gdb/fortran: Use floatformats_ia64_quad for fortran 16-byte floats
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "inferior.h"
30 #include "infrun.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "target-float.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "common/x86-xstate.h"
50 #include "x86-tdep.h"
51
52 #include "record.h"
53 #include "record-full.h"
54 #include "target-descriptions.h"
55 #include "arch/i386.h"
56
57 #include "ax.h"
58 #include "ax-gdb.h"
59
60 #include "stap-probe.h"
61 #include "user-regs.h"
62 #include "cli/cli-utils.h"
63 #include "expression.h"
64 #include "parser-defs.h"
65 #include <ctype.h>
66 #include <algorithm>
67
68 /* Register names. */
69
70 static const char *i386_register_names[] =
71 {
72 "eax", "ecx", "edx", "ebx",
73 "esp", "ebp", "esi", "edi",
74 "eip", "eflags", "cs", "ss",
75 "ds", "es", "fs", "gs",
76 "st0", "st1", "st2", "st3",
77 "st4", "st5", "st6", "st7",
78 "fctrl", "fstat", "ftag", "fiseg",
79 "fioff", "foseg", "fooff", "fop",
80 "xmm0", "xmm1", "xmm2", "xmm3",
81 "xmm4", "xmm5", "xmm6", "xmm7",
82 "mxcsr"
83 };
84
85 static const char *i386_zmm_names[] =
86 {
87 "zmm0", "zmm1", "zmm2", "zmm3",
88 "zmm4", "zmm5", "zmm6", "zmm7"
89 };
90
91 static const char *i386_zmmh_names[] =
92 {
93 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
94 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
95 };
96
97 static const char *i386_k_names[] =
98 {
99 "k0", "k1", "k2", "k3",
100 "k4", "k5", "k6", "k7"
101 };
102
103 static const char *i386_ymm_names[] =
104 {
105 "ymm0", "ymm1", "ymm2", "ymm3",
106 "ymm4", "ymm5", "ymm6", "ymm7",
107 };
108
109 static const char *i386_ymmh_names[] =
110 {
111 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
112 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
113 };
114
115 static const char *i386_mpx_names[] =
116 {
117 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
118 };
119
120 static const char* i386_pkeys_names[] =
121 {
122 "pkru"
123 };
124
125 /* Register names for MPX pseudo-registers. */
126
127 static const char *i386_bnd_names[] =
128 {
129 "bnd0", "bnd1", "bnd2", "bnd3"
130 };
131
132 /* Register names for MMX pseudo-registers. */
133
134 static const char *i386_mmx_names[] =
135 {
136 "mm0", "mm1", "mm2", "mm3",
137 "mm4", "mm5", "mm6", "mm7"
138 };
139
140 /* Register names for byte pseudo-registers. */
141
142 static const char *i386_byte_names[] =
143 {
144 "al", "cl", "dl", "bl",
145 "ah", "ch", "dh", "bh"
146 };
147
148 /* Register names for word pseudo-registers. */
149
150 static const char *i386_word_names[] =
151 {
152 "ax", "cx", "dx", "bx",
153 "", "bp", "si", "di"
154 };
155
156 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
157 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
158 we have 16 upper ZMM regs that have to be handled differently. */
159
160 const int num_lower_zmm_regs = 16;
161
162 /* MMX register? */
163
164 static int
165 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
166 {
167 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
168 int mm0_regnum = tdep->mm0_regnum;
169
170 if (mm0_regnum < 0)
171 return 0;
172
173 regnum -= mm0_regnum;
174 return regnum >= 0 && regnum < tdep->num_mmx_regs;
175 }
176
177 /* Byte register? */
178
179 int
180 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
181 {
182 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
183
184 regnum -= tdep->al_regnum;
185 return regnum >= 0 && regnum < tdep->num_byte_regs;
186 }
187
188 /* Word register? */
189
190 int
191 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
192 {
193 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
194
195 regnum -= tdep->ax_regnum;
196 return regnum >= 0 && regnum < tdep->num_word_regs;
197 }
198
199 /* Dword register? */
200
201 int
202 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
203 {
204 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
205 int eax_regnum = tdep->eax_regnum;
206
207 if (eax_regnum < 0)
208 return 0;
209
210 regnum -= eax_regnum;
211 return regnum >= 0 && regnum < tdep->num_dword_regs;
212 }
213
214 /* AVX512 register? */
215
216 int
217 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
218 {
219 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
220 int zmm0h_regnum = tdep->zmm0h_regnum;
221
222 if (zmm0h_regnum < 0)
223 return 0;
224
225 regnum -= zmm0h_regnum;
226 return regnum >= 0 && regnum < tdep->num_zmm_regs;
227 }
228
229 int
230 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
231 {
232 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
233 int zmm0_regnum = tdep->zmm0_regnum;
234
235 if (zmm0_regnum < 0)
236 return 0;
237
238 regnum -= zmm0_regnum;
239 return regnum >= 0 && regnum < tdep->num_zmm_regs;
240 }
241
242 int
243 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
244 {
245 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
246 int k0_regnum = tdep->k0_regnum;
247
248 if (k0_regnum < 0)
249 return 0;
250
251 regnum -= k0_regnum;
252 return regnum >= 0 && regnum < I387_NUM_K_REGS;
253 }
254
255 static int
256 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
257 {
258 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
259 int ymm0h_regnum = tdep->ymm0h_regnum;
260
261 if (ymm0h_regnum < 0)
262 return 0;
263
264 regnum -= ymm0h_regnum;
265 return regnum >= 0 && regnum < tdep->num_ymm_regs;
266 }
267
268 /* AVX register? */
269
270 int
271 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
272 {
273 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
274 int ymm0_regnum = tdep->ymm0_regnum;
275
276 if (ymm0_regnum < 0)
277 return 0;
278
279 regnum -= ymm0_regnum;
280 return regnum >= 0 && regnum < tdep->num_ymm_regs;
281 }
282
283 static int
284 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
285 {
286 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
287 int ymm16h_regnum = tdep->ymm16h_regnum;
288
289 if (ymm16h_regnum < 0)
290 return 0;
291
292 regnum -= ymm16h_regnum;
293 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
294 }
295
296 int
297 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
298 {
299 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
300 int ymm16_regnum = tdep->ymm16_regnum;
301
302 if (ymm16_regnum < 0)
303 return 0;
304
305 regnum -= ymm16_regnum;
306 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
307 }
308
309 /* BND register? */
310
311 int
312 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
313 {
314 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
315 int bnd0_regnum = tdep->bnd0_regnum;
316
317 if (bnd0_regnum < 0)
318 return 0;
319
320 regnum -= bnd0_regnum;
321 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
322 }
323
324 /* SSE register? */
325
326 int
327 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
328 {
329 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
330 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
331
332 if (num_xmm_regs == 0)
333 return 0;
334
335 regnum -= I387_XMM0_REGNUM (tdep);
336 return regnum >= 0 && regnum < num_xmm_regs;
337 }
338
339 /* XMM_512 register? */
340
341 int
342 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
343 {
344 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
345 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
346
347 if (num_xmm_avx512_regs == 0)
348 return 0;
349
350 regnum -= I387_XMM16_REGNUM (tdep);
351 return regnum >= 0 && regnum < num_xmm_avx512_regs;
352 }
353
354 static int
355 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
356 {
357 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
358
359 if (I387_NUM_XMM_REGS (tdep) == 0)
360 return 0;
361
362 return (regnum == I387_MXCSR_REGNUM (tdep));
363 }
364
365 /* FP register? */
366
367 int
368 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
369 {
370 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
371
372 if (I387_ST0_REGNUM (tdep) < 0)
373 return 0;
374
375 return (I387_ST0_REGNUM (tdep) <= regnum
376 && regnum < I387_FCTRL_REGNUM (tdep));
377 }
378
379 int
380 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
381 {
382 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
383
384 if (I387_ST0_REGNUM (tdep) < 0)
385 return 0;
386
387 return (I387_FCTRL_REGNUM (tdep) <= regnum
388 && regnum < I387_XMM0_REGNUM (tdep));
389 }
390
391 /* BNDr (raw) register? */
392
393 static int
394 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
395 {
396 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
397
398 if (I387_BND0R_REGNUM (tdep) < 0)
399 return 0;
400
401 regnum -= tdep->bnd0r_regnum;
402 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
403 }
404
405 /* BND control register? */
406
407 static int
408 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
409 {
410 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
411
412 if (I387_BNDCFGU_REGNUM (tdep) < 0)
413 return 0;
414
415 regnum -= I387_BNDCFGU_REGNUM (tdep);
416 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
417 }
418
419 /* PKRU register? */
420
421 bool
422 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
423 {
424 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
425 int pkru_regnum = tdep->pkru_regnum;
426
427 if (pkru_regnum < 0)
428 return false;
429
430 regnum -= pkru_regnum;
431 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
432 }
433
434 /* Return the name of register REGNUM, or the empty string if it is
435 an anonymous register. */
436
437 static const char *
438 i386_register_name (struct gdbarch *gdbarch, int regnum)
439 {
440 /* Hide the upper YMM registers. */
441 if (i386_ymmh_regnum_p (gdbarch, regnum))
442 return "";
443
444 /* Hide the upper YMM16-31 registers. */
445 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
446 return "";
447
448 /* Hide the upper ZMM registers. */
449 if (i386_zmmh_regnum_p (gdbarch, regnum))
450 return "";
451
452 return tdesc_register_name (gdbarch, regnum);
453 }
454
455 /* Return the name of register REGNUM. */
456
457 const char *
458 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
459 {
460 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
461 if (i386_bnd_regnum_p (gdbarch, regnum))
462 return i386_bnd_names[regnum - tdep->bnd0_regnum];
463 if (i386_mmx_regnum_p (gdbarch, regnum))
464 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
465 else if (i386_ymm_regnum_p (gdbarch, regnum))
466 return i386_ymm_names[regnum - tdep->ymm0_regnum];
467 else if (i386_zmm_regnum_p (gdbarch, regnum))
468 return i386_zmm_names[regnum - tdep->zmm0_regnum];
469 else if (i386_byte_regnum_p (gdbarch, regnum))
470 return i386_byte_names[regnum - tdep->al_regnum];
471 else if (i386_word_regnum_p (gdbarch, regnum))
472 return i386_word_names[regnum - tdep->ax_regnum];
473
474 internal_error (__FILE__, __LINE__, _("invalid regnum"));
475 }
476
477 /* Convert a dbx register number REG to the appropriate register
478 number used by GDB. */
479
480 static int
481 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
482 {
483 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
484
485 /* This implements what GCC calls the "default" register map
486 (dbx_register_map[]). */
487
488 if (reg >= 0 && reg <= 7)
489 {
490 /* General-purpose registers. The debug info calls %ebp
491 register 4, and %esp register 5. */
492 if (reg == 4)
493 return 5;
494 else if (reg == 5)
495 return 4;
496 else return reg;
497 }
498 else if (reg >= 12 && reg <= 19)
499 {
500 /* Floating-point registers. */
501 return reg - 12 + I387_ST0_REGNUM (tdep);
502 }
503 else if (reg >= 21 && reg <= 28)
504 {
505 /* SSE registers. */
506 int ymm0_regnum = tdep->ymm0_regnum;
507
508 if (ymm0_regnum >= 0
509 && i386_xmm_regnum_p (gdbarch, reg))
510 return reg - 21 + ymm0_regnum;
511 else
512 return reg - 21 + I387_XMM0_REGNUM (tdep);
513 }
514 else if (reg >= 29 && reg <= 36)
515 {
516 /* MMX registers. */
517 return reg - 29 + I387_MM0_REGNUM (tdep);
518 }
519
520 /* This will hopefully provoke a warning. */
521 return gdbarch_num_cooked_regs (gdbarch);
522 }
523
524 /* Convert SVR4 DWARF register number REG to the appropriate register number
525 used by GDB. */
526
527 static int
528 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
529 {
530 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
531
532 /* This implements the GCC register map that tries to be compatible
533 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
534
535 /* The SVR4 register numbering includes %eip and %eflags, and
536 numbers the floating point registers differently. */
537 if (reg >= 0 && reg <= 9)
538 {
539 /* General-purpose registers. */
540 return reg;
541 }
542 else if (reg >= 11 && reg <= 18)
543 {
544 /* Floating-point registers. */
545 return reg - 11 + I387_ST0_REGNUM (tdep);
546 }
547 else if (reg >= 21 && reg <= 36)
548 {
549 /* The SSE and MMX registers have the same numbers as with dbx. */
550 return i386_dbx_reg_to_regnum (gdbarch, reg);
551 }
552
553 switch (reg)
554 {
555 case 37: return I387_FCTRL_REGNUM (tdep);
556 case 38: return I387_FSTAT_REGNUM (tdep);
557 case 39: return I387_MXCSR_REGNUM (tdep);
558 case 40: return I386_ES_REGNUM;
559 case 41: return I386_CS_REGNUM;
560 case 42: return I386_SS_REGNUM;
561 case 43: return I386_DS_REGNUM;
562 case 44: return I386_FS_REGNUM;
563 case 45: return I386_GS_REGNUM;
564 }
565
566 return -1;
567 }
568
569 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
570 num_regs + num_pseudo_regs for other debug formats. */
571
572 int
573 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
574 {
575 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
576
577 if (regnum == -1)
578 return gdbarch_num_cooked_regs (gdbarch);
579 return regnum;
580 }
581
582 \f
583
584 /* This is the variable that is set with "set disassembly-flavor", and
585 its legitimate values. */
586 static const char att_flavor[] = "att";
587 static const char intel_flavor[] = "intel";
588 static const char *const valid_flavors[] =
589 {
590 att_flavor,
591 intel_flavor,
592 NULL
593 };
594 static const char *disassembly_flavor = att_flavor;
595 \f
596
597 /* Use the program counter to determine the contents and size of a
598 breakpoint instruction. Return a pointer to a string of bytes that
599 encode a breakpoint instruction, store the length of the string in
600 *LEN and optionally adjust *PC to point to the correct memory
601 location for inserting the breakpoint.
602
603 On the i386 we have a single breakpoint that fits in a single byte
604 and can be inserted anywhere.
605
606 This function is 64-bit safe. */
607
608 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
609
610 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
611
612 \f
613 /* Displaced instruction handling. */
614
615 /* Skip the legacy instruction prefixes in INSN.
616 Not all prefixes are valid for any particular insn
617 but we needn't care, the insn will fault if it's invalid.
618 The result is a pointer to the first opcode byte,
619 or NULL if we run off the end of the buffer. */
620
621 static gdb_byte *
622 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
623 {
624 gdb_byte *end = insn + max_len;
625
626 while (insn < end)
627 {
628 switch (*insn)
629 {
630 case DATA_PREFIX_OPCODE:
631 case ADDR_PREFIX_OPCODE:
632 case CS_PREFIX_OPCODE:
633 case DS_PREFIX_OPCODE:
634 case ES_PREFIX_OPCODE:
635 case FS_PREFIX_OPCODE:
636 case GS_PREFIX_OPCODE:
637 case SS_PREFIX_OPCODE:
638 case LOCK_PREFIX_OPCODE:
639 case REPE_PREFIX_OPCODE:
640 case REPNE_PREFIX_OPCODE:
641 ++insn;
642 continue;
643 default:
644 return insn;
645 }
646 }
647
648 return NULL;
649 }
650
651 static int
652 i386_absolute_jmp_p (const gdb_byte *insn)
653 {
654 /* jmp far (absolute address in operand). */
655 if (insn[0] == 0xea)
656 return 1;
657
658 if (insn[0] == 0xff)
659 {
660 /* jump near, absolute indirect (/4). */
661 if ((insn[1] & 0x38) == 0x20)
662 return 1;
663
664 /* jump far, absolute indirect (/5). */
665 if ((insn[1] & 0x38) == 0x28)
666 return 1;
667 }
668
669 return 0;
670 }
671
672 /* Return non-zero if INSN is a jump, zero otherwise. */
673
674 static int
675 i386_jmp_p (const gdb_byte *insn)
676 {
677 /* jump short, relative. */
678 if (insn[0] == 0xeb)
679 return 1;
680
681 /* jump near, relative. */
682 if (insn[0] == 0xe9)
683 return 1;
684
685 return i386_absolute_jmp_p (insn);
686 }
687
688 static int
689 i386_absolute_call_p (const gdb_byte *insn)
690 {
691 /* call far, absolute. */
692 if (insn[0] == 0x9a)
693 return 1;
694
695 if (insn[0] == 0xff)
696 {
697 /* Call near, absolute indirect (/2). */
698 if ((insn[1] & 0x38) == 0x10)
699 return 1;
700
701 /* Call far, absolute indirect (/3). */
702 if ((insn[1] & 0x38) == 0x18)
703 return 1;
704 }
705
706 return 0;
707 }
708
709 static int
710 i386_ret_p (const gdb_byte *insn)
711 {
712 switch (insn[0])
713 {
714 case 0xc2: /* ret near, pop N bytes. */
715 case 0xc3: /* ret near */
716 case 0xca: /* ret far, pop N bytes. */
717 case 0xcb: /* ret far */
718 case 0xcf: /* iret */
719 return 1;
720
721 default:
722 return 0;
723 }
724 }
725
726 static int
727 i386_call_p (const gdb_byte *insn)
728 {
729 if (i386_absolute_call_p (insn))
730 return 1;
731
732 /* call near, relative. */
733 if (insn[0] == 0xe8)
734 return 1;
735
736 return 0;
737 }
738
739 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
740 length in bytes. Otherwise, return zero. */
741
742 static int
743 i386_syscall_p (const gdb_byte *insn, int *lengthp)
744 {
745 /* Is it 'int $0x80'? */
746 if ((insn[0] == 0xcd && insn[1] == 0x80)
747 /* Or is it 'sysenter'? */
748 || (insn[0] == 0x0f && insn[1] == 0x34)
749 /* Or is it 'syscall'? */
750 || (insn[0] == 0x0f && insn[1] == 0x05))
751 {
752 *lengthp = 2;
753 return 1;
754 }
755
756 return 0;
757 }
758
759 /* The gdbarch insn_is_call method. */
760
761 static int
762 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
763 {
764 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
765
766 read_code (addr, buf, I386_MAX_INSN_LEN);
767 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
768
769 return i386_call_p (insn);
770 }
771
772 /* The gdbarch insn_is_ret method. */
773
774 static int
775 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
776 {
777 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
778
779 read_code (addr, buf, I386_MAX_INSN_LEN);
780 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
781
782 return i386_ret_p (insn);
783 }
784
785 /* The gdbarch insn_is_jump method. */
786
787 static int
788 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
789 {
790 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
791
792 read_code (addr, buf, I386_MAX_INSN_LEN);
793 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
794
795 return i386_jmp_p (insn);
796 }
797
798 /* Some kernels may run one past a syscall insn, so we have to cope. */
799
800 struct displaced_step_closure *
801 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
802 CORE_ADDR from, CORE_ADDR to,
803 struct regcache *regs)
804 {
805 size_t len = gdbarch_max_insn_length (gdbarch);
806 i386_displaced_step_closure *closure = new i386_displaced_step_closure (len);
807 gdb_byte *buf = closure->buf.data ();
808
809 read_memory (from, buf, len);
810
811 /* GDB may get control back after the insn after the syscall.
812 Presumably this is a kernel bug.
813 If this is a syscall, make sure there's a nop afterwards. */
814 {
815 int syscall_length;
816 gdb_byte *insn;
817
818 insn = i386_skip_prefixes (buf, len);
819 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
820 insn[syscall_length] = NOP_OPCODE;
821 }
822
823 write_memory (to, buf, len);
824
825 if (debug_displaced)
826 {
827 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
828 paddress (gdbarch, from), paddress (gdbarch, to));
829 displaced_step_dump_bytes (gdb_stdlog, buf, len);
830 }
831
832 return closure;
833 }
834
835 /* Fix up the state of registers and memory after having single-stepped
836 a displaced instruction. */
837
838 void
839 i386_displaced_step_fixup (struct gdbarch *gdbarch,
840 struct displaced_step_closure *closure_,
841 CORE_ADDR from, CORE_ADDR to,
842 struct regcache *regs)
843 {
844 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
845
846 /* The offset we applied to the instruction's address.
847 This could well be negative (when viewed as a signed 32-bit
848 value), but ULONGEST won't reflect that, so take care when
849 applying it. */
850 ULONGEST insn_offset = to - from;
851
852 i386_displaced_step_closure *closure
853 = (i386_displaced_step_closure *) closure_;
854 gdb_byte *insn = closure->buf.data ();
855 /* The start of the insn, needed in case we see some prefixes. */
856 gdb_byte *insn_start = insn;
857
858 if (debug_displaced)
859 fprintf_unfiltered (gdb_stdlog,
860 "displaced: fixup (%s, %s), "
861 "insn = 0x%02x 0x%02x ...\n",
862 paddress (gdbarch, from), paddress (gdbarch, to),
863 insn[0], insn[1]);
864
865 /* The list of issues to contend with here is taken from
866 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
867 Yay for Free Software! */
868
869 /* Relocate the %eip, if necessary. */
870
871 /* The instruction recognizers we use assume any leading prefixes
872 have been skipped. */
873 {
874 /* This is the size of the buffer in closure. */
875 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
876 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
877 /* If there are too many prefixes, just ignore the insn.
878 It will fault when run. */
879 if (opcode != NULL)
880 insn = opcode;
881 }
882
883 /* Except in the case of absolute or indirect jump or call
884 instructions, or a return instruction, the new eip is relative to
885 the displaced instruction; make it relative. Well, signal
886 handler returns don't need relocation either, but we use the
887 value of %eip to recognize those; see below. */
888 if (! i386_absolute_jmp_p (insn)
889 && ! i386_absolute_call_p (insn)
890 && ! i386_ret_p (insn))
891 {
892 ULONGEST orig_eip;
893 int insn_len;
894
895 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
896
897 /* A signal trampoline system call changes the %eip, resuming
898 execution of the main program after the signal handler has
899 returned. That makes them like 'return' instructions; we
900 shouldn't relocate %eip.
901
902 But most system calls don't, and we do need to relocate %eip.
903
904 Our heuristic for distinguishing these cases: if stepping
905 over the system call instruction left control directly after
906 the instruction, the we relocate --- control almost certainly
907 doesn't belong in the displaced copy. Otherwise, we assume
908 the instruction has put control where it belongs, and leave
909 it unrelocated. Goodness help us if there are PC-relative
910 system calls. */
911 if (i386_syscall_p (insn, &insn_len)
912 && orig_eip != to + (insn - insn_start) + insn_len
913 /* GDB can get control back after the insn after the syscall.
914 Presumably this is a kernel bug.
915 i386_displaced_step_copy_insn ensures its a nop,
916 we add one to the length for it. */
917 && orig_eip != to + (insn - insn_start) + insn_len + 1)
918 {
919 if (debug_displaced)
920 fprintf_unfiltered (gdb_stdlog,
921 "displaced: syscall changed %%eip; "
922 "not relocating\n");
923 }
924 else
925 {
926 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
927
928 /* If we just stepped over a breakpoint insn, we don't backup
929 the pc on purpose; this is to match behaviour without
930 stepping. */
931
932 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
933
934 if (debug_displaced)
935 fprintf_unfiltered (gdb_stdlog,
936 "displaced: "
937 "relocated %%eip from %s to %s\n",
938 paddress (gdbarch, orig_eip),
939 paddress (gdbarch, eip));
940 }
941 }
942
943 /* If the instruction was PUSHFL, then the TF bit will be set in the
944 pushed value, and should be cleared. We'll leave this for later,
945 since GDB already messes up the TF flag when stepping over a
946 pushfl. */
947
948 /* If the instruction was a call, the return address now atop the
949 stack is the address following the copied instruction. We need
950 to make it the address following the original instruction. */
951 if (i386_call_p (insn))
952 {
953 ULONGEST esp;
954 ULONGEST retaddr;
955 const ULONGEST retaddr_len = 4;
956
957 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
958 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
959 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
960 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
961
962 if (debug_displaced)
963 fprintf_unfiltered (gdb_stdlog,
964 "displaced: relocated return addr at %s to %s\n",
965 paddress (gdbarch, esp),
966 paddress (gdbarch, retaddr));
967 }
968 }
969
970 static void
971 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
972 {
973 target_write_memory (*to, buf, len);
974 *to += len;
975 }
976
977 static void
978 i386_relocate_instruction (struct gdbarch *gdbarch,
979 CORE_ADDR *to, CORE_ADDR oldloc)
980 {
981 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
982 gdb_byte buf[I386_MAX_INSN_LEN];
983 int offset = 0, rel32, newrel;
984 int insn_length;
985 gdb_byte *insn = buf;
986
987 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
988
989 insn_length = gdb_buffered_insn_length (gdbarch, insn,
990 I386_MAX_INSN_LEN, oldloc);
991
992 /* Get past the prefixes. */
993 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
994
995 /* Adjust calls with 32-bit relative addresses as push/jump, with
996 the address pushed being the location where the original call in
997 the user program would return to. */
998 if (insn[0] == 0xe8)
999 {
1000 gdb_byte push_buf[16];
1001 unsigned int ret_addr;
1002
1003 /* Where "ret" in the original code will return to. */
1004 ret_addr = oldloc + insn_length;
1005 push_buf[0] = 0x68; /* pushq $... */
1006 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1007 /* Push the push. */
1008 append_insns (to, 5, push_buf);
1009
1010 /* Convert the relative call to a relative jump. */
1011 insn[0] = 0xe9;
1012
1013 /* Adjust the destination offset. */
1014 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1015 newrel = (oldloc - *to) + rel32;
1016 store_signed_integer (insn + 1, 4, byte_order, newrel);
1017
1018 if (debug_displaced)
1019 fprintf_unfiltered (gdb_stdlog,
1020 "Adjusted insn rel32=%s at %s to"
1021 " rel32=%s at %s\n",
1022 hex_string (rel32), paddress (gdbarch, oldloc),
1023 hex_string (newrel), paddress (gdbarch, *to));
1024
1025 /* Write the adjusted jump into its displaced location. */
1026 append_insns (to, 5, insn);
1027 return;
1028 }
1029
1030 /* Adjust jumps with 32-bit relative addresses. Calls are already
1031 handled above. */
1032 if (insn[0] == 0xe9)
1033 offset = 1;
1034 /* Adjust conditional jumps. */
1035 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1036 offset = 2;
1037
1038 if (offset)
1039 {
1040 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1041 newrel = (oldloc - *to) + rel32;
1042 store_signed_integer (insn + offset, 4, byte_order, newrel);
1043 if (debug_displaced)
1044 fprintf_unfiltered (gdb_stdlog,
1045 "Adjusted insn rel32=%s at %s to"
1046 " rel32=%s at %s\n",
1047 hex_string (rel32), paddress (gdbarch, oldloc),
1048 hex_string (newrel), paddress (gdbarch, *to));
1049 }
1050
1051 /* Write the adjusted instructions into their displaced
1052 location. */
1053 append_insns (to, insn_length, buf);
1054 }
1055
1056 \f
1057 #ifdef I386_REGNO_TO_SYMMETRY
1058 #error "The Sequent Symmetry is no longer supported."
1059 #endif
1060
1061 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1062 and %esp "belong" to the calling function. Therefore these
1063 registers should be saved if they're going to be modified. */
1064
1065 /* The maximum number of saved registers. This should include all
1066 registers mentioned above, and %eip. */
1067 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1068
1069 struct i386_frame_cache
1070 {
1071 /* Base address. */
1072 CORE_ADDR base;
1073 int base_p;
1074 LONGEST sp_offset;
1075 CORE_ADDR pc;
1076
1077 /* Saved registers. */
1078 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1079 CORE_ADDR saved_sp;
1080 int saved_sp_reg;
1081 int pc_in_eax;
1082
1083 /* Stack space reserved for local variables. */
1084 long locals;
1085 };
1086
1087 /* Allocate and initialize a frame cache. */
1088
1089 static struct i386_frame_cache *
1090 i386_alloc_frame_cache (void)
1091 {
1092 struct i386_frame_cache *cache;
1093 int i;
1094
1095 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1096
1097 /* Base address. */
1098 cache->base_p = 0;
1099 cache->base = 0;
1100 cache->sp_offset = -4;
1101 cache->pc = 0;
1102
1103 /* Saved registers. We initialize these to -1 since zero is a valid
1104 offset (that's where %ebp is supposed to be stored). */
1105 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1106 cache->saved_regs[i] = -1;
1107 cache->saved_sp = 0;
1108 cache->saved_sp_reg = -1;
1109 cache->pc_in_eax = 0;
1110
1111 /* Frameless until proven otherwise. */
1112 cache->locals = -1;
1113
1114 return cache;
1115 }
1116
1117 /* If the instruction at PC is a jump, return the address of its
1118 target. Otherwise, return PC. */
1119
1120 static CORE_ADDR
1121 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1122 {
1123 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1124 gdb_byte op;
1125 long delta = 0;
1126 int data16 = 0;
1127
1128 if (target_read_code (pc, &op, 1))
1129 return pc;
1130
1131 if (op == 0x66)
1132 {
1133 data16 = 1;
1134
1135 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1136 }
1137
1138 switch (op)
1139 {
1140 case 0xe9:
1141 /* Relative jump: if data16 == 0, disp32, else disp16. */
1142 if (data16)
1143 {
1144 delta = read_memory_integer (pc + 2, 2, byte_order);
1145
1146 /* Include the size of the jmp instruction (including the
1147 0x66 prefix). */
1148 delta += 4;
1149 }
1150 else
1151 {
1152 delta = read_memory_integer (pc + 1, 4, byte_order);
1153
1154 /* Include the size of the jmp instruction. */
1155 delta += 5;
1156 }
1157 break;
1158 case 0xeb:
1159 /* Relative jump, disp8 (ignore data16). */
1160 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1161
1162 delta += data16 + 2;
1163 break;
1164 }
1165
1166 return pc + delta;
1167 }
1168
1169 /* Check whether PC points at a prologue for a function returning a
1170 structure or union. If so, it updates CACHE and returns the
1171 address of the first instruction after the code sequence that
1172 removes the "hidden" argument from the stack or CURRENT_PC,
1173 whichever is smaller. Otherwise, return PC. */
1174
1175 static CORE_ADDR
1176 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1177 struct i386_frame_cache *cache)
1178 {
1179 /* Functions that return a structure or union start with:
1180
1181 popl %eax 0x58
1182 xchgl %eax, (%esp) 0x87 0x04 0x24
1183 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1184
1185 (the System V compiler puts out the second `xchg' instruction,
1186 and the assembler doesn't try to optimize it, so the 'sib' form
1187 gets generated). This sequence is used to get the address of the
1188 return buffer for a function that returns a structure. */
1189 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1190 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1191 gdb_byte buf[4];
1192 gdb_byte op;
1193
1194 if (current_pc <= pc)
1195 return pc;
1196
1197 if (target_read_code (pc, &op, 1))
1198 return pc;
1199
1200 if (op != 0x58) /* popl %eax */
1201 return pc;
1202
1203 if (target_read_code (pc + 1, buf, 4))
1204 return pc;
1205
1206 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1207 return pc;
1208
1209 if (current_pc == pc)
1210 {
1211 cache->sp_offset += 4;
1212 return current_pc;
1213 }
1214
1215 if (current_pc == pc + 1)
1216 {
1217 cache->pc_in_eax = 1;
1218 return current_pc;
1219 }
1220
1221 if (buf[1] == proto1[1])
1222 return pc + 4;
1223 else
1224 return pc + 5;
1225 }
1226
1227 static CORE_ADDR
1228 i386_skip_probe (CORE_ADDR pc)
1229 {
1230 /* A function may start with
1231
1232 pushl constant
1233 call _probe
1234 addl $4, %esp
1235
1236 followed by
1237
1238 pushl %ebp
1239
1240 etc. */
1241 gdb_byte buf[8];
1242 gdb_byte op;
1243
1244 if (target_read_code (pc, &op, 1))
1245 return pc;
1246
1247 if (op == 0x68 || op == 0x6a)
1248 {
1249 int delta;
1250
1251 /* Skip past the `pushl' instruction; it has either a one-byte or a
1252 four-byte operand, depending on the opcode. */
1253 if (op == 0x68)
1254 delta = 5;
1255 else
1256 delta = 2;
1257
1258 /* Read the following 8 bytes, which should be `call _probe' (6
1259 bytes) followed by `addl $4,%esp' (2 bytes). */
1260 read_memory (pc + delta, buf, sizeof (buf));
1261 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1262 pc += delta + sizeof (buf);
1263 }
1264
1265 return pc;
1266 }
1267
1268 /* GCC 4.1 and later, can put code in the prologue to realign the
1269 stack pointer. Check whether PC points to such code, and update
1270 CACHE accordingly. Return the first instruction after the code
1271 sequence or CURRENT_PC, whichever is smaller. If we don't
1272 recognize the code, return PC. */
1273
1274 static CORE_ADDR
1275 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1276 struct i386_frame_cache *cache)
1277 {
1278 /* There are 2 code sequences to re-align stack before the frame
1279 gets set up:
1280
1281 1. Use a caller-saved saved register:
1282
1283 leal 4(%esp), %reg
1284 andl $-XXX, %esp
1285 pushl -4(%reg)
1286
1287 2. Use a callee-saved saved register:
1288
1289 pushl %reg
1290 leal 8(%esp), %reg
1291 andl $-XXX, %esp
1292 pushl -4(%reg)
1293
1294 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1295
1296 0x83 0xe4 0xf0 andl $-16, %esp
1297 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1298 */
1299
1300 gdb_byte buf[14];
1301 int reg;
1302 int offset, offset_and;
1303 static int regnums[8] = {
1304 I386_EAX_REGNUM, /* %eax */
1305 I386_ECX_REGNUM, /* %ecx */
1306 I386_EDX_REGNUM, /* %edx */
1307 I386_EBX_REGNUM, /* %ebx */
1308 I386_ESP_REGNUM, /* %esp */
1309 I386_EBP_REGNUM, /* %ebp */
1310 I386_ESI_REGNUM, /* %esi */
1311 I386_EDI_REGNUM /* %edi */
1312 };
1313
1314 if (target_read_code (pc, buf, sizeof buf))
1315 return pc;
1316
1317 /* Check caller-saved saved register. The first instruction has
1318 to be "leal 4(%esp), %reg". */
1319 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1320 {
1321 /* MOD must be binary 10 and R/M must be binary 100. */
1322 if ((buf[1] & 0xc7) != 0x44)
1323 return pc;
1324
1325 /* REG has register number. */
1326 reg = (buf[1] >> 3) & 7;
1327 offset = 4;
1328 }
1329 else
1330 {
1331 /* Check callee-saved saved register. The first instruction
1332 has to be "pushl %reg". */
1333 if ((buf[0] & 0xf8) != 0x50)
1334 return pc;
1335
1336 /* Get register. */
1337 reg = buf[0] & 0x7;
1338
1339 /* The next instruction has to be "leal 8(%esp), %reg". */
1340 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1341 return pc;
1342
1343 /* MOD must be binary 10 and R/M must be binary 100. */
1344 if ((buf[2] & 0xc7) != 0x44)
1345 return pc;
1346
1347 /* REG has register number. Registers in pushl and leal have to
1348 be the same. */
1349 if (reg != ((buf[2] >> 3) & 7))
1350 return pc;
1351
1352 offset = 5;
1353 }
1354
1355 /* Rigister can't be %esp nor %ebp. */
1356 if (reg == 4 || reg == 5)
1357 return pc;
1358
1359 /* The next instruction has to be "andl $-XXX, %esp". */
1360 if (buf[offset + 1] != 0xe4
1361 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1362 return pc;
1363
1364 offset_and = offset;
1365 offset += buf[offset] == 0x81 ? 6 : 3;
1366
1367 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1368 0xfc. REG must be binary 110 and MOD must be binary 01. */
1369 if (buf[offset] != 0xff
1370 || buf[offset + 2] != 0xfc
1371 || (buf[offset + 1] & 0xf8) != 0x70)
1372 return pc;
1373
1374 /* R/M has register. Registers in leal and pushl have to be the
1375 same. */
1376 if (reg != (buf[offset + 1] & 7))
1377 return pc;
1378
1379 if (current_pc > pc + offset_and)
1380 cache->saved_sp_reg = regnums[reg];
1381
1382 return std::min (pc + offset + 3, current_pc);
1383 }
1384
1385 /* Maximum instruction length we need to handle. */
1386 #define I386_MAX_MATCHED_INSN_LEN 6
1387
1388 /* Instruction description. */
1389 struct i386_insn
1390 {
1391 size_t len;
1392 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1393 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1394 };
1395
1396 /* Return whether instruction at PC matches PATTERN. */
1397
1398 static int
1399 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1400 {
1401 gdb_byte op;
1402
1403 if (target_read_code (pc, &op, 1))
1404 return 0;
1405
1406 if ((op & pattern.mask[0]) == pattern.insn[0])
1407 {
1408 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1409 int insn_matched = 1;
1410 size_t i;
1411
1412 gdb_assert (pattern.len > 1);
1413 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1414
1415 if (target_read_code (pc + 1, buf, pattern.len - 1))
1416 return 0;
1417
1418 for (i = 1; i < pattern.len; i++)
1419 {
1420 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1421 insn_matched = 0;
1422 }
1423 return insn_matched;
1424 }
1425 return 0;
1426 }
1427
1428 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1429 the first instruction description that matches. Otherwise, return
1430 NULL. */
1431
1432 static struct i386_insn *
1433 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1434 {
1435 struct i386_insn *pattern;
1436
1437 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1438 {
1439 if (i386_match_pattern (pc, *pattern))
1440 return pattern;
1441 }
1442
1443 return NULL;
1444 }
1445
1446 /* Return whether PC points inside a sequence of instructions that
1447 matches INSN_PATTERNS. */
1448
1449 static int
1450 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1451 {
1452 CORE_ADDR current_pc;
1453 int ix, i;
1454 struct i386_insn *insn;
1455
1456 insn = i386_match_insn (pc, insn_patterns);
1457 if (insn == NULL)
1458 return 0;
1459
1460 current_pc = pc;
1461 ix = insn - insn_patterns;
1462 for (i = ix - 1; i >= 0; i--)
1463 {
1464 current_pc -= insn_patterns[i].len;
1465
1466 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1467 return 0;
1468 }
1469
1470 current_pc = pc + insn->len;
1471 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1472 {
1473 if (!i386_match_pattern (current_pc, *insn))
1474 return 0;
1475
1476 current_pc += insn->len;
1477 }
1478
1479 return 1;
1480 }
1481
1482 /* Some special instructions that might be migrated by GCC into the
1483 part of the prologue that sets up the new stack frame. Because the
1484 stack frame hasn't been setup yet, no registers have been saved
1485 yet, and only the scratch registers %eax, %ecx and %edx can be
1486 touched. */
1487
1488 struct i386_insn i386_frame_setup_skip_insns[] =
1489 {
1490 /* Check for `movb imm8, r' and `movl imm32, r'.
1491
1492 ??? Should we handle 16-bit operand-sizes here? */
1493
1494 /* `movb imm8, %al' and `movb imm8, %ah' */
1495 /* `movb imm8, %cl' and `movb imm8, %ch' */
1496 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1497 /* `movb imm8, %dl' and `movb imm8, %dh' */
1498 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1499 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1500 { 5, { 0xb8 }, { 0xfe } },
1501 /* `movl imm32, %edx' */
1502 { 5, { 0xba }, { 0xff } },
1503
1504 /* Check for `mov imm32, r32'. Note that there is an alternative
1505 encoding for `mov m32, %eax'.
1506
1507 ??? Should we handle SIB adressing here?
1508 ??? Should we handle 16-bit operand-sizes here? */
1509
1510 /* `movl m32, %eax' */
1511 { 5, { 0xa1 }, { 0xff } },
1512 /* `movl m32, %eax' and `mov; m32, %ecx' */
1513 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1514 /* `movl m32, %edx' */
1515 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1516
1517 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1518 Because of the symmetry, there are actually two ways to encode
1519 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1520 opcode bytes 0x31 and 0x33 for `xorl'. */
1521
1522 /* `subl %eax, %eax' */
1523 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1524 /* `subl %ecx, %ecx' */
1525 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1526 /* `subl %edx, %edx' */
1527 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1528 /* `xorl %eax, %eax' */
1529 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1530 /* `xorl %ecx, %ecx' */
1531 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1532 /* `xorl %edx, %edx' */
1533 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1534 { 0 }
1535 };
1536
1537
1538 /* Check whether PC points to a no-op instruction. */
1539 static CORE_ADDR
1540 i386_skip_noop (CORE_ADDR pc)
1541 {
1542 gdb_byte op;
1543 int check = 1;
1544
1545 if (target_read_code (pc, &op, 1))
1546 return pc;
1547
1548 while (check)
1549 {
1550 check = 0;
1551 /* Ignore `nop' instruction. */
1552 if (op == 0x90)
1553 {
1554 pc += 1;
1555 if (target_read_code (pc, &op, 1))
1556 return pc;
1557 check = 1;
1558 }
1559 /* Ignore no-op instruction `mov %edi, %edi'.
1560 Microsoft system dlls often start with
1561 a `mov %edi,%edi' instruction.
1562 The 5 bytes before the function start are
1563 filled with `nop' instructions.
1564 This pattern can be used for hot-patching:
1565 The `mov %edi, %edi' instruction can be replaced by a
1566 near jump to the location of the 5 `nop' instructions
1567 which can be replaced by a 32-bit jump to anywhere
1568 in the 32-bit address space. */
1569
1570 else if (op == 0x8b)
1571 {
1572 if (target_read_code (pc + 1, &op, 1))
1573 return pc;
1574
1575 if (op == 0xff)
1576 {
1577 pc += 2;
1578 if (target_read_code (pc, &op, 1))
1579 return pc;
1580
1581 check = 1;
1582 }
1583 }
1584 }
1585 return pc;
1586 }
1587
1588 /* Check whether PC points at a code that sets up a new stack frame.
1589 If so, it updates CACHE and returns the address of the first
1590 instruction after the sequence that sets up the frame or LIMIT,
1591 whichever is smaller. If we don't recognize the code, return PC. */
1592
1593 static CORE_ADDR
1594 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1595 CORE_ADDR pc, CORE_ADDR limit,
1596 struct i386_frame_cache *cache)
1597 {
1598 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1599 struct i386_insn *insn;
1600 gdb_byte op;
1601 int skip = 0;
1602
1603 if (limit <= pc)
1604 return limit;
1605
1606 if (target_read_code (pc, &op, 1))
1607 return pc;
1608
1609 if (op == 0x55) /* pushl %ebp */
1610 {
1611 /* Take into account that we've executed the `pushl %ebp' that
1612 starts this instruction sequence. */
1613 cache->saved_regs[I386_EBP_REGNUM] = 0;
1614 cache->sp_offset += 4;
1615 pc++;
1616
1617 /* If that's all, return now. */
1618 if (limit <= pc)
1619 return limit;
1620
1621 /* Check for some special instructions that might be migrated by
1622 GCC into the prologue and skip them. At this point in the
1623 prologue, code should only touch the scratch registers %eax,
1624 %ecx and %edx, so while the number of posibilities is sheer,
1625 it is limited.
1626
1627 Make sure we only skip these instructions if we later see the
1628 `movl %esp, %ebp' that actually sets up the frame. */
1629 while (pc + skip < limit)
1630 {
1631 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1632 if (insn == NULL)
1633 break;
1634
1635 skip += insn->len;
1636 }
1637
1638 /* If that's all, return now. */
1639 if (limit <= pc + skip)
1640 return limit;
1641
1642 if (target_read_code (pc + skip, &op, 1))
1643 return pc + skip;
1644
1645 /* The i386 prologue looks like
1646
1647 push %ebp
1648 mov %esp,%ebp
1649 sub $0x10,%esp
1650
1651 and a different prologue can be generated for atom.
1652
1653 push %ebp
1654 lea (%esp),%ebp
1655 lea -0x10(%esp),%esp
1656
1657 We handle both of them here. */
1658
1659 switch (op)
1660 {
1661 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1662 case 0x8b:
1663 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1664 != 0xec)
1665 return pc;
1666 pc += (skip + 2);
1667 break;
1668 case 0x89:
1669 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1670 != 0xe5)
1671 return pc;
1672 pc += (skip + 2);
1673 break;
1674 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1675 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1676 != 0x242c)
1677 return pc;
1678 pc += (skip + 3);
1679 break;
1680 default:
1681 return pc;
1682 }
1683
1684 /* OK, we actually have a frame. We just don't know how large
1685 it is yet. Set its size to zero. We'll adjust it if
1686 necessary. We also now commit to skipping the special
1687 instructions mentioned before. */
1688 cache->locals = 0;
1689
1690 /* If that's all, return now. */
1691 if (limit <= pc)
1692 return limit;
1693
1694 /* Check for stack adjustment
1695
1696 subl $XXX, %esp
1697 or
1698 lea -XXX(%esp),%esp
1699
1700 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1701 reg, so we don't have to worry about a data16 prefix. */
1702 if (target_read_code (pc, &op, 1))
1703 return pc;
1704 if (op == 0x83)
1705 {
1706 /* `subl' with 8-bit immediate. */
1707 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1708 /* Some instruction starting with 0x83 other than `subl'. */
1709 return pc;
1710
1711 /* `subl' with signed 8-bit immediate (though it wouldn't
1712 make sense to be negative). */
1713 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1714 return pc + 3;
1715 }
1716 else if (op == 0x81)
1717 {
1718 /* Maybe it is `subl' with a 32-bit immediate. */
1719 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1720 /* Some instruction starting with 0x81 other than `subl'. */
1721 return pc;
1722
1723 /* It is `subl' with a 32-bit immediate. */
1724 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1725 return pc + 6;
1726 }
1727 else if (op == 0x8d)
1728 {
1729 /* The ModR/M byte is 0x64. */
1730 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1731 return pc;
1732 /* 'lea' with 8-bit displacement. */
1733 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1734 return pc + 4;
1735 }
1736 else
1737 {
1738 /* Some instruction other than `subl' nor 'lea'. */
1739 return pc;
1740 }
1741 }
1742 else if (op == 0xc8) /* enter */
1743 {
1744 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1745 return pc + 4;
1746 }
1747
1748 return pc;
1749 }
1750
1751 /* Check whether PC points at code that saves registers on the stack.
1752 If so, it updates CACHE and returns the address of the first
1753 instruction after the register saves or CURRENT_PC, whichever is
1754 smaller. Otherwise, return PC. */
1755
1756 static CORE_ADDR
1757 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1758 struct i386_frame_cache *cache)
1759 {
1760 CORE_ADDR offset = 0;
1761 gdb_byte op;
1762 int i;
1763
1764 if (cache->locals > 0)
1765 offset -= cache->locals;
1766 for (i = 0; i < 8 && pc < current_pc; i++)
1767 {
1768 if (target_read_code (pc, &op, 1))
1769 return pc;
1770 if (op < 0x50 || op > 0x57)
1771 break;
1772
1773 offset -= 4;
1774 cache->saved_regs[op - 0x50] = offset;
1775 cache->sp_offset += 4;
1776 pc++;
1777 }
1778
1779 return pc;
1780 }
1781
1782 /* Do a full analysis of the prologue at PC and update CACHE
1783 accordingly. Bail out early if CURRENT_PC is reached. Return the
1784 address where the analysis stopped.
1785
1786 We handle these cases:
1787
1788 The startup sequence can be at the start of the function, or the
1789 function can start with a branch to startup code at the end.
1790
1791 %ebp can be set up with either the 'enter' instruction, or "pushl
1792 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1793 once used in the System V compiler).
1794
1795 Local space is allocated just below the saved %ebp by either the
1796 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1797 16-bit unsigned argument for space to allocate, and the 'addl'
1798 instruction could have either a signed byte, or 32-bit immediate.
1799
1800 Next, the registers used by this function are pushed. With the
1801 System V compiler they will always be in the order: %edi, %esi,
1802 %ebx (and sometimes a harmless bug causes it to also save but not
1803 restore %eax); however, the code below is willing to see the pushes
1804 in any order, and will handle up to 8 of them.
1805
1806 If the setup sequence is at the end of the function, then the next
1807 instruction will be a branch back to the start. */
1808
1809 static CORE_ADDR
1810 i386_analyze_prologue (struct gdbarch *gdbarch,
1811 CORE_ADDR pc, CORE_ADDR current_pc,
1812 struct i386_frame_cache *cache)
1813 {
1814 pc = i386_skip_noop (pc);
1815 pc = i386_follow_jump (gdbarch, pc);
1816 pc = i386_analyze_struct_return (pc, current_pc, cache);
1817 pc = i386_skip_probe (pc);
1818 pc = i386_analyze_stack_align (pc, current_pc, cache);
1819 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1820 return i386_analyze_register_saves (pc, current_pc, cache);
1821 }
1822
1823 /* Return PC of first real instruction. */
1824
1825 static CORE_ADDR
1826 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1827 {
1828 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1829
1830 static gdb_byte pic_pat[6] =
1831 {
1832 0xe8, 0, 0, 0, 0, /* call 0x0 */
1833 0x5b, /* popl %ebx */
1834 };
1835 struct i386_frame_cache cache;
1836 CORE_ADDR pc;
1837 gdb_byte op;
1838 int i;
1839 CORE_ADDR func_addr;
1840
1841 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1842 {
1843 CORE_ADDR post_prologue_pc
1844 = skip_prologue_using_sal (gdbarch, func_addr);
1845 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1846
1847 /* Clang always emits a line note before the prologue and another
1848 one after. We trust clang to emit usable line notes. */
1849 if (post_prologue_pc
1850 && (cust != NULL
1851 && COMPUNIT_PRODUCER (cust) != NULL
1852 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1853 return std::max (start_pc, post_prologue_pc);
1854 }
1855
1856 cache.locals = -1;
1857 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1858 if (cache.locals < 0)
1859 return start_pc;
1860
1861 /* Found valid frame setup. */
1862
1863 /* The native cc on SVR4 in -K PIC mode inserts the following code
1864 to get the address of the global offset table (GOT) into register
1865 %ebx:
1866
1867 call 0x0
1868 popl %ebx
1869 movl %ebx,x(%ebp) (optional)
1870 addl y,%ebx
1871
1872 This code is with the rest of the prologue (at the end of the
1873 function), so we have to skip it to get to the first real
1874 instruction at the start of the function. */
1875
1876 for (i = 0; i < 6; i++)
1877 {
1878 if (target_read_code (pc + i, &op, 1))
1879 return pc;
1880
1881 if (pic_pat[i] != op)
1882 break;
1883 }
1884 if (i == 6)
1885 {
1886 int delta = 6;
1887
1888 if (target_read_code (pc + delta, &op, 1))
1889 return pc;
1890
1891 if (op == 0x89) /* movl %ebx, x(%ebp) */
1892 {
1893 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1894
1895 if (op == 0x5d) /* One byte offset from %ebp. */
1896 delta += 3;
1897 else if (op == 0x9d) /* Four byte offset from %ebp. */
1898 delta += 6;
1899 else /* Unexpected instruction. */
1900 delta = 0;
1901
1902 if (target_read_code (pc + delta, &op, 1))
1903 return pc;
1904 }
1905
1906 /* addl y,%ebx */
1907 if (delta > 0 && op == 0x81
1908 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1909 == 0xc3)
1910 {
1911 pc += delta + 6;
1912 }
1913 }
1914
1915 /* If the function starts with a branch (to startup code at the end)
1916 the last instruction should bring us back to the first
1917 instruction of the real code. */
1918 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1919 pc = i386_follow_jump (gdbarch, pc);
1920
1921 return pc;
1922 }
1923
1924 /* Check that the code pointed to by PC corresponds to a call to
1925 __main, skip it if so. Return PC otherwise. */
1926
1927 CORE_ADDR
1928 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1929 {
1930 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1931 gdb_byte op;
1932
1933 if (target_read_code (pc, &op, 1))
1934 return pc;
1935 if (op == 0xe8)
1936 {
1937 gdb_byte buf[4];
1938
1939 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1940 {
1941 /* Make sure address is computed correctly as a 32bit
1942 integer even if CORE_ADDR is 64 bit wide. */
1943 struct bound_minimal_symbol s;
1944 CORE_ADDR call_dest;
1945
1946 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1947 call_dest = call_dest & 0xffffffffU;
1948 s = lookup_minimal_symbol_by_pc (call_dest);
1949 if (s.minsym != NULL
1950 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1951 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1952 pc += 5;
1953 }
1954 }
1955
1956 return pc;
1957 }
1958
1959 /* This function is 64-bit safe. */
1960
1961 static CORE_ADDR
1962 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1963 {
1964 gdb_byte buf[8];
1965
1966 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1967 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1968 }
1969 \f
1970
1971 /* Normal frames. */
1972
1973 static void
1974 i386_frame_cache_1 (struct frame_info *this_frame,
1975 struct i386_frame_cache *cache)
1976 {
1977 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1978 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1979 gdb_byte buf[4];
1980 int i;
1981
1982 cache->pc = get_frame_func (this_frame);
1983
1984 /* In principle, for normal frames, %ebp holds the frame pointer,
1985 which holds the base address for the current stack frame.
1986 However, for functions that don't need it, the frame pointer is
1987 optional. For these "frameless" functions the frame pointer is
1988 actually the frame pointer of the calling frame. Signal
1989 trampolines are just a special case of a "frameless" function.
1990 They (usually) share their frame pointer with the frame that was
1991 in progress when the signal occurred. */
1992
1993 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1994 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1995 if (cache->base == 0)
1996 {
1997 cache->base_p = 1;
1998 return;
1999 }
2000
2001 /* For normal frames, %eip is stored at 4(%ebp). */
2002 cache->saved_regs[I386_EIP_REGNUM] = 4;
2003
2004 if (cache->pc != 0)
2005 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2006 cache);
2007
2008 if (cache->locals < 0)
2009 {
2010 /* We didn't find a valid frame, which means that CACHE->base
2011 currently holds the frame pointer for our calling frame. If
2012 we're at the start of a function, or somewhere half-way its
2013 prologue, the function's frame probably hasn't been fully
2014 setup yet. Try to reconstruct the base address for the stack
2015 frame by looking at the stack pointer. For truly "frameless"
2016 functions this might work too. */
2017
2018 if (cache->saved_sp_reg != -1)
2019 {
2020 /* Saved stack pointer has been saved. */
2021 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2022 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2023
2024 /* We're halfway aligning the stack. */
2025 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2026 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2027
2028 /* This will be added back below. */
2029 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2030 }
2031 else if (cache->pc != 0
2032 || target_read_code (get_frame_pc (this_frame), buf, 1))
2033 {
2034 /* We're in a known function, but did not find a frame
2035 setup. Assume that the function does not use %ebp.
2036 Alternatively, we may have jumped to an invalid
2037 address; in that case there is definitely no new
2038 frame in %ebp. */
2039 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2040 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2041 + cache->sp_offset;
2042 }
2043 else
2044 /* We're in an unknown function. We could not find the start
2045 of the function to analyze the prologue; our best option is
2046 to assume a typical frame layout with the caller's %ebp
2047 saved. */
2048 cache->saved_regs[I386_EBP_REGNUM] = 0;
2049 }
2050
2051 if (cache->saved_sp_reg != -1)
2052 {
2053 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2054 register may be unavailable). */
2055 if (cache->saved_sp == 0
2056 && deprecated_frame_register_read (this_frame,
2057 cache->saved_sp_reg, buf))
2058 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2059 }
2060 /* Now that we have the base address for the stack frame we can
2061 calculate the value of %esp in the calling frame. */
2062 else if (cache->saved_sp == 0)
2063 cache->saved_sp = cache->base + 8;
2064
2065 /* Adjust all the saved registers such that they contain addresses
2066 instead of offsets. */
2067 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2068 if (cache->saved_regs[i] != -1)
2069 cache->saved_regs[i] += cache->base;
2070
2071 cache->base_p = 1;
2072 }
2073
2074 static struct i386_frame_cache *
2075 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2076 {
2077 struct i386_frame_cache *cache;
2078
2079 if (*this_cache)
2080 return (struct i386_frame_cache *) *this_cache;
2081
2082 cache = i386_alloc_frame_cache ();
2083 *this_cache = cache;
2084
2085 try
2086 {
2087 i386_frame_cache_1 (this_frame, cache);
2088 }
2089 catch (const gdb_exception_error &ex)
2090 {
2091 if (ex.error != NOT_AVAILABLE_ERROR)
2092 throw;
2093 }
2094
2095 return cache;
2096 }
2097
2098 static void
2099 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2100 struct frame_id *this_id)
2101 {
2102 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2103
2104 if (!cache->base_p)
2105 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2106 else if (cache->base == 0)
2107 {
2108 /* This marks the outermost frame. */
2109 }
2110 else
2111 {
2112 /* See the end of i386_push_dummy_call. */
2113 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2114 }
2115 }
2116
2117 static enum unwind_stop_reason
2118 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2119 void **this_cache)
2120 {
2121 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2122
2123 if (!cache->base_p)
2124 return UNWIND_UNAVAILABLE;
2125
2126 /* This marks the outermost frame. */
2127 if (cache->base == 0)
2128 return UNWIND_OUTERMOST;
2129
2130 return UNWIND_NO_REASON;
2131 }
2132
2133 static struct value *
2134 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2135 int regnum)
2136 {
2137 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2138
2139 gdb_assert (regnum >= 0);
2140
2141 /* The System V ABI says that:
2142
2143 "The flags register contains the system flags, such as the
2144 direction flag and the carry flag. The direction flag must be
2145 set to the forward (that is, zero) direction before entry and
2146 upon exit from a function. Other user flags have no specified
2147 role in the standard calling sequence and are not preserved."
2148
2149 To guarantee the "upon exit" part of that statement we fake a
2150 saved flags register that has its direction flag cleared.
2151
2152 Note that GCC doesn't seem to rely on the fact that the direction
2153 flag is cleared after a function return; it always explicitly
2154 clears the flag before operations where it matters.
2155
2156 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2157 right thing to do. The way we fake the flags register here makes
2158 it impossible to change it. */
2159
2160 if (regnum == I386_EFLAGS_REGNUM)
2161 {
2162 ULONGEST val;
2163
2164 val = get_frame_register_unsigned (this_frame, regnum);
2165 val &= ~(1 << 10);
2166 return frame_unwind_got_constant (this_frame, regnum, val);
2167 }
2168
2169 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2170 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2171
2172 if (regnum == I386_ESP_REGNUM
2173 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2174 {
2175 /* If the SP has been saved, but we don't know where, then this
2176 means that SAVED_SP_REG register was found unavailable back
2177 when we built the cache. */
2178 if (cache->saved_sp == 0)
2179 return frame_unwind_got_register (this_frame, regnum,
2180 cache->saved_sp_reg);
2181 else
2182 return frame_unwind_got_constant (this_frame, regnum,
2183 cache->saved_sp);
2184 }
2185
2186 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2187 return frame_unwind_got_memory (this_frame, regnum,
2188 cache->saved_regs[regnum]);
2189
2190 return frame_unwind_got_register (this_frame, regnum, regnum);
2191 }
2192
2193 static const struct frame_unwind i386_frame_unwind =
2194 {
2195 NORMAL_FRAME,
2196 i386_frame_unwind_stop_reason,
2197 i386_frame_this_id,
2198 i386_frame_prev_register,
2199 NULL,
2200 default_frame_sniffer
2201 };
2202
2203 /* Normal frames, but in a function epilogue. */
2204
2205 /* Implement the stack_frame_destroyed_p gdbarch method.
2206
2207 The epilogue is defined here as the 'ret' instruction, which will
2208 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2209 the function's stack frame. */
2210
2211 static int
2212 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2213 {
2214 gdb_byte insn;
2215 struct compunit_symtab *cust;
2216
2217 cust = find_pc_compunit_symtab (pc);
2218 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2219 return 0;
2220
2221 if (target_read_memory (pc, &insn, 1))
2222 return 0; /* Can't read memory at pc. */
2223
2224 if (insn != 0xc3) /* 'ret' instruction. */
2225 return 0;
2226
2227 return 1;
2228 }
2229
2230 static int
2231 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2232 struct frame_info *this_frame,
2233 void **this_prologue_cache)
2234 {
2235 if (frame_relative_level (this_frame) == 0)
2236 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2237 get_frame_pc (this_frame));
2238 else
2239 return 0;
2240 }
2241
2242 static struct i386_frame_cache *
2243 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2244 {
2245 struct i386_frame_cache *cache;
2246 CORE_ADDR sp;
2247
2248 if (*this_cache)
2249 return (struct i386_frame_cache *) *this_cache;
2250
2251 cache = i386_alloc_frame_cache ();
2252 *this_cache = cache;
2253
2254 try
2255 {
2256 cache->pc = get_frame_func (this_frame);
2257
2258 /* At this point the stack looks as if we just entered the
2259 function, with the return address at the top of the
2260 stack. */
2261 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2262 cache->base = sp + cache->sp_offset;
2263 cache->saved_sp = cache->base + 8;
2264 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2265
2266 cache->base_p = 1;
2267 }
2268 catch (const gdb_exception_error &ex)
2269 {
2270 if (ex.error != NOT_AVAILABLE_ERROR)
2271 throw;
2272 }
2273
2274 return cache;
2275 }
2276
2277 static enum unwind_stop_reason
2278 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2279 void **this_cache)
2280 {
2281 struct i386_frame_cache *cache =
2282 i386_epilogue_frame_cache (this_frame, this_cache);
2283
2284 if (!cache->base_p)
2285 return UNWIND_UNAVAILABLE;
2286
2287 return UNWIND_NO_REASON;
2288 }
2289
2290 static void
2291 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2292 void **this_cache,
2293 struct frame_id *this_id)
2294 {
2295 struct i386_frame_cache *cache =
2296 i386_epilogue_frame_cache (this_frame, this_cache);
2297
2298 if (!cache->base_p)
2299 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2300 else
2301 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2302 }
2303
2304 static struct value *
2305 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2306 void **this_cache, int regnum)
2307 {
2308 /* Make sure we've initialized the cache. */
2309 i386_epilogue_frame_cache (this_frame, this_cache);
2310
2311 return i386_frame_prev_register (this_frame, this_cache, regnum);
2312 }
2313
2314 static const struct frame_unwind i386_epilogue_frame_unwind =
2315 {
2316 NORMAL_FRAME,
2317 i386_epilogue_frame_unwind_stop_reason,
2318 i386_epilogue_frame_this_id,
2319 i386_epilogue_frame_prev_register,
2320 NULL,
2321 i386_epilogue_frame_sniffer
2322 };
2323 \f
2324
2325 /* Stack-based trampolines. */
2326
2327 /* These trampolines are used on cross x86 targets, when taking the
2328 address of a nested function. When executing these trampolines,
2329 no stack frame is set up, so we are in a similar situation as in
2330 epilogues and i386_epilogue_frame_this_id can be re-used. */
2331
2332 /* Static chain passed in register. */
2333
2334 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2335 {
2336 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2337 { 5, { 0xb8 }, { 0xfe } },
2338
2339 /* `jmp imm32' */
2340 { 5, { 0xe9 }, { 0xff } },
2341
2342 {0}
2343 };
2344
2345 /* Static chain passed on stack (when regparm=3). */
2346
2347 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2348 {
2349 /* `push imm32' */
2350 { 5, { 0x68 }, { 0xff } },
2351
2352 /* `jmp imm32' */
2353 { 5, { 0xe9 }, { 0xff } },
2354
2355 {0}
2356 };
2357
2358 /* Return whether PC points inside a stack trampoline. */
2359
2360 static int
2361 i386_in_stack_tramp_p (CORE_ADDR pc)
2362 {
2363 gdb_byte insn;
2364 const char *name;
2365
2366 /* A stack trampoline is detected if no name is associated
2367 to the current pc and if it points inside a trampoline
2368 sequence. */
2369
2370 find_pc_partial_function (pc, &name, NULL, NULL);
2371 if (name)
2372 return 0;
2373
2374 if (target_read_memory (pc, &insn, 1))
2375 return 0;
2376
2377 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2378 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2379 return 0;
2380
2381 return 1;
2382 }
2383
2384 static int
2385 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2386 struct frame_info *this_frame,
2387 void **this_cache)
2388 {
2389 if (frame_relative_level (this_frame) == 0)
2390 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2391 else
2392 return 0;
2393 }
2394
2395 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2396 {
2397 NORMAL_FRAME,
2398 i386_epilogue_frame_unwind_stop_reason,
2399 i386_epilogue_frame_this_id,
2400 i386_epilogue_frame_prev_register,
2401 NULL,
2402 i386_stack_tramp_frame_sniffer
2403 };
2404 \f
2405 /* Generate a bytecode expression to get the value of the saved PC. */
2406
2407 static void
2408 i386_gen_return_address (struct gdbarch *gdbarch,
2409 struct agent_expr *ax, struct axs_value *value,
2410 CORE_ADDR scope)
2411 {
2412 /* The following sequence assumes the traditional use of the base
2413 register. */
2414 ax_reg (ax, I386_EBP_REGNUM);
2415 ax_const_l (ax, 4);
2416 ax_simple (ax, aop_add);
2417 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2418 value->kind = axs_lvalue_memory;
2419 }
2420 \f
2421
2422 /* Signal trampolines. */
2423
2424 static struct i386_frame_cache *
2425 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2426 {
2427 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2428 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2429 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2430 struct i386_frame_cache *cache;
2431 CORE_ADDR addr;
2432 gdb_byte buf[4];
2433
2434 if (*this_cache)
2435 return (struct i386_frame_cache *) *this_cache;
2436
2437 cache = i386_alloc_frame_cache ();
2438
2439 try
2440 {
2441 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2442 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2443
2444 addr = tdep->sigcontext_addr (this_frame);
2445 if (tdep->sc_reg_offset)
2446 {
2447 int i;
2448
2449 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2450
2451 for (i = 0; i < tdep->sc_num_regs; i++)
2452 if (tdep->sc_reg_offset[i] != -1)
2453 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2454 }
2455 else
2456 {
2457 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2458 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2459 }
2460
2461 cache->base_p = 1;
2462 }
2463 catch (const gdb_exception_error &ex)
2464 {
2465 if (ex.error != NOT_AVAILABLE_ERROR)
2466 throw;
2467 }
2468
2469 *this_cache = cache;
2470 return cache;
2471 }
2472
2473 static enum unwind_stop_reason
2474 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2475 void **this_cache)
2476 {
2477 struct i386_frame_cache *cache =
2478 i386_sigtramp_frame_cache (this_frame, this_cache);
2479
2480 if (!cache->base_p)
2481 return UNWIND_UNAVAILABLE;
2482
2483 return UNWIND_NO_REASON;
2484 }
2485
2486 static void
2487 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2488 struct frame_id *this_id)
2489 {
2490 struct i386_frame_cache *cache =
2491 i386_sigtramp_frame_cache (this_frame, this_cache);
2492
2493 if (!cache->base_p)
2494 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2495 else
2496 {
2497 /* See the end of i386_push_dummy_call. */
2498 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2499 }
2500 }
2501
2502 static struct value *
2503 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2504 void **this_cache, int regnum)
2505 {
2506 /* Make sure we've initialized the cache. */
2507 i386_sigtramp_frame_cache (this_frame, this_cache);
2508
2509 return i386_frame_prev_register (this_frame, this_cache, regnum);
2510 }
2511
2512 static int
2513 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2514 struct frame_info *this_frame,
2515 void **this_prologue_cache)
2516 {
2517 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2518
2519 /* We shouldn't even bother if we don't have a sigcontext_addr
2520 handler. */
2521 if (tdep->sigcontext_addr == NULL)
2522 return 0;
2523
2524 if (tdep->sigtramp_p != NULL)
2525 {
2526 if (tdep->sigtramp_p (this_frame))
2527 return 1;
2528 }
2529
2530 if (tdep->sigtramp_start != 0)
2531 {
2532 CORE_ADDR pc = get_frame_pc (this_frame);
2533
2534 gdb_assert (tdep->sigtramp_end != 0);
2535 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2536 return 1;
2537 }
2538
2539 return 0;
2540 }
2541
2542 static const struct frame_unwind i386_sigtramp_frame_unwind =
2543 {
2544 SIGTRAMP_FRAME,
2545 i386_sigtramp_frame_unwind_stop_reason,
2546 i386_sigtramp_frame_this_id,
2547 i386_sigtramp_frame_prev_register,
2548 NULL,
2549 i386_sigtramp_frame_sniffer
2550 };
2551 \f
2552
2553 static CORE_ADDR
2554 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2555 {
2556 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2557
2558 return cache->base;
2559 }
2560
2561 static const struct frame_base i386_frame_base =
2562 {
2563 &i386_frame_unwind,
2564 i386_frame_base_address,
2565 i386_frame_base_address,
2566 i386_frame_base_address
2567 };
2568
2569 static struct frame_id
2570 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2571 {
2572 CORE_ADDR fp;
2573
2574 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2575
2576 /* See the end of i386_push_dummy_call. */
2577 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2578 }
2579
2580 /* _Decimal128 function return values need 16-byte alignment on the
2581 stack. */
2582
2583 static CORE_ADDR
2584 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2585 {
2586 return sp & -(CORE_ADDR)16;
2587 }
2588 \f
2589
2590 /* Figure out where the longjmp will land. Slurp the args out of the
2591 stack. We expect the first arg to be a pointer to the jmp_buf
2592 structure from which we extract the address that we will land at.
2593 This address is copied into PC. This routine returns non-zero on
2594 success. */
2595
2596 static int
2597 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2598 {
2599 gdb_byte buf[4];
2600 CORE_ADDR sp, jb_addr;
2601 struct gdbarch *gdbarch = get_frame_arch (frame);
2602 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2603 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2604
2605 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2606 longjmp will land. */
2607 if (jb_pc_offset == -1)
2608 return 0;
2609
2610 get_frame_register (frame, I386_ESP_REGNUM, buf);
2611 sp = extract_unsigned_integer (buf, 4, byte_order);
2612 if (target_read_memory (sp + 4, buf, 4))
2613 return 0;
2614
2615 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2616 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2617 return 0;
2618
2619 *pc = extract_unsigned_integer (buf, 4, byte_order);
2620 return 1;
2621 }
2622 \f
2623
2624 /* Check whether TYPE must be 16-byte-aligned when passed as a
2625 function argument. 16-byte vectors, _Decimal128 and structures or
2626 unions containing such types must be 16-byte-aligned; other
2627 arguments are 4-byte-aligned. */
2628
2629 static int
2630 i386_16_byte_align_p (struct type *type)
2631 {
2632 type = check_typedef (type);
2633 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2634 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2635 && TYPE_LENGTH (type) == 16)
2636 return 1;
2637 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2638 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2639 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2640 || TYPE_CODE (type) == TYPE_CODE_UNION)
2641 {
2642 int i;
2643 for (i = 0; i < TYPE_NFIELDS (type); i++)
2644 {
2645 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2646 return 1;
2647 }
2648 }
2649 return 0;
2650 }
2651
2652 /* Implementation for set_gdbarch_push_dummy_code. */
2653
2654 static CORE_ADDR
2655 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2656 struct value **args, int nargs, struct type *value_type,
2657 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2658 struct regcache *regcache)
2659 {
2660 /* Use 0xcc breakpoint - 1 byte. */
2661 *bp_addr = sp - 1;
2662 *real_pc = funaddr;
2663
2664 /* Keep the stack aligned. */
2665 return sp - 16;
2666 }
2667
2668 static CORE_ADDR
2669 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2670 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2671 struct value **args, CORE_ADDR sp,
2672 function_call_return_method return_method,
2673 CORE_ADDR struct_addr)
2674 {
2675 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2676 gdb_byte buf[4];
2677 int i;
2678 int write_pass;
2679 int args_space = 0;
2680
2681 /* BND registers can be in arbitrary values at the moment of the
2682 inferior call. This can cause boundary violations that are not
2683 due to a real bug or even desired by the user. The best to be done
2684 is set the BND registers to allow access to the whole memory, INIT
2685 state, before pushing the inferior call. */
2686 i387_reset_bnd_regs (gdbarch, regcache);
2687
2688 /* Determine the total space required for arguments and struct
2689 return address in a first pass (allowing for 16-byte-aligned
2690 arguments), then push arguments in a second pass. */
2691
2692 for (write_pass = 0; write_pass < 2; write_pass++)
2693 {
2694 int args_space_used = 0;
2695
2696 if (return_method == return_method_struct)
2697 {
2698 if (write_pass)
2699 {
2700 /* Push value address. */
2701 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2702 write_memory (sp, buf, 4);
2703 args_space_used += 4;
2704 }
2705 else
2706 args_space += 4;
2707 }
2708
2709 for (i = 0; i < nargs; i++)
2710 {
2711 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2712
2713 if (write_pass)
2714 {
2715 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2716 args_space_used = align_up (args_space_used, 16);
2717
2718 write_memory (sp + args_space_used,
2719 value_contents_all (args[i]), len);
2720 /* The System V ABI says that:
2721
2722 "An argument's size is increased, if necessary, to make it a
2723 multiple of [32-bit] words. This may require tail padding,
2724 depending on the size of the argument."
2725
2726 This makes sure the stack stays word-aligned. */
2727 args_space_used += align_up (len, 4);
2728 }
2729 else
2730 {
2731 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2732 args_space = align_up (args_space, 16);
2733 args_space += align_up (len, 4);
2734 }
2735 }
2736
2737 if (!write_pass)
2738 {
2739 sp -= args_space;
2740
2741 /* The original System V ABI only requires word alignment,
2742 but modern incarnations need 16-byte alignment in order
2743 to support SSE. Since wasting a few bytes here isn't
2744 harmful we unconditionally enforce 16-byte alignment. */
2745 sp &= ~0xf;
2746 }
2747 }
2748
2749 /* Store return address. */
2750 sp -= 4;
2751 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2752 write_memory (sp, buf, 4);
2753
2754 /* Finally, update the stack pointer... */
2755 store_unsigned_integer (buf, 4, byte_order, sp);
2756 regcache->cooked_write (I386_ESP_REGNUM, buf);
2757
2758 /* ...and fake a frame pointer. */
2759 regcache->cooked_write (I386_EBP_REGNUM, buf);
2760
2761 /* MarkK wrote: This "+ 8" is all over the place:
2762 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2763 i386_dummy_id). It's there, since all frame unwinders for
2764 a given target have to agree (within a certain margin) on the
2765 definition of the stack address of a frame. Otherwise frame id
2766 comparison might not work correctly. Since DWARF2/GCC uses the
2767 stack address *before* the function call as a frame's CFA. On
2768 the i386, when %ebp is used as a frame pointer, the offset
2769 between the contents %ebp and the CFA as defined by GCC. */
2770 return sp + 8;
2771 }
2772
2773 /* These registers are used for returning integers (and on some
2774 targets also for returning `struct' and `union' values when their
2775 size and alignment match an integer type). */
2776 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2777 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2778
2779 /* Read, for architecture GDBARCH, a function return value of TYPE
2780 from REGCACHE, and copy that into VALBUF. */
2781
2782 static void
2783 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2784 struct regcache *regcache, gdb_byte *valbuf)
2785 {
2786 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2787 int len = TYPE_LENGTH (type);
2788 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2789
2790 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2791 {
2792 if (tdep->st0_regnum < 0)
2793 {
2794 warning (_("Cannot find floating-point return value."));
2795 memset (valbuf, 0, len);
2796 return;
2797 }
2798
2799 /* Floating-point return values can be found in %st(0). Convert
2800 its contents to the desired type. This is probably not
2801 exactly how it would happen on the target itself, but it is
2802 the best we can do. */
2803 regcache->raw_read (I386_ST0_REGNUM, buf);
2804 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
2805 }
2806 else
2807 {
2808 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2809 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2810
2811 if (len <= low_size)
2812 {
2813 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2814 memcpy (valbuf, buf, len);
2815 }
2816 else if (len <= (low_size + high_size))
2817 {
2818 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2819 memcpy (valbuf, buf, low_size);
2820 regcache->raw_read (HIGH_RETURN_REGNUM, buf);
2821 memcpy (valbuf + low_size, buf, len - low_size);
2822 }
2823 else
2824 internal_error (__FILE__, __LINE__,
2825 _("Cannot extract return value of %d bytes long."),
2826 len);
2827 }
2828 }
2829
2830 /* Write, for architecture GDBARCH, a function return value of TYPE
2831 from VALBUF into REGCACHE. */
2832
2833 static void
2834 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2835 struct regcache *regcache, const gdb_byte *valbuf)
2836 {
2837 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2838 int len = TYPE_LENGTH (type);
2839
2840 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2841 {
2842 ULONGEST fstat;
2843 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2844
2845 if (tdep->st0_regnum < 0)
2846 {
2847 warning (_("Cannot set floating-point return value."));
2848 return;
2849 }
2850
2851 /* Returning floating-point values is a bit tricky. Apart from
2852 storing the return value in %st(0), we have to simulate the
2853 state of the FPU at function return point. */
2854
2855 /* Convert the value found in VALBUF to the extended
2856 floating-point format used by the FPU. This is probably
2857 not exactly how it would happen on the target itself, but
2858 it is the best we can do. */
2859 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
2860 regcache->raw_write (I386_ST0_REGNUM, buf);
2861
2862 /* Set the top of the floating-point register stack to 7. The
2863 actual value doesn't really matter, but 7 is what a normal
2864 function return would end up with if the program started out
2865 with a freshly initialized FPU. */
2866 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2867 fstat |= (7 << 11);
2868 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2869
2870 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2871 the floating-point register stack to 7, the appropriate value
2872 for the tag word is 0x3fff. */
2873 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2874 }
2875 else
2876 {
2877 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2878 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2879
2880 if (len <= low_size)
2881 regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
2882 else if (len <= (low_size + high_size))
2883 {
2884 regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
2885 regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
2886 valbuf + low_size);
2887 }
2888 else
2889 internal_error (__FILE__, __LINE__,
2890 _("Cannot store return value of %d bytes long."), len);
2891 }
2892 }
2893 \f
2894
2895 /* This is the variable that is set with "set struct-convention", and
2896 its legitimate values. */
2897 static const char default_struct_convention[] = "default";
2898 static const char pcc_struct_convention[] = "pcc";
2899 static const char reg_struct_convention[] = "reg";
2900 static const char *const valid_conventions[] =
2901 {
2902 default_struct_convention,
2903 pcc_struct_convention,
2904 reg_struct_convention,
2905 NULL
2906 };
2907 static const char *struct_convention = default_struct_convention;
2908
2909 /* Return non-zero if TYPE, which is assumed to be a structure,
2910 a union type, or an array type, should be returned in registers
2911 for architecture GDBARCH. */
2912
2913 static int
2914 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2915 {
2916 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2917 enum type_code code = TYPE_CODE (type);
2918 int len = TYPE_LENGTH (type);
2919
2920 gdb_assert (code == TYPE_CODE_STRUCT
2921 || code == TYPE_CODE_UNION
2922 || code == TYPE_CODE_ARRAY);
2923
2924 if (struct_convention == pcc_struct_convention
2925 || (struct_convention == default_struct_convention
2926 && tdep->struct_return == pcc_struct_return))
2927 return 0;
2928
2929 /* Structures consisting of a single `float', `double' or 'long
2930 double' member are returned in %st(0). */
2931 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2932 {
2933 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2934 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2935 return (len == 4 || len == 8 || len == 12);
2936 }
2937
2938 return (len == 1 || len == 2 || len == 4 || len == 8);
2939 }
2940
2941 /* Determine, for architecture GDBARCH, how a return value of TYPE
2942 should be returned. If it is supposed to be returned in registers,
2943 and READBUF is non-zero, read the appropriate value from REGCACHE,
2944 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2945 from WRITEBUF into REGCACHE. */
2946
2947 static enum return_value_convention
2948 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2949 struct type *type, struct regcache *regcache,
2950 gdb_byte *readbuf, const gdb_byte *writebuf)
2951 {
2952 enum type_code code = TYPE_CODE (type);
2953
2954 if (((code == TYPE_CODE_STRUCT
2955 || code == TYPE_CODE_UNION
2956 || code == TYPE_CODE_ARRAY)
2957 && !i386_reg_struct_return_p (gdbarch, type))
2958 /* Complex double and long double uses the struct return covention. */
2959 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2960 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2961 /* 128-bit decimal float uses the struct return convention. */
2962 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2963 {
2964 /* The System V ABI says that:
2965
2966 "A function that returns a structure or union also sets %eax
2967 to the value of the original address of the caller's area
2968 before it returns. Thus when the caller receives control
2969 again, the address of the returned object resides in register
2970 %eax and can be used to access the object."
2971
2972 So the ABI guarantees that we can always find the return
2973 value just after the function has returned. */
2974
2975 /* Note that the ABI doesn't mention functions returning arrays,
2976 which is something possible in certain languages such as Ada.
2977 In this case, the value is returned as if it was wrapped in
2978 a record, so the convention applied to records also applies
2979 to arrays. */
2980
2981 if (readbuf)
2982 {
2983 ULONGEST addr;
2984
2985 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2986 read_memory (addr, readbuf, TYPE_LENGTH (type));
2987 }
2988
2989 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2990 }
2991
2992 /* This special case is for structures consisting of a single
2993 `float', `double' or 'long double' member. These structures are
2994 returned in %st(0). For these structures, we call ourselves
2995 recursively, changing TYPE into the type of the first member of
2996 the structure. Since that should work for all structures that
2997 have only one member, we don't bother to check the member's type
2998 here. */
2999 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
3000 {
3001 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
3002 return i386_return_value (gdbarch, function, type, regcache,
3003 readbuf, writebuf);
3004 }
3005
3006 if (readbuf)
3007 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3008 if (writebuf)
3009 i386_store_return_value (gdbarch, type, regcache, writebuf);
3010
3011 return RETURN_VALUE_REGISTER_CONVENTION;
3012 }
3013 \f
3014
3015 struct type *
3016 i387_ext_type (struct gdbarch *gdbarch)
3017 {
3018 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3019
3020 if (!tdep->i387_ext_type)
3021 {
3022 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3023 gdb_assert (tdep->i387_ext_type != NULL);
3024 }
3025
3026 return tdep->i387_ext_type;
3027 }
3028
3029 /* Construct type for pseudo BND registers. We can't use
3030 tdesc_find_type since a complement of one value has to be used
3031 to describe the upper bound. */
3032
3033 static struct type *
3034 i386_bnd_type (struct gdbarch *gdbarch)
3035 {
3036 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3037
3038
3039 if (!tdep->i386_bnd_type)
3040 {
3041 struct type *t;
3042 const struct builtin_type *bt = builtin_type (gdbarch);
3043
3044 /* The type we're building is described bellow: */
3045 #if 0
3046 struct __bound128
3047 {
3048 void *lbound;
3049 void *ubound; /* One complement of raw ubound field. */
3050 };
3051 #endif
3052
3053 t = arch_composite_type (gdbarch,
3054 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3055
3056 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3057 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3058
3059 TYPE_NAME (t) = "builtin_type_bound128";
3060 tdep->i386_bnd_type = t;
3061 }
3062
3063 return tdep->i386_bnd_type;
3064 }
3065
3066 /* Construct vector type for pseudo ZMM registers. We can't use
3067 tdesc_find_type since ZMM isn't described in target description. */
3068
3069 static struct type *
3070 i386_zmm_type (struct gdbarch *gdbarch)
3071 {
3072 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3073
3074 if (!tdep->i386_zmm_type)
3075 {
3076 const struct builtin_type *bt = builtin_type (gdbarch);
3077
3078 /* The type we're building is this: */
3079 #if 0
3080 union __gdb_builtin_type_vec512i
3081 {
3082 int128_t uint128[4];
3083 int64_t v4_int64[8];
3084 int32_t v8_int32[16];
3085 int16_t v16_int16[32];
3086 int8_t v32_int8[64];
3087 double v4_double[8];
3088 float v8_float[16];
3089 };
3090 #endif
3091
3092 struct type *t;
3093
3094 t = arch_composite_type (gdbarch,
3095 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3096 append_composite_type_field (t, "v16_float",
3097 init_vector_type (bt->builtin_float, 16));
3098 append_composite_type_field (t, "v8_double",
3099 init_vector_type (bt->builtin_double, 8));
3100 append_composite_type_field (t, "v64_int8",
3101 init_vector_type (bt->builtin_int8, 64));
3102 append_composite_type_field (t, "v32_int16",
3103 init_vector_type (bt->builtin_int16, 32));
3104 append_composite_type_field (t, "v16_int32",
3105 init_vector_type (bt->builtin_int32, 16));
3106 append_composite_type_field (t, "v8_int64",
3107 init_vector_type (bt->builtin_int64, 8));
3108 append_composite_type_field (t, "v4_int128",
3109 init_vector_type (bt->builtin_int128, 4));
3110
3111 TYPE_VECTOR (t) = 1;
3112 TYPE_NAME (t) = "builtin_type_vec512i";
3113 tdep->i386_zmm_type = t;
3114 }
3115
3116 return tdep->i386_zmm_type;
3117 }
3118
3119 /* Construct vector type for pseudo YMM registers. We can't use
3120 tdesc_find_type since YMM isn't described in target description. */
3121
3122 static struct type *
3123 i386_ymm_type (struct gdbarch *gdbarch)
3124 {
3125 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3126
3127 if (!tdep->i386_ymm_type)
3128 {
3129 const struct builtin_type *bt = builtin_type (gdbarch);
3130
3131 /* The type we're building is this: */
3132 #if 0
3133 union __gdb_builtin_type_vec256i
3134 {
3135 int128_t uint128[2];
3136 int64_t v2_int64[4];
3137 int32_t v4_int32[8];
3138 int16_t v8_int16[16];
3139 int8_t v16_int8[32];
3140 double v2_double[4];
3141 float v4_float[8];
3142 };
3143 #endif
3144
3145 struct type *t;
3146
3147 t = arch_composite_type (gdbarch,
3148 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3149 append_composite_type_field (t, "v8_float",
3150 init_vector_type (bt->builtin_float, 8));
3151 append_composite_type_field (t, "v4_double",
3152 init_vector_type (bt->builtin_double, 4));
3153 append_composite_type_field (t, "v32_int8",
3154 init_vector_type (bt->builtin_int8, 32));
3155 append_composite_type_field (t, "v16_int16",
3156 init_vector_type (bt->builtin_int16, 16));
3157 append_composite_type_field (t, "v8_int32",
3158 init_vector_type (bt->builtin_int32, 8));
3159 append_composite_type_field (t, "v4_int64",
3160 init_vector_type (bt->builtin_int64, 4));
3161 append_composite_type_field (t, "v2_int128",
3162 init_vector_type (bt->builtin_int128, 2));
3163
3164 TYPE_VECTOR (t) = 1;
3165 TYPE_NAME (t) = "builtin_type_vec256i";
3166 tdep->i386_ymm_type = t;
3167 }
3168
3169 return tdep->i386_ymm_type;
3170 }
3171
3172 /* Construct vector type for MMX registers. */
3173 static struct type *
3174 i386_mmx_type (struct gdbarch *gdbarch)
3175 {
3176 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3177
3178 if (!tdep->i386_mmx_type)
3179 {
3180 const struct builtin_type *bt = builtin_type (gdbarch);
3181
3182 /* The type we're building is this: */
3183 #if 0
3184 union __gdb_builtin_type_vec64i
3185 {
3186 int64_t uint64;
3187 int32_t v2_int32[2];
3188 int16_t v4_int16[4];
3189 int8_t v8_int8[8];
3190 };
3191 #endif
3192
3193 struct type *t;
3194
3195 t = arch_composite_type (gdbarch,
3196 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3197
3198 append_composite_type_field (t, "uint64", bt->builtin_int64);
3199 append_composite_type_field (t, "v2_int32",
3200 init_vector_type (bt->builtin_int32, 2));
3201 append_composite_type_field (t, "v4_int16",
3202 init_vector_type (bt->builtin_int16, 4));
3203 append_composite_type_field (t, "v8_int8",
3204 init_vector_type (bt->builtin_int8, 8));
3205
3206 TYPE_VECTOR (t) = 1;
3207 TYPE_NAME (t) = "builtin_type_vec64i";
3208 tdep->i386_mmx_type = t;
3209 }
3210
3211 return tdep->i386_mmx_type;
3212 }
3213
3214 /* Return the GDB type object for the "standard" data type of data in
3215 register REGNUM. */
3216
3217 struct type *
3218 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3219 {
3220 if (i386_bnd_regnum_p (gdbarch, regnum))
3221 return i386_bnd_type (gdbarch);
3222 if (i386_mmx_regnum_p (gdbarch, regnum))
3223 return i386_mmx_type (gdbarch);
3224 else if (i386_ymm_regnum_p (gdbarch, regnum))
3225 return i386_ymm_type (gdbarch);
3226 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3227 return i386_ymm_type (gdbarch);
3228 else if (i386_zmm_regnum_p (gdbarch, regnum))
3229 return i386_zmm_type (gdbarch);
3230 else
3231 {
3232 const struct builtin_type *bt = builtin_type (gdbarch);
3233 if (i386_byte_regnum_p (gdbarch, regnum))
3234 return bt->builtin_int8;
3235 else if (i386_word_regnum_p (gdbarch, regnum))
3236 return bt->builtin_int16;
3237 else if (i386_dword_regnum_p (gdbarch, regnum))
3238 return bt->builtin_int32;
3239 else if (i386_k_regnum_p (gdbarch, regnum))
3240 return bt->builtin_int64;
3241 }
3242
3243 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3244 }
3245
3246 /* Map a cooked register onto a raw register or memory. For the i386,
3247 the MMX registers need to be mapped onto floating point registers. */
3248
3249 static int
3250 i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
3251 {
3252 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
3253 int mmxreg, fpreg;
3254 ULONGEST fstat;
3255 int tos;
3256
3257 mmxreg = regnum - tdep->mm0_regnum;
3258 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
3259 tos = (fstat >> 11) & 0x7;
3260 fpreg = (mmxreg + tos) % 8;
3261
3262 return (I387_ST0_REGNUM (tdep) + fpreg);
3263 }
3264
3265 /* A helper function for us by i386_pseudo_register_read_value and
3266 amd64_pseudo_register_read_value. It does all the work but reads
3267 the data into an already-allocated value. */
3268
3269 void
3270 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3271 readable_regcache *regcache,
3272 int regnum,
3273 struct value *result_value)
3274 {
3275 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3276 enum register_status status;
3277 gdb_byte *buf = value_contents_raw (result_value);
3278
3279 if (i386_mmx_regnum_p (gdbarch, regnum))
3280 {
3281 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3282
3283 /* Extract (always little endian). */
3284 status = regcache->raw_read (fpnum, raw_buf);
3285 if (status != REG_VALID)
3286 mark_value_bytes_unavailable (result_value, 0,
3287 TYPE_LENGTH (value_type (result_value)));
3288 else
3289 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3290 }
3291 else
3292 {
3293 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3294 if (i386_bnd_regnum_p (gdbarch, regnum))
3295 {
3296 regnum -= tdep->bnd0_regnum;
3297
3298 /* Extract (always little endian). Read lower 128bits. */
3299 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3300 raw_buf);
3301 if (status != REG_VALID)
3302 mark_value_bytes_unavailable (result_value, 0, 16);
3303 else
3304 {
3305 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3306 LONGEST upper, lower;
3307 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3308
3309 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3310 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3311 upper = ~upper;
3312
3313 memcpy (buf, &lower, size);
3314 memcpy (buf + size, &upper, size);
3315 }
3316 }
3317 else if (i386_k_regnum_p (gdbarch, regnum))
3318 {
3319 regnum -= tdep->k0_regnum;
3320
3321 /* Extract (always little endian). */
3322 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
3323 if (status != REG_VALID)
3324 mark_value_bytes_unavailable (result_value, 0, 8);
3325 else
3326 memcpy (buf, raw_buf, 8);
3327 }
3328 else if (i386_zmm_regnum_p (gdbarch, regnum))
3329 {
3330 regnum -= tdep->zmm0_regnum;
3331
3332 if (regnum < num_lower_zmm_regs)
3333 {
3334 /* Extract (always little endian). Read lower 128bits. */
3335 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3336 raw_buf);
3337 if (status != REG_VALID)
3338 mark_value_bytes_unavailable (result_value, 0, 16);
3339 else
3340 memcpy (buf, raw_buf, 16);
3341
3342 /* Extract (always little endian). Read upper 128bits. */
3343 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3344 raw_buf);
3345 if (status != REG_VALID)
3346 mark_value_bytes_unavailable (result_value, 16, 16);
3347 else
3348 memcpy (buf + 16, raw_buf, 16);
3349 }
3350 else
3351 {
3352 /* Extract (always little endian). Read lower 128bits. */
3353 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3354 - num_lower_zmm_regs,
3355 raw_buf);
3356 if (status != REG_VALID)
3357 mark_value_bytes_unavailable (result_value, 0, 16);
3358 else
3359 memcpy (buf, raw_buf, 16);
3360
3361 /* Extract (always little endian). Read upper 128bits. */
3362 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3363 - num_lower_zmm_regs,
3364 raw_buf);
3365 if (status != REG_VALID)
3366 mark_value_bytes_unavailable (result_value, 16, 16);
3367 else
3368 memcpy (buf + 16, raw_buf, 16);
3369 }
3370
3371 /* Read upper 256bits. */
3372 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3373 raw_buf);
3374 if (status != REG_VALID)
3375 mark_value_bytes_unavailable (result_value, 32, 32);
3376 else
3377 memcpy (buf + 32, raw_buf, 32);
3378 }
3379 else if (i386_ymm_regnum_p (gdbarch, regnum))
3380 {
3381 regnum -= tdep->ymm0_regnum;
3382
3383 /* Extract (always little endian). Read lower 128bits. */
3384 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3385 raw_buf);
3386 if (status != REG_VALID)
3387 mark_value_bytes_unavailable (result_value, 0, 16);
3388 else
3389 memcpy (buf, raw_buf, 16);
3390 /* Read upper 128bits. */
3391 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3392 raw_buf);
3393 if (status != REG_VALID)
3394 mark_value_bytes_unavailable (result_value, 16, 32);
3395 else
3396 memcpy (buf + 16, raw_buf, 16);
3397 }
3398 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3399 {
3400 regnum -= tdep->ymm16_regnum;
3401 /* Extract (always little endian). Read lower 128bits. */
3402 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3403 raw_buf);
3404 if (status != REG_VALID)
3405 mark_value_bytes_unavailable (result_value, 0, 16);
3406 else
3407 memcpy (buf, raw_buf, 16);
3408 /* Read upper 128bits. */
3409 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3410 raw_buf);
3411 if (status != REG_VALID)
3412 mark_value_bytes_unavailable (result_value, 16, 16);
3413 else
3414 memcpy (buf + 16, raw_buf, 16);
3415 }
3416 else if (i386_word_regnum_p (gdbarch, regnum))
3417 {
3418 int gpnum = regnum - tdep->ax_regnum;
3419
3420 /* Extract (always little endian). */
3421 status = regcache->raw_read (gpnum, raw_buf);
3422 if (status != REG_VALID)
3423 mark_value_bytes_unavailable (result_value, 0,
3424 TYPE_LENGTH (value_type (result_value)));
3425 else
3426 memcpy (buf, raw_buf, 2);
3427 }
3428 else if (i386_byte_regnum_p (gdbarch, regnum))
3429 {
3430 int gpnum = regnum - tdep->al_regnum;
3431
3432 /* Extract (always little endian). We read both lower and
3433 upper registers. */
3434 status = regcache->raw_read (gpnum % 4, raw_buf);
3435 if (status != REG_VALID)
3436 mark_value_bytes_unavailable (result_value, 0,
3437 TYPE_LENGTH (value_type (result_value)));
3438 else if (gpnum >= 4)
3439 memcpy (buf, raw_buf + 1, 1);
3440 else
3441 memcpy (buf, raw_buf, 1);
3442 }
3443 else
3444 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3445 }
3446 }
3447
3448 static struct value *
3449 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3450 readable_regcache *regcache,
3451 int regnum)
3452 {
3453 struct value *result;
3454
3455 result = allocate_value (register_type (gdbarch, regnum));
3456 VALUE_LVAL (result) = lval_register;
3457 VALUE_REGNUM (result) = regnum;
3458
3459 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3460
3461 return result;
3462 }
3463
3464 void
3465 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3466 int regnum, const gdb_byte *buf)
3467 {
3468 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3469
3470 if (i386_mmx_regnum_p (gdbarch, regnum))
3471 {
3472 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3473
3474 /* Read ... */
3475 regcache->raw_read (fpnum, raw_buf);
3476 /* ... Modify ... (always little endian). */
3477 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3478 /* ... Write. */
3479 regcache->raw_write (fpnum, raw_buf);
3480 }
3481 else
3482 {
3483 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3484
3485 if (i386_bnd_regnum_p (gdbarch, regnum))
3486 {
3487 ULONGEST upper, lower;
3488 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3489 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3490
3491 /* New values from input value. */
3492 regnum -= tdep->bnd0_regnum;
3493 lower = extract_unsigned_integer (buf, size, byte_order);
3494 upper = extract_unsigned_integer (buf + size, size, byte_order);
3495
3496 /* Fetching register buffer. */
3497 regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3498 raw_buf);
3499
3500 upper = ~upper;
3501
3502 /* Set register bits. */
3503 memcpy (raw_buf, &lower, 8);
3504 memcpy (raw_buf + 8, &upper, 8);
3505
3506 regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
3507 }
3508 else if (i386_k_regnum_p (gdbarch, regnum))
3509 {
3510 regnum -= tdep->k0_regnum;
3511
3512 regcache->raw_write (tdep->k0_regnum + regnum, buf);
3513 }
3514 else if (i386_zmm_regnum_p (gdbarch, regnum))
3515 {
3516 regnum -= tdep->zmm0_regnum;
3517
3518 if (regnum < num_lower_zmm_regs)
3519 {
3520 /* Write lower 128bits. */
3521 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3522 /* Write upper 128bits. */
3523 regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
3524 }
3525 else
3526 {
3527 /* Write lower 128bits. */
3528 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
3529 - num_lower_zmm_regs, buf);
3530 /* Write upper 128bits. */
3531 regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
3532 - num_lower_zmm_regs, buf + 16);
3533 }
3534 /* Write upper 256bits. */
3535 regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
3536 }
3537 else if (i386_ymm_regnum_p (gdbarch, regnum))
3538 {
3539 regnum -= tdep->ymm0_regnum;
3540
3541 /* ... Write lower 128bits. */
3542 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3543 /* ... Write upper 128bits. */
3544 regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
3545 }
3546 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3547 {
3548 regnum -= tdep->ymm16_regnum;
3549
3550 /* ... Write lower 128bits. */
3551 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
3552 /* ... Write upper 128bits. */
3553 regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
3554 }
3555 else if (i386_word_regnum_p (gdbarch, regnum))
3556 {
3557 int gpnum = regnum - tdep->ax_regnum;
3558
3559 /* Read ... */
3560 regcache->raw_read (gpnum, raw_buf);
3561 /* ... Modify ... (always little endian). */
3562 memcpy (raw_buf, buf, 2);
3563 /* ... Write. */
3564 regcache->raw_write (gpnum, raw_buf);
3565 }
3566 else if (i386_byte_regnum_p (gdbarch, regnum))
3567 {
3568 int gpnum = regnum - tdep->al_regnum;
3569
3570 /* Read ... We read both lower and upper registers. */
3571 regcache->raw_read (gpnum % 4, raw_buf);
3572 /* ... Modify ... (always little endian). */
3573 if (gpnum >= 4)
3574 memcpy (raw_buf + 1, buf, 1);
3575 else
3576 memcpy (raw_buf, buf, 1);
3577 /* ... Write. */
3578 regcache->raw_write (gpnum % 4, raw_buf);
3579 }
3580 else
3581 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3582 }
3583 }
3584
3585 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3586
3587 int
3588 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3589 struct agent_expr *ax, int regnum)
3590 {
3591 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3592
3593 if (i386_mmx_regnum_p (gdbarch, regnum))
3594 {
3595 /* MMX to FPU register mapping depends on current TOS. Let's just
3596 not care and collect everything... */
3597 int i;
3598
3599 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3600 for (i = 0; i < 8; i++)
3601 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3602 return 0;
3603 }
3604 else if (i386_bnd_regnum_p (gdbarch, regnum))
3605 {
3606 regnum -= tdep->bnd0_regnum;
3607 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3608 return 0;
3609 }
3610 else if (i386_k_regnum_p (gdbarch, regnum))
3611 {
3612 regnum -= tdep->k0_regnum;
3613 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3614 return 0;
3615 }
3616 else if (i386_zmm_regnum_p (gdbarch, regnum))
3617 {
3618 regnum -= tdep->zmm0_regnum;
3619 if (regnum < num_lower_zmm_regs)
3620 {
3621 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3622 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3623 }
3624 else
3625 {
3626 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3627 - num_lower_zmm_regs);
3628 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3629 - num_lower_zmm_regs);
3630 }
3631 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3632 return 0;
3633 }
3634 else if (i386_ymm_regnum_p (gdbarch, regnum))
3635 {
3636 regnum -= tdep->ymm0_regnum;
3637 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3638 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3639 return 0;
3640 }
3641 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3642 {
3643 regnum -= tdep->ymm16_regnum;
3644 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3645 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3646 return 0;
3647 }
3648 else if (i386_word_regnum_p (gdbarch, regnum))
3649 {
3650 int gpnum = regnum - tdep->ax_regnum;
3651
3652 ax_reg_mask (ax, gpnum);
3653 return 0;
3654 }
3655 else if (i386_byte_regnum_p (gdbarch, regnum))
3656 {
3657 int gpnum = regnum - tdep->al_regnum;
3658
3659 ax_reg_mask (ax, gpnum % 4);
3660 return 0;
3661 }
3662 else
3663 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3664 return 1;
3665 }
3666 \f
3667
3668 /* Return the register number of the register allocated by GCC after
3669 REGNUM, or -1 if there is no such register. */
3670
3671 static int
3672 i386_next_regnum (int regnum)
3673 {
3674 /* GCC allocates the registers in the order:
3675
3676 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3677
3678 Since storing a variable in %esp doesn't make any sense we return
3679 -1 for %ebp and for %esp itself. */
3680 static int next_regnum[] =
3681 {
3682 I386_EDX_REGNUM, /* Slot for %eax. */
3683 I386_EBX_REGNUM, /* Slot for %ecx. */
3684 I386_ECX_REGNUM, /* Slot for %edx. */
3685 I386_ESI_REGNUM, /* Slot for %ebx. */
3686 -1, -1, /* Slots for %esp and %ebp. */
3687 I386_EDI_REGNUM, /* Slot for %esi. */
3688 I386_EBP_REGNUM /* Slot for %edi. */
3689 };
3690
3691 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3692 return next_regnum[regnum];
3693
3694 return -1;
3695 }
3696
3697 /* Return nonzero if a value of type TYPE stored in register REGNUM
3698 needs any special handling. */
3699
3700 static int
3701 i386_convert_register_p (struct gdbarch *gdbarch,
3702 int regnum, struct type *type)
3703 {
3704 int len = TYPE_LENGTH (type);
3705
3706 /* Values may be spread across multiple registers. Most debugging
3707 formats aren't expressive enough to specify the locations, so
3708 some heuristics is involved. Right now we only handle types that
3709 have a length that is a multiple of the word size, since GCC
3710 doesn't seem to put any other types into registers. */
3711 if (len > 4 && len % 4 == 0)
3712 {
3713 int last_regnum = regnum;
3714
3715 while (len > 4)
3716 {
3717 last_regnum = i386_next_regnum (last_regnum);
3718 len -= 4;
3719 }
3720
3721 if (last_regnum != -1)
3722 return 1;
3723 }
3724
3725 return i387_convert_register_p (gdbarch, regnum, type);
3726 }
3727
3728 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3729 return its contents in TO. */
3730
3731 static int
3732 i386_register_to_value (struct frame_info *frame, int regnum,
3733 struct type *type, gdb_byte *to,
3734 int *optimizedp, int *unavailablep)
3735 {
3736 struct gdbarch *gdbarch = get_frame_arch (frame);
3737 int len = TYPE_LENGTH (type);
3738
3739 if (i386_fp_regnum_p (gdbarch, regnum))
3740 return i387_register_to_value (frame, regnum, type, to,
3741 optimizedp, unavailablep);
3742
3743 /* Read a value spread across multiple registers. */
3744
3745 gdb_assert (len > 4 && len % 4 == 0);
3746
3747 while (len > 0)
3748 {
3749 gdb_assert (regnum != -1);
3750 gdb_assert (register_size (gdbarch, regnum) == 4);
3751
3752 if (!get_frame_register_bytes (frame, regnum, 0,
3753 register_size (gdbarch, regnum),
3754 to, optimizedp, unavailablep))
3755 return 0;
3756
3757 regnum = i386_next_regnum (regnum);
3758 len -= 4;
3759 to += 4;
3760 }
3761
3762 *optimizedp = *unavailablep = 0;
3763 return 1;
3764 }
3765
3766 /* Write the contents FROM of a value of type TYPE into register
3767 REGNUM in frame FRAME. */
3768
3769 static void
3770 i386_value_to_register (struct frame_info *frame, int regnum,
3771 struct type *type, const gdb_byte *from)
3772 {
3773 int len = TYPE_LENGTH (type);
3774
3775 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3776 {
3777 i387_value_to_register (frame, regnum, type, from);
3778 return;
3779 }
3780
3781 /* Write a value spread across multiple registers. */
3782
3783 gdb_assert (len > 4 && len % 4 == 0);
3784
3785 while (len > 0)
3786 {
3787 gdb_assert (regnum != -1);
3788 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3789
3790 put_frame_register (frame, regnum, from);
3791 regnum = i386_next_regnum (regnum);
3792 len -= 4;
3793 from += 4;
3794 }
3795 }
3796 \f
3797 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3798 in the general-purpose register set REGSET to register cache
3799 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3800
3801 void
3802 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3803 int regnum, const void *gregs, size_t len)
3804 {
3805 struct gdbarch *gdbarch = regcache->arch ();
3806 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3807 const gdb_byte *regs = (const gdb_byte *) gregs;
3808 int i;
3809
3810 gdb_assert (len >= tdep->sizeof_gregset);
3811
3812 for (i = 0; i < tdep->gregset_num_regs; i++)
3813 {
3814 if ((regnum == i || regnum == -1)
3815 && tdep->gregset_reg_offset[i] != -1)
3816 regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
3817 }
3818 }
3819
3820 /* Collect register REGNUM from the register cache REGCACHE and store
3821 it in the buffer specified by GREGS and LEN as described by the
3822 general-purpose register set REGSET. If REGNUM is -1, do this for
3823 all registers in REGSET. */
3824
3825 static void
3826 i386_collect_gregset (const struct regset *regset,
3827 const struct regcache *regcache,
3828 int regnum, void *gregs, size_t len)
3829 {
3830 struct gdbarch *gdbarch = regcache->arch ();
3831 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3832 gdb_byte *regs = (gdb_byte *) gregs;
3833 int i;
3834
3835 gdb_assert (len >= tdep->sizeof_gregset);
3836
3837 for (i = 0; i < tdep->gregset_num_regs; i++)
3838 {
3839 if ((regnum == i || regnum == -1)
3840 && tdep->gregset_reg_offset[i] != -1)
3841 regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
3842 }
3843 }
3844
3845 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3846 in the floating-point register set REGSET to register cache
3847 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3848
3849 static void
3850 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3851 int regnum, const void *fpregs, size_t len)
3852 {
3853 struct gdbarch *gdbarch = regcache->arch ();
3854 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3855
3856 if (len == I387_SIZEOF_FXSAVE)
3857 {
3858 i387_supply_fxsave (regcache, regnum, fpregs);
3859 return;
3860 }
3861
3862 gdb_assert (len >= tdep->sizeof_fpregset);
3863 i387_supply_fsave (regcache, regnum, fpregs);
3864 }
3865
3866 /* Collect register REGNUM from the register cache REGCACHE and store
3867 it in the buffer specified by FPREGS and LEN as described by the
3868 floating-point register set REGSET. If REGNUM is -1, do this for
3869 all registers in REGSET. */
3870
3871 static void
3872 i386_collect_fpregset (const struct regset *regset,
3873 const struct regcache *regcache,
3874 int regnum, void *fpregs, size_t len)
3875 {
3876 struct gdbarch *gdbarch = regcache->arch ();
3877 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3878
3879 if (len == I387_SIZEOF_FXSAVE)
3880 {
3881 i387_collect_fxsave (regcache, regnum, fpregs);
3882 return;
3883 }
3884
3885 gdb_assert (len >= tdep->sizeof_fpregset);
3886 i387_collect_fsave (regcache, regnum, fpregs);
3887 }
3888
3889 /* Register set definitions. */
3890
3891 const struct regset i386_gregset =
3892 {
3893 NULL, i386_supply_gregset, i386_collect_gregset
3894 };
3895
3896 const struct regset i386_fpregset =
3897 {
3898 NULL, i386_supply_fpregset, i386_collect_fpregset
3899 };
3900
3901 /* Default iterator over core file register note sections. */
3902
3903 void
3904 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3905 iterate_over_regset_sections_cb *cb,
3906 void *cb_data,
3907 const struct regcache *regcache)
3908 {
3909 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3910
3911 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
3912 cb_data);
3913 if (tdep->sizeof_fpregset)
3914 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
3915 NULL, cb_data);
3916 }
3917 \f
3918
3919 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3920
3921 CORE_ADDR
3922 i386_pe_skip_trampoline_code (struct frame_info *frame,
3923 CORE_ADDR pc, char *name)
3924 {
3925 struct gdbarch *gdbarch = get_frame_arch (frame);
3926 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3927
3928 /* jmp *(dest) */
3929 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3930 {
3931 unsigned long indirect =
3932 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3933 struct minimal_symbol *indsym =
3934 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3935 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3936
3937 if (symname)
3938 {
3939 if (startswith (symname, "__imp_")
3940 || startswith (symname, "_imp_"))
3941 return name ? 1 :
3942 read_memory_unsigned_integer (indirect, 4, byte_order);
3943 }
3944 }
3945 return 0; /* Not a trampoline. */
3946 }
3947 \f
3948
3949 /* Return whether the THIS_FRAME corresponds to a sigtramp
3950 routine. */
3951
3952 int
3953 i386_sigtramp_p (struct frame_info *this_frame)
3954 {
3955 CORE_ADDR pc = get_frame_pc (this_frame);
3956 const char *name;
3957
3958 find_pc_partial_function (pc, &name, NULL, NULL);
3959 return (name && strcmp ("_sigtramp", name) == 0);
3960 }
3961 \f
3962
3963 /* We have two flavours of disassembly. The machinery on this page
3964 deals with switching between those. */
3965
3966 static int
3967 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3968 {
3969 gdb_assert (disassembly_flavor == att_flavor
3970 || disassembly_flavor == intel_flavor);
3971
3972 info->disassembler_options = disassembly_flavor;
3973
3974 return default_print_insn (pc, info);
3975 }
3976 \f
3977
3978 /* There are a few i386 architecture variants that differ only
3979 slightly from the generic i386 target. For now, we don't give them
3980 their own source file, but include them here. As a consequence,
3981 they'll always be included. */
3982
3983 /* System V Release 4 (SVR4). */
3984
3985 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3986 routine. */
3987
3988 static int
3989 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3990 {
3991 CORE_ADDR pc = get_frame_pc (this_frame);
3992 const char *name;
3993
3994 /* The origin of these symbols is currently unknown. */
3995 find_pc_partial_function (pc, &name, NULL, NULL);
3996 return (name && (strcmp ("_sigreturn", name) == 0
3997 || strcmp ("sigvechandler", name) == 0));
3998 }
3999
4000 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4001 address of the associated sigcontext (ucontext) structure. */
4002
4003 static CORE_ADDR
4004 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4005 {
4006 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4007 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4008 gdb_byte buf[4];
4009 CORE_ADDR sp;
4010
4011 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4012 sp = extract_unsigned_integer (buf, 4, byte_order);
4013
4014 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4015 }
4016
4017 \f
4018
4019 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4020 gdbarch.h. */
4021
4022 int
4023 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4024 {
4025 return (*s == '$' /* Literal number. */
4026 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4027 || (*s == '(' && s[1] == '%') /* Register indirection. */
4028 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4029 }
4030
4031 /* Helper function for i386_stap_parse_special_token.
4032
4033 This function parses operands of the form `-8+3+1(%rbp)', which
4034 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4035
4036 Return true if the operand was parsed successfully, false
4037 otherwise. */
4038
4039 static bool
4040 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4041 struct stap_parse_info *p)
4042 {
4043 const char *s = p->arg;
4044
4045 if (isdigit (*s) || *s == '-' || *s == '+')
4046 {
4047 bool got_minus[3];
4048 int i;
4049 long displacements[3];
4050 const char *start;
4051 char *regname;
4052 int len;
4053 struct stoken str;
4054 char *endp;
4055
4056 got_minus[0] = false;
4057 if (*s == '+')
4058 ++s;
4059 else if (*s == '-')
4060 {
4061 ++s;
4062 got_minus[0] = true;
4063 }
4064
4065 if (!isdigit ((unsigned char) *s))
4066 return false;
4067
4068 displacements[0] = strtol (s, &endp, 10);
4069 s = endp;
4070
4071 if (*s != '+' && *s != '-')
4072 {
4073 /* We are not dealing with a triplet. */
4074 return false;
4075 }
4076
4077 got_minus[1] = false;
4078 if (*s == '+')
4079 ++s;
4080 else
4081 {
4082 ++s;
4083 got_minus[1] = true;
4084 }
4085
4086 if (!isdigit ((unsigned char) *s))
4087 return false;
4088
4089 displacements[1] = strtol (s, &endp, 10);
4090 s = endp;
4091
4092 if (*s != '+' && *s != '-')
4093 {
4094 /* We are not dealing with a triplet. */
4095 return false;
4096 }
4097
4098 got_minus[2] = false;
4099 if (*s == '+')
4100 ++s;
4101 else
4102 {
4103 ++s;
4104 got_minus[2] = true;
4105 }
4106
4107 if (!isdigit ((unsigned char) *s))
4108 return false;
4109
4110 displacements[2] = strtol (s, &endp, 10);
4111 s = endp;
4112
4113 if (*s != '(' || s[1] != '%')
4114 return false;
4115
4116 s += 2;
4117 start = s;
4118
4119 while (isalnum (*s))
4120 ++s;
4121
4122 if (*s++ != ')')
4123 return false;
4124
4125 len = s - start - 1;
4126 regname = (char *) alloca (len + 1);
4127
4128 strncpy (regname, start, len);
4129 regname[len] = '\0';
4130
4131 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4132 error (_("Invalid register name `%s' on expression `%s'."),
4133 regname, p->saved_arg);
4134
4135 for (i = 0; i < 3; i++)
4136 {
4137 write_exp_elt_opcode (&p->pstate, OP_LONG);
4138 write_exp_elt_type
4139 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4140 write_exp_elt_longcst (&p->pstate, displacements[i]);
4141 write_exp_elt_opcode (&p->pstate, OP_LONG);
4142 if (got_minus[i])
4143 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4144 }
4145
4146 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4147 str.ptr = regname;
4148 str.length = len;
4149 write_exp_string (&p->pstate, str);
4150 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4151
4152 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4153 write_exp_elt_type (&p->pstate,
4154 builtin_type (gdbarch)->builtin_data_ptr);
4155 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4156
4157 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4158 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4159 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4160
4161 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4162 write_exp_elt_type (&p->pstate,
4163 lookup_pointer_type (p->arg_type));
4164 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4165
4166 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4167
4168 p->arg = s;
4169
4170 return true;
4171 }
4172
4173 return false;
4174 }
4175
4176 /* Helper function for i386_stap_parse_special_token.
4177
4178 This function parses operands of the form `register base +
4179 (register index * size) + offset', as represented in
4180 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4181
4182 Return true if the operand was parsed successfully, false
4183 otherwise. */
4184
4185 static bool
4186 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4187 struct stap_parse_info *p)
4188 {
4189 const char *s = p->arg;
4190
4191 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4192 {
4193 bool offset_minus = false;
4194 long offset = 0;
4195 bool size_minus = false;
4196 long size = 0;
4197 const char *start;
4198 char *base;
4199 int len_base;
4200 char *index;
4201 int len_index;
4202 struct stoken base_token, index_token;
4203
4204 if (*s == '+')
4205 ++s;
4206 else if (*s == '-')
4207 {
4208 ++s;
4209 offset_minus = true;
4210 }
4211
4212 if (offset_minus && !isdigit (*s))
4213 return false;
4214
4215 if (isdigit (*s))
4216 {
4217 char *endp;
4218
4219 offset = strtol (s, &endp, 10);
4220 s = endp;
4221 }
4222
4223 if (*s != '(' || s[1] != '%')
4224 return false;
4225
4226 s += 2;
4227 start = s;
4228
4229 while (isalnum (*s))
4230 ++s;
4231
4232 if (*s != ',' || s[1] != '%')
4233 return false;
4234
4235 len_base = s - start;
4236 base = (char *) alloca (len_base + 1);
4237 strncpy (base, start, len_base);
4238 base[len_base] = '\0';
4239
4240 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4241 error (_("Invalid register name `%s' on expression `%s'."),
4242 base, p->saved_arg);
4243
4244 s += 2;
4245 start = s;
4246
4247 while (isalnum (*s))
4248 ++s;
4249
4250 len_index = s - start;
4251 index = (char *) alloca (len_index + 1);
4252 strncpy (index, start, len_index);
4253 index[len_index] = '\0';
4254
4255 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4256 error (_("Invalid register name `%s' on expression `%s'."),
4257 index, p->saved_arg);
4258
4259 if (*s != ',' && *s != ')')
4260 return false;
4261
4262 if (*s == ',')
4263 {
4264 char *endp;
4265
4266 ++s;
4267 if (*s == '+')
4268 ++s;
4269 else if (*s == '-')
4270 {
4271 ++s;
4272 size_minus = true;
4273 }
4274
4275 size = strtol (s, &endp, 10);
4276 s = endp;
4277
4278 if (*s != ')')
4279 return false;
4280 }
4281
4282 ++s;
4283
4284 if (offset)
4285 {
4286 write_exp_elt_opcode (&p->pstate, OP_LONG);
4287 write_exp_elt_type (&p->pstate,
4288 builtin_type (gdbarch)->builtin_long);
4289 write_exp_elt_longcst (&p->pstate, offset);
4290 write_exp_elt_opcode (&p->pstate, OP_LONG);
4291 if (offset_minus)
4292 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4293 }
4294
4295 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4296 base_token.ptr = base;
4297 base_token.length = len_base;
4298 write_exp_string (&p->pstate, base_token);
4299 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4300
4301 if (offset)
4302 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4303
4304 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4305 index_token.ptr = index;
4306 index_token.length = len_index;
4307 write_exp_string (&p->pstate, index_token);
4308 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4309
4310 if (size)
4311 {
4312 write_exp_elt_opcode (&p->pstate, OP_LONG);
4313 write_exp_elt_type (&p->pstate,
4314 builtin_type (gdbarch)->builtin_long);
4315 write_exp_elt_longcst (&p->pstate, size);
4316 write_exp_elt_opcode (&p->pstate, OP_LONG);
4317 if (size_minus)
4318 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4319 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4320 }
4321
4322 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4323
4324 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4325 write_exp_elt_type (&p->pstate,
4326 lookup_pointer_type (p->arg_type));
4327 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4328
4329 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4330
4331 p->arg = s;
4332
4333 return true;
4334 }
4335
4336 return false;
4337 }
4338
4339 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4340 gdbarch.h. */
4341
4342 int
4343 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4344 struct stap_parse_info *p)
4345 {
4346 /* In order to parse special tokens, we use a state-machine that go
4347 through every known token and try to get a match. */
4348 enum
4349 {
4350 TRIPLET,
4351 THREE_ARG_DISPLACEMENT,
4352 DONE
4353 };
4354 int current_state;
4355
4356 current_state = TRIPLET;
4357
4358 /* The special tokens to be parsed here are:
4359
4360 - `register base + (register index * size) + offset', as represented
4361 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4362
4363 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4364 `*(-8 + 3 - 1 + (void *) $eax)'. */
4365
4366 while (current_state != DONE)
4367 {
4368 switch (current_state)
4369 {
4370 case TRIPLET:
4371 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4372 return 1;
4373 break;
4374
4375 case THREE_ARG_DISPLACEMENT:
4376 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4377 return 1;
4378 break;
4379 }
4380
4381 /* Advancing to the next state. */
4382 ++current_state;
4383 }
4384
4385 return 0;
4386 }
4387
4388 \f
4389
4390 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4391 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4392
4393 static const char *
4394 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4395 {
4396 return "(x86_64|i.86)";
4397 }
4398
4399 \f
4400
4401 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
4402
4403 static bool
4404 i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4405 {
4406 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4407 I386_EAX_REGNUM, I386_EIP_REGNUM);
4408 }
4409
4410 /* Generic ELF. */
4411
4412 void
4413 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4414 {
4415 static const char *const stap_integer_prefixes[] = { "$", NULL };
4416 static const char *const stap_register_prefixes[] = { "%", NULL };
4417 static const char *const stap_register_indirection_prefixes[] = { "(",
4418 NULL };
4419 static const char *const stap_register_indirection_suffixes[] = { ")",
4420 NULL };
4421
4422 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4423 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4424
4425 /* Registering SystemTap handlers. */
4426 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4427 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4428 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4429 stap_register_indirection_prefixes);
4430 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4431 stap_register_indirection_suffixes);
4432 set_gdbarch_stap_is_single_operand (gdbarch,
4433 i386_stap_is_single_operand);
4434 set_gdbarch_stap_parse_special_token (gdbarch,
4435 i386_stap_parse_special_token);
4436
4437 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4438 i386_in_indirect_branch_thunk);
4439 }
4440
4441 /* System V Release 4 (SVR4). */
4442
4443 void
4444 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4445 {
4446 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4447
4448 /* System V Release 4 uses ELF. */
4449 i386_elf_init_abi (info, gdbarch);
4450
4451 /* System V Release 4 has shared libraries. */
4452 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4453
4454 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4455 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4456 tdep->sc_pc_offset = 36 + 14 * 4;
4457 tdep->sc_sp_offset = 36 + 17 * 4;
4458
4459 tdep->jb_pc_offset = 20;
4460 }
4461
4462 \f
4463
4464 /* i386 register groups. In addition to the normal groups, add "mmx"
4465 and "sse". */
4466
4467 static struct reggroup *i386_sse_reggroup;
4468 static struct reggroup *i386_mmx_reggroup;
4469
4470 static void
4471 i386_init_reggroups (void)
4472 {
4473 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4474 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4475 }
4476
4477 static void
4478 i386_add_reggroups (struct gdbarch *gdbarch)
4479 {
4480 reggroup_add (gdbarch, i386_sse_reggroup);
4481 reggroup_add (gdbarch, i386_mmx_reggroup);
4482 reggroup_add (gdbarch, general_reggroup);
4483 reggroup_add (gdbarch, float_reggroup);
4484 reggroup_add (gdbarch, all_reggroup);
4485 reggroup_add (gdbarch, save_reggroup);
4486 reggroup_add (gdbarch, restore_reggroup);
4487 reggroup_add (gdbarch, vector_reggroup);
4488 reggroup_add (gdbarch, system_reggroup);
4489 }
4490
4491 int
4492 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4493 struct reggroup *group)
4494 {
4495 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4496 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4497 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4498 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4499 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4500 avx512_p, avx_p, sse_p, pkru_regnum_p;
4501
4502 /* Don't include pseudo registers, except for MMX, in any register
4503 groups. */
4504 if (i386_byte_regnum_p (gdbarch, regnum))
4505 return 0;
4506
4507 if (i386_word_regnum_p (gdbarch, regnum))
4508 return 0;
4509
4510 if (i386_dword_regnum_p (gdbarch, regnum))
4511 return 0;
4512
4513 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4514 if (group == i386_mmx_reggroup)
4515 return mmx_regnum_p;
4516
4517 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4518 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4519 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4520 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4521 if (group == i386_sse_reggroup)
4522 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4523
4524 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4525 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4526 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4527
4528 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4529 == X86_XSTATE_AVX_AVX512_MASK);
4530 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4531 == X86_XSTATE_AVX_MASK) && !avx512_p;
4532 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4533 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4534
4535 if (group == vector_reggroup)
4536 return (mmx_regnum_p
4537 || (zmm_regnum_p && avx512_p)
4538 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4539 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4540 || mxcsr_regnum_p);
4541
4542 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4543 || i386_fpc_regnum_p (gdbarch, regnum));
4544 if (group == float_reggroup)
4545 return fp_regnum_p;
4546
4547 /* For "info reg all", don't include upper YMM registers nor XMM
4548 registers when AVX is supported. */
4549 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4550 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4551 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4552 if (group == all_reggroup
4553 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4554 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4555 || ymmh_regnum_p
4556 || ymmh_avx512_regnum_p
4557 || zmmh_regnum_p))
4558 return 0;
4559
4560 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4561 if (group == all_reggroup
4562 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4563 return bnd_regnum_p;
4564
4565 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4566 if (group == all_reggroup
4567 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4568 return 0;
4569
4570 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4571 if (group == all_reggroup
4572 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4573 return mpx_ctrl_regnum_p;
4574
4575 if (group == general_reggroup)
4576 return (!fp_regnum_p
4577 && !mmx_regnum_p
4578 && !mxcsr_regnum_p
4579 && !xmm_regnum_p
4580 && !xmm_avx512_regnum_p
4581 && !ymm_regnum_p
4582 && !ymmh_regnum_p
4583 && !ymm_avx512_regnum_p
4584 && !ymmh_avx512_regnum_p
4585 && !bndr_regnum_p
4586 && !bnd_regnum_p
4587 && !mpx_ctrl_regnum_p
4588 && !zmm_regnum_p
4589 && !zmmh_regnum_p
4590 && !pkru_regnum_p);
4591
4592 return default_register_reggroup_p (gdbarch, regnum, group);
4593 }
4594 \f
4595
4596 /* Get the ARGIth function argument for the current function. */
4597
4598 static CORE_ADDR
4599 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4600 struct type *type)
4601 {
4602 struct gdbarch *gdbarch = get_frame_arch (frame);
4603 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4604 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4605 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4606 }
4607
4608 #define PREFIX_REPZ 0x01
4609 #define PREFIX_REPNZ 0x02
4610 #define PREFIX_LOCK 0x04
4611 #define PREFIX_DATA 0x08
4612 #define PREFIX_ADDR 0x10
4613
4614 /* operand size */
4615 enum
4616 {
4617 OT_BYTE = 0,
4618 OT_WORD,
4619 OT_LONG,
4620 OT_QUAD,
4621 OT_DQUAD,
4622 };
4623
4624 /* i386 arith/logic operations */
4625 enum
4626 {
4627 OP_ADDL,
4628 OP_ORL,
4629 OP_ADCL,
4630 OP_SBBL,
4631 OP_ANDL,
4632 OP_SUBL,
4633 OP_XORL,
4634 OP_CMPL,
4635 };
4636
4637 struct i386_record_s
4638 {
4639 struct gdbarch *gdbarch;
4640 struct regcache *regcache;
4641 CORE_ADDR orig_addr;
4642 CORE_ADDR addr;
4643 int aflag;
4644 int dflag;
4645 int override;
4646 uint8_t modrm;
4647 uint8_t mod, reg, rm;
4648 int ot;
4649 uint8_t rex_x;
4650 uint8_t rex_b;
4651 int rip_offset;
4652 int popl_esp_hack;
4653 const int *regmap;
4654 };
4655
4656 /* Parse the "modrm" part of the memory address irp->addr points at.
4657 Returns -1 if something goes wrong, 0 otherwise. */
4658
4659 static int
4660 i386_record_modrm (struct i386_record_s *irp)
4661 {
4662 struct gdbarch *gdbarch = irp->gdbarch;
4663
4664 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4665 return -1;
4666
4667 irp->addr++;
4668 irp->mod = (irp->modrm >> 6) & 3;
4669 irp->reg = (irp->modrm >> 3) & 7;
4670 irp->rm = irp->modrm & 7;
4671
4672 return 0;
4673 }
4674
4675 /* Extract the memory address that the current instruction writes to,
4676 and return it in *ADDR. Return -1 if something goes wrong. */
4677
4678 static int
4679 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4680 {
4681 struct gdbarch *gdbarch = irp->gdbarch;
4682 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4683 gdb_byte buf[4];
4684 ULONGEST offset64;
4685
4686 *addr = 0;
4687 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4688 {
4689 /* 32/64 bits */
4690 int havesib = 0;
4691 uint8_t scale = 0;
4692 uint8_t byte;
4693 uint8_t index = 0;
4694 uint8_t base = irp->rm;
4695
4696 if (base == 4)
4697 {
4698 havesib = 1;
4699 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4700 return -1;
4701 irp->addr++;
4702 scale = (byte >> 6) & 3;
4703 index = ((byte >> 3) & 7) | irp->rex_x;
4704 base = (byte & 7);
4705 }
4706 base |= irp->rex_b;
4707
4708 switch (irp->mod)
4709 {
4710 case 0:
4711 if ((base & 7) == 5)
4712 {
4713 base = 0xff;
4714 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4715 return -1;
4716 irp->addr += 4;
4717 *addr = extract_signed_integer (buf, 4, byte_order);
4718 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4719 *addr += irp->addr + irp->rip_offset;
4720 }
4721 break;
4722 case 1:
4723 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4724 return -1;
4725 irp->addr++;
4726 *addr = (int8_t) buf[0];
4727 break;
4728 case 2:
4729 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4730 return -1;
4731 *addr = extract_signed_integer (buf, 4, byte_order);
4732 irp->addr += 4;
4733 break;
4734 }
4735
4736 offset64 = 0;
4737 if (base != 0xff)
4738 {
4739 if (base == 4 && irp->popl_esp_hack)
4740 *addr += irp->popl_esp_hack;
4741 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4742 &offset64);
4743 }
4744 if (irp->aflag == 2)
4745 {
4746 *addr += offset64;
4747 }
4748 else
4749 *addr = (uint32_t) (offset64 + *addr);
4750
4751 if (havesib && (index != 4 || scale != 0))
4752 {
4753 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4754 &offset64);
4755 if (irp->aflag == 2)
4756 *addr += offset64 << scale;
4757 else
4758 *addr = (uint32_t) (*addr + (offset64 << scale));
4759 }
4760
4761 if (!irp->aflag)
4762 {
4763 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4764 address from 32-bit to 64-bit. */
4765 *addr = (uint32_t) *addr;
4766 }
4767 }
4768 else
4769 {
4770 /* 16 bits */
4771 switch (irp->mod)
4772 {
4773 case 0:
4774 if (irp->rm == 6)
4775 {
4776 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4777 return -1;
4778 irp->addr += 2;
4779 *addr = extract_signed_integer (buf, 2, byte_order);
4780 irp->rm = 0;
4781 goto no_rm;
4782 }
4783 break;
4784 case 1:
4785 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4786 return -1;
4787 irp->addr++;
4788 *addr = (int8_t) buf[0];
4789 break;
4790 case 2:
4791 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4792 return -1;
4793 irp->addr += 2;
4794 *addr = extract_signed_integer (buf, 2, byte_order);
4795 break;
4796 }
4797
4798 switch (irp->rm)
4799 {
4800 case 0:
4801 regcache_raw_read_unsigned (irp->regcache,
4802 irp->regmap[X86_RECORD_REBX_REGNUM],
4803 &offset64);
4804 *addr = (uint32_t) (*addr + offset64);
4805 regcache_raw_read_unsigned (irp->regcache,
4806 irp->regmap[X86_RECORD_RESI_REGNUM],
4807 &offset64);
4808 *addr = (uint32_t) (*addr + offset64);
4809 break;
4810 case 1:
4811 regcache_raw_read_unsigned (irp->regcache,
4812 irp->regmap[X86_RECORD_REBX_REGNUM],
4813 &offset64);
4814 *addr = (uint32_t) (*addr + offset64);
4815 regcache_raw_read_unsigned (irp->regcache,
4816 irp->regmap[X86_RECORD_REDI_REGNUM],
4817 &offset64);
4818 *addr = (uint32_t) (*addr + offset64);
4819 break;
4820 case 2:
4821 regcache_raw_read_unsigned (irp->regcache,
4822 irp->regmap[X86_RECORD_REBP_REGNUM],
4823 &offset64);
4824 *addr = (uint32_t) (*addr + offset64);
4825 regcache_raw_read_unsigned (irp->regcache,
4826 irp->regmap[X86_RECORD_RESI_REGNUM],
4827 &offset64);
4828 *addr = (uint32_t) (*addr + offset64);
4829 break;
4830 case 3:
4831 regcache_raw_read_unsigned (irp->regcache,
4832 irp->regmap[X86_RECORD_REBP_REGNUM],
4833 &offset64);
4834 *addr = (uint32_t) (*addr + offset64);
4835 regcache_raw_read_unsigned (irp->regcache,
4836 irp->regmap[X86_RECORD_REDI_REGNUM],
4837 &offset64);
4838 *addr = (uint32_t) (*addr + offset64);
4839 break;
4840 case 4:
4841 regcache_raw_read_unsigned (irp->regcache,
4842 irp->regmap[X86_RECORD_RESI_REGNUM],
4843 &offset64);
4844 *addr = (uint32_t) (*addr + offset64);
4845 break;
4846 case 5:
4847 regcache_raw_read_unsigned (irp->regcache,
4848 irp->regmap[X86_RECORD_REDI_REGNUM],
4849 &offset64);
4850 *addr = (uint32_t) (*addr + offset64);
4851 break;
4852 case 6:
4853 regcache_raw_read_unsigned (irp->regcache,
4854 irp->regmap[X86_RECORD_REBP_REGNUM],
4855 &offset64);
4856 *addr = (uint32_t) (*addr + offset64);
4857 break;
4858 case 7:
4859 regcache_raw_read_unsigned (irp->regcache,
4860 irp->regmap[X86_RECORD_REBX_REGNUM],
4861 &offset64);
4862 *addr = (uint32_t) (*addr + offset64);
4863 break;
4864 }
4865 *addr &= 0xffff;
4866 }
4867
4868 no_rm:
4869 return 0;
4870 }
4871
4872 /* Record the address and contents of the memory that will be changed
4873 by the current instruction. Return -1 if something goes wrong, 0
4874 otherwise. */
4875
4876 static int
4877 i386_record_lea_modrm (struct i386_record_s *irp)
4878 {
4879 struct gdbarch *gdbarch = irp->gdbarch;
4880 uint64_t addr;
4881
4882 if (irp->override >= 0)
4883 {
4884 if (record_full_memory_query)
4885 {
4886 if (yquery (_("\
4887 Process record ignores the memory change of instruction at address %s\n\
4888 because it can't get the value of the segment register.\n\
4889 Do you want to stop the program?"),
4890 paddress (gdbarch, irp->orig_addr)))
4891 return -1;
4892 }
4893
4894 return 0;
4895 }
4896
4897 if (i386_record_lea_modrm_addr (irp, &addr))
4898 return -1;
4899
4900 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4901 return -1;
4902
4903 return 0;
4904 }
4905
4906 /* Record the effects of a push operation. Return -1 if something
4907 goes wrong, 0 otherwise. */
4908
4909 static int
4910 i386_record_push (struct i386_record_s *irp, int size)
4911 {
4912 ULONGEST addr;
4913
4914 if (record_full_arch_list_add_reg (irp->regcache,
4915 irp->regmap[X86_RECORD_RESP_REGNUM]))
4916 return -1;
4917 regcache_raw_read_unsigned (irp->regcache,
4918 irp->regmap[X86_RECORD_RESP_REGNUM],
4919 &addr);
4920 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4921 return -1;
4922
4923 return 0;
4924 }
4925
4926
4927 /* Defines contents to record. */
4928 #define I386_SAVE_FPU_REGS 0xfffd
4929 #define I386_SAVE_FPU_ENV 0xfffe
4930 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4931
4932 /* Record the values of the floating point registers which will be
4933 changed by the current instruction. Returns -1 if something is
4934 wrong, 0 otherwise. */
4935
4936 static int i386_record_floats (struct gdbarch *gdbarch,
4937 struct i386_record_s *ir,
4938 uint32_t iregnum)
4939 {
4940 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4941 int i;
4942
4943 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4944 happen. Currently we store st0-st7 registers, but we need not store all
4945 registers all the time, in future we use ftag register and record only
4946 those who are not marked as an empty. */
4947
4948 if (I386_SAVE_FPU_REGS == iregnum)
4949 {
4950 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4951 {
4952 if (record_full_arch_list_add_reg (ir->regcache, i))
4953 return -1;
4954 }
4955 }
4956 else if (I386_SAVE_FPU_ENV == iregnum)
4957 {
4958 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4959 {
4960 if (record_full_arch_list_add_reg (ir->regcache, i))
4961 return -1;
4962 }
4963 }
4964 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4965 {
4966 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4967 {
4968 if (record_full_arch_list_add_reg (ir->regcache, i))
4969 return -1;
4970 }
4971 }
4972 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4973 (iregnum <= I387_FOP_REGNUM (tdep)))
4974 {
4975 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
4976 return -1;
4977 }
4978 else
4979 {
4980 /* Parameter error. */
4981 return -1;
4982 }
4983 if(I386_SAVE_FPU_ENV != iregnum)
4984 {
4985 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4986 {
4987 if (record_full_arch_list_add_reg (ir->regcache, i))
4988 return -1;
4989 }
4990 }
4991 return 0;
4992 }
4993
4994 /* Parse the current instruction, and record the values of the
4995 registers and memory that will be changed by the current
4996 instruction. Returns -1 if something goes wrong, 0 otherwise. */
4997
4998 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
4999 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5000
5001 int
5002 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5003 CORE_ADDR input_addr)
5004 {
5005 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5006 int prefixes = 0;
5007 int regnum = 0;
5008 uint32_t opcode;
5009 uint8_t opcode8;
5010 ULONGEST addr;
5011 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5012 struct i386_record_s ir;
5013 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5014 uint8_t rex_w = -1;
5015 uint8_t rex_r = 0;
5016
5017 memset (&ir, 0, sizeof (struct i386_record_s));
5018 ir.regcache = regcache;
5019 ir.addr = input_addr;
5020 ir.orig_addr = input_addr;
5021 ir.aflag = 1;
5022 ir.dflag = 1;
5023 ir.override = -1;
5024 ir.popl_esp_hack = 0;
5025 ir.regmap = tdep->record_regmap;
5026 ir.gdbarch = gdbarch;
5027
5028 if (record_debug > 1)
5029 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5030 "addr = %s\n",
5031 paddress (gdbarch, ir.addr));
5032
5033 /* prefixes */
5034 while (1)
5035 {
5036 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5037 return -1;
5038 ir.addr++;
5039 switch (opcode8) /* Instruction prefixes */
5040 {
5041 case REPE_PREFIX_OPCODE:
5042 prefixes |= PREFIX_REPZ;
5043 break;
5044 case REPNE_PREFIX_OPCODE:
5045 prefixes |= PREFIX_REPNZ;
5046 break;
5047 case LOCK_PREFIX_OPCODE:
5048 prefixes |= PREFIX_LOCK;
5049 break;
5050 case CS_PREFIX_OPCODE:
5051 ir.override = X86_RECORD_CS_REGNUM;
5052 break;
5053 case SS_PREFIX_OPCODE:
5054 ir.override = X86_RECORD_SS_REGNUM;
5055 break;
5056 case DS_PREFIX_OPCODE:
5057 ir.override = X86_RECORD_DS_REGNUM;
5058 break;
5059 case ES_PREFIX_OPCODE:
5060 ir.override = X86_RECORD_ES_REGNUM;
5061 break;
5062 case FS_PREFIX_OPCODE:
5063 ir.override = X86_RECORD_FS_REGNUM;
5064 break;
5065 case GS_PREFIX_OPCODE:
5066 ir.override = X86_RECORD_GS_REGNUM;
5067 break;
5068 case DATA_PREFIX_OPCODE:
5069 prefixes |= PREFIX_DATA;
5070 break;
5071 case ADDR_PREFIX_OPCODE:
5072 prefixes |= PREFIX_ADDR;
5073 break;
5074 case 0x40: /* i386 inc %eax */
5075 case 0x41: /* i386 inc %ecx */
5076 case 0x42: /* i386 inc %edx */
5077 case 0x43: /* i386 inc %ebx */
5078 case 0x44: /* i386 inc %esp */
5079 case 0x45: /* i386 inc %ebp */
5080 case 0x46: /* i386 inc %esi */
5081 case 0x47: /* i386 inc %edi */
5082 case 0x48: /* i386 dec %eax */
5083 case 0x49: /* i386 dec %ecx */
5084 case 0x4a: /* i386 dec %edx */
5085 case 0x4b: /* i386 dec %ebx */
5086 case 0x4c: /* i386 dec %esp */
5087 case 0x4d: /* i386 dec %ebp */
5088 case 0x4e: /* i386 dec %esi */
5089 case 0x4f: /* i386 dec %edi */
5090 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5091 {
5092 /* REX */
5093 rex_w = (opcode8 >> 3) & 1;
5094 rex_r = (opcode8 & 0x4) << 1;
5095 ir.rex_x = (opcode8 & 0x2) << 2;
5096 ir.rex_b = (opcode8 & 0x1) << 3;
5097 }
5098 else /* 32 bit target */
5099 goto out_prefixes;
5100 break;
5101 default:
5102 goto out_prefixes;
5103 break;
5104 }
5105 }
5106 out_prefixes:
5107 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5108 {
5109 ir.dflag = 2;
5110 }
5111 else
5112 {
5113 if (prefixes & PREFIX_DATA)
5114 ir.dflag ^= 1;
5115 }
5116 if (prefixes & PREFIX_ADDR)
5117 ir.aflag ^= 1;
5118 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5119 ir.aflag = 2;
5120
5121 /* Now check op code. */
5122 opcode = (uint32_t) opcode8;
5123 reswitch:
5124 switch (opcode)
5125 {
5126 case 0x0f:
5127 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5128 return -1;
5129 ir.addr++;
5130 opcode = (uint32_t) opcode8 | 0x0f00;
5131 goto reswitch;
5132 break;
5133
5134 case 0x00: /* arith & logic */
5135 case 0x01:
5136 case 0x02:
5137 case 0x03:
5138 case 0x04:
5139 case 0x05:
5140 case 0x08:
5141 case 0x09:
5142 case 0x0a:
5143 case 0x0b:
5144 case 0x0c:
5145 case 0x0d:
5146 case 0x10:
5147 case 0x11:
5148 case 0x12:
5149 case 0x13:
5150 case 0x14:
5151 case 0x15:
5152 case 0x18:
5153 case 0x19:
5154 case 0x1a:
5155 case 0x1b:
5156 case 0x1c:
5157 case 0x1d:
5158 case 0x20:
5159 case 0x21:
5160 case 0x22:
5161 case 0x23:
5162 case 0x24:
5163 case 0x25:
5164 case 0x28:
5165 case 0x29:
5166 case 0x2a:
5167 case 0x2b:
5168 case 0x2c:
5169 case 0x2d:
5170 case 0x30:
5171 case 0x31:
5172 case 0x32:
5173 case 0x33:
5174 case 0x34:
5175 case 0x35:
5176 case 0x38:
5177 case 0x39:
5178 case 0x3a:
5179 case 0x3b:
5180 case 0x3c:
5181 case 0x3d:
5182 if (((opcode >> 3) & 7) != OP_CMPL)
5183 {
5184 if ((opcode & 1) == 0)
5185 ir.ot = OT_BYTE;
5186 else
5187 ir.ot = ir.dflag + OT_WORD;
5188
5189 switch ((opcode >> 1) & 3)
5190 {
5191 case 0: /* OP Ev, Gv */
5192 if (i386_record_modrm (&ir))
5193 return -1;
5194 if (ir.mod != 3)
5195 {
5196 if (i386_record_lea_modrm (&ir))
5197 return -1;
5198 }
5199 else
5200 {
5201 ir.rm |= ir.rex_b;
5202 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5203 ir.rm &= 0x3;
5204 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5205 }
5206 break;
5207 case 1: /* OP Gv, Ev */
5208 if (i386_record_modrm (&ir))
5209 return -1;
5210 ir.reg |= rex_r;
5211 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5212 ir.reg &= 0x3;
5213 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5214 break;
5215 case 2: /* OP A, Iv */
5216 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5217 break;
5218 }
5219 }
5220 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5221 break;
5222
5223 case 0x80: /* GRP1 */
5224 case 0x81:
5225 case 0x82:
5226 case 0x83:
5227 if (i386_record_modrm (&ir))
5228 return -1;
5229
5230 if (ir.reg != OP_CMPL)
5231 {
5232 if ((opcode & 1) == 0)
5233 ir.ot = OT_BYTE;
5234 else
5235 ir.ot = ir.dflag + OT_WORD;
5236
5237 if (ir.mod != 3)
5238 {
5239 if (opcode == 0x83)
5240 ir.rip_offset = 1;
5241 else
5242 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5243 if (i386_record_lea_modrm (&ir))
5244 return -1;
5245 }
5246 else
5247 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5248 }
5249 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5250 break;
5251
5252 case 0x40: /* inc */
5253 case 0x41:
5254 case 0x42:
5255 case 0x43:
5256 case 0x44:
5257 case 0x45:
5258 case 0x46:
5259 case 0x47:
5260
5261 case 0x48: /* dec */
5262 case 0x49:
5263 case 0x4a:
5264 case 0x4b:
5265 case 0x4c:
5266 case 0x4d:
5267 case 0x4e:
5268 case 0x4f:
5269
5270 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5271 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5272 break;
5273
5274 case 0xf6: /* GRP3 */
5275 case 0xf7:
5276 if ((opcode & 1) == 0)
5277 ir.ot = OT_BYTE;
5278 else
5279 ir.ot = ir.dflag + OT_WORD;
5280 if (i386_record_modrm (&ir))
5281 return -1;
5282
5283 if (ir.mod != 3 && ir.reg == 0)
5284 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5285
5286 switch (ir.reg)
5287 {
5288 case 0: /* test */
5289 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5290 break;
5291 case 2: /* not */
5292 case 3: /* neg */
5293 if (ir.mod != 3)
5294 {
5295 if (i386_record_lea_modrm (&ir))
5296 return -1;
5297 }
5298 else
5299 {
5300 ir.rm |= ir.rex_b;
5301 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5302 ir.rm &= 0x3;
5303 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5304 }
5305 if (ir.reg == 3) /* neg */
5306 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5307 break;
5308 case 4: /* mul */
5309 case 5: /* imul */
5310 case 6: /* div */
5311 case 7: /* idiv */
5312 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5313 if (ir.ot != OT_BYTE)
5314 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5315 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5316 break;
5317 default:
5318 ir.addr -= 2;
5319 opcode = opcode << 8 | ir.modrm;
5320 goto no_support;
5321 break;
5322 }
5323 break;
5324
5325 case 0xfe: /* GRP4 */
5326 case 0xff: /* GRP5 */
5327 if (i386_record_modrm (&ir))
5328 return -1;
5329 if (ir.reg >= 2 && opcode == 0xfe)
5330 {
5331 ir.addr -= 2;
5332 opcode = opcode << 8 | ir.modrm;
5333 goto no_support;
5334 }
5335 switch (ir.reg)
5336 {
5337 case 0: /* inc */
5338 case 1: /* dec */
5339 if ((opcode & 1) == 0)
5340 ir.ot = OT_BYTE;
5341 else
5342 ir.ot = ir.dflag + OT_WORD;
5343 if (ir.mod != 3)
5344 {
5345 if (i386_record_lea_modrm (&ir))
5346 return -1;
5347 }
5348 else
5349 {
5350 ir.rm |= ir.rex_b;
5351 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5352 ir.rm &= 0x3;
5353 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5354 }
5355 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5356 break;
5357 case 2: /* call */
5358 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5359 ir.dflag = 2;
5360 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5361 return -1;
5362 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5363 break;
5364 case 3: /* lcall */
5365 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5366 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5367 return -1;
5368 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5369 break;
5370 case 4: /* jmp */
5371 case 5: /* ljmp */
5372 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5373 break;
5374 case 6: /* push */
5375 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5376 ir.dflag = 2;
5377 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5378 return -1;
5379 break;
5380 default:
5381 ir.addr -= 2;
5382 opcode = opcode << 8 | ir.modrm;
5383 goto no_support;
5384 break;
5385 }
5386 break;
5387
5388 case 0x84: /* test */
5389 case 0x85:
5390 case 0xa8:
5391 case 0xa9:
5392 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5393 break;
5394
5395 case 0x98: /* CWDE/CBW */
5396 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5397 break;
5398
5399 case 0x99: /* CDQ/CWD */
5400 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5401 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5402 break;
5403
5404 case 0x0faf: /* imul */
5405 case 0x69:
5406 case 0x6b:
5407 ir.ot = ir.dflag + OT_WORD;
5408 if (i386_record_modrm (&ir))
5409 return -1;
5410 if (opcode == 0x69)
5411 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5412 else if (opcode == 0x6b)
5413 ir.rip_offset = 1;
5414 ir.reg |= rex_r;
5415 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5416 ir.reg &= 0x3;
5417 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5418 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5419 break;
5420
5421 case 0x0fc0: /* xadd */
5422 case 0x0fc1:
5423 if ((opcode & 1) == 0)
5424 ir.ot = OT_BYTE;
5425 else
5426 ir.ot = ir.dflag + OT_WORD;
5427 if (i386_record_modrm (&ir))
5428 return -1;
5429 ir.reg |= rex_r;
5430 if (ir.mod == 3)
5431 {
5432 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5433 ir.reg &= 0x3;
5434 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5435 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5436 ir.rm &= 0x3;
5437 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5438 }
5439 else
5440 {
5441 if (i386_record_lea_modrm (&ir))
5442 return -1;
5443 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5444 ir.reg &= 0x3;
5445 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5446 }
5447 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5448 break;
5449
5450 case 0x0fb0: /* cmpxchg */
5451 case 0x0fb1:
5452 if ((opcode & 1) == 0)
5453 ir.ot = OT_BYTE;
5454 else
5455 ir.ot = ir.dflag + OT_WORD;
5456 if (i386_record_modrm (&ir))
5457 return -1;
5458 if (ir.mod == 3)
5459 {
5460 ir.reg |= rex_r;
5461 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5462 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5463 ir.reg &= 0x3;
5464 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5465 }
5466 else
5467 {
5468 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5469 if (i386_record_lea_modrm (&ir))
5470 return -1;
5471 }
5472 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5473 break;
5474
5475 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5476 if (i386_record_modrm (&ir))
5477 return -1;
5478 if (ir.mod == 3)
5479 {
5480 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5481 an extended opcode. rdrand has bits 110 (/6) and rdseed
5482 has bits 111 (/7). */
5483 if (ir.reg == 6 || ir.reg == 7)
5484 {
5485 /* The storage register is described by the 3 R/M bits, but the
5486 REX.B prefix may be used to give access to registers
5487 R8~R15. In this case ir.rex_b + R/M will give us the register
5488 in the range R8~R15.
5489
5490 REX.W may also be used to access 64-bit registers, but we
5491 already record entire registers and not just partial bits
5492 of them. */
5493 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5494 /* These instructions also set conditional bits. */
5495 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5496 break;
5497 }
5498 else
5499 {
5500 /* We don't handle this particular instruction yet. */
5501 ir.addr -= 2;
5502 opcode = opcode << 8 | ir.modrm;
5503 goto no_support;
5504 }
5505 }
5506 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5507 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5508 if (i386_record_lea_modrm (&ir))
5509 return -1;
5510 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5511 break;
5512
5513 case 0x50: /* push */
5514 case 0x51:
5515 case 0x52:
5516 case 0x53:
5517 case 0x54:
5518 case 0x55:
5519 case 0x56:
5520 case 0x57:
5521 case 0x68:
5522 case 0x6a:
5523 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5524 ir.dflag = 2;
5525 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5526 return -1;
5527 break;
5528
5529 case 0x06: /* push es */
5530 case 0x0e: /* push cs */
5531 case 0x16: /* push ss */
5532 case 0x1e: /* push ds */
5533 if (ir.regmap[X86_RECORD_R8_REGNUM])
5534 {
5535 ir.addr -= 1;
5536 goto no_support;
5537 }
5538 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5539 return -1;
5540 break;
5541
5542 case 0x0fa0: /* push fs */
5543 case 0x0fa8: /* push gs */
5544 if (ir.regmap[X86_RECORD_R8_REGNUM])
5545 {
5546 ir.addr -= 2;
5547 goto no_support;
5548 }
5549 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5550 return -1;
5551 break;
5552
5553 case 0x60: /* pusha */
5554 if (ir.regmap[X86_RECORD_R8_REGNUM])
5555 {
5556 ir.addr -= 1;
5557 goto no_support;
5558 }
5559 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5560 return -1;
5561 break;
5562
5563 case 0x58: /* pop */
5564 case 0x59:
5565 case 0x5a:
5566 case 0x5b:
5567 case 0x5c:
5568 case 0x5d:
5569 case 0x5e:
5570 case 0x5f:
5571 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5572 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5573 break;
5574
5575 case 0x61: /* popa */
5576 if (ir.regmap[X86_RECORD_R8_REGNUM])
5577 {
5578 ir.addr -= 1;
5579 goto no_support;
5580 }
5581 for (regnum = X86_RECORD_REAX_REGNUM;
5582 regnum <= X86_RECORD_REDI_REGNUM;
5583 regnum++)
5584 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5585 break;
5586
5587 case 0x8f: /* pop */
5588 if (ir.regmap[X86_RECORD_R8_REGNUM])
5589 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5590 else
5591 ir.ot = ir.dflag + OT_WORD;
5592 if (i386_record_modrm (&ir))
5593 return -1;
5594 if (ir.mod == 3)
5595 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5596 else
5597 {
5598 ir.popl_esp_hack = 1 << ir.ot;
5599 if (i386_record_lea_modrm (&ir))
5600 return -1;
5601 }
5602 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5603 break;
5604
5605 case 0xc8: /* enter */
5606 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5607 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5608 ir.dflag = 2;
5609 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5610 return -1;
5611 break;
5612
5613 case 0xc9: /* leave */
5614 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5615 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5616 break;
5617
5618 case 0x07: /* pop es */
5619 if (ir.regmap[X86_RECORD_R8_REGNUM])
5620 {
5621 ir.addr -= 1;
5622 goto no_support;
5623 }
5624 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5625 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5626 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5627 break;
5628
5629 case 0x17: /* pop ss */
5630 if (ir.regmap[X86_RECORD_R8_REGNUM])
5631 {
5632 ir.addr -= 1;
5633 goto no_support;
5634 }
5635 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5636 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5637 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5638 break;
5639
5640 case 0x1f: /* pop ds */
5641 if (ir.regmap[X86_RECORD_R8_REGNUM])
5642 {
5643 ir.addr -= 1;
5644 goto no_support;
5645 }
5646 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5647 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5648 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5649 break;
5650
5651 case 0x0fa1: /* pop fs */
5652 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5653 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5654 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5655 break;
5656
5657 case 0x0fa9: /* pop gs */
5658 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5659 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5660 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5661 break;
5662
5663 case 0x88: /* mov */
5664 case 0x89:
5665 case 0xc6:
5666 case 0xc7:
5667 if ((opcode & 1) == 0)
5668 ir.ot = OT_BYTE;
5669 else
5670 ir.ot = ir.dflag + OT_WORD;
5671
5672 if (i386_record_modrm (&ir))
5673 return -1;
5674
5675 if (ir.mod != 3)
5676 {
5677 if (opcode == 0xc6 || opcode == 0xc7)
5678 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5679 if (i386_record_lea_modrm (&ir))
5680 return -1;
5681 }
5682 else
5683 {
5684 if (opcode == 0xc6 || opcode == 0xc7)
5685 ir.rm |= ir.rex_b;
5686 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5687 ir.rm &= 0x3;
5688 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5689 }
5690 break;
5691
5692 case 0x8a: /* mov */
5693 case 0x8b:
5694 if ((opcode & 1) == 0)
5695 ir.ot = OT_BYTE;
5696 else
5697 ir.ot = ir.dflag + OT_WORD;
5698 if (i386_record_modrm (&ir))
5699 return -1;
5700 ir.reg |= rex_r;
5701 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5702 ir.reg &= 0x3;
5703 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5704 break;
5705
5706 case 0x8c: /* mov seg */
5707 if (i386_record_modrm (&ir))
5708 return -1;
5709 if (ir.reg > 5)
5710 {
5711 ir.addr -= 2;
5712 opcode = opcode << 8 | ir.modrm;
5713 goto no_support;
5714 }
5715
5716 if (ir.mod == 3)
5717 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5718 else
5719 {
5720 ir.ot = OT_WORD;
5721 if (i386_record_lea_modrm (&ir))
5722 return -1;
5723 }
5724 break;
5725
5726 case 0x8e: /* mov seg */
5727 if (i386_record_modrm (&ir))
5728 return -1;
5729 switch (ir.reg)
5730 {
5731 case 0:
5732 regnum = X86_RECORD_ES_REGNUM;
5733 break;
5734 case 2:
5735 regnum = X86_RECORD_SS_REGNUM;
5736 break;
5737 case 3:
5738 regnum = X86_RECORD_DS_REGNUM;
5739 break;
5740 case 4:
5741 regnum = X86_RECORD_FS_REGNUM;
5742 break;
5743 case 5:
5744 regnum = X86_RECORD_GS_REGNUM;
5745 break;
5746 default:
5747 ir.addr -= 2;
5748 opcode = opcode << 8 | ir.modrm;
5749 goto no_support;
5750 break;
5751 }
5752 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5753 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5754 break;
5755
5756 case 0x0fb6: /* movzbS */
5757 case 0x0fb7: /* movzwS */
5758 case 0x0fbe: /* movsbS */
5759 case 0x0fbf: /* movswS */
5760 if (i386_record_modrm (&ir))
5761 return -1;
5762 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5763 break;
5764
5765 case 0x8d: /* lea */
5766 if (i386_record_modrm (&ir))
5767 return -1;
5768 if (ir.mod == 3)
5769 {
5770 ir.addr -= 2;
5771 opcode = opcode << 8 | ir.modrm;
5772 goto no_support;
5773 }
5774 ir.ot = ir.dflag;
5775 ir.reg |= rex_r;
5776 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5777 ir.reg &= 0x3;
5778 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5779 break;
5780
5781 case 0xa0: /* mov EAX */
5782 case 0xa1:
5783
5784 case 0xd7: /* xlat */
5785 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5786 break;
5787
5788 case 0xa2: /* mov EAX */
5789 case 0xa3:
5790 if (ir.override >= 0)
5791 {
5792 if (record_full_memory_query)
5793 {
5794 if (yquery (_("\
5795 Process record ignores the memory change of instruction at address %s\n\
5796 because it can't get the value of the segment register.\n\
5797 Do you want to stop the program?"),
5798 paddress (gdbarch, ir.orig_addr)))
5799 return -1;
5800 }
5801 }
5802 else
5803 {
5804 if ((opcode & 1) == 0)
5805 ir.ot = OT_BYTE;
5806 else
5807 ir.ot = ir.dflag + OT_WORD;
5808 if (ir.aflag == 2)
5809 {
5810 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5811 return -1;
5812 ir.addr += 8;
5813 addr = extract_unsigned_integer (buf, 8, byte_order);
5814 }
5815 else if (ir.aflag)
5816 {
5817 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5818 return -1;
5819 ir.addr += 4;
5820 addr = extract_unsigned_integer (buf, 4, byte_order);
5821 }
5822 else
5823 {
5824 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5825 return -1;
5826 ir.addr += 2;
5827 addr = extract_unsigned_integer (buf, 2, byte_order);
5828 }
5829 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5830 return -1;
5831 }
5832 break;
5833
5834 case 0xb0: /* mov R, Ib */
5835 case 0xb1:
5836 case 0xb2:
5837 case 0xb3:
5838 case 0xb4:
5839 case 0xb5:
5840 case 0xb6:
5841 case 0xb7:
5842 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5843 ? ((opcode & 0x7) | ir.rex_b)
5844 : ((opcode & 0x7) & 0x3));
5845 break;
5846
5847 case 0xb8: /* mov R, Iv */
5848 case 0xb9:
5849 case 0xba:
5850 case 0xbb:
5851 case 0xbc:
5852 case 0xbd:
5853 case 0xbe:
5854 case 0xbf:
5855 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5856 break;
5857
5858 case 0x91: /* xchg R, EAX */
5859 case 0x92:
5860 case 0x93:
5861 case 0x94:
5862 case 0x95:
5863 case 0x96:
5864 case 0x97:
5865 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5866 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5867 break;
5868
5869 case 0x86: /* xchg Ev, Gv */
5870 case 0x87:
5871 if ((opcode & 1) == 0)
5872 ir.ot = OT_BYTE;
5873 else
5874 ir.ot = ir.dflag + OT_WORD;
5875 if (i386_record_modrm (&ir))
5876 return -1;
5877 if (ir.mod == 3)
5878 {
5879 ir.rm |= ir.rex_b;
5880 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5881 ir.rm &= 0x3;
5882 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5883 }
5884 else
5885 {
5886 if (i386_record_lea_modrm (&ir))
5887 return -1;
5888 }
5889 ir.reg |= rex_r;
5890 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5891 ir.reg &= 0x3;
5892 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5893 break;
5894
5895 case 0xc4: /* les Gv */
5896 case 0xc5: /* lds Gv */
5897 if (ir.regmap[X86_RECORD_R8_REGNUM])
5898 {
5899 ir.addr -= 1;
5900 goto no_support;
5901 }
5902 /* FALLTHROUGH */
5903 case 0x0fb2: /* lss Gv */
5904 case 0x0fb4: /* lfs Gv */
5905 case 0x0fb5: /* lgs Gv */
5906 if (i386_record_modrm (&ir))
5907 return -1;
5908 if (ir.mod == 3)
5909 {
5910 if (opcode > 0xff)
5911 ir.addr -= 3;
5912 else
5913 ir.addr -= 2;
5914 opcode = opcode << 8 | ir.modrm;
5915 goto no_support;
5916 }
5917 switch (opcode)
5918 {
5919 case 0xc4: /* les Gv */
5920 regnum = X86_RECORD_ES_REGNUM;
5921 break;
5922 case 0xc5: /* lds Gv */
5923 regnum = X86_RECORD_DS_REGNUM;
5924 break;
5925 case 0x0fb2: /* lss Gv */
5926 regnum = X86_RECORD_SS_REGNUM;
5927 break;
5928 case 0x0fb4: /* lfs Gv */
5929 regnum = X86_RECORD_FS_REGNUM;
5930 break;
5931 case 0x0fb5: /* lgs Gv */
5932 regnum = X86_RECORD_GS_REGNUM;
5933 break;
5934 }
5935 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5936 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5937 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5938 break;
5939
5940 case 0xc0: /* shifts */
5941 case 0xc1:
5942 case 0xd0:
5943 case 0xd1:
5944 case 0xd2:
5945 case 0xd3:
5946 if ((opcode & 1) == 0)
5947 ir.ot = OT_BYTE;
5948 else
5949 ir.ot = ir.dflag + OT_WORD;
5950 if (i386_record_modrm (&ir))
5951 return -1;
5952 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5953 {
5954 if (i386_record_lea_modrm (&ir))
5955 return -1;
5956 }
5957 else
5958 {
5959 ir.rm |= ir.rex_b;
5960 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5961 ir.rm &= 0x3;
5962 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5963 }
5964 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5965 break;
5966
5967 case 0x0fa4:
5968 case 0x0fa5:
5969 case 0x0fac:
5970 case 0x0fad:
5971 if (i386_record_modrm (&ir))
5972 return -1;
5973 if (ir.mod == 3)
5974 {
5975 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5976 return -1;
5977 }
5978 else
5979 {
5980 if (i386_record_lea_modrm (&ir))
5981 return -1;
5982 }
5983 break;
5984
5985 case 0xd8: /* Floats. */
5986 case 0xd9:
5987 case 0xda:
5988 case 0xdb:
5989 case 0xdc:
5990 case 0xdd:
5991 case 0xde:
5992 case 0xdf:
5993 if (i386_record_modrm (&ir))
5994 return -1;
5995 ir.reg |= ((opcode & 7) << 3);
5996 if (ir.mod != 3)
5997 {
5998 /* Memory. */
5999 uint64_t addr64;
6000
6001 if (i386_record_lea_modrm_addr (&ir, &addr64))
6002 return -1;
6003 switch (ir.reg)
6004 {
6005 case 0x02:
6006 case 0x12:
6007 case 0x22:
6008 case 0x32:
6009 /* For fcom, ficom nothing to do. */
6010 break;
6011 case 0x03:
6012 case 0x13:
6013 case 0x23:
6014 case 0x33:
6015 /* For fcomp, ficomp pop FPU stack, store all. */
6016 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6017 return -1;
6018 break;
6019 case 0x00:
6020 case 0x01:
6021 case 0x04:
6022 case 0x05:
6023 case 0x06:
6024 case 0x07:
6025 case 0x10:
6026 case 0x11:
6027 case 0x14:
6028 case 0x15:
6029 case 0x16:
6030 case 0x17:
6031 case 0x20:
6032 case 0x21:
6033 case 0x24:
6034 case 0x25:
6035 case 0x26:
6036 case 0x27:
6037 case 0x30:
6038 case 0x31:
6039 case 0x34:
6040 case 0x35:
6041 case 0x36:
6042 case 0x37:
6043 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6044 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6045 of code, always affects st(0) register. */
6046 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6047 return -1;
6048 break;
6049 case 0x08:
6050 case 0x0a:
6051 case 0x0b:
6052 case 0x18:
6053 case 0x19:
6054 case 0x1a:
6055 case 0x1b:
6056 case 0x1d:
6057 case 0x28:
6058 case 0x29:
6059 case 0x2a:
6060 case 0x2b:
6061 case 0x38:
6062 case 0x39:
6063 case 0x3a:
6064 case 0x3b:
6065 case 0x3c:
6066 case 0x3d:
6067 switch (ir.reg & 7)
6068 {
6069 case 0:
6070 /* Handling fld, fild. */
6071 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6072 return -1;
6073 break;
6074 case 1:
6075 switch (ir.reg >> 4)
6076 {
6077 case 0:
6078 if (record_full_arch_list_add_mem (addr64, 4))
6079 return -1;
6080 break;
6081 case 2:
6082 if (record_full_arch_list_add_mem (addr64, 8))
6083 return -1;
6084 break;
6085 case 3:
6086 break;
6087 default:
6088 if (record_full_arch_list_add_mem (addr64, 2))
6089 return -1;
6090 break;
6091 }
6092 break;
6093 default:
6094 switch (ir.reg >> 4)
6095 {
6096 case 0:
6097 if (record_full_arch_list_add_mem (addr64, 4))
6098 return -1;
6099 if (3 == (ir.reg & 7))
6100 {
6101 /* For fstp m32fp. */
6102 if (i386_record_floats (gdbarch, &ir,
6103 I386_SAVE_FPU_REGS))
6104 return -1;
6105 }
6106 break;
6107 case 1:
6108 if (record_full_arch_list_add_mem (addr64, 4))
6109 return -1;
6110 if ((3 == (ir.reg & 7))
6111 || (5 == (ir.reg & 7))
6112 || (7 == (ir.reg & 7)))
6113 {
6114 /* For fstp insn. */
6115 if (i386_record_floats (gdbarch, &ir,
6116 I386_SAVE_FPU_REGS))
6117 return -1;
6118 }
6119 break;
6120 case 2:
6121 if (record_full_arch_list_add_mem (addr64, 8))
6122 return -1;
6123 if (3 == (ir.reg & 7))
6124 {
6125 /* For fstp m64fp. */
6126 if (i386_record_floats (gdbarch, &ir,
6127 I386_SAVE_FPU_REGS))
6128 return -1;
6129 }
6130 break;
6131 case 3:
6132 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6133 {
6134 /* For fistp, fbld, fild, fbstp. */
6135 if (i386_record_floats (gdbarch, &ir,
6136 I386_SAVE_FPU_REGS))
6137 return -1;
6138 }
6139 /* Fall through */
6140 default:
6141 if (record_full_arch_list_add_mem (addr64, 2))
6142 return -1;
6143 break;
6144 }
6145 break;
6146 }
6147 break;
6148 case 0x0c:
6149 /* Insn fldenv. */
6150 if (i386_record_floats (gdbarch, &ir,
6151 I386_SAVE_FPU_ENV_REG_STACK))
6152 return -1;
6153 break;
6154 case 0x0d:
6155 /* Insn fldcw. */
6156 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6157 return -1;
6158 break;
6159 case 0x2c:
6160 /* Insn frstor. */
6161 if (i386_record_floats (gdbarch, &ir,
6162 I386_SAVE_FPU_ENV_REG_STACK))
6163 return -1;
6164 break;
6165 case 0x0e:
6166 if (ir.dflag)
6167 {
6168 if (record_full_arch_list_add_mem (addr64, 28))
6169 return -1;
6170 }
6171 else
6172 {
6173 if (record_full_arch_list_add_mem (addr64, 14))
6174 return -1;
6175 }
6176 break;
6177 case 0x0f:
6178 case 0x2f:
6179 if (record_full_arch_list_add_mem (addr64, 2))
6180 return -1;
6181 /* Insn fstp, fbstp. */
6182 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6183 return -1;
6184 break;
6185 case 0x1f:
6186 case 0x3e:
6187 if (record_full_arch_list_add_mem (addr64, 10))
6188 return -1;
6189 break;
6190 case 0x2e:
6191 if (ir.dflag)
6192 {
6193 if (record_full_arch_list_add_mem (addr64, 28))
6194 return -1;
6195 addr64 += 28;
6196 }
6197 else
6198 {
6199 if (record_full_arch_list_add_mem (addr64, 14))
6200 return -1;
6201 addr64 += 14;
6202 }
6203 if (record_full_arch_list_add_mem (addr64, 80))
6204 return -1;
6205 /* Insn fsave. */
6206 if (i386_record_floats (gdbarch, &ir,
6207 I386_SAVE_FPU_ENV_REG_STACK))
6208 return -1;
6209 break;
6210 case 0x3f:
6211 if (record_full_arch_list_add_mem (addr64, 8))
6212 return -1;
6213 /* Insn fistp. */
6214 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6215 return -1;
6216 break;
6217 default:
6218 ir.addr -= 2;
6219 opcode = opcode << 8 | ir.modrm;
6220 goto no_support;
6221 break;
6222 }
6223 }
6224 /* Opcode is an extension of modR/M byte. */
6225 else
6226 {
6227 switch (opcode)
6228 {
6229 case 0xd8:
6230 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6231 return -1;
6232 break;
6233 case 0xd9:
6234 if (0x0c == (ir.modrm >> 4))
6235 {
6236 if ((ir.modrm & 0x0f) <= 7)
6237 {
6238 if (i386_record_floats (gdbarch, &ir,
6239 I386_SAVE_FPU_REGS))
6240 return -1;
6241 }
6242 else
6243 {
6244 if (i386_record_floats (gdbarch, &ir,
6245 I387_ST0_REGNUM (tdep)))
6246 return -1;
6247 /* If only st(0) is changing, then we have already
6248 recorded. */
6249 if ((ir.modrm & 0x0f) - 0x08)
6250 {
6251 if (i386_record_floats (gdbarch, &ir,
6252 I387_ST0_REGNUM (tdep) +
6253 ((ir.modrm & 0x0f) - 0x08)))
6254 return -1;
6255 }
6256 }
6257 }
6258 else
6259 {
6260 switch (ir.modrm)
6261 {
6262 case 0xe0:
6263 case 0xe1:
6264 case 0xf0:
6265 case 0xf5:
6266 case 0xf8:
6267 case 0xfa:
6268 case 0xfc:
6269 case 0xfe:
6270 case 0xff:
6271 if (i386_record_floats (gdbarch, &ir,
6272 I387_ST0_REGNUM (tdep)))
6273 return -1;
6274 break;
6275 case 0xf1:
6276 case 0xf2:
6277 case 0xf3:
6278 case 0xf4:
6279 case 0xf6:
6280 case 0xf7:
6281 case 0xe8:
6282 case 0xe9:
6283 case 0xea:
6284 case 0xeb:
6285 case 0xec:
6286 case 0xed:
6287 case 0xee:
6288 case 0xf9:
6289 case 0xfb:
6290 if (i386_record_floats (gdbarch, &ir,
6291 I386_SAVE_FPU_REGS))
6292 return -1;
6293 break;
6294 case 0xfd:
6295 if (i386_record_floats (gdbarch, &ir,
6296 I387_ST0_REGNUM (tdep)))
6297 return -1;
6298 if (i386_record_floats (gdbarch, &ir,
6299 I387_ST0_REGNUM (tdep) + 1))
6300 return -1;
6301 break;
6302 }
6303 }
6304 break;
6305 case 0xda:
6306 if (0xe9 == ir.modrm)
6307 {
6308 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6309 return -1;
6310 }
6311 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6312 {
6313 if (i386_record_floats (gdbarch, &ir,
6314 I387_ST0_REGNUM (tdep)))
6315 return -1;
6316 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6317 {
6318 if (i386_record_floats (gdbarch, &ir,
6319 I387_ST0_REGNUM (tdep) +
6320 (ir.modrm & 0x0f)))
6321 return -1;
6322 }
6323 else if ((ir.modrm & 0x0f) - 0x08)
6324 {
6325 if (i386_record_floats (gdbarch, &ir,
6326 I387_ST0_REGNUM (tdep) +
6327 ((ir.modrm & 0x0f) - 0x08)))
6328 return -1;
6329 }
6330 }
6331 break;
6332 case 0xdb:
6333 if (0xe3 == ir.modrm)
6334 {
6335 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6336 return -1;
6337 }
6338 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6339 {
6340 if (i386_record_floats (gdbarch, &ir,
6341 I387_ST0_REGNUM (tdep)))
6342 return -1;
6343 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6344 {
6345 if (i386_record_floats (gdbarch, &ir,
6346 I387_ST0_REGNUM (tdep) +
6347 (ir.modrm & 0x0f)))
6348 return -1;
6349 }
6350 else if ((ir.modrm & 0x0f) - 0x08)
6351 {
6352 if (i386_record_floats (gdbarch, &ir,
6353 I387_ST0_REGNUM (tdep) +
6354 ((ir.modrm & 0x0f) - 0x08)))
6355 return -1;
6356 }
6357 }
6358 break;
6359 case 0xdc:
6360 if ((0x0c == ir.modrm >> 4)
6361 || (0x0d == ir.modrm >> 4)
6362 || (0x0f == ir.modrm >> 4))
6363 {
6364 if ((ir.modrm & 0x0f) <= 7)
6365 {
6366 if (i386_record_floats (gdbarch, &ir,
6367 I387_ST0_REGNUM (tdep) +
6368 (ir.modrm & 0x0f)))
6369 return -1;
6370 }
6371 else
6372 {
6373 if (i386_record_floats (gdbarch, &ir,
6374 I387_ST0_REGNUM (tdep) +
6375 ((ir.modrm & 0x0f) - 0x08)))
6376 return -1;
6377 }
6378 }
6379 break;
6380 case 0xdd:
6381 if (0x0c == ir.modrm >> 4)
6382 {
6383 if (i386_record_floats (gdbarch, &ir,
6384 I387_FTAG_REGNUM (tdep)))
6385 return -1;
6386 }
6387 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6388 {
6389 if ((ir.modrm & 0x0f) <= 7)
6390 {
6391 if (i386_record_floats (gdbarch, &ir,
6392 I387_ST0_REGNUM (tdep) +
6393 (ir.modrm & 0x0f)))
6394 return -1;
6395 }
6396 else
6397 {
6398 if (i386_record_floats (gdbarch, &ir,
6399 I386_SAVE_FPU_REGS))
6400 return -1;
6401 }
6402 }
6403 break;
6404 case 0xde:
6405 if ((0x0c == ir.modrm >> 4)
6406 || (0x0e == ir.modrm >> 4)
6407 || (0x0f == ir.modrm >> 4)
6408 || (0xd9 == ir.modrm))
6409 {
6410 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6411 return -1;
6412 }
6413 break;
6414 case 0xdf:
6415 if (0xe0 == ir.modrm)
6416 {
6417 if (record_full_arch_list_add_reg (ir.regcache,
6418 I386_EAX_REGNUM))
6419 return -1;
6420 }
6421 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6422 {
6423 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6424 return -1;
6425 }
6426 break;
6427 }
6428 }
6429 break;
6430 /* string ops */
6431 case 0xa4: /* movsS */
6432 case 0xa5:
6433 case 0xaa: /* stosS */
6434 case 0xab:
6435 case 0x6c: /* insS */
6436 case 0x6d:
6437 regcache_raw_read_unsigned (ir.regcache,
6438 ir.regmap[X86_RECORD_RECX_REGNUM],
6439 &addr);
6440 if (addr)
6441 {
6442 ULONGEST es, ds;
6443
6444 if ((opcode & 1) == 0)
6445 ir.ot = OT_BYTE;
6446 else
6447 ir.ot = ir.dflag + OT_WORD;
6448 regcache_raw_read_unsigned (ir.regcache,
6449 ir.regmap[X86_RECORD_REDI_REGNUM],
6450 &addr);
6451
6452 regcache_raw_read_unsigned (ir.regcache,
6453 ir.regmap[X86_RECORD_ES_REGNUM],
6454 &es);
6455 regcache_raw_read_unsigned (ir.regcache,
6456 ir.regmap[X86_RECORD_DS_REGNUM],
6457 &ds);
6458 if (ir.aflag && (es != ds))
6459 {
6460 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6461 if (record_full_memory_query)
6462 {
6463 if (yquery (_("\
6464 Process record ignores the memory change of instruction at address %s\n\
6465 because it can't get the value of the segment register.\n\
6466 Do you want to stop the program?"),
6467 paddress (gdbarch, ir.orig_addr)))
6468 return -1;
6469 }
6470 }
6471 else
6472 {
6473 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6474 return -1;
6475 }
6476
6477 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6478 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6479 if (opcode == 0xa4 || opcode == 0xa5)
6480 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6481 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6482 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6483 }
6484 break;
6485
6486 case 0xa6: /* cmpsS */
6487 case 0xa7:
6488 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6489 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6490 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6491 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6492 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6493 break;
6494
6495 case 0xac: /* lodsS */
6496 case 0xad:
6497 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6498 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6499 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6500 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6501 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6502 break;
6503
6504 case 0xae: /* scasS */
6505 case 0xaf:
6506 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6507 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6508 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6509 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6510 break;
6511
6512 case 0x6e: /* outsS */
6513 case 0x6f:
6514 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6515 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6516 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6518 break;
6519
6520 case 0xe4: /* port I/O */
6521 case 0xe5:
6522 case 0xec:
6523 case 0xed:
6524 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6525 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6526 break;
6527
6528 case 0xe6:
6529 case 0xe7:
6530 case 0xee:
6531 case 0xef:
6532 break;
6533
6534 /* control */
6535 case 0xc2: /* ret im */
6536 case 0xc3: /* ret */
6537 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6539 break;
6540
6541 case 0xca: /* lret im */
6542 case 0xcb: /* lret */
6543 case 0xcf: /* iret */
6544 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6545 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6546 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6547 break;
6548
6549 case 0xe8: /* call im */
6550 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6551 ir.dflag = 2;
6552 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6553 return -1;
6554 break;
6555
6556 case 0x9a: /* lcall im */
6557 if (ir.regmap[X86_RECORD_R8_REGNUM])
6558 {
6559 ir.addr -= 1;
6560 goto no_support;
6561 }
6562 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6563 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6564 return -1;
6565 break;
6566
6567 case 0xe9: /* jmp im */
6568 case 0xea: /* ljmp im */
6569 case 0xeb: /* jmp Jb */
6570 case 0x70: /* jcc Jb */
6571 case 0x71:
6572 case 0x72:
6573 case 0x73:
6574 case 0x74:
6575 case 0x75:
6576 case 0x76:
6577 case 0x77:
6578 case 0x78:
6579 case 0x79:
6580 case 0x7a:
6581 case 0x7b:
6582 case 0x7c:
6583 case 0x7d:
6584 case 0x7e:
6585 case 0x7f:
6586 case 0x0f80: /* jcc Jv */
6587 case 0x0f81:
6588 case 0x0f82:
6589 case 0x0f83:
6590 case 0x0f84:
6591 case 0x0f85:
6592 case 0x0f86:
6593 case 0x0f87:
6594 case 0x0f88:
6595 case 0x0f89:
6596 case 0x0f8a:
6597 case 0x0f8b:
6598 case 0x0f8c:
6599 case 0x0f8d:
6600 case 0x0f8e:
6601 case 0x0f8f:
6602 break;
6603
6604 case 0x0f90: /* setcc Gv */
6605 case 0x0f91:
6606 case 0x0f92:
6607 case 0x0f93:
6608 case 0x0f94:
6609 case 0x0f95:
6610 case 0x0f96:
6611 case 0x0f97:
6612 case 0x0f98:
6613 case 0x0f99:
6614 case 0x0f9a:
6615 case 0x0f9b:
6616 case 0x0f9c:
6617 case 0x0f9d:
6618 case 0x0f9e:
6619 case 0x0f9f:
6620 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6621 ir.ot = OT_BYTE;
6622 if (i386_record_modrm (&ir))
6623 return -1;
6624 if (ir.mod == 3)
6625 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6626 : (ir.rm & 0x3));
6627 else
6628 {
6629 if (i386_record_lea_modrm (&ir))
6630 return -1;
6631 }
6632 break;
6633
6634 case 0x0f40: /* cmov Gv, Ev */
6635 case 0x0f41:
6636 case 0x0f42:
6637 case 0x0f43:
6638 case 0x0f44:
6639 case 0x0f45:
6640 case 0x0f46:
6641 case 0x0f47:
6642 case 0x0f48:
6643 case 0x0f49:
6644 case 0x0f4a:
6645 case 0x0f4b:
6646 case 0x0f4c:
6647 case 0x0f4d:
6648 case 0x0f4e:
6649 case 0x0f4f:
6650 if (i386_record_modrm (&ir))
6651 return -1;
6652 ir.reg |= rex_r;
6653 if (ir.dflag == OT_BYTE)
6654 ir.reg &= 0x3;
6655 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6656 break;
6657
6658 /* flags */
6659 case 0x9c: /* pushf */
6660 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6661 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6662 ir.dflag = 2;
6663 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6664 return -1;
6665 break;
6666
6667 case 0x9d: /* popf */
6668 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6669 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6670 break;
6671
6672 case 0x9e: /* sahf */
6673 if (ir.regmap[X86_RECORD_R8_REGNUM])
6674 {
6675 ir.addr -= 1;
6676 goto no_support;
6677 }
6678 /* FALLTHROUGH */
6679 case 0xf5: /* cmc */
6680 case 0xf8: /* clc */
6681 case 0xf9: /* stc */
6682 case 0xfc: /* cld */
6683 case 0xfd: /* std */
6684 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6685 break;
6686
6687 case 0x9f: /* lahf */
6688 if (ir.regmap[X86_RECORD_R8_REGNUM])
6689 {
6690 ir.addr -= 1;
6691 goto no_support;
6692 }
6693 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6694 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6695 break;
6696
6697 /* bit operations */
6698 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6699 ir.ot = ir.dflag + OT_WORD;
6700 if (i386_record_modrm (&ir))
6701 return -1;
6702 if (ir.reg < 4)
6703 {
6704 ir.addr -= 2;
6705 opcode = opcode << 8 | ir.modrm;
6706 goto no_support;
6707 }
6708 if (ir.reg != 4)
6709 {
6710 if (ir.mod == 3)
6711 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6712 else
6713 {
6714 if (i386_record_lea_modrm (&ir))
6715 return -1;
6716 }
6717 }
6718 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6719 break;
6720
6721 case 0x0fa3: /* bt Gv, Ev */
6722 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6723 break;
6724
6725 case 0x0fab: /* bts */
6726 case 0x0fb3: /* btr */
6727 case 0x0fbb: /* btc */
6728 ir.ot = ir.dflag + OT_WORD;
6729 if (i386_record_modrm (&ir))
6730 return -1;
6731 if (ir.mod == 3)
6732 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6733 else
6734 {
6735 uint64_t addr64;
6736 if (i386_record_lea_modrm_addr (&ir, &addr64))
6737 return -1;
6738 regcache_raw_read_unsigned (ir.regcache,
6739 ir.regmap[ir.reg | rex_r],
6740 &addr);
6741 switch (ir.dflag)
6742 {
6743 case 0:
6744 addr64 += ((int16_t) addr >> 4) << 4;
6745 break;
6746 case 1:
6747 addr64 += ((int32_t) addr >> 5) << 5;
6748 break;
6749 case 2:
6750 addr64 += ((int64_t) addr >> 6) << 6;
6751 break;
6752 }
6753 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6754 return -1;
6755 if (i386_record_lea_modrm (&ir))
6756 return -1;
6757 }
6758 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6759 break;
6760
6761 case 0x0fbc: /* bsf */
6762 case 0x0fbd: /* bsr */
6763 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6764 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6765 break;
6766
6767 /* bcd */
6768 case 0x27: /* daa */
6769 case 0x2f: /* das */
6770 case 0x37: /* aaa */
6771 case 0x3f: /* aas */
6772 case 0xd4: /* aam */
6773 case 0xd5: /* aad */
6774 if (ir.regmap[X86_RECORD_R8_REGNUM])
6775 {
6776 ir.addr -= 1;
6777 goto no_support;
6778 }
6779 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6780 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6781 break;
6782
6783 /* misc */
6784 case 0x90: /* nop */
6785 if (prefixes & PREFIX_LOCK)
6786 {
6787 ir.addr -= 1;
6788 goto no_support;
6789 }
6790 break;
6791
6792 case 0x9b: /* fwait */
6793 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6794 return -1;
6795 opcode = (uint32_t) opcode8;
6796 ir.addr++;
6797 goto reswitch;
6798 break;
6799
6800 /* XXX */
6801 case 0xcc: /* int3 */
6802 printf_unfiltered (_("Process record does not support instruction "
6803 "int3.\n"));
6804 ir.addr -= 1;
6805 goto no_support;
6806 break;
6807
6808 /* XXX */
6809 case 0xcd: /* int */
6810 {
6811 int ret;
6812 uint8_t interrupt;
6813 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6814 return -1;
6815 ir.addr++;
6816 if (interrupt != 0x80
6817 || tdep->i386_intx80_record == NULL)
6818 {
6819 printf_unfiltered (_("Process record does not support "
6820 "instruction int 0x%02x.\n"),
6821 interrupt);
6822 ir.addr -= 2;
6823 goto no_support;
6824 }
6825 ret = tdep->i386_intx80_record (ir.regcache);
6826 if (ret)
6827 return ret;
6828 }
6829 break;
6830
6831 /* XXX */
6832 case 0xce: /* into */
6833 printf_unfiltered (_("Process record does not support "
6834 "instruction into.\n"));
6835 ir.addr -= 1;
6836 goto no_support;
6837 break;
6838
6839 case 0xfa: /* cli */
6840 case 0xfb: /* sti */
6841 break;
6842
6843 case 0x62: /* bound */
6844 printf_unfiltered (_("Process record does not support "
6845 "instruction bound.\n"));
6846 ir.addr -= 1;
6847 goto no_support;
6848 break;
6849
6850 case 0x0fc8: /* bswap reg */
6851 case 0x0fc9:
6852 case 0x0fca:
6853 case 0x0fcb:
6854 case 0x0fcc:
6855 case 0x0fcd:
6856 case 0x0fce:
6857 case 0x0fcf:
6858 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6859 break;
6860
6861 case 0xd6: /* salc */
6862 if (ir.regmap[X86_RECORD_R8_REGNUM])
6863 {
6864 ir.addr -= 1;
6865 goto no_support;
6866 }
6867 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6868 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6869 break;
6870
6871 case 0xe0: /* loopnz */
6872 case 0xe1: /* loopz */
6873 case 0xe2: /* loop */
6874 case 0xe3: /* jecxz */
6875 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6876 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6877 break;
6878
6879 case 0x0f30: /* wrmsr */
6880 printf_unfiltered (_("Process record does not support "
6881 "instruction wrmsr.\n"));
6882 ir.addr -= 2;
6883 goto no_support;
6884 break;
6885
6886 case 0x0f32: /* rdmsr */
6887 printf_unfiltered (_("Process record does not support "
6888 "instruction rdmsr.\n"));
6889 ir.addr -= 2;
6890 goto no_support;
6891 break;
6892
6893 case 0x0f31: /* rdtsc */
6894 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6895 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6896 break;
6897
6898 case 0x0f34: /* sysenter */
6899 {
6900 int ret;
6901 if (ir.regmap[X86_RECORD_R8_REGNUM])
6902 {
6903 ir.addr -= 2;
6904 goto no_support;
6905 }
6906 if (tdep->i386_sysenter_record == NULL)
6907 {
6908 printf_unfiltered (_("Process record does not support "
6909 "instruction sysenter.\n"));
6910 ir.addr -= 2;
6911 goto no_support;
6912 }
6913 ret = tdep->i386_sysenter_record (ir.regcache);
6914 if (ret)
6915 return ret;
6916 }
6917 break;
6918
6919 case 0x0f35: /* sysexit */
6920 printf_unfiltered (_("Process record does not support "
6921 "instruction sysexit.\n"));
6922 ir.addr -= 2;
6923 goto no_support;
6924 break;
6925
6926 case 0x0f05: /* syscall */
6927 {
6928 int ret;
6929 if (tdep->i386_syscall_record == NULL)
6930 {
6931 printf_unfiltered (_("Process record does not support "
6932 "instruction syscall.\n"));
6933 ir.addr -= 2;
6934 goto no_support;
6935 }
6936 ret = tdep->i386_syscall_record (ir.regcache);
6937 if (ret)
6938 return ret;
6939 }
6940 break;
6941
6942 case 0x0f07: /* sysret */
6943 printf_unfiltered (_("Process record does not support "
6944 "instruction sysret.\n"));
6945 ir.addr -= 2;
6946 goto no_support;
6947 break;
6948
6949 case 0x0fa2: /* cpuid */
6950 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6951 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6952 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6953 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6954 break;
6955
6956 case 0xf4: /* hlt */
6957 printf_unfiltered (_("Process record does not support "
6958 "instruction hlt.\n"));
6959 ir.addr -= 1;
6960 goto no_support;
6961 break;
6962
6963 case 0x0f00:
6964 if (i386_record_modrm (&ir))
6965 return -1;
6966 switch (ir.reg)
6967 {
6968 case 0: /* sldt */
6969 case 1: /* str */
6970 if (ir.mod == 3)
6971 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6972 else
6973 {
6974 ir.ot = OT_WORD;
6975 if (i386_record_lea_modrm (&ir))
6976 return -1;
6977 }
6978 break;
6979 case 2: /* lldt */
6980 case 3: /* ltr */
6981 break;
6982 case 4: /* verr */
6983 case 5: /* verw */
6984 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6985 break;
6986 default:
6987 ir.addr -= 3;
6988 opcode = opcode << 8 | ir.modrm;
6989 goto no_support;
6990 break;
6991 }
6992 break;
6993
6994 case 0x0f01:
6995 if (i386_record_modrm (&ir))
6996 return -1;
6997 switch (ir.reg)
6998 {
6999 case 0: /* sgdt */
7000 {
7001 uint64_t addr64;
7002
7003 if (ir.mod == 3)
7004 {
7005 ir.addr -= 3;
7006 opcode = opcode << 8 | ir.modrm;
7007 goto no_support;
7008 }
7009 if (ir.override >= 0)
7010 {
7011 if (record_full_memory_query)
7012 {
7013 if (yquery (_("\
7014 Process record ignores the memory change of instruction at address %s\n\
7015 because it can't get the value of the segment register.\n\
7016 Do you want to stop the program?"),
7017 paddress (gdbarch, ir.orig_addr)))
7018 return -1;
7019 }
7020 }
7021 else
7022 {
7023 if (i386_record_lea_modrm_addr (&ir, &addr64))
7024 return -1;
7025 if (record_full_arch_list_add_mem (addr64, 2))
7026 return -1;
7027 addr64 += 2;
7028 if (ir.regmap[X86_RECORD_R8_REGNUM])
7029 {
7030 if (record_full_arch_list_add_mem (addr64, 8))
7031 return -1;
7032 }
7033 else
7034 {
7035 if (record_full_arch_list_add_mem (addr64, 4))
7036 return -1;
7037 }
7038 }
7039 }
7040 break;
7041 case 1:
7042 if (ir.mod == 3)
7043 {
7044 switch (ir.rm)
7045 {
7046 case 0: /* monitor */
7047 break;
7048 case 1: /* mwait */
7049 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7050 break;
7051 default:
7052 ir.addr -= 3;
7053 opcode = opcode << 8 | ir.modrm;
7054 goto no_support;
7055 break;
7056 }
7057 }
7058 else
7059 {
7060 /* sidt */
7061 if (ir.override >= 0)
7062 {
7063 if (record_full_memory_query)
7064 {
7065 if (yquery (_("\
7066 Process record ignores the memory change of instruction at address %s\n\
7067 because it can't get the value of the segment register.\n\
7068 Do you want to stop the program?"),
7069 paddress (gdbarch, ir.orig_addr)))
7070 return -1;
7071 }
7072 }
7073 else
7074 {
7075 uint64_t addr64;
7076
7077 if (i386_record_lea_modrm_addr (&ir, &addr64))
7078 return -1;
7079 if (record_full_arch_list_add_mem (addr64, 2))
7080 return -1;
7081 addr64 += 2;
7082 if (ir.regmap[X86_RECORD_R8_REGNUM])
7083 {
7084 if (record_full_arch_list_add_mem (addr64, 8))
7085 return -1;
7086 }
7087 else
7088 {
7089 if (record_full_arch_list_add_mem (addr64, 4))
7090 return -1;
7091 }
7092 }
7093 }
7094 break;
7095 case 2: /* lgdt */
7096 if (ir.mod == 3)
7097 {
7098 /* xgetbv */
7099 if (ir.rm == 0)
7100 {
7101 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7102 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7103 break;
7104 }
7105 /* xsetbv */
7106 else if (ir.rm == 1)
7107 break;
7108 }
7109 /* Fall through. */
7110 case 3: /* lidt */
7111 if (ir.mod == 3)
7112 {
7113 ir.addr -= 3;
7114 opcode = opcode << 8 | ir.modrm;
7115 goto no_support;
7116 }
7117 break;
7118 case 4: /* smsw */
7119 if (ir.mod == 3)
7120 {
7121 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7122 return -1;
7123 }
7124 else
7125 {
7126 ir.ot = OT_WORD;
7127 if (i386_record_lea_modrm (&ir))
7128 return -1;
7129 }
7130 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7131 break;
7132 case 6: /* lmsw */
7133 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7134 break;
7135 case 7: /* invlpg */
7136 if (ir.mod == 3)
7137 {
7138 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7139 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7140 else
7141 {
7142 ir.addr -= 3;
7143 opcode = opcode << 8 | ir.modrm;
7144 goto no_support;
7145 }
7146 }
7147 else
7148 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7149 break;
7150 default:
7151 ir.addr -= 3;
7152 opcode = opcode << 8 | ir.modrm;
7153 goto no_support;
7154 break;
7155 }
7156 break;
7157
7158 case 0x0f08: /* invd */
7159 case 0x0f09: /* wbinvd */
7160 break;
7161
7162 case 0x63: /* arpl */
7163 if (i386_record_modrm (&ir))
7164 return -1;
7165 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7166 {
7167 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7168 ? (ir.reg | rex_r) : ir.rm);
7169 }
7170 else
7171 {
7172 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7173 if (i386_record_lea_modrm (&ir))
7174 return -1;
7175 }
7176 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7177 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7178 break;
7179
7180 case 0x0f02: /* lar */
7181 case 0x0f03: /* lsl */
7182 if (i386_record_modrm (&ir))
7183 return -1;
7184 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7185 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7186 break;
7187
7188 case 0x0f18:
7189 if (i386_record_modrm (&ir))
7190 return -1;
7191 if (ir.mod == 3 && ir.reg == 3)
7192 {
7193 ir.addr -= 3;
7194 opcode = opcode << 8 | ir.modrm;
7195 goto no_support;
7196 }
7197 break;
7198
7199 case 0x0f19:
7200 case 0x0f1a:
7201 case 0x0f1b:
7202 case 0x0f1c:
7203 case 0x0f1d:
7204 case 0x0f1e:
7205 case 0x0f1f:
7206 /* nop (multi byte) */
7207 break;
7208
7209 case 0x0f20: /* mov reg, crN */
7210 case 0x0f22: /* mov crN, reg */
7211 if (i386_record_modrm (&ir))
7212 return -1;
7213 if ((ir.modrm & 0xc0) != 0xc0)
7214 {
7215 ir.addr -= 3;
7216 opcode = opcode << 8 | ir.modrm;
7217 goto no_support;
7218 }
7219 switch (ir.reg)
7220 {
7221 case 0:
7222 case 2:
7223 case 3:
7224 case 4:
7225 case 8:
7226 if (opcode & 2)
7227 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7228 else
7229 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7230 break;
7231 default:
7232 ir.addr -= 3;
7233 opcode = opcode << 8 | ir.modrm;
7234 goto no_support;
7235 break;
7236 }
7237 break;
7238
7239 case 0x0f21: /* mov reg, drN */
7240 case 0x0f23: /* mov drN, reg */
7241 if (i386_record_modrm (&ir))
7242 return -1;
7243 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7244 || ir.reg == 5 || ir.reg >= 8)
7245 {
7246 ir.addr -= 3;
7247 opcode = opcode << 8 | ir.modrm;
7248 goto no_support;
7249 }
7250 if (opcode & 2)
7251 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7252 else
7253 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7254 break;
7255
7256 case 0x0f06: /* clts */
7257 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7258 break;
7259
7260 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7261
7262 case 0x0f0d: /* 3DNow! prefetch */
7263 break;
7264
7265 case 0x0f0e: /* 3DNow! femms */
7266 case 0x0f77: /* emms */
7267 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7268 goto no_support;
7269 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7270 break;
7271
7272 case 0x0f0f: /* 3DNow! data */
7273 if (i386_record_modrm (&ir))
7274 return -1;
7275 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7276 return -1;
7277 ir.addr++;
7278 switch (opcode8)
7279 {
7280 case 0x0c: /* 3DNow! pi2fw */
7281 case 0x0d: /* 3DNow! pi2fd */
7282 case 0x1c: /* 3DNow! pf2iw */
7283 case 0x1d: /* 3DNow! pf2id */
7284 case 0x8a: /* 3DNow! pfnacc */
7285 case 0x8e: /* 3DNow! pfpnacc */
7286 case 0x90: /* 3DNow! pfcmpge */
7287 case 0x94: /* 3DNow! pfmin */
7288 case 0x96: /* 3DNow! pfrcp */
7289 case 0x97: /* 3DNow! pfrsqrt */
7290 case 0x9a: /* 3DNow! pfsub */
7291 case 0x9e: /* 3DNow! pfadd */
7292 case 0xa0: /* 3DNow! pfcmpgt */
7293 case 0xa4: /* 3DNow! pfmax */
7294 case 0xa6: /* 3DNow! pfrcpit1 */
7295 case 0xa7: /* 3DNow! pfrsqit1 */
7296 case 0xaa: /* 3DNow! pfsubr */
7297 case 0xae: /* 3DNow! pfacc */
7298 case 0xb0: /* 3DNow! pfcmpeq */
7299 case 0xb4: /* 3DNow! pfmul */
7300 case 0xb6: /* 3DNow! pfrcpit2 */
7301 case 0xb7: /* 3DNow! pmulhrw */
7302 case 0xbb: /* 3DNow! pswapd */
7303 case 0xbf: /* 3DNow! pavgusb */
7304 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7305 goto no_support_3dnow_data;
7306 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7307 break;
7308
7309 default:
7310 no_support_3dnow_data:
7311 opcode = (opcode << 8) | opcode8;
7312 goto no_support;
7313 break;
7314 }
7315 break;
7316
7317 case 0x0faa: /* rsm */
7318 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7319 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7320 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7321 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7322 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7323 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7324 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7325 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7326 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7327 break;
7328
7329 case 0x0fae:
7330 if (i386_record_modrm (&ir))
7331 return -1;
7332 switch(ir.reg)
7333 {
7334 case 0: /* fxsave */
7335 {
7336 uint64_t tmpu64;
7337
7338 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7339 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7340 return -1;
7341 if (record_full_arch_list_add_mem (tmpu64, 512))
7342 return -1;
7343 }
7344 break;
7345
7346 case 1: /* fxrstor */
7347 {
7348 int i;
7349
7350 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7351
7352 for (i = I387_MM0_REGNUM (tdep);
7353 i386_mmx_regnum_p (gdbarch, i); i++)
7354 record_full_arch_list_add_reg (ir.regcache, i);
7355
7356 for (i = I387_XMM0_REGNUM (tdep);
7357 i386_xmm_regnum_p (gdbarch, i); i++)
7358 record_full_arch_list_add_reg (ir.regcache, i);
7359
7360 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7361 record_full_arch_list_add_reg (ir.regcache,
7362 I387_MXCSR_REGNUM(tdep));
7363
7364 for (i = I387_ST0_REGNUM (tdep);
7365 i386_fp_regnum_p (gdbarch, i); i++)
7366 record_full_arch_list_add_reg (ir.regcache, i);
7367
7368 for (i = I387_FCTRL_REGNUM (tdep);
7369 i386_fpc_regnum_p (gdbarch, i); i++)
7370 record_full_arch_list_add_reg (ir.regcache, i);
7371 }
7372 break;
7373
7374 case 2: /* ldmxcsr */
7375 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7376 goto no_support;
7377 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7378 break;
7379
7380 case 3: /* stmxcsr */
7381 ir.ot = OT_LONG;
7382 if (i386_record_lea_modrm (&ir))
7383 return -1;
7384 break;
7385
7386 case 5: /* lfence */
7387 case 6: /* mfence */
7388 case 7: /* sfence clflush */
7389 break;
7390
7391 default:
7392 opcode = (opcode << 8) | ir.modrm;
7393 goto no_support;
7394 break;
7395 }
7396 break;
7397
7398 case 0x0fc3: /* movnti */
7399 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7400 if (i386_record_modrm (&ir))
7401 return -1;
7402 if (ir.mod == 3)
7403 goto no_support;
7404 ir.reg |= rex_r;
7405 if (i386_record_lea_modrm (&ir))
7406 return -1;
7407 break;
7408
7409 /* Add prefix to opcode. */
7410 case 0x0f10:
7411 case 0x0f11:
7412 case 0x0f12:
7413 case 0x0f13:
7414 case 0x0f14:
7415 case 0x0f15:
7416 case 0x0f16:
7417 case 0x0f17:
7418 case 0x0f28:
7419 case 0x0f29:
7420 case 0x0f2a:
7421 case 0x0f2b:
7422 case 0x0f2c:
7423 case 0x0f2d:
7424 case 0x0f2e:
7425 case 0x0f2f:
7426 case 0x0f38:
7427 case 0x0f39:
7428 case 0x0f3a:
7429 case 0x0f50:
7430 case 0x0f51:
7431 case 0x0f52:
7432 case 0x0f53:
7433 case 0x0f54:
7434 case 0x0f55:
7435 case 0x0f56:
7436 case 0x0f57:
7437 case 0x0f58:
7438 case 0x0f59:
7439 case 0x0f5a:
7440 case 0x0f5b:
7441 case 0x0f5c:
7442 case 0x0f5d:
7443 case 0x0f5e:
7444 case 0x0f5f:
7445 case 0x0f60:
7446 case 0x0f61:
7447 case 0x0f62:
7448 case 0x0f63:
7449 case 0x0f64:
7450 case 0x0f65:
7451 case 0x0f66:
7452 case 0x0f67:
7453 case 0x0f68:
7454 case 0x0f69:
7455 case 0x0f6a:
7456 case 0x0f6b:
7457 case 0x0f6c:
7458 case 0x0f6d:
7459 case 0x0f6e:
7460 case 0x0f6f:
7461 case 0x0f70:
7462 case 0x0f71:
7463 case 0x0f72:
7464 case 0x0f73:
7465 case 0x0f74:
7466 case 0x0f75:
7467 case 0x0f76:
7468 case 0x0f7c:
7469 case 0x0f7d:
7470 case 0x0f7e:
7471 case 0x0f7f:
7472 case 0x0fb8:
7473 case 0x0fc2:
7474 case 0x0fc4:
7475 case 0x0fc5:
7476 case 0x0fc6:
7477 case 0x0fd0:
7478 case 0x0fd1:
7479 case 0x0fd2:
7480 case 0x0fd3:
7481 case 0x0fd4:
7482 case 0x0fd5:
7483 case 0x0fd6:
7484 case 0x0fd7:
7485 case 0x0fd8:
7486 case 0x0fd9:
7487 case 0x0fda:
7488 case 0x0fdb:
7489 case 0x0fdc:
7490 case 0x0fdd:
7491 case 0x0fde:
7492 case 0x0fdf:
7493 case 0x0fe0:
7494 case 0x0fe1:
7495 case 0x0fe2:
7496 case 0x0fe3:
7497 case 0x0fe4:
7498 case 0x0fe5:
7499 case 0x0fe6:
7500 case 0x0fe7:
7501 case 0x0fe8:
7502 case 0x0fe9:
7503 case 0x0fea:
7504 case 0x0feb:
7505 case 0x0fec:
7506 case 0x0fed:
7507 case 0x0fee:
7508 case 0x0fef:
7509 case 0x0ff0:
7510 case 0x0ff1:
7511 case 0x0ff2:
7512 case 0x0ff3:
7513 case 0x0ff4:
7514 case 0x0ff5:
7515 case 0x0ff6:
7516 case 0x0ff7:
7517 case 0x0ff8:
7518 case 0x0ff9:
7519 case 0x0ffa:
7520 case 0x0ffb:
7521 case 0x0ffc:
7522 case 0x0ffd:
7523 case 0x0ffe:
7524 /* Mask out PREFIX_ADDR. */
7525 switch ((prefixes & ~PREFIX_ADDR))
7526 {
7527 case PREFIX_REPNZ:
7528 opcode |= 0xf20000;
7529 break;
7530 case PREFIX_DATA:
7531 opcode |= 0x660000;
7532 break;
7533 case PREFIX_REPZ:
7534 opcode |= 0xf30000;
7535 break;
7536 }
7537 reswitch_prefix_add:
7538 switch (opcode)
7539 {
7540 case 0x0f38:
7541 case 0x660f38:
7542 case 0xf20f38:
7543 case 0x0f3a:
7544 case 0x660f3a:
7545 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7546 return -1;
7547 ir.addr++;
7548 opcode = (uint32_t) opcode8 | opcode << 8;
7549 goto reswitch_prefix_add;
7550 break;
7551
7552 case 0x0f10: /* movups */
7553 case 0x660f10: /* movupd */
7554 case 0xf30f10: /* movss */
7555 case 0xf20f10: /* movsd */
7556 case 0x0f12: /* movlps */
7557 case 0x660f12: /* movlpd */
7558 case 0xf30f12: /* movsldup */
7559 case 0xf20f12: /* movddup */
7560 case 0x0f14: /* unpcklps */
7561 case 0x660f14: /* unpcklpd */
7562 case 0x0f15: /* unpckhps */
7563 case 0x660f15: /* unpckhpd */
7564 case 0x0f16: /* movhps */
7565 case 0x660f16: /* movhpd */
7566 case 0xf30f16: /* movshdup */
7567 case 0x0f28: /* movaps */
7568 case 0x660f28: /* movapd */
7569 case 0x0f2a: /* cvtpi2ps */
7570 case 0x660f2a: /* cvtpi2pd */
7571 case 0xf30f2a: /* cvtsi2ss */
7572 case 0xf20f2a: /* cvtsi2sd */
7573 case 0x0f2c: /* cvttps2pi */
7574 case 0x660f2c: /* cvttpd2pi */
7575 case 0x0f2d: /* cvtps2pi */
7576 case 0x660f2d: /* cvtpd2pi */
7577 case 0x660f3800: /* pshufb */
7578 case 0x660f3801: /* phaddw */
7579 case 0x660f3802: /* phaddd */
7580 case 0x660f3803: /* phaddsw */
7581 case 0x660f3804: /* pmaddubsw */
7582 case 0x660f3805: /* phsubw */
7583 case 0x660f3806: /* phsubd */
7584 case 0x660f3807: /* phsubsw */
7585 case 0x660f3808: /* psignb */
7586 case 0x660f3809: /* psignw */
7587 case 0x660f380a: /* psignd */
7588 case 0x660f380b: /* pmulhrsw */
7589 case 0x660f3810: /* pblendvb */
7590 case 0x660f3814: /* blendvps */
7591 case 0x660f3815: /* blendvpd */
7592 case 0x660f381c: /* pabsb */
7593 case 0x660f381d: /* pabsw */
7594 case 0x660f381e: /* pabsd */
7595 case 0x660f3820: /* pmovsxbw */
7596 case 0x660f3821: /* pmovsxbd */
7597 case 0x660f3822: /* pmovsxbq */
7598 case 0x660f3823: /* pmovsxwd */
7599 case 0x660f3824: /* pmovsxwq */
7600 case 0x660f3825: /* pmovsxdq */
7601 case 0x660f3828: /* pmuldq */
7602 case 0x660f3829: /* pcmpeqq */
7603 case 0x660f382a: /* movntdqa */
7604 case 0x660f3a08: /* roundps */
7605 case 0x660f3a09: /* roundpd */
7606 case 0x660f3a0a: /* roundss */
7607 case 0x660f3a0b: /* roundsd */
7608 case 0x660f3a0c: /* blendps */
7609 case 0x660f3a0d: /* blendpd */
7610 case 0x660f3a0e: /* pblendw */
7611 case 0x660f3a0f: /* palignr */
7612 case 0x660f3a20: /* pinsrb */
7613 case 0x660f3a21: /* insertps */
7614 case 0x660f3a22: /* pinsrd pinsrq */
7615 case 0x660f3a40: /* dpps */
7616 case 0x660f3a41: /* dppd */
7617 case 0x660f3a42: /* mpsadbw */
7618 case 0x660f3a60: /* pcmpestrm */
7619 case 0x660f3a61: /* pcmpestri */
7620 case 0x660f3a62: /* pcmpistrm */
7621 case 0x660f3a63: /* pcmpistri */
7622 case 0x0f51: /* sqrtps */
7623 case 0x660f51: /* sqrtpd */
7624 case 0xf20f51: /* sqrtsd */
7625 case 0xf30f51: /* sqrtss */
7626 case 0x0f52: /* rsqrtps */
7627 case 0xf30f52: /* rsqrtss */
7628 case 0x0f53: /* rcpps */
7629 case 0xf30f53: /* rcpss */
7630 case 0x0f54: /* andps */
7631 case 0x660f54: /* andpd */
7632 case 0x0f55: /* andnps */
7633 case 0x660f55: /* andnpd */
7634 case 0x0f56: /* orps */
7635 case 0x660f56: /* orpd */
7636 case 0x0f57: /* xorps */
7637 case 0x660f57: /* xorpd */
7638 case 0x0f58: /* addps */
7639 case 0x660f58: /* addpd */
7640 case 0xf20f58: /* addsd */
7641 case 0xf30f58: /* addss */
7642 case 0x0f59: /* mulps */
7643 case 0x660f59: /* mulpd */
7644 case 0xf20f59: /* mulsd */
7645 case 0xf30f59: /* mulss */
7646 case 0x0f5a: /* cvtps2pd */
7647 case 0x660f5a: /* cvtpd2ps */
7648 case 0xf20f5a: /* cvtsd2ss */
7649 case 0xf30f5a: /* cvtss2sd */
7650 case 0x0f5b: /* cvtdq2ps */
7651 case 0x660f5b: /* cvtps2dq */
7652 case 0xf30f5b: /* cvttps2dq */
7653 case 0x0f5c: /* subps */
7654 case 0x660f5c: /* subpd */
7655 case 0xf20f5c: /* subsd */
7656 case 0xf30f5c: /* subss */
7657 case 0x0f5d: /* minps */
7658 case 0x660f5d: /* minpd */
7659 case 0xf20f5d: /* minsd */
7660 case 0xf30f5d: /* minss */
7661 case 0x0f5e: /* divps */
7662 case 0x660f5e: /* divpd */
7663 case 0xf20f5e: /* divsd */
7664 case 0xf30f5e: /* divss */
7665 case 0x0f5f: /* maxps */
7666 case 0x660f5f: /* maxpd */
7667 case 0xf20f5f: /* maxsd */
7668 case 0xf30f5f: /* maxss */
7669 case 0x660f60: /* punpcklbw */
7670 case 0x660f61: /* punpcklwd */
7671 case 0x660f62: /* punpckldq */
7672 case 0x660f63: /* packsswb */
7673 case 0x660f64: /* pcmpgtb */
7674 case 0x660f65: /* pcmpgtw */
7675 case 0x660f66: /* pcmpgtd */
7676 case 0x660f67: /* packuswb */
7677 case 0x660f68: /* punpckhbw */
7678 case 0x660f69: /* punpckhwd */
7679 case 0x660f6a: /* punpckhdq */
7680 case 0x660f6b: /* packssdw */
7681 case 0x660f6c: /* punpcklqdq */
7682 case 0x660f6d: /* punpckhqdq */
7683 case 0x660f6e: /* movd */
7684 case 0x660f6f: /* movdqa */
7685 case 0xf30f6f: /* movdqu */
7686 case 0x660f70: /* pshufd */
7687 case 0xf20f70: /* pshuflw */
7688 case 0xf30f70: /* pshufhw */
7689 case 0x660f74: /* pcmpeqb */
7690 case 0x660f75: /* pcmpeqw */
7691 case 0x660f76: /* pcmpeqd */
7692 case 0x660f7c: /* haddpd */
7693 case 0xf20f7c: /* haddps */
7694 case 0x660f7d: /* hsubpd */
7695 case 0xf20f7d: /* hsubps */
7696 case 0xf30f7e: /* movq */
7697 case 0x0fc2: /* cmpps */
7698 case 0x660fc2: /* cmppd */
7699 case 0xf20fc2: /* cmpsd */
7700 case 0xf30fc2: /* cmpss */
7701 case 0x660fc4: /* pinsrw */
7702 case 0x0fc6: /* shufps */
7703 case 0x660fc6: /* shufpd */
7704 case 0x660fd0: /* addsubpd */
7705 case 0xf20fd0: /* addsubps */
7706 case 0x660fd1: /* psrlw */
7707 case 0x660fd2: /* psrld */
7708 case 0x660fd3: /* psrlq */
7709 case 0x660fd4: /* paddq */
7710 case 0x660fd5: /* pmullw */
7711 case 0xf30fd6: /* movq2dq */
7712 case 0x660fd8: /* psubusb */
7713 case 0x660fd9: /* psubusw */
7714 case 0x660fda: /* pminub */
7715 case 0x660fdb: /* pand */
7716 case 0x660fdc: /* paddusb */
7717 case 0x660fdd: /* paddusw */
7718 case 0x660fde: /* pmaxub */
7719 case 0x660fdf: /* pandn */
7720 case 0x660fe0: /* pavgb */
7721 case 0x660fe1: /* psraw */
7722 case 0x660fe2: /* psrad */
7723 case 0x660fe3: /* pavgw */
7724 case 0x660fe4: /* pmulhuw */
7725 case 0x660fe5: /* pmulhw */
7726 case 0x660fe6: /* cvttpd2dq */
7727 case 0xf20fe6: /* cvtpd2dq */
7728 case 0xf30fe6: /* cvtdq2pd */
7729 case 0x660fe8: /* psubsb */
7730 case 0x660fe9: /* psubsw */
7731 case 0x660fea: /* pminsw */
7732 case 0x660feb: /* por */
7733 case 0x660fec: /* paddsb */
7734 case 0x660fed: /* paddsw */
7735 case 0x660fee: /* pmaxsw */
7736 case 0x660fef: /* pxor */
7737 case 0xf20ff0: /* lddqu */
7738 case 0x660ff1: /* psllw */
7739 case 0x660ff2: /* pslld */
7740 case 0x660ff3: /* psllq */
7741 case 0x660ff4: /* pmuludq */
7742 case 0x660ff5: /* pmaddwd */
7743 case 0x660ff6: /* psadbw */
7744 case 0x660ff8: /* psubb */
7745 case 0x660ff9: /* psubw */
7746 case 0x660ffa: /* psubd */
7747 case 0x660ffb: /* psubq */
7748 case 0x660ffc: /* paddb */
7749 case 0x660ffd: /* paddw */
7750 case 0x660ffe: /* paddd */
7751 if (i386_record_modrm (&ir))
7752 return -1;
7753 ir.reg |= rex_r;
7754 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7755 goto no_support;
7756 record_full_arch_list_add_reg (ir.regcache,
7757 I387_XMM0_REGNUM (tdep) + ir.reg);
7758 if ((opcode & 0xfffffffc) == 0x660f3a60)
7759 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7760 break;
7761
7762 case 0x0f11: /* movups */
7763 case 0x660f11: /* movupd */
7764 case 0xf30f11: /* movss */
7765 case 0xf20f11: /* movsd */
7766 case 0x0f13: /* movlps */
7767 case 0x660f13: /* movlpd */
7768 case 0x0f17: /* movhps */
7769 case 0x660f17: /* movhpd */
7770 case 0x0f29: /* movaps */
7771 case 0x660f29: /* movapd */
7772 case 0x660f3a14: /* pextrb */
7773 case 0x660f3a15: /* pextrw */
7774 case 0x660f3a16: /* pextrd pextrq */
7775 case 0x660f3a17: /* extractps */
7776 case 0x660f7f: /* movdqa */
7777 case 0xf30f7f: /* movdqu */
7778 if (i386_record_modrm (&ir))
7779 return -1;
7780 if (ir.mod == 3)
7781 {
7782 if (opcode == 0x0f13 || opcode == 0x660f13
7783 || opcode == 0x0f17 || opcode == 0x660f17)
7784 goto no_support;
7785 ir.rm |= ir.rex_b;
7786 if (!i386_xmm_regnum_p (gdbarch,
7787 I387_XMM0_REGNUM (tdep) + ir.rm))
7788 goto no_support;
7789 record_full_arch_list_add_reg (ir.regcache,
7790 I387_XMM0_REGNUM (tdep) + ir.rm);
7791 }
7792 else
7793 {
7794 switch (opcode)
7795 {
7796 case 0x660f3a14:
7797 ir.ot = OT_BYTE;
7798 break;
7799 case 0x660f3a15:
7800 ir.ot = OT_WORD;
7801 break;
7802 case 0x660f3a16:
7803 ir.ot = OT_LONG;
7804 break;
7805 case 0x660f3a17:
7806 ir.ot = OT_QUAD;
7807 break;
7808 default:
7809 ir.ot = OT_DQUAD;
7810 break;
7811 }
7812 if (i386_record_lea_modrm (&ir))
7813 return -1;
7814 }
7815 break;
7816
7817 case 0x0f2b: /* movntps */
7818 case 0x660f2b: /* movntpd */
7819 case 0x0fe7: /* movntq */
7820 case 0x660fe7: /* movntdq */
7821 if (ir.mod == 3)
7822 goto no_support;
7823 if (opcode == 0x0fe7)
7824 ir.ot = OT_QUAD;
7825 else
7826 ir.ot = OT_DQUAD;
7827 if (i386_record_lea_modrm (&ir))
7828 return -1;
7829 break;
7830
7831 case 0xf30f2c: /* cvttss2si */
7832 case 0xf20f2c: /* cvttsd2si */
7833 case 0xf30f2d: /* cvtss2si */
7834 case 0xf20f2d: /* cvtsd2si */
7835 case 0xf20f38f0: /* crc32 */
7836 case 0xf20f38f1: /* crc32 */
7837 case 0x0f50: /* movmskps */
7838 case 0x660f50: /* movmskpd */
7839 case 0x0fc5: /* pextrw */
7840 case 0x660fc5: /* pextrw */
7841 case 0x0fd7: /* pmovmskb */
7842 case 0x660fd7: /* pmovmskb */
7843 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7844 break;
7845
7846 case 0x0f3800: /* pshufb */
7847 case 0x0f3801: /* phaddw */
7848 case 0x0f3802: /* phaddd */
7849 case 0x0f3803: /* phaddsw */
7850 case 0x0f3804: /* pmaddubsw */
7851 case 0x0f3805: /* phsubw */
7852 case 0x0f3806: /* phsubd */
7853 case 0x0f3807: /* phsubsw */
7854 case 0x0f3808: /* psignb */
7855 case 0x0f3809: /* psignw */
7856 case 0x0f380a: /* psignd */
7857 case 0x0f380b: /* pmulhrsw */
7858 case 0x0f381c: /* pabsb */
7859 case 0x0f381d: /* pabsw */
7860 case 0x0f381e: /* pabsd */
7861 case 0x0f382b: /* packusdw */
7862 case 0x0f3830: /* pmovzxbw */
7863 case 0x0f3831: /* pmovzxbd */
7864 case 0x0f3832: /* pmovzxbq */
7865 case 0x0f3833: /* pmovzxwd */
7866 case 0x0f3834: /* pmovzxwq */
7867 case 0x0f3835: /* pmovzxdq */
7868 case 0x0f3837: /* pcmpgtq */
7869 case 0x0f3838: /* pminsb */
7870 case 0x0f3839: /* pminsd */
7871 case 0x0f383a: /* pminuw */
7872 case 0x0f383b: /* pminud */
7873 case 0x0f383c: /* pmaxsb */
7874 case 0x0f383d: /* pmaxsd */
7875 case 0x0f383e: /* pmaxuw */
7876 case 0x0f383f: /* pmaxud */
7877 case 0x0f3840: /* pmulld */
7878 case 0x0f3841: /* phminposuw */
7879 case 0x0f3a0f: /* palignr */
7880 case 0x0f60: /* punpcklbw */
7881 case 0x0f61: /* punpcklwd */
7882 case 0x0f62: /* punpckldq */
7883 case 0x0f63: /* packsswb */
7884 case 0x0f64: /* pcmpgtb */
7885 case 0x0f65: /* pcmpgtw */
7886 case 0x0f66: /* pcmpgtd */
7887 case 0x0f67: /* packuswb */
7888 case 0x0f68: /* punpckhbw */
7889 case 0x0f69: /* punpckhwd */
7890 case 0x0f6a: /* punpckhdq */
7891 case 0x0f6b: /* packssdw */
7892 case 0x0f6e: /* movd */
7893 case 0x0f6f: /* movq */
7894 case 0x0f70: /* pshufw */
7895 case 0x0f74: /* pcmpeqb */
7896 case 0x0f75: /* pcmpeqw */
7897 case 0x0f76: /* pcmpeqd */
7898 case 0x0fc4: /* pinsrw */
7899 case 0x0fd1: /* psrlw */
7900 case 0x0fd2: /* psrld */
7901 case 0x0fd3: /* psrlq */
7902 case 0x0fd4: /* paddq */
7903 case 0x0fd5: /* pmullw */
7904 case 0xf20fd6: /* movdq2q */
7905 case 0x0fd8: /* psubusb */
7906 case 0x0fd9: /* psubusw */
7907 case 0x0fda: /* pminub */
7908 case 0x0fdb: /* pand */
7909 case 0x0fdc: /* paddusb */
7910 case 0x0fdd: /* paddusw */
7911 case 0x0fde: /* pmaxub */
7912 case 0x0fdf: /* pandn */
7913 case 0x0fe0: /* pavgb */
7914 case 0x0fe1: /* psraw */
7915 case 0x0fe2: /* psrad */
7916 case 0x0fe3: /* pavgw */
7917 case 0x0fe4: /* pmulhuw */
7918 case 0x0fe5: /* pmulhw */
7919 case 0x0fe8: /* psubsb */
7920 case 0x0fe9: /* psubsw */
7921 case 0x0fea: /* pminsw */
7922 case 0x0feb: /* por */
7923 case 0x0fec: /* paddsb */
7924 case 0x0fed: /* paddsw */
7925 case 0x0fee: /* pmaxsw */
7926 case 0x0fef: /* pxor */
7927 case 0x0ff1: /* psllw */
7928 case 0x0ff2: /* pslld */
7929 case 0x0ff3: /* psllq */
7930 case 0x0ff4: /* pmuludq */
7931 case 0x0ff5: /* pmaddwd */
7932 case 0x0ff6: /* psadbw */
7933 case 0x0ff8: /* psubb */
7934 case 0x0ff9: /* psubw */
7935 case 0x0ffa: /* psubd */
7936 case 0x0ffb: /* psubq */
7937 case 0x0ffc: /* paddb */
7938 case 0x0ffd: /* paddw */
7939 case 0x0ffe: /* paddd */
7940 if (i386_record_modrm (&ir))
7941 return -1;
7942 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7943 goto no_support;
7944 record_full_arch_list_add_reg (ir.regcache,
7945 I387_MM0_REGNUM (tdep) + ir.reg);
7946 break;
7947
7948 case 0x0f71: /* psllw */
7949 case 0x0f72: /* pslld */
7950 case 0x0f73: /* psllq */
7951 if (i386_record_modrm (&ir))
7952 return -1;
7953 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7954 goto no_support;
7955 record_full_arch_list_add_reg (ir.regcache,
7956 I387_MM0_REGNUM (tdep) + ir.rm);
7957 break;
7958
7959 case 0x660f71: /* psllw */
7960 case 0x660f72: /* pslld */
7961 case 0x660f73: /* psllq */
7962 if (i386_record_modrm (&ir))
7963 return -1;
7964 ir.rm |= ir.rex_b;
7965 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7966 goto no_support;
7967 record_full_arch_list_add_reg (ir.regcache,
7968 I387_XMM0_REGNUM (tdep) + ir.rm);
7969 break;
7970
7971 case 0x0f7e: /* movd */
7972 case 0x660f7e: /* movd */
7973 if (i386_record_modrm (&ir))
7974 return -1;
7975 if (ir.mod == 3)
7976 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7977 else
7978 {
7979 if (ir.dflag == 2)
7980 ir.ot = OT_QUAD;
7981 else
7982 ir.ot = OT_LONG;
7983 if (i386_record_lea_modrm (&ir))
7984 return -1;
7985 }
7986 break;
7987
7988 case 0x0f7f: /* movq */
7989 if (i386_record_modrm (&ir))
7990 return -1;
7991 if (ir.mod == 3)
7992 {
7993 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7994 goto no_support;
7995 record_full_arch_list_add_reg (ir.regcache,
7996 I387_MM0_REGNUM (tdep) + ir.rm);
7997 }
7998 else
7999 {
8000 ir.ot = OT_QUAD;
8001 if (i386_record_lea_modrm (&ir))
8002 return -1;
8003 }
8004 break;
8005
8006 case 0xf30fb8: /* popcnt */
8007 if (i386_record_modrm (&ir))
8008 return -1;
8009 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8010 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8011 break;
8012
8013 case 0x660fd6: /* movq */
8014 if (i386_record_modrm (&ir))
8015 return -1;
8016 if (ir.mod == 3)
8017 {
8018 ir.rm |= ir.rex_b;
8019 if (!i386_xmm_regnum_p (gdbarch,
8020 I387_XMM0_REGNUM (tdep) + ir.rm))
8021 goto no_support;
8022 record_full_arch_list_add_reg (ir.regcache,
8023 I387_XMM0_REGNUM (tdep) + ir.rm);
8024 }
8025 else
8026 {
8027 ir.ot = OT_QUAD;
8028 if (i386_record_lea_modrm (&ir))
8029 return -1;
8030 }
8031 break;
8032
8033 case 0x660f3817: /* ptest */
8034 case 0x0f2e: /* ucomiss */
8035 case 0x660f2e: /* ucomisd */
8036 case 0x0f2f: /* comiss */
8037 case 0x660f2f: /* comisd */
8038 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8039 break;
8040
8041 case 0x0ff7: /* maskmovq */
8042 regcache_raw_read_unsigned (ir.regcache,
8043 ir.regmap[X86_RECORD_REDI_REGNUM],
8044 &addr);
8045 if (record_full_arch_list_add_mem (addr, 64))
8046 return -1;
8047 break;
8048
8049 case 0x660ff7: /* maskmovdqu */
8050 regcache_raw_read_unsigned (ir.regcache,
8051 ir.regmap[X86_RECORD_REDI_REGNUM],
8052 &addr);
8053 if (record_full_arch_list_add_mem (addr, 128))
8054 return -1;
8055 break;
8056
8057 default:
8058 goto no_support;
8059 break;
8060 }
8061 break;
8062
8063 default:
8064 goto no_support;
8065 break;
8066 }
8067
8068 /* In the future, maybe still need to deal with need_dasm. */
8069 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8070 if (record_full_arch_list_add_end ())
8071 return -1;
8072
8073 return 0;
8074
8075 no_support:
8076 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8077 "at address %s.\n"),
8078 (unsigned int) (opcode),
8079 paddress (gdbarch, ir.orig_addr));
8080 return -1;
8081 }
8082
8083 static const int i386_record_regmap[] =
8084 {
8085 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8086 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8087 0, 0, 0, 0, 0, 0, 0, 0,
8088 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8089 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8090 };
8091
8092 /* Check that the given address appears suitable for a fast
8093 tracepoint, which on x86-64 means that we need an instruction of at
8094 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8095 jump and not have to worry about program jumps to an address in the
8096 middle of the tracepoint jump. On x86, it may be possible to use
8097 4-byte jumps with a 2-byte offset to a trampoline located in the
8098 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8099 of instruction to replace, and 0 if not, plus an explanatory
8100 string. */
8101
8102 static int
8103 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8104 std::string *msg)
8105 {
8106 int len, jumplen;
8107
8108 /* Ask the target for the minimum instruction length supported. */
8109 jumplen = target_get_min_fast_tracepoint_insn_len ();
8110
8111 if (jumplen < 0)
8112 {
8113 /* If the target does not support the get_min_fast_tracepoint_insn_len
8114 operation, assume that fast tracepoints will always be implemented
8115 using 4-byte relative jumps on both x86 and x86-64. */
8116 jumplen = 5;
8117 }
8118 else if (jumplen == 0)
8119 {
8120 /* If the target does support get_min_fast_tracepoint_insn_len but
8121 returns zero, then the IPA has not loaded yet. In this case,
8122 we optimistically assume that truncated 2-byte relative jumps
8123 will be available on x86, and compensate later if this assumption
8124 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8125 jumps will always be used. */
8126 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8127 }
8128
8129 /* Check for fit. */
8130 len = gdb_insn_length (gdbarch, addr);
8131
8132 if (len < jumplen)
8133 {
8134 /* Return a bit of target-specific detail to add to the caller's
8135 generic failure message. */
8136 if (msg)
8137 *msg = string_printf (_("; instruction is only %d bytes long, "
8138 "need at least %d bytes for the jump"),
8139 len, jumplen);
8140 return 0;
8141 }
8142 else
8143 {
8144 if (msg)
8145 msg->clear ();
8146 return 1;
8147 }
8148 }
8149
8150 /* Return a floating-point format for a floating-point variable of
8151 length LEN in bits. If non-NULL, NAME is the name of its type.
8152 If no suitable type is found, return NULL. */
8153
8154 const struct floatformat **
8155 i386_floatformat_for_type (struct gdbarch *gdbarch,
8156 const char *name, int len)
8157 {
8158 if (len == 128 && name)
8159 if (strcmp (name, "__float128") == 0
8160 || strcmp (name, "_Float128") == 0
8161 || strcmp (name, "complex _Float128") == 0
8162 || strcmp (name, "complex(kind=16)") == 0
8163 || strcmp (name, "real(kind=16)") == 0)
8164 return floatformats_ia64_quad;
8165
8166 return default_floatformat_for_type (gdbarch, name, len);
8167 }
8168
8169 static int
8170 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8171 struct tdesc_arch_data *tdesc_data)
8172 {
8173 const struct target_desc *tdesc = tdep->tdesc;
8174 const struct tdesc_feature *feature_core;
8175
8176 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8177 *feature_avx512, *feature_pkeys, *feature_segments;
8178 int i, num_regs, valid_p;
8179
8180 if (! tdesc_has_registers (tdesc))
8181 return 0;
8182
8183 /* Get core registers. */
8184 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8185 if (feature_core == NULL)
8186 return 0;
8187
8188 /* Get SSE registers. */
8189 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8190
8191 /* Try AVX registers. */
8192 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8193
8194 /* Try MPX registers. */
8195 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8196
8197 /* Try AVX512 registers. */
8198 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8199
8200 /* Try segment base registers. */
8201 feature_segments = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
8202
8203 /* Try PKEYS */
8204 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8205
8206 valid_p = 1;
8207
8208 /* The XCR0 bits. */
8209 if (feature_avx512)
8210 {
8211 /* AVX512 register description requires AVX register description. */
8212 if (!feature_avx)
8213 return 0;
8214
8215 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8216
8217 /* It may have been set by OSABI initialization function. */
8218 if (tdep->k0_regnum < 0)
8219 {
8220 tdep->k_register_names = i386_k_names;
8221 tdep->k0_regnum = I386_K0_REGNUM;
8222 }
8223
8224 for (i = 0; i < I387_NUM_K_REGS; i++)
8225 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8226 tdep->k0_regnum + i,
8227 i386_k_names[i]);
8228
8229 if (tdep->num_zmm_regs == 0)
8230 {
8231 tdep->zmmh_register_names = i386_zmmh_names;
8232 tdep->num_zmm_regs = 8;
8233 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8234 }
8235
8236 for (i = 0; i < tdep->num_zmm_regs; i++)
8237 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8238 tdep->zmm0h_regnum + i,
8239 tdep->zmmh_register_names[i]);
8240
8241 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8242 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8243 tdep->xmm16_regnum + i,
8244 tdep->xmm_avx512_register_names[i]);
8245
8246 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8247 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8248 tdep->ymm16h_regnum + i,
8249 tdep->ymm16h_register_names[i]);
8250 }
8251 if (feature_avx)
8252 {
8253 /* AVX register description requires SSE register description. */
8254 if (!feature_sse)
8255 return 0;
8256
8257 if (!feature_avx512)
8258 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8259
8260 /* It may have been set by OSABI initialization function. */
8261 if (tdep->num_ymm_regs == 0)
8262 {
8263 tdep->ymmh_register_names = i386_ymmh_names;
8264 tdep->num_ymm_regs = 8;
8265 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8266 }
8267
8268 for (i = 0; i < tdep->num_ymm_regs; i++)
8269 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8270 tdep->ymm0h_regnum + i,
8271 tdep->ymmh_register_names[i]);
8272 }
8273 else if (feature_sse)
8274 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8275 else
8276 {
8277 tdep->xcr0 = X86_XSTATE_X87_MASK;
8278 tdep->num_xmm_regs = 0;
8279 }
8280
8281 num_regs = tdep->num_core_regs;
8282 for (i = 0; i < num_regs; i++)
8283 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8284 tdep->register_names[i]);
8285
8286 if (feature_sse)
8287 {
8288 /* Need to include %mxcsr, so add one. */
8289 num_regs += tdep->num_xmm_regs + 1;
8290 for (; i < num_regs; i++)
8291 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8292 tdep->register_names[i]);
8293 }
8294
8295 if (feature_mpx)
8296 {
8297 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8298
8299 if (tdep->bnd0r_regnum < 0)
8300 {
8301 tdep->mpx_register_names = i386_mpx_names;
8302 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8303 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8304 }
8305
8306 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8307 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8308 I387_BND0R_REGNUM (tdep) + i,
8309 tdep->mpx_register_names[i]);
8310 }
8311
8312 if (feature_segments)
8313 {
8314 if (tdep->fsbase_regnum < 0)
8315 tdep->fsbase_regnum = I386_FSBASE_REGNUM;
8316 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8317 tdep->fsbase_regnum, "fs_base");
8318 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8319 tdep->fsbase_regnum + 1, "gs_base");
8320 }
8321
8322 if (feature_pkeys)
8323 {
8324 tdep->xcr0 |= X86_XSTATE_PKRU;
8325 if (tdep->pkru_regnum < 0)
8326 {
8327 tdep->pkeys_register_names = i386_pkeys_names;
8328 tdep->pkru_regnum = I386_PKRU_REGNUM;
8329 tdep->num_pkeys_regs = 1;
8330 }
8331
8332 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8333 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8334 I387_PKRU_REGNUM (tdep) + i,
8335 tdep->pkeys_register_names[i]);
8336 }
8337
8338 return valid_p;
8339 }
8340
8341 \f
8342
8343 /* Implement the type_align gdbarch function. */
8344
8345 static ULONGEST
8346 i386_type_align (struct gdbarch *gdbarch, struct type *type)
8347 {
8348 type = check_typedef (type);
8349
8350 if (gdbarch_ptr_bit (gdbarch) == 32)
8351 {
8352 if ((TYPE_CODE (type) == TYPE_CODE_INT
8353 || TYPE_CODE (type) == TYPE_CODE_FLT)
8354 && TYPE_LENGTH (type) > 4)
8355 return 4;
8356
8357 /* Handle x86's funny long double. */
8358 if (TYPE_CODE (type) == TYPE_CODE_FLT
8359 && gdbarch_long_double_bit (gdbarch) == TYPE_LENGTH (type) * 8)
8360 return 4;
8361 }
8362
8363 return 0;
8364 }
8365
8366 \f
8367 /* Note: This is called for both i386 and amd64. */
8368
8369 static struct gdbarch *
8370 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8371 {
8372 struct gdbarch_tdep *tdep;
8373 struct gdbarch *gdbarch;
8374 struct tdesc_arch_data *tdesc_data;
8375 const struct target_desc *tdesc;
8376 int mm0_regnum;
8377 int ymm0_regnum;
8378 int bnd0_regnum;
8379 int num_bnd_cooked;
8380
8381 /* If there is already a candidate, use it. */
8382 arches = gdbarch_list_lookup_by_info (arches, &info);
8383 if (arches != NULL)
8384 return arches->gdbarch;
8385
8386 /* Allocate space for the new architecture. Assume i386 for now. */
8387 tdep = XCNEW (struct gdbarch_tdep);
8388 gdbarch = gdbarch_alloc (&info, tdep);
8389
8390 /* General-purpose registers. */
8391 tdep->gregset_reg_offset = NULL;
8392 tdep->gregset_num_regs = I386_NUM_GREGS;
8393 tdep->sizeof_gregset = 0;
8394
8395 /* Floating-point registers. */
8396 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8397 tdep->fpregset = &i386_fpregset;
8398
8399 /* The default settings include the FPU registers, the MMX registers
8400 and the SSE registers. This can be overridden for a specific ABI
8401 by adjusting the members `st0_regnum', `mm0_regnum' and
8402 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8403 will show up in the output of "info all-registers". */
8404
8405 tdep->st0_regnum = I386_ST0_REGNUM;
8406
8407 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8408 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8409
8410 tdep->jb_pc_offset = -1;
8411 tdep->struct_return = pcc_struct_return;
8412 tdep->sigtramp_start = 0;
8413 tdep->sigtramp_end = 0;
8414 tdep->sigtramp_p = i386_sigtramp_p;
8415 tdep->sigcontext_addr = NULL;
8416 tdep->sc_reg_offset = NULL;
8417 tdep->sc_pc_offset = -1;
8418 tdep->sc_sp_offset = -1;
8419
8420 tdep->xsave_xcr0_offset = -1;
8421
8422 tdep->record_regmap = i386_record_regmap;
8423
8424 set_gdbarch_type_align (gdbarch, i386_type_align);
8425
8426 /* The format used for `long double' on almost all i386 targets is
8427 the i387 extended floating-point format. In fact, of all targets
8428 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8429 on having a `long double' that's not `long' at all. */
8430 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8431
8432 /* Although the i387 extended floating-point has only 80 significant
8433 bits, a `long double' actually takes up 96, probably to enforce
8434 alignment. */
8435 set_gdbarch_long_double_bit (gdbarch, 96);
8436
8437 /* Support for floating-point data type variants. */
8438 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8439
8440 /* Register numbers of various important registers. */
8441 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8442 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8443 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8444 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8445
8446 /* NOTE: kettenis/20040418: GCC does have two possible register
8447 numbering schemes on the i386: dbx and SVR4. These schemes
8448 differ in how they number %ebp, %esp, %eflags, and the
8449 floating-point registers, and are implemented by the arrays
8450 dbx_register_map[] and svr4_dbx_register_map in
8451 gcc/config/i386.c. GCC also defines a third numbering scheme in
8452 gcc/config/i386.c, which it designates as the "default" register
8453 map used in 64bit mode. This last register numbering scheme is
8454 implemented in dbx64_register_map, and is used for AMD64; see
8455 amd64-tdep.c.
8456
8457 Currently, each GCC i386 target always uses the same register
8458 numbering scheme across all its supported debugging formats
8459 i.e. SDB (COFF), stabs and DWARF 2. This is because
8460 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8461 DBX_REGISTER_NUMBER macro which is defined by each target's
8462 respective config header in a manner independent of the requested
8463 output debugging format.
8464
8465 This does not match the arrangement below, which presumes that
8466 the SDB and stabs numbering schemes differ from the DWARF and
8467 DWARF 2 ones. The reason for this arrangement is that it is
8468 likely to get the numbering scheme for the target's
8469 default/native debug format right. For targets where GCC is the
8470 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8471 targets where the native toolchain uses a different numbering
8472 scheme for a particular debug format (stabs-in-ELF on Solaris)
8473 the defaults below will have to be overridden, like
8474 i386_elf_init_abi() does. */
8475
8476 /* Use the dbx register numbering scheme for stabs and COFF. */
8477 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8478 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8479
8480 /* Use the SVR4 register numbering scheme for DWARF 2. */
8481 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8482
8483 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8484 be in use on any of the supported i386 targets. */
8485
8486 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8487
8488 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8489
8490 /* Call dummy code. */
8491 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8492 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8493 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8494 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8495
8496 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8497 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8498 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8499
8500 set_gdbarch_return_value (gdbarch, i386_return_value);
8501
8502 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8503
8504 /* Stack grows downward. */
8505 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8506
8507 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8508 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8509
8510 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8511 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8512
8513 set_gdbarch_frame_args_skip (gdbarch, 8);
8514
8515 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8516
8517 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8518
8519 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8520
8521 /* Add the i386 register groups. */
8522 i386_add_reggroups (gdbarch);
8523 tdep->register_reggroup_p = i386_register_reggroup_p;
8524
8525 /* Helper for function argument information. */
8526 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8527
8528 /* Hook the function epilogue frame unwinder. This unwinder is
8529 appended to the list first, so that it supercedes the DWARF
8530 unwinder in function epilogues (where the DWARF unwinder
8531 currently fails). */
8532 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8533
8534 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8535 to the list before the prologue-based unwinders, so that DWARF
8536 CFI info will be used if it is available. */
8537 dwarf2_append_unwinders (gdbarch);
8538
8539 frame_base_set_default (gdbarch, &i386_frame_base);
8540
8541 /* Pseudo registers may be changed by amd64_init_abi. */
8542 set_gdbarch_pseudo_register_read_value (gdbarch,
8543 i386_pseudo_register_read_value);
8544 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8545 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8546 i386_ax_pseudo_register_collect);
8547
8548 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8549 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8550
8551 /* Override the normal target description method to make the AVX
8552 upper halves anonymous. */
8553 set_gdbarch_register_name (gdbarch, i386_register_name);
8554
8555 /* Even though the default ABI only includes general-purpose registers,
8556 floating-point registers and the SSE registers, we have to leave a
8557 gap for the upper AVX, MPX and AVX512 registers. */
8558 set_gdbarch_num_regs (gdbarch, I386_NUM_REGS);
8559
8560 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8561
8562 /* Get the x86 target description from INFO. */
8563 tdesc = info.target_desc;
8564 if (! tdesc_has_registers (tdesc))
8565 tdesc = i386_target_description (X86_XSTATE_SSE_MASK, false);
8566 tdep->tdesc = tdesc;
8567
8568 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8569 tdep->register_names = i386_register_names;
8570
8571 /* No upper YMM registers. */
8572 tdep->ymmh_register_names = NULL;
8573 tdep->ymm0h_regnum = -1;
8574
8575 /* No upper ZMM registers. */
8576 tdep->zmmh_register_names = NULL;
8577 tdep->zmm0h_regnum = -1;
8578
8579 /* No high XMM registers. */
8580 tdep->xmm_avx512_register_names = NULL;
8581 tdep->xmm16_regnum = -1;
8582
8583 /* No upper YMM16-31 registers. */
8584 tdep->ymm16h_register_names = NULL;
8585 tdep->ymm16h_regnum = -1;
8586
8587 tdep->num_byte_regs = 8;
8588 tdep->num_word_regs = 8;
8589 tdep->num_dword_regs = 0;
8590 tdep->num_mmx_regs = 8;
8591 tdep->num_ymm_regs = 0;
8592
8593 /* No MPX registers. */
8594 tdep->bnd0r_regnum = -1;
8595 tdep->bndcfgu_regnum = -1;
8596
8597 /* No AVX512 registers. */
8598 tdep->k0_regnum = -1;
8599 tdep->num_zmm_regs = 0;
8600 tdep->num_ymm_avx512_regs = 0;
8601 tdep->num_xmm_avx512_regs = 0;
8602
8603 /* No PKEYS registers */
8604 tdep->pkru_regnum = -1;
8605 tdep->num_pkeys_regs = 0;
8606
8607 /* No segment base registers. */
8608 tdep->fsbase_regnum = -1;
8609
8610 tdesc_data = tdesc_data_alloc ();
8611
8612 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8613
8614 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8615
8616 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8617 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8618 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8619
8620 /* Hook in ABI-specific overrides, if they have been registered.
8621 Note: If INFO specifies a 64 bit arch, this is where we turn
8622 a 32-bit i386 into a 64-bit amd64. */
8623 info.tdesc_data = tdesc_data;
8624 gdbarch_init_osabi (info, gdbarch);
8625
8626 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8627 {
8628 tdesc_data_cleanup (tdesc_data);
8629 xfree (tdep);
8630 gdbarch_free (gdbarch);
8631 return NULL;
8632 }
8633
8634 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8635
8636 /* Wire in pseudo registers. Number of pseudo registers may be
8637 changed. */
8638 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8639 + tdep->num_word_regs
8640 + tdep->num_dword_regs
8641 + tdep->num_mmx_regs
8642 + tdep->num_ymm_regs
8643 + num_bnd_cooked
8644 + tdep->num_ymm_avx512_regs
8645 + tdep->num_zmm_regs));
8646
8647 /* Target description may be changed. */
8648 tdesc = tdep->tdesc;
8649
8650 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8651
8652 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8653 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8654
8655 /* Make %al the first pseudo-register. */
8656 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8657 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8658
8659 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8660 if (tdep->num_dword_regs)
8661 {
8662 /* Support dword pseudo-register if it hasn't been disabled. */
8663 tdep->eax_regnum = ymm0_regnum;
8664 ymm0_regnum += tdep->num_dword_regs;
8665 }
8666 else
8667 tdep->eax_regnum = -1;
8668
8669 mm0_regnum = ymm0_regnum;
8670 if (tdep->num_ymm_regs)
8671 {
8672 /* Support YMM pseudo-register if it is available. */
8673 tdep->ymm0_regnum = ymm0_regnum;
8674 mm0_regnum += tdep->num_ymm_regs;
8675 }
8676 else
8677 tdep->ymm0_regnum = -1;
8678
8679 if (tdep->num_ymm_avx512_regs)
8680 {
8681 /* Support YMM16-31 pseudo registers if available. */
8682 tdep->ymm16_regnum = mm0_regnum;
8683 mm0_regnum += tdep->num_ymm_avx512_regs;
8684 }
8685 else
8686 tdep->ymm16_regnum = -1;
8687
8688 if (tdep->num_zmm_regs)
8689 {
8690 /* Support ZMM pseudo-register if it is available. */
8691 tdep->zmm0_regnum = mm0_regnum;
8692 mm0_regnum += tdep->num_zmm_regs;
8693 }
8694 else
8695 tdep->zmm0_regnum = -1;
8696
8697 bnd0_regnum = mm0_regnum;
8698 if (tdep->num_mmx_regs != 0)
8699 {
8700 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8701 tdep->mm0_regnum = mm0_regnum;
8702 bnd0_regnum += tdep->num_mmx_regs;
8703 }
8704 else
8705 tdep->mm0_regnum = -1;
8706
8707 if (tdep->bnd0r_regnum > 0)
8708 tdep->bnd0_regnum = bnd0_regnum;
8709 else
8710 tdep-> bnd0_regnum = -1;
8711
8712 /* Hook in the legacy prologue-based unwinders last (fallback). */
8713 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8714 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8715 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8716
8717 /* If we have a register mapping, enable the generic core file
8718 support, unless it has already been enabled. */
8719 if (tdep->gregset_reg_offset
8720 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8721 set_gdbarch_iterate_over_regset_sections
8722 (gdbarch, i386_iterate_over_regset_sections);
8723
8724 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8725 i386_fast_tracepoint_valid_at);
8726
8727 return gdbarch;
8728 }
8729
8730 \f
8731
8732 /* Return the target description for a specified XSAVE feature mask. */
8733
8734 const struct target_desc *
8735 i386_target_description (uint64_t xcr0, bool segments)
8736 {
8737 static target_desc *i386_tdescs \
8738 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
8739 target_desc **tdesc;
8740
8741 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8742 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8743 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8744 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
8745 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
8746 [segments ? 1 : 0];
8747
8748 if (*tdesc == NULL)
8749 *tdesc = i386_create_target_description (xcr0, false, segments);
8750
8751 return *tdesc;
8752 }
8753
8754 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8755
8756 /* Find the bound directory base address. */
8757
8758 static unsigned long
8759 i386_mpx_bd_base (void)
8760 {
8761 struct regcache *rcache;
8762 struct gdbarch_tdep *tdep;
8763 ULONGEST ret;
8764 enum register_status regstatus;
8765
8766 rcache = get_current_regcache ();
8767 tdep = gdbarch_tdep (rcache->arch ());
8768
8769 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8770
8771 if (regstatus != REG_VALID)
8772 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8773
8774 return ret & MPX_BASE_MASK;
8775 }
8776
8777 int
8778 i386_mpx_enabled (void)
8779 {
8780 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8781 const struct target_desc *tdesc = tdep->tdesc;
8782
8783 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8784 }
8785
8786 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8787 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8788 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8789 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8790
8791 /* Find the bound table entry given the pointer location and the base
8792 address of the table. */
8793
8794 static CORE_ADDR
8795 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8796 {
8797 CORE_ADDR offset1;
8798 CORE_ADDR offset2;
8799 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8800 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8801 CORE_ADDR bd_entry_addr;
8802 CORE_ADDR bt_addr;
8803 CORE_ADDR bd_entry;
8804 struct gdbarch *gdbarch = get_current_arch ();
8805 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8806
8807
8808 if (gdbarch_ptr_bit (gdbarch) == 64)
8809 {
8810 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8811 bd_ptr_r_shift = 20;
8812 bd_ptr_l_shift = 3;
8813 bt_select_r_shift = 3;
8814 bt_select_l_shift = 5;
8815 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8816
8817 if ( sizeof (CORE_ADDR) == 4)
8818 error (_("bound table examination not supported\
8819 for 64-bit process with 32-bit GDB"));
8820 }
8821 else
8822 {
8823 mpx_bd_mask = MPX_BD_MASK_32;
8824 bd_ptr_r_shift = 12;
8825 bd_ptr_l_shift = 2;
8826 bt_select_r_shift = 2;
8827 bt_select_l_shift = 4;
8828 bt_mask = MPX_BT_MASK_32;
8829 }
8830
8831 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8832 bd_entry_addr = bd_base + offset1;
8833 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8834
8835 if ((bd_entry & 0x1) == 0)
8836 error (_("Invalid bounds directory entry at %s."),
8837 paddress (get_current_arch (), bd_entry_addr));
8838
8839 /* Clearing status bit. */
8840 bd_entry--;
8841 bt_addr = bd_entry & ~bt_select_r_shift;
8842 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8843
8844 return bt_addr + offset2;
8845 }
8846
8847 /* Print routine for the mpx bounds. */
8848
8849 static void
8850 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8851 {
8852 struct ui_out *uiout = current_uiout;
8853 LONGEST size;
8854 struct gdbarch *gdbarch = get_current_arch ();
8855 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8856 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8857
8858 if (bounds_in_map == 1)
8859 {
8860 uiout->text ("Null bounds on map:");
8861 uiout->text (" pointer value = ");
8862 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8863 uiout->text (".");
8864 uiout->text ("\n");
8865 }
8866 else
8867 {
8868 uiout->text ("{lbound = ");
8869 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8870 uiout->text (", ubound = ");
8871
8872 /* The upper bound is stored in 1's complement. */
8873 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8874 uiout->text ("}: pointer value = ");
8875 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8876
8877 if (gdbarch_ptr_bit (gdbarch) == 64)
8878 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8879 else
8880 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8881
8882 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8883 -1 represents in this sense full memory access, and there is no need
8884 one to the size. */
8885
8886 size = (size > -1 ? size + 1 : size);
8887 uiout->text (", size = ");
8888 uiout->field_fmt ("size", "%s", plongest (size));
8889
8890 uiout->text (", metadata = ");
8891 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8892 uiout->text ("\n");
8893 }
8894 }
8895
8896 /* Implement the command "show mpx bound". */
8897
8898 static void
8899 i386_mpx_info_bounds (const char *args, int from_tty)
8900 {
8901 CORE_ADDR bd_base = 0;
8902 CORE_ADDR addr;
8903 CORE_ADDR bt_entry_addr = 0;
8904 CORE_ADDR bt_entry[4];
8905 int i;
8906 struct gdbarch *gdbarch = get_current_arch ();
8907 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8908
8909 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8910 || !i386_mpx_enabled ())
8911 {
8912 printf_unfiltered (_("Intel Memory Protection Extensions not "
8913 "supported on this target.\n"));
8914 return;
8915 }
8916
8917 if (args == NULL)
8918 {
8919 printf_unfiltered (_("Address of pointer variable expected.\n"));
8920 return;
8921 }
8922
8923 addr = parse_and_eval_address (args);
8924
8925 bd_base = i386_mpx_bd_base ();
8926 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8927
8928 memset (bt_entry, 0, sizeof (bt_entry));
8929
8930 for (i = 0; i < 4; i++)
8931 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8932 + i * TYPE_LENGTH (data_ptr_type),
8933 data_ptr_type);
8934
8935 i386_mpx_print_bounds (bt_entry);
8936 }
8937
8938 /* Implement the command "set mpx bound". */
8939
8940 static void
8941 i386_mpx_set_bounds (const char *args, int from_tty)
8942 {
8943 CORE_ADDR bd_base = 0;
8944 CORE_ADDR addr, lower, upper;
8945 CORE_ADDR bt_entry_addr = 0;
8946 CORE_ADDR bt_entry[2];
8947 const char *input = args;
8948 int i;
8949 struct gdbarch *gdbarch = get_current_arch ();
8950 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8951 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8952
8953 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8954 || !i386_mpx_enabled ())
8955 error (_("Intel Memory Protection Extensions not supported\
8956 on this target."));
8957
8958 if (args == NULL)
8959 error (_("Pointer value expected."));
8960
8961 addr = value_as_address (parse_to_comma_and_eval (&input));
8962
8963 if (input[0] == ',')
8964 ++input;
8965 if (input[0] == '\0')
8966 error (_("wrong number of arguments: missing lower and upper bound."));
8967 lower = value_as_address (parse_to_comma_and_eval (&input));
8968
8969 if (input[0] == ',')
8970 ++input;
8971 if (input[0] == '\0')
8972 error (_("Wrong number of arguments; Missing upper bound."));
8973 upper = value_as_address (parse_to_comma_and_eval (&input));
8974
8975 bd_base = i386_mpx_bd_base ();
8976 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8977 for (i = 0; i < 2; i++)
8978 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8979 + i * TYPE_LENGTH (data_ptr_type),
8980 data_ptr_type);
8981 bt_entry[0] = (uint64_t) lower;
8982 bt_entry[1] = ~(uint64_t) upper;
8983
8984 for (i = 0; i < 2; i++)
8985 write_memory_unsigned_integer (bt_entry_addr
8986 + i * TYPE_LENGTH (data_ptr_type),
8987 TYPE_LENGTH (data_ptr_type), byte_order,
8988 bt_entry[i]);
8989 }
8990
8991 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
8992
8993 /* Helper function for the CLI commands. */
8994
8995 static void
8996 set_mpx_cmd (const char *args, int from_tty)
8997 {
8998 help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout);
8999 }
9000
9001 /* Helper function for the CLI commands. */
9002
9003 static void
9004 show_mpx_cmd (const char *args, int from_tty)
9005 {
9006 cmd_show_list (mpx_show_cmdlist, from_tty, "");
9007 }
9008
9009 void
9010 _initialize_i386_tdep (void)
9011 {
9012 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9013
9014 /* Add the variable that controls the disassembly flavor. */
9015 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9016 &disassembly_flavor, _("\
9017 Set the disassembly flavor."), _("\
9018 Show the disassembly flavor."), _("\
9019 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9020 NULL,
9021 NULL, /* FIXME: i18n: */
9022 &setlist, &showlist);
9023
9024 /* Add the variable that controls the convention for returning
9025 structs. */
9026 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9027 &struct_convention, _("\
9028 Set the convention for returning small structs."), _("\
9029 Show the convention for returning small structs."), _("\
9030 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9031 is \"default\"."),
9032 NULL,
9033 NULL, /* FIXME: i18n: */
9034 &setlist, &showlist);
9035
9036 /* Add "mpx" prefix for the set commands. */
9037
9038 add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
9039 Set Intel Memory Protection Extensions specific variables."),
9040 &mpx_set_cmdlist, "set mpx ",
9041 0 /* allow-unknown */, &setlist);
9042
9043 /* Add "mpx" prefix for the show commands. */
9044
9045 add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
9046 Show Intel Memory Protection Extensions specific variables."),
9047 &mpx_show_cmdlist, "show mpx ",
9048 0 /* allow-unknown */, &showlist);
9049
9050 /* Add "bound" command for the show mpx commands list. */
9051
9052 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9053 "Show the memory bounds for a given array/pointer storage\
9054 in the bound table.",
9055 &mpx_show_cmdlist);
9056
9057 /* Add "bound" command for the set mpx commands list. */
9058
9059 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9060 "Set the memory bounds for a given array/pointer storage\
9061 in the bound table.",
9062 &mpx_set_cmdlist);
9063
9064 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9065 i386_svr4_init_abi);
9066
9067 /* Initialize the i386-specific register groups. */
9068 i386_init_reggroups ();
9069
9070 /* Tell remote stub that we support XML target description. */
9071 register_remote_support_xml ("i386");
9072
9073 #if GDB_SELF_TEST
9074 struct
9075 {
9076 const char *xml;
9077 uint64_t mask;
9078 } xml_masks[] = {
9079 { "i386/i386.xml", X86_XSTATE_SSE_MASK },
9080 { "i386/i386-mmx.xml", X86_XSTATE_X87_MASK },
9081 { "i386/i386-avx.xml", X86_XSTATE_AVX_MASK },
9082 { "i386/i386-mpx.xml", X86_XSTATE_MPX_MASK },
9083 { "i386/i386-avx-mpx.xml", X86_XSTATE_AVX_MPX_MASK },
9084 { "i386/i386-avx-avx512.xml", X86_XSTATE_AVX_AVX512_MASK },
9085 { "i386/i386-avx-mpx-avx512-pku.xml",
9086 X86_XSTATE_AVX_MPX_AVX512_PKU_MASK },
9087 };
9088
9089 for (auto &a : xml_masks)
9090 {
9091 auto tdesc = i386_target_description (a.mask, false);
9092
9093 selftests::record_xml_tdesc (a.xml, tdesc);
9094 }
9095 #endif /* GDB_SELF_TEST */
9096 }
This page took 0.256683 seconds and 5 git commands to generate.