287 case 0x46:
5288 case 0x47:
5289
5290 case 0x48: /* dec */
5291 case 0x49:
5292 case 0x4a:
5293 case 0x4b:
5294 case 0x4c:
5295 case 0x4d:
5296 case 0x4e:
5297 case 0x4f:
5298
5299 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5300 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5301 break;
5302
5303 case 0xf6: /* GRP3 */
5304 case 0xf7:
5305 if ((opcode & 1) == 0)
5306 ir.ot = OT_BYTE;
5307 else
5308 ir.ot = ir.dflag + OT_WORD;
5309 if (i386_record_modrm (&ir))
5310 return -1;
5311
5312 if (ir.mod != 3 && ir.reg == 0)
5313 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5314
5315 switch (ir.reg)
5316 {
5317 case 0: /* test */
5318 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5319 break;
5320 case 2: /* not */
5321 case 3: /* neg */
5322 if (ir.mod != 3)
5323 {
5324 if (i386_record_lea_modrm (&ir))
5325 return -1;
5326 }
5327 else
5328 {
5329 ir.rm |= ir.rex_b;
5330 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5331 ir.rm &= 0x3;
5332 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5333 }
5334 if (ir.reg == 3) /* neg */
5335 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5336 break;
5337 case 4: /* mul */
5338 case 5: /* imul */
5339 case 6: /* div */
5340 case 7: /* idiv */
5341 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5342 if (ir.ot != OT_BYTE)
5343 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5344 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5345 break;
5346 default:
5347 ir.addr -= 2;
5348 opcode = opcode << 8 | ir.modrm;
5349 goto no_support;
5350 break;
5351 }
5352 break;
5353
5354 case 0xfe: /* GRP4 */
5355 case 0xff: /* GRP5 */
5356 if (i386_record_modrm (&ir))
5357 return -1;
5358 if (ir.reg >= 2 && opcode == 0xfe)
5359 {
5360 ir.addr -= 2;
5361 opcode = opcode << 8 | ir.modrm;
5362 goto no_support;
5363 }
5364 switch (ir.reg)
5365 {
5366 case 0: /* inc */
5367 case 1: /* dec */
5368 if ((opcode & 1) == 0)
5369 ir.ot = OT_BYTE;
5370 else
5371 ir.ot = ir.dflag + OT_WORD;
5372 if (ir.mod != 3)
5373 {
5374 if (i386_record_lea_modrm (&ir))
5375 return -1;
5376 }
5377 else
5378 {
5379 ir.rm |= ir.rex_b;
5380 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5381 ir.rm &= 0x3;
5382 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5383 }
5384 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5385 break;
5386 case 2: /* call */
5387 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5388 ir.dflag = 2;
5389 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5390 return -1;
5391 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5392 break;
5393 case 3: /* lcall */
5394 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5395 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5396 return -1;
5397 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5398 break;
5399 case 4: /* jmp */
5400 case 5: /* ljmp */
5401 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5402 break;
5403 case 6: /* push */
5404 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5405 ir.dflag = 2;
5406 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5407 return -1;
5408 break;
5409 default:
5410 ir.addr -= 2;
5411 opcode = opcode << 8 | ir.modrm;
5412 goto no_support;
5413 break;
5414 }
5415 break;
5416
5417 case 0x84: /* test */
5418 case 0x85:
5419 case 0xa8:
5420 case 0xa9:
5421 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5422 break;
5423
5424 case 0x98: /* CWDE/CBW */
5425 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5426 break;
5427
5428 case 0x99: /* CDQ/CWD */
5429 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5430 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5431 break;
5432
5433 case 0x0faf: /* imul */
5434 case 0x69:
5435 case 0x6b:
5436 ir.ot = ir.dflag + OT_WORD;
5437 if (i386_record_modrm (&ir))
5438 return -1;
5439 if (opcode == 0x69)
5440 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5441 else if (opcode == 0x6b)
5442 ir.rip_offset = 1;
5443 ir.reg |= rex_r;
5444 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5445 ir.reg &= 0x3;
5446 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5447 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5448 break;
5449
5450 case 0x0fc0: /* xadd */
5451 case 0x0fc1:
5452 if ((opcode & 1) == 0)
5453 ir.ot = OT_BYTE;
5454 else
5455 ir.ot = ir.dflag + OT_WORD;
5456 if (i386_record_modrm (&ir))
5457 return -1;
5458 ir.reg |= rex_r;
5459 if (ir.mod == 3)
5460 {
5461 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5462 ir.reg &= 0x3;
5463 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5464 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5465 ir.rm &= 0x3;
5466 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5467 }
5468 else
5469 {
5470 if (i386_record_lea_modrm (&ir))
5471 return -1;
5472 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5473 ir.reg &= 0x3;
5474 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5475 }
5476 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5477 break;
5478
5479 case 0x0fb0: /* cmpxchg */
5480 case 0x0fb1:
5481 if ((opcode & 1) == 0)
5482 ir.ot = OT_BYTE;
5483 else
5484 ir.ot = ir.dflag + OT_WORD;
5485 if (i386_record_modrm (&ir))
5486 return -1;
5487 if (ir.mod == 3)
5488 {
5489 ir.reg |= rex_r;
5490 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5491 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5492 ir.reg &= 0x3;
5493 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5494 }
5495 else
5496 {
5497 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5498 if (i386_record_lea_modrm (&ir))
5499 return -1;
5500 }
5501 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5502 break;
5503
5504 case 0x0fc7: /* cmpxchg8b */
5505 if (i386_record_modrm (&ir))
5506 return -1;
5507 if (ir.mod == 3)
5508 {
5509 ir.addr -= 2;
5510 opcode = opcode << 8 | ir.modrm;
5511 goto no_support;
5512 }
5513 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5514 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5515 if (i386_record_lea_modrm (&ir))
5516 return -1;
5517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5518 break;
5519
5520 case 0x50: /* push */
5521 case 0x51:
5522 case 0x52:
5523 case 0x53:
5524 case 0x54:
5525 case 0x55:
5526 case 0x56:
5527 case 0x57:
5528 case 0x68:
5529 case 0x6a:
5530 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5531 ir.dflag = 2;
5532 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5533 return -1;
5534 break;
5535
5536 case 0x06: /* push es */
5537 case 0x0e: /* push cs */
5538 case 0x16: /* push ss */
5539 case 0x1e: /* push ds */
5540 if (ir.regmap[X86_RECORD_R8_REGNUM])
5541 {
5542 ir.addr -= 1;
5543 goto no_support;
5544 }
5545 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5546 return -1;
5547 break;
5548
5549 case 0x0fa0: /* push fs */
5550 case 0x0fa8: /* push gs */
5551 if (ir.regmap[X86_RECORD_R8_REGNUM])
5552 {
5553 ir.addr -= 2;
5554 goto no_support;
5555 }
5556 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5557 return -1;
5558 break;
5559
5560 case 0x60: /* pusha */
5561 if (ir.regmap[X86_RECORD_R8_REGNUM])
5562 {
5563 ir.addr -= 1;
5564 goto no_support;
5565 }
5566 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5567 return -1;
5568 break;
5569
5570 case 0x58: /* pop */
5571 case 0x59:
5572 case 0x5a:
5573 case 0x5b:
5574 case 0x5c:
5575 case 0x5d:
5576 case 0x5e:
5577 case 0x5f:
5578 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5579 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5580 break;
5581
5582 case 0x61: /* popa */
5583 if (ir.regmap[X86_RECORD_R8_REGNUM])
5584 {
5585 ir.addr -= 1;
5586 goto no_support;
5587 }
5588 for (regnum = X86_RECORD_REAX_REGNUM;
5589 regnum <= X86_RECORD_REDI_REGNUM;
5590 regnum++)
5591 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5592 break;
5593
5594 case 0x8f: /* pop */
5595 if (ir.regmap[X86_RECORD_R8_REGNUM])
5596 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5597 else
5598 ir.ot = ir.dflag + OT_WORD;
5599 if (i386_record_modrm (&ir))
5600 return -1;
5601 if (ir.mod == 3)
5602 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5603 else
5604 {
5605 ir.popl_esp_hack = 1 << ir.ot;
5606 if (i386_record_lea_modrm (&ir))
5607 return -1;
5608 }
5609 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5610 break;
5611
5612 case 0xc8: /* enter */
5613 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5614 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5615 ir.dflag = 2;
5616 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5617 return -1;
5618 break;
5619
5620 case 0xc9: /* leave */
5621 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5622 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5623 break;
5624
5625 case 0x07: /* pop es */
5626 if (ir.regmap[X86_RECORD_R8_REGNUM])
5627 {
5628 ir.addr -= 1;
5629 goto no_support;
5630 }
5631 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5632 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5633 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5634 break;
5635
5636 case 0x17: /* pop ss */
5637 if (ir.regmap[X86_RECORD_R8_REGNUM])
5638 {
5639 ir.addr -= 1;
5640 goto no_support;
5641 }
5642 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5643 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5644 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5645 break;
5646
5647 case 0x1f: /* pop ds */
5648 if (ir.regmap[X86_RECORD_R8_REGNUM])
5649 {
5650 ir.addr -= 1;
5651 goto no_support;
5652 }
5653 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5654 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5655 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5656 break;
5657
5658 case 0x0fa1: /* pop fs */
5659 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5660 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5661 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5662 break;
5663
5664 case 0x0fa9: /* pop gs */
5665 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5666 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5667 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5668 break;
5669
5670 case 0x88: /* mov */
5671 case 0x89:
5672 case 0xc6:
5673 case 0xc7:
5674 if ((opcode & 1) == 0)
5675 ir.ot = OT_BYTE;
5676 else
5677 ir.ot = ir.dflag + OT_WORD;
5678
5679 if (i386_record_modrm (&ir))
5680 return -1;
5681
5682 if (ir.mod != 3)
5683 {
5684 if (opcode == 0xc6 || opcode == 0xc7)
5685 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5686 if (i386_record_lea_modrm (&ir))
5687 return -1;
5688 }
5689 else
5690 {
5691 if (opcode == 0xc6 || opcode == 0xc7)
5692 ir.rm |= ir.rex_b;
5693 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5694 ir.rm &= 0x3;
5695 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5696 }
5697 break;
5698
5699 case 0x8a: /* mov */
5700 case 0x8b:
5701 if ((opcode & 1) == 0)
5702 ir.ot = OT_BYTE;
5703 else
5704 ir.ot = ir.dflag + OT_WORD;
5705 if (i386_record_modrm (&ir))
5706 return -1;
5707 ir.reg |= rex_r;
5708 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5709 ir.reg &= 0x3;
5710 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5711 break;
5712
5713 case 0x8c: /* mov seg */
5714 if (i386_record_modrm (&ir))
5715 return -1;
5716 if (ir.reg > 5)
5717 {
5718 ir.addr -= 2;
5719 opcode = opcode << 8 | ir.modrm;
5720 goto no_support;
5721 }
5722
5723 if (ir.mod == 3)
5724 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5725 else
5726 {
5727 ir.ot = OT_WORD;
5728 if (i386_record_lea_modrm (&ir))
5729 return -1;
5730 }
5731 break;
5732
5733 case 0x8e: /* mov seg */
5734 if (i386_record_modrm (&ir))
5735 return -1;
5736 switch (ir.reg)
5737 {
5738 case 0:
5739 regnum = X86_RECORD_ES_REGNUM;
5740 break;
5741 case 2:
5742 regnum = X86_RECORD_SS_REGNUM;
5743 break;
5744 case 3:
5745 regnum = X86_RECORD_DS_REGNUM;
5746 break;
5747 case 4:
5748 regnum = X86_RECORD_FS_REGNUM;
5749 break;
5750 case 5:
5751 regnum = X86_RECORD_GS_REGNUM;
5752 break;
5753 default:
5754 ir.addr -= 2;
5755 opcode = opcode << 8 | ir.modrm;
5756 goto no_support;
5757 break;
5758 }
5759 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5760 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5761 break;
5762
5763 case 0x0fb6: /* movzbS */
5764 case 0x0fb7: /* movzwS */
5765 case 0x0fbe: /* movsbS */
5766 case 0x0fbf: /* movswS */
5767 if (i386_record_modrm (&ir))
5768 return -1;
5769 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5770 break;
5771
5772 case 0x8d: /* lea */
5773 if (i386_record_modrm (&ir))
5774 return -1;
5775 if (ir.mod == 3)
5776 {
5777 ir.addr -= 2;
5778 opcode = opcode << 8 | ir.modrm;
5779 goto no_support;
5780 }
5781 ir.ot = ir.dflag;
5782 ir.reg |= rex_r;
5783 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5784 ir.reg &= 0x3;
5785 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5786 break;
5787
5788 case 0xa0: /* mov EAX */
5789 case 0xa1:
5790
5791 case 0xd7: /* xlat */
5792 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5793 break;
5794
5795 case 0xa2: /* mov EAX */
5796 case 0xa3:
5797 if (ir.override >= 0)
5798 {
5799 if (record_full_memory_query)
5800 {
5801 if (yquery (_("\
5802 Process record ignores the memory change of instruction at address %s\n\
5803 because it can't get the value of the segment register.\n\
5804 Do you want to stop the program?"),
5805 paddress (gdbarch, ir.orig_addr)))
5806 return -1;
5807 }
5808 }
5809 else
5810 {
5811 if ((opcode & 1) == 0)
5812 ir.ot = OT_BYTE;
5813 else
5814 ir.ot = ir.dflag + OT_WORD;
5815 if (ir.aflag == 2)
5816 {
5817 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5818 return -1;
5819 ir.addr += 8;
5820 addr = extract_unsigned_integer (buf, 8, byte_order);
5821 }
5822 else if (ir.aflag)
5823 {
5824 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5825 return -1;
5826 ir.addr += 4;
5827 addr = extract_unsigned_integer (buf, 4, byte_order);
5828 }
5829 else
5830 {
5831 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5832 return -1;
5833 ir.addr += 2;
5834 addr = extract_unsigned_integer (buf, 2, byte_order);
5835 }
5836 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5837 return -1;
5838 }
5839 break;
5840
5841 case 0xb0: /* mov R, Ib */
5842 case 0xb1:
5843 case 0xb2:
5844 case 0xb3:
5845 case 0xb4:
5846 case 0xb5:
5847 case 0xb6:
5848 case 0xb7:
5849 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5850 ? ((opcode & 0x7) | ir.rex_b)
5851 : ((opcode & 0x7) & 0x3));
5852 break;
5853
5854 case 0xb8: /* mov R, Iv */
5855 case 0xb9:
5856 case 0xba:
5857 case 0xbb:
5858 case 0xbc:
5859 case 0xbd:
5860 case 0xbe:
5861 case 0xbf:
5862 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5863 break;
5864
5865 case 0x91: /* xchg R, EAX */
5866 case 0x92:
5867 case 0x93:
5868 case 0x94:
5869 case 0x95:
5870 case 0x96:
5871 case 0x97:
5872 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5873 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5874 break;
5875
5876 case 0x86: /* xchg Ev, Gv */
5877 case 0x87:
5878 if ((opcode & 1) == 0)
5879 ir.ot = OT_BYTE;
5880 else
5881 ir.ot = ir.dflag + OT_WORD;
5882 if (i386_record_modrm (&ir))
5883 return -1;
5884 if (ir.mod == 3)
5885 {
5886 ir.rm |= ir.rex_b;
5887 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5888 ir.rm &= 0x3;
5889 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5890 }
5891 else
5892 {
5893 if (i386_record_lea_modrm (&ir))
5894 return -1;
5895 }
5896 ir.reg |= rex_r;
5897 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5898 ir.reg &= 0x3;
5899 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5900 break;
5901
5902 case 0xc4: /* les Gv */
5903 case 0xc5: /* lds Gv */
5904 if (ir.regmap[X86_RECORD_R8_REGNUM])
5905 {
5906 ir.addr -= 1;
5907 goto no_support;
5908 }
5909 /* FALLTHROUGH */
5910 case 0x0fb2: /* lss Gv */
5911 case 0x0fb4: /* lfs Gv */
5912 case 0x0fb5: /* lgs Gv */
5913 if (i386_record_modrm (&ir))
5914 return -1;
5915 if (ir.mod == 3)
5916 {
5917 if (opcode > 0xff)
5918 ir.addr -= 3;
5919 else
5920 ir.addr -= 2;
5921 opcode = opcode << 8 | ir.modrm;
5922 goto no_support;
5923 }
5924 switch (opcode)
5925 {
5926 case 0xc4: /* les Gv */
5927 regnum = X86_RECORD_ES_REGNUM;
5928 break;
5929 case 0xc5: /* lds Gv */
5930 regnum = X86_RECORD_DS_REGNUM;
5931 break;
5932 case 0x0fb2: /* lss Gv */
5933 regnum = X86_RECORD_SS_REGNUM;
5934 break;
5935 case 0x0fb4: /* lfs Gv */
5936 regnum = X86_RECORD_FS_REGNUM;
5937 break;
5938 case 0x0fb5: /* lgs Gv */
5939 regnum = X86_RECORD_GS_REGNUM;
5940 break;
5941 }
5942 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5943 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5944 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5945 break;
5946
5947 case 0xc0: /* shifts */
5948 case 0xc1:
5949 case 0xd0:
5950 case 0xd1:
5951 case 0xd2:
5952 case 0xd3:
5953 if ((opcode & 1) == 0)
5954 ir.ot = OT_BYTE;
5955 else
5956 ir.ot = ir.dflag + OT_WORD;
5957 if (i386_record_modrm (&ir))
5958 return -1;
5959 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5960 {
5961 if (i386_record_lea_modrm (&ir))
5962 return -1;
5963 }
5964 else
5965 {
5966 ir.rm |= ir.rex_b;
5967 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5968 ir.rm &= 0x3;
5969 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5970 }
5971 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5972 break;
5973
5974 case 0x0fa4:
5975 case 0x0fa5:
5976 case 0x0fac:
5977 case 0x0fad:
5978 if (i386_record_modrm (&ir))
5979 return -1;
5980 if (ir.mod == 3)
5981 {
5982 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5983 return -1;
5984 }
5985 else
5986 {
5987 if (i386_record_lea_modrm (&ir))
5988 return -1;
5989 }
5990 break;
5991
5992 case 0xd8: /* Floats. */
5993 case 0xd9:
5994 case 0xda:
5995 case 0xdb:
5996 case 0xdc:
5997 case 0xdd:
5998 case 0xde:
5999 case 0xdf:
6000 if (i386_record_modrm (&ir))
6001 return -1;
6002 ir.reg |= ((opcode & 7) << 3);
6003 if (ir.mod != 3)
6004 {
6005 /* Memory. */
6006 uint64_t addr64;
6007
6008 if (i386_record_lea_modrm_addr (&ir, &addr64))
6009 return -1;
6010 switch (ir.reg)
6011 {
6012 case 0x02:
6013 case 0x12:
6014 case 0x22:
6015 case 0x32:
6016 /* For fcom, ficom nothing to do. */
6017 break;
6018 case 0x03:
6019 case 0x13:
6020 case 0x23:
6021 case 0x33:
6022 /* For fcomp, ficomp pop FPU stack, store all. */
6023 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6024 return -1;
6025 break;
6026 case 0x00:
6027 case 0x01:
6028 case 0x04:
6029 case 0x05:
6030 case 0x06:
6031 case 0x07:
6032 case 0x10:
6033 case 0x11:
6034 case 0x14:
6035 case 0x15:
6036 case 0x16:
6037 case 0x17:
6038 case 0x20:
6039 case 0x21:
6040 case 0x24:
6041 case 0x25:
6042 case 0x26:
6043 case 0x27:
6044 case 0x30:
6045 case 0x31:
6046 case 0x34:
6047 case 0x35:
6048 case 0x36:
6049 case 0x37:
6050 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6051 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6052 of code, always affects st(0) register. */
6053 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6054 return -1;
6055 break;
6056 case 0x08:
6057 case 0x0a:
6058 case 0x0b:
6059 case 0x18:
6060 case 0x19:
6061 case 0x1a:
6062 case 0x1b:
6063 case 0x1d:
6064 case 0x28:
6065 case 0x29:
6066 case 0x2a:
6067 case 0x2b:
6068 case 0x38:
6069 case 0x39:
6070 case 0x3a:
6071 case 0x3b:
6072 case 0x3c:
6073 case 0x3d:
6074 switch (ir.reg & 7)
6075 {
6076 case 0:
6077 /* Handling fld, fild. */
6078 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6079 return -1;
6080 break;
6081 case 1:
6082 switch (ir.reg >> 4)
6083 {
6084 case 0:
6085 if (record_full_arch_list_add_mem (addr64, 4))
6086 return -1;
6087 break;
6088 case 2:
6089 if (record_full_arch_list_add_mem (addr64, 8))
6090 return -1;
6091 break;
6092 case 3:
6093 break;
6094 default:
6095 if (record_full_arch_list_add_mem (addr64, 2))
6096 return -1;
6097 break;
6098 }
6099 break;
6100 default:
6101 switch (ir.reg >> 4)
6102 {
6103 case 0:
6104 if (record_full_arch_list_add_mem (addr64, 4))
6105 return -1;
6106 if (3 == (ir.reg & 7))
6107 {
6108 /* For fstp m32fp. */
6109 if (i386_record_floats (gdbarch, &ir,
6110 I386_SAVE_FPU_REGS))
6111 return -1;
6112 }
6113 break;
6114 case 1:
6115 if (record_full_arch_list_add_mem (addr64, 4))
6116 return -1;
6117 if ((3 == (ir.reg & 7))
6118 || (5 == (ir.reg & 7))
6119 || (7 == (ir.reg & 7)))
6120 {
6121 /* For fstp insn. */
6122 if (i386_record_floats (gdbarch, &ir,
6123 I386_SAVE_FPU_REGS))
6124 return -1;
6125 }
6126 break;
6127 case 2:
6128 if (record_full_arch_list_add_mem (addr64, 8))
6129 return -1;
6130 if (3 == (ir.reg & 7))
6131 {
6132 /* For fstp m64fp. */
6133 if (i386_record_floats (gdbarch, &ir,
6134 I386_SAVE_FPU_REGS))
6135 return -1;
6136 }
6137 break;
6138 case 3:
6139 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6140 {
6141 /* For fistp, fbld, fild, fbstp. */
6142 if (i386_record_floats (gdbarch, &ir,
6143 I386_SAVE_FPU_REGS))
6144 return -1;
6145 }
6146 /* Fall through */
6147 default:
6148 if (record_full_arch_list_add_mem (addr64, 2))
6149 return -1;
6150 break;
6151 }
6152 break;
6153 }
6154 break;
6155 case 0x0c:
6156 /* Insn fldenv. */
6157 if (i386_record_floats (gdbarch, &ir,
6158 I386_SAVE_FPU_ENV_REG_STACK))
6159 return -1;
6160 break;
6161 case 0x0d:
6162 /* Insn fldcw. */
6163 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6164 return -1;
6165 break;
6166 case 0x2c:
6167 /* Insn frstor. */
6168 if (i386_record_floats (gdbarch, &ir,
6169 I386_SAVE_FPU_ENV_REG_STACK))
6170 return -1;
6171 break;
6172 case 0x0e:
6173 if (ir.dflag)
6174 {
6175 if (record_full_arch_list_add_mem (addr64, 28))
6176 return -1;
6177 }
6178 else
6179 {
6180 if (record_full_arch_list_add_mem (addr64, 14))
6181 return -1;
6182 }
6183 break;
6184 case 0x0f:
6185 case 0x2f:
6186 if (record_full_arch_list_add_mem (addr64, 2))
6187 return -1;
6188 /* Insn fstp, fbstp. */
6189 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6190 return -1;
6191 break;
6192 case 0x1f:
6193 case 0x3e:
6194 if (record_full_arch_list_add_mem (addr64, 10))
6195 return -1;
6196 break;
6197 case 0x2e:
6198 if (ir.dflag)
6199 {
6200 if (record_full_arch_list_add_mem (addr64, 28))
6201 return -1;
6202 addr64 += 28;
6203 }
6204 else
6205 {
6206 if (record_full_arch_list_add_mem (addr64, 14))
6207 return -1;
6208 addr64 += 14;
6209 }
6210 if (record_full_arch_list_add_mem (addr64, 80))
6211 return -1;
6212 /* Insn fsave. */
6213 if (i386_record_floats (gdbarch, &ir,
6214 I386_SAVE_FPU_ENV_REG_STACK))
6215 return -1;
6216 break;
6217 case 0x3f:
6218 if (record_full_arch_list_add_mem (addr64, 8))
6219 return -1;
6220 /* Insn fistp. */
6221 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6222 return -1;
6223 break;
6224 default:
6225 ir.addr -= 2;
6226 opcode = opcode << 8 | ir.modrm;
6227 goto no_support;
6228 break;
6229 }
6230 }
6231 /* Opcode is an extension of modR/M byte. */
6232 else
6233 {
6234 switch (opcode)
6235 {
6236 case 0xd8:
6237 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6238 return -1;
6239 break;
6240 case 0xd9:
6241 if (0x0c == (ir.modrm >> 4))
6242 {
6243 if ((ir.modrm & 0x0f) <= 7)
6244 {
6245 if (i386_record_floats (gdbarch, &ir,
6246 I386_SAVE_FPU_REGS))
6247 return -1;
6248 }
6249 else
6250 {
6251 if (i386_record_floats (gdbarch, &ir,
6252 I387_ST0_REGNUM (tdep)))
6253 return -1;
6254 /* If only st(0) is changing, then we have already
6255 recorded. */
6256 if ((ir.modrm & 0x0f) - 0x08)
6257 {
6258 if (i386_record_floats (gdbarch, &ir,
6259 I387_ST0_REGNUM (tdep) +
6260 ((ir.modrm & 0x0f) - 0x08)))
6261 return -1;
6262 }
6263 }
6264 }
6265 else
6266 {
6267 switch (ir.modrm)
6268 {
6269 case 0xe0:
6270 case 0xe1:
6271 case 0xf0:
6272 case 0xf5:
6273 case 0xf8:
6274 case 0xfa:
6275 case 0xfc:
6276 case 0xfe:
6277 case 0xff:
6278 if (i386_record_floats (gdbarch, &ir,
6279 I387_ST0_REGNUM (tdep)))
6280 return -1;
6281 break;
6282 case 0xf1:
6283 case 0xf2:
6284 case 0xf3:
6285 case 0xf4:
6286 case 0xf6:
6287 case 0xf7:
6288 case 0xe8:
6289 case 0xe9:
6290 case 0xea:
6291 case 0xeb:
6292 case 0xec:
6293 case 0xed:
6294 case 0xee:
6295 case 0xf9:
6296 case 0xfb:
6297 if (i386_record_floats (gdbarch, &ir,
6298 I386_SAVE_FPU_REGS))
6299 return -1;
6300 break;
6301 case 0xfd:
6302 if (i386_record_floats (gdbarch, &ir,
6303 I387_ST0_REGNUM (tdep)))
6304 return -1;
6305 if (i386_record_floats (gdbarch, &ir,
6306 I387_ST0_REGNUM (tdep) + 1))
6307 return -1;
6308 break;
6309 }
6310 }
6311 break;
6312 case 0xda:
6313 if (0xe9 == ir.modrm)
6314 {
6315 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6316 return -1;
6317 }
6318 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6319 {
6320 if (i386_record_floats (gdbarch, &ir,
6321 I387_ST0_REGNUM (tdep)))
6322 return -1;
6323 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6324 {
6325 if (i386_record_floats (gdbarch, &ir,
6326 I387_ST0_REGNUM (tdep) +
6327 (ir.modrm & 0x0f)))
6328 return -1;
6329 }
6330 else if ((ir.modrm & 0x0f) - 0x08)
6331 {
6332 if (i386_record_floats (gdbarch, &ir,
6333 I387_ST0_REGNUM (tdep) +
6334 ((ir.modrm & 0x0f) - 0x08)))
6335 return -1;
6336 }
6337 }
6338 break;
6339 case 0xdb:
6340 if (0xe3 == ir.modrm)
6341 {
6342 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6343 return -1;
6344 }
6345 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6346 {
6347 if (i386_record_floats (gdbarch, &ir,
6348 I387_ST0_REGNUM (tdep)))
6349 return -1;
6350 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6351 {
6352 if (i386_record_floats (gdbarch, &ir,
6353 I387_ST0_REGNUM (tdep) +
6354 (ir.modrm & 0x0f)))
6355 return -1;
6356 }
6357 else if ((ir.modrm & 0x0f) - 0x08)
6358 {
6359 if (i386_record_floats (gdbarch, &ir,
6360 I387_ST0_REGNUM (tdep) +
6361 ((ir.modrm & 0x0f) - 0x08)))
6362 return -1;
6363 }
6364 }
6365 break;
6366 case 0xdc:
6367 if ((0x0c == ir.modrm >> 4)
6368 || (0x0d == ir.modrm >> 4)
6369 || (0x0f == ir.modrm >> 4))
6370 {
6371 if ((ir.modrm & 0x0f) <= 7)
6372 {
6373 if (i386_record_floats (gdbarch, &ir,
6374 I387_ST0_REGNUM (tdep) +
6375 (ir.modrm & 0x0f)))
6376 return -1;
6377 }
6378 else
6379 {
6380 if (i386_record_floats (gdbarch, &ir,
6381 I387_ST0_REGNUM (tdep) +
6382 ((ir.modrm & 0x0f) - 0x08)))
6383 return -1;
6384 }
6385 }
6386 break;
6387 case 0xdd:
6388 if (0x0c == ir.modrm >> 4)
6389 {
6390 if (i386_record_floats (gdbarch, &ir,
6391 I387_FTAG_REGNUM (tdep)))
6392 return -1;
6393 }
6394 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6395 {
6396 if ((ir.modrm & 0x0f) <= 7)
6397 {
6398 if (i386_record_floats (gdbarch, &ir,
6399 I387_ST0_REGNUM (tdep) +
6400 (ir.modrm & 0x0f)))
6401 return -1;
6402 }
6403 else
6404 {
6405 if (i386_record_floats (gdbarch, &ir,
6406 I386_SAVE_FPU_REGS))
6407 return -1;
6408 }
6409 }
6410 break;
6411 case 0xde:
6412 if ((0x0c == ir.modrm >> 4)
6413 || (0x0e == ir.modrm >> 4)
6414 || (0x0f == ir.modrm >> 4)
6415 || (0xd9 == ir.modrm))
6416 {
6417 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6418 return -1;
6419 }
6420 break;
6421 case 0xdf:
6422 if (0xe0 == ir.modrm)
6423 {
6424 if (record_full_arch_list_add_reg (ir.regcache,
6425 I386_EAX_REGNUM))
6426 return -1;
6427 }
6428 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6429 {
6430 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6431 return -1;
6432 }
6433 break;
6434 }
6435 }
6436 break;
6437 /* string ops */
6438 case 0xa4: /* movsS */
6439 case 0xa5:
6440 case 0xaa: /* stosS */
6441 case 0xab:
6442 case 0x6c: /* insS */
6443 case 0x6d:
6444 regcache_raw_read_unsigned (ir.regcache,
6445 ir.regmap[X86_RECORD_RECX_REGNUM],
6446 &addr);
6447 if (addr)
6448 {
6449 ULONGEST es, ds;
6450
6451 if ((opcode & 1) == 0)
6452 ir.ot = OT_BYTE;
6453 else
6454 ir.ot = ir.dflag + OT_WORD;
6455 regcache_raw_read_unsigned (ir.regcache,
6456 ir.regmap[X86_RECORD_REDI_REGNUM],
6457 &addr);
6458
6459 regcache_raw_read_unsigned (ir.regcache,
6460 ir.regmap[X86_RECORD_ES_REGNUM],
6461 &es);
6462 regcache_raw_read_unsigned (ir.regcache,
6463 ir.regmap[X86_RECORD_DS_REGNUM],
6464 &ds);
6465 if (ir.aflag && (es != ds))
6466 {
6467 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6468 if (record_full_memory_query)
6469 {
6470 if (yquery (_("\
6471 Process record ignores the memory change of instruction at address %s\n\
6472 because it can't get the value of the segment register.\n\
6473 Do you want to stop the program?"),
6474 paddress (gdbarch, ir.orig_addr)))
6475 return -1;
6476 }
6477 }
6478 else
6479 {
6480 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6481 return -1;
6482 }
6483
6484 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6485 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6486 if (opcode == 0xa4 || opcode == 0xa5)
6487 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6488 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6489 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6490 }
6491 break;
6492
6493 case 0xa6: /* cmpsS */
6494 case 0xa7:
6495 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6496 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6497 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6498 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6499 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6500 break;
6501
6502 case 0xac: /* lodsS */
6503 case 0xad:
6504 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6505 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6506 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6507 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6508 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6509 break;
6510
6511 case 0xae: /* scasS */
6512 case 0xaf:
6513 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6514 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6515 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6516 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6517 break;
6518
6519 case 0x6e: /* outsS */
6520 case 0x6f:
6521 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6522 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6523 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6524 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6525 break;
6526
6527 case 0xe4: /* port I/O */
6528 case 0xe5:
6529 case 0xec:
6530 case 0xed:
6531 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6532 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6533 break;
6534
6535 case 0xe6:
6536 case 0xe7:
6537 case 0xee:
6538 case 0xef:
6539 break;
6540
6541 /* control */
6542 case 0xc2: /* ret im */
6543 case 0xc3: /* ret */
6544 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6545 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6546 break;
6547
6548 case 0xca: /* lret im */
6549 case 0xcb: /* lret */
6550 case 0xcf: /* iret */
6551 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6552 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6553 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6554 break;
6555
6556 case 0xe8: /* call im */
6557 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6558 ir.dflag = 2;
6559 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6560 return -1;
6561 break;
6562
6563 case 0x9a: /* lcall im */
6564 if (ir.regmap[X86_RECORD_R8_REGNUM])
6565 {
6566 ir.addr -= 1;
6567 goto no_support;
6568 }
6569 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6570 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6571 return -1;
6572 break;
6573
6574 case 0xe9: /* jmp im */
6575 case 0xea: /* ljmp im */
6576 case 0xeb: /* jmp Jb */
6577 case 0x70: /* jcc Jb */
6578 case 0x71:
6579 case 0x72:
6580 case 0x73:
6581 case 0x74:
6582 case 0x75:
6583 case 0x76:
6584 case 0x77:
6585 case 0x78:
6586 case 0x79:
6587 case 0x7a:
6588 case 0x7b:
6589 case 0x7c:
6590 case 0x7d:
6591 case 0x7e:
6592 case 0x7f:
6593 case 0x0f80: /* jcc Jv */
6594 case 0x0f81:
6595 case 0x0f82:
6596 case 0x0f83:
6597 case 0x0f84:
6598 case 0x0f85:
6599 case 0x0f86:
6600 case 0x0f87:
6601 case 0x0f88:
6602 case 0x0f89:
6603 case 0x0f8a:
6604 case 0x0f8b:
6605 case 0x0f8c:
6606 case 0x0f8d:
6607 case 0x0f8e:
6608 case 0x0f8f:
6609 break;
6610
6611 case 0x0f90: /* setcc Gv */
6612 case 0x0f91:
6613 case 0x0f92:
6614 case 0x0f93:
6615 case 0x0f94:
6616 case 0x0f95:
6617 case 0x0f96:
6618 case 0x0f97:
6619 case 0x0f98:
6620 case 0x0f99:
6621 case 0x0f9a:
6622 case 0x0f9b:
6623 case 0x0f9c:
6624 case 0x0f9d:
6625 case 0x0f9e:
6626 case 0x0f9f:
6627 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6628 ir.ot = OT_BYTE;
6629 if (i386_record_modrm (&ir))
6630 return -1;
6631 if (ir.mod == 3)
6632 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6633 : (ir.rm & 0x3));
6634 else
6635 {
6636 if (i386_record_lea_modrm (&ir))
6637 return -1;
6638 }
6639 break;
6640
6641 case 0x0f40: /* cmov Gv, Ev */
6642 case 0x0f41:
6643 case 0x0f42:
6644 case 0x0f43:
6645 case 0x0f44:
6646 case 0x0f45:
6647 case 0x0f46:
6648 case 0x0f47:
6649 case 0x0f48:
6650 case 0x0f49:
6651 case 0x0f4a:
6652 case 0x0f4b:
6653 case 0x0f4c:
6654 case 0x0f4d:
6655 case 0x0f4e:
6656 case 0x0f4f:
6657 if (i386_record_modrm (&ir))
6658 return -1;
6659 ir.reg |= rex_r;
6660 if (ir.dflag == OT_BYTE)
6661 ir.reg &= 0x3;
6662 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6663 break;
6664
6665 /* flags */
6666 case 0x9c: /* pushf */
6667 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6668 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6669 ir.dflag = 2;
6670 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6671 return -1;
6672 break;
6673
6674 case 0x9d: /* popf */
6675 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6676 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6677 break;
6678
6679 case 0x9e: /* sahf */
6680 if (ir.regmap[X86_RECORD_R8_REGNUM])
6681 {
6682 ir.addr -= 1;
6683 goto no_support;
6684 }
6685 /* FALLTHROUGH */
6686 case 0xf5: /* cmc */
6687 case 0xf8: /* clc */
6688 case 0xf9: /* stc */
6689 case 0xfc: /* cld */
6690 case 0xfd: /* std */
6691 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6692 break;
6693
6694 case 0x9f: /* lahf */
6695 if (ir.regmap[X86_RECORD_R8_REGNUM])
6696 {
6697 ir.addr -= 1;
6698 goto no_support;
6699 }
6700 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6701 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6702 break;
6703
6704 /* bit operations */
6705 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6706 ir.ot = ir.dflag + OT_WORD;
6707 if (i386_record_modrm (&ir))
6708 return -1;
6709 if (ir.reg < 4)
6710 {
6711 ir.addr -= 2;
6712 opcode = opcode << 8 | ir.modrm;
6713 goto no_support;
6714 }
6715 if (ir.reg != 4)
6716 {
6717 if (ir.mod == 3)
6718 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6719 else
6720 {
6721 if (i386_record_lea_modrm (&ir))
6722 return -1;
6723 }
6724 }
6725 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6726 break;
6727
6728 case 0x0fa3: /* bt Gv, Ev */
6729 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6730 break;
6731
6732 case 0x0fab: /* bts */
6733 case 0x0fb3: /* btr */
6734 case 0x0fbb: /* btc */
6735 ir.ot = ir.dflag + OT_WORD;
6736 if (i386_record_modrm (&ir))
6737 return -1;
6738 if (ir.mod == 3)
6739 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6740 else
6741 {
6742 uint64_t addr64;
6743 if (i386_record_lea_modrm_addr (&ir, &addr64))
6744 return -1;
6745 regcache_raw_read_unsigned (ir.regcache,
6746 ir.regmap[ir.reg | rex_r],
6747 &addr);
6748 switch (ir.dflag)
6749 {
6750 case 0:
6751 addr64 += ((int16_t) addr >> 4) << 4;
6752 break;
6753 case 1:
6754 addr64 += ((int32_t) addr >> 5) << 5;
6755 break;
6756 case 2:
6757 addr64 += ((int64_t) addr >> 6) << 6;
6758 break;
6759 }
6760 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6761 return -1;
6762 if (i386_record_lea_modrm (&ir))
6763 return -1;
6764 }
6765 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6766 break;
6767
6768 case 0x0fbc: /* bsf */
6769 case 0x0fbd: /* bsr */
6770 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6771 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6772 break;
6773
6774 /* bcd */
6775 case 0x27: /* daa */
6776 case 0x2f: /* das */
6777 case 0x37: /* aaa */
6778 case 0x3f: /* aas */
6779 case 0xd4: /* aam */
6780 case 0xd5: /* aad */
6781 if (ir.regmap[X86_RECORD_R8_REGNUM])
6782 {
6783 ir.addr -= 1;
6784 goto no_support;
6785 }
6786 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6787 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6788 break;
6789
6790 /* misc */
6791 case 0x90: /* nop */
6792 if (prefixes & PREFIX_LOCK)
6793 {
6794 ir.addr -= 1;
6795 goto no_support;
6796 }
6797 break;
6798
6799 case 0x9b: /* fwait */
6800 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6801 return -1;
6802 opcode = (uint32_t) opcode8;
6803 ir.addr++;
6804 goto reswitch;
6805 break;
6806
6807 /* XXX */
6808 case 0xcc: /* int3 */
6809 printf_unfiltered (_("Process record does not support instruction "
6810 "int3.\n"));
6811 ir.addr -= 1;
6812 goto no_support;
6813 break;
6814
6815 /* XXX */
6816 case 0xcd: /* int */
6817 {
6818 int ret;
6819 uint8_t interrupt;
6820 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6821 return -1;
6822 ir.addr++;
6823 if (interrupt != 0x80
6824 || tdep->i386_intx80_record == NULL)
6825 {
6826 printf_unfiltered (_("Process record does not support "
6827 "instruction int 0x%02x.\n"),
6828 interrupt);
6829 ir.addr -= 2;
6830 goto no_support;
6831 }
6832 ret = tdep->i386_intx80_record (ir.regcache);
6833 if (ret)
6834 return ret;
6835 }
6836 break;
6837
6838 /* XXX */
6839 case 0xce: /* into */
6840 printf_unfiltered (_("Process record does not support "
6841 "instruction into.\n"));
6842 ir.addr -= 1;
6843 goto no_support;
6844 break;
6845
6846 case 0xfa: /* cli */
6847 case 0xfb: /* sti */
6848 break;
6849
6850 case 0x62: /* bound */
6851 printf_unfiltered (_("Process record does not support "
6852 "instruction bound.\n"));
6853 ir.addr -= 1;
6854 goto no_support;
6855 break;
6856
6857 case 0x0fc8: /* bswap reg */
6858 case 0x0fc9:
6859 case 0x0fca:
6860 case 0x0fcb:
6861 case 0x0fcc:
6862 case 0x0fcd:
6863 case 0x0fce:
6864 case 0x0fcf:
6865 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6866 break;
6867
6868 case 0xd6: /* salc */
6869 if (ir.regmap[X86_RECORD_R8_REGNUM])
6870 {
6871 ir.addr -= 1;
6872 goto no_support;
6873 }
6874 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6875 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6876 break;
6877
6878 case 0xe0: /* loopnz */
6879 case 0xe1: /* loopz */
6880 case 0xe2: /* loop */
6881 case 0xe3: /* jecxz */
6882 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6883 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6884 break;
6885
6886 case 0x0f30: /* wrmsr */
6887 printf_unfiltered (_("Process record does not support "
6888 "instruction wrmsr.\n"));
6889 ir.addr -= 2;
6890 goto no_support;
6891 break;
6892
6893 case 0x0f32: /* rdmsr */
6894 printf_unfiltered (_("Process record does not support "
6895 "instruction rdmsr.\n"));
6896 ir.addr -= 2;
6897 goto no_support;
6898 break;
6899
6900 case 0x0f31: /* rdtsc */
6901 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6902 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6903 break;
6904
6905 case 0x0f34: /* sysenter */
6906 {
6907 int ret;
6908 if (ir.regmap[X86_RECORD_R8_REGNUM])
6909 {
6910 ir.addr -= 2;
6911 goto no_support;
6912 }
6913 if (tdep->i386_sysenter_record == NULL)
6914 {
6915 printf_unfiltered (_("Process record does not support "
6916 "instruction sysenter.\n"));
6917 ir.addr -= 2;
6918 goto no_support;
6919 }
6920 ret = tdep->i386_sysenter_record (ir.regcache);
6921 if (ret)
6922 return ret;
6923 }
6924 break;
6925
6926 case 0x0f35: /* sysexit */
6927 printf_unfiltered (_("Process record does not support "
6928 "instruction sysexit.\n"));
6929 ir.addr -= 2;
6930 goto no_support;
6931 break;
6932
6933 case 0x0f05: /* syscall */
6934 {
6935 int ret;
6936 if (tdep->i386_syscall_record == NULL)
6937 {
6938 printf_unfiltered (_("Process record does not support "
6939 "instruction syscall.\n"));
6940 ir.addr -= 2;
6941 goto no_support;
6942 }
6943 ret = tdep->i386_syscall_record (ir.regcache);
6944 if (ret)
6945 return ret;
6946 }
6947 break;
6948
6949 case 0x0f07: /* sysret */
6950 printf_unfiltered (_("Process record does not support "
6951 "instruction sysret.\n"));
6952 ir.addr -= 2;
6953 goto no_support;
6954 break;
6955
6956 case 0x0fa2: /* cpuid */
6957 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6958 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6959 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6960 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6961 break;
6962
6963 case 0xf4: /* hlt */
6964 printf_unfiltered (_("Process record does not support "
6965 "instruction hlt.\n"));
6966 ir.addr -= 1;
6967 goto no_support;
6968 break;
6969
6970 case 0x0f00:
6971 if (i386_record_modrm (&ir))
6972 return -1;
6973 switch (ir.reg)
6974 {
6975 case 0: /* sldt */
6976 case 1: /* str */
6977 if (ir.mod == 3)
6978 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6979 else
6980 {
6981 ir.ot = OT_WORD;
6982 if (i386_record_lea_modrm (&ir))
6983 return -1;
6984 }
6985 break;
6986 case 2: /* lldt */
6987 case 3: /* ltr */
6988 break;
6989 case 4: /* verr */
6990 case 5: /* verw */
6991 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6992 break;
6993 default:
6994 ir.addr -= 3;
6995 opcode = opcode << 8 | ir.modrm;
6996 goto no_support;
6997 break;
6998 }
6999 break;
7000
7001 case 0x0f01:
7002 if (i386_record_modrm (&ir))
7003 return -1;
7004 switch (ir.reg)
7005 {
7006 case 0: /* sgdt */
7007 {
7008 uint64_t addr64;
7009
7010 if (ir.mod == 3)
7011 {
7012 ir.addr -= 3;
7013 opcode = opcode << 8 | ir.modrm;
7014 goto no_support;
7015 }
7016 if (ir.override >= 0)
7017 {
7018 if (record_full_memory_query)
7019 {
7020 if (yquery (_("\
7021 Process record ignores the memory change of instruction at address %s\n\
7022 because it can't get the value of the segment register.\n\
7023 Do you want to stop the program?"),
7024 paddress (gdbarch, ir.orig_addr)))
7025 return -1;
7026 }
7027 }
7028 else
7029 {
7030 if (i386_record_lea_modrm_addr (&ir, &addr64))
7031 return -1;
7032 if (record_full_arch_list_add_mem (addr64, 2))
7033 return -1;
7034 addr64 += 2;
7035 if (ir.regmap[X86_RECORD_R8_REGNUM])
7036 {
7037 if (record_full_arch_list_add_mem (addr64, 8))
7038 return -1;
7039 }
7040 else
7041 {
7042 if (record_full_arch_list_add_mem (addr64, 4))
7043 return -1;
7044 }
7045 }
7046 }
7047 break;
7048 case 1:
7049 if (ir.mod == 3)
7050 {
7051 switch (ir.rm)
7052 {
7053 case 0: /* monitor */
7054 break;
7055 case 1: /* mwait */
7056 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7057 break;
7058 default:
7059 ir.addr -= 3;
7060 opcode = opcode << 8 | ir.modrm;
7061 goto no_support;
7062 break;
7063 }
7064 }
7065 else
7066 {
7067 /* sidt */
7068 if (ir.override >= 0)
7069 {
7070 if (record_full_memory_query)
7071 {
7072 if (yquery (_("\
7073 Process record ignores the memory change of instruction at address %s\n\
7074 because it can't get the value of the segment register.\n\
7075 Do you want to stop the program?"),
7076 paddress (gdbarch, ir.orig_addr)))
7077 return -1;
7078 }
7079 }
7080 else
7081 {
7082 uint64_t addr64;
7083
7084 if (i386_record_lea_modrm_addr (&ir, &addr64))
7085 return -1;
7086 if (record_full_arch_list_add_mem (addr64, 2))
7087 return -1;
7088 addr64 += 2;
7089 if (ir.regmap[X86_RECORD_R8_REGNUM])
7090 {
7091 if (record_full_arch_list_add_mem (addr64, 8))
7092 return -1;
7093 }
7094 else
7095 {
7096 if (record_full_arch_list_add_mem (addr64, 4))
7097 return -1;
7098 }
7099 }
7100 }
7101 break;
7102 case 2: /* lgdt */
7103 if (ir.mod == 3)
7104 {
7105 /* xgetbv */
7106 if (ir.rm == 0)
7107 {
7108 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7109 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7110 break;
7111 }
7112 /* xsetbv */
7113 else if (ir.rm == 1)
7114 break;
7115 }
7116 case 3: /* lidt */
7117 if (ir.mod == 3)
7118 {
7119 ir.addr -= 3;
7120 opcode = opcode << 8 | ir.modrm;
7121 goto no_support;
7122 }
7123 break;
7124 case 4: /* smsw */
7125 if (ir.mod == 3)
7126 {
7127 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7128 return -1;
7129 }
7130 else
7131 {
7132 ir.ot = OT_WORD;
7133 if (i386_record_lea_modrm (&ir))
7134 return -1;
7135 }
7136 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7137 break;
7138 case 6: /* lmsw */
7139 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7140 break;
7141 case 7: /* invlpg */
7142 if (ir.mod == 3)
7143 {
7144 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7145 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7146 else
7147 {
7148 ir.addr -= 3;
7149 opcode = opcode << 8 | ir.modrm;
7150 goto no_support;
7151 }
7152 }
7153 else
7154 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7155 break;
7156 default:
7157 ir.addr -= 3;
7158 opcode = opcode << 8 | ir.modrm;
7159 goto no_support;
7160 break;
7161 }
7162 break;
7163
7164 case 0x0f08: /* invd */
7165 case 0x0f09: /* wbinvd */
7166 break;
7167
7168 case 0x63: /* arpl */
7169 if (i386_record_modrm (&ir))
7170 return -1;
7171 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7172 {
7173 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7174 ? (ir.reg | rex_r) : ir.rm);
7175 }
7176 else
7177 {
7178 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7179 if (i386_record_lea_modrm (&ir))
7180 return -1;
7181 }
7182 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7183 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7184 break;
7185
7186 case 0x0f02: /* lar */
7187 case 0x0f03: /* lsl */
7188 if (i386_record_modrm (&ir))
7189 return -1;
7190 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7191 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7192 break;
7193
7194 case 0x0f18:
7195 if (i386_record_modrm (&ir))
7196 return -1;
7197 if (ir.mod == 3 && ir.reg == 3)
7198 {
7199 ir.addr -= 3;
7200 opcode = opcode << 8 | ir.modrm;
7201 goto no_support;
7202 }
7203 break;
7204
7205 case 0x0f19:
7206 case 0x0f1a:
7207 case 0x0f1b:
7208 case 0x0f1c:
7209 case 0x0f1d:
7210 case 0x0f1e:
7211 case 0x0f1f:
7212 /* nop (multi byte) */
7213 break;
7214
7215 case 0x0f20: /* mov reg, crN */
7216 case 0x0f22: /* mov crN, reg */
7217 if (i386_record_modrm (&ir))
7218 return -1;
7219 if ((ir.modrm & 0xc0) != 0xc0)
7220 {
7221 ir.addr -= 3;
7222 opcode = opcode << 8 | ir.modrm;
7223 goto no_support;
7224 }
7225 switch (ir.reg)
7226 {
7227 case 0:
7228 case 2:
7229 case 3:
7230 case 4:
7231 case 8:
7232 if (opcode & 2)
7233 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7234 else
7235 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7236 break;
7237 default:
7238 ir.addr -= 3;
7239 opcode = opcode << 8 | ir.modrm;
7240 goto no_support;
7241 break;
7242 }
7243 break;
7244
7245 case 0x0f21: /* mov reg, drN */
7246 case 0x0f23: /* mov drN, reg */
7247 if (i386_record_modrm (&ir))
7248 return -1;
7249 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7250 || ir.reg == 5 || ir.reg >= 8)
7251 {
7252 ir.addr -= 3;
7253 opcode = opcode << 8 | ir.modrm;
7254 goto no_support;
7255 }
7256 if (opcode & 2)
7257 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7258 else
7259 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7260 break;
7261
7262 case 0x0f06: /* clts */
7263 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7264 break;
7265
7266 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7267
7268 case 0x0f0d: /* 3DNow! prefetch */
7269 break;
7270
7271 case 0x0f0e: /* 3DNow! femms */
7272 case 0x0f77: /* emms */
7273 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7274 goto no_support;
7275 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7276 break;
7277
7278 case 0x0f0f: /* 3DNow! data */
7279 if (i386_record_modrm (&ir))
7280 return -1;
7281 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7282 return -1;
7283 ir.addr++;
7284 switch (opcode8)
7285 {
7286 case 0x0c: /* 3DNow! pi2fw */
7287 case 0x0d: /* 3DNow! pi2fd */
7288 case 0x1c: /* 3DNow! pf2iw */
7289 case 0x1d: /* 3DNow! pf2id */
7290 case 0x8a: /* 3DNow! pfnacc */
7291 case 0x8e: /* 3DNow! pfpnacc */
7292 case 0x90: /* 3DNow! pfcmpge */
7293 case 0x94: /* 3DNow! pfmin */
7294 case 0x96: /* 3DNow! pfrcp */
7295 case 0x97: /* 3DNow! pfrsqrt */
7296 case 0x9a: /* 3DNow! pfsub */
7297 case 0x9e: /* 3DNow! pfadd */
7298 case 0xa0: /* 3DNow! pfcmpgt */
7299 case 0xa4: /* 3DNow! pfmax */
7300 case 0xa6: /* 3DNow! pfrcpit1 */
7301 case 0xa7: /* 3DNow! pfrsqit1 */
7302 case 0xaa: /* 3DNow! pfsubr */
7303 case 0xae: /* 3DNow! pfacc */
7304 case 0xb0: /* 3DNow! pfcmpeq */
7305 case 0xb4: /* 3DNow! pfmul */
7306 case 0xb6: /* 3DNow! pfrcpit2 */
7307 case 0xb7: /* 3DNow! pmulhrw */
7308 case 0xbb: /* 3DNow! pswapd */
7309 case 0xbf: /* 3DNow! pavgusb */
7310 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7311 goto no_support_3dnow_data;
7312 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7313 break;
7314
7315 default:
7316 no_support_3dnow_data:
7317 opcode = (opcode << 8) | opcode8;
7318 goto no_support;
7319 break;
7320 }
7321 break;
7322
7323 case 0x0faa: /* rsm */
7324 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7325 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7326 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7327 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7328 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7329 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7330 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7331 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7332 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7333 break;
7334
7335 case 0x0fae:
7336 if (i386_record_modrm (&ir))
7337 return -1;
7338 switch(ir.reg)
7339 {
7340 case 0: /* fxsave */
7341 {
7342 uint64_t tmpu64;
7343
7344 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7345 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7346 return -1;
7347 if (record_full_arch_list_add_mem (tmpu64, 512))
7348 return -1;
7349 }
7350 break;
7351
7352 case 1: /* fxrstor */
7353 {
7354 int i;
7355
7356 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7357
7358 for (i = I387_MM0_REGNUM (tdep);
7359 i386_mmx_regnum_p (gdbarch, i); i++)
7360 record_full_arch_list_add_reg (ir.regcache, i);
7361
7362 for (i = I387_XMM0_REGNUM (tdep);
7363 i386_xmm_regnum_p (gdbarch, i); i++)
7364 record_full_arch_list_add_reg (ir.regcache, i);
7365
7366 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7367 record_full_arch_list_add_reg (ir.regcache,
7368 I387_MXCSR_REGNUM(tdep));
7369
7370 for (i = I387_ST0_REGNUM (tdep);
7371 i386_fp_regnum_p (gdbarch, i); i++)
7372 record_full_arch_list_add_reg (ir.regcache, i);
7373
7374 for (i = I387_FCTRL_REGNUM (tdep);
7375 i386_fpc_regnum_p (gdbarch, i); i++)
7376 record_full_arch_list_add_reg (ir.regcache, i);
7377 }
7378 break;
7379
7380 case 2: /* ldmxcsr */
7381 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7382 goto no_support;
7383 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7384 break;
7385
7386 case 3: /* stmxcsr */
7387 ir.ot = OT_LONG;
7388 if (i386_record_lea_modrm (&ir))
7389 return -1;
7390 break;
7391
7392 case 5: /* lfence */
7393 case 6: /* mfence */
7394 case 7: /* sfence clflush */
7395 break;
7396
7397 default:
7398 opcode = (opcode << 8) | ir.modrm;
7399 goto no_support;
7400 break;
7401 }
7402 break;
7403
7404 case 0x0fc3: /* movnti */
7405 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7406 if (i386_record_modrm (&ir))
7407 return -1;
7408 if (ir.mod == 3)
7409 goto no_support;
7410 ir.reg |= rex_r;
7411 if (i386_record_lea_modrm (&ir))
7412 return -1;
7413 break;
7414
7415 /* Add prefix to opcode. */
7416 case 0x0f10:
7417 case 0x0f11:
7418 case 0x0f12:
7419 case 0x0f13:
7420 case 0x0f14:
7421 case 0x0f15:
7422 case 0x0f16:
7423 case 0x0f17:
7424 case 0x0f28:
7425 case 0x0f29:
7426 case 0x0f2a:
7427 case 0x0f2b:
7428 case 0x0f2c:
7429 case 0x0f2d:
7430 case 0x0f2e:
7431 case 0x0f2f:
7432 case 0x0f38:
7433 case 0x0f39:
7434 case 0x0f3a:
7435 case 0x0f50:
7436 case 0x0f51:
7437 case 0x0f52:
7438 case 0x0f53:
7439 case 0x0f54:
7440 case 0x0f55:
7441 case 0x0f56:
7442 case 0x0f57:
7443 case 0x0f58:
7444 case 0x0f59:
7445 case 0x0f5a:
7446 case 0x0f5b:
7447 case 0x0f5c:
7448 case 0x0f5d:
7449 case 0x0f5e:
7450 case 0x0f5f:
7451 case 0x0f60:
7452 case 0x0f61:
7453 case 0x0f62:
7454 case 0x0f63:
7455 case 0x0f64:
7456 case 0x0f65:
7457 case 0x0f66:
7458 case 0x0f67:
7459 case 0x0f68:
7460 case 0x0f69:
7461 case 0x0f6a:
7462 case 0x0f6b:
7463 case 0x0f6c:
7464 case 0x0f6d:
7465 case 0x0f6e:
7466 case 0x0f6f:
7467 case 0x0f70:
7468 case 0x0f71:
7469 case 0x0f72:
7470 case 0x0f73:
7471 case 0x0f74:
7472 case 0x0f75:
7473 case 0x0f76:
7474 case 0x0f7c:
7475 case 0x0f7d:
7476 case 0x0f7e:
7477 case 0x0f7f:
7478 case 0x0fb8:
7479 case 0x0fc2:
7480 case 0x0fc4:
7481 case 0x0fc5:
7482 case 0x0fc6:
7483 case 0x0fd0:
7484 case 0x0fd1:
7485 case 0x0fd2:
7486 case 0x0fd3:
7487 case 0x0fd4:
7488 case 0x0fd5:
7489 case 0x0fd6:
7490 case 0x0fd7:
7491 case 0x0fd8:
7492 case 0x0fd9:
7493 case 0x0fda:
7494 case 0x0fdb:
7495 case 0x0fdc:
7496 case 0x0fdd:
7497 case 0x0fde:
7498 case 0x0fdf:
7499 case 0x0fe0:
7500 case 0x0fe1:
7501 case 0x0fe2:
7502 case 0x0fe3:
7503 case 0x0fe4:
7504 case 0x0fe5:
7505 case 0x0fe6:
7506 case 0x0fe7:
7507 case 0x0fe8:
7508 case 0x0fe9:
7509 case 0x0fea:
7510 case 0x0feb:
7511 case 0x0fec:
7512 case 0x0fed:
7513 case 0x0fee:
7514 case 0x0fef:
7515 case 0x0ff0:
7516 case 0x0ff1:
7517 case 0x0ff2:
7518 case 0x0ff3:
7519 case 0x0ff4:
7520 case 0x0ff5:
7521 case 0x0ff6:
7522 case 0x0ff7:
7523 case 0x0ff8:
7524 case 0x0ff9:
7525 case 0x0ffa:
7526 case 0x0ffb:
7527 case 0x0ffc:
7528 case 0x0ffd:
7529 case 0x0ffe:
7530 /* Mask out PREFIX_ADDR. */
7531 switch ((prefixes & ~PREFIX_ADDR))
7532 {
7533 case PREFIX_REPNZ:
7534 opcode |= 0xf20000;
7535 break;
7536 case PREFIX_DATA:
7537 opcode |= 0x660000;
7538 break;
7539 case PREFIX_REPZ:
7540 opcode |= 0xf30000;
7541 break;
7542 }
7543 reswitch_prefix_add:
7544 switch (opcode)
7545 {
7546 case 0x0f38:
7547 case 0x660f38:
7548 case 0xf20f38:
7549 case 0x0f3a:
7550 case 0x660f3a:
7551 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7552 return -1;
7553 ir.addr++;
7554 opcode = (uint32_t) opcode8 | opcode << 8;
7555 goto reswitch_prefix_add;
7556 break;
7557
7558 case 0x0f10: /* movups */
7559 case 0x660f10: /* movupd */
7560 case 0xf30f10: /* movss */
7561 case 0xf20f10: /* movsd */
7562 case 0x0f12: /* movlps */
7563 case 0x660f12: /* movlpd */
7564 case 0xf30f12: /* movsldup */
7565 case 0xf20f12: /* movddup */
7566 case 0x0f14: /* unpcklps */
7567 case 0x660f14: /* unpcklpd */
7568 case 0x0f15: /* unpckhps */
7569 case 0x660f15: /* unpckhpd */
7570 case 0x0f16: /* movhps */
7571 case 0x660f16: /* movhpd */
7572 case 0xf30f16: /* movshdup */
7573 case 0x0f28: /* movaps */
7574 case 0x660f28: /* movapd */
7575 case 0x0f2a: /* cvtpi2ps */
7576 case 0x660f2a: /* cvtpi2pd */
7577 case 0xf30f2a: /* cvtsi2ss */
7578 case 0xf20f2a: /* cvtsi2sd */
7579 case 0x0f2c: /* cvttps2pi */
7580 case 0x660f2c: /* cvttpd2pi */
7581 case 0x0f2d: /* cvtps2pi */
7582 case 0x660f2d: /* cvtpd2pi */
7583 case 0x660f3800: /* pshufb */
7584 case 0x660f3801: /* phaddw */
7585 case 0x660f3802: /* phaddd */
7586 case 0x660f3803: /* phaddsw */
7587 case 0x660f3804: /* pmaddubsw */
7588 case 0x660f3805: /* phsubw */
7589 case 0x660f3806: /* phsubd */
7590 case 0x660f3807: /* phsubsw */
7591 case 0x660f3808: /* psignb */
7592 case 0x660f3809: /* psignw */
7593 case 0x660f380a: /* psignd */
7594 case 0x660f380b: /* pmulhrsw */
7595 case 0x660f3810: /* pblendvb */
7596 case 0x660f3814: /* blendvps */
7597 case 0x660f3815: /* blendvpd */
7598 case 0x660f381c: /* pabsb */
7599 case 0x660f381d: /* pabsw */
7600 case 0x660f381e: /* pabsd */
7601 case 0x660f3820: /* pmovsxbw */
7602 case 0x660f3821: /* pmovsxbd */
7603 case 0x660f3822: /* pmovsxbq */
7604 case 0x660f3823: /* pmovsxwd */
7605 case 0x660f3824: /* pmovsxwq */
7606 case 0x660f3825: /* pmovsxdq */
7607 case 0x660f3828: /* pmuldq */
7608 case 0x660f3829: /* pcmpeqq */
7609 case 0x660f382a: /* movntdqa */
7610 case 0x660f3a08: /* roundps */
7611 case 0x660f3a09: /* roundpd */
7612 case 0x660f3a0a: /* roundss */
7613 case 0x660f3a0b: /* roundsd */
7614 case 0x660f3a0c: /* blendps */
7615 case 0x660f3a0d: /* blendpd */
7616 case 0x660f3a0e: /* pblendw */
7617 case 0x660f3a0f: /* palignr */
7618 case 0x660f3a20: /* pinsrb */
7619 case 0x660f3a21: /* insertps */
7620 case 0x660f3a22: /* pinsrd pinsrq */
7621 case 0x660f3a40: /* dpps */
7622 case 0x660f3a41: /* dppd */
7623 case 0x660f3a42: /* mpsadbw */
7624 case 0x660f3a60: /* pcmpestrm */
7625 case 0x660f3a61: /* pcmpestri */
7626 case 0x660f3a62: /* pcmpistrm */
7627 case 0x660f3a63: /* pcmpistri */
7628 case 0x0f51: /* sqrtps */
7629 case 0x660f51: /* sqrtpd */
7630 case 0xf20f51: /* sqrtsd */
7631 case 0xf30f51: /* sqrtss */
7632 case 0x0f52: /* rsqrtps */
7633 case 0xf30f52: /* rsqrtss */
7634 case 0x0f53: /* rcpps */
7635 case 0xf30f53: /* rcpss */
7636 case 0x0f54: /* andps */
7637 case 0x660f54: /* andpd */
7638 case 0x0f55: /* andnps */
7639 case 0x660f55: /* andnpd */
7640 case 0x0f56: /* orps */
7641 case 0x660f56: /* orpd */
7642 case 0x0f57: /* xorps */
7643 case 0x660f57: /* xorpd */
7644 case 0x0f58: /* addps */
7645 case 0x660f58: /* addpd */
7646 case 0xf20f58: /* addsd */
7647 case 0xf30f58: /* addss */
7648 case 0x0f59: /* mulps */
7649 case 0x660f59: /* mulpd */
7650 case 0xf20f59: /* mulsd */
7651 case 0xf30f59: /* mulss */
7652 case 0x0f5a: /* cvtps2pd */
7653 case 0x660f5a: /* cvtpd2ps */
7654 case 0xf20f5a: /* cvtsd2ss */
7655 case 0xf30f5a: /* cvtss2sd */
7656 case 0x0f5b: /* cvtdq2ps */
7657 case 0x660f5b: /* cvtps2dq */
7658 case 0xf30f5b: /* cvttps2dq */
7659 case 0x0f5c: /* subps */
7660 case 0x660f5c: /* subpd */
7661 case 0xf20f5c: /* subsd */
7662 case 0xf30f5c: /* subss */
7663 case 0x0f5d: /* minps */
7664 case 0x660f5d: /* minpd */
7665 case 0xf20f5d: /* minsd */
7666 case 0xf30f5d: /* minss */
7667 case 0x0f5e: /* divps */
7668 case 0x660f5e: /* divpd */
7669 case 0xf20f5e: /* divsd */
7670 case 0xf30f5e: /* divss */
7671 case 0x0f5f: /* maxps */
7672 case 0x660f5f: /* maxpd */
7673 case 0xf20f5f: /* maxsd */
7674 case 0xf30f5f: /* maxss */
7675 case 0x660f60: /* punpcklbw */
7676 case 0x660f61: /* punpcklwd */
7677 case 0x660f62: /* punpckldq */
7678 case 0x660f63: /* packsswb */
7679 case 0x660f64: /* pcmpgtb */
7680 case 0x660f65: /* pcmpgtw */
7681 case 0x660f66: /* pcmpgtd */
7682 case 0x660f67: /* packuswb */
7683 case 0x660f68: /* punpckhbw */
7684 case 0x660f69: /* punpckhwd */
7685 case 0x660f6a: /* punpckhdq */
7686 case 0x660f6b: /* packssdw */
7687 case 0x660f6c: /* punpcklqdq */
7688 case 0x660f6d: /* punpckhqdq */
7689 case 0x660f6e: /* movd */
7690 case 0x660f6f: /* movdqa */
7691 case 0xf30f6f: /* movdqu */
7692 case 0x660f70: /* pshufd */
7693 case 0xf20f70: /* pshuflw */
7694 case 0xf30f70: /* pshufhw */
7695 case 0x660f74: /* pcmpeqb */
7696 case 0x660f75: /* pcmpeqw */
7697 case 0x660f76: /* pcmpeqd */
7698 case 0x660f7c: /* haddpd */
7699 case 0xf20f7c: /* haddps */
7700 case 0x660f7d: /* hsubpd */
7701 case 0xf20f7d: /* hsubps */
7702 case 0xf30f7e: /* movq */
7703 case 0x0fc2: /* cmpps */
7704 case 0x660fc2: /* cmppd */
7705 case 0xf20fc2: /* cmpsd */
7706 case 0xf30fc2: /* cmpss */
7707 case 0x660fc4: /* pinsrw */
7708 case 0x0fc6: /* shufps */
7709 case 0x660fc6: /* shufpd */
7710 case 0x660fd0: /* addsubpd */
7711 case 0xf20fd0: /* addsubps */
7712 case 0x660fd1: /* psrlw */
7713 case 0x660fd2: /* psrld */
7714 case 0x660fd3: /* psrlq */
7715 case 0x660fd4: /* paddq */
7716 case 0x660fd5: /* pmullw */
7717 case 0xf30fd6: /* movq2dq */
7718 case 0x660fd8: /* psubusb */
7719 case 0x660fd9: /* psubusw */
7720 case 0x660fda: /* pminub */
7721 case 0x660fdb: /* pand */
7722 case 0x660fdc: /* paddusb */
7723 case 0x660fdd: /* paddusw */
7724 case 0x660fde: /* pmaxub */
7725 case 0x660fdf: /* pandn */
7726 case 0x660fe0: /* pavgb */
7727 case 0x660fe1: /* psraw */
7728 case 0x660fe2: /* psrad */
7729 case 0x660fe3: /* pavgw */
7730 case 0x660fe4: /* pmulhuw */
7731 case 0x660fe5: /* pmulhw */
7732 case 0x660fe6: /* cvttpd2dq */
7733 case 0xf20fe6: /* cvtpd2dq */
7734 case 0xf30fe6: /* cvtdq2pd */
7735 case 0x660fe8: /* psubsb */
7736 case 0x660fe9: /* psubsw */
7737 case 0x660fea: /* pminsw */
7738 case 0x660feb: /* por */
7739 case 0x660fec: /* paddsb */
7740 case 0x660fed: /* paddsw */
7741 case 0x660fee: /* pmaxsw */
7742 case 0x660fef: /* pxor */
7743 case 0xf20ff0: /* lddqu */
7744 case 0x660ff1: /* psllw */
7745 case 0x660ff2: /* pslld */
7746 case 0x660ff3: /* psllq */
7747 case 0x660ff4: /* pmuludq */
7748 case 0x660ff5: /* pmaddwd */
7749 case 0x660ff6: /* psadbw */
7750 case 0x660ff8: /* psubb */
7751 case 0x660ff9: /* psubw */
7752 case 0x660ffa: /* psubd */
7753 case 0x660ffb: /* psubq */
7754 case 0x660ffc: /* paddb */
7755 case 0x660ffd: /* paddw */
7756 case 0x660ffe: /* paddd */
7757 if (i386_record_modrm (&ir))
7758 return -1;
7759 ir.reg |= rex_r;
7760 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7761 goto no_support;
7762 record_full_arch_list_add_reg (ir.regcache,
7763 I387_XMM0_REGNUM (tdep) + ir.reg);
7764 if ((opcode & 0xfffffffc) == 0x660f3a60)
7765 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7766 break;
7767
7768 case 0x0f11: /* movups */
7769 case 0x660f11: /* movupd */
7770 case 0xf30f11: /* movss */
7771 case 0xf20f11: /* movsd */
7772 case 0x0f13: /* movlps */
7773 case 0x660f13: /* movlpd */
7774 case 0x0f17: /* movhps */
7775 case 0x660f17: /* movhpd */
7776 case 0x0f29: /* movaps */
7777 case 0x660f29: /* movapd */
7778 case 0x660f3a14: /* pextrb */
7779 case 0x660f3a15: /* pextrw */
7780 case 0x660f3a16: /* pextrd pextrq */
7781 case 0x660f3a17: /* extractps */
7782 case 0x660f7f: /* movdqa */
7783 case 0xf30f7f: /* movdqu */
7784 if (i386_record_modrm (&ir))
7785 return -1;
7786 if (ir.mod == 3)
7787 {
7788 if (opcode == 0x0f13 || opcode == 0x660f13
7789 || opcode == 0x0f17 || opcode == 0x660f17)
7790 goto no_support;
7791 ir.rm |= ir.rex_b;
7792 if (!i386_xmm_regnum_p (gdbarch,
7793 I387_XMM0_REGNUM (tdep) + ir.rm))
7794 goto no_support;
7795 record_full_arch_list_add_reg (ir.regcache,
7796 I387_XMM0_REGNUM (tdep) + ir.rm);
7797 }
7798 else
7799 {
7800 switch (opcode)
7801 {
7802 case 0x660f3a14:
7803 ir.ot = OT_BYTE;
7804 break;
7805 case 0x660f3a15:
7806 ir.ot = OT_WORD;
7807 break;
7808 case 0x660f3a16:
7809 ir.ot = OT_LONG;
7810 break;
7811 case 0x660f3a17:
7812 ir.ot = OT_QUAD;
7813 break;
7814 default:
7815 ir.ot = OT_DQUAD;
7816 break;
7817 }
7818 if (i386_record_lea_modrm (&ir))
7819 return -1;
7820 }
7821 break;
7822
7823 case 0x0f2b: /* movntps */
7824 case 0x660f2b: /* movntpd */
7825 case 0x0fe7: /* movntq */
7826 case 0x660fe7: /* movntdq */
7827 if (ir.mod == 3)
7828 goto no_support;
7829 if (opcode == 0x0fe7)
7830 ir.ot = OT_QUAD;
7831 else
7832 ir.ot = OT_DQUAD;
7833 if (i386_record_lea_modrm (&ir))
7834 return -1;
7835 break;
7836
7837 case 0xf30f2c: /* cvttss2si */
7838 case 0xf20f2c: /* cvttsd2si */
7839 case 0xf30f2d: /* cvtss2si */
7840 case 0xf20f2d: /* cvtsd2si */
7841 case 0xf20f38f0: /* crc32 */
7842 case 0xf20f38f1: /* crc32 */
7843 case 0x0f50: /* movmskps */
7844 case 0x660f50: /* movmskpd */
7845 case 0x0fc5: /* pextrw */
7846 case 0x660fc5: /* pextrw */
7847 case 0x0fd7: /* pmovmskb */
7848 case 0x660fd7: /* pmovmskb */
7849 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7850 break;
7851
7852 case 0x0f3800: /* pshufb */
7853 case 0x0f3801: /* phaddw */
7854 case 0x0f3802: /* phaddd */
7855 case 0x0f3803: /* phaddsw */
7856 case 0x0f3804: /* pmaddubsw */
7857 case 0x0f3805: /* phsubw */
7858 case 0x0f3806: /* phsubd */
7859 case 0x0f3807: /* phsubsw */
7860 case 0x0f3808: /* psignb */
7861 case 0x0f3809: /* psignw */
7862 case 0x0f380a: /* psignd */
7863 case 0x0f380b: /* pmulhrsw */
7864 case 0x0f381c: /* pabsb */
7865 case 0x0f381d: /* pabsw */
7866 case 0x0f381e: /* pabsd */
7867 case 0x0f382b: /* packusdw */
7868 case 0x0f3830: /* pmovzxbw */
7869 case 0x0f3831: /* pmovzxbd */
7870 case 0x0f3832: /* pmovzxbq */
7871 case 0x0f3833: /* pmovzxwd */
7872 case 0x0f3834: /* pmovzxwq */
7873 case 0x0f3835: /* pmovzxdq */
7874 case 0x0f3837: /* pcmpgtq */
7875 case 0x0f3838: /* pminsb */
7876 case 0x0f3839: /* pminsd */
7877 case 0x0f383a: /* pminuw */
7878 case 0x0f383b: /* pminud */
7879 case 0x0f383c: /* pmaxsb */
7880 case 0x0f383d: /* pmaxsd */
7881 case 0x0f383e: /* pmaxuw */
7882 case 0x0f383f: /* pmaxud */
7883 case 0x0f3840: /* pmulld */
7884 case 0x0f3841: /* phminposuw */
7885 case 0x0f3a0f: /* palignr */
7886 case 0x0f60: /* punpcklbw */
7887 case 0x0f61: /* punpcklwd */
7888 case 0x0f62: /* punpckldq */
7889 case 0x0f63: /* packsswb */
7890 case 0x0f64: /* pcmpgtb */
7891 case 0x0f65: /* pcmpgtw */
7892 case 0x0f66: /* pcmpgtd */
7893 case 0x0f67: /* packuswb */
7894 case 0x0f68: /* punpckhbw */
7895 case 0x0f69: /* punpckhwd */
7896 case 0x0f6a: /* punpckhdq */
7897 case 0x0f6b: /* packssdw */
7898 case 0x0f6e: /* movd */
7899 case 0x0f6f: /* movq */
7900 case 0x0f70: /* pshufw */
7901 case 0x0f74: /* pcmpeqb */
7902 case 0x0f75: /* pcmpeqw */
7903 case 0x0f76: /* pcmpeqd */
7904 case 0x0fc4: /* pinsrw */
7905 case 0x0fd1: /* psrlw */
7906 case 0x0fd2: /* psrld */
7907 case 0x0fd3: /* psrlq */
7908 case 0x0fd4: /* paddq */
7909 case 0x0fd5: /* pmullw */
7910 case 0xf20fd6: /* movdq2q */
7911 case 0x0fd8: /* psubusb */
7912 case 0x0fd9: /* psubusw */
7913 case 0x0fda: /* pminub */
7914 case 0x0fdb: /* pand */
7915 case 0x0fdc: /* paddusb */
7916 case 0x0fdd: /* paddusw */
7917 case 0x0fde: /* pmaxub */
7918 case 0x0fdf: /* pandn */
7919 case 0x0fe0: /* pavgb */
7920 case 0x0fe1: /* psraw */
7921 case 0x0fe2: /* psrad */
7922 case 0x0fe3: /* pavgw */
7923 case 0x0fe4: /* pmulhuw */
7924 case 0x0fe5: /* pmulhw */
7925 case 0x0fe8: /* psubsb */
7926 case 0x0fe9: /* psubsw */
7927 case 0x0fea: /* pminsw */
7928 case 0x0feb: /* por */
7929 case 0x0fec: /* paddsb */
7930 case 0x0fed: /* paddsw */
7931 case 0x0fee: /* pmaxsw */
7932 case 0x0fef: /* pxor */
7933 case 0x0ff1: /* psllw */
7934 case 0x0ff2: /* pslld */
7935 case 0x0ff3: /* psllq */
7936 case 0x0ff4: /* pmuludq */
7937 case 0x0ff5: /* pmaddwd */
7938 case 0x0ff6: /* psadbw */
7939 case 0x0ff8: /* psubb */
7940 case 0x0ff9: /* psubw */
7941 case 0x0ffa: /* psubd */
7942 case 0x0ffb: /* psubq */
7943 case 0x0ffc: /* paddb */
7944 case 0x0ffd: /* paddw */
7945 case 0x0ffe: /* paddd */
7946 if (i386_record_modrm (&ir))
7947 return -1;
7948 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7949 goto no_support;
7950 record_full_arch_list_add_reg (ir.regcache,
7951 I387_MM0_REGNUM (tdep) + ir.reg);
7952 break;
7953
7954 case 0x0f71: /* psllw */
7955 case 0x0f72: /* pslld */
7956 case 0x0f73: /* psllq */
7957 if (i386_record_modrm (&ir))
7958 return -1;
7959 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7960 goto no_support;
7961 record_full_arch_list_add_reg (ir.regcache,
7962 I387_MM0_REGNUM (tdep) + ir.rm);
7963 break;
7964
7965 case 0x660f71: /* psllw */
7966 case 0x660f72: /* pslld */
7967 case 0x660f73: /* psllq */
7968 if (i386_record_modrm (&ir))
7969 return -1;
7970 ir.rm |= ir.rex_b;
7971 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7972 goto no_support;
7973 record_full_arch_list_add_reg (ir.regcache,
7974 I387_XMM0_REGNUM (tdep) + ir.rm);
7975 break;
7976
7977 case 0x0f7e: /* movd */
7978 case 0x660f7e: /* movd */
7979 if (i386_record_modrm (&ir))
7980 return -1;
7981 if (ir.mod == 3)
7982 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7983 else
7984 {
7985 if (ir.dflag == 2)
7986 ir.ot = OT_QUAD;
7987 else
7988 ir.ot = OT_LONG;
7989 if (i386_record_lea_modrm (&ir))
7990 return -1;
7991 }
7992 break;
7993
7994 case 0x0f7f: /* movq */
7995 if (i386_record_modrm (&ir))
7996 return -1;
7997 if (ir.mod == 3)
7998 {
7999 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8000 goto no_support;
8001 record_full_arch_list_add_reg (ir.regcache,
8002 I387_MM0_REGNUM (tdep) + ir.rm);
8003 }
8004 else
8005 {
8006 ir.ot = OT_QUAD;
8007 if (i386_record_lea_modrm (&ir))
8008 return -1;
8009 }
8010 break;
8011
8012 case 0xf30fb8: /* popcnt */
8013 if (i386_record_modrm (&ir))
8014 return -1;
8015 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8016 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8017 break;
8018
8019 case 0x660fd6: /* movq */
8020 if (i386_record_modrm (&ir))
8021 return -1;
8022 if (ir.mod == 3)
8023 {
8024 ir.rm |= ir.rex_b;
8025 if (!i386_xmm_regnum_p (gdbarch,
8026 I387_XMM0_REGNUM (tdep) + ir.rm))
8027 goto no_support;
8028 record_full_arch_list_add_reg (ir.regcache,
8029 I387_XMM0_REGNUM (tdep) + ir.rm);
8030 }
8031 else
8032 {
8033 ir.ot = OT_QUAD;
8034 if (i386_record_lea_modrm (&ir))
8035 return -1;
8036 }
8037 break;
8038
8039 case 0x660f3817: /* ptest */
8040 case 0x0f2e: /* ucomiss */
8041 case 0x660f2e: /* ucomisd */
8042 case 0x0f2f: /* comiss */
8043 case 0x660f2f: /* comisd */
8044 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8045 break;
8046
8047 case 0x0ff7: /* maskmovq */
8048 regcache_raw_read_unsigned (ir.regcache,
8049 ir.regmap[X86_RECORD_REDI_REGNUM],
8050 &addr);
8051 if (record_full_arch_list_add_mem (addr, 64))
8052 return -1;
8053 break;
8054
8055 case 0x660ff7: /* maskmovdqu */
8056 regcache_raw_read_unsigned (ir.regcache,
8057 ir.regmap[X86_RECORD_REDI_REGNUM],
8058 &addr);
8059 if (record_full_arch_list_add_mem (addr, 128))
8060 return -1;
8061 break;
8062
8063 default:
8064 goto no_support;
8065 break;
8066 }
8067 break;
8068
8069 default:
8070 goto no_support;
8071 break;
8072 }
8073
8074 /* In the future, maybe still need to deal with need_dasm. */
8075 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8076 if (record_full_arch_list_add_end ())
8077 return -1;
8078
8079 return 0;
8080
8081 no_support:
8082 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8083 "at address %s.\n"),
8084 (unsigned int) (opcode),
8085 paddress (gdbarch, ir.orig_addr));
8086 return -1;
8087 }
8088
8089 static const int i386_record_regmap[] =
8090 {
8091 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8092 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8093 0, 0, 0, 0, 0, 0, 0, 0,
8094 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8095 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8096 };
8097
8098 /* Check that the given address appears suitable for a fast
8099 tracepoint, which on x86-64 means that we need an instruction of at
8100 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8101 jump and not have to worry about program jumps to an address in the
8102 middle of the tracepoint jump. On x86, it may be possible to use
8103 4-byte jumps with a 2-byte offset to a trampoline located in the
8104 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8105 of instruction to replace, and 0 if not, plus an explanatory
8106 string. */
8107
8108 static int
8109 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8110 char **msg)
8111 {
8112 int len, jumplen;
8113 static struct ui_file *gdb_null = NULL;
8114
8115 /* Ask the target for the minimum instruction length supported. */
8116 jumplen = target_get_min_fast_tracepoint_insn_len ();
8117
8118 if (jumplen < 0)
8119 {
8120 /* If the target does not support the get_min_fast_tracepoint_insn_len
8121 operation, assume that fast tracepoints will always be implemented
8122 using 4-byte relative jumps on both x86 and x86-64. */
8123 jumplen = 5;
8124 }
8125 else if (jumplen == 0)
8126 {
8127 /* If the target does support get_min_fast_tracepoint_insn_len but
8128 returns zero, then the IPA has not loaded yet. In this case,
8129 we optimistically assume that truncated 2-byte relative jumps
8130 will be available on x86, and compensate later if this assumption
8131 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8132 jumps will always be used. */
8133 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8134 }
8135
8136 /* Dummy file descriptor for the disassembler. */
8137 if (!gdb_null)
8138 gdb_null = ui_file_new ();
8139
8140 /* Check for fit. */
8141 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
8142
8143 if (len < jumplen)
8144 {
8145 /* Return a bit of target-specific detail to add to the caller's
8146 generic failure message. */
8147 if (msg)
8148 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8149 "need at least %d bytes for the jump"),
8150 len, jumplen);
8151 return 0;
8152 }
8153 else
8154 {
8155 if (msg)
8156 *msg = NULL;
8157 return 1;
8158 }
8159 }
8160
8161 /* Return a floating-point format for a floating-point variable of
8162 length LEN in bits. If non-NULL, NAME is the name of its type.
8163 If no suitable type is found, return NULL. */
8164
8165 const struct floatformat **
8166 i386_floatformat_for_type (struct gdbarch *gdbarch,
8167 const char *name, int len)
8168 {
8169 if (len == 128 && name)
8170 if (strcmp (name, "__float128") == 0
8171 || strcmp (name, "_Float128") == 0
8172 || strcmp (name, "complex _Float128") == 0)
8173 return floatformats_ia64_quad;
8174
8175 return default_floatformat_for_type (gdbarch, name, len);
8176 }
8177
8178 static int
8179 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8180 struct tdesc_arch_data *tdesc_data)
8181 {
8182 const struct target_desc *tdesc = tdep->tdesc;
8183 const struct tdesc_feature *feature_core;
8184
8185 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8186 *feature_avx512;
8187 int i, num_regs, valid_p;
8188
8189 if (! tdesc_has_registers (tdesc))
8190 return 0;
8191
8192 /* Get core registers. */
8193 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8194 if (feature_core == NULL)
8195 return 0;
8196
8197 /* Get SSE registers. */
8198 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8199
8200 /* Try AVX registers. */
8201 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8202
8203 /* Try MPX registers. */
8204 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8205
8206 /* Try AVX512 registers. */
8207 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8208
8209 valid_p = 1;
8210
8211 /* The XCR0 bits. */
8212 if (feature_avx512)
8213 {
8214 /* AVX512 register description requires AVX register description. */
8215 if (!feature_avx)
8216 return 0;
8217
8218 tdep->xcr0 = X86_XSTATE_MPX_AVX512_MASK;
8219
8220 /* It may have been set by OSABI initialization function. */
8221 if (tdep->k0_regnum < 0)
8222 {
8223 tdep->k_register_names = i386_k_names;
8224 tdep->k0_regnum = I386_K0_REGNUM;
8225 }
8226
8227 for (i = 0; i < I387_NUM_K_REGS; i++)
8228 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8229 tdep->k0_regnum + i,
8230 i386_k_names[i]);
8231
8232 if (tdep->num_zmm_regs == 0)
8233 {
8234 tdep->zmmh_register_names = i386_zmmh_names;
8235 tdep->num_zmm_regs = 8;
8236 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8237 }
8238
8239 for (i = 0; i < tdep->num_zmm_regs; i++)
8240 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8241 tdep->zmm0h_regnum + i,
8242 tdep->zmmh_register_names[i]);
8243
8244 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8245 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8246 tdep->xmm16_regnum + i,
8247 tdep->xmm_avx512_register_names[i]);
8248
8249 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8250 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8251 tdep->ymm16h_regnum + i,
8252 tdep->ymm16h_register_names[i]);
8253 }
8254 if (feature_avx)
8255 {
8256 /* AVX register description requires SSE register description. */
8257 if (!feature_sse)
8258 return 0;
8259
8260 if (!feature_avx512)
8261 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8262
8263 /* It may have been set by OSABI initialization function. */
8264 if (tdep->num_ymm_regs == 0)
8265 {
8266 tdep->ymmh_register_names = i386_ymmh_names;
8267 tdep->num_ymm_regs = 8;
8268 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8269 }
8270
8271 for (i = 0; i < tdep->num_ymm_regs; i++)
8272 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8273 tdep->ymm0h_regnum + i,
8274 tdep->ymmh_register_names[i]);
8275 }
8276 else if (feature_sse)
8277 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8278 else
8279 {
8280 tdep->xcr0 = X86_XSTATE_X87_MASK;
8281 tdep->num_xmm_regs = 0;
8282 }
8283
8284 num_regs = tdep->num_core_regs;
8285 for (i = 0; i < num_regs; i++)
8286 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8287 tdep->register_names[i]);
8288
8289 if (feature_sse)
8290 {
8291 /* Need to include %mxcsr, so add one. */
8292 num_regs += tdep->num_xmm_regs + 1;
8293 for (; i < num_regs; i++)
8294 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8295 tdep->register_names[i]);
8296 }
8297
8298 if (feature_mpx)
8299 {
8300 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8301
8302 if (tdep->bnd0r_regnum < 0)
8303 {
8304 tdep->mpx_register_names = i386_mpx_names;
8305 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8306 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8307 }
8308
8309 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8310 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8311 I387_BND0R_REGNUM (tdep) + i,
8312 tdep->mpx_register_names[i]);
8313 }
8314
8315 return valid_p;
8316 }
8317
8318 \f
8319 static struct gdbarch *
8320 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8321 {
8322 struct gdbarch_tdep *tdep;
8323 struct gdbarch *gdbarch;
8324 struct tdesc_arch_data *tdesc_data;
8325 const struct target_desc *tdesc;
8326 int mm0_regnum;
8327 int ymm0_regnum;
8328 int bnd0_regnum;
8329 int num_bnd_cooked;
8330
8331 /* If there is already a candidate, use it. */
8332 arches = gdbarch_list_lookup_by_info (arches, &info);
8333 if (arches != NULL)
8334 return arches->gdbarch;
8335
8336 /* Allocate space for the new architecture. */
8337 tdep = XCNEW (struct gdbarch_tdep);
8338 gdbarch = gdbarch_alloc (&info, tdep);
8339
8340 /* General-purpose registers. */
8341 tdep->gregset_reg_offset = NULL;
8342 tdep->gregset_num_regs = I386_NUM_GREGS;
8343 tdep->sizeof_gregset = 0;
8344
8345 /* Floating-point registers. */
8346 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8347 tdep->fpregset = &i386_fpregset;
8348
8349 /* The default settings include the FPU registers, the MMX registers
8350 and the SSE registers. This can be overridden for a specific ABI
8351 by adjusting the members `st0_regnum', `mm0_regnum' and
8352 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8353 will show up in the output of "info all-registers". */
8354
8355 tdep->st0_regnum = I386_ST0_REGNUM;
8356
8357 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8358 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8359
8360 tdep->jb_pc_offset = -1;
8361 tdep->struct_return = pcc_struct_return;
8362 tdep->sigtramp_start = 0;
8363 tdep->sigtramp_end = 0;
8364 tdep->sigtramp_p = i386_sigtramp_p;
8365 tdep->sigcontext_addr = NULL;
8366 tdep->sc_reg_offset = NULL;
8367 tdep->sc_pc_offset = -1;
8368 tdep->sc_sp_offset = -1;
8369
8370 tdep->xsave_xcr0_offset = -1;
8371
8372 tdep->record_regmap = i386_record_regmap;
8373
8374 set_gdbarch_long_long_align_bit (gdbarch, 32);
8375
8376 /* The format used for `long double' on almost all i386 targets is
8377 the i387 extended floating-point format. In fact, of all targets
8378 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8379 on having a `long double' that's not `long' at all. */
8380 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8381
8382 /* Although the i387 extended floating-point has only 80 significant
8383 bits, a `long double' actually takes up 96, probably to enforce
8384 alignment. */
8385 set_gdbarch_long_double_bit (gdbarch, 96);
8386
8387 /* Support for floating-point data type variants. */
8388 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8389
8390 /* Register numbers of various important registers. */
8391 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8392 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8393 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8394 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8395
8396 /* NOTE: kettenis/20040418: GCC does have two possible register
8397 numbering schemes on the i386: dbx and SVR4. These schemes
8398 differ in how they number %ebp, %esp, %eflags, and the
8399 floating-point registers, and are implemented by the arrays
8400 dbx_register_map[] and svr4_dbx_register_map in
8401 gcc/config/i386.c. GCC also defines a third numbering scheme in
8402 gcc/config/i386.c, which it designates as the "default" register
8403 map used in 64bit mode. This last register numbering scheme is
8404 implemented in dbx64_register_map, and is used for AMD64; see
8405 amd64-tdep.c.
8406
8407 Currently, each GCC i386 target always uses the same register
8408 numbering scheme across all its supported debugging formats
8409 i.e. SDB (COFF), stabs and DWARF 2. This is because
8410 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8411 DBX_REGISTER_NUMBER macro which is defined by each target's
8412 respective config header in a manner independent of the requested
8413 output debugging format.
8414
8415 This does not match the arrangement below, which presumes that
8416 the SDB and stabs numbering schemes differ from the DWARF and
8417 DWARF 2 ones. The reason for this arrangement is that it is
8418 likely to get the numbering scheme for the target's
8419 default/native debug format right. For targets where GCC is the
8420 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8421 targets where the native toolchain uses a different numbering
8422 scheme for a particular debug format (stabs-in-ELF on Solaris)
8423 the defaults below will have to be overridden, like
8424 i386_elf_init_abi() does. */
8425
8426 /* Use the dbx register numbering scheme for stabs and COFF. */
8427 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8428 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8429
8430 /* Use the SVR4 register numbering scheme for DWARF 2. */
8431 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8432
8433 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8434 be in use on any of the supported i386 targets. */
8435
8436 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8437
8438 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8439
8440 /* Call dummy code. */
8441 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8442 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8443 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8444 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8445
8446 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8447 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8448 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8449
8450 set_gdbarch_return_value (gdbarch, i386_return_value);
8451
8452 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8453
8454 /* Stack grows downward. */
8455 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8456
8457 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8458 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8459
8460 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8461 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8462
8463 set_gdbarch_frame_args_skip (gdbarch, 8);
8464
8465 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8466
8467 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8468
8469 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8470
8471 /* Add the i386 register groups. */
8472 i386_add_reggroups (gdbarch);
8473 tdep->register_reggroup_p = i386_register_reggroup_p;
8474
8475 /* Helper for function argument information. */
8476 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8477
8478 /* Hook the function epilogue frame unwinder. This unwinder is
8479 appended to the list first, so that it supercedes the DWARF
8480 unwinder in function epilogues (where the DWARF unwinder
8481 currently fails). */
8482 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8483
8484 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8485 to the list before the prologue-based unwinders, so that DWARF
8486 CFI info will be used if it is available. */
8487 dwarf2_append_unwinders (gdbarch);
8488
8489 frame_base_set_default (gdbarch, &i386_frame_base);
8490
8491 /* Pseudo registers may be changed by amd64_init_abi. */
8492 set_gdbarch_pseudo_register_read_value (gdbarch,
8493 i386_pseudo_register_read_value);
8494 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8495 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8496 i386_ax_pseudo_register_collect);
8497
8498 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8499 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8500
8501 /* Override the normal target description method to make the AVX
8502 upper halves anonymous. */
8503 set_gdbarch_register_name (gdbarch, i386_register_name);
8504
8505 /* Even though the default ABI only includes general-purpose registers,
8506 floating-point registers and the SSE registers, we have to leave a
8507 gap for the upper AVX, MPX and AVX512 registers. */
8508 set_gdbarch_num_regs (gdbarch, I386_AVX512_NUM_REGS);
8509
8510 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8511
8512 /* Get the x86 target description from INFO. */
8513 tdesc = info.target_desc;
8514 if (! tdesc_has_registers (tdesc))
8515 tdesc = tdesc_i386;
8516 tdep->tdesc = tdesc;
8517
8518 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8519 tdep->register_names = i386_register_names;
8520
8521 /* No upper YMM registers. */
8522 tdep->ymmh_register_names = NULL;
8523 tdep->ymm0h_regnum = -1;
8524
8525 /* No upper ZMM registers. */
8526 tdep->zmmh_register_names = NULL;
8527 tdep->zmm0h_regnum = -1;
8528
8529 /* No high XMM registers. */
8530 tdep->xmm_avx512_register_names = NULL;
8531 tdep->xmm16_regnum = -1;
8532
8533 /* No upper YMM16-31 registers. */
8534 tdep->ymm16h_register_names = NULL;
8535 tdep->ymm16h_regnum = -1;
8536
8537 tdep->num_byte_regs = 8;
8538 tdep->num_word_regs = 8;
8539 tdep->num_dword_regs = 0;
8540 tdep->num_mmx_regs = 8;
8541 tdep->num_ymm_regs = 0;
8542
8543 /* No MPX registers. */
8544 tdep->bnd0r_regnum = -1;
8545 tdep->bndcfgu_regnum = -1;
8546
8547 /* No AVX512 registers. */
8548 tdep->k0_regnum = -1;
8549 tdep->num_zmm_regs = 0;
8550 tdep->num_ymm_avx512_regs = 0;
8551 tdep->num_xmm_avx512_regs = 0;
8552
8553 tdesc_data = tdesc_data_alloc ();
8554
8555 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8556
8557 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8558
8559 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8560 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8561 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8562
8563 /* Hook in ABI-specific overrides, if they have been registered. */
8564 info.tdep_info = tdesc_data;
8565 gdbarch_init_osabi (info, gdbarch);
8566
8567 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8568 {
8569 tdesc_data_cleanup (tdesc_data);
8570 xfree (tdep);
8571 gdbarch_free (gdbarch);
8572 return NULL;
8573 }
8574
8575 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8576
8577 /* Wire in pseudo registers. Number of pseudo registers may be
8578 changed. */
8579 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8580 + tdep->num_word_regs
8581 + tdep->num_dword_regs
8582 + tdep->num_mmx_regs
8583 + tdep->num_ymm_regs
8584 + num_bnd_cooked
8585 + tdep->num_ymm_avx512_regs
8586 + tdep->num_zmm_regs));
8587
8588 /* Target description may be changed. */
8589 tdesc = tdep->tdesc;
8590
8591 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8592
8593 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8594 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8595
8596 /* Make %al the first pseudo-register. */
8597 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8598 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8599
8600 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8601 if (tdep->num_dword_regs)
8602 {
8603 /* Support dword pseudo-register if it hasn't been disabled. */
8604 tdep->eax_regnum = ymm0_regnum;
8605 ymm0_regnum += tdep->num_dword_regs;
8606 }
8607 else
8608 tdep->eax_regnum = -1;
8609
8610 mm0_regnum = ymm0_regnum;
8611 if (tdep->num_ymm_regs)
8612 {
8613 /* Support YMM pseudo-register if it is available. */
8614 tdep->ymm0_regnum = ymm0_regnum;
8615 mm0_regnum += tdep->num_ymm_regs;
8616 }
8617 else
8618 tdep->ymm0_regnum = -1;
8619
8620 if (tdep->num_ymm_avx512_regs)
8621 {
8622 /* Support YMM16-31 pseudo registers if available. */
8623 tdep->ymm16_regnum = mm0_regnum;
8624 mm0_regnum += tdep->num_ymm_avx512_regs;
8625 }
8626 else
8627 tdep->ymm16_regnum = -1;
8628
8629 if (tdep->num_zmm_regs)
8630 {
8631 /* Support ZMM pseudo-register if it is available. */
8632 tdep->zmm0_regnum = mm0_regnum;
8633 mm0_regnum += tdep->num_zmm_regs;
8634 }
8635 else
8636 tdep->zmm0_regnum = -1;
8637
8638 bnd0_regnum = mm0_regnum;
8639 if (tdep->num_mmx_regs != 0)
8640 {
8641 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8642 tdep->mm0_regnum = mm0_regnum;
8643 bnd0_regnum += tdep->num_mmx_regs;
8644 }
8645 else
8646 tdep->mm0_regnum = -1;
8647
8648 if (tdep->bnd0r_regnum > 0)
8649 tdep->bnd0_regnum = bnd0_regnum;
8650 else
8651 tdep-> bnd0_regnum = -1;
8652
8653 /* Hook in the legacy prologue-based unwinders last (fallback). */
8654 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8655 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8656 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8657
8658 /* If we have a register mapping, enable the generic core file
8659 support, unless it has already been enabled. */
8660 if (tdep->gregset_reg_offset
8661 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8662 set_gdbarch_iterate_over_regset_sections
8663 (gdbarch, i386_iterate_over_regset_sections);
8664
8665 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8666 i386_fast_tracepoint_valid_at);
8667
8668 return gdbarch;
8669 }
8670
8671 static enum gdb_osabi
8672 i386_coff_osabi_sniffer (bfd *abfd)
8673 {
8674 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8675 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8676 return GDB_OSABI_GO32;
8677
8678 return GDB_OSABI_UNKNOWN;
8679 }
8680 \f
8681
8682 /* Return the target description for a specified XSAVE feature mask. */
8683
8684 const struct target_desc *
8685 i386_target_description (uint64_t xcr0)
8686 {
8687 switch (xcr0 & X86_XSTATE_ALL_MASK)
8688 {
8689 case X86_XSTATE_MPX_AVX512_MASK:
8690 case X86_XSTATE_AVX512_MASK:
8691 return tdesc_i386_avx512;
8692 case X86_XSTATE_AVX_MPX_MASK:
8693 return tdesc_i386_avx_mpx;
8694 case X86_XSTATE_MPX_MASK:
8695 return tdesc_i386_mpx;
8696 case X86_XSTATE_AVX_MASK:
8697 return tdesc_i386_avx;
8698 default:
8699 return tdesc_i386;
8700 }
8701 }
8702
8703 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8704
8705 /* Find the bound directory base address. */
8706
8707 static unsigned long
8708 i386_mpx_bd_base (void)
8709 {
8710 struct regcache *rcache;
8711 struct gdbarch_tdep *tdep;
8712 ULONGEST ret;
8713 enum register_status regstatus;
8714
8715 rcache = get_current_regcache ();
8716 tdep = gdbarch_tdep (get_regcache_arch (rcache));
8717
8718 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8719
8720 if (regstatus != REG_VALID)
8721 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8722
8723 return ret & MPX_BASE_MASK;
8724 }
8725
8726 int
8727 i386_mpx_enabled (void)
8728 {
8729 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8730 const struct target_desc *tdesc = tdep->tdesc;
8731
8732 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8733 }
8734
8735 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8736 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8737 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8738 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8739
8740 /* Find the bound table entry given the pointer location and the base
8741 address of the table. */
8742
8743 static CORE_ADDR
8744 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8745 {
8746 CORE_ADDR offset1;
8747 CORE_ADDR offset2;
8748 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8749 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8750 CORE_ADDR bd_entry_addr;
8751 CORE_ADDR bt_addr;
8752 CORE_ADDR bd_entry;
8753 struct gdbarch *gdbarch = get_current_arch ();
8754 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8755
8756
8757 if (gdbarch_ptr_bit (gdbarch) == 64)
8758 {
8759 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8760 bd_ptr_r_shift = 20;
8761 bd_ptr_l_shift = 3;
8762 bt_select_r_shift = 3;
8763 bt_select_l_shift = 5;
8764 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8765
8766 if ( sizeof (CORE_ADDR) == 4)
8767 error (_("bound table examination not supported\
8768 for 64-bit process with 32-bit GDB"));
8769 }
8770 else
8771 {
8772 mpx_bd_mask = MPX_BD_MASK_32;
8773 bd_ptr_r_shift = 12;
8774 bd_ptr_l_shift = 2;
8775 bt_select_r_shift = 2;
8776 bt_select_l_shift = 4;
8777 bt_mask = MPX_BT_MASK_32;
8778 }
8779
8780 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8781 bd_entry_addr = bd_base + offset1;
8782 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8783
8784 if ((bd_entry & 0x1) == 0)
8785 error (_("Invalid bounds directory entry at %s."),
8786 paddress (get_current_arch (), bd_entry_addr));
8787
8788 /* Clearing status bit. */
8789 bd_entry--;
8790 bt_addr = bd_entry & ~bt_select_r_shift;
8791 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8792
8793 return bt_addr + offset2;
8794 }
8795
8796 /* Print routine for the mpx bounds. */
8797
8798 static void
8799 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8800 {
8801 struct ui_out *uiout = current_uiout;
8802 LONGEST size;
8803 struct gdbarch *gdbarch = get_current_arch ();
8804 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8805 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8806
8807 if (bounds_in_map == 1)
8808 {
8809 ui_out_text (uiout, "Null bounds on map:");
8810 ui_out_text (uiout, " pointer value = ");
8811 ui_out_field_core_addr (uiout, "pointer-value", gdbarch, bt_entry[2]);
8812 ui_out_text (uiout, ".");
8813 ui_out_text (uiout, "\n");
8814 }
8815 else
8816 {
8817 ui_out_text (uiout, "{lbound = ");
8818 ui_out_field_core_addr (uiout, "lower-bound", gdbarch, bt_entry[0]);
8819 ui_out_text (uiout, ", ubound = ");
8820
8821 /* The upper bound is stored in 1's complement. */
8822 ui_out_field_core_addr (uiout, "upper-bound", gdbarch, ~bt_entry[1]);
8823 ui_out_text (uiout, "}: pointer value = ");
8824 ui_out_field_core_addr (uiout, "pointer-value", gdbarch, bt_entry[2]);
8825
8826 if (gdbarch_ptr_bit (gdbarch) == 64)
8827 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8828 else
8829 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8830
8831 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8832 -1 represents in this sense full memory access, and there is no need
8833 one to the size. */
8834
8835 size = (size > -1 ? size + 1 : size);
8836 ui_out_text (uiout, ", size = ");
8837 ui_out_field_fmt (uiout, "size", "%s", plongest (size));
8838
8839 ui_out_text (uiout, ", metadata = ");
8840 ui_out_field_core_addr (uiout, "metadata", gdbarch, bt_entry[3]);
8841 ui_out_text (uiout, "\n");
8842 }
8843 }
8844
8845 /* Implement the command "show mpx bound". */
8846
8847 static void
8848 i386_mpx_info_bounds (char *args, int from_tty)
8849 {
8850 CORE_ADDR bd_base = 0;
8851 CORE_ADDR addr;
8852 CORE_ADDR bt_entry_addr = 0;
8853 CORE_ADDR bt_entry[4];
8854 int i;
8855 struct gdbarch *gdbarch = get_current_arch ();
8856 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8857
8858 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8859 || !i386_mpx_enabled ())
8860 {
8861 printf_unfiltered (_("Intel Memory Protection Extensions not "
8862 "supported on this target.\n"));
8863 return;
8864 }
8865
8866 if (args == NULL)
8867 {
8868 printf_unfiltered (_("Address of pointer variable expected.\n"));
8869 return;
8870 }
8871
8872 addr = parse_and_eval_address (args);
8873
8874 bd_base = i386_mpx_bd_base ();
8875 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8876
8877 memset (bt_entry, 0, sizeof (bt_entry));
8878
8879 for (i = 0; i < 4; i++)
8880 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8881 + i * TYPE_LENGTH (data_ptr_type),
8882 data_ptr_type);
8883
8884 i386_mpx_print_bounds (bt_entry);
8885 }
8886
8887 /* Implement the command "set mpx bound". */
8888
8889 static void
8890 i386_mpx_set_bounds (char *args, int from_tty)
8891 {
8892 CORE_ADDR bd_base = 0;
8893 CORE_ADDR addr, lower, upper;
8894 CORE_ADDR bt_entry_addr = 0;
8895 CORE_ADDR bt_entry[2];
8896 const char *input = args;
8897 int i;
8898 struct gdbarch *gdbarch = get_current_arch ();
8899 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8900 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8901
8902 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8903 || !i386_mpx_enabled ())
8904 error (_("Intel Memory Protection Extensions not supported\
8905 on this target."));
8906
8907 if (args == NULL)
8908 error (_("Pointer value expected."));
8909
8910 addr = value_as_address (parse_to_comma_and_eval (&input));
8911
8912 if (input[0] == ',')
8913 ++input;
8914 if (input[0] == '\0')
8915 error (_("wrong number of arguments: missing lower and upper bound."));
8916 lower = value_as_address (parse_to_comma_and_eval (&input));
8917
8918 if (input[0] == ',')
8919 ++input;
8920 if (input[0] == '\0')
8921 error (_("Wrong number of arguments; Missing upper bound."));
8922 upper = value_as_address (parse_to_comma_and_eval (&input));
8923
8924 bd_base = i386_mpx_bd_base ();
8925 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8926 for (i = 0; i < 2; i++)
8927 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8928 + i * TYPE_LENGTH (data_ptr_type),
8929 data_ptr_type);
8930 bt_entry[0] = (uint64_t) lower;
8931 bt_entry[1] = ~(uint64_t) upper;
8932
8933 for (i = 0; i < 2; i++)
8934 write_memory_unsigned_integer (bt_entry_addr
8935 + i * TYPE_LENGTH (data_ptr_type),
8936 TYPE_LENGTH (data_ptr_type), byte_order,
8937 bt_entry[i]);
8938 }
8939
8940 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
8941
8942 /* Helper function for the CLI commands. */
8943
8944 static void
8945 set_mpx_cmd (char *args, int from_tty)
8946 {
8947 help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout);
8948 }
8949
8950 /* Helper function for the CLI commands. */
8951
8952 static void
8953 show_mpx_cmd (char *args, int from_tty)
8954 {
8955 cmd_show_list (mpx_show_cmdlist, from_tty, "");
8956 }
8957
8958 /* Provide a prototype to silence -Wmissing-prototypes. */
8959 void _initialize_i386_tdep (void);
8960
8961 void
8962 _initialize_i386_tdep (void)
8963 {
8964 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8965
8966 /* Add the variable that controls the disassembly flavor. */
8967 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8968 &disassembly_flavor, _("\
8969 Set the disassembly flavor."), _("\
8970 Show the disassembly flavor."), _("\
8971 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8972 NULL,
8973 NULL, /* FIXME: i18n: */
8974 &setlist, &showlist);
8975
8976 /* Add the variable that controls the convention for returning
8977 structs. */
8978 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
8979 &struct_convention, _("\
8980 Set the convention for returning small structs."), _("\
8981 Show the convention for returning small structs."), _("\
8982 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
8983 is \"default\"."),
8984 NULL,
8985 NULL, /* FIXME: i18n: */
8986 &setlist, &showlist);
8987
8988 /* Add "mpx" prefix for the set commands. */
8989
8990 add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
8991 Set Intel Memory Protection Extensions specific variables."),
8992 &mpx_set_cmdlist, "set mpx ",
8993 0 /* allow-unknown */, &setlist);
8994
8995 /* Add "mpx" prefix for the show commands. */
8996
8997 add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
8998 Show Intel Memory Protection Extensions specific variables."),
8999 &mpx_show_cmdlist, "show mpx ",
9000 0 /* allow-unknown */, &showlist);
9001
9002 /* Add "bound" command for the show mpx commands list. */
9003
9004 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9005 "Show the memory bounds for a given array/pointer storage\
9006 in the bound table.",
9007 &mpx_show_cmdlist);
9008
9009 /* Add "bound" command for the set mpx commands list. */
9010
9011 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9012 "Set the memory bounds for a given array/pointer storage\
9013 in the bound table.",
9014 &mpx_set_cmdlist);
9015
9016 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
9017 i386_coff_osabi_sniffer);
9018
9019 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9020 i386_svr4_init_abi);
9021 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
9022 i386_go32_init_abi);
9023
9024 /* Initialize the i386-specific register groups. */
9025 i386_init_reggroups ();
9026
9027 /* Initialize the standard target descriptions. */
9028 initialize_tdesc_i386 ();
9029 initialize_tdesc_i386_mmx ();
9030 initialize_tdesc_i386_avx ();
9031 initialize_tdesc_i386_mpx ();
9032 initialize_tdesc_i386_avx_mpx ();
9033 initialize_tdesc_i386_avx512 ();
9034
9035 /* Tell remote stub that we support XML target description. */
9036 register_remote_support_xml ("i386");
9037 }
This page took 0.204463 seconds and 5 git commands to generate.