X86: Migrate from 'regset_from_core_section' to 'iterate_over_regset_sections'
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "infrun.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "osabi.h"
37 #include "regcache.h"
38 #include "reggroups.h"
39 #include "regset.h"
40 #include "symfile.h"
41 #include "symtab.h"
42 #include "target.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "exceptions.h"
48 #include "i386-tdep.h"
49 #include "i387-tdep.h"
50 #include "x86-xstate.h"
51
52 #include "record.h"
53 #include "record-full.h"
54 #include <stdint.h>
55
56 #include "features/i386/i386.c"
57 #include "features/i386/i386-avx.c"
58 #include "features/i386/i386-mpx.c"
59 #include "features/i386/i386-avx512.c"
60 #include "features/i386/i386-mmx.c"
61
62 #include "ax.h"
63 #include "ax-gdb.h"
64
65 #include "stap-probe.h"
66 #include "user-regs.h"
67 #include "cli/cli-utils.h"
68 #include "expression.h"
69 #include "parser-defs.h"
70 #include <ctype.h>
71
72 /* Register names. */
73
74 static const char *i386_register_names[] =
75 {
76 "eax", "ecx", "edx", "ebx",
77 "esp", "ebp", "esi", "edi",
78 "eip", "eflags", "cs", "ss",
79 "ds", "es", "fs", "gs",
80 "st0", "st1", "st2", "st3",
81 "st4", "st5", "st6", "st7",
82 "fctrl", "fstat", "ftag", "fiseg",
83 "fioff", "foseg", "fooff", "fop",
84 "xmm0", "xmm1", "xmm2", "xmm3",
85 "xmm4", "xmm5", "xmm6", "xmm7",
86 "mxcsr"
87 };
88
89 static const char *i386_zmm_names[] =
90 {
91 "zmm0", "zmm1", "zmm2", "zmm3",
92 "zmm4", "zmm5", "zmm6", "zmm7"
93 };
94
95 static const char *i386_zmmh_names[] =
96 {
97 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
98 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
99 };
100
101 static const char *i386_k_names[] =
102 {
103 "k0", "k1", "k2", "k3",
104 "k4", "k5", "k6", "k7"
105 };
106
107 static const char *i386_ymm_names[] =
108 {
109 "ymm0", "ymm1", "ymm2", "ymm3",
110 "ymm4", "ymm5", "ymm6", "ymm7",
111 };
112
113 static const char *i386_ymmh_names[] =
114 {
115 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
116 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
117 };
118
119 static const char *i386_mpx_names[] =
120 {
121 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
122 };
123
124 /* Register names for MPX pseudo-registers. */
125
126 static const char *i386_bnd_names[] =
127 {
128 "bnd0", "bnd1", "bnd2", "bnd3"
129 };
130
131 /* Register names for MMX pseudo-registers. */
132
133 static const char *i386_mmx_names[] =
134 {
135 "mm0", "mm1", "mm2", "mm3",
136 "mm4", "mm5", "mm6", "mm7"
137 };
138
139 /* Register names for byte pseudo-registers. */
140
141 static const char *i386_byte_names[] =
142 {
143 "al", "cl", "dl", "bl",
144 "ah", "ch", "dh", "bh"
145 };
146
147 /* Register names for word pseudo-registers. */
148
149 static const char *i386_word_names[] =
150 {
151 "ax", "cx", "dx", "bx",
152 "", "bp", "si", "di"
153 };
154
155 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
156 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
157 we have 16 upper ZMM regs that have to be handled differently. */
158
159 const int num_lower_zmm_regs = 16;
160
161 /* MMX register? */
162
163 static int
164 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
165 {
166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
167 int mm0_regnum = tdep->mm0_regnum;
168
169 if (mm0_regnum < 0)
170 return 0;
171
172 regnum -= mm0_regnum;
173 return regnum >= 0 && regnum < tdep->num_mmx_regs;
174 }
175
176 /* Byte register? */
177
178 int
179 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
180 {
181 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
182
183 regnum -= tdep->al_regnum;
184 return regnum >= 0 && regnum < tdep->num_byte_regs;
185 }
186
187 /* Word register? */
188
189 int
190 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
191 {
192 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
193
194 regnum -= tdep->ax_regnum;
195 return regnum >= 0 && regnum < tdep->num_word_regs;
196 }
197
198 /* Dword register? */
199
200 int
201 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
202 {
203 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
204 int eax_regnum = tdep->eax_regnum;
205
206 if (eax_regnum < 0)
207 return 0;
208
209 regnum -= eax_regnum;
210 return regnum >= 0 && regnum < tdep->num_dword_regs;
211 }
212
213 /* AVX512 register? */
214
215 int
216 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
217 {
218 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
219 int zmm0h_regnum = tdep->zmm0h_regnum;
220
221 if (zmm0h_regnum < 0)
222 return 0;
223
224 regnum -= zmm0h_regnum;
225 return regnum >= 0 && regnum < tdep->num_zmm_regs;
226 }
227
228 int
229 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
230 {
231 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
232 int zmm0_regnum = tdep->zmm0_regnum;
233
234 if (zmm0_regnum < 0)
235 return 0;
236
237 regnum -= zmm0_regnum;
238 return regnum >= 0 && regnum < tdep->num_zmm_regs;
239 }
240
241 int
242 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
243 {
244 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
245 int k0_regnum = tdep->k0_regnum;
246
247 if (k0_regnum < 0)
248 return 0;
249
250 regnum -= k0_regnum;
251 return regnum >= 0 && regnum < I387_NUM_K_REGS;
252 }
253
254 static int
255 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
256 {
257 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
258 int ymm0h_regnum = tdep->ymm0h_regnum;
259
260 if (ymm0h_regnum < 0)
261 return 0;
262
263 regnum -= ymm0h_regnum;
264 return regnum >= 0 && regnum < tdep->num_ymm_regs;
265 }
266
267 /* AVX register? */
268
269 int
270 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
271 {
272 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
273 int ymm0_regnum = tdep->ymm0_regnum;
274
275 if (ymm0_regnum < 0)
276 return 0;
277
278 regnum -= ymm0_regnum;
279 return regnum >= 0 && regnum < tdep->num_ymm_regs;
280 }
281
282 static int
283 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
284 {
285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
286 int ymm16h_regnum = tdep->ymm16h_regnum;
287
288 if (ymm16h_regnum < 0)
289 return 0;
290
291 regnum -= ymm16h_regnum;
292 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
293 }
294
295 int
296 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
297 {
298 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
299 int ymm16_regnum = tdep->ymm16_regnum;
300
301 if (ymm16_regnum < 0)
302 return 0;
303
304 regnum -= ymm16_regnum;
305 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
306 }
307
308 /* BND register? */
309
310 int
311 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
312 {
313 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
314 int bnd0_regnum = tdep->bnd0_regnum;
315
316 if (bnd0_regnum < 0)
317 return 0;
318
319 regnum -= bnd0_regnum;
320 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
321 }
322
323 /* SSE register? */
324
325 int
326 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
327 {
328 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
329 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
330
331 if (num_xmm_regs == 0)
332 return 0;
333
334 regnum -= I387_XMM0_REGNUM (tdep);
335 return regnum >= 0 && regnum < num_xmm_regs;
336 }
337
338 /* XMM_512 register? */
339
340 int
341 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
342 {
343 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
344 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
345
346 if (num_xmm_avx512_regs == 0)
347 return 0;
348
349 regnum -= I387_XMM16_REGNUM (tdep);
350 return regnum >= 0 && regnum < num_xmm_avx512_regs;
351 }
352
353 static int
354 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
355 {
356 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
357
358 if (I387_NUM_XMM_REGS (tdep) == 0)
359 return 0;
360
361 return (regnum == I387_MXCSR_REGNUM (tdep));
362 }
363
364 /* FP register? */
365
366 int
367 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
368 {
369 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
370
371 if (I387_ST0_REGNUM (tdep) < 0)
372 return 0;
373
374 return (I387_ST0_REGNUM (tdep) <= regnum
375 && regnum < I387_FCTRL_REGNUM (tdep));
376 }
377
378 int
379 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
380 {
381 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
382
383 if (I387_ST0_REGNUM (tdep) < 0)
384 return 0;
385
386 return (I387_FCTRL_REGNUM (tdep) <= regnum
387 && regnum < I387_XMM0_REGNUM (tdep));
388 }
389
390 /* BNDr (raw) register? */
391
392 static int
393 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
394 {
395 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
396
397 if (I387_BND0R_REGNUM (tdep) < 0)
398 return 0;
399
400 regnum -= tdep->bnd0r_regnum;
401 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
402 }
403
404 /* BND control register? */
405
406 static int
407 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
408 {
409 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
410
411 if (I387_BNDCFGU_REGNUM (tdep) < 0)
412 return 0;
413
414 regnum -= I387_BNDCFGU_REGNUM (tdep);
415 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
416 }
417
418 /* Return the name of register REGNUM, or the empty string if it is
419 an anonymous register. */
420
421 static const char *
422 i386_register_name (struct gdbarch *gdbarch, int regnum)
423 {
424 /* Hide the upper YMM registers. */
425 if (i386_ymmh_regnum_p (gdbarch, regnum))
426 return "";
427
428 /* Hide the upper YMM16-31 registers. */
429 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
430 return "";
431
432 /* Hide the upper ZMM registers. */
433 if (i386_zmmh_regnum_p (gdbarch, regnum))
434 return "";
435
436 return tdesc_register_name (gdbarch, regnum);
437 }
438
439 /* Return the name of register REGNUM. */
440
441 const char *
442 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
443 {
444 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
445 if (i386_bnd_regnum_p (gdbarch, regnum))
446 return i386_bnd_names[regnum - tdep->bnd0_regnum];
447 if (i386_mmx_regnum_p (gdbarch, regnum))
448 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
449 else if (i386_ymm_regnum_p (gdbarch, regnum))
450 return i386_ymm_names[regnum - tdep->ymm0_regnum];
451 else if (i386_zmm_regnum_p (gdbarch, regnum))
452 return i386_zmm_names[regnum - tdep->zmm0_regnum];
453 else if (i386_byte_regnum_p (gdbarch, regnum))
454 return i386_byte_names[regnum - tdep->al_regnum];
455 else if (i386_word_regnum_p (gdbarch, regnum))
456 return i386_word_names[regnum - tdep->ax_regnum];
457
458 internal_error (__FILE__, __LINE__, _("invalid regnum"));
459 }
460
461 /* Convert a dbx register number REG to the appropriate register
462 number used by GDB. */
463
464 static int
465 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
466 {
467 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
468
469 /* This implements what GCC calls the "default" register map
470 (dbx_register_map[]). */
471
472 if (reg >= 0 && reg <= 7)
473 {
474 /* General-purpose registers. The debug info calls %ebp
475 register 4, and %esp register 5. */
476 if (reg == 4)
477 return 5;
478 else if (reg == 5)
479 return 4;
480 else return reg;
481 }
482 else if (reg >= 12 && reg <= 19)
483 {
484 /* Floating-point registers. */
485 return reg - 12 + I387_ST0_REGNUM (tdep);
486 }
487 else if (reg >= 21 && reg <= 28)
488 {
489 /* SSE registers. */
490 int ymm0_regnum = tdep->ymm0_regnum;
491
492 if (ymm0_regnum >= 0
493 && i386_xmm_regnum_p (gdbarch, reg))
494 return reg - 21 + ymm0_regnum;
495 else
496 return reg - 21 + I387_XMM0_REGNUM (tdep);
497 }
498 else if (reg >= 29 && reg <= 36)
499 {
500 /* MMX registers. */
501 return reg - 29 + I387_MM0_REGNUM (tdep);
502 }
503
504 /* This will hopefully provoke a warning. */
505 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
506 }
507
508 /* Convert SVR4 register number REG to the appropriate register number
509 used by GDB. */
510
511 static int
512 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
513 {
514 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
515
516 /* This implements the GCC register map that tries to be compatible
517 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
518
519 /* The SVR4 register numbering includes %eip and %eflags, and
520 numbers the floating point registers differently. */
521 if (reg >= 0 && reg <= 9)
522 {
523 /* General-purpose registers. */
524 return reg;
525 }
526 else if (reg >= 11 && reg <= 18)
527 {
528 /* Floating-point registers. */
529 return reg - 11 + I387_ST0_REGNUM (tdep);
530 }
531 else if (reg >= 21 && reg <= 36)
532 {
533 /* The SSE and MMX registers have the same numbers as with dbx. */
534 return i386_dbx_reg_to_regnum (gdbarch, reg);
535 }
536
537 switch (reg)
538 {
539 case 37: return I387_FCTRL_REGNUM (tdep);
540 case 38: return I387_FSTAT_REGNUM (tdep);
541 case 39: return I387_MXCSR_REGNUM (tdep);
542 case 40: return I386_ES_REGNUM;
543 case 41: return I386_CS_REGNUM;
544 case 42: return I386_SS_REGNUM;
545 case 43: return I386_DS_REGNUM;
546 case 44: return I386_FS_REGNUM;
547 case 45: return I386_GS_REGNUM;
548 }
549
550 /* This will hopefully provoke a warning. */
551 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
552 }
553
554 \f
555
556 /* This is the variable that is set with "set disassembly-flavor", and
557 its legitimate values. */
558 static const char att_flavor[] = "att";
559 static const char intel_flavor[] = "intel";
560 static const char *const valid_flavors[] =
561 {
562 att_flavor,
563 intel_flavor,
564 NULL
565 };
566 static const char *disassembly_flavor = att_flavor;
567 \f
568
569 /* Use the program counter to determine the contents and size of a
570 breakpoint instruction. Return a pointer to a string of bytes that
571 encode a breakpoint instruction, store the length of the string in
572 *LEN and optionally adjust *PC to point to the correct memory
573 location for inserting the breakpoint.
574
575 On the i386 we have a single breakpoint that fits in a single byte
576 and can be inserted anywhere.
577
578 This function is 64-bit safe. */
579
580 static const gdb_byte *
581 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
582 {
583 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
584
585 *len = sizeof (break_insn);
586 return break_insn;
587 }
588 \f
589 /* Displaced instruction handling. */
590
591 /* Skip the legacy instruction prefixes in INSN.
592 Not all prefixes are valid for any particular insn
593 but we needn't care, the insn will fault if it's invalid.
594 The result is a pointer to the first opcode byte,
595 or NULL if we run off the end of the buffer. */
596
597 static gdb_byte *
598 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
599 {
600 gdb_byte *end = insn + max_len;
601
602 while (insn < end)
603 {
604 switch (*insn)
605 {
606 case DATA_PREFIX_OPCODE:
607 case ADDR_PREFIX_OPCODE:
608 case CS_PREFIX_OPCODE:
609 case DS_PREFIX_OPCODE:
610 case ES_PREFIX_OPCODE:
611 case FS_PREFIX_OPCODE:
612 case GS_PREFIX_OPCODE:
613 case SS_PREFIX_OPCODE:
614 case LOCK_PREFIX_OPCODE:
615 case REPE_PREFIX_OPCODE:
616 case REPNE_PREFIX_OPCODE:
617 ++insn;
618 continue;
619 default:
620 return insn;
621 }
622 }
623
624 return NULL;
625 }
626
627 static int
628 i386_absolute_jmp_p (const gdb_byte *insn)
629 {
630 /* jmp far (absolute address in operand). */
631 if (insn[0] == 0xea)
632 return 1;
633
634 if (insn[0] == 0xff)
635 {
636 /* jump near, absolute indirect (/4). */
637 if ((insn[1] & 0x38) == 0x20)
638 return 1;
639
640 /* jump far, absolute indirect (/5). */
641 if ((insn[1] & 0x38) == 0x28)
642 return 1;
643 }
644
645 return 0;
646 }
647
648 /* Return non-zero if INSN is a jump, zero otherwise. */
649
650 static int
651 i386_jmp_p (const gdb_byte *insn)
652 {
653 /* jump short, relative. */
654 if (insn[0] == 0xeb)
655 return 1;
656
657 /* jump near, relative. */
658 if (insn[0] == 0xe9)
659 return 1;
660
661 return i386_absolute_jmp_p (insn);
662 }
663
664 static int
665 i386_absolute_call_p (const gdb_byte *insn)
666 {
667 /* call far, absolute. */
668 if (insn[0] == 0x9a)
669 return 1;
670
671 if (insn[0] == 0xff)
672 {
673 /* Call near, absolute indirect (/2). */
674 if ((insn[1] & 0x38) == 0x10)
675 return 1;
676
677 /* Call far, absolute indirect (/3). */
678 if ((insn[1] & 0x38) == 0x18)
679 return 1;
680 }
681
682 return 0;
683 }
684
685 static int
686 i386_ret_p (const gdb_byte *insn)
687 {
688 switch (insn[0])
689 {
690 case 0xc2: /* ret near, pop N bytes. */
691 case 0xc3: /* ret near */
692 case 0xca: /* ret far, pop N bytes. */
693 case 0xcb: /* ret far */
694 case 0xcf: /* iret */
695 return 1;
696
697 default:
698 return 0;
699 }
700 }
701
702 static int
703 i386_call_p (const gdb_byte *insn)
704 {
705 if (i386_absolute_call_p (insn))
706 return 1;
707
708 /* call near, relative. */
709 if (insn[0] == 0xe8)
710 return 1;
711
712 return 0;
713 }
714
715 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
716 length in bytes. Otherwise, return zero. */
717
718 static int
719 i386_syscall_p (const gdb_byte *insn, int *lengthp)
720 {
721 /* Is it 'int $0x80'? */
722 if ((insn[0] == 0xcd && insn[1] == 0x80)
723 /* Or is it 'sysenter'? */
724 || (insn[0] == 0x0f && insn[1] == 0x34)
725 /* Or is it 'syscall'? */
726 || (insn[0] == 0x0f && insn[1] == 0x05))
727 {
728 *lengthp = 2;
729 return 1;
730 }
731
732 return 0;
733 }
734
735 /* The gdbarch insn_is_call method. */
736
737 static int
738 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
739 {
740 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
741
742 read_code (addr, buf, I386_MAX_INSN_LEN);
743 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
744
745 return i386_call_p (insn);
746 }
747
748 /* The gdbarch insn_is_ret method. */
749
750 static int
751 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
752 {
753 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
754
755 read_code (addr, buf, I386_MAX_INSN_LEN);
756 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
757
758 return i386_ret_p (insn);
759 }
760
761 /* The gdbarch insn_is_jump method. */
762
763 static int
764 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
765 {
766 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
767
768 read_code (addr, buf, I386_MAX_INSN_LEN);
769 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
770
771 return i386_jmp_p (insn);
772 }
773
774 /* Some kernels may run one past a syscall insn, so we have to cope.
775 Otherwise this is just simple_displaced_step_copy_insn. */
776
777 struct displaced_step_closure *
778 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
779 CORE_ADDR from, CORE_ADDR to,
780 struct regcache *regs)
781 {
782 size_t len = gdbarch_max_insn_length (gdbarch);
783 gdb_byte *buf = xmalloc (len);
784
785 read_memory (from, buf, len);
786
787 /* GDB may get control back after the insn after the syscall.
788 Presumably this is a kernel bug.
789 If this is a syscall, make sure there's a nop afterwards. */
790 {
791 int syscall_length;
792 gdb_byte *insn;
793
794 insn = i386_skip_prefixes (buf, len);
795 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
796 insn[syscall_length] = NOP_OPCODE;
797 }
798
799 write_memory (to, buf, len);
800
801 if (debug_displaced)
802 {
803 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
804 paddress (gdbarch, from), paddress (gdbarch, to));
805 displaced_step_dump_bytes (gdb_stdlog, buf, len);
806 }
807
808 return (struct displaced_step_closure *) buf;
809 }
810
811 /* Fix up the state of registers and memory after having single-stepped
812 a displaced instruction. */
813
814 void
815 i386_displaced_step_fixup (struct gdbarch *gdbarch,
816 struct displaced_step_closure *closure,
817 CORE_ADDR from, CORE_ADDR to,
818 struct regcache *regs)
819 {
820 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
821
822 /* The offset we applied to the instruction's address.
823 This could well be negative (when viewed as a signed 32-bit
824 value), but ULONGEST won't reflect that, so take care when
825 applying it. */
826 ULONGEST insn_offset = to - from;
827
828 /* Since we use simple_displaced_step_copy_insn, our closure is a
829 copy of the instruction. */
830 gdb_byte *insn = (gdb_byte *) closure;
831 /* The start of the insn, needed in case we see some prefixes. */
832 gdb_byte *insn_start = insn;
833
834 if (debug_displaced)
835 fprintf_unfiltered (gdb_stdlog,
836 "displaced: fixup (%s, %s), "
837 "insn = 0x%02x 0x%02x ...\n",
838 paddress (gdbarch, from), paddress (gdbarch, to),
839 insn[0], insn[1]);
840
841 /* The list of issues to contend with here is taken from
842 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
843 Yay for Free Software! */
844
845 /* Relocate the %eip, if necessary. */
846
847 /* The instruction recognizers we use assume any leading prefixes
848 have been skipped. */
849 {
850 /* This is the size of the buffer in closure. */
851 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
852 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
853 /* If there are too many prefixes, just ignore the insn.
854 It will fault when run. */
855 if (opcode != NULL)
856 insn = opcode;
857 }
858
859 /* Except in the case of absolute or indirect jump or call
860 instructions, or a return instruction, the new eip is relative to
861 the displaced instruction; make it relative. Well, signal
862 handler returns don't need relocation either, but we use the
863 value of %eip to recognize those; see below. */
864 if (! i386_absolute_jmp_p (insn)
865 && ! i386_absolute_call_p (insn)
866 && ! i386_ret_p (insn))
867 {
868 ULONGEST orig_eip;
869 int insn_len;
870
871 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
872
873 /* A signal trampoline system call changes the %eip, resuming
874 execution of the main program after the signal handler has
875 returned. That makes them like 'return' instructions; we
876 shouldn't relocate %eip.
877
878 But most system calls don't, and we do need to relocate %eip.
879
880 Our heuristic for distinguishing these cases: if stepping
881 over the system call instruction left control directly after
882 the instruction, the we relocate --- control almost certainly
883 doesn't belong in the displaced copy. Otherwise, we assume
884 the instruction has put control where it belongs, and leave
885 it unrelocated. Goodness help us if there are PC-relative
886 system calls. */
887 if (i386_syscall_p (insn, &insn_len)
888 && orig_eip != to + (insn - insn_start) + insn_len
889 /* GDB can get control back after the insn after the syscall.
890 Presumably this is a kernel bug.
891 i386_displaced_step_copy_insn ensures its a nop,
892 we add one to the length for it. */
893 && orig_eip != to + (insn - insn_start) + insn_len + 1)
894 {
895 if (debug_displaced)
896 fprintf_unfiltered (gdb_stdlog,
897 "displaced: syscall changed %%eip; "
898 "not relocating\n");
899 }
900 else
901 {
902 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
903
904 /* If we just stepped over a breakpoint insn, we don't backup
905 the pc on purpose; this is to match behaviour without
906 stepping. */
907
908 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
909
910 if (debug_displaced)
911 fprintf_unfiltered (gdb_stdlog,
912 "displaced: "
913 "relocated %%eip from %s to %s\n",
914 paddress (gdbarch, orig_eip),
915 paddress (gdbarch, eip));
916 }
917 }
918
919 /* If the instruction was PUSHFL, then the TF bit will be set in the
920 pushed value, and should be cleared. We'll leave this for later,
921 since GDB already messes up the TF flag when stepping over a
922 pushfl. */
923
924 /* If the instruction was a call, the return address now atop the
925 stack is the address following the copied instruction. We need
926 to make it the address following the original instruction. */
927 if (i386_call_p (insn))
928 {
929 ULONGEST esp;
930 ULONGEST retaddr;
931 const ULONGEST retaddr_len = 4;
932
933 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
934 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
935 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
936 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
937
938 if (debug_displaced)
939 fprintf_unfiltered (gdb_stdlog,
940 "displaced: relocated return addr at %s to %s\n",
941 paddress (gdbarch, esp),
942 paddress (gdbarch, retaddr));
943 }
944 }
945
946 static void
947 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
948 {
949 target_write_memory (*to, buf, len);
950 *to += len;
951 }
952
953 static void
954 i386_relocate_instruction (struct gdbarch *gdbarch,
955 CORE_ADDR *to, CORE_ADDR oldloc)
956 {
957 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
958 gdb_byte buf[I386_MAX_INSN_LEN];
959 int offset = 0, rel32, newrel;
960 int insn_length;
961 gdb_byte *insn = buf;
962
963 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
964
965 insn_length = gdb_buffered_insn_length (gdbarch, insn,
966 I386_MAX_INSN_LEN, oldloc);
967
968 /* Get past the prefixes. */
969 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
970
971 /* Adjust calls with 32-bit relative addresses as push/jump, with
972 the address pushed being the location where the original call in
973 the user program would return to. */
974 if (insn[0] == 0xe8)
975 {
976 gdb_byte push_buf[16];
977 unsigned int ret_addr;
978
979 /* Where "ret" in the original code will return to. */
980 ret_addr = oldloc + insn_length;
981 push_buf[0] = 0x68; /* pushq $... */
982 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
983 /* Push the push. */
984 append_insns (to, 5, push_buf);
985
986 /* Convert the relative call to a relative jump. */
987 insn[0] = 0xe9;
988
989 /* Adjust the destination offset. */
990 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
991 newrel = (oldloc - *to) + rel32;
992 store_signed_integer (insn + 1, 4, byte_order, newrel);
993
994 if (debug_displaced)
995 fprintf_unfiltered (gdb_stdlog,
996 "Adjusted insn rel32=%s at %s to"
997 " rel32=%s at %s\n",
998 hex_string (rel32), paddress (gdbarch, oldloc),
999 hex_string (newrel), paddress (gdbarch, *to));
1000
1001 /* Write the adjusted jump into its displaced location. */
1002 append_insns (to, 5, insn);
1003 return;
1004 }
1005
1006 /* Adjust jumps with 32-bit relative addresses. Calls are already
1007 handled above. */
1008 if (insn[0] == 0xe9)
1009 offset = 1;
1010 /* Adjust conditional jumps. */
1011 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1012 offset = 2;
1013
1014 if (offset)
1015 {
1016 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1017 newrel = (oldloc - *to) + rel32;
1018 store_signed_integer (insn + offset, 4, byte_order, newrel);
1019 if (debug_displaced)
1020 fprintf_unfiltered (gdb_stdlog,
1021 "Adjusted insn rel32=%s at %s to"
1022 " rel32=%s at %s\n",
1023 hex_string (rel32), paddress (gdbarch, oldloc),
1024 hex_string (newrel), paddress (gdbarch, *to));
1025 }
1026
1027 /* Write the adjusted instructions into their displaced
1028 location. */
1029 append_insns (to, insn_length, buf);
1030 }
1031
1032 \f
1033 #ifdef I386_REGNO_TO_SYMMETRY
1034 #error "The Sequent Symmetry is no longer supported."
1035 #endif
1036
1037 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1038 and %esp "belong" to the calling function. Therefore these
1039 registers should be saved if they're going to be modified. */
1040
1041 /* The maximum number of saved registers. This should include all
1042 registers mentioned above, and %eip. */
1043 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1044
1045 struct i386_frame_cache
1046 {
1047 /* Base address. */
1048 CORE_ADDR base;
1049 int base_p;
1050 LONGEST sp_offset;
1051 CORE_ADDR pc;
1052
1053 /* Saved registers. */
1054 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1055 CORE_ADDR saved_sp;
1056 int saved_sp_reg;
1057 int pc_in_eax;
1058
1059 /* Stack space reserved for local variables. */
1060 long locals;
1061 };
1062
1063 /* Allocate and initialize a frame cache. */
1064
1065 static struct i386_frame_cache *
1066 i386_alloc_frame_cache (void)
1067 {
1068 struct i386_frame_cache *cache;
1069 int i;
1070
1071 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1072
1073 /* Base address. */
1074 cache->base_p = 0;
1075 cache->base = 0;
1076 cache->sp_offset = -4;
1077 cache->pc = 0;
1078
1079 /* Saved registers. We initialize these to -1 since zero is a valid
1080 offset (that's where %ebp is supposed to be stored). */
1081 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1082 cache->saved_regs[i] = -1;
1083 cache->saved_sp = 0;
1084 cache->saved_sp_reg = -1;
1085 cache->pc_in_eax = 0;
1086
1087 /* Frameless until proven otherwise. */
1088 cache->locals = -1;
1089
1090 return cache;
1091 }
1092
1093 /* If the instruction at PC is a jump, return the address of its
1094 target. Otherwise, return PC. */
1095
1096 static CORE_ADDR
1097 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1098 {
1099 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1100 gdb_byte op;
1101 long delta = 0;
1102 int data16 = 0;
1103
1104 if (target_read_code (pc, &op, 1))
1105 return pc;
1106
1107 if (op == 0x66)
1108 {
1109 data16 = 1;
1110
1111 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1112 }
1113
1114 switch (op)
1115 {
1116 case 0xe9:
1117 /* Relative jump: if data16 == 0, disp32, else disp16. */
1118 if (data16)
1119 {
1120 delta = read_memory_integer (pc + 2, 2, byte_order);
1121
1122 /* Include the size of the jmp instruction (including the
1123 0x66 prefix). */
1124 delta += 4;
1125 }
1126 else
1127 {
1128 delta = read_memory_integer (pc + 1, 4, byte_order);
1129
1130 /* Include the size of the jmp instruction. */
1131 delta += 5;
1132 }
1133 break;
1134 case 0xeb:
1135 /* Relative jump, disp8 (ignore data16). */
1136 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1137
1138 delta += data16 + 2;
1139 break;
1140 }
1141
1142 return pc + delta;
1143 }
1144
1145 /* Check whether PC points at a prologue for a function returning a
1146 structure or union. If so, it updates CACHE and returns the
1147 address of the first instruction after the code sequence that
1148 removes the "hidden" argument from the stack or CURRENT_PC,
1149 whichever is smaller. Otherwise, return PC. */
1150
1151 static CORE_ADDR
1152 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1153 struct i386_frame_cache *cache)
1154 {
1155 /* Functions that return a structure or union start with:
1156
1157 popl %eax 0x58
1158 xchgl %eax, (%esp) 0x87 0x04 0x24
1159 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1160
1161 (the System V compiler puts out the second `xchg' instruction,
1162 and the assembler doesn't try to optimize it, so the 'sib' form
1163 gets generated). This sequence is used to get the address of the
1164 return buffer for a function that returns a structure. */
1165 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1166 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1167 gdb_byte buf[4];
1168 gdb_byte op;
1169
1170 if (current_pc <= pc)
1171 return pc;
1172
1173 if (target_read_code (pc, &op, 1))
1174 return pc;
1175
1176 if (op != 0x58) /* popl %eax */
1177 return pc;
1178
1179 if (target_read_code (pc + 1, buf, 4))
1180 return pc;
1181
1182 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1183 return pc;
1184
1185 if (current_pc == pc)
1186 {
1187 cache->sp_offset += 4;
1188 return current_pc;
1189 }
1190
1191 if (current_pc == pc + 1)
1192 {
1193 cache->pc_in_eax = 1;
1194 return current_pc;
1195 }
1196
1197 if (buf[1] == proto1[1])
1198 return pc + 4;
1199 else
1200 return pc + 5;
1201 }
1202
1203 static CORE_ADDR
1204 i386_skip_probe (CORE_ADDR pc)
1205 {
1206 /* A function may start with
1207
1208 pushl constant
1209 call _probe
1210 addl $4, %esp
1211
1212 followed by
1213
1214 pushl %ebp
1215
1216 etc. */
1217 gdb_byte buf[8];
1218 gdb_byte op;
1219
1220 if (target_read_code (pc, &op, 1))
1221 return pc;
1222
1223 if (op == 0x68 || op == 0x6a)
1224 {
1225 int delta;
1226
1227 /* Skip past the `pushl' instruction; it has either a one-byte or a
1228 four-byte operand, depending on the opcode. */
1229 if (op == 0x68)
1230 delta = 5;
1231 else
1232 delta = 2;
1233
1234 /* Read the following 8 bytes, which should be `call _probe' (6
1235 bytes) followed by `addl $4,%esp' (2 bytes). */
1236 read_memory (pc + delta, buf, sizeof (buf));
1237 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1238 pc += delta + sizeof (buf);
1239 }
1240
1241 return pc;
1242 }
1243
1244 /* GCC 4.1 and later, can put code in the prologue to realign the
1245 stack pointer. Check whether PC points to such code, and update
1246 CACHE accordingly. Return the first instruction after the code
1247 sequence or CURRENT_PC, whichever is smaller. If we don't
1248 recognize the code, return PC. */
1249
1250 static CORE_ADDR
1251 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1252 struct i386_frame_cache *cache)
1253 {
1254 /* There are 2 code sequences to re-align stack before the frame
1255 gets set up:
1256
1257 1. Use a caller-saved saved register:
1258
1259 leal 4(%esp), %reg
1260 andl $-XXX, %esp
1261 pushl -4(%reg)
1262
1263 2. Use a callee-saved saved register:
1264
1265 pushl %reg
1266 leal 8(%esp), %reg
1267 andl $-XXX, %esp
1268 pushl -4(%reg)
1269
1270 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1271
1272 0x83 0xe4 0xf0 andl $-16, %esp
1273 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1274 */
1275
1276 gdb_byte buf[14];
1277 int reg;
1278 int offset, offset_and;
1279 static int regnums[8] = {
1280 I386_EAX_REGNUM, /* %eax */
1281 I386_ECX_REGNUM, /* %ecx */
1282 I386_EDX_REGNUM, /* %edx */
1283 I386_EBX_REGNUM, /* %ebx */
1284 I386_ESP_REGNUM, /* %esp */
1285 I386_EBP_REGNUM, /* %ebp */
1286 I386_ESI_REGNUM, /* %esi */
1287 I386_EDI_REGNUM /* %edi */
1288 };
1289
1290 if (target_read_code (pc, buf, sizeof buf))
1291 return pc;
1292
1293 /* Check caller-saved saved register. The first instruction has
1294 to be "leal 4(%esp), %reg". */
1295 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1296 {
1297 /* MOD must be binary 10 and R/M must be binary 100. */
1298 if ((buf[1] & 0xc7) != 0x44)
1299 return pc;
1300
1301 /* REG has register number. */
1302 reg = (buf[1] >> 3) & 7;
1303 offset = 4;
1304 }
1305 else
1306 {
1307 /* Check callee-saved saved register. The first instruction
1308 has to be "pushl %reg". */
1309 if ((buf[0] & 0xf8) != 0x50)
1310 return pc;
1311
1312 /* Get register. */
1313 reg = buf[0] & 0x7;
1314
1315 /* The next instruction has to be "leal 8(%esp), %reg". */
1316 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1317 return pc;
1318
1319 /* MOD must be binary 10 and R/M must be binary 100. */
1320 if ((buf[2] & 0xc7) != 0x44)
1321 return pc;
1322
1323 /* REG has register number. Registers in pushl and leal have to
1324 be the same. */
1325 if (reg != ((buf[2] >> 3) & 7))
1326 return pc;
1327
1328 offset = 5;
1329 }
1330
1331 /* Rigister can't be %esp nor %ebp. */
1332 if (reg == 4 || reg == 5)
1333 return pc;
1334
1335 /* The next instruction has to be "andl $-XXX, %esp". */
1336 if (buf[offset + 1] != 0xe4
1337 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1338 return pc;
1339
1340 offset_and = offset;
1341 offset += buf[offset] == 0x81 ? 6 : 3;
1342
1343 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1344 0xfc. REG must be binary 110 and MOD must be binary 01. */
1345 if (buf[offset] != 0xff
1346 || buf[offset + 2] != 0xfc
1347 || (buf[offset + 1] & 0xf8) != 0x70)
1348 return pc;
1349
1350 /* R/M has register. Registers in leal and pushl have to be the
1351 same. */
1352 if (reg != (buf[offset + 1] & 7))
1353 return pc;
1354
1355 if (current_pc > pc + offset_and)
1356 cache->saved_sp_reg = regnums[reg];
1357
1358 return min (pc + offset + 3, current_pc);
1359 }
1360
1361 /* Maximum instruction length we need to handle. */
1362 #define I386_MAX_MATCHED_INSN_LEN 6
1363
1364 /* Instruction description. */
1365 struct i386_insn
1366 {
1367 size_t len;
1368 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1369 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1370 };
1371
1372 /* Return whether instruction at PC matches PATTERN. */
1373
1374 static int
1375 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1376 {
1377 gdb_byte op;
1378
1379 if (target_read_code (pc, &op, 1))
1380 return 0;
1381
1382 if ((op & pattern.mask[0]) == pattern.insn[0])
1383 {
1384 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1385 int insn_matched = 1;
1386 size_t i;
1387
1388 gdb_assert (pattern.len > 1);
1389 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1390
1391 if (target_read_code (pc + 1, buf, pattern.len - 1))
1392 return 0;
1393
1394 for (i = 1; i < pattern.len; i++)
1395 {
1396 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1397 insn_matched = 0;
1398 }
1399 return insn_matched;
1400 }
1401 return 0;
1402 }
1403
1404 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1405 the first instruction description that matches. Otherwise, return
1406 NULL. */
1407
1408 static struct i386_insn *
1409 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1410 {
1411 struct i386_insn *pattern;
1412
1413 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1414 {
1415 if (i386_match_pattern (pc, *pattern))
1416 return pattern;
1417 }
1418
1419 return NULL;
1420 }
1421
1422 /* Return whether PC points inside a sequence of instructions that
1423 matches INSN_PATTERNS. */
1424
1425 static int
1426 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1427 {
1428 CORE_ADDR current_pc;
1429 int ix, i;
1430 struct i386_insn *insn;
1431
1432 insn = i386_match_insn (pc, insn_patterns);
1433 if (insn == NULL)
1434 return 0;
1435
1436 current_pc = pc;
1437 ix = insn - insn_patterns;
1438 for (i = ix - 1; i >= 0; i--)
1439 {
1440 current_pc -= insn_patterns[i].len;
1441
1442 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1443 return 0;
1444 }
1445
1446 current_pc = pc + insn->len;
1447 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1448 {
1449 if (!i386_match_pattern (current_pc, *insn))
1450 return 0;
1451
1452 current_pc += insn->len;
1453 }
1454
1455 return 1;
1456 }
1457
1458 /* Some special instructions that might be migrated by GCC into the
1459 part of the prologue that sets up the new stack frame. Because the
1460 stack frame hasn't been setup yet, no registers have been saved
1461 yet, and only the scratch registers %eax, %ecx and %edx can be
1462 touched. */
1463
1464 struct i386_insn i386_frame_setup_skip_insns[] =
1465 {
1466 /* Check for `movb imm8, r' and `movl imm32, r'.
1467
1468 ??? Should we handle 16-bit operand-sizes here? */
1469
1470 /* `movb imm8, %al' and `movb imm8, %ah' */
1471 /* `movb imm8, %cl' and `movb imm8, %ch' */
1472 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1473 /* `movb imm8, %dl' and `movb imm8, %dh' */
1474 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1475 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1476 { 5, { 0xb8 }, { 0xfe } },
1477 /* `movl imm32, %edx' */
1478 { 5, { 0xba }, { 0xff } },
1479
1480 /* Check for `mov imm32, r32'. Note that there is an alternative
1481 encoding for `mov m32, %eax'.
1482
1483 ??? Should we handle SIB adressing here?
1484 ??? Should we handle 16-bit operand-sizes here? */
1485
1486 /* `movl m32, %eax' */
1487 { 5, { 0xa1 }, { 0xff } },
1488 /* `movl m32, %eax' and `mov; m32, %ecx' */
1489 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1490 /* `movl m32, %edx' */
1491 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1492
1493 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1494 Because of the symmetry, there are actually two ways to encode
1495 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1496 opcode bytes 0x31 and 0x33 for `xorl'. */
1497
1498 /* `subl %eax, %eax' */
1499 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1500 /* `subl %ecx, %ecx' */
1501 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1502 /* `subl %edx, %edx' */
1503 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1504 /* `xorl %eax, %eax' */
1505 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1506 /* `xorl %ecx, %ecx' */
1507 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1508 /* `xorl %edx, %edx' */
1509 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1510 { 0 }
1511 };
1512
1513
1514 /* Check whether PC points to a no-op instruction. */
1515 static CORE_ADDR
1516 i386_skip_noop (CORE_ADDR pc)
1517 {
1518 gdb_byte op;
1519 int check = 1;
1520
1521 if (target_read_code (pc, &op, 1))
1522 return pc;
1523
1524 while (check)
1525 {
1526 check = 0;
1527 /* Ignore `nop' instruction. */
1528 if (op == 0x90)
1529 {
1530 pc += 1;
1531 if (target_read_code (pc, &op, 1))
1532 return pc;
1533 check = 1;
1534 }
1535 /* Ignore no-op instruction `mov %edi, %edi'.
1536 Microsoft system dlls often start with
1537 a `mov %edi,%edi' instruction.
1538 The 5 bytes before the function start are
1539 filled with `nop' instructions.
1540 This pattern can be used for hot-patching:
1541 The `mov %edi, %edi' instruction can be replaced by a
1542 near jump to the location of the 5 `nop' instructions
1543 which can be replaced by a 32-bit jump to anywhere
1544 in the 32-bit address space. */
1545
1546 else if (op == 0x8b)
1547 {
1548 if (target_read_code (pc + 1, &op, 1))
1549 return pc;
1550
1551 if (op == 0xff)
1552 {
1553 pc += 2;
1554 if (target_read_code (pc, &op, 1))
1555 return pc;
1556
1557 check = 1;
1558 }
1559 }
1560 }
1561 return pc;
1562 }
1563
1564 /* Check whether PC points at a code that sets up a new stack frame.
1565 If so, it updates CACHE and returns the address of the first
1566 instruction after the sequence that sets up the frame or LIMIT,
1567 whichever is smaller. If we don't recognize the code, return PC. */
1568
1569 static CORE_ADDR
1570 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1571 CORE_ADDR pc, CORE_ADDR limit,
1572 struct i386_frame_cache *cache)
1573 {
1574 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1575 struct i386_insn *insn;
1576 gdb_byte op;
1577 int skip = 0;
1578
1579 if (limit <= pc)
1580 return limit;
1581
1582 if (target_read_code (pc, &op, 1))
1583 return pc;
1584
1585 if (op == 0x55) /* pushl %ebp */
1586 {
1587 /* Take into account that we've executed the `pushl %ebp' that
1588 starts this instruction sequence. */
1589 cache->saved_regs[I386_EBP_REGNUM] = 0;
1590 cache->sp_offset += 4;
1591 pc++;
1592
1593 /* If that's all, return now. */
1594 if (limit <= pc)
1595 return limit;
1596
1597 /* Check for some special instructions that might be migrated by
1598 GCC into the prologue and skip them. At this point in the
1599 prologue, code should only touch the scratch registers %eax,
1600 %ecx and %edx, so while the number of posibilities is sheer,
1601 it is limited.
1602
1603 Make sure we only skip these instructions if we later see the
1604 `movl %esp, %ebp' that actually sets up the frame. */
1605 while (pc + skip < limit)
1606 {
1607 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1608 if (insn == NULL)
1609 break;
1610
1611 skip += insn->len;
1612 }
1613
1614 /* If that's all, return now. */
1615 if (limit <= pc + skip)
1616 return limit;
1617
1618 if (target_read_code (pc + skip, &op, 1))
1619 return pc + skip;
1620
1621 /* The i386 prologue looks like
1622
1623 push %ebp
1624 mov %esp,%ebp
1625 sub $0x10,%esp
1626
1627 and a different prologue can be generated for atom.
1628
1629 push %ebp
1630 lea (%esp),%ebp
1631 lea -0x10(%esp),%esp
1632
1633 We handle both of them here. */
1634
1635 switch (op)
1636 {
1637 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1638 case 0x8b:
1639 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1640 != 0xec)
1641 return pc;
1642 pc += (skip + 2);
1643 break;
1644 case 0x89:
1645 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1646 != 0xe5)
1647 return pc;
1648 pc += (skip + 2);
1649 break;
1650 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1651 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1652 != 0x242c)
1653 return pc;
1654 pc += (skip + 3);
1655 break;
1656 default:
1657 return pc;
1658 }
1659
1660 /* OK, we actually have a frame. We just don't know how large
1661 it is yet. Set its size to zero. We'll adjust it if
1662 necessary. We also now commit to skipping the special
1663 instructions mentioned before. */
1664 cache->locals = 0;
1665
1666 /* If that's all, return now. */
1667 if (limit <= pc)
1668 return limit;
1669
1670 /* Check for stack adjustment
1671
1672 subl $XXX, %esp
1673 or
1674 lea -XXX(%esp),%esp
1675
1676 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1677 reg, so we don't have to worry about a data16 prefix. */
1678 if (target_read_code (pc, &op, 1))
1679 return pc;
1680 if (op == 0x83)
1681 {
1682 /* `subl' with 8-bit immediate. */
1683 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1684 /* Some instruction starting with 0x83 other than `subl'. */
1685 return pc;
1686
1687 /* `subl' with signed 8-bit immediate (though it wouldn't
1688 make sense to be negative). */
1689 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1690 return pc + 3;
1691 }
1692 else if (op == 0x81)
1693 {
1694 /* Maybe it is `subl' with a 32-bit immediate. */
1695 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1696 /* Some instruction starting with 0x81 other than `subl'. */
1697 return pc;
1698
1699 /* It is `subl' with a 32-bit immediate. */
1700 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1701 return pc + 6;
1702 }
1703 else if (op == 0x8d)
1704 {
1705 /* The ModR/M byte is 0x64. */
1706 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1707 return pc;
1708 /* 'lea' with 8-bit displacement. */
1709 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1710 return pc + 4;
1711 }
1712 else
1713 {
1714 /* Some instruction other than `subl' nor 'lea'. */
1715 return pc;
1716 }
1717 }
1718 else if (op == 0xc8) /* enter */
1719 {
1720 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1721 return pc + 4;
1722 }
1723
1724 return pc;
1725 }
1726
1727 /* Check whether PC points at code that saves registers on the stack.
1728 If so, it updates CACHE and returns the address of the first
1729 instruction after the register saves or CURRENT_PC, whichever is
1730 smaller. Otherwise, return PC. */
1731
1732 static CORE_ADDR
1733 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1734 struct i386_frame_cache *cache)
1735 {
1736 CORE_ADDR offset = 0;
1737 gdb_byte op;
1738 int i;
1739
1740 if (cache->locals > 0)
1741 offset -= cache->locals;
1742 for (i = 0; i < 8 && pc < current_pc; i++)
1743 {
1744 if (target_read_code (pc, &op, 1))
1745 return pc;
1746 if (op < 0x50 || op > 0x57)
1747 break;
1748
1749 offset -= 4;
1750 cache->saved_regs[op - 0x50] = offset;
1751 cache->sp_offset += 4;
1752 pc++;
1753 }
1754
1755 return pc;
1756 }
1757
1758 /* Do a full analysis of the prologue at PC and update CACHE
1759 accordingly. Bail out early if CURRENT_PC is reached. Return the
1760 address where the analysis stopped.
1761
1762 We handle these cases:
1763
1764 The startup sequence can be at the start of the function, or the
1765 function can start with a branch to startup code at the end.
1766
1767 %ebp can be set up with either the 'enter' instruction, or "pushl
1768 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1769 once used in the System V compiler).
1770
1771 Local space is allocated just below the saved %ebp by either the
1772 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1773 16-bit unsigned argument for space to allocate, and the 'addl'
1774 instruction could have either a signed byte, or 32-bit immediate.
1775
1776 Next, the registers used by this function are pushed. With the
1777 System V compiler they will always be in the order: %edi, %esi,
1778 %ebx (and sometimes a harmless bug causes it to also save but not
1779 restore %eax); however, the code below is willing to see the pushes
1780 in any order, and will handle up to 8 of them.
1781
1782 If the setup sequence is at the end of the function, then the next
1783 instruction will be a branch back to the start. */
1784
1785 static CORE_ADDR
1786 i386_analyze_prologue (struct gdbarch *gdbarch,
1787 CORE_ADDR pc, CORE_ADDR current_pc,
1788 struct i386_frame_cache *cache)
1789 {
1790 pc = i386_skip_noop (pc);
1791 pc = i386_follow_jump (gdbarch, pc);
1792 pc = i386_analyze_struct_return (pc, current_pc, cache);
1793 pc = i386_skip_probe (pc);
1794 pc = i386_analyze_stack_align (pc, current_pc, cache);
1795 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1796 return i386_analyze_register_saves (pc, current_pc, cache);
1797 }
1798
1799 /* Return PC of first real instruction. */
1800
1801 static CORE_ADDR
1802 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1803 {
1804 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1805
1806 static gdb_byte pic_pat[6] =
1807 {
1808 0xe8, 0, 0, 0, 0, /* call 0x0 */
1809 0x5b, /* popl %ebx */
1810 };
1811 struct i386_frame_cache cache;
1812 CORE_ADDR pc;
1813 gdb_byte op;
1814 int i;
1815 CORE_ADDR func_addr;
1816
1817 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1818 {
1819 CORE_ADDR post_prologue_pc
1820 = skip_prologue_using_sal (gdbarch, func_addr);
1821 struct symtab *s = find_pc_symtab (func_addr);
1822
1823 /* Clang always emits a line note before the prologue and another
1824 one after. We trust clang to emit usable line notes. */
1825 if (post_prologue_pc
1826 && (s != NULL
1827 && s->producer != NULL
1828 && strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0))
1829 return max (start_pc, post_prologue_pc);
1830 }
1831
1832 cache.locals = -1;
1833 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1834 if (cache.locals < 0)
1835 return start_pc;
1836
1837 /* Found valid frame setup. */
1838
1839 /* The native cc on SVR4 in -K PIC mode inserts the following code
1840 to get the address of the global offset table (GOT) into register
1841 %ebx:
1842
1843 call 0x0
1844 popl %ebx
1845 movl %ebx,x(%ebp) (optional)
1846 addl y,%ebx
1847
1848 This code is with the rest of the prologue (at the end of the
1849 function), so we have to skip it to get to the first real
1850 instruction at the start of the function. */
1851
1852 for (i = 0; i < 6; i++)
1853 {
1854 if (target_read_code (pc + i, &op, 1))
1855 return pc;
1856
1857 if (pic_pat[i] != op)
1858 break;
1859 }
1860 if (i == 6)
1861 {
1862 int delta = 6;
1863
1864 if (target_read_code (pc + delta, &op, 1))
1865 return pc;
1866
1867 if (op == 0x89) /* movl %ebx, x(%ebp) */
1868 {
1869 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1870
1871 if (op == 0x5d) /* One byte offset from %ebp. */
1872 delta += 3;
1873 else if (op == 0x9d) /* Four byte offset from %ebp. */
1874 delta += 6;
1875 else /* Unexpected instruction. */
1876 delta = 0;
1877
1878 if (target_read_code (pc + delta, &op, 1))
1879 return pc;
1880 }
1881
1882 /* addl y,%ebx */
1883 if (delta > 0 && op == 0x81
1884 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1885 == 0xc3)
1886 {
1887 pc += delta + 6;
1888 }
1889 }
1890
1891 /* If the function starts with a branch (to startup code at the end)
1892 the last instruction should bring us back to the first
1893 instruction of the real code. */
1894 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1895 pc = i386_follow_jump (gdbarch, pc);
1896
1897 return pc;
1898 }
1899
1900 /* Check that the code pointed to by PC corresponds to a call to
1901 __main, skip it if so. Return PC otherwise. */
1902
1903 CORE_ADDR
1904 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1905 {
1906 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1907 gdb_byte op;
1908
1909 if (target_read_code (pc, &op, 1))
1910 return pc;
1911 if (op == 0xe8)
1912 {
1913 gdb_byte buf[4];
1914
1915 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1916 {
1917 /* Make sure address is computed correctly as a 32bit
1918 integer even if CORE_ADDR is 64 bit wide. */
1919 struct bound_minimal_symbol s;
1920 CORE_ADDR call_dest;
1921
1922 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1923 call_dest = call_dest & 0xffffffffU;
1924 s = lookup_minimal_symbol_by_pc (call_dest);
1925 if (s.minsym != NULL
1926 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1927 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1928 pc += 5;
1929 }
1930 }
1931
1932 return pc;
1933 }
1934
1935 /* This function is 64-bit safe. */
1936
1937 static CORE_ADDR
1938 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1939 {
1940 gdb_byte buf[8];
1941
1942 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1943 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1944 }
1945 \f
1946
1947 /* Normal frames. */
1948
1949 static void
1950 i386_frame_cache_1 (struct frame_info *this_frame,
1951 struct i386_frame_cache *cache)
1952 {
1953 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1954 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1955 gdb_byte buf[4];
1956 int i;
1957
1958 cache->pc = get_frame_func (this_frame);
1959
1960 /* In principle, for normal frames, %ebp holds the frame pointer,
1961 which holds the base address for the current stack frame.
1962 However, for functions that don't need it, the frame pointer is
1963 optional. For these "frameless" functions the frame pointer is
1964 actually the frame pointer of the calling frame. Signal
1965 trampolines are just a special case of a "frameless" function.
1966 They (usually) share their frame pointer with the frame that was
1967 in progress when the signal occurred. */
1968
1969 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1970 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1971 if (cache->base == 0)
1972 {
1973 cache->base_p = 1;
1974 return;
1975 }
1976
1977 /* For normal frames, %eip is stored at 4(%ebp). */
1978 cache->saved_regs[I386_EIP_REGNUM] = 4;
1979
1980 if (cache->pc != 0)
1981 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1982 cache);
1983
1984 if (cache->locals < 0)
1985 {
1986 /* We didn't find a valid frame, which means that CACHE->base
1987 currently holds the frame pointer for our calling frame. If
1988 we're at the start of a function, or somewhere half-way its
1989 prologue, the function's frame probably hasn't been fully
1990 setup yet. Try to reconstruct the base address for the stack
1991 frame by looking at the stack pointer. For truly "frameless"
1992 functions this might work too. */
1993
1994 if (cache->saved_sp_reg != -1)
1995 {
1996 /* Saved stack pointer has been saved. */
1997 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1998 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1999
2000 /* We're halfway aligning the stack. */
2001 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2002 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2003
2004 /* This will be added back below. */
2005 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2006 }
2007 else if (cache->pc != 0
2008 || target_read_code (get_frame_pc (this_frame), buf, 1))
2009 {
2010 /* We're in a known function, but did not find a frame
2011 setup. Assume that the function does not use %ebp.
2012 Alternatively, we may have jumped to an invalid
2013 address; in that case there is definitely no new
2014 frame in %ebp. */
2015 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2016 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2017 + cache->sp_offset;
2018 }
2019 else
2020 /* We're in an unknown function. We could not find the start
2021 of the function to analyze the prologue; our best option is
2022 to assume a typical frame layout with the caller's %ebp
2023 saved. */
2024 cache->saved_regs[I386_EBP_REGNUM] = 0;
2025 }
2026
2027 if (cache->saved_sp_reg != -1)
2028 {
2029 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2030 register may be unavailable). */
2031 if (cache->saved_sp == 0
2032 && deprecated_frame_register_read (this_frame,
2033 cache->saved_sp_reg, buf))
2034 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2035 }
2036 /* Now that we have the base address for the stack frame we can
2037 calculate the value of %esp in the calling frame. */
2038 else if (cache->saved_sp == 0)
2039 cache->saved_sp = cache->base + 8;
2040
2041 /* Adjust all the saved registers such that they contain addresses
2042 instead of offsets. */
2043 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2044 if (cache->saved_regs[i] != -1)
2045 cache->saved_regs[i] += cache->base;
2046
2047 cache->base_p = 1;
2048 }
2049
2050 static struct i386_frame_cache *
2051 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2052 {
2053 volatile struct gdb_exception ex;
2054 struct i386_frame_cache *cache;
2055
2056 if (*this_cache)
2057 return *this_cache;
2058
2059 cache = i386_alloc_frame_cache ();
2060 *this_cache = cache;
2061
2062 TRY_CATCH (ex, RETURN_MASK_ERROR)
2063 {
2064 i386_frame_cache_1 (this_frame, cache);
2065 }
2066 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2067 throw_exception (ex);
2068
2069 return cache;
2070 }
2071
2072 static void
2073 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2074 struct frame_id *this_id)
2075 {
2076 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2077
2078 if (!cache->base_p)
2079 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2080 else if (cache->base == 0)
2081 {
2082 /* This marks the outermost frame. */
2083 }
2084 else
2085 {
2086 /* See the end of i386_push_dummy_call. */
2087 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2088 }
2089 }
2090
2091 static enum unwind_stop_reason
2092 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2093 void **this_cache)
2094 {
2095 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2096
2097 if (!cache->base_p)
2098 return UNWIND_UNAVAILABLE;
2099
2100 /* This marks the outermost frame. */
2101 if (cache->base == 0)
2102 return UNWIND_OUTERMOST;
2103
2104 return UNWIND_NO_REASON;
2105 }
2106
2107 static struct value *
2108 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2109 int regnum)
2110 {
2111 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2112
2113 gdb_assert (regnum >= 0);
2114
2115 /* The System V ABI says that:
2116
2117 "The flags register contains the system flags, such as the
2118 direction flag and the carry flag. The direction flag must be
2119 set to the forward (that is, zero) direction before entry and
2120 upon exit from a function. Other user flags have no specified
2121 role in the standard calling sequence and are not preserved."
2122
2123 To guarantee the "upon exit" part of that statement we fake a
2124 saved flags register that has its direction flag cleared.
2125
2126 Note that GCC doesn't seem to rely on the fact that the direction
2127 flag is cleared after a function return; it always explicitly
2128 clears the flag before operations where it matters.
2129
2130 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2131 right thing to do. The way we fake the flags register here makes
2132 it impossible to change it. */
2133
2134 if (regnum == I386_EFLAGS_REGNUM)
2135 {
2136 ULONGEST val;
2137
2138 val = get_frame_register_unsigned (this_frame, regnum);
2139 val &= ~(1 << 10);
2140 return frame_unwind_got_constant (this_frame, regnum, val);
2141 }
2142
2143 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2144 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2145
2146 if (regnum == I386_ESP_REGNUM
2147 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2148 {
2149 /* If the SP has been saved, but we don't know where, then this
2150 means that SAVED_SP_REG register was found unavailable back
2151 when we built the cache. */
2152 if (cache->saved_sp == 0)
2153 return frame_unwind_got_register (this_frame, regnum,
2154 cache->saved_sp_reg);
2155 else
2156 return frame_unwind_got_constant (this_frame, regnum,
2157 cache->saved_sp);
2158 }
2159
2160 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2161 return frame_unwind_got_memory (this_frame, regnum,
2162 cache->saved_regs[regnum]);
2163
2164 return frame_unwind_got_register (this_frame, regnum, regnum);
2165 }
2166
2167 static const struct frame_unwind i386_frame_unwind =
2168 {
2169 NORMAL_FRAME,
2170 i386_frame_unwind_stop_reason,
2171 i386_frame_this_id,
2172 i386_frame_prev_register,
2173 NULL,
2174 default_frame_sniffer
2175 };
2176
2177 /* Normal frames, but in a function epilogue. */
2178
2179 /* The epilogue is defined here as the 'ret' instruction, which will
2180 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2181 the function's stack frame. */
2182
2183 static int
2184 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2185 {
2186 gdb_byte insn;
2187 struct symtab *symtab;
2188
2189 symtab = find_pc_symtab (pc);
2190 if (symtab && symtab->epilogue_unwind_valid)
2191 return 0;
2192
2193 if (target_read_memory (pc, &insn, 1))
2194 return 0; /* Can't read memory at pc. */
2195
2196 if (insn != 0xc3) /* 'ret' instruction. */
2197 return 0;
2198
2199 return 1;
2200 }
2201
2202 static int
2203 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2204 struct frame_info *this_frame,
2205 void **this_prologue_cache)
2206 {
2207 if (frame_relative_level (this_frame) == 0)
2208 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
2209 get_frame_pc (this_frame));
2210 else
2211 return 0;
2212 }
2213
2214 static struct i386_frame_cache *
2215 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2216 {
2217 volatile struct gdb_exception ex;
2218 struct i386_frame_cache *cache;
2219 CORE_ADDR sp;
2220
2221 if (*this_cache)
2222 return *this_cache;
2223
2224 cache = i386_alloc_frame_cache ();
2225 *this_cache = cache;
2226
2227 TRY_CATCH (ex, RETURN_MASK_ERROR)
2228 {
2229 cache->pc = get_frame_func (this_frame);
2230
2231 /* At this point the stack looks as if we just entered the
2232 function, with the return address at the top of the
2233 stack. */
2234 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2235 cache->base = sp + cache->sp_offset;
2236 cache->saved_sp = cache->base + 8;
2237 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2238
2239 cache->base_p = 1;
2240 }
2241 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2242 throw_exception (ex);
2243
2244 return cache;
2245 }
2246
2247 static enum unwind_stop_reason
2248 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2249 void **this_cache)
2250 {
2251 struct i386_frame_cache *cache =
2252 i386_epilogue_frame_cache (this_frame, this_cache);
2253
2254 if (!cache->base_p)
2255 return UNWIND_UNAVAILABLE;
2256
2257 return UNWIND_NO_REASON;
2258 }
2259
2260 static void
2261 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2262 void **this_cache,
2263 struct frame_id *this_id)
2264 {
2265 struct i386_frame_cache *cache =
2266 i386_epilogue_frame_cache (this_frame, this_cache);
2267
2268 if (!cache->base_p)
2269 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2270 else
2271 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2272 }
2273
2274 static struct value *
2275 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2276 void **this_cache, int regnum)
2277 {
2278 /* Make sure we've initialized the cache. */
2279 i386_epilogue_frame_cache (this_frame, this_cache);
2280
2281 return i386_frame_prev_register (this_frame, this_cache, regnum);
2282 }
2283
2284 static const struct frame_unwind i386_epilogue_frame_unwind =
2285 {
2286 NORMAL_FRAME,
2287 i386_epilogue_frame_unwind_stop_reason,
2288 i386_epilogue_frame_this_id,
2289 i386_epilogue_frame_prev_register,
2290 NULL,
2291 i386_epilogue_frame_sniffer
2292 };
2293 \f
2294
2295 /* Stack-based trampolines. */
2296
2297 /* These trampolines are used on cross x86 targets, when taking the
2298 address of a nested function. When executing these trampolines,
2299 no stack frame is set up, so we are in a similar situation as in
2300 epilogues and i386_epilogue_frame_this_id can be re-used. */
2301
2302 /* Static chain passed in register. */
2303
2304 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2305 {
2306 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2307 { 5, { 0xb8 }, { 0xfe } },
2308
2309 /* `jmp imm32' */
2310 { 5, { 0xe9 }, { 0xff } },
2311
2312 {0}
2313 };
2314
2315 /* Static chain passed on stack (when regparm=3). */
2316
2317 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2318 {
2319 /* `push imm32' */
2320 { 5, { 0x68 }, { 0xff } },
2321
2322 /* `jmp imm32' */
2323 { 5, { 0xe9 }, { 0xff } },
2324
2325 {0}
2326 };
2327
2328 /* Return whether PC points inside a stack trampoline. */
2329
2330 static int
2331 i386_in_stack_tramp_p (CORE_ADDR pc)
2332 {
2333 gdb_byte insn;
2334 const char *name;
2335
2336 /* A stack trampoline is detected if no name is associated
2337 to the current pc and if it points inside a trampoline
2338 sequence. */
2339
2340 find_pc_partial_function (pc, &name, NULL, NULL);
2341 if (name)
2342 return 0;
2343
2344 if (target_read_memory (pc, &insn, 1))
2345 return 0;
2346
2347 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2348 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2349 return 0;
2350
2351 return 1;
2352 }
2353
2354 static int
2355 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2356 struct frame_info *this_frame,
2357 void **this_cache)
2358 {
2359 if (frame_relative_level (this_frame) == 0)
2360 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2361 else
2362 return 0;
2363 }
2364
2365 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2366 {
2367 NORMAL_FRAME,
2368 i386_epilogue_frame_unwind_stop_reason,
2369 i386_epilogue_frame_this_id,
2370 i386_epilogue_frame_prev_register,
2371 NULL,
2372 i386_stack_tramp_frame_sniffer
2373 };
2374 \f
2375 /* Generate a bytecode expression to get the value of the saved PC. */
2376
2377 static void
2378 i386_gen_return_address (struct gdbarch *gdbarch,
2379 struct agent_expr *ax, struct axs_value *value,
2380 CORE_ADDR scope)
2381 {
2382 /* The following sequence assumes the traditional use of the base
2383 register. */
2384 ax_reg (ax, I386_EBP_REGNUM);
2385 ax_const_l (ax, 4);
2386 ax_simple (ax, aop_add);
2387 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2388 value->kind = axs_lvalue_memory;
2389 }
2390 \f
2391
2392 /* Signal trampolines. */
2393
2394 static struct i386_frame_cache *
2395 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2396 {
2397 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2398 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2399 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2400 volatile struct gdb_exception ex;
2401 struct i386_frame_cache *cache;
2402 CORE_ADDR addr;
2403 gdb_byte buf[4];
2404
2405 if (*this_cache)
2406 return *this_cache;
2407
2408 cache = i386_alloc_frame_cache ();
2409
2410 TRY_CATCH (ex, RETURN_MASK_ERROR)
2411 {
2412 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2413 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2414
2415 addr = tdep->sigcontext_addr (this_frame);
2416 if (tdep->sc_reg_offset)
2417 {
2418 int i;
2419
2420 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2421
2422 for (i = 0; i < tdep->sc_num_regs; i++)
2423 if (tdep->sc_reg_offset[i] != -1)
2424 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2425 }
2426 else
2427 {
2428 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2429 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2430 }
2431
2432 cache->base_p = 1;
2433 }
2434 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2435 throw_exception (ex);
2436
2437 *this_cache = cache;
2438 return cache;
2439 }
2440
2441 static enum unwind_stop_reason
2442 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2443 void **this_cache)
2444 {
2445 struct i386_frame_cache *cache =
2446 i386_sigtramp_frame_cache (this_frame, this_cache);
2447
2448 if (!cache->base_p)
2449 return UNWIND_UNAVAILABLE;
2450
2451 return UNWIND_NO_REASON;
2452 }
2453
2454 static void
2455 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2456 struct frame_id *this_id)
2457 {
2458 struct i386_frame_cache *cache =
2459 i386_sigtramp_frame_cache (this_frame, this_cache);
2460
2461 if (!cache->base_p)
2462 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2463 else
2464 {
2465 /* See the end of i386_push_dummy_call. */
2466 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2467 }
2468 }
2469
2470 static struct value *
2471 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2472 void **this_cache, int regnum)
2473 {
2474 /* Make sure we've initialized the cache. */
2475 i386_sigtramp_frame_cache (this_frame, this_cache);
2476
2477 return i386_frame_prev_register (this_frame, this_cache, regnum);
2478 }
2479
2480 static int
2481 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2482 struct frame_info *this_frame,
2483 void **this_prologue_cache)
2484 {
2485 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2486
2487 /* We shouldn't even bother if we don't have a sigcontext_addr
2488 handler. */
2489 if (tdep->sigcontext_addr == NULL)
2490 return 0;
2491
2492 if (tdep->sigtramp_p != NULL)
2493 {
2494 if (tdep->sigtramp_p (this_frame))
2495 return 1;
2496 }
2497
2498 if (tdep->sigtramp_start != 0)
2499 {
2500 CORE_ADDR pc = get_frame_pc (this_frame);
2501
2502 gdb_assert (tdep->sigtramp_end != 0);
2503 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2504 return 1;
2505 }
2506
2507 return 0;
2508 }
2509
2510 static const struct frame_unwind i386_sigtramp_frame_unwind =
2511 {
2512 SIGTRAMP_FRAME,
2513 i386_sigtramp_frame_unwind_stop_reason,
2514 i386_sigtramp_frame_this_id,
2515 i386_sigtramp_frame_prev_register,
2516 NULL,
2517 i386_sigtramp_frame_sniffer
2518 };
2519 \f
2520
2521 static CORE_ADDR
2522 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2523 {
2524 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2525
2526 return cache->base;
2527 }
2528
2529 static const struct frame_base i386_frame_base =
2530 {
2531 &i386_frame_unwind,
2532 i386_frame_base_address,
2533 i386_frame_base_address,
2534 i386_frame_base_address
2535 };
2536
2537 static struct frame_id
2538 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2539 {
2540 CORE_ADDR fp;
2541
2542 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2543
2544 /* See the end of i386_push_dummy_call. */
2545 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2546 }
2547
2548 /* _Decimal128 function return values need 16-byte alignment on the
2549 stack. */
2550
2551 static CORE_ADDR
2552 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2553 {
2554 return sp & -(CORE_ADDR)16;
2555 }
2556 \f
2557
2558 /* Figure out where the longjmp will land. Slurp the args out of the
2559 stack. We expect the first arg to be a pointer to the jmp_buf
2560 structure from which we extract the address that we will land at.
2561 This address is copied into PC. This routine returns non-zero on
2562 success. */
2563
2564 static int
2565 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2566 {
2567 gdb_byte buf[4];
2568 CORE_ADDR sp, jb_addr;
2569 struct gdbarch *gdbarch = get_frame_arch (frame);
2570 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2571 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2572
2573 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2574 longjmp will land. */
2575 if (jb_pc_offset == -1)
2576 return 0;
2577
2578 get_frame_register (frame, I386_ESP_REGNUM, buf);
2579 sp = extract_unsigned_integer (buf, 4, byte_order);
2580 if (target_read_memory (sp + 4, buf, 4))
2581 return 0;
2582
2583 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2584 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2585 return 0;
2586
2587 *pc = extract_unsigned_integer (buf, 4, byte_order);
2588 return 1;
2589 }
2590 \f
2591
2592 /* Check whether TYPE must be 16-byte-aligned when passed as a
2593 function argument. 16-byte vectors, _Decimal128 and structures or
2594 unions containing such types must be 16-byte-aligned; other
2595 arguments are 4-byte-aligned. */
2596
2597 static int
2598 i386_16_byte_align_p (struct type *type)
2599 {
2600 type = check_typedef (type);
2601 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2602 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2603 && TYPE_LENGTH (type) == 16)
2604 return 1;
2605 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2606 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2607 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2608 || TYPE_CODE (type) == TYPE_CODE_UNION)
2609 {
2610 int i;
2611 for (i = 0; i < TYPE_NFIELDS (type); i++)
2612 {
2613 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2614 return 1;
2615 }
2616 }
2617 return 0;
2618 }
2619
2620 /* Implementation for set_gdbarch_push_dummy_code. */
2621
2622 static CORE_ADDR
2623 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2624 struct value **args, int nargs, struct type *value_type,
2625 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2626 struct regcache *regcache)
2627 {
2628 /* Use 0xcc breakpoint - 1 byte. */
2629 *bp_addr = sp - 1;
2630 *real_pc = funaddr;
2631
2632 /* Keep the stack aligned. */
2633 return sp - 16;
2634 }
2635
2636 static CORE_ADDR
2637 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2638 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2639 struct value **args, CORE_ADDR sp, int struct_return,
2640 CORE_ADDR struct_addr)
2641 {
2642 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2643 gdb_byte buf[4];
2644 int i;
2645 int write_pass;
2646 int args_space = 0;
2647
2648 /* Determine the total space required for arguments and struct
2649 return address in a first pass (allowing for 16-byte-aligned
2650 arguments), then push arguments in a second pass. */
2651
2652 for (write_pass = 0; write_pass < 2; write_pass++)
2653 {
2654 int args_space_used = 0;
2655
2656 if (struct_return)
2657 {
2658 if (write_pass)
2659 {
2660 /* Push value address. */
2661 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2662 write_memory (sp, buf, 4);
2663 args_space_used += 4;
2664 }
2665 else
2666 args_space += 4;
2667 }
2668
2669 for (i = 0; i < nargs; i++)
2670 {
2671 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2672
2673 if (write_pass)
2674 {
2675 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2676 args_space_used = align_up (args_space_used, 16);
2677
2678 write_memory (sp + args_space_used,
2679 value_contents_all (args[i]), len);
2680 /* The System V ABI says that:
2681
2682 "An argument's size is increased, if necessary, to make it a
2683 multiple of [32-bit] words. This may require tail padding,
2684 depending on the size of the argument."
2685
2686 This makes sure the stack stays word-aligned. */
2687 args_space_used += align_up (len, 4);
2688 }
2689 else
2690 {
2691 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2692 args_space = align_up (args_space, 16);
2693 args_space += align_up (len, 4);
2694 }
2695 }
2696
2697 if (!write_pass)
2698 {
2699 sp -= args_space;
2700
2701 /* The original System V ABI only requires word alignment,
2702 but modern incarnations need 16-byte alignment in order
2703 to support SSE. Since wasting a few bytes here isn't
2704 harmful we unconditionally enforce 16-byte alignment. */
2705 sp &= ~0xf;
2706 }
2707 }
2708
2709 /* Store return address. */
2710 sp -= 4;
2711 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2712 write_memory (sp, buf, 4);
2713
2714 /* Finally, update the stack pointer... */
2715 store_unsigned_integer (buf, 4, byte_order, sp);
2716 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2717
2718 /* ...and fake a frame pointer. */
2719 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2720
2721 /* MarkK wrote: This "+ 8" is all over the place:
2722 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2723 i386_dummy_id). It's there, since all frame unwinders for
2724 a given target have to agree (within a certain margin) on the
2725 definition of the stack address of a frame. Otherwise frame id
2726 comparison might not work correctly. Since DWARF2/GCC uses the
2727 stack address *before* the function call as a frame's CFA. On
2728 the i386, when %ebp is used as a frame pointer, the offset
2729 between the contents %ebp and the CFA as defined by GCC. */
2730 return sp + 8;
2731 }
2732
2733 /* These registers are used for returning integers (and on some
2734 targets also for returning `struct' and `union' values when their
2735 size and alignment match an integer type). */
2736 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2737 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2738
2739 /* Read, for architecture GDBARCH, a function return value of TYPE
2740 from REGCACHE, and copy that into VALBUF. */
2741
2742 static void
2743 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2744 struct regcache *regcache, gdb_byte *valbuf)
2745 {
2746 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2747 int len = TYPE_LENGTH (type);
2748 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2749
2750 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2751 {
2752 if (tdep->st0_regnum < 0)
2753 {
2754 warning (_("Cannot find floating-point return value."));
2755 memset (valbuf, 0, len);
2756 return;
2757 }
2758
2759 /* Floating-point return values can be found in %st(0). Convert
2760 its contents to the desired type. This is probably not
2761 exactly how it would happen on the target itself, but it is
2762 the best we can do. */
2763 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2764 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2765 }
2766 else
2767 {
2768 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2769 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2770
2771 if (len <= low_size)
2772 {
2773 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2774 memcpy (valbuf, buf, len);
2775 }
2776 else if (len <= (low_size + high_size))
2777 {
2778 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2779 memcpy (valbuf, buf, low_size);
2780 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2781 memcpy (valbuf + low_size, buf, len - low_size);
2782 }
2783 else
2784 internal_error (__FILE__, __LINE__,
2785 _("Cannot extract return value of %d bytes long."),
2786 len);
2787 }
2788 }
2789
2790 /* Write, for architecture GDBARCH, a function return value of TYPE
2791 from VALBUF into REGCACHE. */
2792
2793 static void
2794 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2795 struct regcache *regcache, const gdb_byte *valbuf)
2796 {
2797 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2798 int len = TYPE_LENGTH (type);
2799
2800 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2801 {
2802 ULONGEST fstat;
2803 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2804
2805 if (tdep->st0_regnum < 0)
2806 {
2807 warning (_("Cannot set floating-point return value."));
2808 return;
2809 }
2810
2811 /* Returning floating-point values is a bit tricky. Apart from
2812 storing the return value in %st(0), we have to simulate the
2813 state of the FPU at function return point. */
2814
2815 /* Convert the value found in VALBUF to the extended
2816 floating-point format used by the FPU. This is probably
2817 not exactly how it would happen on the target itself, but
2818 it is the best we can do. */
2819 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2820 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2821
2822 /* Set the top of the floating-point register stack to 7. The
2823 actual value doesn't really matter, but 7 is what a normal
2824 function return would end up with if the program started out
2825 with a freshly initialized FPU. */
2826 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2827 fstat |= (7 << 11);
2828 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2829
2830 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2831 the floating-point register stack to 7, the appropriate value
2832 for the tag word is 0x3fff. */
2833 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2834 }
2835 else
2836 {
2837 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2838 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2839
2840 if (len <= low_size)
2841 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2842 else if (len <= (low_size + high_size))
2843 {
2844 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2845 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2846 len - low_size, valbuf + low_size);
2847 }
2848 else
2849 internal_error (__FILE__, __LINE__,
2850 _("Cannot store return value of %d bytes long."), len);
2851 }
2852 }
2853 \f
2854
2855 /* This is the variable that is set with "set struct-convention", and
2856 its legitimate values. */
2857 static const char default_struct_convention[] = "default";
2858 static const char pcc_struct_convention[] = "pcc";
2859 static const char reg_struct_convention[] = "reg";
2860 static const char *const valid_conventions[] =
2861 {
2862 default_struct_convention,
2863 pcc_struct_convention,
2864 reg_struct_convention,
2865 NULL
2866 };
2867 static const char *struct_convention = default_struct_convention;
2868
2869 /* Return non-zero if TYPE, which is assumed to be a structure,
2870 a union type, or an array type, should be returned in registers
2871 for architecture GDBARCH. */
2872
2873 static int
2874 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2875 {
2876 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2877 enum type_code code = TYPE_CODE (type);
2878 int len = TYPE_LENGTH (type);
2879
2880 gdb_assert (code == TYPE_CODE_STRUCT
2881 || code == TYPE_CODE_UNION
2882 || code == TYPE_CODE_ARRAY);
2883
2884 if (struct_convention == pcc_struct_convention
2885 || (struct_convention == default_struct_convention
2886 && tdep->struct_return == pcc_struct_return))
2887 return 0;
2888
2889 /* Structures consisting of a single `float', `double' or 'long
2890 double' member are returned in %st(0). */
2891 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2892 {
2893 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2894 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2895 return (len == 4 || len == 8 || len == 12);
2896 }
2897
2898 return (len == 1 || len == 2 || len == 4 || len == 8);
2899 }
2900
2901 /* Determine, for architecture GDBARCH, how a return value of TYPE
2902 should be returned. If it is supposed to be returned in registers,
2903 and READBUF is non-zero, read the appropriate value from REGCACHE,
2904 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2905 from WRITEBUF into REGCACHE. */
2906
2907 static enum return_value_convention
2908 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2909 struct type *type, struct regcache *regcache,
2910 gdb_byte *readbuf, const gdb_byte *writebuf)
2911 {
2912 enum type_code code = TYPE_CODE (type);
2913
2914 if (((code == TYPE_CODE_STRUCT
2915 || code == TYPE_CODE_UNION
2916 || code == TYPE_CODE_ARRAY)
2917 && !i386_reg_struct_return_p (gdbarch, type))
2918 /* Complex double and long double uses the struct return covention. */
2919 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2920 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2921 /* 128-bit decimal float uses the struct return convention. */
2922 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2923 {
2924 /* The System V ABI says that:
2925
2926 "A function that returns a structure or union also sets %eax
2927 to the value of the original address of the caller's area
2928 before it returns. Thus when the caller receives control
2929 again, the address of the returned object resides in register
2930 %eax and can be used to access the object."
2931
2932 So the ABI guarantees that we can always find the return
2933 value just after the function has returned. */
2934
2935 /* Note that the ABI doesn't mention functions returning arrays,
2936 which is something possible in certain languages such as Ada.
2937 In this case, the value is returned as if it was wrapped in
2938 a record, so the convention applied to records also applies
2939 to arrays. */
2940
2941 if (readbuf)
2942 {
2943 ULONGEST addr;
2944
2945 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2946 read_memory (addr, readbuf, TYPE_LENGTH (type));
2947 }
2948
2949 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2950 }
2951
2952 /* This special case is for structures consisting of a single
2953 `float', `double' or 'long double' member. These structures are
2954 returned in %st(0). For these structures, we call ourselves
2955 recursively, changing TYPE into the type of the first member of
2956 the structure. Since that should work for all structures that
2957 have only one member, we don't bother to check the member's type
2958 here. */
2959 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2960 {
2961 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2962 return i386_return_value (gdbarch, function, type, regcache,
2963 readbuf, writebuf);
2964 }
2965
2966 if (readbuf)
2967 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2968 if (writebuf)
2969 i386_store_return_value (gdbarch, type, regcache, writebuf);
2970
2971 return RETURN_VALUE_REGISTER_CONVENTION;
2972 }
2973 \f
2974
2975 struct type *
2976 i387_ext_type (struct gdbarch *gdbarch)
2977 {
2978 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2979
2980 if (!tdep->i387_ext_type)
2981 {
2982 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2983 gdb_assert (tdep->i387_ext_type != NULL);
2984 }
2985
2986 return tdep->i387_ext_type;
2987 }
2988
2989 /* Construct type for pseudo BND registers. We can't use
2990 tdesc_find_type since a complement of one value has to be used
2991 to describe the upper bound. */
2992
2993 static struct type *
2994 i386_bnd_type (struct gdbarch *gdbarch)
2995 {
2996 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2997
2998
2999 if (!tdep->i386_bnd_type)
3000 {
3001 struct type *t, *bound_t;
3002 const struct builtin_type *bt = builtin_type (gdbarch);
3003
3004 /* The type we're building is described bellow: */
3005 #if 0
3006 struct __bound128
3007 {
3008 void *lbound;
3009 void *ubound; /* One complement of raw ubound field. */
3010 };
3011 #endif
3012
3013 t = arch_composite_type (gdbarch,
3014 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3015
3016 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3017 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3018
3019 TYPE_NAME (t) = "builtin_type_bound128";
3020 tdep->i386_bnd_type = t;
3021 }
3022
3023 return tdep->i386_bnd_type;
3024 }
3025
3026 /* Construct vector type for pseudo ZMM registers. We can't use
3027 tdesc_find_type since ZMM isn't described in target description. */
3028
3029 static struct type *
3030 i386_zmm_type (struct gdbarch *gdbarch)
3031 {
3032 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3033
3034 if (!tdep->i386_zmm_type)
3035 {
3036 const struct builtin_type *bt = builtin_type (gdbarch);
3037
3038 /* The type we're building is this: */
3039 #if 0
3040 union __gdb_builtin_type_vec512i
3041 {
3042 int128_t uint128[4];
3043 int64_t v4_int64[8];
3044 int32_t v8_int32[16];
3045 int16_t v16_int16[32];
3046 int8_t v32_int8[64];
3047 double v4_double[8];
3048 float v8_float[16];
3049 };
3050 #endif
3051
3052 struct type *t;
3053
3054 t = arch_composite_type (gdbarch,
3055 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3056 append_composite_type_field (t, "v16_float",
3057 init_vector_type (bt->builtin_float, 16));
3058 append_composite_type_field (t, "v8_double",
3059 init_vector_type (bt->builtin_double, 8));
3060 append_composite_type_field (t, "v64_int8",
3061 init_vector_type (bt->builtin_int8, 64));
3062 append_composite_type_field (t, "v32_int16",
3063 init_vector_type (bt->builtin_int16, 32));
3064 append_composite_type_field (t, "v16_int32",
3065 init_vector_type (bt->builtin_int32, 16));
3066 append_composite_type_field (t, "v8_int64",
3067 init_vector_type (bt->builtin_int64, 8));
3068 append_composite_type_field (t, "v4_int128",
3069 init_vector_type (bt->builtin_int128, 4));
3070
3071 TYPE_VECTOR (t) = 1;
3072 TYPE_NAME (t) = "builtin_type_vec512i";
3073 tdep->i386_zmm_type = t;
3074 }
3075
3076 return tdep->i386_zmm_type;
3077 }
3078
3079 /* Construct vector type for pseudo YMM registers. We can't use
3080 tdesc_find_type since YMM isn't described in target description. */
3081
3082 static struct type *
3083 i386_ymm_type (struct gdbarch *gdbarch)
3084 {
3085 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3086
3087 if (!tdep->i386_ymm_type)
3088 {
3089 const struct builtin_type *bt = builtin_type (gdbarch);
3090
3091 /* The type we're building is this: */
3092 #if 0
3093 union __gdb_builtin_type_vec256i
3094 {
3095 int128_t uint128[2];
3096 int64_t v2_int64[4];
3097 int32_t v4_int32[8];
3098 int16_t v8_int16[16];
3099 int8_t v16_int8[32];
3100 double v2_double[4];
3101 float v4_float[8];
3102 };
3103 #endif
3104
3105 struct type *t;
3106
3107 t = arch_composite_type (gdbarch,
3108 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3109 append_composite_type_field (t, "v8_float",
3110 init_vector_type (bt->builtin_float, 8));
3111 append_composite_type_field (t, "v4_double",
3112 init_vector_type (bt->builtin_double, 4));
3113 append_composite_type_field (t, "v32_int8",
3114 init_vector_type (bt->builtin_int8, 32));
3115 append_composite_type_field (t, "v16_int16",
3116 init_vector_type (bt->builtin_int16, 16));
3117 append_composite_type_field (t, "v8_int32",
3118 init_vector_type (bt->builtin_int32, 8));
3119 append_composite_type_field (t, "v4_int64",
3120 init_vector_type (bt->builtin_int64, 4));
3121 append_composite_type_field (t, "v2_int128",
3122 init_vector_type (bt->builtin_int128, 2));
3123
3124 TYPE_VECTOR (t) = 1;
3125 TYPE_NAME (t) = "builtin_type_vec256i";
3126 tdep->i386_ymm_type = t;
3127 }
3128
3129 return tdep->i386_ymm_type;
3130 }
3131
3132 /* Construct vector type for MMX registers. */
3133 static struct type *
3134 i386_mmx_type (struct gdbarch *gdbarch)
3135 {
3136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3137
3138 if (!tdep->i386_mmx_type)
3139 {
3140 const struct builtin_type *bt = builtin_type (gdbarch);
3141
3142 /* The type we're building is this: */
3143 #if 0
3144 union __gdb_builtin_type_vec64i
3145 {
3146 int64_t uint64;
3147 int32_t v2_int32[2];
3148 int16_t v4_int16[4];
3149 int8_t v8_int8[8];
3150 };
3151 #endif
3152
3153 struct type *t;
3154
3155 t = arch_composite_type (gdbarch,
3156 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3157
3158 append_composite_type_field (t, "uint64", bt->builtin_int64);
3159 append_composite_type_field (t, "v2_int32",
3160 init_vector_type (bt->builtin_int32, 2));
3161 append_composite_type_field (t, "v4_int16",
3162 init_vector_type (bt->builtin_int16, 4));
3163 append_composite_type_field (t, "v8_int8",
3164 init_vector_type (bt->builtin_int8, 8));
3165
3166 TYPE_VECTOR (t) = 1;
3167 TYPE_NAME (t) = "builtin_type_vec64i";
3168 tdep->i386_mmx_type = t;
3169 }
3170
3171 return tdep->i386_mmx_type;
3172 }
3173
3174 /* Return the GDB type object for the "standard" data type of data in
3175 register REGNUM. */
3176
3177 struct type *
3178 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3179 {
3180 if (i386_bnd_regnum_p (gdbarch, regnum))
3181 return i386_bnd_type (gdbarch);
3182 if (i386_mmx_regnum_p (gdbarch, regnum))
3183 return i386_mmx_type (gdbarch);
3184 else if (i386_ymm_regnum_p (gdbarch, regnum))
3185 return i386_ymm_type (gdbarch);
3186 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3187 return i386_ymm_type (gdbarch);
3188 else if (i386_zmm_regnum_p (gdbarch, regnum))
3189 return i386_zmm_type (gdbarch);
3190 else
3191 {
3192 const struct builtin_type *bt = builtin_type (gdbarch);
3193 if (i386_byte_regnum_p (gdbarch, regnum))
3194 return bt->builtin_int8;
3195 else if (i386_word_regnum_p (gdbarch, regnum))
3196 return bt->builtin_int16;
3197 else if (i386_dword_regnum_p (gdbarch, regnum))
3198 return bt->builtin_int32;
3199 else if (i386_k_regnum_p (gdbarch, regnum))
3200 return bt->builtin_int64;
3201 }
3202
3203 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3204 }
3205
3206 /* Map a cooked register onto a raw register or memory. For the i386,
3207 the MMX registers need to be mapped onto floating point registers. */
3208
3209 static int
3210 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
3211 {
3212 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3213 int mmxreg, fpreg;
3214 ULONGEST fstat;
3215 int tos;
3216
3217 mmxreg = regnum - tdep->mm0_regnum;
3218 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
3219 tos = (fstat >> 11) & 0x7;
3220 fpreg = (mmxreg + tos) % 8;
3221
3222 return (I387_ST0_REGNUM (tdep) + fpreg);
3223 }
3224
3225 /* A helper function for us by i386_pseudo_register_read_value and
3226 amd64_pseudo_register_read_value. It does all the work but reads
3227 the data into an already-allocated value. */
3228
3229 void
3230 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3231 struct regcache *regcache,
3232 int regnum,
3233 struct value *result_value)
3234 {
3235 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3236 enum register_status status;
3237 gdb_byte *buf = value_contents_raw (result_value);
3238
3239 if (i386_mmx_regnum_p (gdbarch, regnum))
3240 {
3241 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3242
3243 /* Extract (always little endian). */
3244 status = regcache_raw_read (regcache, fpnum, raw_buf);
3245 if (status != REG_VALID)
3246 mark_value_bytes_unavailable (result_value, 0,
3247 TYPE_LENGTH (value_type (result_value)));
3248 else
3249 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3250 }
3251 else
3252 {
3253 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3254 if (i386_bnd_regnum_p (gdbarch, regnum))
3255 {
3256 regnum -= tdep->bnd0_regnum;
3257
3258 /* Extract (always little endian). Read lower 128bits. */
3259 status = regcache_raw_read (regcache,
3260 I387_BND0R_REGNUM (tdep) + regnum,
3261 raw_buf);
3262 if (status != REG_VALID)
3263 mark_value_bytes_unavailable (result_value, 0, 16);
3264 else
3265 {
3266 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3267 LONGEST upper, lower;
3268 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3269
3270 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3271 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3272 upper = ~upper;
3273
3274 memcpy (buf, &lower, size);
3275 memcpy (buf + size, &upper, size);
3276 }
3277 }
3278 else if (i386_k_regnum_p (gdbarch, regnum))
3279 {
3280 regnum -= tdep->k0_regnum;
3281
3282 /* Extract (always little endian). */
3283 status = regcache_raw_read (regcache,
3284 tdep->k0_regnum + regnum,
3285 raw_buf);
3286 if (status != REG_VALID)
3287 mark_value_bytes_unavailable (result_value, 0, 8);
3288 else
3289 memcpy (buf, raw_buf, 8);
3290 }
3291 else if (i386_zmm_regnum_p (gdbarch, regnum))
3292 {
3293 regnum -= tdep->zmm0_regnum;
3294
3295 if (regnum < num_lower_zmm_regs)
3296 {
3297 /* Extract (always little endian). Read lower 128bits. */
3298 status = regcache_raw_read (regcache,
3299 I387_XMM0_REGNUM (tdep) + regnum,
3300 raw_buf);
3301 if (status != REG_VALID)
3302 mark_value_bytes_unavailable (result_value, 0, 16);
3303 else
3304 memcpy (buf, raw_buf, 16);
3305
3306 /* Extract (always little endian). Read upper 128bits. */
3307 status = regcache_raw_read (regcache,
3308 tdep->ymm0h_regnum + regnum,
3309 raw_buf);
3310 if (status != REG_VALID)
3311 mark_value_bytes_unavailable (result_value, 16, 16);
3312 else
3313 memcpy (buf + 16, raw_buf, 16);
3314 }
3315 else
3316 {
3317 /* Extract (always little endian). Read lower 128bits. */
3318 status = regcache_raw_read (regcache,
3319 I387_XMM16_REGNUM (tdep) + regnum
3320 - num_lower_zmm_regs,
3321 raw_buf);
3322 if (status != REG_VALID)
3323 mark_value_bytes_unavailable (result_value, 0, 16);
3324 else
3325 memcpy (buf, raw_buf, 16);
3326
3327 /* Extract (always little endian). Read upper 128bits. */
3328 status = regcache_raw_read (regcache,
3329 I387_YMM16H_REGNUM (tdep) + regnum
3330 - num_lower_zmm_regs,
3331 raw_buf);
3332 if (status != REG_VALID)
3333 mark_value_bytes_unavailable (result_value, 16, 16);
3334 else
3335 memcpy (buf + 16, raw_buf, 16);
3336 }
3337
3338 /* Read upper 256bits. */
3339 status = regcache_raw_read (regcache,
3340 tdep->zmm0h_regnum + regnum,
3341 raw_buf);
3342 if (status != REG_VALID)
3343 mark_value_bytes_unavailable (result_value, 32, 32);
3344 else
3345 memcpy (buf + 32, raw_buf, 32);
3346 }
3347 else if (i386_ymm_regnum_p (gdbarch, regnum))
3348 {
3349 regnum -= tdep->ymm0_regnum;
3350
3351 /* Extract (always little endian). Read lower 128bits. */
3352 status = regcache_raw_read (regcache,
3353 I387_XMM0_REGNUM (tdep) + regnum,
3354 raw_buf);
3355 if (status != REG_VALID)
3356 mark_value_bytes_unavailable (result_value, 0, 16);
3357 else
3358 memcpy (buf, raw_buf, 16);
3359 /* Read upper 128bits. */
3360 status = regcache_raw_read (regcache,
3361 tdep->ymm0h_regnum + regnum,
3362 raw_buf);
3363 if (status != REG_VALID)
3364 mark_value_bytes_unavailable (result_value, 16, 32);
3365 else
3366 memcpy (buf + 16, raw_buf, 16);
3367 }
3368 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3369 {
3370 regnum -= tdep->ymm16_regnum;
3371 /* Extract (always little endian). Read lower 128bits. */
3372 status = regcache_raw_read (regcache,
3373 I387_XMM16_REGNUM (tdep) + regnum,
3374 raw_buf);
3375 if (status != REG_VALID)
3376 mark_value_bytes_unavailable (result_value, 0, 16);
3377 else
3378 memcpy (buf, raw_buf, 16);
3379 /* Read upper 128bits. */
3380 status = regcache_raw_read (regcache,
3381 tdep->ymm16h_regnum + regnum,
3382 raw_buf);
3383 if (status != REG_VALID)
3384 mark_value_bytes_unavailable (result_value, 16, 16);
3385 else
3386 memcpy (buf + 16, raw_buf, 16);
3387 }
3388 else if (i386_word_regnum_p (gdbarch, regnum))
3389 {
3390 int gpnum = regnum - tdep->ax_regnum;
3391
3392 /* Extract (always little endian). */
3393 status = regcache_raw_read (regcache, gpnum, raw_buf);
3394 if (status != REG_VALID)
3395 mark_value_bytes_unavailable (result_value, 0,
3396 TYPE_LENGTH (value_type (result_value)));
3397 else
3398 memcpy (buf, raw_buf, 2);
3399 }
3400 else if (i386_byte_regnum_p (gdbarch, regnum))
3401 {
3402 /* Check byte pseudo registers last since this function will
3403 be called from amd64_pseudo_register_read, which handles
3404 byte pseudo registers differently. */
3405 int gpnum = regnum - tdep->al_regnum;
3406
3407 /* Extract (always little endian). We read both lower and
3408 upper registers. */
3409 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3410 if (status != REG_VALID)
3411 mark_value_bytes_unavailable (result_value, 0,
3412 TYPE_LENGTH (value_type (result_value)));
3413 else if (gpnum >= 4)
3414 memcpy (buf, raw_buf + 1, 1);
3415 else
3416 memcpy (buf, raw_buf, 1);
3417 }
3418 else
3419 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3420 }
3421 }
3422
3423 static struct value *
3424 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3425 struct regcache *regcache,
3426 int regnum)
3427 {
3428 struct value *result;
3429
3430 result = allocate_value (register_type (gdbarch, regnum));
3431 VALUE_LVAL (result) = lval_register;
3432 VALUE_REGNUM (result) = regnum;
3433
3434 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3435
3436 return result;
3437 }
3438
3439 void
3440 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3441 int regnum, const gdb_byte *buf)
3442 {
3443 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3444
3445 if (i386_mmx_regnum_p (gdbarch, regnum))
3446 {
3447 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3448
3449 /* Read ... */
3450 regcache_raw_read (regcache, fpnum, raw_buf);
3451 /* ... Modify ... (always little endian). */
3452 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3453 /* ... Write. */
3454 regcache_raw_write (regcache, fpnum, raw_buf);
3455 }
3456 else
3457 {
3458 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3459
3460 if (i386_bnd_regnum_p (gdbarch, regnum))
3461 {
3462 ULONGEST upper, lower;
3463 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3464 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3465
3466 /* New values from input value. */
3467 regnum -= tdep->bnd0_regnum;
3468 lower = extract_unsigned_integer (buf, size, byte_order);
3469 upper = extract_unsigned_integer (buf + size, size, byte_order);
3470
3471 /* Fetching register buffer. */
3472 regcache_raw_read (regcache,
3473 I387_BND0R_REGNUM (tdep) + regnum,
3474 raw_buf);
3475
3476 upper = ~upper;
3477
3478 /* Set register bits. */
3479 memcpy (raw_buf, &lower, 8);
3480 memcpy (raw_buf + 8, &upper, 8);
3481
3482
3483 regcache_raw_write (regcache,
3484 I387_BND0R_REGNUM (tdep) + regnum,
3485 raw_buf);
3486 }
3487 else if (i386_k_regnum_p (gdbarch, regnum))
3488 {
3489 regnum -= tdep->k0_regnum;
3490
3491 regcache_raw_write (regcache,
3492 tdep->k0_regnum + regnum,
3493 buf);
3494 }
3495 else if (i386_zmm_regnum_p (gdbarch, regnum))
3496 {
3497 regnum -= tdep->zmm0_regnum;
3498
3499 if (regnum < num_lower_zmm_regs)
3500 {
3501 /* Write lower 128bits. */
3502 regcache_raw_write (regcache,
3503 I387_XMM0_REGNUM (tdep) + regnum,
3504 buf);
3505 /* Write upper 128bits. */
3506 regcache_raw_write (regcache,
3507 I387_YMM0_REGNUM (tdep) + regnum,
3508 buf + 16);
3509 }
3510 else
3511 {
3512 /* Write lower 128bits. */
3513 regcache_raw_write (regcache,
3514 I387_XMM16_REGNUM (tdep) + regnum
3515 - num_lower_zmm_regs,
3516 buf);
3517 /* Write upper 128bits. */
3518 regcache_raw_write (regcache,
3519 I387_YMM16H_REGNUM (tdep) + regnum
3520 - num_lower_zmm_regs,
3521 buf + 16);
3522 }
3523 /* Write upper 256bits. */
3524 regcache_raw_write (regcache,
3525 tdep->zmm0h_regnum + regnum,
3526 buf + 32);
3527 }
3528 else if (i386_ymm_regnum_p (gdbarch, regnum))
3529 {
3530 regnum -= tdep->ymm0_regnum;
3531
3532 /* ... Write lower 128bits. */
3533 regcache_raw_write (regcache,
3534 I387_XMM0_REGNUM (tdep) + regnum,
3535 buf);
3536 /* ... Write upper 128bits. */
3537 regcache_raw_write (regcache,
3538 tdep->ymm0h_regnum + regnum,
3539 buf + 16);
3540 }
3541 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3542 {
3543 regnum -= tdep->ymm16_regnum;
3544
3545 /* ... Write lower 128bits. */
3546 regcache_raw_write (regcache,
3547 I387_XMM16_REGNUM (tdep) + regnum,
3548 buf);
3549 /* ... Write upper 128bits. */
3550 regcache_raw_write (regcache,
3551 tdep->ymm16h_regnum + regnum,
3552 buf + 16);
3553 }
3554 else if (i386_word_regnum_p (gdbarch, regnum))
3555 {
3556 int gpnum = regnum - tdep->ax_regnum;
3557
3558 /* Read ... */
3559 regcache_raw_read (regcache, gpnum, raw_buf);
3560 /* ... Modify ... (always little endian). */
3561 memcpy (raw_buf, buf, 2);
3562 /* ... Write. */
3563 regcache_raw_write (regcache, gpnum, raw_buf);
3564 }
3565 else if (i386_byte_regnum_p (gdbarch, regnum))
3566 {
3567 /* Check byte pseudo registers last since this function will
3568 be called from amd64_pseudo_register_read, which handles
3569 byte pseudo registers differently. */
3570 int gpnum = regnum - tdep->al_regnum;
3571
3572 /* Read ... We read both lower and upper registers. */
3573 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3574 /* ... Modify ... (always little endian). */
3575 if (gpnum >= 4)
3576 memcpy (raw_buf + 1, buf, 1);
3577 else
3578 memcpy (raw_buf, buf, 1);
3579 /* ... Write. */
3580 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3581 }
3582 else
3583 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3584 }
3585 }
3586 \f
3587
3588 /* Return the register number of the register allocated by GCC after
3589 REGNUM, or -1 if there is no such register. */
3590
3591 static int
3592 i386_next_regnum (int regnum)
3593 {
3594 /* GCC allocates the registers in the order:
3595
3596 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3597
3598 Since storing a variable in %esp doesn't make any sense we return
3599 -1 for %ebp and for %esp itself. */
3600 static int next_regnum[] =
3601 {
3602 I386_EDX_REGNUM, /* Slot for %eax. */
3603 I386_EBX_REGNUM, /* Slot for %ecx. */
3604 I386_ECX_REGNUM, /* Slot for %edx. */
3605 I386_ESI_REGNUM, /* Slot for %ebx. */
3606 -1, -1, /* Slots for %esp and %ebp. */
3607 I386_EDI_REGNUM, /* Slot for %esi. */
3608 I386_EBP_REGNUM /* Slot for %edi. */
3609 };
3610
3611 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3612 return next_regnum[regnum];
3613
3614 return -1;
3615 }
3616
3617 /* Return nonzero if a value of type TYPE stored in register REGNUM
3618 needs any special handling. */
3619
3620 static int
3621 i386_convert_register_p (struct gdbarch *gdbarch,
3622 int regnum, struct type *type)
3623 {
3624 int len = TYPE_LENGTH (type);
3625
3626 /* Values may be spread across multiple registers. Most debugging
3627 formats aren't expressive enough to specify the locations, so
3628 some heuristics is involved. Right now we only handle types that
3629 have a length that is a multiple of the word size, since GCC
3630 doesn't seem to put any other types into registers. */
3631 if (len > 4 && len % 4 == 0)
3632 {
3633 int last_regnum = regnum;
3634
3635 while (len > 4)
3636 {
3637 last_regnum = i386_next_regnum (last_regnum);
3638 len -= 4;
3639 }
3640
3641 if (last_regnum != -1)
3642 return 1;
3643 }
3644
3645 return i387_convert_register_p (gdbarch, regnum, type);
3646 }
3647
3648 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3649 return its contents in TO. */
3650
3651 static int
3652 i386_register_to_value (struct frame_info *frame, int regnum,
3653 struct type *type, gdb_byte *to,
3654 int *optimizedp, int *unavailablep)
3655 {
3656 struct gdbarch *gdbarch = get_frame_arch (frame);
3657 int len = TYPE_LENGTH (type);
3658
3659 if (i386_fp_regnum_p (gdbarch, regnum))
3660 return i387_register_to_value (frame, regnum, type, to,
3661 optimizedp, unavailablep);
3662
3663 /* Read a value spread across multiple registers. */
3664
3665 gdb_assert (len > 4 && len % 4 == 0);
3666
3667 while (len > 0)
3668 {
3669 gdb_assert (regnum != -1);
3670 gdb_assert (register_size (gdbarch, regnum) == 4);
3671
3672 if (!get_frame_register_bytes (frame, regnum, 0,
3673 register_size (gdbarch, regnum),
3674 to, optimizedp, unavailablep))
3675 return 0;
3676
3677 regnum = i386_next_regnum (regnum);
3678 len -= 4;
3679 to += 4;
3680 }
3681
3682 *optimizedp = *unavailablep = 0;
3683 return 1;
3684 }
3685
3686 /* Write the contents FROM of a value of type TYPE into register
3687 REGNUM in frame FRAME. */
3688
3689 static void
3690 i386_value_to_register (struct frame_info *frame, int regnum,
3691 struct type *type, const gdb_byte *from)
3692 {
3693 int len = TYPE_LENGTH (type);
3694
3695 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3696 {
3697 i387_value_to_register (frame, regnum, type, from);
3698 return;
3699 }
3700
3701 /* Write a value spread across multiple registers. */
3702
3703 gdb_assert (len > 4 && len % 4 == 0);
3704
3705 while (len > 0)
3706 {
3707 gdb_assert (regnum != -1);
3708 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3709
3710 put_frame_register (frame, regnum, from);
3711 regnum = i386_next_regnum (regnum);
3712 len -= 4;
3713 from += 4;
3714 }
3715 }
3716 \f
3717 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3718 in the general-purpose register set REGSET to register cache
3719 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3720
3721 void
3722 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3723 int regnum, const void *gregs, size_t len)
3724 {
3725 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3726 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3727 const gdb_byte *regs = gregs;
3728 int i;
3729
3730 gdb_assert (len == tdep->sizeof_gregset);
3731
3732 for (i = 0; i < tdep->gregset_num_regs; i++)
3733 {
3734 if ((regnum == i || regnum == -1)
3735 && tdep->gregset_reg_offset[i] != -1)
3736 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3737 }
3738 }
3739
3740 /* Collect register REGNUM from the register cache REGCACHE and store
3741 it in the buffer specified by GREGS and LEN as described by the
3742 general-purpose register set REGSET. If REGNUM is -1, do this for
3743 all registers in REGSET. */
3744
3745 static void
3746 i386_collect_gregset (const struct regset *regset,
3747 const struct regcache *regcache,
3748 int regnum, void *gregs, size_t len)
3749 {
3750 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3751 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3752 gdb_byte *regs = gregs;
3753 int i;
3754
3755 gdb_assert (len == tdep->sizeof_gregset);
3756
3757 for (i = 0; i < tdep->gregset_num_regs; i++)
3758 {
3759 if ((regnum == i || regnum == -1)
3760 && tdep->gregset_reg_offset[i] != -1)
3761 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3762 }
3763 }
3764
3765 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3766 in the floating-point register set REGSET to register cache
3767 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3768
3769 static void
3770 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3771 int regnum, const void *fpregs, size_t len)
3772 {
3773 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3774 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3775
3776 if (len == I387_SIZEOF_FXSAVE)
3777 {
3778 i387_supply_fxsave (regcache, regnum, fpregs);
3779 return;
3780 }
3781
3782 gdb_assert (len == tdep->sizeof_fpregset);
3783 i387_supply_fsave (regcache, regnum, fpregs);
3784 }
3785
3786 /* Collect register REGNUM from the register cache REGCACHE and store
3787 it in the buffer specified by FPREGS and LEN as described by the
3788 floating-point register set REGSET. If REGNUM is -1, do this for
3789 all registers in REGSET. */
3790
3791 static void
3792 i386_collect_fpregset (const struct regset *regset,
3793 const struct regcache *regcache,
3794 int regnum, void *fpregs, size_t len)
3795 {
3796 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3797 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3798
3799 if (len == I387_SIZEOF_FXSAVE)
3800 {
3801 i387_collect_fxsave (regcache, regnum, fpregs);
3802 return;
3803 }
3804
3805 gdb_assert (len == tdep->sizeof_fpregset);
3806 i387_collect_fsave (regcache, regnum, fpregs);
3807 }
3808
3809 /* Register set definitions. */
3810
3811 const struct regset i386_gregset =
3812 {
3813 NULL, i386_supply_gregset, i386_collect_gregset
3814 };
3815
3816 const struct regset i386_fpregset =
3817 {
3818 NULL, i386_supply_fpregset, i386_collect_fpregset
3819 };
3820
3821 /* Default iterator over core file register note sections. */
3822
3823 void
3824 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3825 iterate_over_regset_sections_cb *cb,
3826 void *cb_data,
3827 const struct regcache *regcache)
3828 {
3829 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3830
3831 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3832 if (tdep->sizeof_fpregset)
3833 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
3834 }
3835 \f
3836
3837 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3838
3839 CORE_ADDR
3840 i386_pe_skip_trampoline_code (struct frame_info *frame,
3841 CORE_ADDR pc, char *name)
3842 {
3843 struct gdbarch *gdbarch = get_frame_arch (frame);
3844 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3845
3846 /* jmp *(dest) */
3847 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3848 {
3849 unsigned long indirect =
3850 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3851 struct minimal_symbol *indsym =
3852 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3853 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3854
3855 if (symname)
3856 {
3857 if (strncmp (symname, "__imp_", 6) == 0
3858 || strncmp (symname, "_imp_", 5) == 0)
3859 return name ? 1 :
3860 read_memory_unsigned_integer (indirect, 4, byte_order);
3861 }
3862 }
3863 return 0; /* Not a trampoline. */
3864 }
3865 \f
3866
3867 /* Return whether the THIS_FRAME corresponds to a sigtramp
3868 routine. */
3869
3870 int
3871 i386_sigtramp_p (struct frame_info *this_frame)
3872 {
3873 CORE_ADDR pc = get_frame_pc (this_frame);
3874 const char *name;
3875
3876 find_pc_partial_function (pc, &name, NULL, NULL);
3877 return (name && strcmp ("_sigtramp", name) == 0);
3878 }
3879 \f
3880
3881 /* We have two flavours of disassembly. The machinery on this page
3882 deals with switching between those. */
3883
3884 static int
3885 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3886 {
3887 gdb_assert (disassembly_flavor == att_flavor
3888 || disassembly_flavor == intel_flavor);
3889
3890 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3891 constified, cast to prevent a compiler warning. */
3892 info->disassembler_options = (char *) disassembly_flavor;
3893
3894 return print_insn_i386 (pc, info);
3895 }
3896 \f
3897
3898 /* There are a few i386 architecture variants that differ only
3899 slightly from the generic i386 target. For now, we don't give them
3900 their own source file, but include them here. As a consequence,
3901 they'll always be included. */
3902
3903 /* System V Release 4 (SVR4). */
3904
3905 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3906 routine. */
3907
3908 static int
3909 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3910 {
3911 CORE_ADDR pc = get_frame_pc (this_frame);
3912 const char *name;
3913
3914 /* The origin of these symbols is currently unknown. */
3915 find_pc_partial_function (pc, &name, NULL, NULL);
3916 return (name && (strcmp ("_sigreturn", name) == 0
3917 || strcmp ("sigvechandler", name) == 0));
3918 }
3919
3920 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3921 address of the associated sigcontext (ucontext) structure. */
3922
3923 static CORE_ADDR
3924 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3925 {
3926 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3927 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3928 gdb_byte buf[4];
3929 CORE_ADDR sp;
3930
3931 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3932 sp = extract_unsigned_integer (buf, 4, byte_order);
3933
3934 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3935 }
3936
3937 \f
3938
3939 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
3940 gdbarch.h. */
3941
3942 int
3943 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3944 {
3945 return (*s == '$' /* Literal number. */
3946 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3947 || (*s == '(' && s[1] == '%') /* Register indirection. */
3948 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3949 }
3950
3951 /* Helper function for i386_stap_parse_special_token.
3952
3953 This function parses operands of the form `-8+3+1(%rbp)', which
3954 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
3955
3956 Return 1 if the operand was parsed successfully, zero
3957 otherwise. */
3958
3959 static int
3960 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
3961 struct stap_parse_info *p)
3962 {
3963 const char *s = p->arg;
3964
3965 if (isdigit (*s) || *s == '-' || *s == '+')
3966 {
3967 int got_minus[3];
3968 int i;
3969 long displacements[3];
3970 const char *start;
3971 char *regname;
3972 int len;
3973 struct stoken str;
3974 char *endp;
3975
3976 got_minus[0] = 0;
3977 if (*s == '+')
3978 ++s;
3979 else if (*s == '-')
3980 {
3981 ++s;
3982 got_minus[0] = 1;
3983 }
3984
3985 if (!isdigit ((unsigned char) *s))
3986 return 0;
3987
3988 displacements[0] = strtol (s, &endp, 10);
3989 s = endp;
3990
3991 if (*s != '+' && *s != '-')
3992 {
3993 /* We are not dealing with a triplet. */
3994 return 0;
3995 }
3996
3997 got_minus[1] = 0;
3998 if (*s == '+')
3999 ++s;
4000 else
4001 {
4002 ++s;
4003 got_minus[1] = 1;
4004 }
4005
4006 if (!isdigit ((unsigned char) *s))
4007 return 0;
4008
4009 displacements[1] = strtol (s, &endp, 10);
4010 s = endp;
4011
4012 if (*s != '+' && *s != '-')
4013 {
4014 /* We are not dealing with a triplet. */
4015 return 0;
4016 }
4017
4018 got_minus[2] = 0;
4019 if (*s == '+')
4020 ++s;
4021 else
4022 {
4023 ++s;
4024 got_minus[2] = 1;
4025 }
4026
4027 if (!isdigit ((unsigned char) *s))
4028 return 0;
4029
4030 displacements[2] = strtol (s, &endp, 10);
4031 s = endp;
4032
4033 if (*s != '(' || s[1] != '%')
4034 return 0;
4035
4036 s += 2;
4037 start = s;
4038
4039 while (isalnum (*s))
4040 ++s;
4041
4042 if (*s++ != ')')
4043 return 0;
4044
4045 len = s - start - 1;
4046 regname = alloca (len + 1);
4047
4048 strncpy (regname, start, len);
4049 regname[len] = '\0';
4050
4051 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4052 error (_("Invalid register name `%s' on expression `%s'."),
4053 regname, p->saved_arg);
4054
4055 for (i = 0; i < 3; i++)
4056 {
4057 write_exp_elt_opcode (&p->pstate, OP_LONG);
4058 write_exp_elt_type
4059 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4060 write_exp_elt_longcst (&p->pstate, displacements[i]);
4061 write_exp_elt_opcode (&p->pstate, OP_LONG);
4062 if (got_minus[i])
4063 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4064 }
4065
4066 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4067 str.ptr = regname;
4068 str.length = len;
4069 write_exp_string (&p->pstate, str);
4070 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4071
4072 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4073 write_exp_elt_type (&p->pstate,
4074 builtin_type (gdbarch)->builtin_data_ptr);
4075 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4076
4077 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4078 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4079 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4080
4081 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4082 write_exp_elt_type (&p->pstate,
4083 lookup_pointer_type (p->arg_type));
4084 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4085
4086 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4087
4088 p->arg = s;
4089
4090 return 1;
4091 }
4092
4093 return 0;
4094 }
4095
4096 /* Helper function for i386_stap_parse_special_token.
4097
4098 This function parses operands of the form `register base +
4099 (register index * size) + offset', as represented in
4100 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4101
4102 Return 1 if the operand was parsed successfully, zero
4103 otherwise. */
4104
4105 static int
4106 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4107 struct stap_parse_info *p)
4108 {
4109 const char *s = p->arg;
4110
4111 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4112 {
4113 int offset_minus = 0;
4114 long offset = 0;
4115 int size_minus = 0;
4116 long size = 0;
4117 const char *start;
4118 char *base;
4119 int len_base;
4120 char *index;
4121 int len_index;
4122 struct stoken base_token, index_token;
4123
4124 if (*s == '+')
4125 ++s;
4126 else if (*s == '-')
4127 {
4128 ++s;
4129 offset_minus = 1;
4130 }
4131
4132 if (offset_minus && !isdigit (*s))
4133 return 0;
4134
4135 if (isdigit (*s))
4136 {
4137 char *endp;
4138
4139 offset = strtol (s, &endp, 10);
4140 s = endp;
4141 }
4142
4143 if (*s != '(' || s[1] != '%')
4144 return 0;
4145
4146 s += 2;
4147 start = s;
4148
4149 while (isalnum (*s))
4150 ++s;
4151
4152 if (*s != ',' || s[1] != '%')
4153 return 0;
4154
4155 len_base = s - start;
4156 base = alloca (len_base + 1);
4157 strncpy (base, start, len_base);
4158 base[len_base] = '\0';
4159
4160 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4161 error (_("Invalid register name `%s' on expression `%s'."),
4162 base, p->saved_arg);
4163
4164 s += 2;
4165 start = s;
4166
4167 while (isalnum (*s))
4168 ++s;
4169
4170 len_index = s - start;
4171 index = alloca (len_index + 1);
4172 strncpy (index, start, len_index);
4173 index[len_index] = '\0';
4174
4175 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4176 error (_("Invalid register name `%s' on expression `%s'."),
4177 index, p->saved_arg);
4178
4179 if (*s != ',' && *s != ')')
4180 return 0;
4181
4182 if (*s == ',')
4183 {
4184 char *endp;
4185
4186 ++s;
4187 if (*s == '+')
4188 ++s;
4189 else if (*s == '-')
4190 {
4191 ++s;
4192 size_minus = 1;
4193 }
4194
4195 size = strtol (s, &endp, 10);
4196 s = endp;
4197
4198 if (*s != ')')
4199 return 0;
4200 }
4201
4202 ++s;
4203
4204 if (offset)
4205 {
4206 write_exp_elt_opcode (&p->pstate, OP_LONG);
4207 write_exp_elt_type (&p->pstate,
4208 builtin_type (gdbarch)->builtin_long);
4209 write_exp_elt_longcst (&p->pstate, offset);
4210 write_exp_elt_opcode (&p->pstate, OP_LONG);
4211 if (offset_minus)
4212 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4213 }
4214
4215 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4216 base_token.ptr = base;
4217 base_token.length = len_base;
4218 write_exp_string (&p->pstate, base_token);
4219 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4220
4221 if (offset)
4222 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4223
4224 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4225 index_token.ptr = index;
4226 index_token.length = len_index;
4227 write_exp_string (&p->pstate, index_token);
4228 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4229
4230 if (size)
4231 {
4232 write_exp_elt_opcode (&p->pstate, OP_LONG);
4233 write_exp_elt_type (&p->pstate,
4234 builtin_type (gdbarch)->builtin_long);
4235 write_exp_elt_longcst (&p->pstate, size);
4236 write_exp_elt_opcode (&p->pstate, OP_LONG);
4237 if (size_minus)
4238 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4239 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4240 }
4241
4242 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4243
4244 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4245 write_exp_elt_type (&p->pstate,
4246 lookup_pointer_type (p->arg_type));
4247 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4248
4249 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4250
4251 p->arg = s;
4252
4253 return 1;
4254 }
4255
4256 return 0;
4257 }
4258
4259 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4260 gdbarch.h. */
4261
4262 int
4263 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4264 struct stap_parse_info *p)
4265 {
4266 /* In order to parse special tokens, we use a state-machine that go
4267 through every known token and try to get a match. */
4268 enum
4269 {
4270 TRIPLET,
4271 THREE_ARG_DISPLACEMENT,
4272 DONE
4273 } current_state;
4274
4275 current_state = TRIPLET;
4276
4277 /* The special tokens to be parsed here are:
4278
4279 - `register base + (register index * size) + offset', as represented
4280 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4281
4282 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4283 `*(-8 + 3 - 1 + (void *) $eax)'. */
4284
4285 while (current_state != DONE)
4286 {
4287 switch (current_state)
4288 {
4289 case TRIPLET:
4290 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4291 return 1;
4292 break;
4293
4294 case THREE_ARG_DISPLACEMENT:
4295 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4296 return 1;
4297 break;
4298 }
4299
4300 /* Advancing to the next state. */
4301 ++current_state;
4302 }
4303
4304 return 0;
4305 }
4306
4307 \f
4308
4309 /* Generic ELF. */
4310
4311 void
4312 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4313 {
4314 static const char *const stap_integer_prefixes[] = { "$", NULL };
4315 static const char *const stap_register_prefixes[] = { "%", NULL };
4316 static const char *const stap_register_indirection_prefixes[] = { "(",
4317 NULL };
4318 static const char *const stap_register_indirection_suffixes[] = { ")",
4319 NULL };
4320
4321 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4322 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4323
4324 /* Registering SystemTap handlers. */
4325 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4326 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4327 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4328 stap_register_indirection_prefixes);
4329 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4330 stap_register_indirection_suffixes);
4331 set_gdbarch_stap_is_single_operand (gdbarch,
4332 i386_stap_is_single_operand);
4333 set_gdbarch_stap_parse_special_token (gdbarch,
4334 i386_stap_parse_special_token);
4335 }
4336
4337 /* System V Release 4 (SVR4). */
4338
4339 void
4340 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4341 {
4342 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4343
4344 /* System V Release 4 uses ELF. */
4345 i386_elf_init_abi (info, gdbarch);
4346
4347 /* System V Release 4 has shared libraries. */
4348 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4349
4350 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4351 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4352 tdep->sc_pc_offset = 36 + 14 * 4;
4353 tdep->sc_sp_offset = 36 + 17 * 4;
4354
4355 tdep->jb_pc_offset = 20;
4356 }
4357
4358 /* DJGPP. */
4359
4360 static void
4361 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4362 {
4363 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4364
4365 /* DJGPP doesn't have any special frames for signal handlers. */
4366 tdep->sigtramp_p = NULL;
4367
4368 tdep->jb_pc_offset = 36;
4369
4370 /* DJGPP does not support the SSE registers. */
4371 if (! tdesc_has_registers (info.target_desc))
4372 tdep->tdesc = tdesc_i386_mmx;
4373
4374 /* Native compiler is GCC, which uses the SVR4 register numbering
4375 even in COFF and STABS. See the comment in i386_gdbarch_init,
4376 before the calls to set_gdbarch_stab_reg_to_regnum and
4377 set_gdbarch_sdb_reg_to_regnum. */
4378 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4379 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4380
4381 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
4382 }
4383 \f
4384
4385 /* i386 register groups. In addition to the normal groups, add "mmx"
4386 and "sse". */
4387
4388 static struct reggroup *i386_sse_reggroup;
4389 static struct reggroup *i386_mmx_reggroup;
4390
4391 static void
4392 i386_init_reggroups (void)
4393 {
4394 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4395 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4396 }
4397
4398 static void
4399 i386_add_reggroups (struct gdbarch *gdbarch)
4400 {
4401 reggroup_add (gdbarch, i386_sse_reggroup);
4402 reggroup_add (gdbarch, i386_mmx_reggroup);
4403 reggroup_add (gdbarch, general_reggroup);
4404 reggroup_add (gdbarch, float_reggroup);
4405 reggroup_add (gdbarch, all_reggroup);
4406 reggroup_add (gdbarch, save_reggroup);
4407 reggroup_add (gdbarch, restore_reggroup);
4408 reggroup_add (gdbarch, vector_reggroup);
4409 reggroup_add (gdbarch, system_reggroup);
4410 }
4411
4412 int
4413 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4414 struct reggroup *group)
4415 {
4416 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4417 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4418 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4419 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4420 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4421 avx512_p, avx_p, sse_p;
4422
4423 /* Don't include pseudo registers, except for MMX, in any register
4424 groups. */
4425 if (i386_byte_regnum_p (gdbarch, regnum))
4426 return 0;
4427
4428 if (i386_word_regnum_p (gdbarch, regnum))
4429 return 0;
4430
4431 if (i386_dword_regnum_p (gdbarch, regnum))
4432 return 0;
4433
4434 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4435 if (group == i386_mmx_reggroup)
4436 return mmx_regnum_p;
4437
4438 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4439 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4440 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4441 if (group == i386_sse_reggroup)
4442 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4443
4444 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4445 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4446 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4447
4448 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4449 == X86_XSTATE_AVX512_MASK);
4450 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4451 == X86_XSTATE_AVX_MASK) && !avx512_p;
4452 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4453 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4454
4455 if (group == vector_reggroup)
4456 return (mmx_regnum_p
4457 || (zmm_regnum_p && avx512_p)
4458 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4459 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4460 || mxcsr_regnum_p);
4461
4462 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4463 || i386_fpc_regnum_p (gdbarch, regnum));
4464 if (group == float_reggroup)
4465 return fp_regnum_p;
4466
4467 /* For "info reg all", don't include upper YMM registers nor XMM
4468 registers when AVX is supported. */
4469 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4470 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4471 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4472 if (group == all_reggroup
4473 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4474 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4475 || ymmh_regnum_p
4476 || ymmh_avx512_regnum_p
4477 || zmmh_regnum_p))
4478 return 0;
4479
4480 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4481 if (group == all_reggroup
4482 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4483 return bnd_regnum_p;
4484
4485 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4486 if (group == all_reggroup
4487 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4488 return 0;
4489
4490 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4491 if (group == all_reggroup
4492 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4493 return mpx_ctrl_regnum_p;
4494
4495 if (group == general_reggroup)
4496 return (!fp_regnum_p
4497 && !mmx_regnum_p
4498 && !mxcsr_regnum_p
4499 && !xmm_regnum_p
4500 && !xmm_avx512_regnum_p
4501 && !ymm_regnum_p
4502 && !ymmh_regnum_p
4503 && !ymm_avx512_regnum_p
4504 && !ymmh_avx512_regnum_p
4505 && !bndr_regnum_p
4506 && !bnd_regnum_p
4507 && !mpx_ctrl_regnum_p
4508 && !zmm_regnum_p
4509 && !zmmh_regnum_p);
4510
4511 return default_register_reggroup_p (gdbarch, regnum, group);
4512 }
4513 \f
4514
4515 /* Get the ARGIth function argument for the current function. */
4516
4517 static CORE_ADDR
4518 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4519 struct type *type)
4520 {
4521 struct gdbarch *gdbarch = get_frame_arch (frame);
4522 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4523 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4524 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4525 }
4526
4527 static void
4528 i386_skip_permanent_breakpoint (struct regcache *regcache)
4529 {
4530 CORE_ADDR current_pc = regcache_read_pc (regcache);
4531
4532 /* On i386, breakpoint is exactly 1 byte long, so we just
4533 adjust the PC in the regcache. */
4534 current_pc += 1;
4535 regcache_write_pc (regcache, current_pc);
4536 }
4537
4538
4539 #define PREFIX_REPZ 0x01
4540 #define PREFIX_REPNZ 0x02
4541 #define PREFIX_LOCK 0x04
4542 #define PREFIX_DATA 0x08
4543 #define PREFIX_ADDR 0x10
4544
4545 /* operand size */
4546 enum
4547 {
4548 OT_BYTE = 0,
4549 OT_WORD,
4550 OT_LONG,
4551 OT_QUAD,
4552 OT_DQUAD,
4553 };
4554
4555 /* i386 arith/logic operations */
4556 enum
4557 {
4558 OP_ADDL,
4559 OP_ORL,
4560 OP_ADCL,
4561 OP_SBBL,
4562 OP_ANDL,
4563 OP_SUBL,
4564 OP_XORL,
4565 OP_CMPL,
4566 };
4567
4568 struct i386_record_s
4569 {
4570 struct gdbarch *gdbarch;
4571 struct regcache *regcache;
4572 CORE_ADDR orig_addr;
4573 CORE_ADDR addr;
4574 int aflag;
4575 int dflag;
4576 int override;
4577 uint8_t modrm;
4578 uint8_t mod, reg, rm;
4579 int ot;
4580 uint8_t rex_x;
4581 uint8_t rex_b;
4582 int rip_offset;
4583 int popl_esp_hack;
4584 const int *regmap;
4585 };
4586
4587 /* Parse the "modrm" part of the memory address irp->addr points at.
4588 Returns -1 if something goes wrong, 0 otherwise. */
4589
4590 static int
4591 i386_record_modrm (struct i386_record_s *irp)
4592 {
4593 struct gdbarch *gdbarch = irp->gdbarch;
4594
4595 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4596 return -1;
4597
4598 irp->addr++;
4599 irp->mod = (irp->modrm >> 6) & 3;
4600 irp->reg = (irp->modrm >> 3) & 7;
4601 irp->rm = irp->modrm & 7;
4602
4603 return 0;
4604 }
4605
4606 /* Extract the memory address that the current instruction writes to,
4607 and return it in *ADDR. Return -1 if something goes wrong. */
4608
4609 static int
4610 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4611 {
4612 struct gdbarch *gdbarch = irp->gdbarch;
4613 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4614 gdb_byte buf[4];
4615 ULONGEST offset64;
4616
4617 *addr = 0;
4618 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4619 {
4620 /* 32/64 bits */
4621 int havesib = 0;
4622 uint8_t scale = 0;
4623 uint8_t byte;
4624 uint8_t index = 0;
4625 uint8_t base = irp->rm;
4626
4627 if (base == 4)
4628 {
4629 havesib = 1;
4630 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4631 return -1;
4632 irp->addr++;
4633 scale = (byte >> 6) & 3;
4634 index = ((byte >> 3) & 7) | irp->rex_x;
4635 base = (byte & 7);
4636 }
4637 base |= irp->rex_b;
4638
4639 switch (irp->mod)
4640 {
4641 case 0:
4642 if ((base & 7) == 5)
4643 {
4644 base = 0xff;
4645 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4646 return -1;
4647 irp->addr += 4;
4648 *addr = extract_signed_integer (buf, 4, byte_order);
4649 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4650 *addr += irp->addr + irp->rip_offset;
4651 }
4652 break;
4653 case 1:
4654 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4655 return -1;
4656 irp->addr++;
4657 *addr = (int8_t) buf[0];
4658 break;
4659 case 2:
4660 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4661 return -1;
4662 *addr = extract_signed_integer (buf, 4, byte_order);
4663 irp->addr += 4;
4664 break;
4665 }
4666
4667 offset64 = 0;
4668 if (base != 0xff)
4669 {
4670 if (base == 4 && irp->popl_esp_hack)
4671 *addr += irp->popl_esp_hack;
4672 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4673 &offset64);
4674 }
4675 if (irp->aflag == 2)
4676 {
4677 *addr += offset64;
4678 }
4679 else
4680 *addr = (uint32_t) (offset64 + *addr);
4681
4682 if (havesib && (index != 4 || scale != 0))
4683 {
4684 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4685 &offset64);
4686 if (irp->aflag == 2)
4687 *addr += offset64 << scale;
4688 else
4689 *addr = (uint32_t) (*addr + (offset64 << scale));
4690 }
4691
4692 if (!irp->aflag)
4693 {
4694 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4695 address from 32-bit to 64-bit. */
4696 *addr = (uint32_t) *addr;
4697 }
4698 }
4699 else
4700 {
4701 /* 16 bits */
4702 switch (irp->mod)
4703 {
4704 case 0:
4705 if (irp->rm == 6)
4706 {
4707 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4708 return -1;
4709 irp->addr += 2;
4710 *addr = extract_signed_integer (buf, 2, byte_order);
4711 irp->rm = 0;
4712 goto no_rm;
4713 }
4714 break;
4715 case 1:
4716 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4717 return -1;
4718 irp->addr++;
4719 *addr = (int8_t) buf[0];
4720 break;
4721 case 2:
4722 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4723 return -1;
4724 irp->addr += 2;
4725 *addr = extract_signed_integer (buf, 2, byte_order);
4726 break;
4727 }
4728
4729 switch (irp->rm)
4730 {
4731 case 0:
4732 regcache_raw_read_unsigned (irp->regcache,
4733 irp->regmap[X86_RECORD_REBX_REGNUM],
4734 &offset64);
4735 *addr = (uint32_t) (*addr + offset64);
4736 regcache_raw_read_unsigned (irp->regcache,
4737 irp->regmap[X86_RECORD_RESI_REGNUM],
4738 &offset64);
4739 *addr = (uint32_t) (*addr + offset64);
4740 break;
4741 case 1:
4742 regcache_raw_read_unsigned (irp->regcache,
4743 irp->regmap[X86_RECORD_REBX_REGNUM],
4744 &offset64);
4745 *addr = (uint32_t) (*addr + offset64);
4746 regcache_raw_read_unsigned (irp->regcache,
4747 irp->regmap[X86_RECORD_REDI_REGNUM],
4748 &offset64);
4749 *addr = (uint32_t) (*addr + offset64);
4750 break;
4751 case 2:
4752 regcache_raw_read_unsigned (irp->regcache,
4753 irp->regmap[X86_RECORD_REBP_REGNUM],
4754 &offset64);
4755 *addr = (uint32_t) (*addr + offset64);
4756 regcache_raw_read_unsigned (irp->regcache,
4757 irp->regmap[X86_RECORD_RESI_REGNUM],
4758 &offset64);
4759 *addr = (uint32_t) (*addr + offset64);
4760 break;
4761 case 3:
4762 regcache_raw_read_unsigned (irp->regcache,
4763 irp->regmap[X86_RECORD_REBP_REGNUM],
4764 &offset64);
4765 *addr = (uint32_t) (*addr + offset64);
4766 regcache_raw_read_unsigned (irp->regcache,
4767 irp->regmap[X86_RECORD_REDI_REGNUM],
4768 &offset64);
4769 *addr = (uint32_t) (*addr + offset64);
4770 break;
4771 case 4:
4772 regcache_raw_read_unsigned (irp->regcache,
4773 irp->regmap[X86_RECORD_RESI_REGNUM],
4774 &offset64);
4775 *addr = (uint32_t) (*addr + offset64);
4776 break;
4777 case 5:
4778 regcache_raw_read_unsigned (irp->regcache,
4779 irp->regmap[X86_RECORD_REDI_REGNUM],
4780 &offset64);
4781 *addr = (uint32_t) (*addr + offset64);
4782 break;
4783 case 6:
4784 regcache_raw_read_unsigned (irp->regcache,
4785 irp->regmap[X86_RECORD_REBP_REGNUM],
4786 &offset64);
4787 *addr = (uint32_t) (*addr + offset64);
4788 break;
4789 case 7:
4790 regcache_raw_read_unsigned (irp->regcache,
4791 irp->regmap[X86_RECORD_REBX_REGNUM],
4792 &offset64);
4793 *addr = (uint32_t) (*addr + offset64);
4794 break;
4795 }
4796 *addr &= 0xffff;
4797 }
4798
4799 no_rm:
4800 return 0;
4801 }
4802
4803 /* Record the address and contents of the memory that will be changed
4804 by the current instruction. Return -1 if something goes wrong, 0
4805 otherwise. */
4806
4807 static int
4808 i386_record_lea_modrm (struct i386_record_s *irp)
4809 {
4810 struct gdbarch *gdbarch = irp->gdbarch;
4811 uint64_t addr;
4812
4813 if (irp->override >= 0)
4814 {
4815 if (record_full_memory_query)
4816 {
4817 int q;
4818
4819 target_terminal_ours ();
4820 q = yquery (_("\
4821 Process record ignores the memory change of instruction at address %s\n\
4822 because it can't get the value of the segment register.\n\
4823 Do you want to stop the program?"),
4824 paddress (gdbarch, irp->orig_addr));
4825 target_terminal_inferior ();
4826 if (q)
4827 return -1;
4828 }
4829
4830 return 0;
4831 }
4832
4833 if (i386_record_lea_modrm_addr (irp, &addr))
4834 return -1;
4835
4836 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4837 return -1;
4838
4839 return 0;
4840 }
4841
4842 /* Record the effects of a push operation. Return -1 if something
4843 goes wrong, 0 otherwise. */
4844
4845 static int
4846 i386_record_push (struct i386_record_s *irp, int size)
4847 {
4848 ULONGEST addr;
4849
4850 if (record_full_arch_list_add_reg (irp->regcache,
4851 irp->regmap[X86_RECORD_RESP_REGNUM]))
4852 return -1;
4853 regcache_raw_read_unsigned (irp->regcache,
4854 irp->regmap[X86_RECORD_RESP_REGNUM],
4855 &addr);
4856 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4857 return -1;
4858
4859 return 0;
4860 }
4861
4862
4863 /* Defines contents to record. */
4864 #define I386_SAVE_FPU_REGS 0xfffd
4865 #define I386_SAVE_FPU_ENV 0xfffe
4866 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4867
4868 /* Record the values of the floating point registers which will be
4869 changed by the current instruction. Returns -1 if something is
4870 wrong, 0 otherwise. */
4871
4872 static int i386_record_floats (struct gdbarch *gdbarch,
4873 struct i386_record_s *ir,
4874 uint32_t iregnum)
4875 {
4876 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4877 int i;
4878
4879 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4880 happen. Currently we store st0-st7 registers, but we need not store all
4881 registers all the time, in future we use ftag register and record only
4882 those who are not marked as an empty. */
4883
4884 if (I386_SAVE_FPU_REGS == iregnum)
4885 {
4886 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4887 {
4888 if (record_full_arch_list_add_reg (ir->regcache, i))
4889 return -1;
4890 }
4891 }
4892 else if (I386_SAVE_FPU_ENV == iregnum)
4893 {
4894 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4895 {
4896 if (record_full_arch_list_add_reg (ir->regcache, i))
4897 return -1;
4898 }
4899 }
4900 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4901 {
4902 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4903 {
4904 if (record_full_arch_list_add_reg (ir->regcache, i))
4905 return -1;
4906 }
4907 }
4908 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4909 (iregnum <= I387_FOP_REGNUM (tdep)))
4910 {
4911 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
4912 return -1;
4913 }
4914 else
4915 {
4916 /* Parameter error. */
4917 return -1;
4918 }
4919 if(I386_SAVE_FPU_ENV != iregnum)
4920 {
4921 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4922 {
4923 if (record_full_arch_list_add_reg (ir->regcache, i))
4924 return -1;
4925 }
4926 }
4927 return 0;
4928 }
4929
4930 /* Parse the current instruction, and record the values of the
4931 registers and memory that will be changed by the current
4932 instruction. Returns -1 if something goes wrong, 0 otherwise. */
4933
4934 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
4935 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4936
4937 int
4938 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4939 CORE_ADDR input_addr)
4940 {
4941 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4942 int prefixes = 0;
4943 int regnum = 0;
4944 uint32_t opcode;
4945 uint8_t opcode8;
4946 ULONGEST addr;
4947 gdb_byte buf[MAX_REGISTER_SIZE];
4948 struct i386_record_s ir;
4949 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4950 uint8_t rex_w = -1;
4951 uint8_t rex_r = 0;
4952
4953 memset (&ir, 0, sizeof (struct i386_record_s));
4954 ir.regcache = regcache;
4955 ir.addr = input_addr;
4956 ir.orig_addr = input_addr;
4957 ir.aflag = 1;
4958 ir.dflag = 1;
4959 ir.override = -1;
4960 ir.popl_esp_hack = 0;
4961 ir.regmap = tdep->record_regmap;
4962 ir.gdbarch = gdbarch;
4963
4964 if (record_debug > 1)
4965 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
4966 "addr = %s\n",
4967 paddress (gdbarch, ir.addr));
4968
4969 /* prefixes */
4970 while (1)
4971 {
4972 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4973 return -1;
4974 ir.addr++;
4975 switch (opcode8) /* Instruction prefixes */
4976 {
4977 case REPE_PREFIX_OPCODE:
4978 prefixes |= PREFIX_REPZ;
4979 break;
4980 case REPNE_PREFIX_OPCODE:
4981 prefixes |= PREFIX_REPNZ;
4982 break;
4983 case LOCK_PREFIX_OPCODE:
4984 prefixes |= PREFIX_LOCK;
4985 break;
4986 case CS_PREFIX_OPCODE:
4987 ir.override = X86_RECORD_CS_REGNUM;
4988 break;
4989 case SS_PREFIX_OPCODE:
4990 ir.override = X86_RECORD_SS_REGNUM;
4991 break;
4992 case DS_PREFIX_OPCODE:
4993 ir.override = X86_RECORD_DS_REGNUM;
4994 break;
4995 case ES_PREFIX_OPCODE:
4996 ir.override = X86_RECORD_ES_REGNUM;
4997 break;
4998 case FS_PREFIX_OPCODE:
4999 ir.override = X86_RECORD_FS_REGNUM;
5000 break;
5001 case GS_PREFIX_OPCODE:
5002 ir.override = X86_RECORD_GS_REGNUM;
5003 break;
5004 case DATA_PREFIX_OPCODE:
5005 prefixes |= PREFIX_DATA;
5006 break;
5007 case ADDR_PREFIX_OPCODE:
5008 prefixes |= PREFIX_ADDR;
5009 break;
5010 case 0x40: /* i386 inc %eax */
5011 case 0x41: /* i386 inc %ecx */
5012 case 0x42: /* i386 inc %edx */
5013 case 0x43: /* i386 inc %ebx */
5014 case 0x44: /* i386 inc %esp */
5015 case 0x45: /* i386 inc %ebp */
5016 case 0x46: /* i386 inc %esi */
5017 case 0x47: /* i386 inc %edi */
5018 case 0x48: /* i386 dec %eax */
5019 case 0x49: /* i386 dec %ecx */
5020 case 0x4a: /* i386 dec %edx */
5021 case 0x4b: /* i386 dec %ebx */
5022 case 0x4c: /* i386 dec %esp */
5023 case 0x4d: /* i386 dec %ebp */
5024 case 0x4e: /* i386 dec %esi */
5025 case 0x4f: /* i386 dec %edi */
5026 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5027 {
5028 /* REX */
5029 rex_w = (opcode8 >> 3) & 1;
5030 rex_r = (opcode8 & 0x4) << 1;
5031 ir.rex_x = (opcode8 & 0x2) << 2;
5032 ir.rex_b = (opcode8 & 0x1) << 3;
5033 }
5034 else /* 32 bit target */
5035 goto out_prefixes;
5036 break;
5037 default:
5038 goto out_prefixes;
5039 break;
5040 }
5041 }
5042 out_prefixes:
5043 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5044 {
5045 ir.dflag = 2;
5046 }
5047 else
5048 {
5049 if (prefixes & PREFIX_DATA)
5050 ir.dflag ^= 1;
5051 }
5052 if (prefixes & PREFIX_ADDR)
5053 ir.aflag ^= 1;
5054 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5055 ir.aflag = 2;
5056
5057 /* Now check op code. */
5058 opcode = (uint32_t) opcode8;
5059 reswitch:
5060 switch (opcode)
5061 {
5062 case 0x0f:
5063 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5064 return -1;
5065 ir.addr++;
5066 opcode = (uint32_t) opcode8 | 0x0f00;
5067 goto reswitch;
5068 break;
5069
5070 case 0x00: /* arith & logic */
5071 case 0x01:
5072 case 0x02:
5073 case 0x03:
5074 case 0x04:
5075 case 0x05:
5076 case 0x08:
5077 case 0x09:
5078 case 0x0a:
5079 case 0x0b:
5080 case 0x0c:
5081 case 0x0d:
5082 case 0x10:
5083 case 0x11:
5084 case 0x12:
5085 case 0x13:
5086 case 0x14:
5087 case 0x15:
5088 case 0x18:
5089 case 0x19:
5090 case 0x1a:
5091 case 0x1b:
5092 case 0x1c:
5093 case 0x1d:
5094 case 0x20:
5095 case 0x21:
5096 case 0x22:
5097 case 0x23:
5098 case 0x24:
5099 case 0x25:
5100 case 0x28:
5101 case 0x29:
5102 case 0x2a:
5103 case 0x2b:
5104 case 0x2c:
5105 case 0x2d:
5106 case 0x30:
5107 case 0x31:
5108 case 0x32:
5109 case 0x33:
5110 case 0x34:
5111 case 0x35:
5112 case 0x38:
5113 case 0x39:
5114 case 0x3a:
5115 case 0x3b:
5116 case 0x3c:
5117 case 0x3d:
5118 if (((opcode >> 3) & 7) != OP_CMPL)
5119 {
5120 if ((opcode & 1) == 0)
5121 ir.ot = OT_BYTE;
5122 else
5123 ir.ot = ir.dflag + OT_WORD;
5124
5125 switch ((opcode >> 1) & 3)
5126 {
5127 case 0: /* OP Ev, Gv */
5128 if (i386_record_modrm (&ir))
5129 return -1;
5130 if (ir.mod != 3)
5131 {
5132 if (i386_record_lea_modrm (&ir))
5133 return -1;
5134 }
5135 else
5136 {
5137 ir.rm |= ir.rex_b;
5138 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5139 ir.rm &= 0x3;
5140 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5141 }
5142 break;
5143 case 1: /* OP Gv, Ev */
5144 if (i386_record_modrm (&ir))
5145 return -1;
5146 ir.reg |= rex_r;
5147 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5148 ir.reg &= 0x3;
5149 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5150 break;
5151 case 2: /* OP A, Iv */
5152 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5153 break;
5154 }
5155 }
5156 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5157 break;
5158
5159 case 0x80: /* GRP1 */
5160 case 0x81:
5161 case 0x82:
5162 case 0x83:
5163 if (i386_record_modrm (&ir))
5164 return -1;
5165
5166 if (ir.reg != OP_CMPL)
5167 {
5168 if ((opcode & 1) == 0)
5169 ir.ot = OT_BYTE;
5170 else
5171 ir.ot = ir.dflag + OT_WORD;
5172
5173 if (ir.mod != 3)
5174 {
5175 if (opcode == 0x83)
5176 ir.rip_offset = 1;
5177 else
5178 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5179 if (i386_record_lea_modrm (&ir))
5180 return -1;
5181 }
5182 else
5183 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5184 }
5185 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5186 break;
5187
5188 case 0x40: /* inc */
5189 case 0x41:
5190 case 0x42:
5191 case 0x43:
5192 case 0x44:
5193 case 0x45:
5194 case 0x46:
5195 case 0x47:
5196
5197 case 0x48: /* dec */
5198 case 0x49:
5199 case 0x4a:
5200 case 0x4b:
5201 case 0x4c:
5202 case 0x4d:
5203 case 0x4e:
5204 case 0x4f:
5205
5206 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5207 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5208 break;
5209
5210 case 0xf6: /* GRP3 */
5211 case 0xf7:
5212 if ((opcode & 1) == 0)
5213 ir.ot = OT_BYTE;
5214 else
5215 ir.ot = ir.dflag + OT_WORD;
5216 if (i386_record_modrm (&ir))
5217 return -1;
5218
5219 if (ir.mod != 3 && ir.reg == 0)
5220 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5221
5222 switch (ir.reg)
5223 {
5224 case 0: /* test */
5225 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5226 break;
5227 case 2: /* not */
5228 case 3: /* neg */
5229 if (ir.mod != 3)
5230 {
5231 if (i386_record_lea_modrm (&ir))
5232 return -1;
5233 }
5234 else
5235 {
5236 ir.rm |= ir.rex_b;
5237 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5238 ir.rm &= 0x3;
5239 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5240 }
5241 if (ir.reg == 3) /* neg */
5242 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5243 break;
5244 case 4: /* mul */
5245 case 5: /* imul */
5246 case 6: /* div */
5247 case 7: /* idiv */
5248 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5249 if (ir.ot != OT_BYTE)
5250 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5251 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5252 break;
5253 default:
5254 ir.addr -= 2;
5255 opcode = opcode << 8 | ir.modrm;
5256 goto no_support;
5257 break;
5258 }
5259 break;
5260
5261 case 0xfe: /* GRP4 */
5262 case 0xff: /* GRP5 */
5263 if (i386_record_modrm (&ir))
5264 return -1;
5265 if (ir.reg >= 2 && opcode == 0xfe)
5266 {
5267 ir.addr -= 2;
5268 opcode = opcode << 8 | ir.modrm;
5269 goto no_support;
5270 }
5271 switch (ir.reg)
5272 {
5273 case 0: /* inc */
5274 case 1: /* dec */
5275 if ((opcode & 1) == 0)
5276 ir.ot = OT_BYTE;
5277 else
5278 ir.ot = ir.dflag + OT_WORD;
5279 if (ir.mod != 3)
5280 {
5281 if (i386_record_lea_modrm (&ir))
5282 return -1;
5283 }
5284 else
5285 {
5286 ir.rm |= ir.rex_b;
5287 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5288 ir.rm &= 0x3;
5289 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5290 }
5291 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5292 break;
5293 case 2: /* call */
5294 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5295 ir.dflag = 2;
5296 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5297 return -1;
5298 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5299 break;
5300 case 3: /* lcall */
5301 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5302 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5303 return -1;
5304 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5305 break;
5306 case 4: /* jmp */
5307 case 5: /* ljmp */
5308 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5309 break;
5310 case 6: /* push */
5311 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5312 ir.dflag = 2;
5313 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5314 return -1;
5315 break;
5316 default:
5317 ir.addr -= 2;
5318 opcode = opcode << 8 | ir.modrm;
5319 goto no_support;
5320 break;
5321 }
5322 break;
5323
5324 case 0x84: /* test */
5325 case 0x85:
5326 case 0xa8:
5327 case 0xa9:
5328 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5329 break;
5330
5331 case 0x98: /* CWDE/CBW */
5332 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5333 break;
5334
5335 case 0x99: /* CDQ/CWD */
5336 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5337 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5338 break;
5339
5340 case 0x0faf: /* imul */
5341 case 0x69:
5342 case 0x6b:
5343 ir.ot = ir.dflag + OT_WORD;
5344 if (i386_record_modrm (&ir))
5345 return -1;
5346 if (opcode == 0x69)
5347 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5348 else if (opcode == 0x6b)
5349 ir.rip_offset = 1;
5350 ir.reg |= rex_r;
5351 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5352 ir.reg &= 0x3;
5353 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5354 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5355 break;
5356
5357 case 0x0fc0: /* xadd */
5358 case 0x0fc1:
5359 if ((opcode & 1) == 0)
5360 ir.ot = OT_BYTE;
5361 else
5362 ir.ot = ir.dflag + OT_WORD;
5363 if (i386_record_modrm (&ir))
5364 return -1;
5365 ir.reg |= rex_r;
5366 if (ir.mod == 3)
5367 {
5368 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5369 ir.reg &= 0x3;
5370 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5371 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5372 ir.rm &= 0x3;
5373 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5374 }
5375 else
5376 {
5377 if (i386_record_lea_modrm (&ir))
5378 return -1;
5379 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5380 ir.reg &= 0x3;
5381 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5382 }
5383 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5384 break;
5385
5386 case 0x0fb0: /* cmpxchg */
5387 case 0x0fb1:
5388 if ((opcode & 1) == 0)
5389 ir.ot = OT_BYTE;
5390 else
5391 ir.ot = ir.dflag + OT_WORD;
5392 if (i386_record_modrm (&ir))
5393 return -1;
5394 if (ir.mod == 3)
5395 {
5396 ir.reg |= rex_r;
5397 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5398 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5399 ir.reg &= 0x3;
5400 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5401 }
5402 else
5403 {
5404 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5405 if (i386_record_lea_modrm (&ir))
5406 return -1;
5407 }
5408 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5409 break;
5410
5411 case 0x0fc7: /* cmpxchg8b */
5412 if (i386_record_modrm (&ir))
5413 return -1;
5414 if (ir.mod == 3)
5415 {
5416 ir.addr -= 2;
5417 opcode = opcode << 8 | ir.modrm;
5418 goto no_support;
5419 }
5420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5421 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5422 if (i386_record_lea_modrm (&ir))
5423 return -1;
5424 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5425 break;
5426
5427 case 0x50: /* push */
5428 case 0x51:
5429 case 0x52:
5430 case 0x53:
5431 case 0x54:
5432 case 0x55:
5433 case 0x56:
5434 case 0x57:
5435 case 0x68:
5436 case 0x6a:
5437 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5438 ir.dflag = 2;
5439 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5440 return -1;
5441 break;
5442
5443 case 0x06: /* push es */
5444 case 0x0e: /* push cs */
5445 case 0x16: /* push ss */
5446 case 0x1e: /* push ds */
5447 if (ir.regmap[X86_RECORD_R8_REGNUM])
5448 {
5449 ir.addr -= 1;
5450 goto no_support;
5451 }
5452 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5453 return -1;
5454 break;
5455
5456 case 0x0fa0: /* push fs */
5457 case 0x0fa8: /* push gs */
5458 if (ir.regmap[X86_RECORD_R8_REGNUM])
5459 {
5460 ir.addr -= 2;
5461 goto no_support;
5462 }
5463 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5464 return -1;
5465 break;
5466
5467 case 0x60: /* pusha */
5468 if (ir.regmap[X86_RECORD_R8_REGNUM])
5469 {
5470 ir.addr -= 1;
5471 goto no_support;
5472 }
5473 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5474 return -1;
5475 break;
5476
5477 case 0x58: /* pop */
5478 case 0x59:
5479 case 0x5a:
5480 case 0x5b:
5481 case 0x5c:
5482 case 0x5d:
5483 case 0x5e:
5484 case 0x5f:
5485 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5486 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5487 break;
5488
5489 case 0x61: /* popa */
5490 if (ir.regmap[X86_RECORD_R8_REGNUM])
5491 {
5492 ir.addr -= 1;
5493 goto no_support;
5494 }
5495 for (regnum = X86_RECORD_REAX_REGNUM;
5496 regnum <= X86_RECORD_REDI_REGNUM;
5497 regnum++)
5498 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5499 break;
5500
5501 case 0x8f: /* pop */
5502 if (ir.regmap[X86_RECORD_R8_REGNUM])
5503 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5504 else
5505 ir.ot = ir.dflag + OT_WORD;
5506 if (i386_record_modrm (&ir))
5507 return -1;
5508 if (ir.mod == 3)
5509 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5510 else
5511 {
5512 ir.popl_esp_hack = 1 << ir.ot;
5513 if (i386_record_lea_modrm (&ir))
5514 return -1;
5515 }
5516 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5517 break;
5518
5519 case 0xc8: /* enter */
5520 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5521 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5522 ir.dflag = 2;
5523 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5524 return -1;
5525 break;
5526
5527 case 0xc9: /* leave */
5528 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5529 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5530 break;
5531
5532 case 0x07: /* pop es */
5533 if (ir.regmap[X86_RECORD_R8_REGNUM])
5534 {
5535 ir.addr -= 1;
5536 goto no_support;
5537 }
5538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5539 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5540 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5541 break;
5542
5543 case 0x17: /* pop ss */
5544 if (ir.regmap[X86_RECORD_R8_REGNUM])
5545 {
5546 ir.addr -= 1;
5547 goto no_support;
5548 }
5549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5550 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5551 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5552 break;
5553
5554 case 0x1f: /* pop ds */
5555 if (ir.regmap[X86_RECORD_R8_REGNUM])
5556 {
5557 ir.addr -= 1;
5558 goto no_support;
5559 }
5560 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5561 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5562 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5563 break;
5564
5565 case 0x0fa1: /* pop fs */
5566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5567 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5568 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5569 break;
5570
5571 case 0x0fa9: /* pop gs */
5572 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5574 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5575 break;
5576
5577 case 0x88: /* mov */
5578 case 0x89:
5579 case 0xc6:
5580 case 0xc7:
5581 if ((opcode & 1) == 0)
5582 ir.ot = OT_BYTE;
5583 else
5584 ir.ot = ir.dflag + OT_WORD;
5585
5586 if (i386_record_modrm (&ir))
5587 return -1;
5588
5589 if (ir.mod != 3)
5590 {
5591 if (opcode == 0xc6 || opcode == 0xc7)
5592 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5593 if (i386_record_lea_modrm (&ir))
5594 return -1;
5595 }
5596 else
5597 {
5598 if (opcode == 0xc6 || opcode == 0xc7)
5599 ir.rm |= ir.rex_b;
5600 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5601 ir.rm &= 0x3;
5602 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5603 }
5604 break;
5605
5606 case 0x8a: /* mov */
5607 case 0x8b:
5608 if ((opcode & 1) == 0)
5609 ir.ot = OT_BYTE;
5610 else
5611 ir.ot = ir.dflag + OT_WORD;
5612 if (i386_record_modrm (&ir))
5613 return -1;
5614 ir.reg |= rex_r;
5615 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5616 ir.reg &= 0x3;
5617 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5618 break;
5619
5620 case 0x8c: /* mov seg */
5621 if (i386_record_modrm (&ir))
5622 return -1;
5623 if (ir.reg > 5)
5624 {
5625 ir.addr -= 2;
5626 opcode = opcode << 8 | ir.modrm;
5627 goto no_support;
5628 }
5629
5630 if (ir.mod == 3)
5631 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5632 else
5633 {
5634 ir.ot = OT_WORD;
5635 if (i386_record_lea_modrm (&ir))
5636 return -1;
5637 }
5638 break;
5639
5640 case 0x8e: /* mov seg */
5641 if (i386_record_modrm (&ir))
5642 return -1;
5643 switch (ir.reg)
5644 {
5645 case 0:
5646 regnum = X86_RECORD_ES_REGNUM;
5647 break;
5648 case 2:
5649 regnum = X86_RECORD_SS_REGNUM;
5650 break;
5651 case 3:
5652 regnum = X86_RECORD_DS_REGNUM;
5653 break;
5654 case 4:
5655 regnum = X86_RECORD_FS_REGNUM;
5656 break;
5657 case 5:
5658 regnum = X86_RECORD_GS_REGNUM;
5659 break;
5660 default:
5661 ir.addr -= 2;
5662 opcode = opcode << 8 | ir.modrm;
5663 goto no_support;
5664 break;
5665 }
5666 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5667 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5668 break;
5669
5670 case 0x0fb6: /* movzbS */
5671 case 0x0fb7: /* movzwS */
5672 case 0x0fbe: /* movsbS */
5673 case 0x0fbf: /* movswS */
5674 if (i386_record_modrm (&ir))
5675 return -1;
5676 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5677 break;
5678
5679 case 0x8d: /* lea */
5680 if (i386_record_modrm (&ir))
5681 return -1;
5682 if (ir.mod == 3)
5683 {
5684 ir.addr -= 2;
5685 opcode = opcode << 8 | ir.modrm;
5686 goto no_support;
5687 }
5688 ir.ot = ir.dflag;
5689 ir.reg |= rex_r;
5690 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5691 ir.reg &= 0x3;
5692 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5693 break;
5694
5695 case 0xa0: /* mov EAX */
5696 case 0xa1:
5697
5698 case 0xd7: /* xlat */
5699 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5700 break;
5701
5702 case 0xa2: /* mov EAX */
5703 case 0xa3:
5704 if (ir.override >= 0)
5705 {
5706 if (record_full_memory_query)
5707 {
5708 int q;
5709
5710 target_terminal_ours ();
5711 q = yquery (_("\
5712 Process record ignores the memory change of instruction at address %s\n\
5713 because it can't get the value of the segment register.\n\
5714 Do you want to stop the program?"),
5715 paddress (gdbarch, ir.orig_addr));
5716 target_terminal_inferior ();
5717 if (q)
5718 return -1;
5719 }
5720 }
5721 else
5722 {
5723 if ((opcode & 1) == 0)
5724 ir.ot = OT_BYTE;
5725 else
5726 ir.ot = ir.dflag + OT_WORD;
5727 if (ir.aflag == 2)
5728 {
5729 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5730 return -1;
5731 ir.addr += 8;
5732 addr = extract_unsigned_integer (buf, 8, byte_order);
5733 }
5734 else if (ir.aflag)
5735 {
5736 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5737 return -1;
5738 ir.addr += 4;
5739 addr = extract_unsigned_integer (buf, 4, byte_order);
5740 }
5741 else
5742 {
5743 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5744 return -1;
5745 ir.addr += 2;
5746 addr = extract_unsigned_integer (buf, 2, byte_order);
5747 }
5748 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5749 return -1;
5750 }
5751 break;
5752
5753 case 0xb0: /* mov R, Ib */
5754 case 0xb1:
5755 case 0xb2:
5756 case 0xb3:
5757 case 0xb4:
5758 case 0xb5:
5759 case 0xb6:
5760 case 0xb7:
5761 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5762 ? ((opcode & 0x7) | ir.rex_b)
5763 : ((opcode & 0x7) & 0x3));
5764 break;
5765
5766 case 0xb8: /* mov R, Iv */
5767 case 0xb9:
5768 case 0xba:
5769 case 0xbb:
5770 case 0xbc:
5771 case 0xbd:
5772 case 0xbe:
5773 case 0xbf:
5774 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5775 break;
5776
5777 case 0x91: /* xchg R, EAX */
5778 case 0x92:
5779 case 0x93:
5780 case 0x94:
5781 case 0x95:
5782 case 0x96:
5783 case 0x97:
5784 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5785 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5786 break;
5787
5788 case 0x86: /* xchg Ev, Gv */
5789 case 0x87:
5790 if ((opcode & 1) == 0)
5791 ir.ot = OT_BYTE;
5792 else
5793 ir.ot = ir.dflag + OT_WORD;
5794 if (i386_record_modrm (&ir))
5795 return -1;
5796 if (ir.mod == 3)
5797 {
5798 ir.rm |= ir.rex_b;
5799 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5800 ir.rm &= 0x3;
5801 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5802 }
5803 else
5804 {
5805 if (i386_record_lea_modrm (&ir))
5806 return -1;
5807 }
5808 ir.reg |= rex_r;
5809 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5810 ir.reg &= 0x3;
5811 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5812 break;
5813
5814 case 0xc4: /* les Gv */
5815 case 0xc5: /* lds Gv */
5816 if (ir.regmap[X86_RECORD_R8_REGNUM])
5817 {
5818 ir.addr -= 1;
5819 goto no_support;
5820 }
5821 /* FALLTHROUGH */
5822 case 0x0fb2: /* lss Gv */
5823 case 0x0fb4: /* lfs Gv */
5824 case 0x0fb5: /* lgs Gv */
5825 if (i386_record_modrm (&ir))
5826 return -1;
5827 if (ir.mod == 3)
5828 {
5829 if (opcode > 0xff)
5830 ir.addr -= 3;
5831 else
5832 ir.addr -= 2;
5833 opcode = opcode << 8 | ir.modrm;
5834 goto no_support;
5835 }
5836 switch (opcode)
5837 {
5838 case 0xc4: /* les Gv */
5839 regnum = X86_RECORD_ES_REGNUM;
5840 break;
5841 case 0xc5: /* lds Gv */
5842 regnum = X86_RECORD_DS_REGNUM;
5843 break;
5844 case 0x0fb2: /* lss Gv */
5845 regnum = X86_RECORD_SS_REGNUM;
5846 break;
5847 case 0x0fb4: /* lfs Gv */
5848 regnum = X86_RECORD_FS_REGNUM;
5849 break;
5850 case 0x0fb5: /* lgs Gv */
5851 regnum = X86_RECORD_GS_REGNUM;
5852 break;
5853 }
5854 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5855 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5856 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5857 break;
5858
5859 case 0xc0: /* shifts */
5860 case 0xc1:
5861 case 0xd0:
5862 case 0xd1:
5863 case 0xd2:
5864 case 0xd3:
5865 if ((opcode & 1) == 0)
5866 ir.ot = OT_BYTE;
5867 else
5868 ir.ot = ir.dflag + OT_WORD;
5869 if (i386_record_modrm (&ir))
5870 return -1;
5871 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5872 {
5873 if (i386_record_lea_modrm (&ir))
5874 return -1;
5875 }
5876 else
5877 {
5878 ir.rm |= ir.rex_b;
5879 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5880 ir.rm &= 0x3;
5881 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5882 }
5883 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5884 break;
5885
5886 case 0x0fa4:
5887 case 0x0fa5:
5888 case 0x0fac:
5889 case 0x0fad:
5890 if (i386_record_modrm (&ir))
5891 return -1;
5892 if (ir.mod == 3)
5893 {
5894 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5895 return -1;
5896 }
5897 else
5898 {
5899 if (i386_record_lea_modrm (&ir))
5900 return -1;
5901 }
5902 break;
5903
5904 case 0xd8: /* Floats. */
5905 case 0xd9:
5906 case 0xda:
5907 case 0xdb:
5908 case 0xdc:
5909 case 0xdd:
5910 case 0xde:
5911 case 0xdf:
5912 if (i386_record_modrm (&ir))
5913 return -1;
5914 ir.reg |= ((opcode & 7) << 3);
5915 if (ir.mod != 3)
5916 {
5917 /* Memory. */
5918 uint64_t addr64;
5919
5920 if (i386_record_lea_modrm_addr (&ir, &addr64))
5921 return -1;
5922 switch (ir.reg)
5923 {
5924 case 0x02:
5925 case 0x12:
5926 case 0x22:
5927 case 0x32:
5928 /* For fcom, ficom nothing to do. */
5929 break;
5930 case 0x03:
5931 case 0x13:
5932 case 0x23:
5933 case 0x33:
5934 /* For fcomp, ficomp pop FPU stack, store all. */
5935 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5936 return -1;
5937 break;
5938 case 0x00:
5939 case 0x01:
5940 case 0x04:
5941 case 0x05:
5942 case 0x06:
5943 case 0x07:
5944 case 0x10:
5945 case 0x11:
5946 case 0x14:
5947 case 0x15:
5948 case 0x16:
5949 case 0x17:
5950 case 0x20:
5951 case 0x21:
5952 case 0x24:
5953 case 0x25:
5954 case 0x26:
5955 case 0x27:
5956 case 0x30:
5957 case 0x31:
5958 case 0x34:
5959 case 0x35:
5960 case 0x36:
5961 case 0x37:
5962 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5963 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5964 of code, always affects st(0) register. */
5965 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5966 return -1;
5967 break;
5968 case 0x08:
5969 case 0x0a:
5970 case 0x0b:
5971 case 0x18:
5972 case 0x19:
5973 case 0x1a:
5974 case 0x1b:
5975 case 0x1d:
5976 case 0x28:
5977 case 0x29:
5978 case 0x2a:
5979 case 0x2b:
5980 case 0x38:
5981 case 0x39:
5982 case 0x3a:
5983 case 0x3b:
5984 case 0x3c:
5985 case 0x3d:
5986 switch (ir.reg & 7)
5987 {
5988 case 0:
5989 /* Handling fld, fild. */
5990 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5991 return -1;
5992 break;
5993 case 1:
5994 switch (ir.reg >> 4)
5995 {
5996 case 0:
5997 if (record_full_arch_list_add_mem (addr64, 4))
5998 return -1;
5999 break;
6000 case 2:
6001 if (record_full_arch_list_add_mem (addr64, 8))
6002 return -1;
6003 break;
6004 case 3:
6005 break;
6006 default:
6007 if (record_full_arch_list_add_mem (addr64, 2))
6008 return -1;
6009 break;
6010 }
6011 break;
6012 default:
6013 switch (ir.reg >> 4)
6014 {
6015 case 0:
6016 if (record_full_arch_list_add_mem (addr64, 4))
6017 return -1;
6018 if (3 == (ir.reg & 7))
6019 {
6020 /* For fstp m32fp. */
6021 if (i386_record_floats (gdbarch, &ir,
6022 I386_SAVE_FPU_REGS))
6023 return -1;
6024 }
6025 break;
6026 case 1:
6027 if (record_full_arch_list_add_mem (addr64, 4))
6028 return -1;
6029 if ((3 == (ir.reg & 7))
6030 || (5 == (ir.reg & 7))
6031 || (7 == (ir.reg & 7)))
6032 {
6033 /* For fstp insn. */
6034 if (i386_record_floats (gdbarch, &ir,
6035 I386_SAVE_FPU_REGS))
6036 return -1;
6037 }
6038 break;
6039 case 2:
6040 if (record_full_arch_list_add_mem (addr64, 8))
6041 return -1;
6042 if (3 == (ir.reg & 7))
6043 {
6044 /* For fstp m64fp. */
6045 if (i386_record_floats (gdbarch, &ir,
6046 I386_SAVE_FPU_REGS))
6047 return -1;
6048 }
6049 break;
6050 case 3:
6051 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6052 {
6053 /* For fistp, fbld, fild, fbstp. */
6054 if (i386_record_floats (gdbarch, &ir,
6055 I386_SAVE_FPU_REGS))
6056 return -1;
6057 }
6058 /* Fall through */
6059 default:
6060 if (record_full_arch_list_add_mem (addr64, 2))
6061 return -1;
6062 break;
6063 }
6064 break;
6065 }
6066 break;
6067 case 0x0c:
6068 /* Insn fldenv. */
6069 if (i386_record_floats (gdbarch, &ir,
6070 I386_SAVE_FPU_ENV_REG_STACK))
6071 return -1;
6072 break;
6073 case 0x0d:
6074 /* Insn fldcw. */
6075 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6076 return -1;
6077 break;
6078 case 0x2c:
6079 /* Insn frstor. */
6080 if (i386_record_floats (gdbarch, &ir,
6081 I386_SAVE_FPU_ENV_REG_STACK))
6082 return -1;
6083 break;
6084 case 0x0e:
6085 if (ir.dflag)
6086 {
6087 if (record_full_arch_list_add_mem (addr64, 28))
6088 return -1;
6089 }
6090 else
6091 {
6092 if (record_full_arch_list_add_mem (addr64, 14))
6093 return -1;
6094 }
6095 break;
6096 case 0x0f:
6097 case 0x2f:
6098 if (record_full_arch_list_add_mem (addr64, 2))
6099 return -1;
6100 /* Insn fstp, fbstp. */
6101 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6102 return -1;
6103 break;
6104 case 0x1f:
6105 case 0x3e:
6106 if (record_full_arch_list_add_mem (addr64, 10))
6107 return -1;
6108 break;
6109 case 0x2e:
6110 if (ir.dflag)
6111 {
6112 if (record_full_arch_list_add_mem (addr64, 28))
6113 return -1;
6114 addr64 += 28;
6115 }
6116 else
6117 {
6118 if (record_full_arch_list_add_mem (addr64, 14))
6119 return -1;
6120 addr64 += 14;
6121 }
6122 if (record_full_arch_list_add_mem (addr64, 80))
6123 return -1;
6124 /* Insn fsave. */
6125 if (i386_record_floats (gdbarch, &ir,
6126 I386_SAVE_FPU_ENV_REG_STACK))
6127 return -1;
6128 break;
6129 case 0x3f:
6130 if (record_full_arch_list_add_mem (addr64, 8))
6131 return -1;
6132 /* Insn fistp. */
6133 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6134 return -1;
6135 break;
6136 default:
6137 ir.addr -= 2;
6138 opcode = opcode << 8 | ir.modrm;
6139 goto no_support;
6140 break;
6141 }
6142 }
6143 /* Opcode is an extension of modR/M byte. */
6144 else
6145 {
6146 switch (opcode)
6147 {
6148 case 0xd8:
6149 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6150 return -1;
6151 break;
6152 case 0xd9:
6153 if (0x0c == (ir.modrm >> 4))
6154 {
6155 if ((ir.modrm & 0x0f) <= 7)
6156 {
6157 if (i386_record_floats (gdbarch, &ir,
6158 I386_SAVE_FPU_REGS))
6159 return -1;
6160 }
6161 else
6162 {
6163 if (i386_record_floats (gdbarch, &ir,
6164 I387_ST0_REGNUM (tdep)))
6165 return -1;
6166 /* If only st(0) is changing, then we have already
6167 recorded. */
6168 if ((ir.modrm & 0x0f) - 0x08)
6169 {
6170 if (i386_record_floats (gdbarch, &ir,
6171 I387_ST0_REGNUM (tdep) +
6172 ((ir.modrm & 0x0f) - 0x08)))
6173 return -1;
6174 }
6175 }
6176 }
6177 else
6178 {
6179 switch (ir.modrm)
6180 {
6181 case 0xe0:
6182 case 0xe1:
6183 case 0xf0:
6184 case 0xf5:
6185 case 0xf8:
6186 case 0xfa:
6187 case 0xfc:
6188 case 0xfe:
6189 case 0xff:
6190 if (i386_record_floats (gdbarch, &ir,
6191 I387_ST0_REGNUM (tdep)))
6192 return -1;
6193 break;
6194 case 0xf1:
6195 case 0xf2:
6196 case 0xf3:
6197 case 0xf4:
6198 case 0xf6:
6199 case 0xf7:
6200 case 0xe8:
6201 case 0xe9:
6202 case 0xea:
6203 case 0xeb:
6204 case 0xec:
6205 case 0xed:
6206 case 0xee:
6207 case 0xf9:
6208 case 0xfb:
6209 if (i386_record_floats (gdbarch, &ir,
6210 I386_SAVE_FPU_REGS))
6211 return -1;
6212 break;
6213 case 0xfd:
6214 if (i386_record_floats (gdbarch, &ir,
6215 I387_ST0_REGNUM (tdep)))
6216 return -1;
6217 if (i386_record_floats (gdbarch, &ir,
6218 I387_ST0_REGNUM (tdep) + 1))
6219 return -1;
6220 break;
6221 }
6222 }
6223 break;
6224 case 0xda:
6225 if (0xe9 == ir.modrm)
6226 {
6227 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6228 return -1;
6229 }
6230 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6231 {
6232 if (i386_record_floats (gdbarch, &ir,
6233 I387_ST0_REGNUM (tdep)))
6234 return -1;
6235 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6236 {
6237 if (i386_record_floats (gdbarch, &ir,
6238 I387_ST0_REGNUM (tdep) +
6239 (ir.modrm & 0x0f)))
6240 return -1;
6241 }
6242 else if ((ir.modrm & 0x0f) - 0x08)
6243 {
6244 if (i386_record_floats (gdbarch, &ir,
6245 I387_ST0_REGNUM (tdep) +
6246 ((ir.modrm & 0x0f) - 0x08)))
6247 return -1;
6248 }
6249 }
6250 break;
6251 case 0xdb:
6252 if (0xe3 == ir.modrm)
6253 {
6254 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6255 return -1;
6256 }
6257 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6258 {
6259 if (i386_record_floats (gdbarch, &ir,
6260 I387_ST0_REGNUM (tdep)))
6261 return -1;
6262 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6263 {
6264 if (i386_record_floats (gdbarch, &ir,
6265 I387_ST0_REGNUM (tdep) +
6266 (ir.modrm & 0x0f)))
6267 return -1;
6268 }
6269 else if ((ir.modrm & 0x0f) - 0x08)
6270 {
6271 if (i386_record_floats (gdbarch, &ir,
6272 I387_ST0_REGNUM (tdep) +
6273 ((ir.modrm & 0x0f) - 0x08)))
6274 return -1;
6275 }
6276 }
6277 break;
6278 case 0xdc:
6279 if ((0x0c == ir.modrm >> 4)
6280 || (0x0d == ir.modrm >> 4)
6281 || (0x0f == ir.modrm >> 4))
6282 {
6283 if ((ir.modrm & 0x0f) <= 7)
6284 {
6285 if (i386_record_floats (gdbarch, &ir,
6286 I387_ST0_REGNUM (tdep) +
6287 (ir.modrm & 0x0f)))
6288 return -1;
6289 }
6290 else
6291 {
6292 if (i386_record_floats (gdbarch, &ir,
6293 I387_ST0_REGNUM (tdep) +
6294 ((ir.modrm & 0x0f) - 0x08)))
6295 return -1;
6296 }
6297 }
6298 break;
6299 case 0xdd:
6300 if (0x0c == ir.modrm >> 4)
6301 {
6302 if (i386_record_floats (gdbarch, &ir,
6303 I387_FTAG_REGNUM (tdep)))
6304 return -1;
6305 }
6306 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6307 {
6308 if ((ir.modrm & 0x0f) <= 7)
6309 {
6310 if (i386_record_floats (gdbarch, &ir,
6311 I387_ST0_REGNUM (tdep) +
6312 (ir.modrm & 0x0f)))
6313 return -1;
6314 }
6315 else
6316 {
6317 if (i386_record_floats (gdbarch, &ir,
6318 I386_SAVE_FPU_REGS))
6319 return -1;
6320 }
6321 }
6322 break;
6323 case 0xde:
6324 if ((0x0c == ir.modrm >> 4)
6325 || (0x0e == ir.modrm >> 4)
6326 || (0x0f == ir.modrm >> 4)
6327 || (0xd9 == ir.modrm))
6328 {
6329 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6330 return -1;
6331 }
6332 break;
6333 case 0xdf:
6334 if (0xe0 == ir.modrm)
6335 {
6336 if (record_full_arch_list_add_reg (ir.regcache,
6337 I386_EAX_REGNUM))
6338 return -1;
6339 }
6340 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6341 {
6342 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6343 return -1;
6344 }
6345 break;
6346 }
6347 }
6348 break;
6349 /* string ops */
6350 case 0xa4: /* movsS */
6351 case 0xa5:
6352 case 0xaa: /* stosS */
6353 case 0xab:
6354 case 0x6c: /* insS */
6355 case 0x6d:
6356 regcache_raw_read_unsigned (ir.regcache,
6357 ir.regmap[X86_RECORD_RECX_REGNUM],
6358 &addr);
6359 if (addr)
6360 {
6361 ULONGEST es, ds;
6362
6363 if ((opcode & 1) == 0)
6364 ir.ot = OT_BYTE;
6365 else
6366 ir.ot = ir.dflag + OT_WORD;
6367 regcache_raw_read_unsigned (ir.regcache,
6368 ir.regmap[X86_RECORD_REDI_REGNUM],
6369 &addr);
6370
6371 regcache_raw_read_unsigned (ir.regcache,
6372 ir.regmap[X86_RECORD_ES_REGNUM],
6373 &es);
6374 regcache_raw_read_unsigned (ir.regcache,
6375 ir.regmap[X86_RECORD_DS_REGNUM],
6376 &ds);
6377 if (ir.aflag && (es != ds))
6378 {
6379 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6380 if (record_full_memory_query)
6381 {
6382 int q;
6383
6384 target_terminal_ours ();
6385 q = yquery (_("\
6386 Process record ignores the memory change of instruction at address %s\n\
6387 because it can't get the value of the segment register.\n\
6388 Do you want to stop the program?"),
6389 paddress (gdbarch, ir.orig_addr));
6390 target_terminal_inferior ();
6391 if (q)
6392 return -1;
6393 }
6394 }
6395 else
6396 {
6397 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6398 return -1;
6399 }
6400
6401 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6402 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6403 if (opcode == 0xa4 || opcode == 0xa5)
6404 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6405 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6406 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6407 }
6408 break;
6409
6410 case 0xa6: /* cmpsS */
6411 case 0xa7:
6412 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6413 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6414 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6415 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6416 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6417 break;
6418
6419 case 0xac: /* lodsS */
6420 case 0xad:
6421 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6422 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6423 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6424 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6425 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6426 break;
6427
6428 case 0xae: /* scasS */
6429 case 0xaf:
6430 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6431 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6432 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6433 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6434 break;
6435
6436 case 0x6e: /* outsS */
6437 case 0x6f:
6438 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6439 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6440 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6441 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6442 break;
6443
6444 case 0xe4: /* port I/O */
6445 case 0xe5:
6446 case 0xec:
6447 case 0xed:
6448 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6449 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6450 break;
6451
6452 case 0xe6:
6453 case 0xe7:
6454 case 0xee:
6455 case 0xef:
6456 break;
6457
6458 /* control */
6459 case 0xc2: /* ret im */
6460 case 0xc3: /* ret */
6461 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6462 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6463 break;
6464
6465 case 0xca: /* lret im */
6466 case 0xcb: /* lret */
6467 case 0xcf: /* iret */
6468 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6469 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6470 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6471 break;
6472
6473 case 0xe8: /* call im */
6474 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6475 ir.dflag = 2;
6476 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6477 return -1;
6478 break;
6479
6480 case 0x9a: /* lcall im */
6481 if (ir.regmap[X86_RECORD_R8_REGNUM])
6482 {
6483 ir.addr -= 1;
6484 goto no_support;
6485 }
6486 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6487 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6488 return -1;
6489 break;
6490
6491 case 0xe9: /* jmp im */
6492 case 0xea: /* ljmp im */
6493 case 0xeb: /* jmp Jb */
6494 case 0x70: /* jcc Jb */
6495 case 0x71:
6496 case 0x72:
6497 case 0x73:
6498 case 0x74:
6499 case 0x75:
6500 case 0x76:
6501 case 0x77:
6502 case 0x78:
6503 case 0x79:
6504 case 0x7a:
6505 case 0x7b:
6506 case 0x7c:
6507 case 0x7d:
6508 case 0x7e:
6509 case 0x7f:
6510 case 0x0f80: /* jcc Jv */
6511 case 0x0f81:
6512 case 0x0f82:
6513 case 0x0f83:
6514 case 0x0f84:
6515 case 0x0f85:
6516 case 0x0f86:
6517 case 0x0f87:
6518 case 0x0f88:
6519 case 0x0f89:
6520 case 0x0f8a:
6521 case 0x0f8b:
6522 case 0x0f8c:
6523 case 0x0f8d:
6524 case 0x0f8e:
6525 case 0x0f8f:
6526 break;
6527
6528 case 0x0f90: /* setcc Gv */
6529 case 0x0f91:
6530 case 0x0f92:
6531 case 0x0f93:
6532 case 0x0f94:
6533 case 0x0f95:
6534 case 0x0f96:
6535 case 0x0f97:
6536 case 0x0f98:
6537 case 0x0f99:
6538 case 0x0f9a:
6539 case 0x0f9b:
6540 case 0x0f9c:
6541 case 0x0f9d:
6542 case 0x0f9e:
6543 case 0x0f9f:
6544 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6545 ir.ot = OT_BYTE;
6546 if (i386_record_modrm (&ir))
6547 return -1;
6548 if (ir.mod == 3)
6549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6550 : (ir.rm & 0x3));
6551 else
6552 {
6553 if (i386_record_lea_modrm (&ir))
6554 return -1;
6555 }
6556 break;
6557
6558 case 0x0f40: /* cmov Gv, Ev */
6559 case 0x0f41:
6560 case 0x0f42:
6561 case 0x0f43:
6562 case 0x0f44:
6563 case 0x0f45:
6564 case 0x0f46:
6565 case 0x0f47:
6566 case 0x0f48:
6567 case 0x0f49:
6568 case 0x0f4a:
6569 case 0x0f4b:
6570 case 0x0f4c:
6571 case 0x0f4d:
6572 case 0x0f4e:
6573 case 0x0f4f:
6574 if (i386_record_modrm (&ir))
6575 return -1;
6576 ir.reg |= rex_r;
6577 if (ir.dflag == OT_BYTE)
6578 ir.reg &= 0x3;
6579 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6580 break;
6581
6582 /* flags */
6583 case 0x9c: /* pushf */
6584 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6585 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6586 ir.dflag = 2;
6587 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6588 return -1;
6589 break;
6590
6591 case 0x9d: /* popf */
6592 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6593 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6594 break;
6595
6596 case 0x9e: /* sahf */
6597 if (ir.regmap[X86_RECORD_R8_REGNUM])
6598 {
6599 ir.addr -= 1;
6600 goto no_support;
6601 }
6602 /* FALLTHROUGH */
6603 case 0xf5: /* cmc */
6604 case 0xf8: /* clc */
6605 case 0xf9: /* stc */
6606 case 0xfc: /* cld */
6607 case 0xfd: /* std */
6608 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6609 break;
6610
6611 case 0x9f: /* lahf */
6612 if (ir.regmap[X86_RECORD_R8_REGNUM])
6613 {
6614 ir.addr -= 1;
6615 goto no_support;
6616 }
6617 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6618 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6619 break;
6620
6621 /* bit operations */
6622 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6623 ir.ot = ir.dflag + OT_WORD;
6624 if (i386_record_modrm (&ir))
6625 return -1;
6626 if (ir.reg < 4)
6627 {
6628 ir.addr -= 2;
6629 opcode = opcode << 8 | ir.modrm;
6630 goto no_support;
6631 }
6632 if (ir.reg != 4)
6633 {
6634 if (ir.mod == 3)
6635 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6636 else
6637 {
6638 if (i386_record_lea_modrm (&ir))
6639 return -1;
6640 }
6641 }
6642 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6643 break;
6644
6645 case 0x0fa3: /* bt Gv, Ev */
6646 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6647 break;
6648
6649 case 0x0fab: /* bts */
6650 case 0x0fb3: /* btr */
6651 case 0x0fbb: /* btc */
6652 ir.ot = ir.dflag + OT_WORD;
6653 if (i386_record_modrm (&ir))
6654 return -1;
6655 if (ir.mod == 3)
6656 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6657 else
6658 {
6659 uint64_t addr64;
6660 if (i386_record_lea_modrm_addr (&ir, &addr64))
6661 return -1;
6662 regcache_raw_read_unsigned (ir.regcache,
6663 ir.regmap[ir.reg | rex_r],
6664 &addr);
6665 switch (ir.dflag)
6666 {
6667 case 0:
6668 addr64 += ((int16_t) addr >> 4) << 4;
6669 break;
6670 case 1:
6671 addr64 += ((int32_t) addr >> 5) << 5;
6672 break;
6673 case 2:
6674 addr64 += ((int64_t) addr >> 6) << 6;
6675 break;
6676 }
6677 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6678 return -1;
6679 if (i386_record_lea_modrm (&ir))
6680 return -1;
6681 }
6682 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6683 break;
6684
6685 case 0x0fbc: /* bsf */
6686 case 0x0fbd: /* bsr */
6687 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6688 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6689 break;
6690
6691 /* bcd */
6692 case 0x27: /* daa */
6693 case 0x2f: /* das */
6694 case 0x37: /* aaa */
6695 case 0x3f: /* aas */
6696 case 0xd4: /* aam */
6697 case 0xd5: /* aad */
6698 if (ir.regmap[X86_RECORD_R8_REGNUM])
6699 {
6700 ir.addr -= 1;
6701 goto no_support;
6702 }
6703 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6704 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6705 break;
6706
6707 /* misc */
6708 case 0x90: /* nop */
6709 if (prefixes & PREFIX_LOCK)
6710 {
6711 ir.addr -= 1;
6712 goto no_support;
6713 }
6714 break;
6715
6716 case 0x9b: /* fwait */
6717 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6718 return -1;
6719 opcode = (uint32_t) opcode8;
6720 ir.addr++;
6721 goto reswitch;
6722 break;
6723
6724 /* XXX */
6725 case 0xcc: /* int3 */
6726 printf_unfiltered (_("Process record does not support instruction "
6727 "int3.\n"));
6728 ir.addr -= 1;
6729 goto no_support;
6730 break;
6731
6732 /* XXX */
6733 case 0xcd: /* int */
6734 {
6735 int ret;
6736 uint8_t interrupt;
6737 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6738 return -1;
6739 ir.addr++;
6740 if (interrupt != 0x80
6741 || tdep->i386_intx80_record == NULL)
6742 {
6743 printf_unfiltered (_("Process record does not support "
6744 "instruction int 0x%02x.\n"),
6745 interrupt);
6746 ir.addr -= 2;
6747 goto no_support;
6748 }
6749 ret = tdep->i386_intx80_record (ir.regcache);
6750 if (ret)
6751 return ret;
6752 }
6753 break;
6754
6755 /* XXX */
6756 case 0xce: /* into */
6757 printf_unfiltered (_("Process record does not support "
6758 "instruction into.\n"));
6759 ir.addr -= 1;
6760 goto no_support;
6761 break;
6762
6763 case 0xfa: /* cli */
6764 case 0xfb: /* sti */
6765 break;
6766
6767 case 0x62: /* bound */
6768 printf_unfiltered (_("Process record does not support "
6769 "instruction bound.\n"));
6770 ir.addr -= 1;
6771 goto no_support;
6772 break;
6773
6774 case 0x0fc8: /* bswap reg */
6775 case 0x0fc9:
6776 case 0x0fca:
6777 case 0x0fcb:
6778 case 0x0fcc:
6779 case 0x0fcd:
6780 case 0x0fce:
6781 case 0x0fcf:
6782 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6783 break;
6784
6785 case 0xd6: /* salc */
6786 if (ir.regmap[X86_RECORD_R8_REGNUM])
6787 {
6788 ir.addr -= 1;
6789 goto no_support;
6790 }
6791 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6792 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6793 break;
6794
6795 case 0xe0: /* loopnz */
6796 case 0xe1: /* loopz */
6797 case 0xe2: /* loop */
6798 case 0xe3: /* jecxz */
6799 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6800 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6801 break;
6802
6803 case 0x0f30: /* wrmsr */
6804 printf_unfiltered (_("Process record does not support "
6805 "instruction wrmsr.\n"));
6806 ir.addr -= 2;
6807 goto no_support;
6808 break;
6809
6810 case 0x0f32: /* rdmsr */
6811 printf_unfiltered (_("Process record does not support "
6812 "instruction rdmsr.\n"));
6813 ir.addr -= 2;
6814 goto no_support;
6815 break;
6816
6817 case 0x0f31: /* rdtsc */
6818 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6819 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6820 break;
6821
6822 case 0x0f34: /* sysenter */
6823 {
6824 int ret;
6825 if (ir.regmap[X86_RECORD_R8_REGNUM])
6826 {
6827 ir.addr -= 2;
6828 goto no_support;
6829 }
6830 if (tdep->i386_sysenter_record == NULL)
6831 {
6832 printf_unfiltered (_("Process record does not support "
6833 "instruction sysenter.\n"));
6834 ir.addr -= 2;
6835 goto no_support;
6836 }
6837 ret = tdep->i386_sysenter_record (ir.regcache);
6838 if (ret)
6839 return ret;
6840 }
6841 break;
6842
6843 case 0x0f35: /* sysexit */
6844 printf_unfiltered (_("Process record does not support "
6845 "instruction sysexit.\n"));
6846 ir.addr -= 2;
6847 goto no_support;
6848 break;
6849
6850 case 0x0f05: /* syscall */
6851 {
6852 int ret;
6853 if (tdep->i386_syscall_record == NULL)
6854 {
6855 printf_unfiltered (_("Process record does not support "
6856 "instruction syscall.\n"));
6857 ir.addr -= 2;
6858 goto no_support;
6859 }
6860 ret = tdep->i386_syscall_record (ir.regcache);
6861 if (ret)
6862 return ret;
6863 }
6864 break;
6865
6866 case 0x0f07: /* sysret */
6867 printf_unfiltered (_("Process record does not support "
6868 "instruction sysret.\n"));
6869 ir.addr -= 2;
6870 goto no_support;
6871 break;
6872
6873 case 0x0fa2: /* cpuid */
6874 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6875 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6876 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6877 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6878 break;
6879
6880 case 0xf4: /* hlt */
6881 printf_unfiltered (_("Process record does not support "
6882 "instruction hlt.\n"));
6883 ir.addr -= 1;
6884 goto no_support;
6885 break;
6886
6887 case 0x0f00:
6888 if (i386_record_modrm (&ir))
6889 return -1;
6890 switch (ir.reg)
6891 {
6892 case 0: /* sldt */
6893 case 1: /* str */
6894 if (ir.mod == 3)
6895 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6896 else
6897 {
6898 ir.ot = OT_WORD;
6899 if (i386_record_lea_modrm (&ir))
6900 return -1;
6901 }
6902 break;
6903 case 2: /* lldt */
6904 case 3: /* ltr */
6905 break;
6906 case 4: /* verr */
6907 case 5: /* verw */
6908 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6909 break;
6910 default:
6911 ir.addr -= 3;
6912 opcode = opcode << 8 | ir.modrm;
6913 goto no_support;
6914 break;
6915 }
6916 break;
6917
6918 case 0x0f01:
6919 if (i386_record_modrm (&ir))
6920 return -1;
6921 switch (ir.reg)
6922 {
6923 case 0: /* sgdt */
6924 {
6925 uint64_t addr64;
6926
6927 if (ir.mod == 3)
6928 {
6929 ir.addr -= 3;
6930 opcode = opcode << 8 | ir.modrm;
6931 goto no_support;
6932 }
6933 if (ir.override >= 0)
6934 {
6935 if (record_full_memory_query)
6936 {
6937 int q;
6938
6939 target_terminal_ours ();
6940 q = yquery (_("\
6941 Process record ignores the memory change of instruction at address %s\n\
6942 because it can't get the value of the segment register.\n\
6943 Do you want to stop the program?"),
6944 paddress (gdbarch, ir.orig_addr));
6945 target_terminal_inferior ();
6946 if (q)
6947 return -1;
6948 }
6949 }
6950 else
6951 {
6952 if (i386_record_lea_modrm_addr (&ir, &addr64))
6953 return -1;
6954 if (record_full_arch_list_add_mem (addr64, 2))
6955 return -1;
6956 addr64 += 2;
6957 if (ir.regmap[X86_RECORD_R8_REGNUM])
6958 {
6959 if (record_full_arch_list_add_mem (addr64, 8))
6960 return -1;
6961 }
6962 else
6963 {
6964 if (record_full_arch_list_add_mem (addr64, 4))
6965 return -1;
6966 }
6967 }
6968 }
6969 break;
6970 case 1:
6971 if (ir.mod == 3)
6972 {
6973 switch (ir.rm)
6974 {
6975 case 0: /* monitor */
6976 break;
6977 case 1: /* mwait */
6978 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6979 break;
6980 default:
6981 ir.addr -= 3;
6982 opcode = opcode << 8 | ir.modrm;
6983 goto no_support;
6984 break;
6985 }
6986 }
6987 else
6988 {
6989 /* sidt */
6990 if (ir.override >= 0)
6991 {
6992 if (record_full_memory_query)
6993 {
6994 int q;
6995
6996 target_terminal_ours ();
6997 q = yquery (_("\
6998 Process record ignores the memory change of instruction at address %s\n\
6999 because it can't get the value of the segment register.\n\
7000 Do you want to stop the program?"),
7001 paddress (gdbarch, ir.orig_addr));
7002 target_terminal_inferior ();
7003 if (q)
7004 return -1;
7005 }
7006 }
7007 else
7008 {
7009 uint64_t addr64;
7010
7011 if (i386_record_lea_modrm_addr (&ir, &addr64))
7012 return -1;
7013 if (record_full_arch_list_add_mem (addr64, 2))
7014 return -1;
7015 addr64 += 2;
7016 if (ir.regmap[X86_RECORD_R8_REGNUM])
7017 {
7018 if (record_full_arch_list_add_mem (addr64, 8))
7019 return -1;
7020 }
7021 else
7022 {
7023 if (record_full_arch_list_add_mem (addr64, 4))
7024 return -1;
7025 }
7026 }
7027 }
7028 break;
7029 case 2: /* lgdt */
7030 if (ir.mod == 3)
7031 {
7032 /* xgetbv */
7033 if (ir.rm == 0)
7034 {
7035 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7036 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7037 break;
7038 }
7039 /* xsetbv */
7040 else if (ir.rm == 1)
7041 break;
7042 }
7043 case 3: /* lidt */
7044 if (ir.mod == 3)
7045 {
7046 ir.addr -= 3;
7047 opcode = opcode << 8 | ir.modrm;
7048 goto no_support;
7049 }
7050 break;
7051 case 4: /* smsw */
7052 if (ir.mod == 3)
7053 {
7054 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7055 return -1;
7056 }
7057 else
7058 {
7059 ir.ot = OT_WORD;
7060 if (i386_record_lea_modrm (&ir))
7061 return -1;
7062 }
7063 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7064 break;
7065 case 6: /* lmsw */
7066 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7067 break;
7068 case 7: /* invlpg */
7069 if (ir.mod == 3)
7070 {
7071 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7072 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7073 else
7074 {
7075 ir.addr -= 3;
7076 opcode = opcode << 8 | ir.modrm;
7077 goto no_support;
7078 }
7079 }
7080 else
7081 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7082 break;
7083 default:
7084 ir.addr -= 3;
7085 opcode = opcode << 8 | ir.modrm;
7086 goto no_support;
7087 break;
7088 }
7089 break;
7090
7091 case 0x0f08: /* invd */
7092 case 0x0f09: /* wbinvd */
7093 break;
7094
7095 case 0x63: /* arpl */
7096 if (i386_record_modrm (&ir))
7097 return -1;
7098 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7099 {
7100 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7101 ? (ir.reg | rex_r) : ir.rm);
7102 }
7103 else
7104 {
7105 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7106 if (i386_record_lea_modrm (&ir))
7107 return -1;
7108 }
7109 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7110 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7111 break;
7112
7113 case 0x0f02: /* lar */
7114 case 0x0f03: /* lsl */
7115 if (i386_record_modrm (&ir))
7116 return -1;
7117 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7118 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7119 break;
7120
7121 case 0x0f18:
7122 if (i386_record_modrm (&ir))
7123 return -1;
7124 if (ir.mod == 3 && ir.reg == 3)
7125 {
7126 ir.addr -= 3;
7127 opcode = opcode << 8 | ir.modrm;
7128 goto no_support;
7129 }
7130 break;
7131
7132 case 0x0f19:
7133 case 0x0f1a:
7134 case 0x0f1b:
7135 case 0x0f1c:
7136 case 0x0f1d:
7137 case 0x0f1e:
7138 case 0x0f1f:
7139 /* nop (multi byte) */
7140 break;
7141
7142 case 0x0f20: /* mov reg, crN */
7143 case 0x0f22: /* mov crN, reg */
7144 if (i386_record_modrm (&ir))
7145 return -1;
7146 if ((ir.modrm & 0xc0) != 0xc0)
7147 {
7148 ir.addr -= 3;
7149 opcode = opcode << 8 | ir.modrm;
7150 goto no_support;
7151 }
7152 switch (ir.reg)
7153 {
7154 case 0:
7155 case 2:
7156 case 3:
7157 case 4:
7158 case 8:
7159 if (opcode & 2)
7160 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7161 else
7162 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7163 break;
7164 default:
7165 ir.addr -= 3;
7166 opcode = opcode << 8 | ir.modrm;
7167 goto no_support;
7168 break;
7169 }
7170 break;
7171
7172 case 0x0f21: /* mov reg, drN */
7173 case 0x0f23: /* mov drN, reg */
7174 if (i386_record_modrm (&ir))
7175 return -1;
7176 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7177 || ir.reg == 5 || ir.reg >= 8)
7178 {
7179 ir.addr -= 3;
7180 opcode = opcode << 8 | ir.modrm;
7181 goto no_support;
7182 }
7183 if (opcode & 2)
7184 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7185 else
7186 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7187 break;
7188
7189 case 0x0f06: /* clts */
7190 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7191 break;
7192
7193 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7194
7195 case 0x0f0d: /* 3DNow! prefetch */
7196 break;
7197
7198 case 0x0f0e: /* 3DNow! femms */
7199 case 0x0f77: /* emms */
7200 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7201 goto no_support;
7202 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7203 break;
7204
7205 case 0x0f0f: /* 3DNow! data */
7206 if (i386_record_modrm (&ir))
7207 return -1;
7208 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7209 return -1;
7210 ir.addr++;
7211 switch (opcode8)
7212 {
7213 case 0x0c: /* 3DNow! pi2fw */
7214 case 0x0d: /* 3DNow! pi2fd */
7215 case 0x1c: /* 3DNow! pf2iw */
7216 case 0x1d: /* 3DNow! pf2id */
7217 case 0x8a: /* 3DNow! pfnacc */
7218 case 0x8e: /* 3DNow! pfpnacc */
7219 case 0x90: /* 3DNow! pfcmpge */
7220 case 0x94: /* 3DNow! pfmin */
7221 case 0x96: /* 3DNow! pfrcp */
7222 case 0x97: /* 3DNow! pfrsqrt */
7223 case 0x9a: /* 3DNow! pfsub */
7224 case 0x9e: /* 3DNow! pfadd */
7225 case 0xa0: /* 3DNow! pfcmpgt */
7226 case 0xa4: /* 3DNow! pfmax */
7227 case 0xa6: /* 3DNow! pfrcpit1 */
7228 case 0xa7: /* 3DNow! pfrsqit1 */
7229 case 0xaa: /* 3DNow! pfsubr */
7230 case 0xae: /* 3DNow! pfacc */
7231 case 0xb0: /* 3DNow! pfcmpeq */
7232 case 0xb4: /* 3DNow! pfmul */
7233 case 0xb6: /* 3DNow! pfrcpit2 */
7234 case 0xb7: /* 3DNow! pmulhrw */
7235 case 0xbb: /* 3DNow! pswapd */
7236 case 0xbf: /* 3DNow! pavgusb */
7237 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7238 goto no_support_3dnow_data;
7239 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7240 break;
7241
7242 default:
7243 no_support_3dnow_data:
7244 opcode = (opcode << 8) | opcode8;
7245 goto no_support;
7246 break;
7247 }
7248 break;
7249
7250 case 0x0faa: /* rsm */
7251 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7252 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7253 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7254 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7255 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7256 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7257 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7258 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7259 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7260 break;
7261
7262 case 0x0fae:
7263 if (i386_record_modrm (&ir))
7264 return -1;
7265 switch(ir.reg)
7266 {
7267 case 0: /* fxsave */
7268 {
7269 uint64_t tmpu64;
7270
7271 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7272 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7273 return -1;
7274 if (record_full_arch_list_add_mem (tmpu64, 512))
7275 return -1;
7276 }
7277 break;
7278
7279 case 1: /* fxrstor */
7280 {
7281 int i;
7282
7283 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7284
7285 for (i = I387_MM0_REGNUM (tdep);
7286 i386_mmx_regnum_p (gdbarch, i); i++)
7287 record_full_arch_list_add_reg (ir.regcache, i);
7288
7289 for (i = I387_XMM0_REGNUM (tdep);
7290 i386_xmm_regnum_p (gdbarch, i); i++)
7291 record_full_arch_list_add_reg (ir.regcache, i);
7292
7293 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7294 record_full_arch_list_add_reg (ir.regcache,
7295 I387_MXCSR_REGNUM(tdep));
7296
7297 for (i = I387_ST0_REGNUM (tdep);
7298 i386_fp_regnum_p (gdbarch, i); i++)
7299 record_full_arch_list_add_reg (ir.regcache, i);
7300
7301 for (i = I387_FCTRL_REGNUM (tdep);
7302 i386_fpc_regnum_p (gdbarch, i); i++)
7303 record_full_arch_list_add_reg (ir.regcache, i);
7304 }
7305 break;
7306
7307 case 2: /* ldmxcsr */
7308 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7309 goto no_support;
7310 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7311 break;
7312
7313 case 3: /* stmxcsr */
7314 ir.ot = OT_LONG;
7315 if (i386_record_lea_modrm (&ir))
7316 return -1;
7317 break;
7318
7319 case 5: /* lfence */
7320 case 6: /* mfence */
7321 case 7: /* sfence clflush */
7322 break;
7323
7324 default:
7325 opcode = (opcode << 8) | ir.modrm;
7326 goto no_support;
7327 break;
7328 }
7329 break;
7330
7331 case 0x0fc3: /* movnti */
7332 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7333 if (i386_record_modrm (&ir))
7334 return -1;
7335 if (ir.mod == 3)
7336 goto no_support;
7337 ir.reg |= rex_r;
7338 if (i386_record_lea_modrm (&ir))
7339 return -1;
7340 break;
7341
7342 /* Add prefix to opcode. */
7343 case 0x0f10:
7344 case 0x0f11:
7345 case 0x0f12:
7346 case 0x0f13:
7347 case 0x0f14:
7348 case 0x0f15:
7349 case 0x0f16:
7350 case 0x0f17:
7351 case 0x0f28:
7352 case 0x0f29:
7353 case 0x0f2a:
7354 case 0x0f2b:
7355 case 0x0f2c:
7356 case 0x0f2d:
7357 case 0x0f2e:
7358 case 0x0f2f:
7359 case 0x0f38:
7360 case 0x0f39:
7361 case 0x0f3a:
7362 case 0x0f50:
7363 case 0x0f51:
7364 case 0x0f52:
7365 case 0x0f53:
7366 case 0x0f54:
7367 case 0x0f55:
7368 case 0x0f56:
7369 case 0x0f57:
7370 case 0x0f58:
7371 case 0x0f59:
7372 case 0x0f5a:
7373 case 0x0f5b:
7374 case 0x0f5c:
7375 case 0x0f5d:
7376 case 0x0f5e:
7377 case 0x0f5f:
7378 case 0x0f60:
7379 case 0x0f61:
7380 case 0x0f62:
7381 case 0x0f63:
7382 case 0x0f64:
7383 case 0x0f65:
7384 case 0x0f66:
7385 case 0x0f67:
7386 case 0x0f68:
7387 case 0x0f69:
7388 case 0x0f6a:
7389 case 0x0f6b:
7390 case 0x0f6c:
7391 case 0x0f6d:
7392 case 0x0f6e:
7393 case 0x0f6f:
7394 case 0x0f70:
7395 case 0x0f71:
7396 case 0x0f72:
7397 case 0x0f73:
7398 case 0x0f74:
7399 case 0x0f75:
7400 case 0x0f76:
7401 case 0x0f7c:
7402 case 0x0f7d:
7403 case 0x0f7e:
7404 case 0x0f7f:
7405 case 0x0fb8:
7406 case 0x0fc2:
7407 case 0x0fc4:
7408 case 0x0fc5:
7409 case 0x0fc6:
7410 case 0x0fd0:
7411 case 0x0fd1:
7412 case 0x0fd2:
7413 case 0x0fd3:
7414 case 0x0fd4:
7415 case 0x0fd5:
7416 case 0x0fd6:
7417 case 0x0fd7:
7418 case 0x0fd8:
7419 case 0x0fd9:
7420 case 0x0fda:
7421 case 0x0fdb:
7422 case 0x0fdc:
7423 case 0x0fdd:
7424 case 0x0fde:
7425 case 0x0fdf:
7426 case 0x0fe0:
7427 case 0x0fe1:
7428 case 0x0fe2:
7429 case 0x0fe3:
7430 case 0x0fe4:
7431 case 0x0fe5:
7432 case 0x0fe6:
7433 case 0x0fe7:
7434 case 0x0fe8:
7435 case 0x0fe9:
7436 case 0x0fea:
7437 case 0x0feb:
7438 case 0x0fec:
7439 case 0x0fed:
7440 case 0x0fee:
7441 case 0x0fef:
7442 case 0x0ff0:
7443 case 0x0ff1:
7444 case 0x0ff2:
7445 case 0x0ff3:
7446 case 0x0ff4:
7447 case 0x0ff5:
7448 case 0x0ff6:
7449 case 0x0ff7:
7450 case 0x0ff8:
7451 case 0x0ff9:
7452 case 0x0ffa:
7453 case 0x0ffb:
7454 case 0x0ffc:
7455 case 0x0ffd:
7456 case 0x0ffe:
7457 /* Mask out PREFIX_ADDR. */
7458 switch ((prefixes & ~PREFIX_ADDR))
7459 {
7460 case PREFIX_REPNZ:
7461 opcode |= 0xf20000;
7462 break;
7463 case PREFIX_DATA:
7464 opcode |= 0x660000;
7465 break;
7466 case PREFIX_REPZ:
7467 opcode |= 0xf30000;
7468 break;
7469 }
7470 reswitch_prefix_add:
7471 switch (opcode)
7472 {
7473 case 0x0f38:
7474 case 0x660f38:
7475 case 0xf20f38:
7476 case 0x0f3a:
7477 case 0x660f3a:
7478 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7479 return -1;
7480 ir.addr++;
7481 opcode = (uint32_t) opcode8 | opcode << 8;
7482 goto reswitch_prefix_add;
7483 break;
7484
7485 case 0x0f10: /* movups */
7486 case 0x660f10: /* movupd */
7487 case 0xf30f10: /* movss */
7488 case 0xf20f10: /* movsd */
7489 case 0x0f12: /* movlps */
7490 case 0x660f12: /* movlpd */
7491 case 0xf30f12: /* movsldup */
7492 case 0xf20f12: /* movddup */
7493 case 0x0f14: /* unpcklps */
7494 case 0x660f14: /* unpcklpd */
7495 case 0x0f15: /* unpckhps */
7496 case 0x660f15: /* unpckhpd */
7497 case 0x0f16: /* movhps */
7498 case 0x660f16: /* movhpd */
7499 case 0xf30f16: /* movshdup */
7500 case 0x0f28: /* movaps */
7501 case 0x660f28: /* movapd */
7502 case 0x0f2a: /* cvtpi2ps */
7503 case 0x660f2a: /* cvtpi2pd */
7504 case 0xf30f2a: /* cvtsi2ss */
7505 case 0xf20f2a: /* cvtsi2sd */
7506 case 0x0f2c: /* cvttps2pi */
7507 case 0x660f2c: /* cvttpd2pi */
7508 case 0x0f2d: /* cvtps2pi */
7509 case 0x660f2d: /* cvtpd2pi */
7510 case 0x660f3800: /* pshufb */
7511 case 0x660f3801: /* phaddw */
7512 case 0x660f3802: /* phaddd */
7513 case 0x660f3803: /* phaddsw */
7514 case 0x660f3804: /* pmaddubsw */
7515 case 0x660f3805: /* phsubw */
7516 case 0x660f3806: /* phsubd */
7517 case 0x660f3807: /* phsubsw */
7518 case 0x660f3808: /* psignb */
7519 case 0x660f3809: /* psignw */
7520 case 0x660f380a: /* psignd */
7521 case 0x660f380b: /* pmulhrsw */
7522 case 0x660f3810: /* pblendvb */
7523 case 0x660f3814: /* blendvps */
7524 case 0x660f3815: /* blendvpd */
7525 case 0x660f381c: /* pabsb */
7526 case 0x660f381d: /* pabsw */
7527 case 0x660f381e: /* pabsd */
7528 case 0x660f3820: /* pmovsxbw */
7529 case 0x660f3821: /* pmovsxbd */
7530 case 0x660f3822: /* pmovsxbq */
7531 case 0x660f3823: /* pmovsxwd */
7532 case 0x660f3824: /* pmovsxwq */
7533 case 0x660f3825: /* pmovsxdq */
7534 case 0x660f3828: /* pmuldq */
7535 case 0x660f3829: /* pcmpeqq */
7536 case 0x660f382a: /* movntdqa */
7537 case 0x660f3a08: /* roundps */
7538 case 0x660f3a09: /* roundpd */
7539 case 0x660f3a0a: /* roundss */
7540 case 0x660f3a0b: /* roundsd */
7541 case 0x660f3a0c: /* blendps */
7542 case 0x660f3a0d: /* blendpd */
7543 case 0x660f3a0e: /* pblendw */
7544 case 0x660f3a0f: /* palignr */
7545 case 0x660f3a20: /* pinsrb */
7546 case 0x660f3a21: /* insertps */
7547 case 0x660f3a22: /* pinsrd pinsrq */
7548 case 0x660f3a40: /* dpps */
7549 case 0x660f3a41: /* dppd */
7550 case 0x660f3a42: /* mpsadbw */
7551 case 0x660f3a60: /* pcmpestrm */
7552 case 0x660f3a61: /* pcmpestri */
7553 case 0x660f3a62: /* pcmpistrm */
7554 case 0x660f3a63: /* pcmpistri */
7555 case 0x0f51: /* sqrtps */
7556 case 0x660f51: /* sqrtpd */
7557 case 0xf20f51: /* sqrtsd */
7558 case 0xf30f51: /* sqrtss */
7559 case 0x0f52: /* rsqrtps */
7560 case 0xf30f52: /* rsqrtss */
7561 case 0x0f53: /* rcpps */
7562 case 0xf30f53: /* rcpss */
7563 case 0x0f54: /* andps */
7564 case 0x660f54: /* andpd */
7565 case 0x0f55: /* andnps */
7566 case 0x660f55: /* andnpd */
7567 case 0x0f56: /* orps */
7568 case 0x660f56: /* orpd */
7569 case 0x0f57: /* xorps */
7570 case 0x660f57: /* xorpd */
7571 case 0x0f58: /* addps */
7572 case 0x660f58: /* addpd */
7573 case 0xf20f58: /* addsd */
7574 case 0xf30f58: /* addss */
7575 case 0x0f59: /* mulps */
7576 case 0x660f59: /* mulpd */
7577 case 0xf20f59: /* mulsd */
7578 case 0xf30f59: /* mulss */
7579 case 0x0f5a: /* cvtps2pd */
7580 case 0x660f5a: /* cvtpd2ps */
7581 case 0xf20f5a: /* cvtsd2ss */
7582 case 0xf30f5a: /* cvtss2sd */
7583 case 0x0f5b: /* cvtdq2ps */
7584 case 0x660f5b: /* cvtps2dq */
7585 case 0xf30f5b: /* cvttps2dq */
7586 case 0x0f5c: /* subps */
7587 case 0x660f5c: /* subpd */
7588 case 0xf20f5c: /* subsd */
7589 case 0xf30f5c: /* subss */
7590 case 0x0f5d: /* minps */
7591 case 0x660f5d: /* minpd */
7592 case 0xf20f5d: /* minsd */
7593 case 0xf30f5d: /* minss */
7594 case 0x0f5e: /* divps */
7595 case 0x660f5e: /* divpd */
7596 case 0xf20f5e: /* divsd */
7597 case 0xf30f5e: /* divss */
7598 case 0x0f5f: /* maxps */
7599 case 0x660f5f: /* maxpd */
7600 case 0xf20f5f: /* maxsd */
7601 case 0xf30f5f: /* maxss */
7602 case 0x660f60: /* punpcklbw */
7603 case 0x660f61: /* punpcklwd */
7604 case 0x660f62: /* punpckldq */
7605 case 0x660f63: /* packsswb */
7606 case 0x660f64: /* pcmpgtb */
7607 case 0x660f65: /* pcmpgtw */
7608 case 0x660f66: /* pcmpgtd */
7609 case 0x660f67: /* packuswb */
7610 case 0x660f68: /* punpckhbw */
7611 case 0x660f69: /* punpckhwd */
7612 case 0x660f6a: /* punpckhdq */
7613 case 0x660f6b: /* packssdw */
7614 case 0x660f6c: /* punpcklqdq */
7615 case 0x660f6d: /* punpckhqdq */
7616 case 0x660f6e: /* movd */
7617 case 0x660f6f: /* movdqa */
7618 case 0xf30f6f: /* movdqu */
7619 case 0x660f70: /* pshufd */
7620 case 0xf20f70: /* pshuflw */
7621 case 0xf30f70: /* pshufhw */
7622 case 0x660f74: /* pcmpeqb */
7623 case 0x660f75: /* pcmpeqw */
7624 case 0x660f76: /* pcmpeqd */
7625 case 0x660f7c: /* haddpd */
7626 case 0xf20f7c: /* haddps */
7627 case 0x660f7d: /* hsubpd */
7628 case 0xf20f7d: /* hsubps */
7629 case 0xf30f7e: /* movq */
7630 case 0x0fc2: /* cmpps */
7631 case 0x660fc2: /* cmppd */
7632 case 0xf20fc2: /* cmpsd */
7633 case 0xf30fc2: /* cmpss */
7634 case 0x660fc4: /* pinsrw */
7635 case 0x0fc6: /* shufps */
7636 case 0x660fc6: /* shufpd */
7637 case 0x660fd0: /* addsubpd */
7638 case 0xf20fd0: /* addsubps */
7639 case 0x660fd1: /* psrlw */
7640 case 0x660fd2: /* psrld */
7641 case 0x660fd3: /* psrlq */
7642 case 0x660fd4: /* paddq */
7643 case 0x660fd5: /* pmullw */
7644 case 0xf30fd6: /* movq2dq */
7645 case 0x660fd8: /* psubusb */
7646 case 0x660fd9: /* psubusw */
7647 case 0x660fda: /* pminub */
7648 case 0x660fdb: /* pand */
7649 case 0x660fdc: /* paddusb */
7650 case 0x660fdd: /* paddusw */
7651 case 0x660fde: /* pmaxub */
7652 case 0x660fdf: /* pandn */
7653 case 0x660fe0: /* pavgb */
7654 case 0x660fe1: /* psraw */
7655 case 0x660fe2: /* psrad */
7656 case 0x660fe3: /* pavgw */
7657 case 0x660fe4: /* pmulhuw */
7658 case 0x660fe5: /* pmulhw */
7659 case 0x660fe6: /* cvttpd2dq */
7660 case 0xf20fe6: /* cvtpd2dq */
7661 case 0xf30fe6: /* cvtdq2pd */
7662 case 0x660fe8: /* psubsb */
7663 case 0x660fe9: /* psubsw */
7664 case 0x660fea: /* pminsw */
7665 case 0x660feb: /* por */
7666 case 0x660fec: /* paddsb */
7667 case 0x660fed: /* paddsw */
7668 case 0x660fee: /* pmaxsw */
7669 case 0x660fef: /* pxor */
7670 case 0xf20ff0: /* lddqu */
7671 case 0x660ff1: /* psllw */
7672 case 0x660ff2: /* pslld */
7673 case 0x660ff3: /* psllq */
7674 case 0x660ff4: /* pmuludq */
7675 case 0x660ff5: /* pmaddwd */
7676 case 0x660ff6: /* psadbw */
7677 case 0x660ff8: /* psubb */
7678 case 0x660ff9: /* psubw */
7679 case 0x660ffa: /* psubd */
7680 case 0x660ffb: /* psubq */
7681 case 0x660ffc: /* paddb */
7682 case 0x660ffd: /* paddw */
7683 case 0x660ffe: /* paddd */
7684 if (i386_record_modrm (&ir))
7685 return -1;
7686 ir.reg |= rex_r;
7687 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7688 goto no_support;
7689 record_full_arch_list_add_reg (ir.regcache,
7690 I387_XMM0_REGNUM (tdep) + ir.reg);
7691 if ((opcode & 0xfffffffc) == 0x660f3a60)
7692 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7693 break;
7694
7695 case 0x0f11: /* movups */
7696 case 0x660f11: /* movupd */
7697 case 0xf30f11: /* movss */
7698 case 0xf20f11: /* movsd */
7699 case 0x0f13: /* movlps */
7700 case 0x660f13: /* movlpd */
7701 case 0x0f17: /* movhps */
7702 case 0x660f17: /* movhpd */
7703 case 0x0f29: /* movaps */
7704 case 0x660f29: /* movapd */
7705 case 0x660f3a14: /* pextrb */
7706 case 0x660f3a15: /* pextrw */
7707 case 0x660f3a16: /* pextrd pextrq */
7708 case 0x660f3a17: /* extractps */
7709 case 0x660f7f: /* movdqa */
7710 case 0xf30f7f: /* movdqu */
7711 if (i386_record_modrm (&ir))
7712 return -1;
7713 if (ir.mod == 3)
7714 {
7715 if (opcode == 0x0f13 || opcode == 0x660f13
7716 || opcode == 0x0f17 || opcode == 0x660f17)
7717 goto no_support;
7718 ir.rm |= ir.rex_b;
7719 if (!i386_xmm_regnum_p (gdbarch,
7720 I387_XMM0_REGNUM (tdep) + ir.rm))
7721 goto no_support;
7722 record_full_arch_list_add_reg (ir.regcache,
7723 I387_XMM0_REGNUM (tdep) + ir.rm);
7724 }
7725 else
7726 {
7727 switch (opcode)
7728 {
7729 case 0x660f3a14:
7730 ir.ot = OT_BYTE;
7731 break;
7732 case 0x660f3a15:
7733 ir.ot = OT_WORD;
7734 break;
7735 case 0x660f3a16:
7736 ir.ot = OT_LONG;
7737 break;
7738 case 0x660f3a17:
7739 ir.ot = OT_QUAD;
7740 break;
7741 default:
7742 ir.ot = OT_DQUAD;
7743 break;
7744 }
7745 if (i386_record_lea_modrm (&ir))
7746 return -1;
7747 }
7748 break;
7749
7750 case 0x0f2b: /* movntps */
7751 case 0x660f2b: /* movntpd */
7752 case 0x0fe7: /* movntq */
7753 case 0x660fe7: /* movntdq */
7754 if (ir.mod == 3)
7755 goto no_support;
7756 if (opcode == 0x0fe7)
7757 ir.ot = OT_QUAD;
7758 else
7759 ir.ot = OT_DQUAD;
7760 if (i386_record_lea_modrm (&ir))
7761 return -1;
7762 break;
7763
7764 case 0xf30f2c: /* cvttss2si */
7765 case 0xf20f2c: /* cvttsd2si */
7766 case 0xf30f2d: /* cvtss2si */
7767 case 0xf20f2d: /* cvtsd2si */
7768 case 0xf20f38f0: /* crc32 */
7769 case 0xf20f38f1: /* crc32 */
7770 case 0x0f50: /* movmskps */
7771 case 0x660f50: /* movmskpd */
7772 case 0x0fc5: /* pextrw */
7773 case 0x660fc5: /* pextrw */
7774 case 0x0fd7: /* pmovmskb */
7775 case 0x660fd7: /* pmovmskb */
7776 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7777 break;
7778
7779 case 0x0f3800: /* pshufb */
7780 case 0x0f3801: /* phaddw */
7781 case 0x0f3802: /* phaddd */
7782 case 0x0f3803: /* phaddsw */
7783 case 0x0f3804: /* pmaddubsw */
7784 case 0x0f3805: /* phsubw */
7785 case 0x0f3806: /* phsubd */
7786 case 0x0f3807: /* phsubsw */
7787 case 0x0f3808: /* psignb */
7788 case 0x0f3809: /* psignw */
7789 case 0x0f380a: /* psignd */
7790 case 0x0f380b: /* pmulhrsw */
7791 case 0x0f381c: /* pabsb */
7792 case 0x0f381d: /* pabsw */
7793 case 0x0f381e: /* pabsd */
7794 case 0x0f382b: /* packusdw */
7795 case 0x0f3830: /* pmovzxbw */
7796 case 0x0f3831: /* pmovzxbd */
7797 case 0x0f3832: /* pmovzxbq */
7798 case 0x0f3833: /* pmovzxwd */
7799 case 0x0f3834: /* pmovzxwq */
7800 case 0x0f3835: /* pmovzxdq */
7801 case 0x0f3837: /* pcmpgtq */
7802 case 0x0f3838: /* pminsb */
7803 case 0x0f3839: /* pminsd */
7804 case 0x0f383a: /* pminuw */
7805 case 0x0f383b: /* pminud */
7806 case 0x0f383c: /* pmaxsb */
7807 case 0x0f383d: /* pmaxsd */
7808 case 0x0f383e: /* pmaxuw */
7809 case 0x0f383f: /* pmaxud */
7810 case 0x0f3840: /* pmulld */
7811 case 0x0f3841: /* phminposuw */
7812 case 0x0f3a0f: /* palignr */
7813 case 0x0f60: /* punpcklbw */
7814 case 0x0f61: /* punpcklwd */
7815 case 0x0f62: /* punpckldq */
7816 case 0x0f63: /* packsswb */
7817 case 0x0f64: /* pcmpgtb */
7818 case 0x0f65: /* pcmpgtw */
7819 case 0x0f66: /* pcmpgtd */
7820 case 0x0f67: /* packuswb */
7821 case 0x0f68: /* punpckhbw */
7822 case 0x0f69: /* punpckhwd */
7823 case 0x0f6a: /* punpckhdq */
7824 case 0x0f6b: /* packssdw */
7825 case 0x0f6e: /* movd */
7826 case 0x0f6f: /* movq */
7827 case 0x0f70: /* pshufw */
7828 case 0x0f74: /* pcmpeqb */
7829 case 0x0f75: /* pcmpeqw */
7830 case 0x0f76: /* pcmpeqd */
7831 case 0x0fc4: /* pinsrw */
7832 case 0x0fd1: /* psrlw */
7833 case 0x0fd2: /* psrld */
7834 case 0x0fd3: /* psrlq */
7835 case 0x0fd4: /* paddq */
7836 case 0x0fd5: /* pmullw */
7837 case 0xf20fd6: /* movdq2q */
7838 case 0x0fd8: /* psubusb */
7839 case 0x0fd9: /* psubusw */
7840 case 0x0fda: /* pminub */
7841 case 0x0fdb: /* pand */
7842 case 0x0fdc: /* paddusb */
7843 case 0x0fdd: /* paddusw */
7844 case 0x0fde: /* pmaxub */
7845 case 0x0fdf: /* pandn */
7846 case 0x0fe0: /* pavgb */
7847 case 0x0fe1: /* psraw */
7848 case 0x0fe2: /* psrad */
7849 case 0x0fe3: /* pavgw */
7850 case 0x0fe4: /* pmulhuw */
7851 case 0x0fe5: /* pmulhw */
7852 case 0x0fe8: /* psubsb */
7853 case 0x0fe9: /* psubsw */
7854 case 0x0fea: /* pminsw */
7855 case 0x0feb: /* por */
7856 case 0x0fec: /* paddsb */
7857 case 0x0fed: /* paddsw */
7858 case 0x0fee: /* pmaxsw */
7859 case 0x0fef: /* pxor */
7860 case 0x0ff1: /* psllw */
7861 case 0x0ff2: /* pslld */
7862 case 0x0ff3: /* psllq */
7863 case 0x0ff4: /* pmuludq */
7864 case 0x0ff5: /* pmaddwd */
7865 case 0x0ff6: /* psadbw */
7866 case 0x0ff8: /* psubb */
7867 case 0x0ff9: /* psubw */
7868 case 0x0ffa: /* psubd */
7869 case 0x0ffb: /* psubq */
7870 case 0x0ffc: /* paddb */
7871 case 0x0ffd: /* paddw */
7872 case 0x0ffe: /* paddd */
7873 if (i386_record_modrm (&ir))
7874 return -1;
7875 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7876 goto no_support;
7877 record_full_arch_list_add_reg (ir.regcache,
7878 I387_MM0_REGNUM (tdep) + ir.reg);
7879 break;
7880
7881 case 0x0f71: /* psllw */
7882 case 0x0f72: /* pslld */
7883 case 0x0f73: /* psllq */
7884 if (i386_record_modrm (&ir))
7885 return -1;
7886 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7887 goto no_support;
7888 record_full_arch_list_add_reg (ir.regcache,
7889 I387_MM0_REGNUM (tdep) + ir.rm);
7890 break;
7891
7892 case 0x660f71: /* psllw */
7893 case 0x660f72: /* pslld */
7894 case 0x660f73: /* psllq */
7895 if (i386_record_modrm (&ir))
7896 return -1;
7897 ir.rm |= ir.rex_b;
7898 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7899 goto no_support;
7900 record_full_arch_list_add_reg (ir.regcache,
7901 I387_XMM0_REGNUM (tdep) + ir.rm);
7902 break;
7903
7904 case 0x0f7e: /* movd */
7905 case 0x660f7e: /* movd */
7906 if (i386_record_modrm (&ir))
7907 return -1;
7908 if (ir.mod == 3)
7909 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7910 else
7911 {
7912 if (ir.dflag == 2)
7913 ir.ot = OT_QUAD;
7914 else
7915 ir.ot = OT_LONG;
7916 if (i386_record_lea_modrm (&ir))
7917 return -1;
7918 }
7919 break;
7920
7921 case 0x0f7f: /* movq */
7922 if (i386_record_modrm (&ir))
7923 return -1;
7924 if (ir.mod == 3)
7925 {
7926 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7927 goto no_support;
7928 record_full_arch_list_add_reg (ir.regcache,
7929 I387_MM0_REGNUM (tdep) + ir.rm);
7930 }
7931 else
7932 {
7933 ir.ot = OT_QUAD;
7934 if (i386_record_lea_modrm (&ir))
7935 return -1;
7936 }
7937 break;
7938
7939 case 0xf30fb8: /* popcnt */
7940 if (i386_record_modrm (&ir))
7941 return -1;
7942 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7943 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7944 break;
7945
7946 case 0x660fd6: /* movq */
7947 if (i386_record_modrm (&ir))
7948 return -1;
7949 if (ir.mod == 3)
7950 {
7951 ir.rm |= ir.rex_b;
7952 if (!i386_xmm_regnum_p (gdbarch,
7953 I387_XMM0_REGNUM (tdep) + ir.rm))
7954 goto no_support;
7955 record_full_arch_list_add_reg (ir.regcache,
7956 I387_XMM0_REGNUM (tdep) + ir.rm);
7957 }
7958 else
7959 {
7960 ir.ot = OT_QUAD;
7961 if (i386_record_lea_modrm (&ir))
7962 return -1;
7963 }
7964 break;
7965
7966 case 0x660f3817: /* ptest */
7967 case 0x0f2e: /* ucomiss */
7968 case 0x660f2e: /* ucomisd */
7969 case 0x0f2f: /* comiss */
7970 case 0x660f2f: /* comisd */
7971 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7972 break;
7973
7974 case 0x0ff7: /* maskmovq */
7975 regcache_raw_read_unsigned (ir.regcache,
7976 ir.regmap[X86_RECORD_REDI_REGNUM],
7977 &addr);
7978 if (record_full_arch_list_add_mem (addr, 64))
7979 return -1;
7980 break;
7981
7982 case 0x660ff7: /* maskmovdqu */
7983 regcache_raw_read_unsigned (ir.regcache,
7984 ir.regmap[X86_RECORD_REDI_REGNUM],
7985 &addr);
7986 if (record_full_arch_list_add_mem (addr, 128))
7987 return -1;
7988 break;
7989
7990 default:
7991 goto no_support;
7992 break;
7993 }
7994 break;
7995
7996 default:
7997 goto no_support;
7998 break;
7999 }
8000
8001 /* In the future, maybe still need to deal with need_dasm. */
8002 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8003 if (record_full_arch_list_add_end ())
8004 return -1;
8005
8006 return 0;
8007
8008 no_support:
8009 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8010 "at address %s.\n"),
8011 (unsigned int) (opcode),
8012 paddress (gdbarch, ir.orig_addr));
8013 return -1;
8014 }
8015
8016 static const int i386_record_regmap[] =
8017 {
8018 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8019 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8020 0, 0, 0, 0, 0, 0, 0, 0,
8021 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8022 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8023 };
8024
8025 /* Check that the given address appears suitable for a fast
8026 tracepoint, which on x86-64 means that we need an instruction of at
8027 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8028 jump and not have to worry about program jumps to an address in the
8029 middle of the tracepoint jump. On x86, it may be possible to use
8030 4-byte jumps with a 2-byte offset to a trampoline located in the
8031 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8032 of instruction to replace, and 0 if not, plus an explanatory
8033 string. */
8034
8035 static int
8036 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
8037 CORE_ADDR addr, int *isize, char **msg)
8038 {
8039 int len, jumplen;
8040 static struct ui_file *gdb_null = NULL;
8041
8042 /* Ask the target for the minimum instruction length supported. */
8043 jumplen = target_get_min_fast_tracepoint_insn_len ();
8044
8045 if (jumplen < 0)
8046 {
8047 /* If the target does not support the get_min_fast_tracepoint_insn_len
8048 operation, assume that fast tracepoints will always be implemented
8049 using 4-byte relative jumps on both x86 and x86-64. */
8050 jumplen = 5;
8051 }
8052 else if (jumplen == 0)
8053 {
8054 /* If the target does support get_min_fast_tracepoint_insn_len but
8055 returns zero, then the IPA has not loaded yet. In this case,
8056 we optimistically assume that truncated 2-byte relative jumps
8057 will be available on x86, and compensate later if this assumption
8058 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8059 jumps will always be used. */
8060 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8061 }
8062
8063 /* Dummy file descriptor for the disassembler. */
8064 if (!gdb_null)
8065 gdb_null = ui_file_new ();
8066
8067 /* Check for fit. */
8068 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
8069 if (isize)
8070 *isize = len;
8071
8072 if (len < jumplen)
8073 {
8074 /* Return a bit of target-specific detail to add to the caller's
8075 generic failure message. */
8076 if (msg)
8077 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8078 "need at least %d bytes for the jump"),
8079 len, jumplen);
8080 return 0;
8081 }
8082 else
8083 {
8084 if (msg)
8085 *msg = NULL;
8086 return 1;
8087 }
8088 }
8089
8090 static int
8091 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8092 struct tdesc_arch_data *tdesc_data)
8093 {
8094 const struct target_desc *tdesc = tdep->tdesc;
8095 const struct tdesc_feature *feature_core;
8096
8097 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8098 *feature_avx512;
8099 int i, num_regs, valid_p;
8100
8101 if (! tdesc_has_registers (tdesc))
8102 return 0;
8103
8104 /* Get core registers. */
8105 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8106 if (feature_core == NULL)
8107 return 0;
8108
8109 /* Get SSE registers. */
8110 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8111
8112 /* Try AVX registers. */
8113 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8114
8115 /* Try MPX registers. */
8116 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8117
8118 /* Try AVX512 registers. */
8119 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8120
8121 valid_p = 1;
8122
8123 /* The XCR0 bits. */
8124 if (feature_avx512)
8125 {
8126 /* AVX512 register description requires AVX register description. */
8127 if (!feature_avx)
8128 return 0;
8129
8130 tdep->xcr0 = X86_XSTATE_MPX_AVX512_MASK;
8131
8132 /* It may have been set by OSABI initialization function. */
8133 if (tdep->k0_regnum < 0)
8134 {
8135 tdep->k_register_names = i386_k_names;
8136 tdep->k0_regnum = I386_K0_REGNUM;
8137 }
8138
8139 for (i = 0; i < I387_NUM_K_REGS; i++)
8140 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8141 tdep->k0_regnum + i,
8142 i386_k_names[i]);
8143
8144 if (tdep->num_zmm_regs == 0)
8145 {
8146 tdep->zmmh_register_names = i386_zmmh_names;
8147 tdep->num_zmm_regs = 8;
8148 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8149 }
8150
8151 for (i = 0; i < tdep->num_zmm_regs; i++)
8152 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8153 tdep->zmm0h_regnum + i,
8154 tdep->zmmh_register_names[i]);
8155
8156 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8157 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8158 tdep->xmm16_regnum + i,
8159 tdep->xmm_avx512_register_names[i]);
8160
8161 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8162 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8163 tdep->ymm16h_regnum + i,
8164 tdep->ymm16h_register_names[i]);
8165 }
8166 if (feature_avx)
8167 {
8168 /* AVX register description requires SSE register description. */
8169 if (!feature_sse)
8170 return 0;
8171
8172 if (!feature_avx512)
8173 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8174
8175 /* It may have been set by OSABI initialization function. */
8176 if (tdep->num_ymm_regs == 0)
8177 {
8178 tdep->ymmh_register_names = i386_ymmh_names;
8179 tdep->num_ymm_regs = 8;
8180 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8181 }
8182
8183 for (i = 0; i < tdep->num_ymm_regs; i++)
8184 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8185 tdep->ymm0h_regnum + i,
8186 tdep->ymmh_register_names[i]);
8187 }
8188 else if (feature_sse)
8189 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8190 else
8191 {
8192 tdep->xcr0 = X86_XSTATE_X87_MASK;
8193 tdep->num_xmm_regs = 0;
8194 }
8195
8196 num_regs = tdep->num_core_regs;
8197 for (i = 0; i < num_regs; i++)
8198 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8199 tdep->register_names[i]);
8200
8201 if (feature_sse)
8202 {
8203 /* Need to include %mxcsr, so add one. */
8204 num_regs += tdep->num_xmm_regs + 1;
8205 for (; i < num_regs; i++)
8206 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8207 tdep->register_names[i]);
8208 }
8209
8210 if (feature_mpx)
8211 {
8212 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8213
8214 if (tdep->bnd0r_regnum < 0)
8215 {
8216 tdep->mpx_register_names = i386_mpx_names;
8217 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8218 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8219 }
8220
8221 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8222 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8223 I387_BND0R_REGNUM (tdep) + i,
8224 tdep->mpx_register_names[i]);
8225 }
8226
8227 return valid_p;
8228 }
8229
8230 \f
8231 static struct gdbarch *
8232 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8233 {
8234 struct gdbarch_tdep *tdep;
8235 struct gdbarch *gdbarch;
8236 struct tdesc_arch_data *tdesc_data;
8237 const struct target_desc *tdesc;
8238 int mm0_regnum;
8239 int ymm0_regnum;
8240 int bnd0_regnum;
8241 int num_bnd_cooked;
8242 int k0_regnum;
8243 int zmm0_regnum;
8244
8245 /* If there is already a candidate, use it. */
8246 arches = gdbarch_list_lookup_by_info (arches, &info);
8247 if (arches != NULL)
8248 return arches->gdbarch;
8249
8250 /* Allocate space for the new architecture. */
8251 tdep = XCNEW (struct gdbarch_tdep);
8252 gdbarch = gdbarch_alloc (&info, tdep);
8253
8254 /* General-purpose registers. */
8255 tdep->gregset_reg_offset = NULL;
8256 tdep->gregset_num_regs = I386_NUM_GREGS;
8257 tdep->sizeof_gregset = 0;
8258
8259 /* Floating-point registers. */
8260 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8261 tdep->fpregset = &i386_fpregset;
8262
8263 /* The default settings include the FPU registers, the MMX registers
8264 and the SSE registers. This can be overridden for a specific ABI
8265 by adjusting the members `st0_regnum', `mm0_regnum' and
8266 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8267 will show up in the output of "info all-registers". */
8268
8269 tdep->st0_regnum = I386_ST0_REGNUM;
8270
8271 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8272 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8273
8274 tdep->jb_pc_offset = -1;
8275 tdep->struct_return = pcc_struct_return;
8276 tdep->sigtramp_start = 0;
8277 tdep->sigtramp_end = 0;
8278 tdep->sigtramp_p = i386_sigtramp_p;
8279 tdep->sigcontext_addr = NULL;
8280 tdep->sc_reg_offset = NULL;
8281 tdep->sc_pc_offset = -1;
8282 tdep->sc_sp_offset = -1;
8283
8284 tdep->xsave_xcr0_offset = -1;
8285
8286 tdep->record_regmap = i386_record_regmap;
8287
8288 set_gdbarch_long_long_align_bit (gdbarch, 32);
8289
8290 /* The format used for `long double' on almost all i386 targets is
8291 the i387 extended floating-point format. In fact, of all targets
8292 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8293 on having a `long double' that's not `long' at all. */
8294 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8295
8296 /* Although the i387 extended floating-point has only 80 significant
8297 bits, a `long double' actually takes up 96, probably to enforce
8298 alignment. */
8299 set_gdbarch_long_double_bit (gdbarch, 96);
8300
8301 /* Register numbers of various important registers. */
8302 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8303 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8304 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8305 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8306
8307 /* NOTE: kettenis/20040418: GCC does have two possible register
8308 numbering schemes on the i386: dbx and SVR4. These schemes
8309 differ in how they number %ebp, %esp, %eflags, and the
8310 floating-point registers, and are implemented by the arrays
8311 dbx_register_map[] and svr4_dbx_register_map in
8312 gcc/config/i386.c. GCC also defines a third numbering scheme in
8313 gcc/config/i386.c, which it designates as the "default" register
8314 map used in 64bit mode. This last register numbering scheme is
8315 implemented in dbx64_register_map, and is used for AMD64; see
8316 amd64-tdep.c.
8317
8318 Currently, each GCC i386 target always uses the same register
8319 numbering scheme across all its supported debugging formats
8320 i.e. SDB (COFF), stabs and DWARF 2. This is because
8321 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8322 DBX_REGISTER_NUMBER macro which is defined by each target's
8323 respective config header in a manner independent of the requested
8324 output debugging format.
8325
8326 This does not match the arrangement below, which presumes that
8327 the SDB and stabs numbering schemes differ from the DWARF and
8328 DWARF 2 ones. The reason for this arrangement is that it is
8329 likely to get the numbering scheme for the target's
8330 default/native debug format right. For targets where GCC is the
8331 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8332 targets where the native toolchain uses a different numbering
8333 scheme for a particular debug format (stabs-in-ELF on Solaris)
8334 the defaults below will have to be overridden, like
8335 i386_elf_init_abi() does. */
8336
8337 /* Use the dbx register numbering scheme for stabs and COFF. */
8338 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8339 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8340
8341 /* Use the SVR4 register numbering scheme for DWARF 2. */
8342 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8343
8344 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8345 be in use on any of the supported i386 targets. */
8346
8347 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8348
8349 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8350
8351 /* Call dummy code. */
8352 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8353 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8354 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8355 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8356
8357 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8358 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8359 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8360
8361 set_gdbarch_return_value (gdbarch, i386_return_value);
8362
8363 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8364
8365 /* Stack grows downward. */
8366 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8367
8368 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
8369 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8370 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8371
8372 set_gdbarch_frame_args_skip (gdbarch, 8);
8373
8374 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8375
8376 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8377
8378 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8379
8380 /* Add the i386 register groups. */
8381 i386_add_reggroups (gdbarch);
8382 tdep->register_reggroup_p = i386_register_reggroup_p;
8383
8384 /* Helper for function argument information. */
8385 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8386
8387 /* Hook the function epilogue frame unwinder. This unwinder is
8388 appended to the list first, so that it supercedes the DWARF
8389 unwinder in function epilogues (where the DWARF unwinder
8390 currently fails). */
8391 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8392
8393 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8394 to the list before the prologue-based unwinders, so that DWARF
8395 CFI info will be used if it is available. */
8396 dwarf2_append_unwinders (gdbarch);
8397
8398 frame_base_set_default (gdbarch, &i386_frame_base);
8399
8400 /* Pseudo registers may be changed by amd64_init_abi. */
8401 set_gdbarch_pseudo_register_read_value (gdbarch,
8402 i386_pseudo_register_read_value);
8403 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8404
8405 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8406 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8407
8408 /* Override the normal target description method to make the AVX
8409 upper halves anonymous. */
8410 set_gdbarch_register_name (gdbarch, i386_register_name);
8411
8412 /* Even though the default ABI only includes general-purpose registers,
8413 floating-point registers and the SSE registers, we have to leave a
8414 gap for the upper AVX, MPX and AVX512 registers. */
8415 set_gdbarch_num_regs (gdbarch, I386_AVX512_NUM_REGS);
8416
8417 /* Get the x86 target description from INFO. */
8418 tdesc = info.target_desc;
8419 if (! tdesc_has_registers (tdesc))
8420 tdesc = tdesc_i386;
8421 tdep->tdesc = tdesc;
8422
8423 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8424 tdep->register_names = i386_register_names;
8425
8426 /* No upper YMM registers. */
8427 tdep->ymmh_register_names = NULL;
8428 tdep->ymm0h_regnum = -1;
8429
8430 /* No upper ZMM registers. */
8431 tdep->zmmh_register_names = NULL;
8432 tdep->zmm0h_regnum = -1;
8433
8434 /* No high XMM registers. */
8435 tdep->xmm_avx512_register_names = NULL;
8436 tdep->xmm16_regnum = -1;
8437
8438 /* No upper YMM16-31 registers. */
8439 tdep->ymm16h_register_names = NULL;
8440 tdep->ymm16h_regnum = -1;
8441
8442 tdep->num_byte_regs = 8;
8443 tdep->num_word_regs = 8;
8444 tdep->num_dword_regs = 0;
8445 tdep->num_mmx_regs = 8;
8446 tdep->num_ymm_regs = 0;
8447
8448 /* No MPX registers. */
8449 tdep->bnd0r_regnum = -1;
8450 tdep->bndcfgu_regnum = -1;
8451
8452 /* No AVX512 registers. */
8453 tdep->k0_regnum = -1;
8454 tdep->num_zmm_regs = 0;
8455 tdep->num_ymm_avx512_regs = 0;
8456 tdep->num_xmm_avx512_regs = 0;
8457
8458 tdesc_data = tdesc_data_alloc ();
8459
8460 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8461
8462 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8463
8464 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8465 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8466 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8467
8468 /* Hook in ABI-specific overrides, if they have been registered. */
8469 info.tdep_info = (void *) tdesc_data;
8470 gdbarch_init_osabi (info, gdbarch);
8471
8472 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8473 {
8474 tdesc_data_cleanup (tdesc_data);
8475 xfree (tdep);
8476 gdbarch_free (gdbarch);
8477 return NULL;
8478 }
8479
8480 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8481
8482 /* Wire in pseudo registers. Number of pseudo registers may be
8483 changed. */
8484 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8485 + tdep->num_word_regs
8486 + tdep->num_dword_regs
8487 + tdep->num_mmx_regs
8488 + tdep->num_ymm_regs
8489 + num_bnd_cooked
8490 + tdep->num_ymm_avx512_regs
8491 + tdep->num_zmm_regs));
8492
8493 /* Target description may be changed. */
8494 tdesc = tdep->tdesc;
8495
8496 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8497
8498 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8499 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8500
8501 /* Make %al the first pseudo-register. */
8502 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8503 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8504
8505 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8506 if (tdep->num_dword_regs)
8507 {
8508 /* Support dword pseudo-register if it hasn't been disabled. */
8509 tdep->eax_regnum = ymm0_regnum;
8510 ymm0_regnum += tdep->num_dword_regs;
8511 }
8512 else
8513 tdep->eax_regnum = -1;
8514
8515 mm0_regnum = ymm0_regnum;
8516 if (tdep->num_ymm_regs)
8517 {
8518 /* Support YMM pseudo-register if it is available. */
8519 tdep->ymm0_regnum = ymm0_regnum;
8520 mm0_regnum += tdep->num_ymm_regs;
8521 }
8522 else
8523 tdep->ymm0_regnum = -1;
8524
8525 if (tdep->num_ymm_avx512_regs)
8526 {
8527 /* Support YMM16-31 pseudo registers if available. */
8528 tdep->ymm16_regnum = mm0_regnum;
8529 mm0_regnum += tdep->num_ymm_avx512_regs;
8530 }
8531 else
8532 tdep->ymm16_regnum = -1;
8533
8534 if (tdep->num_zmm_regs)
8535 {
8536 /* Support ZMM pseudo-register if it is available. */
8537 tdep->zmm0_regnum = mm0_regnum;
8538 mm0_regnum += tdep->num_zmm_regs;
8539 }
8540 else
8541 tdep->zmm0_regnum = -1;
8542
8543 bnd0_regnum = mm0_regnum;
8544 if (tdep->num_mmx_regs != 0)
8545 {
8546 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8547 tdep->mm0_regnum = mm0_regnum;
8548 bnd0_regnum += tdep->num_mmx_regs;
8549 }
8550 else
8551 tdep->mm0_regnum = -1;
8552
8553 if (tdep->bnd0r_regnum > 0)
8554 tdep->bnd0_regnum = bnd0_regnum;
8555 else
8556 tdep-> bnd0_regnum = -1;
8557
8558 /* Hook in the legacy prologue-based unwinders last (fallback). */
8559 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8560 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8561 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8562
8563 /* If we have a register mapping, enable the generic core file
8564 support, unless it has already been enabled. */
8565 if (tdep->gregset_reg_offset
8566 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8567 set_gdbarch_iterate_over_regset_sections
8568 (gdbarch, i386_iterate_over_regset_sections);
8569
8570 set_gdbarch_skip_permanent_breakpoint (gdbarch,
8571 i386_skip_permanent_breakpoint);
8572
8573 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8574 i386_fast_tracepoint_valid_at);
8575
8576 return gdbarch;
8577 }
8578
8579 static enum gdb_osabi
8580 i386_coff_osabi_sniffer (bfd *abfd)
8581 {
8582 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8583 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8584 return GDB_OSABI_GO32;
8585
8586 return GDB_OSABI_UNKNOWN;
8587 }
8588 \f
8589
8590 /* Provide a prototype to silence -Wmissing-prototypes. */
8591 void _initialize_i386_tdep (void);
8592
8593 void
8594 _initialize_i386_tdep (void)
8595 {
8596 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8597
8598 /* Add the variable that controls the disassembly flavor. */
8599 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8600 &disassembly_flavor, _("\
8601 Set the disassembly flavor."), _("\
8602 Show the disassembly flavor."), _("\
8603 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8604 NULL,
8605 NULL, /* FIXME: i18n: */
8606 &setlist, &showlist);
8607
8608 /* Add the variable that controls the convention for returning
8609 structs. */
8610 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
8611 &struct_convention, _("\
8612 Set the convention for returning small structs."), _("\
8613 Show the convention for returning small structs."), _("\
8614 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
8615 is \"default\"."),
8616 NULL,
8617 NULL, /* FIXME: i18n: */
8618 &setlist, &showlist);
8619
8620 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
8621 i386_coff_osabi_sniffer);
8622
8623 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8624 i386_svr4_init_abi);
8625 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8626 i386_go32_init_abi);
8627
8628 /* Initialize the i386-specific register groups. */
8629 i386_init_reggroups ();
8630
8631 /* Initialize the standard target descriptions. */
8632 initialize_tdesc_i386 ();
8633 initialize_tdesc_i386_mmx ();
8634 initialize_tdesc_i386_avx ();
8635 initialize_tdesc_i386_mpx ();
8636 initialize_tdesc_i386_avx512 ();
8637
8638 /* Tell remote stub that we support XML target description. */
8639 register_remote_support_xml ("i386");
8640 }
This page took 0.233432 seconds and 5 git commands to generate.