GDBARCH_BREAKPOINT_MANIPULATION and SET_GDBARCH_BREAKPOINT_MANIPULATION
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "infrun.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "osabi.h"
37 #include "regcache.h"
38 #include "reggroups.h"
39 #include "regset.h"
40 #include "symfile.h"
41 #include "symtab.h"
42 #include "target.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "x86-xstate.h"
50
51 #include "record.h"
52 #include "record-full.h"
53 #include "features/i386/i386.c"
54 #include "features/i386/i386-avx.c"
55 #include "features/i386/i386-mpx.c"
56 #include "features/i386/i386-avx-mpx.c"
57 #include "features/i386/i386-avx512.c"
58 #include "features/i386/i386-mmx.c"
59
60 #include "ax.h"
61 #include "ax-gdb.h"
62
63 #include "stap-probe.h"
64 #include "user-regs.h"
65 #include "cli/cli-utils.h"
66 #include "expression.h"
67 #include "parser-defs.h"
68 #include <ctype.h>
69 #include <algorithm>
70
71 /* Register names. */
72
73 static const char *i386_register_names[] =
74 {
75 "eax", "ecx", "edx", "ebx",
76 "esp", "ebp", "esi", "edi",
77 "eip", "eflags", "cs", "ss",
78 "ds", "es", "fs", "gs",
79 "st0", "st1", "st2", "st3",
80 "st4", "st5", "st6", "st7",
81 "fctrl", "fstat", "ftag", "fiseg",
82 "fioff", "foseg", "fooff", "fop",
83 "xmm0", "xmm1", "xmm2", "xmm3",
84 "xmm4", "xmm5", "xmm6", "xmm7",
85 "mxcsr"
86 };
87
88 static const char *i386_zmm_names[] =
89 {
90 "zmm0", "zmm1", "zmm2", "zmm3",
91 "zmm4", "zmm5", "zmm6", "zmm7"
92 };
93
94 static const char *i386_zmmh_names[] =
95 {
96 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
97 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
98 };
99
100 static const char *i386_k_names[] =
101 {
102 "k0", "k1", "k2", "k3",
103 "k4", "k5", "k6", "k7"
104 };
105
106 static const char *i386_ymm_names[] =
107 {
108 "ymm0", "ymm1", "ymm2", "ymm3",
109 "ymm4", "ymm5", "ymm6", "ymm7",
110 };
111
112 static const char *i386_ymmh_names[] =
113 {
114 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
115 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
116 };
117
118 static const char *i386_mpx_names[] =
119 {
120 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
121 };
122
123 /* Register names for MPX pseudo-registers. */
124
125 static const char *i386_bnd_names[] =
126 {
127 "bnd0", "bnd1", "bnd2", "bnd3"
128 };
129
130 /* Register names for MMX pseudo-registers. */
131
132 static const char *i386_mmx_names[] =
133 {
134 "mm0", "mm1", "mm2", "mm3",
135 "mm4", "mm5", "mm6", "mm7"
136 };
137
138 /* Register names for byte pseudo-registers. */
139
140 static const char *i386_byte_names[] =
141 {
142 "al", "cl", "dl", "bl",
143 "ah", "ch", "dh", "bh"
144 };
145
146 /* Register names for word pseudo-registers. */
147
148 static const char *i386_word_names[] =
149 {
150 "ax", "cx", "dx", "bx",
151 "", "bp", "si", "di"
152 };
153
154 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
155 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
156 we have 16 upper ZMM regs that have to be handled differently. */
157
158 const int num_lower_zmm_regs = 16;
159
160 /* MMX register? */
161
162 static int
163 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
164 {
165 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
166 int mm0_regnum = tdep->mm0_regnum;
167
168 if (mm0_regnum < 0)
169 return 0;
170
171 regnum -= mm0_regnum;
172 return regnum >= 0 && regnum < tdep->num_mmx_regs;
173 }
174
175 /* Byte register? */
176
177 int
178 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
179 {
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181
182 regnum -= tdep->al_regnum;
183 return regnum >= 0 && regnum < tdep->num_byte_regs;
184 }
185
186 /* Word register? */
187
188 int
189 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
190 {
191 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
192
193 regnum -= tdep->ax_regnum;
194 return regnum >= 0 && regnum < tdep->num_word_regs;
195 }
196
197 /* Dword register? */
198
199 int
200 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
201 {
202 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
203 int eax_regnum = tdep->eax_regnum;
204
205 if (eax_regnum < 0)
206 return 0;
207
208 regnum -= eax_regnum;
209 return regnum >= 0 && regnum < tdep->num_dword_regs;
210 }
211
212 /* AVX512 register? */
213
214 int
215 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
216 {
217 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
218 int zmm0h_regnum = tdep->zmm0h_regnum;
219
220 if (zmm0h_regnum < 0)
221 return 0;
222
223 regnum -= zmm0h_regnum;
224 return regnum >= 0 && regnum < tdep->num_zmm_regs;
225 }
226
227 int
228 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
229 {
230 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
231 int zmm0_regnum = tdep->zmm0_regnum;
232
233 if (zmm0_regnum < 0)
234 return 0;
235
236 regnum -= zmm0_regnum;
237 return regnum >= 0 && regnum < tdep->num_zmm_regs;
238 }
239
240 int
241 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
242 {
243 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
244 int k0_regnum = tdep->k0_regnum;
245
246 if (k0_regnum < 0)
247 return 0;
248
249 regnum -= k0_regnum;
250 return regnum >= 0 && regnum < I387_NUM_K_REGS;
251 }
252
253 static int
254 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
255 {
256 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
257 int ymm0h_regnum = tdep->ymm0h_regnum;
258
259 if (ymm0h_regnum < 0)
260 return 0;
261
262 regnum -= ymm0h_regnum;
263 return regnum >= 0 && regnum < tdep->num_ymm_regs;
264 }
265
266 /* AVX register? */
267
268 int
269 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
270 {
271 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
272 int ymm0_regnum = tdep->ymm0_regnum;
273
274 if (ymm0_regnum < 0)
275 return 0;
276
277 regnum -= ymm0_regnum;
278 return regnum >= 0 && regnum < tdep->num_ymm_regs;
279 }
280
281 static int
282 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
283 {
284 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
285 int ymm16h_regnum = tdep->ymm16h_regnum;
286
287 if (ymm16h_regnum < 0)
288 return 0;
289
290 regnum -= ymm16h_regnum;
291 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
292 }
293
294 int
295 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
296 {
297 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
298 int ymm16_regnum = tdep->ymm16_regnum;
299
300 if (ymm16_regnum < 0)
301 return 0;
302
303 regnum -= ymm16_regnum;
304 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
305 }
306
307 /* BND register? */
308
309 int
310 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
311 {
312 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
313 int bnd0_regnum = tdep->bnd0_regnum;
314
315 if (bnd0_regnum < 0)
316 return 0;
317
318 regnum -= bnd0_regnum;
319 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
320 }
321
322 /* SSE register? */
323
324 int
325 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
326 {
327 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
328 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
329
330 if (num_xmm_regs == 0)
331 return 0;
332
333 regnum -= I387_XMM0_REGNUM (tdep);
334 return regnum >= 0 && regnum < num_xmm_regs;
335 }
336
337 /* XMM_512 register? */
338
339 int
340 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
341 {
342 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
343 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
344
345 if (num_xmm_avx512_regs == 0)
346 return 0;
347
348 regnum -= I387_XMM16_REGNUM (tdep);
349 return regnum >= 0 && regnum < num_xmm_avx512_regs;
350 }
351
352 static int
353 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
354 {
355 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
356
357 if (I387_NUM_XMM_REGS (tdep) == 0)
358 return 0;
359
360 return (regnum == I387_MXCSR_REGNUM (tdep));
361 }
362
363 /* FP register? */
364
365 int
366 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
367 {
368 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
369
370 if (I387_ST0_REGNUM (tdep) < 0)
371 return 0;
372
373 return (I387_ST0_REGNUM (tdep) <= regnum
374 && regnum < I387_FCTRL_REGNUM (tdep));
375 }
376
377 int
378 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
379 {
380 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
381
382 if (I387_ST0_REGNUM (tdep) < 0)
383 return 0;
384
385 return (I387_FCTRL_REGNUM (tdep) <= regnum
386 && regnum < I387_XMM0_REGNUM (tdep));
387 }
388
389 /* BNDr (raw) register? */
390
391 static int
392 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
393 {
394 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
395
396 if (I387_BND0R_REGNUM (tdep) < 0)
397 return 0;
398
399 regnum -= tdep->bnd0r_regnum;
400 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
401 }
402
403 /* BND control register? */
404
405 static int
406 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
407 {
408 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
409
410 if (I387_BNDCFGU_REGNUM (tdep) < 0)
411 return 0;
412
413 regnum -= I387_BNDCFGU_REGNUM (tdep);
414 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
415 }
416
417 /* Return the name of register REGNUM, or the empty string if it is
418 an anonymous register. */
419
420 static const char *
421 i386_register_name (struct gdbarch *gdbarch, int regnum)
422 {
423 /* Hide the upper YMM registers. */
424 if (i386_ymmh_regnum_p (gdbarch, regnum))
425 return "";
426
427 /* Hide the upper YMM16-31 registers. */
428 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
429 return "";
430
431 /* Hide the upper ZMM registers. */
432 if (i386_zmmh_regnum_p (gdbarch, regnum))
433 return "";
434
435 return tdesc_register_name (gdbarch, regnum);
436 }
437
438 /* Return the name of register REGNUM. */
439
440 const char *
441 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
442 {
443 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
444 if (i386_bnd_regnum_p (gdbarch, regnum))
445 return i386_bnd_names[regnum - tdep->bnd0_regnum];
446 if (i386_mmx_regnum_p (gdbarch, regnum))
447 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
448 else if (i386_ymm_regnum_p (gdbarch, regnum))
449 return i386_ymm_names[regnum - tdep->ymm0_regnum];
450 else if (i386_zmm_regnum_p (gdbarch, regnum))
451 return i386_zmm_names[regnum - tdep->zmm0_regnum];
452 else if (i386_byte_regnum_p (gdbarch, regnum))
453 return i386_byte_names[regnum - tdep->al_regnum];
454 else if (i386_word_regnum_p (gdbarch, regnum))
455 return i386_word_names[regnum - tdep->ax_regnum];
456
457 internal_error (__FILE__, __LINE__, _("invalid regnum"));
458 }
459
460 /* Convert a dbx register number REG to the appropriate register
461 number used by GDB. */
462
463 static int
464 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
465 {
466 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
467
468 /* This implements what GCC calls the "default" register map
469 (dbx_register_map[]). */
470
471 if (reg >= 0 && reg <= 7)
472 {
473 /* General-purpose registers. The debug info calls %ebp
474 register 4, and %esp register 5. */
475 if (reg == 4)
476 return 5;
477 else if (reg == 5)
478 return 4;
479 else return reg;
480 }
481 else if (reg >= 12 && reg <= 19)
482 {
483 /* Floating-point registers. */
484 return reg - 12 + I387_ST0_REGNUM (tdep);
485 }
486 else if (reg >= 21 && reg <= 28)
487 {
488 /* SSE registers. */
489 int ymm0_regnum = tdep->ymm0_regnum;
490
491 if (ymm0_regnum >= 0
492 && i386_xmm_regnum_p (gdbarch, reg))
493 return reg - 21 + ymm0_regnum;
494 else
495 return reg - 21 + I387_XMM0_REGNUM (tdep);
496 }
497 else if (reg >= 29 && reg <= 36)
498 {
499 /* MMX registers. */
500 return reg - 29 + I387_MM0_REGNUM (tdep);
501 }
502
503 /* This will hopefully provoke a warning. */
504 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
505 }
506
507 /* Convert SVR4 DWARF register number REG to the appropriate register number
508 used by GDB. */
509
510 static int
511 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
512 {
513 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
514
515 /* This implements the GCC register map that tries to be compatible
516 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
517
518 /* The SVR4 register numbering includes %eip and %eflags, and
519 numbers the floating point registers differently. */
520 if (reg >= 0 && reg <= 9)
521 {
522 /* General-purpose registers. */
523 return reg;
524 }
525 else if (reg >= 11 && reg <= 18)
526 {
527 /* Floating-point registers. */
528 return reg - 11 + I387_ST0_REGNUM (tdep);
529 }
530 else if (reg >= 21 && reg <= 36)
531 {
532 /* The SSE and MMX registers have the same numbers as with dbx. */
533 return i386_dbx_reg_to_regnum (gdbarch, reg);
534 }
535
536 switch (reg)
537 {
538 case 37: return I387_FCTRL_REGNUM (tdep);
539 case 38: return I387_FSTAT_REGNUM (tdep);
540 case 39: return I387_MXCSR_REGNUM (tdep);
541 case 40: return I386_ES_REGNUM;
542 case 41: return I386_CS_REGNUM;
543 case 42: return I386_SS_REGNUM;
544 case 43: return I386_DS_REGNUM;
545 case 44: return I386_FS_REGNUM;
546 case 45: return I386_GS_REGNUM;
547 }
548
549 return -1;
550 }
551
552 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
553 num_regs + num_pseudo_regs for other debug formats. */
554
555 static int
556 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
557 {
558 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
559
560 if (regnum == -1)
561 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
562 return regnum;
563 }
564
565 \f
566
567 /* This is the variable that is set with "set disassembly-flavor", and
568 its legitimate values. */
569 static const char att_flavor[] = "att";
570 static const char intel_flavor[] = "intel";
571 static const char *const valid_flavors[] =
572 {
573 att_flavor,
574 intel_flavor,
575 NULL
576 };
577 static const char *disassembly_flavor = att_flavor;
578 \f
579
580 /* Use the program counter to determine the contents and size of a
581 breakpoint instruction. Return a pointer to a string of bytes that
582 encode a breakpoint instruction, store the length of the string in
583 *LEN and optionally adjust *PC to point to the correct memory
584 location for inserting the breakpoint.
585
586 On the i386 we have a single breakpoint that fits in a single byte
587 and can be inserted anywhere.
588
589 This function is 64-bit safe. */
590
591 static const gdb_byte break_insn[] = { 0xcc }; /* int 3 */
592
593 GDBARCH_BREAKPOINT_MANIPULATION (i386, break_insn)
594 \f
595 /* Displaced instruction handling. */
596
597 /* Skip the legacy instruction prefixes in INSN.
598 Not all prefixes are valid for any particular insn
599 but we needn't care, the insn will fault if it's invalid.
600 The result is a pointer to the first opcode byte,
601 or NULL if we run off the end of the buffer. */
602
603 static gdb_byte *
604 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
605 {
606 gdb_byte *end = insn + max_len;
607
608 while (insn < end)
609 {
610 switch (*insn)
611 {
612 case DATA_PREFIX_OPCODE:
613 case ADDR_PREFIX_OPCODE:
614 case CS_PREFIX_OPCODE:
615 case DS_PREFIX_OPCODE:
616 case ES_PREFIX_OPCODE:
617 case FS_PREFIX_OPCODE:
618 case GS_PREFIX_OPCODE:
619 case SS_PREFIX_OPCODE:
620 case LOCK_PREFIX_OPCODE:
621 case REPE_PREFIX_OPCODE:
622 case REPNE_PREFIX_OPCODE:
623 ++insn;
624 continue;
625 default:
626 return insn;
627 }
628 }
629
630 return NULL;
631 }
632
633 static int
634 i386_absolute_jmp_p (const gdb_byte *insn)
635 {
636 /* jmp far (absolute address in operand). */
637 if (insn[0] == 0xea)
638 return 1;
639
640 if (insn[0] == 0xff)
641 {
642 /* jump near, absolute indirect (/4). */
643 if ((insn[1] & 0x38) == 0x20)
644 return 1;
645
646 /* jump far, absolute indirect (/5). */
647 if ((insn[1] & 0x38) == 0x28)
648 return 1;
649 }
650
651 return 0;
652 }
653
654 /* Return non-zero if INSN is a jump, zero otherwise. */
655
656 static int
657 i386_jmp_p (const gdb_byte *insn)
658 {
659 /* jump short, relative. */
660 if (insn[0] == 0xeb)
661 return 1;
662
663 /* jump near, relative. */
664 if (insn[0] == 0xe9)
665 return 1;
666
667 return i386_absolute_jmp_p (insn);
668 }
669
670 static int
671 i386_absolute_call_p (const gdb_byte *insn)
672 {
673 /* call far, absolute. */
674 if (insn[0] == 0x9a)
675 return 1;
676
677 if (insn[0] == 0xff)
678 {
679 /* Call near, absolute indirect (/2). */
680 if ((insn[1] & 0x38) == 0x10)
681 return 1;
682
683 /* Call far, absolute indirect (/3). */
684 if ((insn[1] & 0x38) == 0x18)
685 return 1;
686 }
687
688 return 0;
689 }
690
691 static int
692 i386_ret_p (const gdb_byte *insn)
693 {
694 switch (insn[0])
695 {
696 case 0xc2: /* ret near, pop N bytes. */
697 case 0xc3: /* ret near */
698 case 0xca: /* ret far, pop N bytes. */
699 case 0xcb: /* ret far */
700 case 0xcf: /* iret */
701 return 1;
702
703 default:
704 return 0;
705 }
706 }
707
708 static int
709 i386_call_p (const gdb_byte *insn)
710 {
711 if (i386_absolute_call_p (insn))
712 return 1;
713
714 /* call near, relative. */
715 if (insn[0] == 0xe8)
716 return 1;
717
718 return 0;
719 }
720
721 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
722 length in bytes. Otherwise, return zero. */
723
724 static int
725 i386_syscall_p (const gdb_byte *insn, int *lengthp)
726 {
727 /* Is it 'int $0x80'? */
728 if ((insn[0] == 0xcd && insn[1] == 0x80)
729 /* Or is it 'sysenter'? */
730 || (insn[0] == 0x0f && insn[1] == 0x34)
731 /* Or is it 'syscall'? */
732 || (insn[0] == 0x0f && insn[1] == 0x05))
733 {
734 *lengthp = 2;
735 return 1;
736 }
737
738 return 0;
739 }
740
741 /* The gdbarch insn_is_call method. */
742
743 static int
744 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
745 {
746 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
747
748 read_code (addr, buf, I386_MAX_INSN_LEN);
749 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
750
751 return i386_call_p (insn);
752 }
753
754 /* The gdbarch insn_is_ret method. */
755
756 static int
757 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
758 {
759 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
760
761 read_code (addr, buf, I386_MAX_INSN_LEN);
762 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
763
764 return i386_ret_p (insn);
765 }
766
767 /* The gdbarch insn_is_jump method. */
768
769 static int
770 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
771 {
772 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
773
774 read_code (addr, buf, I386_MAX_INSN_LEN);
775 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
776
777 return i386_jmp_p (insn);
778 }
779
780 /* Some kernels may run one past a syscall insn, so we have to cope.
781 Otherwise this is just simple_displaced_step_copy_insn. */
782
783 struct displaced_step_closure *
784 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
785 CORE_ADDR from, CORE_ADDR to,
786 struct regcache *regs)
787 {
788 size_t len = gdbarch_max_insn_length (gdbarch);
789 gdb_byte *buf = (gdb_byte *) xmalloc (len);
790
791 read_memory (from, buf, len);
792
793 /* GDB may get control back after the insn after the syscall.
794 Presumably this is a kernel bug.
795 If this is a syscall, make sure there's a nop afterwards. */
796 {
797 int syscall_length;
798 gdb_byte *insn;
799
800 insn = i386_skip_prefixes (buf, len);
801 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
802 insn[syscall_length] = NOP_OPCODE;
803 }
804
805 write_memory (to, buf, len);
806
807 if (debug_displaced)
808 {
809 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
810 paddress (gdbarch, from), paddress (gdbarch, to));
811 displaced_step_dump_bytes (gdb_stdlog, buf, len);
812 }
813
814 return (struct displaced_step_closure *) buf;
815 }
816
817 /* Fix up the state of registers and memory after having single-stepped
818 a displaced instruction. */
819
820 void
821 i386_displaced_step_fixup (struct gdbarch *gdbarch,
822 struct displaced_step_closure *closure,
823 CORE_ADDR from, CORE_ADDR to,
824 struct regcache *regs)
825 {
826 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
827
828 /* The offset we applied to the instruction's address.
829 This could well be negative (when viewed as a signed 32-bit
830 value), but ULONGEST won't reflect that, so take care when
831 applying it. */
832 ULONGEST insn_offset = to - from;
833
834 /* Since we use simple_displaced_step_copy_insn, our closure is a
835 copy of the instruction. */
836 gdb_byte *insn = (gdb_byte *) closure;
837 /* The start of the insn, needed in case we see some prefixes. */
838 gdb_byte *insn_start = insn;
839
840 if (debug_displaced)
841 fprintf_unfiltered (gdb_stdlog,
842 "displaced: fixup (%s, %s), "
843 "insn = 0x%02x 0x%02x ...\n",
844 paddress (gdbarch, from), paddress (gdbarch, to),
845 insn[0], insn[1]);
846
847 /* The list of issues to contend with here is taken from
848 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
849 Yay for Free Software! */
850
851 /* Relocate the %eip, if necessary. */
852
853 /* The instruction recognizers we use assume any leading prefixes
854 have been skipped. */
855 {
856 /* This is the size of the buffer in closure. */
857 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
858 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
859 /* If there are too many prefixes, just ignore the insn.
860 It will fault when run. */
861 if (opcode != NULL)
862 insn = opcode;
863 }
864
865 /* Except in the case of absolute or indirect jump or call
866 instructions, or a return instruction, the new eip is relative to
867 the displaced instruction; make it relative. Well, signal
868 handler returns don't need relocation either, but we use the
869 value of %eip to recognize those; see below. */
870 if (! i386_absolute_jmp_p (insn)
871 && ! i386_absolute_call_p (insn)
872 && ! i386_ret_p (insn))
873 {
874 ULONGEST orig_eip;
875 int insn_len;
876
877 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
878
879 /* A signal trampoline system call changes the %eip, resuming
880 execution of the main program after the signal handler has
881 returned. That makes them like 'return' instructions; we
882 shouldn't relocate %eip.
883
884 But most system calls don't, and we do need to relocate %eip.
885
886 Our heuristic for distinguishing these cases: if stepping
887 over the system call instruction left control directly after
888 the instruction, the we relocate --- control almost certainly
889 doesn't belong in the displaced copy. Otherwise, we assume
890 the instruction has put control where it belongs, and leave
891 it unrelocated. Goodness help us if there are PC-relative
892 system calls. */
893 if (i386_syscall_p (insn, &insn_len)
894 && orig_eip != to + (insn - insn_start) + insn_len
895 /* GDB can get control back after the insn after the syscall.
896 Presumably this is a kernel bug.
897 i386_displaced_step_copy_insn ensures its a nop,
898 we add one to the length for it. */
899 && orig_eip != to + (insn - insn_start) + insn_len + 1)
900 {
901 if (debug_displaced)
902 fprintf_unfiltered (gdb_stdlog,
903 "displaced: syscall changed %%eip; "
904 "not relocating\n");
905 }
906 else
907 {
908 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
909
910 /* If we just stepped over a breakpoint insn, we don't backup
911 the pc on purpose; this is to match behaviour without
912 stepping. */
913
914 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
915
916 if (debug_displaced)
917 fprintf_unfiltered (gdb_stdlog,
918 "displaced: "
919 "relocated %%eip from %s to %s\n",
920 paddress (gdbarch, orig_eip),
921 paddress (gdbarch, eip));
922 }
923 }
924
925 /* If the instruction was PUSHFL, then the TF bit will be set in the
926 pushed value, and should be cleared. We'll leave this for later,
927 since GDB already messes up the TF flag when stepping over a
928 pushfl. */
929
930 /* If the instruction was a call, the return address now atop the
931 stack is the address following the copied instruction. We need
932 to make it the address following the original instruction. */
933 if (i386_call_p (insn))
934 {
935 ULONGEST esp;
936 ULONGEST retaddr;
937 const ULONGEST retaddr_len = 4;
938
939 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
940 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
941 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
942 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
943
944 if (debug_displaced)
945 fprintf_unfiltered (gdb_stdlog,
946 "displaced: relocated return addr at %s to %s\n",
947 paddress (gdbarch, esp),
948 paddress (gdbarch, retaddr));
949 }
950 }
951
952 static void
953 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
954 {
955 target_write_memory (*to, buf, len);
956 *to += len;
957 }
958
959 static void
960 i386_relocate_instruction (struct gdbarch *gdbarch,
961 CORE_ADDR *to, CORE_ADDR oldloc)
962 {
963 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
964 gdb_byte buf[I386_MAX_INSN_LEN];
965 int offset = 0, rel32, newrel;
966 int insn_length;
967 gdb_byte *insn = buf;
968
969 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
970
971 insn_length = gdb_buffered_insn_length (gdbarch, insn,
972 I386_MAX_INSN_LEN, oldloc);
973
974 /* Get past the prefixes. */
975 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
976
977 /* Adjust calls with 32-bit relative addresses as push/jump, with
978 the address pushed being the location where the original call in
979 the user program would return to. */
980 if (insn[0] == 0xe8)
981 {
982 gdb_byte push_buf[16];
983 unsigned int ret_addr;
984
985 /* Where "ret" in the original code will return to. */
986 ret_addr = oldloc + insn_length;
987 push_buf[0] = 0x68; /* pushq $... */
988 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
989 /* Push the push. */
990 append_insns (to, 5, push_buf);
991
992 /* Convert the relative call to a relative jump. */
993 insn[0] = 0xe9;
994
995 /* Adjust the destination offset. */
996 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
997 newrel = (oldloc - *to) + rel32;
998 store_signed_integer (insn + 1, 4, byte_order, newrel);
999
1000 if (debug_displaced)
1001 fprintf_unfiltered (gdb_stdlog,
1002 "Adjusted insn rel32=%s at %s to"
1003 " rel32=%s at %s\n",
1004 hex_string (rel32), paddress (gdbarch, oldloc),
1005 hex_string (newrel), paddress (gdbarch, *to));
1006
1007 /* Write the adjusted jump into its displaced location. */
1008 append_insns (to, 5, insn);
1009 return;
1010 }
1011
1012 /* Adjust jumps with 32-bit relative addresses. Calls are already
1013 handled above. */
1014 if (insn[0] == 0xe9)
1015 offset = 1;
1016 /* Adjust conditional jumps. */
1017 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1018 offset = 2;
1019
1020 if (offset)
1021 {
1022 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1023 newrel = (oldloc - *to) + rel32;
1024 store_signed_integer (insn + offset, 4, byte_order, newrel);
1025 if (debug_displaced)
1026 fprintf_unfiltered (gdb_stdlog,
1027 "Adjusted insn rel32=%s at %s to"
1028 " rel32=%s at %s\n",
1029 hex_string (rel32), paddress (gdbarch, oldloc),
1030 hex_string (newrel), paddress (gdbarch, *to));
1031 }
1032
1033 /* Write the adjusted instructions into their displaced
1034 location. */
1035 append_insns (to, insn_length, buf);
1036 }
1037
1038 \f
1039 #ifdef I386_REGNO_TO_SYMMETRY
1040 #error "The Sequent Symmetry is no longer supported."
1041 #endif
1042
1043 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1044 and %esp "belong" to the calling function. Therefore these
1045 registers should be saved if they're going to be modified. */
1046
1047 /* The maximum number of saved registers. This should include all
1048 registers mentioned above, and %eip. */
1049 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1050
1051 struct i386_frame_cache
1052 {
1053 /* Base address. */
1054 CORE_ADDR base;
1055 int base_p;
1056 LONGEST sp_offset;
1057 CORE_ADDR pc;
1058
1059 /* Saved registers. */
1060 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1061 CORE_ADDR saved_sp;
1062 int saved_sp_reg;
1063 int pc_in_eax;
1064
1065 /* Stack space reserved for local variables. */
1066 long locals;
1067 };
1068
1069 /* Allocate and initialize a frame cache. */
1070
1071 static struct i386_frame_cache *
1072 i386_alloc_frame_cache (void)
1073 {
1074 struct i386_frame_cache *cache;
1075 int i;
1076
1077 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1078
1079 /* Base address. */
1080 cache->base_p = 0;
1081 cache->base = 0;
1082 cache->sp_offset = -4;
1083 cache->pc = 0;
1084
1085 /* Saved registers. We initialize these to -1 since zero is a valid
1086 offset (that's where %ebp is supposed to be stored). */
1087 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1088 cache->saved_regs[i] = -1;
1089 cache->saved_sp = 0;
1090 cache->saved_sp_reg = -1;
1091 cache->pc_in_eax = 0;
1092
1093 /* Frameless until proven otherwise. */
1094 cache->locals = -1;
1095
1096 return cache;
1097 }
1098
1099 /* If the instruction at PC is a jump, return the address of its
1100 target. Otherwise, return PC. */
1101
1102 static CORE_ADDR
1103 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1104 {
1105 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1106 gdb_byte op;
1107 long delta = 0;
1108 int data16 = 0;
1109
1110 if (target_read_code (pc, &op, 1))
1111 return pc;
1112
1113 if (op == 0x66)
1114 {
1115 data16 = 1;
1116
1117 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1118 }
1119
1120 switch (op)
1121 {
1122 case 0xe9:
1123 /* Relative jump: if data16 == 0, disp32, else disp16. */
1124 if (data16)
1125 {
1126 delta = read_memory_integer (pc + 2, 2, byte_order);
1127
1128 /* Include the size of the jmp instruction (including the
1129 0x66 prefix). */
1130 delta += 4;
1131 }
1132 else
1133 {
1134 delta = read_memory_integer (pc + 1, 4, byte_order);
1135
1136 /* Include the size of the jmp instruction. */
1137 delta += 5;
1138 }
1139 break;
1140 case 0xeb:
1141 /* Relative jump, disp8 (ignore data16). */
1142 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1143
1144 delta += data16 + 2;
1145 break;
1146 }
1147
1148 return pc + delta;
1149 }
1150
1151 /* Check whether PC points at a prologue for a function returning a
1152 structure or union. If so, it updates CACHE and returns the
1153 address of the first instruction after the code sequence that
1154 removes the "hidden" argument from the stack or CURRENT_PC,
1155 whichever is smaller. Otherwise, return PC. */
1156
1157 static CORE_ADDR
1158 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1159 struct i386_frame_cache *cache)
1160 {
1161 /* Functions that return a structure or union start with:
1162
1163 popl %eax 0x58
1164 xchgl %eax, (%esp) 0x87 0x04 0x24
1165 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1166
1167 (the System V compiler puts out the second `xchg' instruction,
1168 and the assembler doesn't try to optimize it, so the 'sib' form
1169 gets generated). This sequence is used to get the address of the
1170 return buffer for a function that returns a structure. */
1171 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1172 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1173 gdb_byte buf[4];
1174 gdb_byte op;
1175
1176 if (current_pc <= pc)
1177 return pc;
1178
1179 if (target_read_code (pc, &op, 1))
1180 return pc;
1181
1182 if (op != 0x58) /* popl %eax */
1183 return pc;
1184
1185 if (target_read_code (pc + 1, buf, 4))
1186 return pc;
1187
1188 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1189 return pc;
1190
1191 if (current_pc == pc)
1192 {
1193 cache->sp_offset += 4;
1194 return current_pc;
1195 }
1196
1197 if (current_pc == pc + 1)
1198 {
1199 cache->pc_in_eax = 1;
1200 return current_pc;
1201 }
1202
1203 if (buf[1] == proto1[1])
1204 return pc + 4;
1205 else
1206 return pc + 5;
1207 }
1208
1209 static CORE_ADDR
1210 i386_skip_probe (CORE_ADDR pc)
1211 {
1212 /* A function may start with
1213
1214 pushl constant
1215 call _probe
1216 addl $4, %esp
1217
1218 followed by
1219
1220 pushl %ebp
1221
1222 etc. */
1223 gdb_byte buf[8];
1224 gdb_byte op;
1225
1226 if (target_read_code (pc, &op, 1))
1227 return pc;
1228
1229 if (op == 0x68 || op == 0x6a)
1230 {
1231 int delta;
1232
1233 /* Skip past the `pushl' instruction; it has either a one-byte or a
1234 four-byte operand, depending on the opcode. */
1235 if (op == 0x68)
1236 delta = 5;
1237 else
1238 delta = 2;
1239
1240 /* Read the following 8 bytes, which should be `call _probe' (6
1241 bytes) followed by `addl $4,%esp' (2 bytes). */
1242 read_memory (pc + delta, buf, sizeof (buf));
1243 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1244 pc += delta + sizeof (buf);
1245 }
1246
1247 return pc;
1248 }
1249
1250 /* GCC 4.1 and later, can put code in the prologue to realign the
1251 stack pointer. Check whether PC points to such code, and update
1252 CACHE accordingly. Return the first instruction after the code
1253 sequence or CURRENT_PC, whichever is smaller. If we don't
1254 recognize the code, return PC. */
1255
1256 static CORE_ADDR
1257 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1258 struct i386_frame_cache *cache)
1259 {
1260 /* There are 2 code sequences to re-align stack before the frame
1261 gets set up:
1262
1263 1. Use a caller-saved saved register:
1264
1265 leal 4(%esp), %reg
1266 andl $-XXX, %esp
1267 pushl -4(%reg)
1268
1269 2. Use a callee-saved saved register:
1270
1271 pushl %reg
1272 leal 8(%esp), %reg
1273 andl $-XXX, %esp
1274 pushl -4(%reg)
1275
1276 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1277
1278 0x83 0xe4 0xf0 andl $-16, %esp
1279 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1280 */
1281
1282 gdb_byte buf[14];
1283 int reg;
1284 int offset, offset_and;
1285 static int regnums[8] = {
1286 I386_EAX_REGNUM, /* %eax */
1287 I386_ECX_REGNUM, /* %ecx */
1288 I386_EDX_REGNUM, /* %edx */
1289 I386_EBX_REGNUM, /* %ebx */
1290 I386_ESP_REGNUM, /* %esp */
1291 I386_EBP_REGNUM, /* %ebp */
1292 I386_ESI_REGNUM, /* %esi */
1293 I386_EDI_REGNUM /* %edi */
1294 };
1295
1296 if (target_read_code (pc, buf, sizeof buf))
1297 return pc;
1298
1299 /* Check caller-saved saved register. The first instruction has
1300 to be "leal 4(%esp), %reg". */
1301 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1302 {
1303 /* MOD must be binary 10 and R/M must be binary 100. */
1304 if ((buf[1] & 0xc7) != 0x44)
1305 return pc;
1306
1307 /* REG has register number. */
1308 reg = (buf[1] >> 3) & 7;
1309 offset = 4;
1310 }
1311 else
1312 {
1313 /* Check callee-saved saved register. The first instruction
1314 has to be "pushl %reg". */
1315 if ((buf[0] & 0xf8) != 0x50)
1316 return pc;
1317
1318 /* Get register. */
1319 reg = buf[0] & 0x7;
1320
1321 /* The next instruction has to be "leal 8(%esp), %reg". */
1322 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1323 return pc;
1324
1325 /* MOD must be binary 10 and R/M must be binary 100. */
1326 if ((buf[2] & 0xc7) != 0x44)
1327 return pc;
1328
1329 /* REG has register number. Registers in pushl and leal have to
1330 be the same. */
1331 if (reg != ((buf[2] >> 3) & 7))
1332 return pc;
1333
1334 offset = 5;
1335 }
1336
1337 /* Rigister can't be %esp nor %ebp. */
1338 if (reg == 4 || reg == 5)
1339 return pc;
1340
1341 /* The next instruction has to be "andl $-XXX, %esp". */
1342 if (buf[offset + 1] != 0xe4
1343 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1344 return pc;
1345
1346 offset_and = offset;
1347 offset += buf[offset] == 0x81 ? 6 : 3;
1348
1349 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1350 0xfc. REG must be binary 110 and MOD must be binary 01. */
1351 if (buf[offset] != 0xff
1352 || buf[offset + 2] != 0xfc
1353 || (buf[offset + 1] & 0xf8) != 0x70)
1354 return pc;
1355
1356 /* R/M has register. Registers in leal and pushl have to be the
1357 same. */
1358 if (reg != (buf[offset + 1] & 7))
1359 return pc;
1360
1361 if (current_pc > pc + offset_and)
1362 cache->saved_sp_reg = regnums[reg];
1363
1364 return std::min (pc + offset + 3, current_pc);
1365 }
1366
1367 /* Maximum instruction length we need to handle. */
1368 #define I386_MAX_MATCHED_INSN_LEN 6
1369
1370 /* Instruction description. */
1371 struct i386_insn
1372 {
1373 size_t len;
1374 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1375 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1376 };
1377
1378 /* Return whether instruction at PC matches PATTERN. */
1379
1380 static int
1381 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1382 {
1383 gdb_byte op;
1384
1385 if (target_read_code (pc, &op, 1))
1386 return 0;
1387
1388 if ((op & pattern.mask[0]) == pattern.insn[0])
1389 {
1390 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1391 int insn_matched = 1;
1392 size_t i;
1393
1394 gdb_assert (pattern.len > 1);
1395 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1396
1397 if (target_read_code (pc + 1, buf, pattern.len - 1))
1398 return 0;
1399
1400 for (i = 1; i < pattern.len; i++)
1401 {
1402 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1403 insn_matched = 0;
1404 }
1405 return insn_matched;
1406 }
1407 return 0;
1408 }
1409
1410 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1411 the first instruction description that matches. Otherwise, return
1412 NULL. */
1413
1414 static struct i386_insn *
1415 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1416 {
1417 struct i386_insn *pattern;
1418
1419 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1420 {
1421 if (i386_match_pattern (pc, *pattern))
1422 return pattern;
1423 }
1424
1425 return NULL;
1426 }
1427
1428 /* Return whether PC points inside a sequence of instructions that
1429 matches INSN_PATTERNS. */
1430
1431 static int
1432 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1433 {
1434 CORE_ADDR current_pc;
1435 int ix, i;
1436 struct i386_insn *insn;
1437
1438 insn = i386_match_insn (pc, insn_patterns);
1439 if (insn == NULL)
1440 return 0;
1441
1442 current_pc = pc;
1443 ix = insn - insn_patterns;
1444 for (i = ix - 1; i >= 0; i--)
1445 {
1446 current_pc -= insn_patterns[i].len;
1447
1448 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1449 return 0;
1450 }
1451
1452 current_pc = pc + insn->len;
1453 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1454 {
1455 if (!i386_match_pattern (current_pc, *insn))
1456 return 0;
1457
1458 current_pc += insn->len;
1459 }
1460
1461 return 1;
1462 }
1463
1464 /* Some special instructions that might be migrated by GCC into the
1465 part of the prologue that sets up the new stack frame. Because the
1466 stack frame hasn't been setup yet, no registers have been saved
1467 yet, and only the scratch registers %eax, %ecx and %edx can be
1468 touched. */
1469
1470 struct i386_insn i386_frame_setup_skip_insns[] =
1471 {
1472 /* Check for `movb imm8, r' and `movl imm32, r'.
1473
1474 ??? Should we handle 16-bit operand-sizes here? */
1475
1476 /* `movb imm8, %al' and `movb imm8, %ah' */
1477 /* `movb imm8, %cl' and `movb imm8, %ch' */
1478 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1479 /* `movb imm8, %dl' and `movb imm8, %dh' */
1480 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1481 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1482 { 5, { 0xb8 }, { 0xfe } },
1483 /* `movl imm32, %edx' */
1484 { 5, { 0xba }, { 0xff } },
1485
1486 /* Check for `mov imm32, r32'. Note that there is an alternative
1487 encoding for `mov m32, %eax'.
1488
1489 ??? Should we handle SIB adressing here?
1490 ??? Should we handle 16-bit operand-sizes here? */
1491
1492 /* `movl m32, %eax' */
1493 { 5, { 0xa1 }, { 0xff } },
1494 /* `movl m32, %eax' and `mov; m32, %ecx' */
1495 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1496 /* `movl m32, %edx' */
1497 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1498
1499 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1500 Because of the symmetry, there are actually two ways to encode
1501 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1502 opcode bytes 0x31 and 0x33 for `xorl'. */
1503
1504 /* `subl %eax, %eax' */
1505 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1506 /* `subl %ecx, %ecx' */
1507 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1508 /* `subl %edx, %edx' */
1509 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1510 /* `xorl %eax, %eax' */
1511 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1512 /* `xorl %ecx, %ecx' */
1513 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1514 /* `xorl %edx, %edx' */
1515 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1516 { 0 }
1517 };
1518
1519
1520 /* Check whether PC points to a no-op instruction. */
1521 static CORE_ADDR
1522 i386_skip_noop (CORE_ADDR pc)
1523 {
1524 gdb_byte op;
1525 int check = 1;
1526
1527 if (target_read_code (pc, &op, 1))
1528 return pc;
1529
1530 while (check)
1531 {
1532 check = 0;
1533 /* Ignore `nop' instruction. */
1534 if (op == 0x90)
1535 {
1536 pc += 1;
1537 if (target_read_code (pc, &op, 1))
1538 return pc;
1539 check = 1;
1540 }
1541 /* Ignore no-op instruction `mov %edi, %edi'.
1542 Microsoft system dlls often start with
1543 a `mov %edi,%edi' instruction.
1544 The 5 bytes before the function start are
1545 filled with `nop' instructions.
1546 This pattern can be used for hot-patching:
1547 The `mov %edi, %edi' instruction can be replaced by a
1548 near jump to the location of the 5 `nop' instructions
1549 which can be replaced by a 32-bit jump to anywhere
1550 in the 32-bit address space. */
1551
1552 else if (op == 0x8b)
1553 {
1554 if (target_read_code (pc + 1, &op, 1))
1555 return pc;
1556
1557 if (op == 0xff)
1558 {
1559 pc += 2;
1560 if (target_read_code (pc, &op, 1))
1561 return pc;
1562
1563 check = 1;
1564 }
1565 }
1566 }
1567 return pc;
1568 }
1569
1570 /* Check whether PC points at a code that sets up a new stack frame.
1571 If so, it updates CACHE and returns the address of the first
1572 instruction after the sequence that sets up the frame or LIMIT,
1573 whichever is smaller. If we don't recognize the code, return PC. */
1574
1575 static CORE_ADDR
1576 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1577 CORE_ADDR pc, CORE_ADDR limit,
1578 struct i386_frame_cache *cache)
1579 {
1580 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1581 struct i386_insn *insn;
1582 gdb_byte op;
1583 int skip = 0;
1584
1585 if (limit <= pc)
1586 return limit;
1587
1588 if (target_read_code (pc, &op, 1))
1589 return pc;
1590
1591 if (op == 0x55) /* pushl %ebp */
1592 {
1593 /* Take into account that we've executed the `pushl %ebp' that
1594 starts this instruction sequence. */
1595 cache->saved_regs[I386_EBP_REGNUM] = 0;
1596 cache->sp_offset += 4;
1597 pc++;
1598
1599 /* If that's all, return now. */
1600 if (limit <= pc)
1601 return limit;
1602
1603 /* Check for some special instructions that might be migrated by
1604 GCC into the prologue and skip them. At this point in the
1605 prologue, code should only touch the scratch registers %eax,
1606 %ecx and %edx, so while the number of posibilities is sheer,
1607 it is limited.
1608
1609 Make sure we only skip these instructions if we later see the
1610 `movl %esp, %ebp' that actually sets up the frame. */
1611 while (pc + skip < limit)
1612 {
1613 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1614 if (insn == NULL)
1615 break;
1616
1617 skip += insn->len;
1618 }
1619
1620 /* If that's all, return now. */
1621 if (limit <= pc + skip)
1622 return limit;
1623
1624 if (target_read_code (pc + skip, &op, 1))
1625 return pc + skip;
1626
1627 /* The i386 prologue looks like
1628
1629 push %ebp
1630 mov %esp,%ebp
1631 sub $0x10,%esp
1632
1633 and a different prologue can be generated for atom.
1634
1635 push %ebp
1636 lea (%esp),%ebp
1637 lea -0x10(%esp),%esp
1638
1639 We handle both of them here. */
1640
1641 switch (op)
1642 {
1643 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1644 case 0x8b:
1645 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1646 != 0xec)
1647 return pc;
1648 pc += (skip + 2);
1649 break;
1650 case 0x89:
1651 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1652 != 0xe5)
1653 return pc;
1654 pc += (skip + 2);
1655 break;
1656 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1657 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1658 != 0x242c)
1659 return pc;
1660 pc += (skip + 3);
1661 break;
1662 default:
1663 return pc;
1664 }
1665
1666 /* OK, we actually have a frame. We just don't know how large
1667 it is yet. Set its size to zero. We'll adjust it if
1668 necessary. We also now commit to skipping the special
1669 instructions mentioned before. */
1670 cache->locals = 0;
1671
1672 /* If that's all, return now. */
1673 if (limit <= pc)
1674 return limit;
1675
1676 /* Check for stack adjustment
1677
1678 subl $XXX, %esp
1679 or
1680 lea -XXX(%esp),%esp
1681
1682 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1683 reg, so we don't have to worry about a data16 prefix. */
1684 if (target_read_code (pc, &op, 1))
1685 return pc;
1686 if (op == 0x83)
1687 {
1688 /* `subl' with 8-bit immediate. */
1689 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1690 /* Some instruction starting with 0x83 other than `subl'. */
1691 return pc;
1692
1693 /* `subl' with signed 8-bit immediate (though it wouldn't
1694 make sense to be negative). */
1695 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1696 return pc + 3;
1697 }
1698 else if (op == 0x81)
1699 {
1700 /* Maybe it is `subl' with a 32-bit immediate. */
1701 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1702 /* Some instruction starting with 0x81 other than `subl'. */
1703 return pc;
1704
1705 /* It is `subl' with a 32-bit immediate. */
1706 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1707 return pc + 6;
1708 }
1709 else if (op == 0x8d)
1710 {
1711 /* The ModR/M byte is 0x64. */
1712 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1713 return pc;
1714 /* 'lea' with 8-bit displacement. */
1715 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1716 return pc + 4;
1717 }
1718 else
1719 {
1720 /* Some instruction other than `subl' nor 'lea'. */
1721 return pc;
1722 }
1723 }
1724 else if (op == 0xc8) /* enter */
1725 {
1726 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1727 return pc + 4;
1728 }
1729
1730 return pc;
1731 }
1732
1733 /* Check whether PC points at code that saves registers on the stack.
1734 If so, it updates CACHE and returns the address of the first
1735 instruction after the register saves or CURRENT_PC, whichever is
1736 smaller. Otherwise, return PC. */
1737
1738 static CORE_ADDR
1739 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1740 struct i386_frame_cache *cache)
1741 {
1742 CORE_ADDR offset = 0;
1743 gdb_byte op;
1744 int i;
1745
1746 if (cache->locals > 0)
1747 offset -= cache->locals;
1748 for (i = 0; i < 8 && pc < current_pc; i++)
1749 {
1750 if (target_read_code (pc, &op, 1))
1751 return pc;
1752 if (op < 0x50 || op > 0x57)
1753 break;
1754
1755 offset -= 4;
1756 cache->saved_regs[op - 0x50] = offset;
1757 cache->sp_offset += 4;
1758 pc++;
1759 }
1760
1761 return pc;
1762 }
1763
1764 /* Do a full analysis of the prologue at PC and update CACHE
1765 accordingly. Bail out early if CURRENT_PC is reached. Return the
1766 address where the analysis stopped.
1767
1768 We handle these cases:
1769
1770 The startup sequence can be at the start of the function, or the
1771 function can start with a branch to startup code at the end.
1772
1773 %ebp can be set up with either the 'enter' instruction, or "pushl
1774 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1775 once used in the System V compiler).
1776
1777 Local space is allocated just below the saved %ebp by either the
1778 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1779 16-bit unsigned argument for space to allocate, and the 'addl'
1780 instruction could have either a signed byte, or 32-bit immediate.
1781
1782 Next, the registers used by this function are pushed. With the
1783 System V compiler they will always be in the order: %edi, %esi,
1784 %ebx (and sometimes a harmless bug causes it to also save but not
1785 restore %eax); however, the code below is willing to see the pushes
1786 in any order, and will handle up to 8 of them.
1787
1788 If the setup sequence is at the end of the function, then the next
1789 instruction will be a branch back to the start. */
1790
1791 static CORE_ADDR
1792 i386_analyze_prologue (struct gdbarch *gdbarch,
1793 CORE_ADDR pc, CORE_ADDR current_pc,
1794 struct i386_frame_cache *cache)
1795 {
1796 pc = i386_skip_noop (pc);
1797 pc = i386_follow_jump (gdbarch, pc);
1798 pc = i386_analyze_struct_return (pc, current_pc, cache);
1799 pc = i386_skip_probe (pc);
1800 pc = i386_analyze_stack_align (pc, current_pc, cache);
1801 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1802 return i386_analyze_register_saves (pc, current_pc, cache);
1803 }
1804
1805 /* Return PC of first real instruction. */
1806
1807 static CORE_ADDR
1808 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1809 {
1810 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1811
1812 static gdb_byte pic_pat[6] =
1813 {
1814 0xe8, 0, 0, 0, 0, /* call 0x0 */
1815 0x5b, /* popl %ebx */
1816 };
1817 struct i386_frame_cache cache;
1818 CORE_ADDR pc;
1819 gdb_byte op;
1820 int i;
1821 CORE_ADDR func_addr;
1822
1823 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1824 {
1825 CORE_ADDR post_prologue_pc
1826 = skip_prologue_using_sal (gdbarch, func_addr);
1827 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1828
1829 /* Clang always emits a line note before the prologue and another
1830 one after. We trust clang to emit usable line notes. */
1831 if (post_prologue_pc
1832 && (cust != NULL
1833 && COMPUNIT_PRODUCER (cust) != NULL
1834 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1835 return std::max (start_pc, post_prologue_pc);
1836 }
1837
1838 cache.locals = -1;
1839 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1840 if (cache.locals < 0)
1841 return start_pc;
1842
1843 /* Found valid frame setup. */
1844
1845 /* The native cc on SVR4 in -K PIC mode inserts the following code
1846 to get the address of the global offset table (GOT) into register
1847 %ebx:
1848
1849 call 0x0
1850 popl %ebx
1851 movl %ebx,x(%ebp) (optional)
1852 addl y,%ebx
1853
1854 This code is with the rest of the prologue (at the end of the
1855 function), so we have to skip it to get to the first real
1856 instruction at the start of the function. */
1857
1858 for (i = 0; i < 6; i++)
1859 {
1860 if (target_read_code (pc + i, &op, 1))
1861 return pc;
1862
1863 if (pic_pat[i] != op)
1864 break;
1865 }
1866 if (i == 6)
1867 {
1868 int delta = 6;
1869
1870 if (target_read_code (pc + delta, &op, 1))
1871 return pc;
1872
1873 if (op == 0x89) /* movl %ebx, x(%ebp) */
1874 {
1875 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1876
1877 if (op == 0x5d) /* One byte offset from %ebp. */
1878 delta += 3;
1879 else if (op == 0x9d) /* Four byte offset from %ebp. */
1880 delta += 6;
1881 else /* Unexpected instruction. */
1882 delta = 0;
1883
1884 if (target_read_code (pc + delta, &op, 1))
1885 return pc;
1886 }
1887
1888 /* addl y,%ebx */
1889 if (delta > 0 && op == 0x81
1890 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1891 == 0xc3)
1892 {
1893 pc += delta + 6;
1894 }
1895 }
1896
1897 /* If the function starts with a branch (to startup code at the end)
1898 the last instruction should bring us back to the first
1899 instruction of the real code. */
1900 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1901 pc = i386_follow_jump (gdbarch, pc);
1902
1903 return pc;
1904 }
1905
1906 /* Check that the code pointed to by PC corresponds to a call to
1907 __main, skip it if so. Return PC otherwise. */
1908
1909 CORE_ADDR
1910 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1911 {
1912 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1913 gdb_byte op;
1914
1915 if (target_read_code (pc, &op, 1))
1916 return pc;
1917 if (op == 0xe8)
1918 {
1919 gdb_byte buf[4];
1920
1921 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1922 {
1923 /* Make sure address is computed correctly as a 32bit
1924 integer even if CORE_ADDR is 64 bit wide. */
1925 struct bound_minimal_symbol s;
1926 CORE_ADDR call_dest;
1927
1928 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1929 call_dest = call_dest & 0xffffffffU;
1930 s = lookup_minimal_symbol_by_pc (call_dest);
1931 if (s.minsym != NULL
1932 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1933 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1934 pc += 5;
1935 }
1936 }
1937
1938 return pc;
1939 }
1940
1941 /* This function is 64-bit safe. */
1942
1943 static CORE_ADDR
1944 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1945 {
1946 gdb_byte buf[8];
1947
1948 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1949 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1950 }
1951 \f
1952
1953 /* Normal frames. */
1954
1955 static void
1956 i386_frame_cache_1 (struct frame_info *this_frame,
1957 struct i386_frame_cache *cache)
1958 {
1959 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1960 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1961 gdb_byte buf[4];
1962 int i;
1963
1964 cache->pc = get_frame_func (this_frame);
1965
1966 /* In principle, for normal frames, %ebp holds the frame pointer,
1967 which holds the base address for the current stack frame.
1968 However, for functions that don't need it, the frame pointer is
1969 optional. For these "frameless" functions the frame pointer is
1970 actually the frame pointer of the calling frame. Signal
1971 trampolines are just a special case of a "frameless" function.
1972 They (usually) share their frame pointer with the frame that was
1973 in progress when the signal occurred. */
1974
1975 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1976 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1977 if (cache->base == 0)
1978 {
1979 cache->base_p = 1;
1980 return;
1981 }
1982
1983 /* For normal frames, %eip is stored at 4(%ebp). */
1984 cache->saved_regs[I386_EIP_REGNUM] = 4;
1985
1986 if (cache->pc != 0)
1987 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1988 cache);
1989
1990 if (cache->locals < 0)
1991 {
1992 /* We didn't find a valid frame, which means that CACHE->base
1993 currently holds the frame pointer for our calling frame. If
1994 we're at the start of a function, or somewhere half-way its
1995 prologue, the function's frame probably hasn't been fully
1996 setup yet. Try to reconstruct the base address for the stack
1997 frame by looking at the stack pointer. For truly "frameless"
1998 functions this might work too. */
1999
2000 if (cache->saved_sp_reg != -1)
2001 {
2002 /* Saved stack pointer has been saved. */
2003 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2004 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2005
2006 /* We're halfway aligning the stack. */
2007 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2008 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2009
2010 /* This will be added back below. */
2011 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2012 }
2013 else if (cache->pc != 0
2014 || target_read_code (get_frame_pc (this_frame), buf, 1))
2015 {
2016 /* We're in a known function, but did not find a frame
2017 setup. Assume that the function does not use %ebp.
2018 Alternatively, we may have jumped to an invalid
2019 address; in that case there is definitely no new
2020 frame in %ebp. */
2021 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2022 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2023 + cache->sp_offset;
2024 }
2025 else
2026 /* We're in an unknown function. We could not find the start
2027 of the function to analyze the prologue; our best option is
2028 to assume a typical frame layout with the caller's %ebp
2029 saved. */
2030 cache->saved_regs[I386_EBP_REGNUM] = 0;
2031 }
2032
2033 if (cache->saved_sp_reg != -1)
2034 {
2035 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2036 register may be unavailable). */
2037 if (cache->saved_sp == 0
2038 && deprecated_frame_register_read (this_frame,
2039 cache->saved_sp_reg, buf))
2040 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2041 }
2042 /* Now that we have the base address for the stack frame we can
2043 calculate the value of %esp in the calling frame. */
2044 else if (cache->saved_sp == 0)
2045 cache->saved_sp = cache->base + 8;
2046
2047 /* Adjust all the saved registers such that they contain addresses
2048 instead of offsets. */
2049 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2050 if (cache->saved_regs[i] != -1)
2051 cache->saved_regs[i] += cache->base;
2052
2053 cache->base_p = 1;
2054 }
2055
2056 static struct i386_frame_cache *
2057 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2058 {
2059 struct i386_frame_cache *cache;
2060
2061 if (*this_cache)
2062 return (struct i386_frame_cache *) *this_cache;
2063
2064 cache = i386_alloc_frame_cache ();
2065 *this_cache = cache;
2066
2067 TRY
2068 {
2069 i386_frame_cache_1 (this_frame, cache);
2070 }
2071 CATCH (ex, RETURN_MASK_ERROR)
2072 {
2073 if (ex.error != NOT_AVAILABLE_ERROR)
2074 throw_exception (ex);
2075 }
2076 END_CATCH
2077
2078 return cache;
2079 }
2080
2081 static void
2082 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2083 struct frame_id *this_id)
2084 {
2085 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2086
2087 if (!cache->base_p)
2088 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2089 else if (cache->base == 0)
2090 {
2091 /* This marks the outermost frame. */
2092 }
2093 else
2094 {
2095 /* See the end of i386_push_dummy_call. */
2096 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2097 }
2098 }
2099
2100 static enum unwind_stop_reason
2101 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2102 void **this_cache)
2103 {
2104 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2105
2106 if (!cache->base_p)
2107 return UNWIND_UNAVAILABLE;
2108
2109 /* This marks the outermost frame. */
2110 if (cache->base == 0)
2111 return UNWIND_OUTERMOST;
2112
2113 return UNWIND_NO_REASON;
2114 }
2115
2116 static struct value *
2117 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2118 int regnum)
2119 {
2120 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2121
2122 gdb_assert (regnum >= 0);
2123
2124 /* The System V ABI says that:
2125
2126 "The flags register contains the system flags, such as the
2127 direction flag and the carry flag. The direction flag must be
2128 set to the forward (that is, zero) direction before entry and
2129 upon exit from a function. Other user flags have no specified
2130 role in the standard calling sequence and are not preserved."
2131
2132 To guarantee the "upon exit" part of that statement we fake a
2133 saved flags register that has its direction flag cleared.
2134
2135 Note that GCC doesn't seem to rely on the fact that the direction
2136 flag is cleared after a function return; it always explicitly
2137 clears the flag before operations where it matters.
2138
2139 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2140 right thing to do. The way we fake the flags register here makes
2141 it impossible to change it. */
2142
2143 if (regnum == I386_EFLAGS_REGNUM)
2144 {
2145 ULONGEST val;
2146
2147 val = get_frame_register_unsigned (this_frame, regnum);
2148 val &= ~(1 << 10);
2149 return frame_unwind_got_constant (this_frame, regnum, val);
2150 }
2151
2152 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2153 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2154
2155 if (regnum == I386_ESP_REGNUM
2156 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2157 {
2158 /* If the SP has been saved, but we don't know where, then this
2159 means that SAVED_SP_REG register was found unavailable back
2160 when we built the cache. */
2161 if (cache->saved_sp == 0)
2162 return frame_unwind_got_register (this_frame, regnum,
2163 cache->saved_sp_reg);
2164 else
2165 return frame_unwind_got_constant (this_frame, regnum,
2166 cache->saved_sp);
2167 }
2168
2169 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2170 return frame_unwind_got_memory (this_frame, regnum,
2171 cache->saved_regs[regnum]);
2172
2173 return frame_unwind_got_register (this_frame, regnum, regnum);
2174 }
2175
2176 static const struct frame_unwind i386_frame_unwind =
2177 {
2178 NORMAL_FRAME,
2179 i386_frame_unwind_stop_reason,
2180 i386_frame_this_id,
2181 i386_frame_prev_register,
2182 NULL,
2183 default_frame_sniffer
2184 };
2185
2186 /* Normal frames, but in a function epilogue. */
2187
2188 /* Implement the stack_frame_destroyed_p gdbarch method.
2189
2190 The epilogue is defined here as the 'ret' instruction, which will
2191 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2192 the function's stack frame. */
2193
2194 static int
2195 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2196 {
2197 gdb_byte insn;
2198 struct compunit_symtab *cust;
2199
2200 cust = find_pc_compunit_symtab (pc);
2201 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2202 return 0;
2203
2204 if (target_read_memory (pc, &insn, 1))
2205 return 0; /* Can't read memory at pc. */
2206
2207 if (insn != 0xc3) /* 'ret' instruction. */
2208 return 0;
2209
2210 return 1;
2211 }
2212
2213 static int
2214 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2215 struct frame_info *this_frame,
2216 void **this_prologue_cache)
2217 {
2218 if (frame_relative_level (this_frame) == 0)
2219 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2220 get_frame_pc (this_frame));
2221 else
2222 return 0;
2223 }
2224
2225 static struct i386_frame_cache *
2226 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2227 {
2228 struct i386_frame_cache *cache;
2229 CORE_ADDR sp;
2230
2231 if (*this_cache)
2232 return (struct i386_frame_cache *) *this_cache;
2233
2234 cache = i386_alloc_frame_cache ();
2235 *this_cache = cache;
2236
2237 TRY
2238 {
2239 cache->pc = get_frame_func (this_frame);
2240
2241 /* At this point the stack looks as if we just entered the
2242 function, with the return address at the top of the
2243 stack. */
2244 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2245 cache->base = sp + cache->sp_offset;
2246 cache->saved_sp = cache->base + 8;
2247 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2248
2249 cache->base_p = 1;
2250 }
2251 CATCH (ex, RETURN_MASK_ERROR)
2252 {
2253 if (ex.error != NOT_AVAILABLE_ERROR)
2254 throw_exception (ex);
2255 }
2256 END_CATCH
2257
2258 return cache;
2259 }
2260
2261 static enum unwind_stop_reason
2262 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2263 void **this_cache)
2264 {
2265 struct i386_frame_cache *cache =
2266 i386_epilogue_frame_cache (this_frame, this_cache);
2267
2268 if (!cache->base_p)
2269 return UNWIND_UNAVAILABLE;
2270
2271 return UNWIND_NO_REASON;
2272 }
2273
2274 static void
2275 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2276 void **this_cache,
2277 struct frame_id *this_id)
2278 {
2279 struct i386_frame_cache *cache =
2280 i386_epilogue_frame_cache (this_frame, this_cache);
2281
2282 if (!cache->base_p)
2283 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2284 else
2285 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2286 }
2287
2288 static struct value *
2289 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2290 void **this_cache, int regnum)
2291 {
2292 /* Make sure we've initialized the cache. */
2293 i386_epilogue_frame_cache (this_frame, this_cache);
2294
2295 return i386_frame_prev_register (this_frame, this_cache, regnum);
2296 }
2297
2298 static const struct frame_unwind i386_epilogue_frame_unwind =
2299 {
2300 NORMAL_FRAME,
2301 i386_epilogue_frame_unwind_stop_reason,
2302 i386_epilogue_frame_this_id,
2303 i386_epilogue_frame_prev_register,
2304 NULL,
2305 i386_epilogue_frame_sniffer
2306 };
2307 \f
2308
2309 /* Stack-based trampolines. */
2310
2311 /* These trampolines are used on cross x86 targets, when taking the
2312 address of a nested function. When executing these trampolines,
2313 no stack frame is set up, so we are in a similar situation as in
2314 epilogues and i386_epilogue_frame_this_id can be re-used. */
2315
2316 /* Static chain passed in register. */
2317
2318 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2319 {
2320 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2321 { 5, { 0xb8 }, { 0xfe } },
2322
2323 /* `jmp imm32' */
2324 { 5, { 0xe9 }, { 0xff } },
2325
2326 {0}
2327 };
2328
2329 /* Static chain passed on stack (when regparm=3). */
2330
2331 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2332 {
2333 /* `push imm32' */
2334 { 5, { 0x68 }, { 0xff } },
2335
2336 /* `jmp imm32' */
2337 { 5, { 0xe9 }, { 0xff } },
2338
2339 {0}
2340 };
2341
2342 /* Return whether PC points inside a stack trampoline. */
2343
2344 static int
2345 i386_in_stack_tramp_p (CORE_ADDR pc)
2346 {
2347 gdb_byte insn;
2348 const char *name;
2349
2350 /* A stack trampoline is detected if no name is associated
2351 to the current pc and if it points inside a trampoline
2352 sequence. */
2353
2354 find_pc_partial_function (pc, &name, NULL, NULL);
2355 if (name)
2356 return 0;
2357
2358 if (target_read_memory (pc, &insn, 1))
2359 return 0;
2360
2361 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2362 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2363 return 0;
2364
2365 return 1;
2366 }
2367
2368 static int
2369 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2370 struct frame_info *this_frame,
2371 void **this_cache)
2372 {
2373 if (frame_relative_level (this_frame) == 0)
2374 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2375 else
2376 return 0;
2377 }
2378
2379 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2380 {
2381 NORMAL_FRAME,
2382 i386_epilogue_frame_unwind_stop_reason,
2383 i386_epilogue_frame_this_id,
2384 i386_epilogue_frame_prev_register,
2385 NULL,
2386 i386_stack_tramp_frame_sniffer
2387 };
2388 \f
2389 /* Generate a bytecode expression to get the value of the saved PC. */
2390
2391 static void
2392 i386_gen_return_address (struct gdbarch *gdbarch,
2393 struct agent_expr *ax, struct axs_value *value,
2394 CORE_ADDR scope)
2395 {
2396 /* The following sequence assumes the traditional use of the base
2397 register. */
2398 ax_reg (ax, I386_EBP_REGNUM);
2399 ax_const_l (ax, 4);
2400 ax_simple (ax, aop_add);
2401 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2402 value->kind = axs_lvalue_memory;
2403 }
2404 \f
2405
2406 /* Signal trampolines. */
2407
2408 static struct i386_frame_cache *
2409 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2410 {
2411 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2412 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2413 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2414 struct i386_frame_cache *cache;
2415 CORE_ADDR addr;
2416 gdb_byte buf[4];
2417
2418 if (*this_cache)
2419 return (struct i386_frame_cache *) *this_cache;
2420
2421 cache = i386_alloc_frame_cache ();
2422
2423 TRY
2424 {
2425 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2426 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2427
2428 addr = tdep->sigcontext_addr (this_frame);
2429 if (tdep->sc_reg_offset)
2430 {
2431 int i;
2432
2433 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2434
2435 for (i = 0; i < tdep->sc_num_regs; i++)
2436 if (tdep->sc_reg_offset[i] != -1)
2437 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2438 }
2439 else
2440 {
2441 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2442 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2443 }
2444
2445 cache->base_p = 1;
2446 }
2447 CATCH (ex, RETURN_MASK_ERROR)
2448 {
2449 if (ex.error != NOT_AVAILABLE_ERROR)
2450 throw_exception (ex);
2451 }
2452 END_CATCH
2453
2454 *this_cache = cache;
2455 return cache;
2456 }
2457
2458 static enum unwind_stop_reason
2459 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2460 void **this_cache)
2461 {
2462 struct i386_frame_cache *cache =
2463 i386_sigtramp_frame_cache (this_frame, this_cache);
2464
2465 if (!cache->base_p)
2466 return UNWIND_UNAVAILABLE;
2467
2468 return UNWIND_NO_REASON;
2469 }
2470
2471 static void
2472 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2473 struct frame_id *this_id)
2474 {
2475 struct i386_frame_cache *cache =
2476 i386_sigtramp_frame_cache (this_frame, this_cache);
2477
2478 if (!cache->base_p)
2479 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2480 else
2481 {
2482 /* See the end of i386_push_dummy_call. */
2483 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2484 }
2485 }
2486
2487 static struct value *
2488 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2489 void **this_cache, int regnum)
2490 {
2491 /* Make sure we've initialized the cache. */
2492 i386_sigtramp_frame_cache (this_frame, this_cache);
2493
2494 return i386_frame_prev_register (this_frame, this_cache, regnum);
2495 }
2496
2497 static int
2498 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2499 struct frame_info *this_frame,
2500 void **this_prologue_cache)
2501 {
2502 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2503
2504 /* We shouldn't even bother if we don't have a sigcontext_addr
2505 handler. */
2506 if (tdep->sigcontext_addr == NULL)
2507 return 0;
2508
2509 if (tdep->sigtramp_p != NULL)
2510 {
2511 if (tdep->sigtramp_p (this_frame))
2512 return 1;
2513 }
2514
2515 if (tdep->sigtramp_start != 0)
2516 {
2517 CORE_ADDR pc = get_frame_pc (this_frame);
2518
2519 gdb_assert (tdep->sigtramp_end != 0);
2520 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2521 return 1;
2522 }
2523
2524 return 0;
2525 }
2526
2527 static const struct frame_unwind i386_sigtramp_frame_unwind =
2528 {
2529 SIGTRAMP_FRAME,
2530 i386_sigtramp_frame_unwind_stop_reason,
2531 i386_sigtramp_frame_this_id,
2532 i386_sigtramp_frame_prev_register,
2533 NULL,
2534 i386_sigtramp_frame_sniffer
2535 };
2536 \f
2537
2538 static CORE_ADDR
2539 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2540 {
2541 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2542
2543 return cache->base;
2544 }
2545
2546 static const struct frame_base i386_frame_base =
2547 {
2548 &i386_frame_unwind,
2549 i386_frame_base_address,
2550 i386_frame_base_address,
2551 i386_frame_base_address
2552 };
2553
2554 static struct frame_id
2555 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2556 {
2557 CORE_ADDR fp;
2558
2559 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2560
2561 /* See the end of i386_push_dummy_call. */
2562 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2563 }
2564
2565 /* _Decimal128 function return values need 16-byte alignment on the
2566 stack. */
2567
2568 static CORE_ADDR
2569 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2570 {
2571 return sp & -(CORE_ADDR)16;
2572 }
2573 \f
2574
2575 /* Figure out where the longjmp will land. Slurp the args out of the
2576 stack. We expect the first arg to be a pointer to the jmp_buf
2577 structure from which we extract the address that we will land at.
2578 This address is copied into PC. This routine returns non-zero on
2579 success. */
2580
2581 static int
2582 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2583 {
2584 gdb_byte buf[4];
2585 CORE_ADDR sp, jb_addr;
2586 struct gdbarch *gdbarch = get_frame_arch (frame);
2587 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2588 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2589
2590 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2591 longjmp will land. */
2592 if (jb_pc_offset == -1)
2593 return 0;
2594
2595 get_frame_register (frame, I386_ESP_REGNUM, buf);
2596 sp = extract_unsigned_integer (buf, 4, byte_order);
2597 if (target_read_memory (sp + 4, buf, 4))
2598 return 0;
2599
2600 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2601 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2602 return 0;
2603
2604 *pc = extract_unsigned_integer (buf, 4, byte_order);
2605 return 1;
2606 }
2607 \f
2608
2609 /* Check whether TYPE must be 16-byte-aligned when passed as a
2610 function argument. 16-byte vectors, _Decimal128 and structures or
2611 unions containing such types must be 16-byte-aligned; other
2612 arguments are 4-byte-aligned. */
2613
2614 static int
2615 i386_16_byte_align_p (struct type *type)
2616 {
2617 type = check_typedef (type);
2618 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2619 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2620 && TYPE_LENGTH (type) == 16)
2621 return 1;
2622 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2623 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2624 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2625 || TYPE_CODE (type) == TYPE_CODE_UNION)
2626 {
2627 int i;
2628 for (i = 0; i < TYPE_NFIELDS (type); i++)
2629 {
2630 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2631 return 1;
2632 }
2633 }
2634 return 0;
2635 }
2636
2637 /* Implementation for set_gdbarch_push_dummy_code. */
2638
2639 static CORE_ADDR
2640 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2641 struct value **args, int nargs, struct type *value_type,
2642 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2643 struct regcache *regcache)
2644 {
2645 /* Use 0xcc breakpoint - 1 byte. */
2646 *bp_addr = sp - 1;
2647 *real_pc = funaddr;
2648
2649 /* Keep the stack aligned. */
2650 return sp - 16;
2651 }
2652
2653 static CORE_ADDR
2654 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2655 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2656 struct value **args, CORE_ADDR sp, int struct_return,
2657 CORE_ADDR struct_addr)
2658 {
2659 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2660 gdb_byte buf[4];
2661 int i;
2662 int write_pass;
2663 int args_space = 0;
2664
2665 /* Determine the total space required for arguments and struct
2666 return address in a first pass (allowing for 16-byte-aligned
2667 arguments), then push arguments in a second pass. */
2668
2669 for (write_pass = 0; write_pass < 2; write_pass++)
2670 {
2671 int args_space_used = 0;
2672
2673 if (struct_return)
2674 {
2675 if (write_pass)
2676 {
2677 /* Push value address. */
2678 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2679 write_memory (sp, buf, 4);
2680 args_space_used += 4;
2681 }
2682 else
2683 args_space += 4;
2684 }
2685
2686 for (i = 0; i < nargs; i++)
2687 {
2688 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2689
2690 if (write_pass)
2691 {
2692 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2693 args_space_used = align_up (args_space_used, 16);
2694
2695 write_memory (sp + args_space_used,
2696 value_contents_all (args[i]), len);
2697 /* The System V ABI says that:
2698
2699 "An argument's size is increased, if necessary, to make it a
2700 multiple of [32-bit] words. This may require tail padding,
2701 depending on the size of the argument."
2702
2703 This makes sure the stack stays word-aligned. */
2704 args_space_used += align_up (len, 4);
2705 }
2706 else
2707 {
2708 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2709 args_space = align_up (args_space, 16);
2710 args_space += align_up (len, 4);
2711 }
2712 }
2713
2714 if (!write_pass)
2715 {
2716 sp -= args_space;
2717
2718 /* The original System V ABI only requires word alignment,
2719 but modern incarnations need 16-byte alignment in order
2720 to support SSE. Since wasting a few bytes here isn't
2721 harmful we unconditionally enforce 16-byte alignment. */
2722 sp &= ~0xf;
2723 }
2724 }
2725
2726 /* Store return address. */
2727 sp -= 4;
2728 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2729 write_memory (sp, buf, 4);
2730
2731 /* Finally, update the stack pointer... */
2732 store_unsigned_integer (buf, 4, byte_order, sp);
2733 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2734
2735 /* ...and fake a frame pointer. */
2736 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2737
2738 /* MarkK wrote: This "+ 8" is all over the place:
2739 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2740 i386_dummy_id). It's there, since all frame unwinders for
2741 a given target have to agree (within a certain margin) on the
2742 definition of the stack address of a frame. Otherwise frame id
2743 comparison might not work correctly. Since DWARF2/GCC uses the
2744 stack address *before* the function call as a frame's CFA. On
2745 the i386, when %ebp is used as a frame pointer, the offset
2746 between the contents %ebp and the CFA as defined by GCC. */
2747 return sp + 8;
2748 }
2749
2750 /* These registers are used for returning integers (and on some
2751 targets also for returning `struct' and `union' values when their
2752 size and alignment match an integer type). */
2753 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2754 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2755
2756 /* Read, for architecture GDBARCH, a function return value of TYPE
2757 from REGCACHE, and copy that into VALBUF. */
2758
2759 static void
2760 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2761 struct regcache *regcache, gdb_byte *valbuf)
2762 {
2763 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2764 int len = TYPE_LENGTH (type);
2765 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2766
2767 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2768 {
2769 if (tdep->st0_regnum < 0)
2770 {
2771 warning (_("Cannot find floating-point return value."));
2772 memset (valbuf, 0, len);
2773 return;
2774 }
2775
2776 /* Floating-point return values can be found in %st(0). Convert
2777 its contents to the desired type. This is probably not
2778 exactly how it would happen on the target itself, but it is
2779 the best we can do. */
2780 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2781 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2782 }
2783 else
2784 {
2785 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2786 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2787
2788 if (len <= low_size)
2789 {
2790 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2791 memcpy (valbuf, buf, len);
2792 }
2793 else if (len <= (low_size + high_size))
2794 {
2795 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2796 memcpy (valbuf, buf, low_size);
2797 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2798 memcpy (valbuf + low_size, buf, len - low_size);
2799 }
2800 else
2801 internal_error (__FILE__, __LINE__,
2802 _("Cannot extract return value of %d bytes long."),
2803 len);
2804 }
2805 }
2806
2807 /* Write, for architecture GDBARCH, a function return value of TYPE
2808 from VALBUF into REGCACHE. */
2809
2810 static void
2811 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2812 struct regcache *regcache, const gdb_byte *valbuf)
2813 {
2814 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2815 int len = TYPE_LENGTH (type);
2816
2817 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2818 {
2819 ULONGEST fstat;
2820 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2821
2822 if (tdep->st0_regnum < 0)
2823 {
2824 warning (_("Cannot set floating-point return value."));
2825 return;
2826 }
2827
2828 /* Returning floating-point values is a bit tricky. Apart from
2829 storing the return value in %st(0), we have to simulate the
2830 state of the FPU at function return point. */
2831
2832 /* Convert the value found in VALBUF to the extended
2833 floating-point format used by the FPU. This is probably
2834 not exactly how it would happen on the target itself, but
2835 it is the best we can do. */
2836 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2837 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2838
2839 /* Set the top of the floating-point register stack to 7. The
2840 actual value doesn't really matter, but 7 is what a normal
2841 function return would end up with if the program started out
2842 with a freshly initialized FPU. */
2843 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2844 fstat |= (7 << 11);
2845 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2846
2847 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2848 the floating-point register stack to 7, the appropriate value
2849 for the tag word is 0x3fff. */
2850 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2851 }
2852 else
2853 {
2854 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2855 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2856
2857 if (len <= low_size)
2858 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2859 else if (len <= (low_size + high_size))
2860 {
2861 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2862 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2863 len - low_size, valbuf + low_size);
2864 }
2865 else
2866 internal_error (__FILE__, __LINE__,
2867 _("Cannot store return value of %d bytes long."), len);
2868 }
2869 }
2870 \f
2871
2872 /* This is the variable that is set with "set struct-convention", and
2873 its legitimate values. */
2874 static const char default_struct_convention[] = "default";
2875 static const char pcc_struct_convention[] = "pcc";
2876 static const char reg_struct_convention[] = "reg";
2877 static const char *const valid_conventions[] =
2878 {
2879 default_struct_convention,
2880 pcc_struct_convention,
2881 reg_struct_convention,
2882 NULL
2883 };
2884 static const char *struct_convention = default_struct_convention;
2885
2886 /* Return non-zero if TYPE, which is assumed to be a structure,
2887 a union type, or an array type, should be returned in registers
2888 for architecture GDBARCH. */
2889
2890 static int
2891 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2892 {
2893 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2894 enum type_code code = TYPE_CODE (type);
2895 int len = TYPE_LENGTH (type);
2896
2897 gdb_assert (code == TYPE_CODE_STRUCT
2898 || code == TYPE_CODE_UNION
2899 || code == TYPE_CODE_ARRAY);
2900
2901 if (struct_convention == pcc_struct_convention
2902 || (struct_convention == default_struct_convention
2903 && tdep->struct_return == pcc_struct_return))
2904 return 0;
2905
2906 /* Structures consisting of a single `float', `double' or 'long
2907 double' member are returned in %st(0). */
2908 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2909 {
2910 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2911 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2912 return (len == 4 || len == 8 || len == 12);
2913 }
2914
2915 return (len == 1 || len == 2 || len == 4 || len == 8);
2916 }
2917
2918 /* Determine, for architecture GDBARCH, how a return value of TYPE
2919 should be returned. If it is supposed to be returned in registers,
2920 and READBUF is non-zero, read the appropriate value from REGCACHE,
2921 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2922 from WRITEBUF into REGCACHE. */
2923
2924 static enum return_value_convention
2925 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2926 struct type *type, struct regcache *regcache,
2927 gdb_byte *readbuf, const gdb_byte *writebuf)
2928 {
2929 enum type_code code = TYPE_CODE (type);
2930
2931 if (((code == TYPE_CODE_STRUCT
2932 || code == TYPE_CODE_UNION
2933 || code == TYPE_CODE_ARRAY)
2934 && !i386_reg_struct_return_p (gdbarch, type))
2935 /* Complex double and long double uses the struct return covention. */
2936 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2937 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2938 /* 128-bit decimal float uses the struct return convention. */
2939 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2940 {
2941 /* The System V ABI says that:
2942
2943 "A function that returns a structure or union also sets %eax
2944 to the value of the original address of the caller's area
2945 before it returns. Thus when the caller receives control
2946 again, the address of the returned object resides in register
2947 %eax and can be used to access the object."
2948
2949 So the ABI guarantees that we can always find the return
2950 value just after the function has returned. */
2951
2952 /* Note that the ABI doesn't mention functions returning arrays,
2953 which is something possible in certain languages such as Ada.
2954 In this case, the value is returned as if it was wrapped in
2955 a record, so the convention applied to records also applies
2956 to arrays. */
2957
2958 if (readbuf)
2959 {
2960 ULONGEST addr;
2961
2962 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2963 read_memory (addr, readbuf, TYPE_LENGTH (type));
2964 }
2965
2966 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2967 }
2968
2969 /* This special case is for structures consisting of a single
2970 `float', `double' or 'long double' member. These structures are
2971 returned in %st(0). For these structures, we call ourselves
2972 recursively, changing TYPE into the type of the first member of
2973 the structure. Since that should work for all structures that
2974 have only one member, we don't bother to check the member's type
2975 here. */
2976 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2977 {
2978 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2979 return i386_return_value (gdbarch, function, type, regcache,
2980 readbuf, writebuf);
2981 }
2982
2983 if (readbuf)
2984 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2985 if (writebuf)
2986 i386_store_return_value (gdbarch, type, regcache, writebuf);
2987
2988 return RETURN_VALUE_REGISTER_CONVENTION;
2989 }
2990 \f
2991
2992 struct type *
2993 i387_ext_type (struct gdbarch *gdbarch)
2994 {
2995 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2996
2997 if (!tdep->i387_ext_type)
2998 {
2999 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3000 gdb_assert (tdep->i387_ext_type != NULL);
3001 }
3002
3003 return tdep->i387_ext_type;
3004 }
3005
3006 /* Construct type for pseudo BND registers. We can't use
3007 tdesc_find_type since a complement of one value has to be used
3008 to describe the upper bound. */
3009
3010 static struct type *
3011 i386_bnd_type (struct gdbarch *gdbarch)
3012 {
3013 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3014
3015
3016 if (!tdep->i386_bnd_type)
3017 {
3018 struct type *t;
3019 const struct builtin_type *bt = builtin_type (gdbarch);
3020
3021 /* The type we're building is described bellow: */
3022 #if 0
3023 struct __bound128
3024 {
3025 void *lbound;
3026 void *ubound; /* One complement of raw ubound field. */
3027 };
3028 #endif
3029
3030 t = arch_composite_type (gdbarch,
3031 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3032
3033 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3034 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3035
3036 TYPE_NAME (t) = "builtin_type_bound128";
3037 tdep->i386_bnd_type = t;
3038 }
3039
3040 return tdep->i386_bnd_type;
3041 }
3042
3043 /* Construct vector type for pseudo ZMM registers. We can't use
3044 tdesc_find_type since ZMM isn't described in target description. */
3045
3046 static struct type *
3047 i386_zmm_type (struct gdbarch *gdbarch)
3048 {
3049 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3050
3051 if (!tdep->i386_zmm_type)
3052 {
3053 const struct builtin_type *bt = builtin_type (gdbarch);
3054
3055 /* The type we're building is this: */
3056 #if 0
3057 union __gdb_builtin_type_vec512i
3058 {
3059 int128_t uint128[4];
3060 int64_t v4_int64[8];
3061 int32_t v8_int32[16];
3062 int16_t v16_int16[32];
3063 int8_t v32_int8[64];
3064 double v4_double[8];
3065 float v8_float[16];
3066 };
3067 #endif
3068
3069 struct type *t;
3070
3071 t = arch_composite_type (gdbarch,
3072 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3073 append_composite_type_field (t, "v16_float",
3074 init_vector_type (bt->builtin_float, 16));
3075 append_composite_type_field (t, "v8_double",
3076 init_vector_type (bt->builtin_double, 8));
3077 append_composite_type_field (t, "v64_int8",
3078 init_vector_type (bt->builtin_int8, 64));
3079 append_composite_type_field (t, "v32_int16",
3080 init_vector_type (bt->builtin_int16, 32));
3081 append_composite_type_field (t, "v16_int32",
3082 init_vector_type (bt->builtin_int32, 16));
3083 append_composite_type_field (t, "v8_int64",
3084 init_vector_type (bt->builtin_int64, 8));
3085 append_composite_type_field (t, "v4_int128",
3086 init_vector_type (bt->builtin_int128, 4));
3087
3088 TYPE_VECTOR (t) = 1;
3089 TYPE_NAME (t) = "builtin_type_vec512i";
3090 tdep->i386_zmm_type = t;
3091 }
3092
3093 return tdep->i386_zmm_type;
3094 }
3095
3096 /* Construct vector type for pseudo YMM registers. We can't use
3097 tdesc_find_type since YMM isn't described in target description. */
3098
3099 static struct type *
3100 i386_ymm_type (struct gdbarch *gdbarch)
3101 {
3102 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3103
3104 if (!tdep->i386_ymm_type)
3105 {
3106 const struct builtin_type *bt = builtin_type (gdbarch);
3107
3108 /* The type we're building is this: */
3109 #if 0
3110 union __gdb_builtin_type_vec256i
3111 {
3112 int128_t uint128[2];
3113 int64_t v2_int64[4];
3114 int32_t v4_int32[8];
3115 int16_t v8_int16[16];
3116 int8_t v16_int8[32];
3117 double v2_double[4];
3118 float v4_float[8];
3119 };
3120 #endif
3121
3122 struct type *t;
3123
3124 t = arch_composite_type (gdbarch,
3125 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3126 append_composite_type_field (t, "v8_float",
3127 init_vector_type (bt->builtin_float, 8));
3128 append_composite_type_field (t, "v4_double",
3129 init_vector_type (bt->builtin_double, 4));
3130 append_composite_type_field (t, "v32_int8",
3131 init_vector_type (bt->builtin_int8, 32));
3132 append_composite_type_field (t, "v16_int16",
3133 init_vector_type (bt->builtin_int16, 16));
3134 append_composite_type_field (t, "v8_int32",
3135 init_vector_type (bt->builtin_int32, 8));
3136 append_composite_type_field (t, "v4_int64",
3137 init_vector_type (bt->builtin_int64, 4));
3138 append_composite_type_field (t, "v2_int128",
3139 init_vector_type (bt->builtin_int128, 2));
3140
3141 TYPE_VECTOR (t) = 1;
3142 TYPE_NAME (t) = "builtin_type_vec256i";
3143 tdep->i386_ymm_type = t;
3144 }
3145
3146 return tdep->i386_ymm_type;
3147 }
3148
3149 /* Construct vector type for MMX registers. */
3150 static struct type *
3151 i386_mmx_type (struct gdbarch *gdbarch)
3152 {
3153 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3154
3155 if (!tdep->i386_mmx_type)
3156 {
3157 const struct builtin_type *bt = builtin_type (gdbarch);
3158
3159 /* The type we're building is this: */
3160 #if 0
3161 union __gdb_builtin_type_vec64i
3162 {
3163 int64_t uint64;
3164 int32_t v2_int32[2];
3165 int16_t v4_int16[4];
3166 int8_t v8_int8[8];
3167 };
3168 #endif
3169
3170 struct type *t;
3171
3172 t = arch_composite_type (gdbarch,
3173 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3174
3175 append_composite_type_field (t, "uint64", bt->builtin_int64);
3176 append_composite_type_field (t, "v2_int32",
3177 init_vector_type (bt->builtin_int32, 2));
3178 append_composite_type_field (t, "v4_int16",
3179 init_vector_type (bt->builtin_int16, 4));
3180 append_composite_type_field (t, "v8_int8",
3181 init_vector_type (bt->builtin_int8, 8));
3182
3183 TYPE_VECTOR (t) = 1;
3184 TYPE_NAME (t) = "builtin_type_vec64i";
3185 tdep->i386_mmx_type = t;
3186 }
3187
3188 return tdep->i386_mmx_type;
3189 }
3190
3191 /* Return the GDB type object for the "standard" data type of data in
3192 register REGNUM. */
3193
3194 struct type *
3195 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3196 {
3197 if (i386_bnd_regnum_p (gdbarch, regnum))
3198 return i386_bnd_type (gdbarch);
3199 if (i386_mmx_regnum_p (gdbarch, regnum))
3200 return i386_mmx_type (gdbarch);
3201 else if (i386_ymm_regnum_p (gdbarch, regnum))
3202 return i386_ymm_type (gdbarch);
3203 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3204 return i386_ymm_type (gdbarch);
3205 else if (i386_zmm_regnum_p (gdbarch, regnum))
3206 return i386_zmm_type (gdbarch);
3207 else
3208 {
3209 const struct builtin_type *bt = builtin_type (gdbarch);
3210 if (i386_byte_regnum_p (gdbarch, regnum))
3211 return bt->builtin_int8;
3212 else if (i386_word_regnum_p (gdbarch, regnum))
3213 return bt->builtin_int16;
3214 else if (i386_dword_regnum_p (gdbarch, regnum))
3215 return bt->builtin_int32;
3216 else if (i386_k_regnum_p (gdbarch, regnum))
3217 return bt->builtin_int64;
3218 }
3219
3220 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3221 }
3222
3223 /* Map a cooked register onto a raw register or memory. For the i386,
3224 the MMX registers need to be mapped onto floating point registers. */
3225
3226 static int
3227 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
3228 {
3229 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3230 int mmxreg, fpreg;
3231 ULONGEST fstat;
3232 int tos;
3233
3234 mmxreg = regnum - tdep->mm0_regnum;
3235 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
3236 tos = (fstat >> 11) & 0x7;
3237 fpreg = (mmxreg + tos) % 8;
3238
3239 return (I387_ST0_REGNUM (tdep) + fpreg);
3240 }
3241
3242 /* A helper function for us by i386_pseudo_register_read_value and
3243 amd64_pseudo_register_read_value. It does all the work but reads
3244 the data into an already-allocated value. */
3245
3246 void
3247 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3248 struct regcache *regcache,
3249 int regnum,
3250 struct value *result_value)
3251 {
3252 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3253 enum register_status status;
3254 gdb_byte *buf = value_contents_raw (result_value);
3255
3256 if (i386_mmx_regnum_p (gdbarch, regnum))
3257 {
3258 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3259
3260 /* Extract (always little endian). */
3261 status = regcache_raw_read (regcache, fpnum, raw_buf);
3262 if (status != REG_VALID)
3263 mark_value_bytes_unavailable (result_value, 0,
3264 TYPE_LENGTH (value_type (result_value)));
3265 else
3266 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3267 }
3268 else
3269 {
3270 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3271 if (i386_bnd_regnum_p (gdbarch, regnum))
3272 {
3273 regnum -= tdep->bnd0_regnum;
3274
3275 /* Extract (always little endian). Read lower 128bits. */
3276 status = regcache_raw_read (regcache,
3277 I387_BND0R_REGNUM (tdep) + regnum,
3278 raw_buf);
3279 if (status != REG_VALID)
3280 mark_value_bytes_unavailable (result_value, 0, 16);
3281 else
3282 {
3283 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3284 LONGEST upper, lower;
3285 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3286
3287 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3288 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3289 upper = ~upper;
3290
3291 memcpy (buf, &lower, size);
3292 memcpy (buf + size, &upper, size);
3293 }
3294 }
3295 else if (i386_k_regnum_p (gdbarch, regnum))
3296 {
3297 regnum -= tdep->k0_regnum;
3298
3299 /* Extract (always little endian). */
3300 status = regcache_raw_read (regcache,
3301 tdep->k0_regnum + regnum,
3302 raw_buf);
3303 if (status != REG_VALID)
3304 mark_value_bytes_unavailable (result_value, 0, 8);
3305 else
3306 memcpy (buf, raw_buf, 8);
3307 }
3308 else if (i386_zmm_regnum_p (gdbarch, regnum))
3309 {
3310 regnum -= tdep->zmm0_regnum;
3311
3312 if (regnum < num_lower_zmm_regs)
3313 {
3314 /* Extract (always little endian). Read lower 128bits. */
3315 status = regcache_raw_read (regcache,
3316 I387_XMM0_REGNUM (tdep) + regnum,
3317 raw_buf);
3318 if (status != REG_VALID)
3319 mark_value_bytes_unavailable (result_value, 0, 16);
3320 else
3321 memcpy (buf, raw_buf, 16);
3322
3323 /* Extract (always little endian). Read upper 128bits. */
3324 status = regcache_raw_read (regcache,
3325 tdep->ymm0h_regnum + regnum,
3326 raw_buf);
3327 if (status != REG_VALID)
3328 mark_value_bytes_unavailable (result_value, 16, 16);
3329 else
3330 memcpy (buf + 16, raw_buf, 16);
3331 }
3332 else
3333 {
3334 /* Extract (always little endian). Read lower 128bits. */
3335 status = regcache_raw_read (regcache,
3336 I387_XMM16_REGNUM (tdep) + regnum
3337 - num_lower_zmm_regs,
3338 raw_buf);
3339 if (status != REG_VALID)
3340 mark_value_bytes_unavailable (result_value, 0, 16);
3341 else
3342 memcpy (buf, raw_buf, 16);
3343
3344 /* Extract (always little endian). Read upper 128bits. */
3345 status = regcache_raw_read (regcache,
3346 I387_YMM16H_REGNUM (tdep) + regnum
3347 - num_lower_zmm_regs,
3348 raw_buf);
3349 if (status != REG_VALID)
3350 mark_value_bytes_unavailable (result_value, 16, 16);
3351 else
3352 memcpy (buf + 16, raw_buf, 16);
3353 }
3354
3355 /* Read upper 256bits. */
3356 status = regcache_raw_read (regcache,
3357 tdep->zmm0h_regnum + regnum,
3358 raw_buf);
3359 if (status != REG_VALID)
3360 mark_value_bytes_unavailable (result_value, 32, 32);
3361 else
3362 memcpy (buf + 32, raw_buf, 32);
3363 }
3364 else if (i386_ymm_regnum_p (gdbarch, regnum))
3365 {
3366 regnum -= tdep->ymm0_regnum;
3367
3368 /* Extract (always little endian). Read lower 128bits. */
3369 status = regcache_raw_read (regcache,
3370 I387_XMM0_REGNUM (tdep) + regnum,
3371 raw_buf);
3372 if (status != REG_VALID)
3373 mark_value_bytes_unavailable (result_value, 0, 16);
3374 else
3375 memcpy (buf, raw_buf, 16);
3376 /* Read upper 128bits. */
3377 status = regcache_raw_read (regcache,
3378 tdep->ymm0h_regnum + regnum,
3379 raw_buf);
3380 if (status != REG_VALID)
3381 mark_value_bytes_unavailable (result_value, 16, 32);
3382 else
3383 memcpy (buf + 16, raw_buf, 16);
3384 }
3385 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3386 {
3387 regnum -= tdep->ymm16_regnum;
3388 /* Extract (always little endian). Read lower 128bits. */
3389 status = regcache_raw_read (regcache,
3390 I387_XMM16_REGNUM (tdep) + regnum,
3391 raw_buf);
3392 if (status != REG_VALID)
3393 mark_value_bytes_unavailable (result_value, 0, 16);
3394 else
3395 memcpy (buf, raw_buf, 16);
3396 /* Read upper 128bits. */
3397 status = regcache_raw_read (regcache,
3398 tdep->ymm16h_regnum + regnum,
3399 raw_buf);
3400 if (status != REG_VALID)
3401 mark_value_bytes_unavailable (result_value, 16, 16);
3402 else
3403 memcpy (buf + 16, raw_buf, 16);
3404 }
3405 else if (i386_word_regnum_p (gdbarch, regnum))
3406 {
3407 int gpnum = regnum - tdep->ax_regnum;
3408
3409 /* Extract (always little endian). */
3410 status = regcache_raw_read (regcache, gpnum, raw_buf);
3411 if (status != REG_VALID)
3412 mark_value_bytes_unavailable (result_value, 0,
3413 TYPE_LENGTH (value_type (result_value)));
3414 else
3415 memcpy (buf, raw_buf, 2);
3416 }
3417 else if (i386_byte_regnum_p (gdbarch, regnum))
3418 {
3419 int gpnum = regnum - tdep->al_regnum;
3420
3421 /* Extract (always little endian). We read both lower and
3422 upper registers. */
3423 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3424 if (status != REG_VALID)
3425 mark_value_bytes_unavailable (result_value, 0,
3426 TYPE_LENGTH (value_type (result_value)));
3427 else if (gpnum >= 4)
3428 memcpy (buf, raw_buf + 1, 1);
3429 else
3430 memcpy (buf, raw_buf, 1);
3431 }
3432 else
3433 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3434 }
3435 }
3436
3437 static struct value *
3438 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3439 struct regcache *regcache,
3440 int regnum)
3441 {
3442 struct value *result;
3443
3444 result = allocate_value (register_type (gdbarch, regnum));
3445 VALUE_LVAL (result) = lval_register;
3446 VALUE_REGNUM (result) = regnum;
3447
3448 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3449
3450 return result;
3451 }
3452
3453 void
3454 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3455 int regnum, const gdb_byte *buf)
3456 {
3457 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3458
3459 if (i386_mmx_regnum_p (gdbarch, regnum))
3460 {
3461 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3462
3463 /* Read ... */
3464 regcache_raw_read (regcache, fpnum, raw_buf);
3465 /* ... Modify ... (always little endian). */
3466 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3467 /* ... Write. */
3468 regcache_raw_write (regcache, fpnum, raw_buf);
3469 }
3470 else
3471 {
3472 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3473
3474 if (i386_bnd_regnum_p (gdbarch, regnum))
3475 {
3476 ULONGEST upper, lower;
3477 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3478 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3479
3480 /* New values from input value. */
3481 regnum -= tdep->bnd0_regnum;
3482 lower = extract_unsigned_integer (buf, size, byte_order);
3483 upper = extract_unsigned_integer (buf + size, size, byte_order);
3484
3485 /* Fetching register buffer. */
3486 regcache_raw_read (regcache,
3487 I387_BND0R_REGNUM (tdep) + regnum,
3488 raw_buf);
3489
3490 upper = ~upper;
3491
3492 /* Set register bits. */
3493 memcpy (raw_buf, &lower, 8);
3494 memcpy (raw_buf + 8, &upper, 8);
3495
3496
3497 regcache_raw_write (regcache,
3498 I387_BND0R_REGNUM (tdep) + regnum,
3499 raw_buf);
3500 }
3501 else if (i386_k_regnum_p (gdbarch, regnum))
3502 {
3503 regnum -= tdep->k0_regnum;
3504
3505 regcache_raw_write (regcache,
3506 tdep->k0_regnum + regnum,
3507 buf);
3508 }
3509 else if (i386_zmm_regnum_p (gdbarch, regnum))
3510 {
3511 regnum -= tdep->zmm0_regnum;
3512
3513 if (regnum < num_lower_zmm_regs)
3514 {
3515 /* Write lower 128bits. */
3516 regcache_raw_write (regcache,
3517 I387_XMM0_REGNUM (tdep) + regnum,
3518 buf);
3519 /* Write upper 128bits. */
3520 regcache_raw_write (regcache,
3521 I387_YMM0_REGNUM (tdep) + regnum,
3522 buf + 16);
3523 }
3524 else
3525 {
3526 /* Write lower 128bits. */
3527 regcache_raw_write (regcache,
3528 I387_XMM16_REGNUM (tdep) + regnum
3529 - num_lower_zmm_regs,
3530 buf);
3531 /* Write upper 128bits. */
3532 regcache_raw_write (regcache,
3533 I387_YMM16H_REGNUM (tdep) + regnum
3534 - num_lower_zmm_regs,
3535 buf + 16);
3536 }
3537 /* Write upper 256bits. */
3538 regcache_raw_write (regcache,
3539 tdep->zmm0h_regnum + regnum,
3540 buf + 32);
3541 }
3542 else if (i386_ymm_regnum_p (gdbarch, regnum))
3543 {
3544 regnum -= tdep->ymm0_regnum;
3545
3546 /* ... Write lower 128bits. */
3547 regcache_raw_write (regcache,
3548 I387_XMM0_REGNUM (tdep) + regnum,
3549 buf);
3550 /* ... Write upper 128bits. */
3551 regcache_raw_write (regcache,
3552 tdep->ymm0h_regnum + regnum,
3553 buf + 16);
3554 }
3555 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3556 {
3557 regnum -= tdep->ymm16_regnum;
3558
3559 /* ... Write lower 128bits. */
3560 regcache_raw_write (regcache,
3561 I387_XMM16_REGNUM (tdep) + regnum,
3562 buf);
3563 /* ... Write upper 128bits. */
3564 regcache_raw_write (regcache,
3565 tdep->ymm16h_regnum + regnum,
3566 buf + 16);
3567 }
3568 else if (i386_word_regnum_p (gdbarch, regnum))
3569 {
3570 int gpnum = regnum - tdep->ax_regnum;
3571
3572 /* Read ... */
3573 regcache_raw_read (regcache, gpnum, raw_buf);
3574 /* ... Modify ... (always little endian). */
3575 memcpy (raw_buf, buf, 2);
3576 /* ... Write. */
3577 regcache_raw_write (regcache, gpnum, raw_buf);
3578 }
3579 else if (i386_byte_regnum_p (gdbarch, regnum))
3580 {
3581 int gpnum = regnum - tdep->al_regnum;
3582
3583 /* Read ... We read both lower and upper registers. */
3584 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3585 /* ... Modify ... (always little endian). */
3586 if (gpnum >= 4)
3587 memcpy (raw_buf + 1, buf, 1);
3588 else
3589 memcpy (raw_buf, buf, 1);
3590 /* ... Write. */
3591 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3592 }
3593 else
3594 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3595 }
3596 }
3597
3598 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3599
3600 int
3601 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3602 struct agent_expr *ax, int regnum)
3603 {
3604 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3605
3606 if (i386_mmx_regnum_p (gdbarch, regnum))
3607 {
3608 /* MMX to FPU register mapping depends on current TOS. Let's just
3609 not care and collect everything... */
3610 int i;
3611
3612 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3613 for (i = 0; i < 8; i++)
3614 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3615 return 0;
3616 }
3617 else if (i386_bnd_regnum_p (gdbarch, regnum))
3618 {
3619 regnum -= tdep->bnd0_regnum;
3620 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3621 return 0;
3622 }
3623 else if (i386_k_regnum_p (gdbarch, regnum))
3624 {
3625 regnum -= tdep->k0_regnum;
3626 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3627 return 0;
3628 }
3629 else if (i386_zmm_regnum_p (gdbarch, regnum))
3630 {
3631 regnum -= tdep->zmm0_regnum;
3632 if (regnum < num_lower_zmm_regs)
3633 {
3634 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3635 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3636 }
3637 else
3638 {
3639 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3640 - num_lower_zmm_regs);
3641 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3642 - num_lower_zmm_regs);
3643 }
3644 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3645 return 0;
3646 }
3647 else if (i386_ymm_regnum_p (gdbarch, regnum))
3648 {
3649 regnum -= tdep->ymm0_regnum;
3650 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3651 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3652 return 0;
3653 }
3654 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3655 {
3656 regnum -= tdep->ymm16_regnum;
3657 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3658 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3659 return 0;
3660 }
3661 else if (i386_word_regnum_p (gdbarch, regnum))
3662 {
3663 int gpnum = regnum - tdep->ax_regnum;
3664
3665 ax_reg_mask (ax, gpnum);
3666 return 0;
3667 }
3668 else if (i386_byte_regnum_p (gdbarch, regnum))
3669 {
3670 int gpnum = regnum - tdep->al_regnum;
3671
3672 ax_reg_mask (ax, gpnum % 4);
3673 return 0;
3674 }
3675 else
3676 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3677 return 1;
3678 }
3679 \f
3680
3681 /* Return the register number of the register allocated by GCC after
3682 REGNUM, or -1 if there is no such register. */
3683
3684 static int
3685 i386_next_regnum (int regnum)
3686 {
3687 /* GCC allocates the registers in the order:
3688
3689 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3690
3691 Since storing a variable in %esp doesn't make any sense we return
3692 -1 for %ebp and for %esp itself. */
3693 static int next_regnum[] =
3694 {
3695 I386_EDX_REGNUM, /* Slot for %eax. */
3696 I386_EBX_REGNUM, /* Slot for %ecx. */
3697 I386_ECX_REGNUM, /* Slot for %edx. */
3698 I386_ESI_REGNUM, /* Slot for %ebx. */
3699 -1, -1, /* Slots for %esp and %ebp. */
3700 I386_EDI_REGNUM, /* Slot for %esi. */
3701 I386_EBP_REGNUM /* Slot for %edi. */
3702 };
3703
3704 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3705 return next_regnum[regnum];
3706
3707 return -1;
3708 }
3709
3710 /* Return nonzero if a value of type TYPE stored in register REGNUM
3711 needs any special handling. */
3712
3713 static int
3714 i386_convert_register_p (struct gdbarch *gdbarch,
3715 int regnum, struct type *type)
3716 {
3717 int len = TYPE_LENGTH (type);
3718
3719 /* Values may be spread across multiple registers. Most debugging
3720 formats aren't expressive enough to specify the locations, so
3721 some heuristics is involved. Right now we only handle types that
3722 have a length that is a multiple of the word size, since GCC
3723 doesn't seem to put any other types into registers. */
3724 if (len > 4 && len % 4 == 0)
3725 {
3726 int last_regnum = regnum;
3727
3728 while (len > 4)
3729 {
3730 last_regnum = i386_next_regnum (last_regnum);
3731 len -= 4;
3732 }
3733
3734 if (last_regnum != -1)
3735 return 1;
3736 }
3737
3738 return i387_convert_register_p (gdbarch, regnum, type);
3739 }
3740
3741 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3742 return its contents in TO. */
3743
3744 static int
3745 i386_register_to_value (struct frame_info *frame, int regnum,
3746 struct type *type, gdb_byte *to,
3747 int *optimizedp, int *unavailablep)
3748 {
3749 struct gdbarch *gdbarch = get_frame_arch (frame);
3750 int len = TYPE_LENGTH (type);
3751
3752 if (i386_fp_regnum_p (gdbarch, regnum))
3753 return i387_register_to_value (frame, regnum, type, to,
3754 optimizedp, unavailablep);
3755
3756 /* Read a value spread across multiple registers. */
3757
3758 gdb_assert (len > 4 && len % 4 == 0);
3759
3760 while (len > 0)
3761 {
3762 gdb_assert (regnum != -1);
3763 gdb_assert (register_size (gdbarch, regnum) == 4);
3764
3765 if (!get_frame_register_bytes (frame, regnum, 0,
3766 register_size (gdbarch, regnum),
3767 to, optimizedp, unavailablep))
3768 return 0;
3769
3770 regnum = i386_next_regnum (regnum);
3771 len -= 4;
3772 to += 4;
3773 }
3774
3775 *optimizedp = *unavailablep = 0;
3776 return 1;
3777 }
3778
3779 /* Write the contents FROM of a value of type TYPE into register
3780 REGNUM in frame FRAME. */
3781
3782 static void
3783 i386_value_to_register (struct frame_info *frame, int regnum,
3784 struct type *type, const gdb_byte *from)
3785 {
3786 int len = TYPE_LENGTH (type);
3787
3788 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3789 {
3790 i387_value_to_register (frame, regnum, type, from);
3791 return;
3792 }
3793
3794 /* Write a value spread across multiple registers. */
3795
3796 gdb_assert (len > 4 && len % 4 == 0);
3797
3798 while (len > 0)
3799 {
3800 gdb_assert (regnum != -1);
3801 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3802
3803 put_frame_register (frame, regnum, from);
3804 regnum = i386_next_regnum (regnum);
3805 len -= 4;
3806 from += 4;
3807 }
3808 }
3809 \f
3810 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3811 in the general-purpose register set REGSET to register cache
3812 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3813
3814 void
3815 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3816 int regnum, const void *gregs, size_t len)
3817 {
3818 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3819 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3820 const gdb_byte *regs = (const gdb_byte *) gregs;
3821 int i;
3822
3823 gdb_assert (len >= tdep->sizeof_gregset);
3824
3825 for (i = 0; i < tdep->gregset_num_regs; i++)
3826 {
3827 if ((regnum == i || regnum == -1)
3828 && tdep->gregset_reg_offset[i] != -1)
3829 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3830 }
3831 }
3832
3833 /* Collect register REGNUM from the register cache REGCACHE and store
3834 it in the buffer specified by GREGS and LEN as described by the
3835 general-purpose register set REGSET. If REGNUM is -1, do this for
3836 all registers in REGSET. */
3837
3838 static void
3839 i386_collect_gregset (const struct regset *regset,
3840 const struct regcache *regcache,
3841 int regnum, void *gregs, size_t len)
3842 {
3843 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3844 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3845 gdb_byte *regs = (gdb_byte *) gregs;
3846 int i;
3847
3848 gdb_assert (len >= tdep->sizeof_gregset);
3849
3850 for (i = 0; i < tdep->gregset_num_regs; i++)
3851 {
3852 if ((regnum == i || regnum == -1)
3853 && tdep->gregset_reg_offset[i] != -1)
3854 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3855 }
3856 }
3857
3858 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3859 in the floating-point register set REGSET to register cache
3860 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3861
3862 static void
3863 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3864 int regnum, const void *fpregs, size_t len)
3865 {
3866 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3867 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3868
3869 if (len == I387_SIZEOF_FXSAVE)
3870 {
3871 i387_supply_fxsave (regcache, regnum, fpregs);
3872 return;
3873 }
3874
3875 gdb_assert (len >= tdep->sizeof_fpregset);
3876 i387_supply_fsave (regcache, regnum, fpregs);
3877 }
3878
3879 /* Collect register REGNUM from the register cache REGCACHE and store
3880 it in the buffer specified by FPREGS and LEN as described by the
3881 floating-point register set REGSET. If REGNUM is -1, do this for
3882 all registers in REGSET. */
3883
3884 static void
3885 i386_collect_fpregset (const struct regset *regset,
3886 const struct regcache *regcache,
3887 int regnum, void *fpregs, size_t len)
3888 {
3889 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3890 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3891
3892 if (len == I387_SIZEOF_FXSAVE)
3893 {
3894 i387_collect_fxsave (regcache, regnum, fpregs);
3895 return;
3896 }
3897
3898 gdb_assert (len >= tdep->sizeof_fpregset);
3899 i387_collect_fsave (regcache, regnum, fpregs);
3900 }
3901
3902 /* Register set definitions. */
3903
3904 const struct regset i386_gregset =
3905 {
3906 NULL, i386_supply_gregset, i386_collect_gregset
3907 };
3908
3909 const struct regset i386_fpregset =
3910 {
3911 NULL, i386_supply_fpregset, i386_collect_fpregset
3912 };
3913
3914 /* Default iterator over core file register note sections. */
3915
3916 void
3917 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3918 iterate_over_regset_sections_cb *cb,
3919 void *cb_data,
3920 const struct regcache *regcache)
3921 {
3922 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3923
3924 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3925 if (tdep->sizeof_fpregset)
3926 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
3927 }
3928 \f
3929
3930 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3931
3932 CORE_ADDR
3933 i386_pe_skip_trampoline_code (struct frame_info *frame,
3934 CORE_ADDR pc, char *name)
3935 {
3936 struct gdbarch *gdbarch = get_frame_arch (frame);
3937 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3938
3939 /* jmp *(dest) */
3940 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3941 {
3942 unsigned long indirect =
3943 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3944 struct minimal_symbol *indsym =
3945 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3946 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3947
3948 if (symname)
3949 {
3950 if (startswith (symname, "__imp_")
3951 || startswith (symname, "_imp_"))
3952 return name ? 1 :
3953 read_memory_unsigned_integer (indirect, 4, byte_order);
3954 }
3955 }
3956 return 0; /* Not a trampoline. */
3957 }
3958 \f
3959
3960 /* Return whether the THIS_FRAME corresponds to a sigtramp
3961 routine. */
3962
3963 int
3964 i386_sigtramp_p (struct frame_info *this_frame)
3965 {
3966 CORE_ADDR pc = get_frame_pc (this_frame);
3967 const char *name;
3968
3969 find_pc_partial_function (pc, &name, NULL, NULL);
3970 return (name && strcmp ("_sigtramp", name) == 0);
3971 }
3972 \f
3973
3974 /* We have two flavours of disassembly. The machinery on this page
3975 deals with switching between those. */
3976
3977 static int
3978 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3979 {
3980 gdb_assert (disassembly_flavor == att_flavor
3981 || disassembly_flavor == intel_flavor);
3982
3983 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3984 constified, cast to prevent a compiler warning. */
3985 info->disassembler_options = (char *) disassembly_flavor;
3986
3987 return print_insn_i386 (pc, info);
3988 }
3989 \f
3990
3991 /* There are a few i386 architecture variants that differ only
3992 slightly from the generic i386 target. For now, we don't give them
3993 their own source file, but include them here. As a consequence,
3994 they'll always be included. */
3995
3996 /* System V Release 4 (SVR4). */
3997
3998 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3999 routine. */
4000
4001 static int
4002 i386_svr4_sigtramp_p (struct frame_info *this_frame)
4003 {
4004 CORE_ADDR pc = get_frame_pc (this_frame);
4005 const char *name;
4006
4007 /* The origin of these symbols is currently unknown. */
4008 find_pc_partial_function (pc, &name, NULL, NULL);
4009 return (name && (strcmp ("_sigreturn", name) == 0
4010 || strcmp ("sigvechandler", name) == 0));
4011 }
4012
4013 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4014 address of the associated sigcontext (ucontext) structure. */
4015
4016 static CORE_ADDR
4017 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4018 {
4019 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4020 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4021 gdb_byte buf[4];
4022 CORE_ADDR sp;
4023
4024 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4025 sp = extract_unsigned_integer (buf, 4, byte_order);
4026
4027 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4028 }
4029
4030 \f
4031
4032 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4033 gdbarch.h. */
4034
4035 int
4036 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4037 {
4038 return (*s == '$' /* Literal number. */
4039 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4040 || (*s == '(' && s[1] == '%') /* Register indirection. */
4041 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4042 }
4043
4044 /* Helper function for i386_stap_parse_special_token.
4045
4046 This function parses operands of the form `-8+3+1(%rbp)', which
4047 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4048
4049 Return 1 if the operand was parsed successfully, zero
4050 otherwise. */
4051
4052 static int
4053 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4054 struct stap_parse_info *p)
4055 {
4056 const char *s = p->arg;
4057
4058 if (isdigit (*s) || *s == '-' || *s == '+')
4059 {
4060 int got_minus[3];
4061 int i;
4062 long displacements[3];
4063 const char *start;
4064 char *regname;
4065 int len;
4066 struct stoken str;
4067 char *endp;
4068
4069 got_minus[0] = 0;
4070 if (*s == '+')
4071 ++s;
4072 else if (*s == '-')
4073 {
4074 ++s;
4075 got_minus[0] = 1;
4076 }
4077
4078 if (!isdigit ((unsigned char) *s))
4079 return 0;
4080
4081 displacements[0] = strtol (s, &endp, 10);
4082 s = endp;
4083
4084 if (*s != '+' && *s != '-')
4085 {
4086 /* We are not dealing with a triplet. */
4087 return 0;
4088 }
4089
4090 got_minus[1] = 0;
4091 if (*s == '+')
4092 ++s;
4093 else
4094 {
4095 ++s;
4096 got_minus[1] = 1;
4097 }
4098
4099 if (!isdigit ((unsigned char) *s))
4100 return 0;
4101
4102 displacements[1] = strtol (s, &endp, 10);
4103 s = endp;
4104
4105 if (*s != '+' && *s != '-')
4106 {
4107 /* We are not dealing with a triplet. */
4108 return 0;
4109 }
4110
4111 got_minus[2] = 0;
4112 if (*s == '+')
4113 ++s;
4114 else
4115 {
4116 ++s;
4117 got_minus[2] = 1;
4118 }
4119
4120 if (!isdigit ((unsigned char) *s))
4121 return 0;
4122
4123 displacements[2] = strtol (s, &endp, 10);
4124 s = endp;
4125
4126 if (*s != '(' || s[1] != '%')
4127 return 0;
4128
4129 s += 2;
4130 start = s;
4131
4132 while (isalnum (*s))
4133 ++s;
4134
4135 if (*s++ != ')')
4136 return 0;
4137
4138 len = s - start - 1;
4139 regname = (char *) alloca (len + 1);
4140
4141 strncpy (regname, start, len);
4142 regname[len] = '\0';
4143
4144 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4145 error (_("Invalid register name `%s' on expression `%s'."),
4146 regname, p->saved_arg);
4147
4148 for (i = 0; i < 3; i++)
4149 {
4150 write_exp_elt_opcode (&p->pstate, OP_LONG);
4151 write_exp_elt_type
4152 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4153 write_exp_elt_longcst (&p->pstate, displacements[i]);
4154 write_exp_elt_opcode (&p->pstate, OP_LONG);
4155 if (got_minus[i])
4156 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4157 }
4158
4159 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4160 str.ptr = regname;
4161 str.length = len;
4162 write_exp_string (&p->pstate, str);
4163 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4164
4165 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4166 write_exp_elt_type (&p->pstate,
4167 builtin_type (gdbarch)->builtin_data_ptr);
4168 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4169
4170 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4171 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4172 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4173
4174 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4175 write_exp_elt_type (&p->pstate,
4176 lookup_pointer_type (p->arg_type));
4177 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4178
4179 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4180
4181 p->arg = s;
4182
4183 return 1;
4184 }
4185
4186 return 0;
4187 }
4188
4189 /* Helper function for i386_stap_parse_special_token.
4190
4191 This function parses operands of the form `register base +
4192 (register index * size) + offset', as represented in
4193 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4194
4195 Return 1 if the operand was parsed successfully, zero
4196 otherwise. */
4197
4198 static int
4199 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4200 struct stap_parse_info *p)
4201 {
4202 const char *s = p->arg;
4203
4204 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4205 {
4206 int offset_minus = 0;
4207 long offset = 0;
4208 int size_minus = 0;
4209 long size = 0;
4210 const char *start;
4211 char *base;
4212 int len_base;
4213 char *index;
4214 int len_index;
4215 struct stoken base_token, index_token;
4216
4217 if (*s == '+')
4218 ++s;
4219 else if (*s == '-')
4220 {
4221 ++s;
4222 offset_minus = 1;
4223 }
4224
4225 if (offset_minus && !isdigit (*s))
4226 return 0;
4227
4228 if (isdigit (*s))
4229 {
4230 char *endp;
4231
4232 offset = strtol (s, &endp, 10);
4233 s = endp;
4234 }
4235
4236 if (*s != '(' || s[1] != '%')
4237 return 0;
4238
4239 s += 2;
4240 start = s;
4241
4242 while (isalnum (*s))
4243 ++s;
4244
4245 if (*s != ',' || s[1] != '%')
4246 return 0;
4247
4248 len_base = s - start;
4249 base = (char *) alloca (len_base + 1);
4250 strncpy (base, start, len_base);
4251 base[len_base] = '\0';
4252
4253 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4254 error (_("Invalid register name `%s' on expression `%s'."),
4255 base, p->saved_arg);
4256
4257 s += 2;
4258 start = s;
4259
4260 while (isalnum (*s))
4261 ++s;
4262
4263 len_index = s - start;
4264 index = (char *) alloca (len_index + 1);
4265 strncpy (index, start, len_index);
4266 index[len_index] = '\0';
4267
4268 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4269 error (_("Invalid register name `%s' on expression `%s'."),
4270 index, p->saved_arg);
4271
4272 if (*s != ',' && *s != ')')
4273 return 0;
4274
4275 if (*s == ',')
4276 {
4277 char *endp;
4278
4279 ++s;
4280 if (*s == '+')
4281 ++s;
4282 else if (*s == '-')
4283 {
4284 ++s;
4285 size_minus = 1;
4286 }
4287
4288 size = strtol (s, &endp, 10);
4289 s = endp;
4290
4291 if (*s != ')')
4292 return 0;
4293 }
4294
4295 ++s;
4296
4297 if (offset)
4298 {
4299 write_exp_elt_opcode (&p->pstate, OP_LONG);
4300 write_exp_elt_type (&p->pstate,
4301 builtin_type (gdbarch)->builtin_long);
4302 write_exp_elt_longcst (&p->pstate, offset);
4303 write_exp_elt_opcode (&p->pstate, OP_LONG);
4304 if (offset_minus)
4305 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4306 }
4307
4308 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4309 base_token.ptr = base;
4310 base_token.length = len_base;
4311 write_exp_string (&p->pstate, base_token);
4312 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4313
4314 if (offset)
4315 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4316
4317 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4318 index_token.ptr = index;
4319 index_token.length = len_index;
4320 write_exp_string (&p->pstate, index_token);
4321 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4322
4323 if (size)
4324 {
4325 write_exp_elt_opcode (&p->pstate, OP_LONG);
4326 write_exp_elt_type (&p->pstate,
4327 builtin_type (gdbarch)->builtin_long);
4328 write_exp_elt_longcst (&p->pstate, size);
4329 write_exp_elt_opcode (&p->pstate, OP_LONG);
4330 if (size_minus)
4331 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4332 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4333 }
4334
4335 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4336
4337 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4338 write_exp_elt_type (&p->pstate,
4339 lookup_pointer_type (p->arg_type));
4340 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4341
4342 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4343
4344 p->arg = s;
4345
4346 return 1;
4347 }
4348
4349 return 0;
4350 }
4351
4352 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4353 gdbarch.h. */
4354
4355 int
4356 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4357 struct stap_parse_info *p)
4358 {
4359 /* In order to parse special tokens, we use a state-machine that go
4360 through every known token and try to get a match. */
4361 enum
4362 {
4363 TRIPLET,
4364 THREE_ARG_DISPLACEMENT,
4365 DONE
4366 };
4367 int current_state;
4368
4369 current_state = TRIPLET;
4370
4371 /* The special tokens to be parsed here are:
4372
4373 - `register base + (register index * size) + offset', as represented
4374 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4375
4376 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4377 `*(-8 + 3 - 1 + (void *) $eax)'. */
4378
4379 while (current_state != DONE)
4380 {
4381 switch (current_state)
4382 {
4383 case TRIPLET:
4384 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4385 return 1;
4386 break;
4387
4388 case THREE_ARG_DISPLACEMENT:
4389 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4390 return 1;
4391 break;
4392 }
4393
4394 /* Advancing to the next state. */
4395 ++current_state;
4396 }
4397
4398 return 0;
4399 }
4400
4401 \f
4402
4403 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4404 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4405
4406 static const char *
4407 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4408 {
4409 return "(x86_64|i.86)";
4410 }
4411
4412 \f
4413
4414 /* Generic ELF. */
4415
4416 void
4417 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4418 {
4419 static const char *const stap_integer_prefixes[] = { "$", NULL };
4420 static const char *const stap_register_prefixes[] = { "%", NULL };
4421 static const char *const stap_register_indirection_prefixes[] = { "(",
4422 NULL };
4423 static const char *const stap_register_indirection_suffixes[] = { ")",
4424 NULL };
4425
4426 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4427 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4428
4429 /* Registering SystemTap handlers. */
4430 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4431 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4432 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4433 stap_register_indirection_prefixes);
4434 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4435 stap_register_indirection_suffixes);
4436 set_gdbarch_stap_is_single_operand (gdbarch,
4437 i386_stap_is_single_operand);
4438 set_gdbarch_stap_parse_special_token (gdbarch,
4439 i386_stap_parse_special_token);
4440
4441 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
4442 }
4443
4444 /* System V Release 4 (SVR4). */
4445
4446 void
4447 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4448 {
4449 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4450
4451 /* System V Release 4 uses ELF. */
4452 i386_elf_init_abi (info, gdbarch);
4453
4454 /* System V Release 4 has shared libraries. */
4455 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4456
4457 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4458 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4459 tdep->sc_pc_offset = 36 + 14 * 4;
4460 tdep->sc_sp_offset = 36 + 17 * 4;
4461
4462 tdep->jb_pc_offset = 20;
4463 }
4464
4465 /* DJGPP. */
4466
4467 static void
4468 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4469 {
4470 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4471
4472 /* DJGPP doesn't have any special frames for signal handlers. */
4473 tdep->sigtramp_p = NULL;
4474
4475 tdep->jb_pc_offset = 36;
4476
4477 /* DJGPP does not support the SSE registers. */
4478 if (! tdesc_has_registers (info.target_desc))
4479 tdep->tdesc = tdesc_i386_mmx;
4480
4481 /* Native compiler is GCC, which uses the SVR4 register numbering
4482 even in COFF and STABS. See the comment in i386_gdbarch_init,
4483 before the calls to set_gdbarch_stab_reg_to_regnum and
4484 set_gdbarch_sdb_reg_to_regnum. */
4485 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4486 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4487
4488 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
4489
4490 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
4491 }
4492 \f
4493
4494 /* i386 register groups. In addition to the normal groups, add "mmx"
4495 and "sse". */
4496
4497 static struct reggroup *i386_sse_reggroup;
4498 static struct reggroup *i386_mmx_reggroup;
4499
4500 static void
4501 i386_init_reggroups (void)
4502 {
4503 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4504 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4505 }
4506
4507 static void
4508 i386_add_reggroups (struct gdbarch *gdbarch)
4509 {
4510 reggroup_add (gdbarch, i386_sse_reggroup);
4511 reggroup_add (gdbarch, i386_mmx_reggroup);
4512 reggroup_add (gdbarch, general_reggroup);
4513 reggroup_add (gdbarch, float_reggroup);
4514 reggroup_add (gdbarch, all_reggroup);
4515 reggroup_add (gdbarch, save_reggroup);
4516 reggroup_add (gdbarch, restore_reggroup);
4517 reggroup_add (gdbarch, vector_reggroup);
4518 reggroup_add (gdbarch, system_reggroup);
4519 }
4520
4521 int
4522 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4523 struct reggroup *group)
4524 {
4525 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4526 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4527 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4528 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4529 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4530 avx512_p, avx_p, sse_p;
4531
4532 /* Don't include pseudo registers, except for MMX, in any register
4533 groups. */
4534 if (i386_byte_regnum_p (gdbarch, regnum))
4535 return 0;
4536
4537 if (i386_word_regnum_p (gdbarch, regnum))
4538 return 0;
4539
4540 if (i386_dword_regnum_p (gdbarch, regnum))
4541 return 0;
4542
4543 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4544 if (group == i386_mmx_reggroup)
4545 return mmx_regnum_p;
4546
4547 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4548 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4549 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4550 if (group == i386_sse_reggroup)
4551 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4552
4553 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4554 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4555 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4556
4557 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4558 == X86_XSTATE_AVX512_MASK);
4559 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4560 == X86_XSTATE_AVX_MASK) && !avx512_p;
4561 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4562 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4563
4564 if (group == vector_reggroup)
4565 return (mmx_regnum_p
4566 || (zmm_regnum_p && avx512_p)
4567 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4568 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4569 || mxcsr_regnum_p);
4570
4571 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4572 || i386_fpc_regnum_p (gdbarch, regnum));
4573 if (group == float_reggroup)
4574 return fp_regnum_p;
4575
4576 /* For "info reg all", don't include upper YMM registers nor XMM
4577 registers when AVX is supported. */
4578 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4579 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4580 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4581 if (group == all_reggroup
4582 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4583 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4584 || ymmh_regnum_p
4585 || ymmh_avx512_regnum_p
4586 || zmmh_regnum_p))
4587 return 0;
4588
4589 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4590 if (group == all_reggroup
4591 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4592 return bnd_regnum_p;
4593
4594 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4595 if (group == all_reggroup
4596 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4597 return 0;
4598
4599 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4600 if (group == all_reggroup
4601 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4602 return mpx_ctrl_regnum_p;
4603
4604 if (group == general_reggroup)
4605 return (!fp_regnum_p
4606 && !mmx_regnum_p
4607 && !mxcsr_regnum_p
4608 && !xmm_regnum_p
4609 && !xmm_avx512_regnum_p
4610 && !ymm_regnum_p
4611 && !ymmh_regnum_p
4612 && !ymm_avx512_regnum_p
4613 && !ymmh_avx512_regnum_p
4614 && !bndr_regnum_p
4615 && !bnd_regnum_p
4616 && !mpx_ctrl_regnum_p
4617 && !zmm_regnum_p
4618 && !zmmh_regnum_p);
4619
4620 return default_register_reggroup_p (gdbarch, regnum, group);
4621 }
4622 \f
4623
4624 /* Get the ARGIth function argument for the current function. */
4625
4626 static CORE_ADDR
4627 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4628 struct type *type)
4629 {
4630 struct gdbarch *gdbarch = get_frame_arch (frame);
4631 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4632 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4633 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4634 }
4635
4636 #define PREFIX_REPZ 0x01
4637 #define PREFIX_REPNZ 0x02
4638 #define PREFIX_LOCK 0x04
4639 #define PREFIX_DATA 0x08
4640 #define PREFIX_ADDR 0x10
4641
4642 /* operand size */
4643 enum
4644 {
4645 OT_BYTE = 0,
4646 OT_WORD,
4647 OT_LONG,
4648 OT_QUAD,
4649 OT_DQUAD,
4650 };
4651
4652 /* i386 arith/logic operations */
4653 enum
4654 {
4655 OP_ADDL,
4656 OP_ORL,
4657 OP_ADCL,
4658 OP_SBBL,
4659 OP_ANDL,
4660 OP_SUBL,
4661 OP_XORL,
4662 OP_CMPL,
4663 };
4664
4665 struct i386_record_s
4666 {
4667 struct gdbarch *gdbarch;
4668 struct regcache *regcache;
4669 CORE_ADDR orig_addr;
4670 CORE_ADDR addr;
4671 int aflag;
4672 int dflag;
4673 int override;
4674 uint8_t modrm;
4675 uint8_t mod, reg, rm;
4676 int ot;
4677 uint8_t rex_x;
4678 uint8_t rex_b;
4679 int rip_offset;
4680 int popl_esp_hack;
4681 const int *regmap;
4682 };
4683
4684 /* Parse the "modrm" part of the memory address irp->addr points at.
4685 Returns -1 if something goes wrong, 0 otherwise. */
4686
4687 static int
4688 i386_record_modrm (struct i386_record_s *irp)
4689 {
4690 struct gdbarch *gdbarch = irp->gdbarch;
4691
4692 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4693 return -1;
4694
4695 irp->addr++;
4696 irp->mod = (irp->modrm >> 6) & 3;
4697 irp->reg = (irp->modrm >> 3) & 7;
4698 irp->rm = irp->modrm & 7;
4699
4700 return 0;
4701 }
4702
4703 /* Extract the memory address that the current instruction writes to,
4704 and return it in *ADDR. Return -1 if something goes wrong. */
4705
4706 static int
4707 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4708 {
4709 struct gdbarch *gdbarch = irp->gdbarch;
4710 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4711 gdb_byte buf[4];
4712 ULONGEST offset64;
4713
4714 *addr = 0;
4715 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4716 {
4717 /* 32/64 bits */
4718 int havesib = 0;
4719 uint8_t scale = 0;
4720 uint8_t byte;
4721 uint8_t index = 0;
4722 uint8_t base = irp->rm;
4723
4724 if (base == 4)
4725 {
4726 havesib = 1;
4727 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4728 return -1;
4729 irp->addr++;
4730 scale = (byte >> 6) & 3;
4731 index = ((byte >> 3) & 7) | irp->rex_x;
4732 base = (byte & 7);
4733 }
4734 base |= irp->rex_b;
4735
4736 switch (irp->mod)
4737 {
4738 case 0:
4739 if ((base & 7) == 5)
4740 {
4741 base = 0xff;
4742 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4743 return -1;
4744 irp->addr += 4;
4745 *addr = extract_signed_integer (buf, 4, byte_order);
4746 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4747 *addr += irp->addr + irp->rip_offset;
4748 }
4749 break;
4750 case 1:
4751 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4752 return -1;
4753 irp->addr++;
4754 *addr = (int8_t) buf[0];
4755 break;
4756 case 2:
4757 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4758 return -1;
4759 *addr = extract_signed_integer (buf, 4, byte_order);
4760 irp->addr += 4;
4761 break;
4762 }
4763
4764 offset64 = 0;
4765 if (base != 0xff)
4766 {
4767 if (base == 4 && irp->popl_esp_hack)
4768 *addr += irp->popl_esp_hack;
4769 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4770 &offset64);
4771 }
4772 if (irp->aflag == 2)
4773 {
4774 *addr += offset64;
4775 }
4776 else
4777 *addr = (uint32_t) (offset64 + *addr);
4778
4779 if (havesib && (index != 4 || scale != 0))
4780 {
4781 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4782 &offset64);
4783 if (irp->aflag == 2)
4784 *addr += offset64 << scale;
4785 else
4786 *addr = (uint32_t) (*addr + (offset64 << scale));
4787 }
4788
4789 if (!irp->aflag)
4790 {
4791 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4792 address from 32-bit to 64-bit. */
4793 *addr = (uint32_t) *addr;
4794 }
4795 }
4796 else
4797 {
4798 /* 16 bits */
4799 switch (irp->mod)
4800 {
4801 case 0:
4802 if (irp->rm == 6)
4803 {
4804 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4805 return -1;
4806 irp->addr += 2;
4807 *addr = extract_signed_integer (buf, 2, byte_order);
4808 irp->rm = 0;
4809 goto no_rm;
4810 }
4811 break;
4812 case 1:
4813 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4814 return -1;
4815 irp->addr++;
4816 *addr = (int8_t) buf[0];
4817 break;
4818 case 2:
4819 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4820 return -1;
4821 irp->addr += 2;
4822 *addr = extract_signed_integer (buf, 2, byte_order);
4823 break;
4824 }
4825
4826 switch (irp->rm)
4827 {
4828 case 0:
4829 regcache_raw_read_unsigned (irp->regcache,
4830 irp->regmap[X86_RECORD_REBX_REGNUM],
4831 &offset64);
4832 *addr = (uint32_t) (*addr + offset64);
4833 regcache_raw_read_unsigned (irp->regcache,
4834 irp->regmap[X86_RECORD_RESI_REGNUM],
4835 &offset64);
4836 *addr = (uint32_t) (*addr + offset64);
4837 break;
4838 case 1:
4839 regcache_raw_read_unsigned (irp->regcache,
4840 irp->regmap[X86_RECORD_REBX_REGNUM],
4841 &offset64);
4842 *addr = (uint32_t) (*addr + offset64);
4843 regcache_raw_read_unsigned (irp->regcache,
4844 irp->regmap[X86_RECORD_REDI_REGNUM],
4845 &offset64);
4846 *addr = (uint32_t) (*addr + offset64);
4847 break;
4848 case 2:
4849 regcache_raw_read_unsigned (irp->regcache,
4850 irp->regmap[X86_RECORD_REBP_REGNUM],
4851 &offset64);
4852 *addr = (uint32_t) (*addr + offset64);
4853 regcache_raw_read_unsigned (irp->regcache,
4854 irp->regmap[X86_RECORD_RESI_REGNUM],
4855 &offset64);
4856 *addr = (uint32_t) (*addr + offset64);
4857 break;
4858 case 3:
4859 regcache_raw_read_unsigned (irp->regcache,
4860 irp->regmap[X86_RECORD_REBP_REGNUM],
4861 &offset64);
4862 *addr = (uint32_t) (*addr + offset64);
4863 regcache_raw_read_unsigned (irp->regcache,
4864 irp->regmap[X86_RECORD_REDI_REGNUM],
4865 &offset64);
4866 *addr = (uint32_t) (*addr + offset64);
4867 break;
4868 case 4:
4869 regcache_raw_read_unsigned (irp->regcache,
4870 irp->regmap[X86_RECORD_RESI_REGNUM],
4871 &offset64);
4872 *addr = (uint32_t) (*addr + offset64);
4873 break;
4874 case 5:
4875 regcache_raw_read_unsigned (irp->regcache,
4876 irp->regmap[X86_RECORD_REDI_REGNUM],
4877 &offset64);
4878 *addr = (uint32_t) (*addr + offset64);
4879 break;
4880 case 6:
4881 regcache_raw_read_unsigned (irp->regcache,
4882 irp->regmap[X86_RECORD_REBP_REGNUM],
4883 &offset64);
4884 *addr = (uint32_t) (*addr + offset64);
4885 break;
4886 case 7:
4887 regcache_raw_read_unsigned (irp->regcache,
4888 irp->regmap[X86_RECORD_REBX_REGNUM],
4889 &offset64);
4890 *addr = (uint32_t) (*addr + offset64);
4891 break;
4892 }
4893 *addr &= 0xffff;
4894 }
4895
4896 no_rm:
4897 return 0;
4898 }
4899
4900 /* Record the address and contents of the memory that will be changed
4901 by the current instruction. Return -1 if something goes wrong, 0
4902 otherwise. */
4903
4904 static int
4905 i386_record_lea_modrm (struct i386_record_s *irp)
4906 {
4907 struct gdbarch *gdbarch = irp->gdbarch;
4908 uint64_t addr;
4909
4910 if (irp->override >= 0)
4911 {
4912 if (record_full_memory_query)
4913 {
4914 if (yquery (_("\
4915 Process record ignores the memory change of instruction at address %s\n\
4916 because it can't get the value of the segment register.\n\
4917 Do you want to stop the program?"),
4918 paddress (gdbarch, irp->orig_addr)))
4919 return -1;
4920 }
4921
4922 return 0;
4923 }
4924
4925 if (i386_record_lea_modrm_addr (irp, &addr))
4926 return -1;
4927
4928 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4929 return -1;
4930
4931 return 0;
4932 }
4933
4934 /* Record the effects of a push operation. Return -1 if something
4935 goes wrong, 0 otherwise. */
4936
4937 static int
4938 i386_record_push (struct i386_record_s *irp, int size)
4939 {
4940 ULONGEST addr;
4941
4942 if (record_full_arch_list_add_reg (irp->regcache,
4943 irp->regmap[X86_RECORD_RESP_REGNUM]))
4944 return -1;
4945 regcache_raw_read_unsigned (irp->regcache,
4946 irp->regmap[X86_RECORD_RESP_REGNUM],
4947 &addr);
4948 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4949 return -1;
4950
4951 return 0;
4952 }
4953
4954
4955 /* Defines contents to record. */
4956 #define I386_SAVE_FPU_REGS 0xfffd
4957 #define I386_SAVE_FPU_ENV 0xfffe
4958 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4959
4960 /* Record the values of the floating point registers which will be
4961 changed by the current instruction. Returns -1 if something is
4962 wrong, 0 otherwise. */
4963
4964 static int i386_record_floats (struct gdbarch *gdbarch,
4965 struct i386_record_s *ir,
4966 uint32_t iregnum)
4967 {
4968 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4969 int i;
4970
4971 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4972 happen. Currently we store st0-st7 registers, but we need not store all
4973 registers all the time, in future we use ftag register and record only
4974 those who are not marked as an empty. */
4975
4976 if (I386_SAVE_FPU_REGS == iregnum)
4977 {
4978 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4979 {
4980 if (record_full_arch_list_add_reg (ir->regcache, i))
4981 return -1;
4982 }
4983 }
4984 else if (I386_SAVE_FPU_ENV == iregnum)
4985 {
4986 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4987 {
4988 if (record_full_arch_list_add_reg (ir->regcache, i))
4989 return -1;
4990 }
4991 }
4992 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4993 {
4994 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4995 {
4996 if (record_full_arch_list_add_reg (ir->regcache, i))
4997 return -1;
4998 }
4999 }
5000 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5001 (iregnum <= I387_FOP_REGNUM (tdep)))
5002 {
5003 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
5004 return -1;
5005 }
5006 else
5007 {
5008 /* Parameter error. */
5009 return -1;
5010 }
5011 if(I386_SAVE_FPU_ENV != iregnum)
5012 {
5013 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5014 {
5015 if (record_full_arch_list_add_reg (ir->regcache, i))
5016 return -1;
5017 }
5018 }
5019 return 0;
5020 }
5021
5022 /* Parse the current instruction, and record the values of the
5023 registers and memory that will be changed by the current
5024 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5025
5026 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5027 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5028
5029 int
5030 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5031 CORE_ADDR input_addr)
5032 {
5033 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5034 int prefixes = 0;
5035 int regnum = 0;
5036 uint32_t opcode;
5037 uint8_t opcode8;
5038 ULONGEST addr;
5039 gdb_byte buf[MAX_REGISTER_SIZE];
5040 struct i386_record_s ir;
5041 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5042 uint8_t rex_w = -1;
5043 uint8_t rex_r = 0;
5044
5045 memset (&ir, 0, sizeof (struct i386_record_s));
5046 ir.regcache = regcache;
5047 ir.addr = input_addr;
5048 ir.orig_addr = input_addr;
5049 ir.aflag = 1;
5050 ir.dflag = 1;
5051 ir.override = -1;
5052 ir.popl_esp_hack = 0;
5053 ir.regmap = tdep->record_regmap;
5054 ir.gdbarch = gdbarch;
5055
5056 if (record_debug > 1)
5057 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5058 "addr = %s\n",
5059 paddress (gdbarch, ir.addr));
5060
5061 /* prefixes */
5062 while (1)
5063 {
5064 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5065 return -1;
5066 ir.addr++;
5067 switch (opcode8) /* Instruction prefixes */
5068 {
5069 case REPE_PREFIX_OPCODE:
5070 prefixes |= PREFIX_REPZ;
5071 break;
5072 case REPNE_PREFIX_OPCODE:
5073 prefixes |= PREFIX_REPNZ;
5074 break;
5075 case LOCK_PREFIX_OPCODE:
5076 prefixes |= PREFIX_LOCK;
5077 break;
5078 case CS_PREFIX_OPCODE:
5079 ir.override = X86_RECORD_CS_REGNUM;
5080 break;
5081 case SS_PREFIX_OPCODE:
5082 ir.override = X86_RECORD_SS_REGNUM;
5083 break;
5084 case DS_PREFIX_OPCODE:
5085 ir.override = X86_RECORD_DS_REGNUM;
5086 break;
5087 case ES_PREFIX_OPCODE:
5088 ir.override = X86_RECORD_ES_REGNUM;
5089 break;
5090 case FS_PREFIX_OPCODE:
5091 ir.override = X86_RECORD_FS_REGNUM;
5092 break;
5093 case GS_PREFIX_OPCODE:
5094 ir.override = X86_RECORD_GS_REGNUM;
5095 break;
5096 case DATA_PREFIX_OPCODE:
5097 prefixes |= PREFIX_DATA;
5098 break;
5099 case ADDR_PREFIX_OPCODE:
5100 prefixes |= PREFIX_ADDR;
5101 break;
5102 case 0x40: /* i386 inc %eax */
5103 case 0x41: /* i386 inc %ecx */
5104 case 0x42: /* i386 inc %edx */
5105 case 0x43: /* i386 inc %ebx */
5106 case 0x44: /* i386 inc %esp */
5107 case 0x45: /* i386 inc %ebp */
5108 case 0x46: /* i386 inc %esi */
5109 case 0x47: /* i386 inc %edi */
5110 case 0x48: /* i386 dec %eax */
5111 case 0x49: /* i386 dec %ecx */
5112 case 0x4a: /* i386 dec %edx */
5113 case 0x4b: /* i386 dec %ebx */
5114 case 0x4c: /* i386 dec %esp */
5115 case 0x4d: /* i386 dec %ebp */
5116 case 0x4e: /* i386 dec %esi */
5117 case 0x4f: /* i386 dec %edi */
5118 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5119 {
5120 /* REX */
5121 rex_w = (opcode8 >> 3) & 1;
5122 rex_r = (opcode8 & 0x4) << 1;
5123 ir.rex_x = (opcode8 & 0x2) << 2;
5124 ir.rex_b = (opcode8 & 0x1) << 3;
5125 }
5126 else /* 32 bit target */
5127 goto out_prefixes;
5128 break;
5129 default:
5130 goto out_prefixes;
5131 break;
5132 }
5133 }
5134 out_prefixes:
5135 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5136 {
5137 ir.dflag = 2;
5138 }
5139 else
5140 {
5141 if (prefixes & PREFIX_DATA)
5142 ir.dflag ^= 1;
5143 }
5144 if (prefixes & PREFIX_ADDR)
5145 ir.aflag ^= 1;
5146 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5147 ir.aflag = 2;
5148
5149 /* Now check op code. */
5150 opcode = (uint32_t) opcode8;
5151 reswitch:
5152 switch (opcode)
5153 {
5154 case 0x0f:
5155 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5156 return -1;
5157 ir.addr++;
5158 opcode = (uint32_t) opcode8 | 0x0f00;
5159 goto reswitch;
5160 break;
5161
5162 case 0x00: /* arith & logic */
5163 case 0x01:
5164 case 0x02:
5165 case 0x03:
5166 case 0x04:
5167 case 0x05:
5168 case 0x08:
5169 case 0x09:
5170 case 0x0a:
5171 case 0x0b:
5172 case 0x0c:
5173 case 0x0d:
5174 case 0x10:
5175 case 0x11:
5176 case 0x12:
5177 case 0x13:
5178 case 0x14:
5179 case 0x15:
5180 case 0x18:
5181 case 0x19:
5182 case 0x1a:
5183 case 0x1b:
5184 case 0x1c:
5185 case 0x1d:
5186 case 0x20:
5187 case 0x21:
5188 case 0x22:
5189 case 0x23:
5190 case 0x24:
5191 case 0x25:
5192 case 0x28:
5193 case 0x29:
5194 case 0x2a:
5195 case 0x2b:
5196 case 0x2c:
5197 case 0x2d:
5198 case 0x30:
5199 case 0x31:
5200 case 0x32:
5201 case 0x33:
5202 case 0x34:
5203 case 0x35:
5204 case 0x38:
5205 case 0x39:
5206 case 0x3a:
5207 case 0x3b:
5208 case 0x3c:
5209 case 0x3d:
5210 if (((opcode >> 3) & 7) != OP_CMPL)
5211 {
5212 if ((opcode & 1) == 0)
5213 ir.ot = OT_BYTE;
5214 else
5215 ir.ot = ir.dflag + OT_WORD;
5216
5217 switch ((opcode >> 1) & 3)
5218 {
5219 case 0: /* OP Ev, Gv */
5220 if (i386_record_modrm (&ir))
5221 return -1;
5222 if (ir.mod != 3)
5223 {
5224 if (i386_record_lea_modrm (&ir))
5225 return -1;
5226 }
5227 else
5228 {
5229 ir.rm |= ir.rex_b;
5230 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5231 ir.rm &= 0x3;
5232 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5233 }
5234 break;
5235 case 1: /* OP Gv, Ev */
5236 if (i386_record_modrm (&ir))
5237 return -1;
5238 ir.reg |= rex_r;
5239 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5240 ir.reg &= 0x3;
5241 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5242 break;
5243 case 2: /* OP A, Iv */
5244 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5245 break;
5246 }
5247 }
5248 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5249 break;
5250
5251 case 0x80: /* GRP1 */
5252 case 0x81:
5253 case 0x82:
5254 case 0x83:
5255 if (i386_record_modrm (&ir))
5256 return -1;
5257
5258 if (ir.reg != OP_CMPL)
5259 {
5260 if ((opcode & 1) == 0)
5261 ir.ot = OT_BYTE;
5262 else
5263 ir.ot = ir.dflag + OT_WORD;
5264
5265 if (ir.mod != 3)
5266 {
5267 if (opcode == 0x83)
5268 ir.rip_offset = 1;
5269 else
5270 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5271 if (i386_record_lea_modrm (&ir))
5272 return -1;
5273 }
5274 else
5275 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5276 }
5277 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5278 break;
5279
5280 case 0x40: /* inc */
5281 case 0x41:
5282 case 0x42:
5283 case 0x43:
5284 case 0x44:
5285 case 0x45:
5286 case 0x46:
5287 case 0x47:
5288
5289 case 0x48: /* dec */
5290 case 0x49:
5291 case 0x4a:
5292 case 0x4b:
5293 case 0x4c:
5294 case 0x4d:
5295 case 0x4e:
5296 case 0x4f:
5297
5298 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5299 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5300 break;
5301
5302 case 0xf6: /* GRP3 */
5303 case 0xf7:
5304 if ((opcode & 1) == 0)
5305 ir.ot = OT_BYTE;
5306 else
5307 ir.ot = ir.dflag + OT_WORD;
5308 if (i386_record_modrm (&ir))
5309 return -1;
5310
5311 if (ir.mod != 3 && ir.reg == 0)
5312 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5313
5314 switch (ir.reg)
5315 {
5316 case 0: /* test */
5317 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5318 break;
5319 case 2: /* not */
5320 case 3: /* neg */
5321 if (ir.mod != 3)
5322 {
5323 if (i386_record_lea_modrm (&ir))
5324 return -1;
5325 }
5326 else
5327 {
5328 ir.rm |= ir.rex_b;
5329 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5330 ir.rm &= 0x3;
5331 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5332 }
5333 if (ir.reg == 3) /* neg */
5334 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5335 break;
5336 case 4: /* mul */
5337 case 5: /* imul */
5338 case 6: /* div */
5339 case 7: /* idiv */
5340 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5341 if (ir.ot != OT_BYTE)
5342 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5343 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5344 break;
5345 default:
5346 ir.addr -= 2;
5347 opcode = opcode << 8 | ir.modrm;
5348 goto no_support;
5349 break;
5350 }
5351 break;
5352
5353 case 0xfe: /* GRP4 */
5354 case 0xff: /* GRP5 */
5355 if (i386_record_modrm (&ir))
5356 return -1;
5357 if (ir.reg >= 2 && opcode == 0xfe)
5358 {
5359 ir.addr -= 2;
5360 opcode = opcode << 8 | ir.modrm;
5361 goto no_support;
5362 }
5363 switch (ir.reg)
5364 {
5365 case 0: /* inc */
5366 case 1: /* dec */
5367 if ((opcode & 1) == 0)
5368 ir.ot = OT_BYTE;
5369 else
5370 ir.ot = ir.dflag + OT_WORD;
5371 if (ir.mod != 3)
5372 {
5373 if (i386_record_lea_modrm (&ir))
5374 return -1;
5375 }
5376 else
5377 {
5378 ir.rm |= ir.rex_b;
5379 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5380 ir.rm &= 0x3;
5381 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5382 }
5383 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5384 break;
5385 case 2: /* call */
5386 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5387 ir.dflag = 2;
5388 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5389 return -1;
5390 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5391 break;
5392 case 3: /* lcall */
5393 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5394 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5395 return -1;
5396 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5397 break;
5398 case 4: /* jmp */
5399 case 5: /* ljmp */
5400 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5401 break;
5402 case 6: /* push */
5403 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5404 ir.dflag = 2;
5405 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5406 return -1;
5407 break;
5408 default:
5409 ir.addr -= 2;
5410 opcode = opcode << 8 | ir.modrm;
5411 goto no_support;
5412 break;
5413 }
5414 break;
5415
5416 case 0x84: /* test */
5417 case 0x85:
5418 case 0xa8:
5419 case 0xa9:
5420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5421 break;
5422
5423 case 0x98: /* CWDE/CBW */
5424 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5425 break;
5426
5427 case 0x99: /* CDQ/CWD */
5428 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5429 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5430 break;
5431
5432 case 0x0faf: /* imul */
5433 case 0x69:
5434 case 0x6b:
5435 ir.ot = ir.dflag + OT_WORD;
5436 if (i386_record_modrm (&ir))
5437 return -1;
5438 if (opcode == 0x69)
5439 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5440 else if (opcode == 0x6b)
5441 ir.rip_offset = 1;
5442 ir.reg |= rex_r;
5443 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5444 ir.reg &= 0x3;
5445 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5446 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5447 break;
5448
5449 case 0x0fc0: /* xadd */
5450 case 0x0fc1:
5451 if ((opcode & 1) == 0)
5452 ir.ot = OT_BYTE;
5453 else
5454 ir.ot = ir.dflag + OT_WORD;
5455 if (i386_record_modrm (&ir))
5456 return -1;
5457 ir.reg |= rex_r;
5458 if (ir.mod == 3)
5459 {
5460 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5461 ir.reg &= 0x3;
5462 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5463 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5464 ir.rm &= 0x3;
5465 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5466 }
5467 else
5468 {
5469 if (i386_record_lea_modrm (&ir))
5470 return -1;
5471 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5472 ir.reg &= 0x3;
5473 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5474 }
5475 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5476 break;
5477
5478 case 0x0fb0: /* cmpxchg */
5479 case 0x0fb1:
5480 if ((opcode & 1) == 0)
5481 ir.ot = OT_BYTE;
5482 else
5483 ir.ot = ir.dflag + OT_WORD;
5484 if (i386_record_modrm (&ir))
5485 return -1;
5486 if (ir.mod == 3)
5487 {
5488 ir.reg |= rex_r;
5489 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5490 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5491 ir.reg &= 0x3;
5492 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5493 }
5494 else
5495 {
5496 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5497 if (i386_record_lea_modrm (&ir))
5498 return -1;
5499 }
5500 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5501 break;
5502
5503 case 0x0fc7: /* cmpxchg8b */
5504 if (i386_record_modrm (&ir))
5505 return -1;
5506 if (ir.mod == 3)
5507 {
5508 ir.addr -= 2;
5509 opcode = opcode << 8 | ir.modrm;
5510 goto no_support;
5511 }
5512 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5513 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5514 if (i386_record_lea_modrm (&ir))
5515 return -1;
5516 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5517 break;
5518
5519 case 0x50: /* push */
5520 case 0x51:
5521 case 0x52:
5522 case 0x53:
5523 case 0x54:
5524 case 0x55:
5525 case 0x56:
5526 case 0x57:
5527 case 0x68:
5528 case 0x6a:
5529 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5530 ir.dflag = 2;
5531 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5532 return -1;
5533 break;
5534
5535 case 0x06: /* push es */
5536 case 0x0e: /* push cs */
5537 case 0x16: /* push ss */
5538 case 0x1e: /* push ds */
5539 if (ir.regmap[X86_RECORD_R8_REGNUM])
5540 {
5541 ir.addr -= 1;
5542 goto no_support;
5543 }
5544 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5545 return -1;
5546 break;
5547
5548 case 0x0fa0: /* push fs */
5549 case 0x0fa8: /* push gs */
5550 if (ir.regmap[X86_RECORD_R8_REGNUM])
5551 {
5552 ir.addr -= 2;
5553 goto no_support;
5554 }
5555 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5556 return -1;
5557 break;
5558
5559 case 0x60: /* pusha */
5560 if (ir.regmap[X86_RECORD_R8_REGNUM])
5561 {
5562 ir.addr -= 1;
5563 goto no_support;
5564 }
5565 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5566 return -1;
5567 break;
5568
5569 case 0x58: /* pop */
5570 case 0x59:
5571 case 0x5a:
5572 case 0x5b:
5573 case 0x5c:
5574 case 0x5d:
5575 case 0x5e:
5576 case 0x5f:
5577 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5578 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5579 break;
5580
5581 case 0x61: /* popa */
5582 if (ir.regmap[X86_RECORD_R8_REGNUM])
5583 {
5584 ir.addr -= 1;
5585 goto no_support;
5586 }
5587 for (regnum = X86_RECORD_REAX_REGNUM;
5588 regnum <= X86_RECORD_REDI_REGNUM;
5589 regnum++)
5590 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5591 break;
5592
5593 case 0x8f: /* pop */
5594 if (ir.regmap[X86_RECORD_R8_REGNUM])
5595 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5596 else
5597 ir.ot = ir.dflag + OT_WORD;
5598 if (i386_record_modrm (&ir))
5599 return -1;
5600 if (ir.mod == 3)
5601 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5602 else
5603 {
5604 ir.popl_esp_hack = 1 << ir.ot;
5605 if (i386_record_lea_modrm (&ir))
5606 return -1;
5607 }
5608 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5609 break;
5610
5611 case 0xc8: /* enter */
5612 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5613 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5614 ir.dflag = 2;
5615 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5616 return -1;
5617 break;
5618
5619 case 0xc9: /* leave */
5620 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5621 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5622 break;
5623
5624 case 0x07: /* pop es */
5625 if (ir.regmap[X86_RECORD_R8_REGNUM])
5626 {
5627 ir.addr -= 1;
5628 goto no_support;
5629 }
5630 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5631 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5632 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5633 break;
5634
5635 case 0x17: /* pop ss */
5636 if (ir.regmap[X86_RECORD_R8_REGNUM])
5637 {
5638 ir.addr -= 1;
5639 goto no_support;
5640 }
5641 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5642 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5643 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5644 break;
5645
5646 case 0x1f: /* pop ds */
5647 if (ir.regmap[X86_RECORD_R8_REGNUM])
5648 {
5649 ir.addr -= 1;
5650 goto no_support;
5651 }
5652 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5653 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5654 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5655 break;
5656
5657 case 0x0fa1: /* pop fs */
5658 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5659 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5660 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5661 break;
5662
5663 case 0x0fa9: /* pop gs */
5664 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5665 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5666 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5667 break;
5668
5669 case 0x88: /* mov */
5670 case 0x89:
5671 case 0xc6:
5672 case 0xc7:
5673 if ((opcode & 1) == 0)
5674 ir.ot = OT_BYTE;
5675 else
5676 ir.ot = ir.dflag + OT_WORD;
5677
5678 if (i386_record_modrm (&ir))
5679 return -1;
5680
5681 if (ir.mod != 3)
5682 {
5683 if (opcode == 0xc6 || opcode == 0xc7)
5684 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5685 if (i386_record_lea_modrm (&ir))
5686 return -1;
5687 }
5688 else
5689 {
5690 if (opcode == 0xc6 || opcode == 0xc7)
5691 ir.rm |= ir.rex_b;
5692 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5693 ir.rm &= 0x3;
5694 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5695 }
5696 break;
5697
5698 case 0x8a: /* mov */
5699 case 0x8b:
5700 if ((opcode & 1) == 0)
5701 ir.ot = OT_BYTE;
5702 else
5703 ir.ot = ir.dflag + OT_WORD;
5704 if (i386_record_modrm (&ir))
5705 return -1;
5706 ir.reg |= rex_r;
5707 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5708 ir.reg &= 0x3;
5709 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5710 break;
5711
5712 case 0x8c: /* mov seg */
5713 if (i386_record_modrm (&ir))
5714 return -1;
5715 if (ir.reg > 5)
5716 {
5717 ir.addr -= 2;
5718 opcode = opcode << 8 | ir.modrm;
5719 goto no_support;
5720 }
5721
5722 if (ir.mod == 3)
5723 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5724 else
5725 {
5726 ir.ot = OT_WORD;
5727 if (i386_record_lea_modrm (&ir))
5728 return -1;
5729 }
5730 break;
5731
5732 case 0x8e: /* mov seg */
5733 if (i386_record_modrm (&ir))
5734 return -1;
5735 switch (ir.reg)
5736 {
5737 case 0:
5738 regnum = X86_RECORD_ES_REGNUM;
5739 break;
5740 case 2:
5741 regnum = X86_RECORD_SS_REGNUM;
5742 break;
5743 case 3:
5744 regnum = X86_RECORD_DS_REGNUM;
5745 break;
5746 case 4:
5747 regnum = X86_RECORD_FS_REGNUM;
5748 break;
5749 case 5:
5750 regnum = X86_RECORD_GS_REGNUM;
5751 break;
5752 default:
5753 ir.addr -= 2;
5754 opcode = opcode << 8 | ir.modrm;
5755 goto no_support;
5756 break;
5757 }
5758 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5759 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5760 break;
5761
5762 case 0x0fb6: /* movzbS */
5763 case 0x0fb7: /* movzwS */
5764 case 0x0fbe: /* movsbS */
5765 case 0x0fbf: /* movswS */
5766 if (i386_record_modrm (&ir))
5767 return -1;
5768 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5769 break;
5770
5771 case 0x8d: /* lea */
5772 if (i386_record_modrm (&ir))
5773 return -1;
5774 if (ir.mod == 3)
5775 {
5776 ir.addr -= 2;
5777 opcode = opcode << 8 | ir.modrm;
5778 goto no_support;
5779 }
5780 ir.ot = ir.dflag;
5781 ir.reg |= rex_r;
5782 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5783 ir.reg &= 0x3;
5784 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5785 break;
5786
5787 case 0xa0: /* mov EAX */
5788 case 0xa1:
5789
5790 case 0xd7: /* xlat */
5791 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5792 break;
5793
5794 case 0xa2: /* mov EAX */
5795 case 0xa3:
5796 if (ir.override >= 0)
5797 {
5798 if (record_full_memory_query)
5799 {
5800 if (yquery (_("\
5801 Process record ignores the memory change of instruction at address %s\n\
5802 because it can't get the value of the segment register.\n\
5803 Do you want to stop the program?"),
5804 paddress (gdbarch, ir.orig_addr)))
5805 return -1;
5806 }
5807 }
5808 else
5809 {
5810 if ((opcode & 1) == 0)
5811 ir.ot = OT_BYTE;
5812 else
5813 ir.ot = ir.dflag + OT_WORD;
5814 if (ir.aflag == 2)
5815 {
5816 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5817 return -1;
5818 ir.addr += 8;
5819 addr = extract_unsigned_integer (buf, 8, byte_order);
5820 }
5821 else if (ir.aflag)
5822 {
5823 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5824 return -1;
5825 ir.addr += 4;
5826 addr = extract_unsigned_integer (buf, 4, byte_order);
5827 }
5828 else
5829 {
5830 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5831 return -1;
5832 ir.addr += 2;
5833 addr = extract_unsigned_integer (buf, 2, byte_order);
5834 }
5835 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5836 return -1;
5837 }
5838 break;
5839
5840 case 0xb0: /* mov R, Ib */
5841 case 0xb1:
5842 case 0xb2:
5843 case 0xb3:
5844 case 0xb4:
5845 case 0xb5:
5846 case 0xb6:
5847 case 0xb7:
5848 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5849 ? ((opcode & 0x7) | ir.rex_b)
5850 : ((opcode & 0x7) & 0x3));
5851 break;
5852
5853 case 0xb8: /* mov R, Iv */
5854 case 0xb9:
5855 case 0xba:
5856 case 0xbb:
5857 case 0xbc:
5858 case 0xbd:
5859 case 0xbe:
5860 case 0xbf:
5861 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5862 break;
5863
5864 case 0x91: /* xchg R, EAX */
5865 case 0x92:
5866 case 0x93:
5867 case 0x94:
5868 case 0x95:
5869 case 0x96:
5870 case 0x97:
5871 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5872 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5873 break;
5874
5875 case 0x86: /* xchg Ev, Gv */
5876 case 0x87:
5877 if ((opcode & 1) == 0)
5878 ir.ot = OT_BYTE;
5879 else
5880 ir.ot = ir.dflag + OT_WORD;
5881 if (i386_record_modrm (&ir))
5882 return -1;
5883 if (ir.mod == 3)
5884 {
5885 ir.rm |= ir.rex_b;
5886 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5887 ir.rm &= 0x3;
5888 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5889 }
5890 else
5891 {
5892 if (i386_record_lea_modrm (&ir))
5893 return -1;
5894 }
5895 ir.reg |= rex_r;
5896 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5897 ir.reg &= 0x3;
5898 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5899 break;
5900
5901 case 0xc4: /* les Gv */
5902 case 0xc5: /* lds Gv */
5903 if (ir.regmap[X86_RECORD_R8_REGNUM])
5904 {
5905 ir.addr -= 1;
5906 goto no_support;
5907 }
5908 /* FALLTHROUGH */
5909 case 0x0fb2: /* lss Gv */
5910 case 0x0fb4: /* lfs Gv */
5911 case 0x0fb5: /* lgs Gv */
5912 if (i386_record_modrm (&ir))
5913 return -1;
5914 if (ir.mod == 3)
5915 {
5916 if (opcode > 0xff)
5917 ir.addr -= 3;
5918 else
5919 ir.addr -= 2;
5920 opcode = opcode << 8 | ir.modrm;
5921 goto no_support;
5922 }
5923 switch (opcode)
5924 {
5925 case 0xc4: /* les Gv */
5926 regnum = X86_RECORD_ES_REGNUM;
5927 break;
5928 case 0xc5: /* lds Gv */
5929 regnum = X86_RECORD_DS_REGNUM;
5930 break;
5931 case 0x0fb2: /* lss Gv */
5932 regnum = X86_RECORD_SS_REGNUM;
5933 break;
5934 case 0x0fb4: /* lfs Gv */
5935 regnum = X86_RECORD_FS_REGNUM;
5936 break;
5937 case 0x0fb5: /* lgs Gv */
5938 regnum = X86_RECORD_GS_REGNUM;
5939 break;
5940 }
5941 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5942 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5943 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5944 break;
5945
5946 case 0xc0: /* shifts */
5947 case 0xc1:
5948 case 0xd0:
5949 case 0xd1:
5950 case 0xd2:
5951 case 0xd3:
5952 if ((opcode & 1) == 0)
5953 ir.ot = OT_BYTE;
5954 else
5955 ir.ot = ir.dflag + OT_WORD;
5956 if (i386_record_modrm (&ir))
5957 return -1;
5958 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5959 {
5960 if (i386_record_lea_modrm (&ir))
5961 return -1;
5962 }
5963 else
5964 {
5965 ir.rm |= ir.rex_b;
5966 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5967 ir.rm &= 0x3;
5968 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5969 }
5970 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5971 break;
5972
5973 case 0x0fa4:
5974 case 0x0fa5:
5975 case 0x0fac:
5976 case 0x0fad:
5977 if (i386_record_modrm (&ir))
5978 return -1;
5979 if (ir.mod == 3)
5980 {
5981 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5982 return -1;
5983 }
5984 else
5985 {
5986 if (i386_record_lea_modrm (&ir))
5987 return -1;
5988 }
5989 break;
5990
5991 case 0xd8: /* Floats. */
5992 case 0xd9:
5993 case 0xda:
5994 case 0xdb:
5995 case 0xdc:
5996 case 0xdd:
5997 case 0xde:
5998 case 0xdf:
5999 if (i386_record_modrm (&ir))
6000 return -1;
6001 ir.reg |= ((opcode & 7) << 3);
6002 if (ir.mod != 3)
6003 {
6004 /* Memory. */
6005 uint64_t addr64;
6006
6007 if (i386_record_lea_modrm_addr (&ir, &addr64))
6008 return -1;
6009 switch (ir.reg)
6010 {
6011 case 0x02:
6012 case 0x12:
6013 case 0x22:
6014 case 0x32:
6015 /* For fcom, ficom nothing to do. */
6016 break;
6017 case 0x03:
6018 case 0x13:
6019 case 0x23:
6020 case 0x33:
6021 /* For fcomp, ficomp pop FPU stack, store all. */
6022 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6023 return -1;
6024 break;
6025 case 0x00:
6026 case 0x01:
6027 case 0x04:
6028 case 0x05:
6029 case 0x06:
6030 case 0x07:
6031 case 0x10:
6032 case 0x11:
6033 case 0x14:
6034 case 0x15:
6035 case 0x16:
6036 case 0x17:
6037 case 0x20:
6038 case 0x21:
6039 case 0x24:
6040 case 0x25:
6041 case 0x26:
6042 case 0x27:
6043 case 0x30:
6044 case 0x31:
6045 case 0x34:
6046 case 0x35:
6047 case 0x36:
6048 case 0x37:
6049 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6050 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6051 of code, always affects st(0) register. */
6052 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6053 return -1;
6054 break;
6055 case 0x08:
6056 case 0x0a:
6057 case 0x0b:
6058 case 0x18:
6059 case 0x19:
6060 case 0x1a:
6061 case 0x1b:
6062 case 0x1d:
6063 case 0x28:
6064 case 0x29:
6065 case 0x2a:
6066 case 0x2b:
6067 case 0x38:
6068 case 0x39:
6069 case 0x3a:
6070 case 0x3b:
6071 case 0x3c:
6072 case 0x3d:
6073 switch (ir.reg & 7)
6074 {
6075 case 0:
6076 /* Handling fld, fild. */
6077 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6078 return -1;
6079 break;
6080 case 1:
6081 switch (ir.reg >> 4)
6082 {
6083 case 0:
6084 if (record_full_arch_list_add_mem (addr64, 4))
6085 return -1;
6086 break;
6087 case 2:
6088 if (record_full_arch_list_add_mem (addr64, 8))
6089 return -1;
6090 break;
6091 case 3:
6092 break;
6093 default:
6094 if (record_full_arch_list_add_mem (addr64, 2))
6095 return -1;
6096 break;
6097 }
6098 break;
6099 default:
6100 switch (ir.reg >> 4)
6101 {
6102 case 0:
6103 if (record_full_arch_list_add_mem (addr64, 4))
6104 return -1;
6105 if (3 == (ir.reg & 7))
6106 {
6107 /* For fstp m32fp. */
6108 if (i386_record_floats (gdbarch, &ir,
6109 I386_SAVE_FPU_REGS))
6110 return -1;
6111 }
6112 break;
6113 case 1:
6114 if (record_full_arch_list_add_mem (addr64, 4))
6115 return -1;
6116 if ((3 == (ir.reg & 7))
6117 || (5 == (ir.reg & 7))
6118 || (7 == (ir.reg & 7)))
6119 {
6120 /* For fstp insn. */
6121 if (i386_record_floats (gdbarch, &ir,
6122 I386_SAVE_FPU_REGS))
6123 return -1;
6124 }
6125 break;
6126 case 2:
6127 if (record_full_arch_list_add_mem (addr64, 8))
6128 return -1;
6129 if (3 == (ir.reg & 7))
6130 {
6131 /* For fstp m64fp. */
6132 if (i386_record_floats (gdbarch, &ir,
6133 I386_SAVE_FPU_REGS))
6134 return -1;
6135 }
6136 break;
6137 case 3:
6138 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6139 {
6140 /* For fistp, fbld, fild, fbstp. */
6141 if (i386_record_floats (gdbarch, &ir,
6142 I386_SAVE_FPU_REGS))
6143 return -1;
6144 }
6145 /* Fall through */
6146 default:
6147 if (record_full_arch_list_add_mem (addr64, 2))
6148 return -1;
6149 break;
6150 }
6151 break;
6152 }
6153 break;
6154 case 0x0c:
6155 /* Insn fldenv. */
6156 if (i386_record_floats (gdbarch, &ir,
6157 I386_SAVE_FPU_ENV_REG_STACK))
6158 return -1;
6159 break;
6160 case 0x0d:
6161 /* Insn fldcw. */
6162 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6163 return -1;
6164 break;
6165 case 0x2c:
6166 /* Insn frstor. */
6167 if (i386_record_floats (gdbarch, &ir,
6168 I386_SAVE_FPU_ENV_REG_STACK))
6169 return -1;
6170 break;
6171 case 0x0e:
6172 if (ir.dflag)
6173 {
6174 if (record_full_arch_list_add_mem (addr64, 28))
6175 return -1;
6176 }
6177 else
6178 {
6179 if (record_full_arch_list_add_mem (addr64, 14))
6180 return -1;
6181 }
6182 break;
6183 case 0x0f:
6184 case 0x2f:
6185 if (record_full_arch_list_add_mem (addr64, 2))
6186 return -1;
6187 /* Insn fstp, fbstp. */
6188 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6189 return -1;
6190 break;
6191 case 0x1f:
6192 case 0x3e:
6193 if (record_full_arch_list_add_mem (addr64, 10))
6194 return -1;
6195 break;
6196 case 0x2e:
6197 if (ir.dflag)
6198 {
6199 if (record_full_arch_list_add_mem (addr64, 28))
6200 return -1;
6201 addr64 += 28;
6202 }
6203 else
6204 {
6205 if (record_full_arch_list_add_mem (addr64, 14))
6206 return -1;
6207 addr64 += 14;
6208 }
6209 if (record_full_arch_list_add_mem (addr64, 80))
6210 return -1;
6211 /* Insn fsave. */
6212 if (i386_record_floats (gdbarch, &ir,
6213 I386_SAVE_FPU_ENV_REG_STACK))
6214 return -1;
6215 break;
6216 case 0x3f:
6217 if (record_full_arch_list_add_mem (addr64, 8))
6218 return -1;
6219 /* Insn fistp. */
6220 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6221 return -1;
6222 break;
6223 default:
6224 ir.addr -= 2;
6225 opcode = opcode << 8 | ir.modrm;
6226 goto no_support;
6227 break;
6228 }
6229 }
6230 /* Opcode is an extension of modR/M byte. */
6231 else
6232 {
6233 switch (opcode)
6234 {
6235 case 0xd8:
6236 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6237 return -1;
6238 break;
6239 case 0xd9:
6240 if (0x0c == (ir.modrm >> 4))
6241 {
6242 if ((ir.modrm & 0x0f) <= 7)
6243 {
6244 if (i386_record_floats (gdbarch, &ir,
6245 I386_SAVE_FPU_REGS))
6246 return -1;
6247 }
6248 else
6249 {
6250 if (i386_record_floats (gdbarch, &ir,
6251 I387_ST0_REGNUM (tdep)))
6252 return -1;
6253 /* If only st(0) is changing, then we have already
6254 recorded. */
6255 if ((ir.modrm & 0x0f) - 0x08)
6256 {
6257 if (i386_record_floats (gdbarch, &ir,
6258 I387_ST0_REGNUM (tdep) +
6259 ((ir.modrm & 0x0f) - 0x08)))
6260 return -1;
6261 }
6262 }
6263 }
6264 else
6265 {
6266 switch (ir.modrm)
6267 {
6268 case 0xe0:
6269 case 0xe1:
6270 case 0xf0:
6271 case 0xf5:
6272 case 0xf8:
6273 case 0xfa:
6274 case 0xfc:
6275 case 0xfe:
6276 case 0xff:
6277 if (i386_record_floats (gdbarch, &ir,
6278 I387_ST0_REGNUM (tdep)))
6279 return -1;
6280 break;
6281 case 0xf1:
6282 case 0xf2:
6283 case 0xf3:
6284 case 0xf4:
6285 case 0xf6:
6286 case 0xf7:
6287 case 0xe8:
6288 case 0xe9:
6289 case 0xea:
6290 case 0xeb:
6291 case 0xec:
6292 case 0xed:
6293 case 0xee:
6294 case 0xf9:
6295 case 0xfb:
6296 if (i386_record_floats (gdbarch, &ir,
6297 I386_SAVE_FPU_REGS))
6298 return -1;
6299 break;
6300 case 0xfd:
6301 if (i386_record_floats (gdbarch, &ir,
6302 I387_ST0_REGNUM (tdep)))
6303 return -1;
6304 if (i386_record_floats (gdbarch, &ir,
6305 I387_ST0_REGNUM (tdep) + 1))
6306 return -1;
6307 break;
6308 }
6309 }
6310 break;
6311 case 0xda:
6312 if (0xe9 == ir.modrm)
6313 {
6314 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6315 return -1;
6316 }
6317 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6318 {
6319 if (i386_record_floats (gdbarch, &ir,
6320 I387_ST0_REGNUM (tdep)))
6321 return -1;
6322 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6323 {
6324 if (i386_record_floats (gdbarch, &ir,
6325 I387_ST0_REGNUM (tdep) +
6326 (ir.modrm & 0x0f)))
6327 return -1;
6328 }
6329 else if ((ir.modrm & 0x0f) - 0x08)
6330 {
6331 if (i386_record_floats (gdbarch, &ir,
6332 I387_ST0_REGNUM (tdep) +
6333 ((ir.modrm & 0x0f) - 0x08)))
6334 return -1;
6335 }
6336 }
6337 break;
6338 case 0xdb:
6339 if (0xe3 == ir.modrm)
6340 {
6341 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6342 return -1;
6343 }
6344 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6345 {
6346 if (i386_record_floats (gdbarch, &ir,
6347 I387_ST0_REGNUM (tdep)))
6348 return -1;
6349 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6350 {
6351 if (i386_record_floats (gdbarch, &ir,
6352 I387_ST0_REGNUM (tdep) +
6353 (ir.modrm & 0x0f)))
6354 return -1;
6355 }
6356 else if ((ir.modrm & 0x0f) - 0x08)
6357 {
6358 if (i386_record_floats (gdbarch, &ir,
6359 I387_ST0_REGNUM (tdep) +
6360 ((ir.modrm & 0x0f) - 0x08)))
6361 return -1;
6362 }
6363 }
6364 break;
6365 case 0xdc:
6366 if ((0x0c == ir.modrm >> 4)
6367 || (0x0d == ir.modrm >> 4)
6368 || (0x0f == ir.modrm >> 4))
6369 {
6370 if ((ir.modrm & 0x0f) <= 7)
6371 {
6372 if (i386_record_floats (gdbarch, &ir,
6373 I387_ST0_REGNUM (tdep) +
6374 (ir.modrm & 0x0f)))
6375 return -1;
6376 }
6377 else
6378 {
6379 if (i386_record_floats (gdbarch, &ir,
6380 I387_ST0_REGNUM (tdep) +
6381 ((ir.modrm & 0x0f) - 0x08)))
6382 return -1;
6383 }
6384 }
6385 break;
6386 case 0xdd:
6387 if (0x0c == ir.modrm >> 4)
6388 {
6389 if (i386_record_floats (gdbarch, &ir,
6390 I387_FTAG_REGNUM (tdep)))
6391 return -1;
6392 }
6393 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6394 {
6395 if ((ir.modrm & 0x0f) <= 7)
6396 {
6397 if (i386_record_floats (gdbarch, &ir,
6398 I387_ST0_REGNUM (tdep) +
6399 (ir.modrm & 0x0f)))
6400 return -1;
6401 }
6402 else
6403 {
6404 if (i386_record_floats (gdbarch, &ir,
6405 I386_SAVE_FPU_REGS))
6406 return -1;
6407 }
6408 }
6409 break;
6410 case 0xde:
6411 if ((0x0c == ir.modrm >> 4)
6412 || (0x0e == ir.modrm >> 4)
6413 || (0x0f == ir.modrm >> 4)
6414 || (0xd9 == ir.modrm))
6415 {
6416 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6417 return -1;
6418 }
6419 break;
6420 case 0xdf:
6421 if (0xe0 == ir.modrm)
6422 {
6423 if (record_full_arch_list_add_reg (ir.regcache,
6424 I386_EAX_REGNUM))
6425 return -1;
6426 }
6427 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6428 {
6429 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6430 return -1;
6431 }
6432 break;
6433 }
6434 }
6435 break;
6436 /* string ops */
6437 case 0xa4: /* movsS */
6438 case 0xa5:
6439 case 0xaa: /* stosS */
6440 case 0xab:
6441 case 0x6c: /* insS */
6442 case 0x6d:
6443 regcache_raw_read_unsigned (ir.regcache,
6444 ir.regmap[X86_RECORD_RECX_REGNUM],
6445 &addr);
6446 if (addr)
6447 {
6448 ULONGEST es, ds;
6449
6450 if ((opcode & 1) == 0)
6451 ir.ot = OT_BYTE;
6452 else
6453 ir.ot = ir.dflag + OT_WORD;
6454 regcache_raw_read_unsigned (ir.regcache,
6455 ir.regmap[X86_RECORD_REDI_REGNUM],
6456 &addr);
6457
6458 regcache_raw_read_unsigned (ir.regcache,
6459 ir.regmap[X86_RECORD_ES_REGNUM],
6460 &es);
6461 regcache_raw_read_unsigned (ir.regcache,
6462 ir.regmap[X86_RECORD_DS_REGNUM],
6463 &ds);
6464 if (ir.aflag && (es != ds))
6465 {
6466 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6467 if (record_full_memory_query)
6468 {
6469 if (yquery (_("\
6470 Process record ignores the memory change of instruction at address %s\n\
6471 because it can't get the value of the segment register.\n\
6472 Do you want to stop the program?"),
6473 paddress (gdbarch, ir.orig_addr)))
6474 return -1;
6475 }
6476 }
6477 else
6478 {
6479 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6480 return -1;
6481 }
6482
6483 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6484 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6485 if (opcode == 0xa4 || opcode == 0xa5)
6486 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6487 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6488 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6489 }
6490 break;
6491
6492 case 0xa6: /* cmpsS */
6493 case 0xa7:
6494 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6495 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6496 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6497 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6498 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6499 break;
6500
6501 case 0xac: /* lodsS */
6502 case 0xad:
6503 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6504 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6505 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6506 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6507 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6508 break;
6509
6510 case 0xae: /* scasS */
6511 case 0xaf:
6512 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6513 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6514 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6515 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6516 break;
6517
6518 case 0x6e: /* outsS */
6519 case 0x6f:
6520 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6521 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6522 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6523 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6524 break;
6525
6526 case 0xe4: /* port I/O */
6527 case 0xe5:
6528 case 0xec:
6529 case 0xed:
6530 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6531 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6532 break;
6533
6534 case 0xe6:
6535 case 0xe7:
6536 case 0xee:
6537 case 0xef:
6538 break;
6539
6540 /* control */
6541 case 0xc2: /* ret im */
6542 case 0xc3: /* ret */
6543 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6544 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6545 break;
6546
6547 case 0xca: /* lret im */
6548 case 0xcb: /* lret */
6549 case 0xcf: /* iret */
6550 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6551 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6552 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6553 break;
6554
6555 case 0xe8: /* call im */
6556 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6557 ir.dflag = 2;
6558 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6559 return -1;
6560 break;
6561
6562 case 0x9a: /* lcall im */
6563 if (ir.regmap[X86_RECORD_R8_REGNUM])
6564 {
6565 ir.addr -= 1;
6566 goto no_support;
6567 }
6568 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6569 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6570 return -1;
6571 break;
6572
6573 case 0xe9: /* jmp im */
6574 case 0xea: /* ljmp im */
6575 case 0xeb: /* jmp Jb */
6576 case 0x70: /* jcc Jb */
6577 case 0x71:
6578 case 0x72:
6579 case 0x73:
6580 case 0x74:
6581 case 0x75:
6582 case 0x76:
6583 case 0x77:
6584 case 0x78:
6585 case 0x79:
6586 case 0x7a:
6587 case 0x7b:
6588 case 0x7c:
6589 case 0x7d:
6590 case 0x7e:
6591 case 0x7f:
6592 case 0x0f80: /* jcc Jv */
6593 case 0x0f81:
6594 case 0x0f82:
6595 case 0x0f83:
6596 case 0x0f84:
6597 case 0x0f85:
6598 case 0x0f86:
6599 case 0x0f87:
6600 case 0x0f88:
6601 case 0x0f89:
6602 case 0x0f8a:
6603 case 0x0f8b:
6604 case 0x0f8c:
6605 case 0x0f8d:
6606 case 0x0f8e:
6607 case 0x0f8f:
6608 break;
6609
6610 case 0x0f90: /* setcc Gv */
6611 case 0x0f91:
6612 case 0x0f92:
6613 case 0x0f93:
6614 case 0x0f94:
6615 case 0x0f95:
6616 case 0x0f96:
6617 case 0x0f97:
6618 case 0x0f98:
6619 case 0x0f99:
6620 case 0x0f9a:
6621 case 0x0f9b:
6622 case 0x0f9c:
6623 case 0x0f9d:
6624 case 0x0f9e:
6625 case 0x0f9f:
6626 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6627 ir.ot = OT_BYTE;
6628 if (i386_record_modrm (&ir))
6629 return -1;
6630 if (ir.mod == 3)
6631 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6632 : (ir.rm & 0x3));
6633 else
6634 {
6635 if (i386_record_lea_modrm (&ir))
6636 return -1;
6637 }
6638 break;
6639
6640 case 0x0f40: /* cmov Gv, Ev */
6641 case 0x0f41:
6642 case 0x0f42:
6643 case 0x0f43:
6644 case 0x0f44:
6645 case 0x0f45:
6646 case 0x0f46:
6647 case 0x0f47:
6648 case 0x0f48:
6649 case 0x0f49:
6650 case 0x0f4a:
6651 case 0x0f4b:
6652 case 0x0f4c:
6653 case 0x0f4d:
6654 case 0x0f4e:
6655 case 0x0f4f:
6656 if (i386_record_modrm (&ir))
6657 return -1;
6658 ir.reg |= rex_r;
6659 if (ir.dflag == OT_BYTE)
6660 ir.reg &= 0x3;
6661 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6662 break;
6663
6664 /* flags */
6665 case 0x9c: /* pushf */
6666 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6667 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6668 ir.dflag = 2;
6669 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6670 return -1;
6671 break;
6672
6673 case 0x9d: /* popf */
6674 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6675 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6676 break;
6677
6678 case 0x9e: /* sahf */
6679 if (ir.regmap[X86_RECORD_R8_REGNUM])
6680 {
6681 ir.addr -= 1;
6682 goto no_support;
6683 }
6684 /* FALLTHROUGH */
6685 case 0xf5: /* cmc */
6686 case 0xf8: /* clc */
6687 case 0xf9: /* stc */
6688 case 0xfc: /* cld */
6689 case 0xfd: /* std */
6690 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6691 break;
6692
6693 case 0x9f: /* lahf */
6694 if (ir.regmap[X86_RECORD_R8_REGNUM])
6695 {
6696 ir.addr -= 1;
6697 goto no_support;
6698 }
6699 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6700 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6701 break;
6702
6703 /* bit operations */
6704 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6705 ir.ot = ir.dflag + OT_WORD;
6706 if (i386_record_modrm (&ir))
6707 return -1;
6708 if (ir.reg < 4)
6709 {
6710 ir.addr -= 2;
6711 opcode = opcode << 8 | ir.modrm;
6712 goto no_support;
6713 }
6714 if (ir.reg != 4)
6715 {
6716 if (ir.mod == 3)
6717 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6718 else
6719 {
6720 if (i386_record_lea_modrm (&ir))
6721 return -1;
6722 }
6723 }
6724 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6725 break;
6726
6727 case 0x0fa3: /* bt Gv, Ev */
6728 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6729 break;
6730
6731 case 0x0fab: /* bts */
6732 case 0x0fb3: /* btr */
6733 case 0x0fbb: /* btc */
6734 ir.ot = ir.dflag + OT_WORD;
6735 if (i386_record_modrm (&ir))
6736 return -1;
6737 if (ir.mod == 3)
6738 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6739 else
6740 {
6741 uint64_t addr64;
6742 if (i386_record_lea_modrm_addr (&ir, &addr64))
6743 return -1;
6744 regcache_raw_read_unsigned (ir.regcache,
6745 ir.regmap[ir.reg | rex_r],
6746 &addr);
6747 switch (ir.dflag)
6748 {
6749 case 0:
6750 addr64 += ((int16_t) addr >> 4) << 4;
6751 break;
6752 case 1:
6753 addr64 += ((int32_t) addr >> 5) << 5;
6754 break;
6755 case 2:
6756 addr64 += ((int64_t) addr >> 6) << 6;
6757 break;
6758 }
6759 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6760 return -1;
6761 if (i386_record_lea_modrm (&ir))
6762 return -1;
6763 }
6764 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6765 break;
6766
6767 case 0x0fbc: /* bsf */
6768 case 0x0fbd: /* bsr */
6769 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6770 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6771 break;
6772
6773 /* bcd */
6774 case 0x27: /* daa */
6775 case 0x2f: /* das */
6776 case 0x37: /* aaa */
6777 case 0x3f: /* aas */
6778 case 0xd4: /* aam */
6779 case 0xd5: /* aad */
6780 if (ir.regmap[X86_RECORD_R8_REGNUM])
6781 {
6782 ir.addr -= 1;
6783 goto no_support;
6784 }
6785 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6786 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6787 break;
6788
6789 /* misc */
6790 case 0x90: /* nop */
6791 if (prefixes & PREFIX_LOCK)
6792 {
6793 ir.addr -= 1;
6794 goto no_support;
6795 }
6796 break;
6797
6798 case 0x9b: /* fwait */
6799 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6800 return -1;
6801 opcode = (uint32_t) opcode8;
6802 ir.addr++;
6803 goto reswitch;
6804 break;
6805
6806 /* XXX */
6807 case 0xcc: /* int3 */
6808 printf_unfiltered (_("Process record does not support instruction "
6809 "int3.\n"));
6810 ir.addr -= 1;
6811 goto no_support;
6812 break;
6813
6814 /* XXX */
6815 case 0xcd: /* int */
6816 {
6817 int ret;
6818 uint8_t interrupt;
6819 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6820 return -1;
6821 ir.addr++;
6822 if (interrupt != 0x80
6823 || tdep->i386_intx80_record == NULL)
6824 {
6825 printf_unfiltered (_("Process record does not support "
6826 "instruction int 0x%02x.\n"),
6827 interrupt);
6828 ir.addr -= 2;
6829 goto no_support;
6830 }
6831 ret = tdep->i386_intx80_record (ir.regcache);
6832 if (ret)
6833 return ret;
6834 }
6835 break;
6836
6837 /* XXX */
6838 case 0xce: /* into */
6839 printf_unfiltered (_("Process record does not support "
6840 "instruction into.\n"));
6841 ir.addr -= 1;
6842 goto no_support;
6843 break;
6844
6845 case 0xfa: /* cli */
6846 case 0xfb: /* sti */
6847 break;
6848
6849 case 0x62: /* bound */
6850 printf_unfiltered (_("Process record does not support "
6851 "instruction bound.\n"));
6852 ir.addr -= 1;
6853 goto no_support;
6854 break;
6855
6856 case 0x0fc8: /* bswap reg */
6857 case 0x0fc9:
6858 case 0x0fca:
6859 case 0x0fcb:
6860 case 0x0fcc:
6861 case 0x0fcd:
6862 case 0x0fce:
6863 case 0x0fcf:
6864 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6865 break;
6866
6867 case 0xd6: /* salc */
6868 if (ir.regmap[X86_RECORD_R8_REGNUM])
6869 {
6870 ir.addr -= 1;
6871 goto no_support;
6872 }
6873 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6874 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6875 break;
6876
6877 case 0xe0: /* loopnz */
6878 case 0xe1: /* loopz */
6879 case 0xe2: /* loop */
6880 case 0xe3: /* jecxz */
6881 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6882 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6883 break;
6884
6885 case 0x0f30: /* wrmsr */
6886 printf_unfiltered (_("Process record does not support "
6887 "instruction wrmsr.\n"));
6888 ir.addr -= 2;
6889 goto no_support;
6890 break;
6891
6892 case 0x0f32: /* rdmsr */
6893 printf_unfiltered (_("Process record does not support "
6894 "instruction rdmsr.\n"));
6895 ir.addr -= 2;
6896 goto no_support;
6897 break;
6898
6899 case 0x0f31: /* rdtsc */
6900 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6901 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6902 break;
6903
6904 case 0x0f34: /* sysenter */
6905 {
6906 int ret;
6907 if (ir.regmap[X86_RECORD_R8_REGNUM])
6908 {
6909 ir.addr -= 2;
6910 goto no_support;
6911 }
6912 if (tdep->i386_sysenter_record == NULL)
6913 {
6914 printf_unfiltered (_("Process record does not support "
6915 "instruction sysenter.\n"));
6916 ir.addr -= 2;
6917 goto no_support;
6918 }
6919 ret = tdep->i386_sysenter_record (ir.regcache);
6920 if (ret)
6921 return ret;
6922 }
6923 break;
6924
6925 case 0x0f35: /* sysexit */
6926 printf_unfiltered (_("Process record does not support "
6927 "instruction sysexit.\n"));
6928 ir.addr -= 2;
6929 goto no_support;
6930 break;
6931
6932 case 0x0f05: /* syscall */
6933 {
6934 int ret;
6935 if (tdep->i386_syscall_record == NULL)
6936 {
6937 printf_unfiltered (_("Process record does not support "
6938 "instruction syscall.\n"));
6939 ir.addr -= 2;
6940 goto no_support;
6941 }
6942 ret = tdep->i386_syscall_record (ir.regcache);
6943 if (ret)
6944 return ret;
6945 }
6946 break;
6947
6948 case 0x0f07: /* sysret */
6949 printf_unfiltered (_("Process record does not support "
6950 "instruction sysret.\n"));
6951 ir.addr -= 2;
6952 goto no_support;
6953 break;
6954
6955 case 0x0fa2: /* cpuid */
6956 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6957 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6958 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6959 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6960 break;
6961
6962 case 0xf4: /* hlt */
6963 printf_unfiltered (_("Process record does not support "
6964 "instruction hlt.\n"));
6965 ir.addr -= 1;
6966 goto no_support;
6967 break;
6968
6969 case 0x0f00:
6970 if (i386_record_modrm (&ir))
6971 return -1;
6972 switch (ir.reg)
6973 {
6974 case 0: /* sldt */
6975 case 1: /* str */
6976 if (ir.mod == 3)
6977 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6978 else
6979 {
6980 ir.ot = OT_WORD;
6981 if (i386_record_lea_modrm (&ir))
6982 return -1;
6983 }
6984 break;
6985 case 2: /* lldt */
6986 case 3: /* ltr */
6987 break;
6988 case 4: /* verr */
6989 case 5: /* verw */
6990 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6991 break;
6992 default:
6993 ir.addr -= 3;
6994 opcode = opcode << 8 | ir.modrm;
6995 goto no_support;
6996 break;
6997 }
6998 break;
6999
7000 case 0x0f01:
7001 if (i386_record_modrm (&ir))
7002 return -1;
7003 switch (ir.reg)
7004 {
7005 case 0: /* sgdt */
7006 {
7007 uint64_t addr64;
7008
7009 if (ir.mod == 3)
7010 {
7011 ir.addr -= 3;
7012 opcode = opcode << 8 | ir.modrm;
7013 goto no_support;
7014 }
7015 if (ir.override >= 0)
7016 {
7017 if (record_full_memory_query)
7018 {
7019 if (yquery (_("\
7020 Process record ignores the memory change of instruction at address %s\n\
7021 because it can't get the value of the segment register.\n\
7022 Do you want to stop the program?"),
7023 paddress (gdbarch, ir.orig_addr)))
7024 return -1;
7025 }
7026 }
7027 else
7028 {
7029 if (i386_record_lea_modrm_addr (&ir, &addr64))
7030 return -1;
7031 if (record_full_arch_list_add_mem (addr64, 2))
7032 return -1;
7033 addr64 += 2;
7034 if (ir.regmap[X86_RECORD_R8_REGNUM])
7035 {
7036 if (record_full_arch_list_add_mem (addr64, 8))
7037 return -1;
7038 }
7039 else
7040 {
7041 if (record_full_arch_list_add_mem (addr64, 4))
7042 return -1;
7043 }
7044 }
7045 }
7046 break;
7047 case 1:
7048 if (ir.mod == 3)
7049 {
7050 switch (ir.rm)
7051 {
7052 case 0: /* monitor */
7053 break;
7054 case 1: /* mwait */
7055 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7056 break;
7057 default:
7058 ir.addr -= 3;
7059 opcode = opcode << 8 | ir.modrm;
7060 goto no_support;
7061 break;
7062 }
7063 }
7064 else
7065 {
7066 /* sidt */
7067 if (ir.override >= 0)
7068 {
7069 if (record_full_memory_query)
7070 {
7071 if (yquery (_("\
7072 Process record ignores the memory change of instruction at address %s\n\
7073 because it can't get the value of the segment register.\n\
7074 Do you want to stop the program?"),
7075 paddress (gdbarch, ir.orig_addr)))
7076 return -1;
7077 }
7078 }
7079 else
7080 {
7081 uint64_t addr64;
7082
7083 if (i386_record_lea_modrm_addr (&ir, &addr64))
7084 return -1;
7085 if (record_full_arch_list_add_mem (addr64, 2))
7086 return -1;
7087 addr64 += 2;
7088 if (ir.regmap[X86_RECORD_R8_REGNUM])
7089 {
7090 if (record_full_arch_list_add_mem (addr64, 8))
7091 return -1;
7092 }
7093 else
7094 {
7095 if (record_full_arch_list_add_mem (addr64, 4))
7096 return -1;
7097 }
7098 }
7099 }
7100 break;
7101 case 2: /* lgdt */
7102 if (ir.mod == 3)
7103 {
7104 /* xgetbv */
7105 if (ir.rm == 0)
7106 {
7107 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7108 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7109 break;
7110 }
7111 /* xsetbv */
7112 else if (ir.rm == 1)
7113 break;
7114 }
7115 case 3: /* lidt */
7116 if (ir.mod == 3)
7117 {
7118 ir.addr -= 3;
7119 opcode = opcode << 8 | ir.modrm;
7120 goto no_support;
7121 }
7122 break;
7123 case 4: /* smsw */
7124 if (ir.mod == 3)
7125 {
7126 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7127 return -1;
7128 }
7129 else
7130 {
7131 ir.ot = OT_WORD;
7132 if (i386_record_lea_modrm (&ir))
7133 return -1;
7134 }
7135 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7136 break;
7137 case 6: /* lmsw */
7138 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7139 break;
7140 case 7: /* invlpg */
7141 if (ir.mod == 3)
7142 {
7143 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7144 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7145 else
7146 {
7147 ir.addr -= 3;
7148 opcode = opcode << 8 | ir.modrm;
7149 goto no_support;
7150 }
7151 }
7152 else
7153 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7154 break;
7155 default:
7156 ir.addr -= 3;
7157 opcode = opcode << 8 | ir.modrm;
7158 goto no_support;
7159 break;
7160 }
7161 break;
7162
7163 case 0x0f08: /* invd */
7164 case 0x0f09: /* wbinvd */
7165 break;
7166
7167 case 0x63: /* arpl */
7168 if (i386_record_modrm (&ir))
7169 return -1;
7170 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7171 {
7172 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7173 ? (ir.reg | rex_r) : ir.rm);
7174 }
7175 else
7176 {
7177 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7178 if (i386_record_lea_modrm (&ir))
7179 return -1;
7180 }
7181 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7182 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7183 break;
7184
7185 case 0x0f02: /* lar */
7186 case 0x0f03: /* lsl */
7187 if (i386_record_modrm (&ir))
7188 return -1;
7189 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7190 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7191 break;
7192
7193 case 0x0f18:
7194 if (i386_record_modrm (&ir))
7195 return -1;
7196 if (ir.mod == 3 && ir.reg == 3)
7197 {
7198 ir.addr -= 3;
7199 opcode = opcode << 8 | ir.modrm;
7200 goto no_support;
7201 }
7202 break;
7203
7204 case 0x0f19:
7205 case 0x0f1a:
7206 case 0x0f1b:
7207 case 0x0f1c:
7208 case 0x0f1d:
7209 case 0x0f1e:
7210 case 0x0f1f:
7211 /* nop (multi byte) */
7212 break;
7213
7214 case 0x0f20: /* mov reg, crN */
7215 case 0x0f22: /* mov crN, reg */
7216 if (i386_record_modrm (&ir))
7217 return -1;
7218 if ((ir.modrm & 0xc0) != 0xc0)
7219 {
7220 ir.addr -= 3;
7221 opcode = opcode << 8 | ir.modrm;
7222 goto no_support;
7223 }
7224 switch (ir.reg)
7225 {
7226 case 0:
7227 case 2:
7228 case 3:
7229 case 4:
7230 case 8:
7231 if (opcode & 2)
7232 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7233 else
7234 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7235 break;
7236 default:
7237 ir.addr -= 3;
7238 opcode = opcode << 8 | ir.modrm;
7239 goto no_support;
7240 break;
7241 }
7242 break;
7243
7244 case 0x0f21: /* mov reg, drN */
7245 case 0x0f23: /* mov drN, reg */
7246 if (i386_record_modrm (&ir))
7247 return -1;
7248 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7249 || ir.reg == 5 || ir.reg >= 8)
7250 {
7251 ir.addr -= 3;
7252 opcode = opcode << 8 | ir.modrm;
7253 goto no_support;
7254 }
7255 if (opcode & 2)
7256 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7257 else
7258 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7259 break;
7260
7261 case 0x0f06: /* clts */
7262 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7263 break;
7264
7265 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7266
7267 case 0x0f0d: /* 3DNow! prefetch */
7268 break;
7269
7270 case 0x0f0e: /* 3DNow! femms */
7271 case 0x0f77: /* emms */
7272 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7273 goto no_support;
7274 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7275 break;
7276
7277 case 0x0f0f: /* 3DNow! data */
7278 if (i386_record_modrm (&ir))
7279 return -1;
7280 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7281 return -1;
7282 ir.addr++;
7283 switch (opcode8)
7284 {
7285 case 0x0c: /* 3DNow! pi2fw */
7286 case 0x0d: /* 3DNow! pi2fd */
7287 case 0x1c: /* 3DNow! pf2iw */
7288 case 0x1d: /* 3DNow! pf2id */
7289 case 0x8a: /* 3DNow! pfnacc */
7290 case 0x8e: /* 3DNow! pfpnacc */
7291 case 0x90: /* 3DNow! pfcmpge */
7292 case 0x94: /* 3DNow! pfmin */
7293 case 0x96: /* 3DNow! pfrcp */
7294 case 0x97: /* 3DNow! pfrsqrt */
7295 case 0x9a: /* 3DNow! pfsub */
7296 case 0x9e: /* 3DNow! pfadd */
7297 case 0xa0: /* 3DNow! pfcmpgt */
7298 case 0xa4: /* 3DNow! pfmax */
7299 case 0xa6: /* 3DNow! pfrcpit1 */
7300 case 0xa7: /* 3DNow! pfrsqit1 */
7301 case 0xaa: /* 3DNow! pfsubr */
7302 case 0xae: /* 3DNow! pfacc */
7303 case 0xb0: /* 3DNow! pfcmpeq */
7304 case 0xb4: /* 3DNow! pfmul */
7305 case 0xb6: /* 3DNow! pfrcpit2 */
7306 case 0xb7: /* 3DNow! pmulhrw */
7307 case 0xbb: /* 3DNow! pswapd */
7308 case 0xbf: /* 3DNow! pavgusb */
7309 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7310 goto no_support_3dnow_data;
7311 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7312 break;
7313
7314 default:
7315 no_support_3dnow_data:
7316 opcode = (opcode << 8) | opcode8;
7317 goto no_support;
7318 break;
7319 }
7320 break;
7321
7322 case 0x0faa: /* rsm */
7323 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7324 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7325 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7326 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7327 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7328 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7329 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7330 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7331 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7332 break;
7333
7334 case 0x0fae:
7335 if (i386_record_modrm (&ir))
7336 return -1;
7337 switch(ir.reg)
7338 {
7339 case 0: /* fxsave */
7340 {
7341 uint64_t tmpu64;
7342
7343 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7344 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7345 return -1;
7346 if (record_full_arch_list_add_mem (tmpu64, 512))
7347 return -1;
7348 }
7349 break;
7350
7351 case 1: /* fxrstor */
7352 {
7353 int i;
7354
7355 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7356
7357 for (i = I387_MM0_REGNUM (tdep);
7358 i386_mmx_regnum_p (gdbarch, i); i++)
7359 record_full_arch_list_add_reg (ir.regcache, i);
7360
7361 for (i = I387_XMM0_REGNUM (tdep);
7362 i386_xmm_regnum_p (gdbarch, i); i++)
7363 record_full_arch_list_add_reg (ir.regcache, i);
7364
7365 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7366 record_full_arch_list_add_reg (ir.regcache,
7367 I387_MXCSR_REGNUM(tdep));
7368
7369 for (i = I387_ST0_REGNUM (tdep);
7370 i386_fp_regnum_p (gdbarch, i); i++)
7371 record_full_arch_list_add_reg (ir.regcache, i);
7372
7373 for (i = I387_FCTRL_REGNUM (tdep);
7374 i386_fpc_regnum_p (gdbarch, i); i++)
7375 record_full_arch_list_add_reg (ir.regcache, i);
7376 }
7377 break;
7378
7379 case 2: /* ldmxcsr */
7380 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7381 goto no_support;
7382 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7383 break;
7384
7385 case 3: /* stmxcsr */
7386 ir.ot = OT_LONG;
7387 if (i386_record_lea_modrm (&ir))
7388 return -1;
7389 break;
7390
7391 case 5: /* lfence */
7392 case 6: /* mfence */
7393 case 7: /* sfence clflush */
7394 break;
7395
7396 default:
7397 opcode = (opcode << 8) | ir.modrm;
7398 goto no_support;
7399 break;
7400 }
7401 break;
7402
7403 case 0x0fc3: /* movnti */
7404 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7405 if (i386_record_modrm (&ir))
7406 return -1;
7407 if (ir.mod == 3)
7408 goto no_support;
7409 ir.reg |= rex_r;
7410 if (i386_record_lea_modrm (&ir))
7411 return -1;
7412 break;
7413
7414 /* Add prefix to opcode. */
7415 case 0x0f10:
7416 case 0x0f11:
7417 case 0x0f12:
7418 case 0x0f13:
7419 case 0x0f14:
7420 case 0x0f15:
7421 case 0x0f16:
7422 case 0x0f17:
7423 case 0x0f28:
7424 case 0x0f29:
7425 case 0x0f2a:
7426 case 0x0f2b:
7427 case 0x0f2c:
7428 case 0x0f2d:
7429 case 0x0f2e:
7430 case 0x0f2f:
7431 case 0x0f38:
7432 case 0x0f39:
7433 case 0x0f3a:
7434 case 0x0f50:
7435 case 0x0f51:
7436 case 0x0f52:
7437 case 0x0f53:
7438 case 0x0f54:
7439 case 0x0f55:
7440 case 0x0f56:
7441 case 0x0f57:
7442 case 0x0f58:
7443 case 0x0f59:
7444 case 0x0f5a:
7445 case 0x0f5b:
7446 case 0x0f5c:
7447 case 0x0f5d:
7448 case 0x0f5e:
7449 case 0x0f5f:
7450 case 0x0f60:
7451 case 0x0f61:
7452 case 0x0f62:
7453 case 0x0f63:
7454 case 0x0f64:
7455 case 0x0f65:
7456 case 0x0f66:
7457 case 0x0f67:
7458 case 0x0f68:
7459 case 0x0f69:
7460 case 0x0f6a:
7461 case 0x0f6b:
7462 case 0x0f6c:
7463 case 0x0f6d:
7464 case 0x0f6e:
7465 case 0x0f6f:
7466 case 0x0f70:
7467 case 0x0f71:
7468 case 0x0f72:
7469 case 0x0f73:
7470 case 0x0f74:
7471 case 0x0f75:
7472 case 0x0f76:
7473 case 0x0f7c:
7474 case 0x0f7d:
7475 case 0x0f7e:
7476 case 0x0f7f:
7477 case 0x0fb8:
7478 case 0x0fc2:
7479 case 0x0fc4:
7480 case 0x0fc5:
7481 case 0x0fc6:
7482 case 0x0fd0:
7483 case 0x0fd1:
7484 case 0x0fd2:
7485 case 0x0fd3:
7486 case 0x0fd4:
7487 case 0x0fd5:
7488 case 0x0fd6:
7489 case 0x0fd7:
7490 case 0x0fd8:
7491 case 0x0fd9:
7492 case 0x0fda:
7493 case 0x0fdb:
7494 case 0x0fdc:
7495 case 0x0fdd:
7496 case 0x0fde:
7497 case 0x0fdf:
7498 case 0x0fe0:
7499 case 0x0fe1:
7500 case 0x0fe2:
7501 case 0x0fe3:
7502 case 0x0fe4:
7503 case 0x0fe5:
7504 case 0x0fe6:
7505 case 0x0fe7:
7506 case 0x0fe8:
7507 case 0x0fe9:
7508 case 0x0fea:
7509 case 0x0feb:
7510 case 0x0fec:
7511 case 0x0fed:
7512 case 0x0fee:
7513 case 0x0fef:
7514 case 0x0ff0:
7515 case 0x0ff1:
7516 case 0x0ff2:
7517 case 0x0ff3:
7518 case 0x0ff4:
7519 case 0x0ff5:
7520 case 0x0ff6:
7521 case 0x0ff7:
7522 case 0x0ff8:
7523 case 0x0ff9:
7524 case 0x0ffa:
7525 case 0x0ffb:
7526 case 0x0ffc:
7527 case 0x0ffd:
7528 case 0x0ffe:
7529 /* Mask out PREFIX_ADDR. */
7530 switch ((prefixes & ~PREFIX_ADDR))
7531 {
7532 case PREFIX_REPNZ:
7533 opcode |= 0xf20000;
7534 break;
7535 case PREFIX_DATA:
7536 opcode |= 0x660000;
7537 break;
7538 case PREFIX_REPZ:
7539 opcode |= 0xf30000;
7540 break;
7541 }
7542 reswitch_prefix_add:
7543 switch (opcode)
7544 {
7545 case 0x0f38:
7546 case 0x660f38:
7547 case 0xf20f38:
7548 case 0x0f3a:
7549 case 0x660f3a:
7550 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7551 return -1;
7552 ir.addr++;
7553 opcode = (uint32_t) opcode8 | opcode << 8;
7554 goto reswitch_prefix_add;
7555 break;
7556
7557 case 0x0f10: /* movups */
7558 case 0x660f10: /* movupd */
7559 case 0xf30f10: /* movss */
7560 case 0xf20f10: /* movsd */
7561 case 0x0f12: /* movlps */
7562 case 0x660f12: /* movlpd */
7563 case 0xf30f12: /* movsldup */
7564 case 0xf20f12: /* movddup */
7565 case 0x0f14: /* unpcklps */
7566 case 0x660f14: /* unpcklpd */
7567 case 0x0f15: /* unpckhps */
7568 case 0x660f15: /* unpckhpd */
7569 case 0x0f16: /* movhps */
7570 case 0x660f16: /* movhpd */
7571 case 0xf30f16: /* movshdup */
7572 case 0x0f28: /* movaps */
7573 case 0x660f28: /* movapd */
7574 case 0x0f2a: /* cvtpi2ps */
7575 case 0x660f2a: /* cvtpi2pd */
7576 case 0xf30f2a: /* cvtsi2ss */
7577 case 0xf20f2a: /* cvtsi2sd */
7578 case 0x0f2c: /* cvttps2pi */
7579 case 0x660f2c: /* cvttpd2pi */
7580 case 0x0f2d: /* cvtps2pi */
7581 case 0x660f2d: /* cvtpd2pi */
7582 case 0x660f3800: /* pshufb */
7583 case 0x660f3801: /* phaddw */
7584 case 0x660f3802: /* phaddd */
7585 case 0x660f3803: /* phaddsw */
7586 case 0x660f3804: /* pmaddubsw */
7587 case 0x660f3805: /* phsubw */
7588 case 0x660f3806: /* phsubd */
7589 case 0x660f3807: /* phsubsw */
7590 case 0x660f3808: /* psignb */
7591 case 0x660f3809: /* psignw */
7592 case 0x660f380a: /* psignd */
7593 case 0x660f380b: /* pmulhrsw */
7594 case 0x660f3810: /* pblendvb */
7595 case 0x660f3814: /* blendvps */
7596 case 0x660f3815: /* blendvpd */
7597 case 0x660f381c: /* pabsb */
7598 case 0x660f381d: /* pabsw */
7599 case 0x660f381e: /* pabsd */
7600 case 0x660f3820: /* pmovsxbw */
7601 case 0x660f3821: /* pmovsxbd */
7602 case 0x660f3822: /* pmovsxbq */
7603 case 0x660f3823: /* pmovsxwd */
7604 case 0x660f3824: /* pmovsxwq */
7605 case 0x660f3825: /* pmovsxdq */
7606 case 0x660f3828: /* pmuldq */
7607 case 0x660f3829: /* pcmpeqq */
7608 case 0x660f382a: /* movntdqa */
7609 case 0x660f3a08: /* roundps */
7610 case 0x660f3a09: /* roundpd */
7611 case 0x660f3a0a: /* roundss */
7612 case 0x660f3a0b: /* roundsd */
7613 case 0x660f3a0c: /* blendps */
7614 case 0x660f3a0d: /* blendpd */
7615 case 0x660f3a0e: /* pblendw */
7616 case 0x660f3a0f: /* palignr */
7617 case 0x660f3a20: /* pinsrb */
7618 case 0x660f3a21: /* insertps */
7619 case 0x660f3a22: /* pinsrd pinsrq */
7620 case 0x660f3a40: /* dpps */
7621 case 0x660f3a41: /* dppd */
7622 case 0x660f3a42: /* mpsadbw */
7623 case 0x660f3a60: /* pcmpestrm */
7624 case 0x660f3a61: /* pcmpestri */
7625 case 0x660f3a62: /* pcmpistrm */
7626 case 0x660f3a63: /* pcmpistri */
7627 case 0x0f51: /* sqrtps */
7628 case 0x660f51: /* sqrtpd */
7629 case 0xf20f51: /* sqrtsd */
7630 case 0xf30f51: /* sqrtss */
7631 case 0x0f52: /* rsqrtps */
7632 case 0xf30f52: /* rsqrtss */
7633 case 0x0f53: /* rcpps */
7634 case 0xf30f53: /* rcpss */
7635 case 0x0f54: /* andps */
7636 case 0x660f54: /* andpd */
7637 case 0x0f55: /* andnps */
7638 case 0x660f55: /* andnpd */
7639 case 0x0f56: /* orps */
7640 case 0x660f56: /* orpd */
7641 case 0x0f57: /* xorps */
7642 case 0x660f57: /* xorpd */
7643 case 0x0f58: /* addps */
7644 case 0x660f58: /* addpd */
7645 case 0xf20f58: /* addsd */
7646 case 0xf30f58: /* addss */
7647 case 0x0f59: /* mulps */
7648 case 0x660f59: /* mulpd */
7649 case 0xf20f59: /* mulsd */
7650 case 0xf30f59: /* mulss */
7651 case 0x0f5a: /* cvtps2pd */
7652 case 0x660f5a: /* cvtpd2ps */
7653 case 0xf20f5a: /* cvtsd2ss */
7654 case 0xf30f5a: /* cvtss2sd */
7655 case 0x0f5b: /* cvtdq2ps */
7656 case 0x660f5b: /* cvtps2dq */
7657 case 0xf30f5b: /* cvttps2dq */
7658 case 0x0f5c: /* subps */
7659 case 0x660f5c: /* subpd */
7660 case 0xf20f5c: /* subsd */
7661 case 0xf30f5c: /* subss */
7662 case 0x0f5d: /* minps */
7663 case 0x660f5d: /* minpd */
7664 case 0xf20f5d: /* minsd */
7665 case 0xf30f5d: /* minss */
7666 case 0x0f5e: /* divps */
7667 case 0x660f5e: /* divpd */
7668 case 0xf20f5e: /* divsd */
7669 case 0xf30f5e: /* divss */
7670 case 0x0f5f: /* maxps */
7671 case 0x660f5f: /* maxpd */
7672 case 0xf20f5f: /* maxsd */
7673 case 0xf30f5f: /* maxss */
7674 case 0x660f60: /* punpcklbw */
7675 case 0x660f61: /* punpcklwd */
7676 case 0x660f62: /* punpckldq */
7677 case 0x660f63: /* packsswb */
7678 case 0x660f64: /* pcmpgtb */
7679 case 0x660f65: /* pcmpgtw */
7680 case 0x660f66: /* pcmpgtd */
7681 case 0x660f67: /* packuswb */
7682 case 0x660f68: /* punpckhbw */
7683 case 0x660f69: /* punpckhwd */
7684 case 0x660f6a: /* punpckhdq */
7685 case 0x660f6b: /* packssdw */
7686 case 0x660f6c: /* punpcklqdq */
7687 case 0x660f6d: /* punpckhqdq */
7688 case 0x660f6e: /* movd */
7689 case 0x660f6f: /* movdqa */
7690 case 0xf30f6f: /* movdqu */
7691 case 0x660f70: /* pshufd */
7692 case 0xf20f70: /* pshuflw */
7693 case 0xf30f70: /* pshufhw */
7694 case 0x660f74: /* pcmpeqb */
7695 case 0x660f75: /* pcmpeqw */
7696 case 0x660f76: /* pcmpeqd */
7697 case 0x660f7c: /* haddpd */
7698 case 0xf20f7c: /* haddps */
7699 case 0x660f7d: /* hsubpd */
7700 case 0xf20f7d: /* hsubps */
7701 case 0xf30f7e: /* movq */
7702 case 0x0fc2: /* cmpps */
7703 case 0x660fc2: /* cmppd */
7704 case 0xf20fc2: /* cmpsd */
7705 case 0xf30fc2: /* cmpss */
7706 case 0x660fc4: /* pinsrw */
7707 case 0x0fc6: /* shufps */
7708 case 0x660fc6: /* shufpd */
7709 case 0x660fd0: /* addsubpd */
7710 case 0xf20fd0: /* addsubps */
7711 case 0x660fd1: /* psrlw */
7712 case 0x660fd2: /* psrld */
7713 case 0x660fd3: /* psrlq */
7714 case 0x660fd4: /* paddq */
7715 case 0x660fd5: /* pmullw */
7716 case 0xf30fd6: /* movq2dq */
7717 case 0x660fd8: /* psubusb */
7718 case 0x660fd9: /* psubusw */
7719 case 0x660fda: /* pminub */
7720 case 0x660fdb: /* pand */
7721 case 0x660fdc: /* paddusb */
7722 case 0x660fdd: /* paddusw */
7723 case 0x660fde: /* pmaxub */
7724 case 0x660fdf: /* pandn */
7725 case 0x660fe0: /* pavgb */
7726 case 0x660fe1: /* psraw */
7727 case 0x660fe2: /* psrad */
7728 case 0x660fe3: /* pavgw */
7729 case 0x660fe4: /* pmulhuw */
7730 case 0x660fe5: /* pmulhw */
7731 case 0x660fe6: /* cvttpd2dq */
7732 case 0xf20fe6: /* cvtpd2dq */
7733 case 0xf30fe6: /* cvtdq2pd */
7734 case 0x660fe8: /* psubsb */
7735 case 0x660fe9: /* psubsw */
7736 case 0x660fea: /* pminsw */
7737 case 0x660feb: /* por */
7738 case 0x660fec: /* paddsb */
7739 case 0x660fed: /* paddsw */
7740 case 0x660fee: /* pmaxsw */
7741 case 0x660fef: /* pxor */
7742 case 0xf20ff0: /* lddqu */
7743 case 0x660ff1: /* psllw */
7744 case 0x660ff2: /* pslld */
7745 case 0x660ff3: /* psllq */
7746 case 0x660ff4: /* pmuludq */
7747 case 0x660ff5: /* pmaddwd */
7748 case 0x660ff6: /* psadbw */
7749 case 0x660ff8: /* psubb */
7750 case 0x660ff9: /* psubw */
7751 case 0x660ffa: /* psubd */
7752 case 0x660ffb: /* psubq */
7753 case 0x660ffc: /* paddb */
7754 case 0x660ffd: /* paddw */
7755 case 0x660ffe: /* paddd */
7756 if (i386_record_modrm (&ir))
7757 return -1;
7758 ir.reg |= rex_r;
7759 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7760 goto no_support;
7761 record_full_arch_list_add_reg (ir.regcache,
7762 I387_XMM0_REGNUM (tdep) + ir.reg);
7763 if ((opcode & 0xfffffffc) == 0x660f3a60)
7764 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7765 break;
7766
7767 case 0x0f11: /* movups */
7768 case 0x660f11: /* movupd */
7769 case 0xf30f11: /* movss */
7770 case 0xf20f11: /* movsd */
7771 case 0x0f13: /* movlps */
7772 case 0x660f13: /* movlpd */
7773 case 0x0f17: /* movhps */
7774 case 0x660f17: /* movhpd */
7775 case 0x0f29: /* movaps */
7776 case 0x660f29: /* movapd */
7777 case 0x660f3a14: /* pextrb */
7778 case 0x660f3a15: /* pextrw */
7779 case 0x660f3a16: /* pextrd pextrq */
7780 case 0x660f3a17: /* extractps */
7781 case 0x660f7f: /* movdqa */
7782 case 0xf30f7f: /* movdqu */
7783 if (i386_record_modrm (&ir))
7784 return -1;
7785 if (ir.mod == 3)
7786 {
7787 if (opcode == 0x0f13 || opcode == 0x660f13
7788 || opcode == 0x0f17 || opcode == 0x660f17)
7789 goto no_support;
7790 ir.rm |= ir.rex_b;
7791 if (!i386_xmm_regnum_p (gdbarch,
7792 I387_XMM0_REGNUM (tdep) + ir.rm))
7793 goto no_support;
7794 record_full_arch_list_add_reg (ir.regcache,
7795 I387_XMM0_REGNUM (tdep) + ir.rm);
7796 }
7797 else
7798 {
7799 switch (opcode)
7800 {
7801 case 0x660f3a14:
7802 ir.ot = OT_BYTE;
7803 break;
7804 case 0x660f3a15:
7805 ir.ot = OT_WORD;
7806 break;
7807 case 0x660f3a16:
7808 ir.ot = OT_LONG;
7809 break;
7810 case 0x660f3a17:
7811 ir.ot = OT_QUAD;
7812 break;
7813 default:
7814 ir.ot = OT_DQUAD;
7815 break;
7816 }
7817 if (i386_record_lea_modrm (&ir))
7818 return -1;
7819 }
7820 break;
7821
7822 case 0x0f2b: /* movntps */
7823 case 0x660f2b: /* movntpd */
7824 case 0x0fe7: /* movntq */
7825 case 0x660fe7: /* movntdq */
7826 if (ir.mod == 3)
7827 goto no_support;
7828 if (opcode == 0x0fe7)
7829 ir.ot = OT_QUAD;
7830 else
7831 ir.ot = OT_DQUAD;
7832 if (i386_record_lea_modrm (&ir))
7833 return -1;
7834 break;
7835
7836 case 0xf30f2c: /* cvttss2si */
7837 case 0xf20f2c: /* cvttsd2si */
7838 case 0xf30f2d: /* cvtss2si */
7839 case 0xf20f2d: /* cvtsd2si */
7840 case 0xf20f38f0: /* crc32 */
7841 case 0xf20f38f1: /* crc32 */
7842 case 0x0f50: /* movmskps */
7843 case 0x660f50: /* movmskpd */
7844 case 0x0fc5: /* pextrw */
7845 case 0x660fc5: /* pextrw */
7846 case 0x0fd7: /* pmovmskb */
7847 case 0x660fd7: /* pmovmskb */
7848 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7849 break;
7850
7851 case 0x0f3800: /* pshufb */
7852 case 0x0f3801: /* phaddw */
7853 case 0x0f3802: /* phaddd */
7854 case 0x0f3803: /* phaddsw */
7855 case 0x0f3804: /* pmaddubsw */
7856 case 0x0f3805: /* phsubw */
7857 case 0x0f3806: /* phsubd */
7858 case 0x0f3807: /* phsubsw */
7859 case 0x0f3808: /* psignb */
7860 case 0x0f3809: /* psignw */
7861 case 0x0f380a: /* psignd */
7862 case 0x0f380b: /* pmulhrsw */
7863 case 0x0f381c: /* pabsb */
7864 case 0x0f381d: /* pabsw */
7865 case 0x0f381e: /* pabsd */
7866 case 0x0f382b: /* packusdw */
7867 case 0x0f3830: /* pmovzxbw */
7868 case 0x0f3831: /* pmovzxbd */
7869 case 0x0f3832: /* pmovzxbq */
7870 case 0x0f3833: /* pmovzxwd */
7871 case 0x0f3834: /* pmovzxwq */
7872 case 0x0f3835: /* pmovzxdq */
7873 case 0x0f3837: /* pcmpgtq */
7874 case 0x0f3838: /* pminsb */
7875 case 0x0f3839: /* pminsd */
7876 case 0x0f383a: /* pminuw */
7877 case 0x0f383b: /* pminud */
7878 case 0x0f383c: /* pmaxsb */
7879 case 0x0f383d: /* pmaxsd */
7880 case 0x0f383e: /* pmaxuw */
7881 case 0x0f383f: /* pmaxud */
7882 case 0x0f3840: /* pmulld */
7883 case 0x0f3841: /* phminposuw */
7884 case 0x0f3a0f: /* palignr */
7885 case 0x0f60: /* punpcklbw */
7886 case 0x0f61: /* punpcklwd */
7887 case 0x0f62: /* punpckldq */
7888 case 0x0f63: /* packsswb */
7889 case 0x0f64: /* pcmpgtb */
7890 case 0x0f65: /* pcmpgtw */
7891 case 0x0f66: /* pcmpgtd */
7892 case 0x0f67: /* packuswb */
7893 case 0x0f68: /* punpckhbw */
7894 case 0x0f69: /* punpckhwd */
7895 case 0x0f6a: /* punpckhdq */
7896 case 0x0f6b: /* packssdw */
7897 case 0x0f6e: /* movd */
7898 case 0x0f6f: /* movq */
7899 case 0x0f70: /* pshufw */
7900 case 0x0f74: /* pcmpeqb */
7901 case 0x0f75: /* pcmpeqw */
7902 case 0x0f76: /* pcmpeqd */
7903 case 0x0fc4: /* pinsrw */
7904 case 0x0fd1: /* psrlw */
7905 case 0x0fd2: /* psrld */
7906 case 0x0fd3: /* psrlq */
7907 case 0x0fd4: /* paddq */
7908 case 0x0fd5: /* pmullw */
7909 case 0xf20fd6: /* movdq2q */
7910 case 0x0fd8: /* psubusb */
7911 case 0x0fd9: /* psubusw */
7912 case 0x0fda: /* pminub */
7913 case 0x0fdb: /* pand */
7914 case 0x0fdc: /* paddusb */
7915 case 0x0fdd: /* paddusw */
7916 case 0x0fde: /* pmaxub */
7917 case 0x0fdf: /* pandn */
7918 case 0x0fe0: /* pavgb */
7919 case 0x0fe1: /* psraw */
7920 case 0x0fe2: /* psrad */
7921 case 0x0fe3: /* pavgw */
7922 case 0x0fe4: /* pmulhuw */
7923 case 0x0fe5: /* pmulhw */
7924 case 0x0fe8: /* psubsb */
7925 case 0x0fe9: /* psubsw */
7926 case 0x0fea: /* pminsw */
7927 case 0x0feb: /* por */
7928 case 0x0fec: /* paddsb */
7929 case 0x0fed: /* paddsw */
7930 case 0x0fee: /* pmaxsw */
7931 case 0x0fef: /* pxor */
7932 case 0x0ff1: /* psllw */
7933 case 0x0ff2: /* pslld */
7934 case 0x0ff3: /* psllq */
7935 case 0x0ff4: /* pmuludq */
7936 case 0x0ff5: /* pmaddwd */
7937 case 0x0ff6: /* psadbw */
7938 case 0x0ff8: /* psubb */
7939 case 0x0ff9: /* psubw */
7940 case 0x0ffa: /* psubd */
7941 case 0x0ffb: /* psubq */
7942 case 0x0ffc: /* paddb */
7943 case 0x0ffd: /* paddw */
7944 case 0x0ffe: /* paddd */
7945 if (i386_record_modrm (&ir))
7946 return -1;
7947 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7948 goto no_support;
7949 record_full_arch_list_add_reg (ir.regcache,
7950 I387_MM0_REGNUM (tdep) + ir.reg);
7951 break;
7952
7953 case 0x0f71: /* psllw */
7954 case 0x0f72: /* pslld */
7955 case 0x0f73: /* psllq */
7956 if (i386_record_modrm (&ir))
7957 return -1;
7958 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7959 goto no_support;
7960 record_full_arch_list_add_reg (ir.regcache,
7961 I387_MM0_REGNUM (tdep) + ir.rm);
7962 break;
7963
7964 case 0x660f71: /* psllw */
7965 case 0x660f72: /* pslld */
7966 case 0x660f73: /* psllq */
7967 if (i386_record_modrm (&ir))
7968 return -1;
7969 ir.rm |= ir.rex_b;
7970 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7971 goto no_support;
7972 record_full_arch_list_add_reg (ir.regcache,
7973 I387_XMM0_REGNUM (tdep) + ir.rm);
7974 break;
7975
7976 case 0x0f7e: /* movd */
7977 case 0x660f7e: /* movd */
7978 if (i386_record_modrm (&ir))
7979 return -1;
7980 if (ir.mod == 3)
7981 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7982 else
7983 {
7984 if (ir.dflag == 2)
7985 ir.ot = OT_QUAD;
7986 else
7987 ir.ot = OT_LONG;
7988 if (i386_record_lea_modrm (&ir))
7989 return -1;
7990 }
7991 break;
7992
7993 case 0x0f7f: /* movq */
7994 if (i386_record_modrm (&ir))
7995 return -1;
7996 if (ir.mod == 3)
7997 {
7998 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7999 goto no_support;
8000 record_full_arch_list_add_reg (ir.regcache,
8001 I387_MM0_REGNUM (tdep) + ir.rm);
8002 }
8003 else
8004 {
8005 ir.ot = OT_QUAD;
8006 if (i386_record_lea_modrm (&ir))
8007 return -1;
8008 }
8009 break;
8010
8011 case 0xf30fb8: /* popcnt */
8012 if (i386_record_modrm (&ir))
8013 return -1;
8014 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8015 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8016 break;
8017
8018 case 0x660fd6: /* movq */
8019 if (i386_record_modrm (&ir))
8020 return -1;
8021 if (ir.mod == 3)
8022 {
8023 ir.rm |= ir.rex_b;
8024 if (!i386_xmm_regnum_p (gdbarch,
8025 I387_XMM0_REGNUM (tdep) + ir.rm))
8026 goto no_support;
8027 record_full_arch_list_add_reg (ir.regcache,
8028 I387_XMM0_REGNUM (tdep) + ir.rm);
8029 }
8030 else
8031 {
8032 ir.ot = OT_QUAD;
8033 if (i386_record_lea_modrm (&ir))
8034 return -1;
8035 }
8036 break;
8037
8038 case 0x660f3817: /* ptest */
8039 case 0x0f2e: /* ucomiss */
8040 case 0x660f2e: /* ucomisd */
8041 case 0x0f2f: /* comiss */
8042 case 0x660f2f: /* comisd */
8043 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8044 break;
8045
8046 case 0x0ff7: /* maskmovq */
8047 regcache_raw_read_unsigned (ir.regcache,
8048 ir.regmap[X86_RECORD_REDI_REGNUM],
8049 &addr);
8050 if (record_full_arch_list_add_mem (addr, 64))
8051 return -1;
8052 break;
8053
8054 case 0x660ff7: /* maskmovdqu */
8055 regcache_raw_read_unsigned (ir.regcache,
8056 ir.regmap[X86_RECORD_REDI_REGNUM],
8057 &addr);
8058 if (record_full_arch_list_add_mem (addr, 128))
8059 return -1;
8060 break;
8061
8062 default:
8063 goto no_support;
8064 break;
8065 }
8066 break;
8067
8068 default:
8069 goto no_support;
8070 break;
8071 }
8072
8073 /* In the future, maybe still need to deal with need_dasm. */
8074 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8075 if (record_full_arch_list_add_end ())
8076 return -1;
8077
8078 return 0;
8079
8080 no_support:
8081 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8082 "at address %s.\n"),
8083 (unsigned int) (opcode),
8084 paddress (gdbarch, ir.orig_addr));
8085 return -1;
8086 }
8087
8088 static const int i386_record_regmap[] =
8089 {
8090 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8091 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8092 0, 0, 0, 0, 0, 0, 0, 0,
8093 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8094 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8095 };
8096
8097 /* Check that the given address appears suitable for a fast
8098 tracepoint, which on x86-64 means that we need an instruction of at
8099 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8100 jump and not have to worry about program jumps to an address in the
8101 middle of the tracepoint jump. On x86, it may be possible to use
8102 4-byte jumps with a 2-byte offset to a trampoline located in the
8103 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8104 of instruction to replace, and 0 if not, plus an explanatory
8105 string. */
8106
8107 static int
8108 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8109 char **msg)
8110 {
8111 int len, jumplen;
8112 static struct ui_file *gdb_null = NULL;
8113
8114 /* Ask the target for the minimum instruction length supported. */
8115 jumplen = target_get_min_fast_tracepoint_insn_len ();
8116
8117 if (jumplen < 0)
8118 {
8119 /* If the target does not support the get_min_fast_tracepoint_insn_len
8120 operation, assume that fast tracepoints will always be implemented
8121 using 4-byte relative jumps on both x86 and x86-64. */
8122 jumplen = 5;
8123 }
8124 else if (jumplen == 0)
8125 {
8126 /* If the target does support get_min_fast_tracepoint_insn_len but
8127 returns zero, then the IPA has not loaded yet. In this case,
8128 we optimistically assume that truncated 2-byte relative jumps
8129 will be available on x86, and compensate later if this assumption
8130 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8131 jumps will always be used. */
8132 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8133 }
8134
8135 /* Dummy file descriptor for the disassembler. */
8136 if (!gdb_null)
8137 gdb_null = ui_file_new ();
8138
8139 /* Check for fit. */
8140 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
8141
8142 if (len < jumplen)
8143 {
8144 /* Return a bit of target-specific detail to add to the caller's
8145 generic failure message. */
8146 if (msg)
8147 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8148 "need at least %d bytes for the jump"),
8149 len, jumplen);
8150 return 0;
8151 }
8152 else
8153 {
8154 if (msg)
8155 *msg = NULL;
8156 return 1;
8157 }
8158 }
8159
8160 /* Return a floating-point format for a floating-point variable of
8161 length LEN in bits. If non-NULL, NAME is the name of its type.
8162 If no suitable type is found, return NULL. */
8163
8164 const struct floatformat **
8165 i386_floatformat_for_type (struct gdbarch *gdbarch,
8166 const char *name, int len)
8167 {
8168 if (len == 128 && name)
8169 if (strcmp (name, "__float128") == 0
8170 || strcmp (name, "_Float128") == 0
8171 || strcmp (name, "complex _Float128") == 0)
8172 return floatformats_ia64_quad;
8173
8174 return default_floatformat_for_type (gdbarch, name, len);
8175 }
8176
8177 static int
8178 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8179 struct tdesc_arch_data *tdesc_data)
8180 {
8181 const struct target_desc *tdesc = tdep->tdesc;
8182 const struct tdesc_feature *feature_core;
8183
8184 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8185 *feature_avx512;
8186 int i, num_regs, valid_p;
8187
8188 if (! tdesc_has_registers (tdesc))
8189 return 0;
8190
8191 /* Get core registers. */
8192 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8193 if (feature_core == NULL)
8194 return 0;
8195
8196 /* Get SSE registers. */
8197 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8198
8199 /* Try AVX registers. */
8200 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8201
8202 /* Try MPX registers. */
8203 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8204
8205 /* Try AVX512 registers. */
8206 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8207
8208 valid_p = 1;
8209
8210 /* The XCR0 bits. */
8211 if (feature_avx512)
8212 {
8213 /* AVX512 register description requires AVX register description. */
8214 if (!feature_avx)
8215 return 0;
8216
8217 tdep->xcr0 = X86_XSTATE_MPX_AVX512_MASK;
8218
8219 /* It may have been set by OSABI initialization function. */
8220 if (tdep->k0_regnum < 0)
8221 {
8222 tdep->k_register_names = i386_k_names;
8223 tdep->k0_regnum = I386_K0_REGNUM;
8224 }
8225
8226 for (i = 0; i < I387_NUM_K_REGS; i++)
8227 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8228 tdep->k0_regnum + i,
8229 i386_k_names[i]);
8230
8231 if (tdep->num_zmm_regs == 0)
8232 {
8233 tdep->zmmh_register_names = i386_zmmh_names;
8234 tdep->num_zmm_regs = 8;
8235 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8236 }
8237
8238 for (i = 0; i < tdep->num_zmm_regs; i++)
8239 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8240 tdep->zmm0h_regnum + i,
8241 tdep->zmmh_register_names[i]);
8242
8243 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8244 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8245 tdep->xmm16_regnum + i,
8246 tdep->xmm_avx512_register_names[i]);
8247
8248 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8249 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8250 tdep->ymm16h_regnum + i,
8251 tdep->ymm16h_register_names[i]);
8252 }
8253 if (feature_avx)
8254 {
8255 /* AVX register description requires SSE register description. */
8256 if (!feature_sse)
8257 return 0;
8258
8259 if (!feature_avx512)
8260 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8261
8262 /* It may have been set by OSABI initialization function. */
8263 if (tdep->num_ymm_regs == 0)
8264 {
8265 tdep->ymmh_register_names = i386_ymmh_names;
8266 tdep->num_ymm_regs = 8;
8267 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8268 }
8269
8270 for (i = 0; i < tdep->num_ymm_regs; i++)
8271 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8272 tdep->ymm0h_regnum + i,
8273 tdep->ymmh_register_names[i]);
8274 }
8275 else if (feature_sse)
8276 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8277 else
8278 {
8279 tdep->xcr0 = X86_XSTATE_X87_MASK;
8280 tdep->num_xmm_regs = 0;
8281 }
8282
8283 num_regs = tdep->num_core_regs;
8284 for (i = 0; i < num_regs; i++)
8285 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8286 tdep->register_names[i]);
8287
8288 if (feature_sse)
8289 {
8290 /* Need to include %mxcsr, so add one. */
8291 num_regs += tdep->num_xmm_regs + 1;
8292 for (; i < num_regs; i++)
8293 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8294 tdep->register_names[i]);
8295 }
8296
8297 if (feature_mpx)
8298 {
8299 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8300
8301 if (tdep->bnd0r_regnum < 0)
8302 {
8303 tdep->mpx_register_names = i386_mpx_names;
8304 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8305 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8306 }
8307
8308 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8309 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8310 I387_BND0R_REGNUM (tdep) + i,
8311 tdep->mpx_register_names[i]);
8312 }
8313
8314 return valid_p;
8315 }
8316
8317 \f
8318 static struct gdbarch *
8319 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8320 {
8321 struct gdbarch_tdep *tdep;
8322 struct gdbarch *gdbarch;
8323 struct tdesc_arch_data *tdesc_data;
8324 const struct target_desc *tdesc;
8325 int mm0_regnum;
8326 int ymm0_regnum;
8327 int bnd0_regnum;
8328 int num_bnd_cooked;
8329
8330 /* If there is already a candidate, use it. */
8331 arches = gdbarch_list_lookup_by_info (arches, &info);
8332 if (arches != NULL)
8333 return arches->gdbarch;
8334
8335 /* Allocate space for the new architecture. */
8336 tdep = XCNEW (struct gdbarch_tdep);
8337 gdbarch = gdbarch_alloc (&info, tdep);
8338
8339 /* General-purpose registers. */
8340 tdep->gregset_reg_offset = NULL;
8341 tdep->gregset_num_regs = I386_NUM_GREGS;
8342 tdep->sizeof_gregset = 0;
8343
8344 /* Floating-point registers. */
8345 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8346 tdep->fpregset = &i386_fpregset;
8347
8348 /* The default settings include the FPU registers, the MMX registers
8349 and the SSE registers. This can be overridden for a specific ABI
8350 by adjusting the members `st0_regnum', `mm0_regnum' and
8351 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8352 will show up in the output of "info all-registers". */
8353
8354 tdep->st0_regnum = I386_ST0_REGNUM;
8355
8356 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8357 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8358
8359 tdep->jb_pc_offset = -1;
8360 tdep->struct_return = pcc_struct_return;
8361 tdep->sigtramp_start = 0;
8362 tdep->sigtramp_end = 0;
8363 tdep->sigtramp_p = i386_sigtramp_p;
8364 tdep->sigcontext_addr = NULL;
8365 tdep->sc_reg_offset = NULL;
8366 tdep->sc_pc_offset = -1;
8367 tdep->sc_sp_offset = -1;
8368
8369 tdep->xsave_xcr0_offset = -1;
8370
8371 tdep->record_regmap = i386_record_regmap;
8372
8373 set_gdbarch_long_long_align_bit (gdbarch, 32);
8374
8375 /* The format used for `long double' on almost all i386 targets is
8376 the i387 extended floating-point format. In fact, of all targets
8377 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8378 on having a `long double' that's not `long' at all. */
8379 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8380
8381 /* Although the i387 extended floating-point has only 80 significant
8382 bits, a `long double' actually takes up 96, probably to enforce
8383 alignment. */
8384 set_gdbarch_long_double_bit (gdbarch, 96);
8385
8386 /* Support for floating-point data type variants. */
8387 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8388
8389 /* Register numbers of various important registers. */
8390 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8391 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8392 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8393 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8394
8395 /* NOTE: kettenis/20040418: GCC does have two possible register
8396 numbering schemes on the i386: dbx and SVR4. These schemes
8397 differ in how they number %ebp, %esp, %eflags, and the
8398 floating-point registers, and are implemented by the arrays
8399 dbx_register_map[] and svr4_dbx_register_map in
8400 gcc/config/i386.c. GCC also defines a third numbering scheme in
8401 gcc/config/i386.c, which it designates as the "default" register
8402 map used in 64bit mode. This last register numbering scheme is
8403 implemented in dbx64_register_map, and is used for AMD64; see
8404 amd64-tdep.c.
8405
8406 Currently, each GCC i386 target always uses the same register
8407 numbering scheme across all its supported debugging formats
8408 i.e. SDB (COFF), stabs and DWARF 2. This is because
8409 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8410 DBX_REGISTER_NUMBER macro which is defined by each target's
8411 respective config header in a manner independent of the requested
8412 output debugging format.
8413
8414 This does not match the arrangement below, which presumes that
8415 the SDB and stabs numbering schemes differ from the DWARF and
8416 DWARF 2 ones. The reason for this arrangement is that it is
8417 likely to get the numbering scheme for the target's
8418 default/native debug format right. For targets where GCC is the
8419 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8420 targets where the native toolchain uses a different numbering
8421 scheme for a particular debug format (stabs-in-ELF on Solaris)
8422 the defaults below will have to be overridden, like
8423 i386_elf_init_abi() does. */
8424
8425 /* Use the dbx register numbering scheme for stabs and COFF. */
8426 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8427 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8428
8429 /* Use the SVR4 register numbering scheme for DWARF 2. */
8430 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8431
8432 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8433 be in use on any of the supported i386 targets. */
8434
8435 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8436
8437 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8438
8439 /* Call dummy code. */
8440 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8441 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8442 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8443 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8444
8445 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8446 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8447 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8448
8449 set_gdbarch_return_value (gdbarch, i386_return_value);
8450
8451 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8452
8453 /* Stack grows downward. */
8454 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8455
8456 SET_GDBARCH_BREAKPOINT_MANIPULATION (i386);
8457 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8458 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8459
8460 set_gdbarch_frame_args_skip (gdbarch, 8);
8461
8462 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8463
8464 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8465
8466 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8467
8468 /* Add the i386 register groups. */
8469 i386_add_reggroups (gdbarch);
8470 tdep->register_reggroup_p = i386_register_reggroup_p;
8471
8472 /* Helper for function argument information. */
8473 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8474
8475 /* Hook the function epilogue frame unwinder. This unwinder is
8476 appended to the list first, so that it supercedes the DWARF
8477 unwinder in function epilogues (where the DWARF unwinder
8478 currently fails). */
8479 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8480
8481 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8482 to the list before the prologue-based unwinders, so that DWARF
8483 CFI info will be used if it is available. */
8484 dwarf2_append_unwinders (gdbarch);
8485
8486 frame_base_set_default (gdbarch, &i386_frame_base);
8487
8488 /* Pseudo registers may be changed by amd64_init_abi. */
8489 set_gdbarch_pseudo_register_read_value (gdbarch,
8490 i386_pseudo_register_read_value);
8491 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8492 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8493 i386_ax_pseudo_register_collect);
8494
8495 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8496 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8497
8498 /* Override the normal target description method to make the AVX
8499 upper halves anonymous. */
8500 set_gdbarch_register_name (gdbarch, i386_register_name);
8501
8502 /* Even though the default ABI only includes general-purpose registers,
8503 floating-point registers and the SSE registers, we have to leave a
8504 gap for the upper AVX, MPX and AVX512 registers. */
8505 set_gdbarch_num_regs (gdbarch, I386_AVX512_NUM_REGS);
8506
8507 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8508
8509 /* Get the x86 target description from INFO. */
8510 tdesc = info.target_desc;
8511 if (! tdesc_has_registers (tdesc))
8512 tdesc = tdesc_i386;
8513 tdep->tdesc = tdesc;
8514
8515 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8516 tdep->register_names = i386_register_names;
8517
8518 /* No upper YMM registers. */
8519 tdep->ymmh_register_names = NULL;
8520 tdep->ymm0h_regnum = -1;
8521
8522 /* No upper ZMM registers. */
8523 tdep->zmmh_register_names = NULL;
8524 tdep->zmm0h_regnum = -1;
8525
8526 /* No high XMM registers. */
8527 tdep->xmm_avx512_register_names = NULL;
8528 tdep->xmm16_regnum = -1;
8529
8530 /* No upper YMM16-31 registers. */
8531 tdep->ymm16h_register_names = NULL;
8532 tdep->ymm16h_regnum = -1;
8533
8534 tdep->num_byte_regs = 8;
8535 tdep->num_word_regs = 8;
8536 tdep->num_dword_regs = 0;
8537 tdep->num_mmx_regs = 8;
8538 tdep->num_ymm_regs = 0;
8539
8540 /* No MPX registers. */
8541 tdep->bnd0r_regnum = -1;
8542 tdep->bndcfgu_regnum = -1;
8543
8544 /* No AVX512 registers. */
8545 tdep->k0_regnum = -1;
8546 tdep->num_zmm_regs = 0;
8547 tdep->num_ymm_avx512_regs = 0;
8548 tdep->num_xmm_avx512_regs = 0;
8549
8550 tdesc_data = tdesc_data_alloc ();
8551
8552 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8553
8554 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8555
8556 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8557 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8558 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8559
8560 /* Hook in ABI-specific overrides, if they have been registered. */
8561 info.tdep_info = tdesc_data;
8562 gdbarch_init_osabi (info, gdbarch);
8563
8564 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8565 {
8566 tdesc_data_cleanup (tdesc_data);
8567 xfree (tdep);
8568 gdbarch_free (gdbarch);
8569 return NULL;
8570 }
8571
8572 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8573
8574 /* Wire in pseudo registers. Number of pseudo registers may be
8575 changed. */
8576 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8577 + tdep->num_word_regs
8578 + tdep->num_dword_regs
8579 + tdep->num_mmx_regs
8580 + tdep->num_ymm_regs
8581 + num_bnd_cooked
8582 + tdep->num_ymm_avx512_regs
8583 + tdep->num_zmm_regs));
8584
8585 /* Target description may be changed. */
8586 tdesc = tdep->tdesc;
8587
8588 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8589
8590 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8591 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8592
8593 /* Make %al the first pseudo-register. */
8594 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8595 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8596
8597 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8598 if (tdep->num_dword_regs)
8599 {
8600 /* Support dword pseudo-register if it hasn't been disabled. */
8601 tdep->eax_regnum = ymm0_regnum;
8602 ymm0_regnum += tdep->num_dword_regs;
8603 }
8604 else
8605 tdep->eax_regnum = -1;
8606
8607 mm0_regnum = ymm0_regnum;
8608 if (tdep->num_ymm_regs)
8609 {
8610 /* Support YMM pseudo-register if it is available. */
8611 tdep->ymm0_regnum = ymm0_regnum;
8612 mm0_regnum += tdep->num_ymm_regs;
8613 }
8614 else
8615 tdep->ymm0_regnum = -1;
8616
8617 if (tdep->num_ymm_avx512_regs)
8618 {
8619 /* Support YMM16-31 pseudo registers if available. */
8620 tdep->ymm16_regnum = mm0_regnum;
8621 mm0_regnum += tdep->num_ymm_avx512_regs;
8622 }
8623 else
8624 tdep->ymm16_regnum = -1;
8625
8626 if (tdep->num_zmm_regs)
8627 {
8628 /* Support ZMM pseudo-register if it is available. */
8629 tdep->zmm0_regnum = mm0_regnum;
8630 mm0_regnum += tdep->num_zmm_regs;
8631 }
8632 else
8633 tdep->zmm0_regnum = -1;
8634
8635 bnd0_regnum = mm0_regnum;
8636 if (tdep->num_mmx_regs != 0)
8637 {
8638 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8639 tdep->mm0_regnum = mm0_regnum;
8640 bnd0_regnum += tdep->num_mmx_regs;
8641 }
8642 else
8643 tdep->mm0_regnum = -1;
8644
8645 if (tdep->bnd0r_regnum > 0)
8646 tdep->bnd0_regnum = bnd0_regnum;
8647 else
8648 tdep-> bnd0_regnum = -1;
8649
8650 /* Hook in the legacy prologue-based unwinders last (fallback). */
8651 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8652 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8653 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8654
8655 /* If we have a register mapping, enable the generic core file
8656 support, unless it has already been enabled. */
8657 if (tdep->gregset_reg_offset
8658 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8659 set_gdbarch_iterate_over_regset_sections
8660 (gdbarch, i386_iterate_over_regset_sections);
8661
8662 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8663 i386_fast_tracepoint_valid_at);
8664
8665 return gdbarch;
8666 }
8667
8668 static enum gdb_osabi
8669 i386_coff_osabi_sniffer (bfd *abfd)
8670 {
8671 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8672 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8673 return GDB_OSABI_GO32;
8674
8675 return GDB_OSABI_UNKNOWN;
8676 }
8677 \f
8678
8679 /* Return the target description for a specified XSAVE feature mask. */
8680
8681 const struct target_desc *
8682 i386_target_description (uint64_t xcr0)
8683 {
8684 switch (xcr0 & X86_XSTATE_ALL_MASK)
8685 {
8686 case X86_XSTATE_MPX_AVX512_MASK:
8687 case X86_XSTATE_AVX512_MASK:
8688 return tdesc_i386_avx512;
8689 case X86_XSTATE_AVX_MPX_MASK:
8690 return tdesc_i386_avx_mpx;
8691 case X86_XSTATE_MPX_MASK:
8692 return tdesc_i386_mpx;
8693 case X86_XSTATE_AVX_MASK:
8694 return tdesc_i386_avx;
8695 default:
8696 return tdesc_i386;
8697 }
8698 }
8699
8700 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8701
8702 /* Find the bound directory base address. */
8703
8704 static unsigned long
8705 i386_mpx_bd_base (void)
8706 {
8707 struct regcache *rcache;
8708 struct gdbarch_tdep *tdep;
8709 ULONGEST ret;
8710 enum register_status regstatus;
8711
8712 rcache = get_current_regcache ();
8713 tdep = gdbarch_tdep (get_regcache_arch (rcache));
8714
8715 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8716
8717 if (regstatus != REG_VALID)
8718 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8719
8720 return ret & MPX_BASE_MASK;
8721 }
8722
8723 int
8724 i386_mpx_enabled (void)
8725 {
8726 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8727 const struct target_desc *tdesc = tdep->tdesc;
8728
8729 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8730 }
8731
8732 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8733 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8734 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8735 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8736
8737 /* Find the bound table entry given the pointer location and the base
8738 address of the table. */
8739
8740 static CORE_ADDR
8741 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8742 {
8743 CORE_ADDR offset1;
8744 CORE_ADDR offset2;
8745 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8746 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8747 CORE_ADDR bd_entry_addr;
8748 CORE_ADDR bt_addr;
8749 CORE_ADDR bd_entry;
8750 struct gdbarch *gdbarch = get_current_arch ();
8751 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8752
8753
8754 if (gdbarch_ptr_bit (gdbarch) == 64)
8755 {
8756 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8757 bd_ptr_r_shift = 20;
8758 bd_ptr_l_shift = 3;
8759 bt_select_r_shift = 3;
8760 bt_select_l_shift = 5;
8761 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8762
8763 if ( sizeof (CORE_ADDR) == 4)
8764 error (_("bound table examination not supported\
8765 for 64-bit process with 32-bit GDB"));
8766 }
8767 else
8768 {
8769 mpx_bd_mask = MPX_BD_MASK_32;
8770 bd_ptr_r_shift = 12;
8771 bd_ptr_l_shift = 2;
8772 bt_select_r_shift = 2;
8773 bt_select_l_shift = 4;
8774 bt_mask = MPX_BT_MASK_32;
8775 }
8776
8777 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8778 bd_entry_addr = bd_base + offset1;
8779 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8780
8781 if ((bd_entry & 0x1) == 0)
8782 error (_("Invalid bounds directory entry at %s."),
8783 paddress (get_current_arch (), bd_entry_addr));
8784
8785 /* Clearing status bit. */
8786 bd_entry--;
8787 bt_addr = bd_entry & ~bt_select_r_shift;
8788 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8789
8790 return bt_addr + offset2;
8791 }
8792
8793 /* Print routine for the mpx bounds. */
8794
8795 static void
8796 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8797 {
8798 struct ui_out *uiout = current_uiout;
8799 LONGEST size;
8800 struct gdbarch *gdbarch = get_current_arch ();
8801 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8802 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8803
8804 if (bounds_in_map == 1)
8805 {
8806 ui_out_text (uiout, "Null bounds on map:");
8807 ui_out_text (uiout, " pointer value = ");
8808 ui_out_field_core_addr (uiout, "pointer-value", gdbarch, bt_entry[2]);
8809 ui_out_text (uiout, ".");
8810 ui_out_text (uiout, "\n");
8811 }
8812 else
8813 {
8814 ui_out_text (uiout, "{lbound = ");
8815 ui_out_field_core_addr (uiout, "lower-bound", gdbarch, bt_entry[0]);
8816 ui_out_text (uiout, ", ubound = ");
8817
8818 /* The upper bound is stored in 1's complement. */
8819 ui_out_field_core_addr (uiout, "upper-bound", gdbarch, ~bt_entry[1]);
8820 ui_out_text (uiout, "}: pointer value = ");
8821 ui_out_field_core_addr (uiout, "pointer-value", gdbarch, bt_entry[2]);
8822
8823 if (gdbarch_ptr_bit (gdbarch) == 64)
8824 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8825 else
8826 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8827
8828 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8829 -1 represents in this sense full memory access, and there is no need
8830 one to the size. */
8831
8832 size = (size > -1 ? size + 1 : size);
8833 ui_out_text (uiout, ", size = ");
8834 ui_out_field_fmt (uiout, "size", "%s", plongest (size));
8835
8836 ui_out_text (uiout, ", metadata = ");
8837 ui_out_field_core_addr (uiout, "metadata", gdbarch, bt_entry[3]);
8838 ui_out_text (uiout, "\n");
8839 }
8840 }
8841
8842 /* Implement the command "show mpx bound". */
8843
8844 static void
8845 i386_mpx_info_bounds (char *args, int from_tty)
8846 {
8847 CORE_ADDR bd_base = 0;
8848 CORE_ADDR addr;
8849 CORE_ADDR bt_entry_addr = 0;
8850 CORE_ADDR bt_entry[4];
8851 int i;
8852 struct gdbarch *gdbarch = get_current_arch ();
8853 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8854
8855 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8856 || !i386_mpx_enabled ())
8857 {
8858 printf_unfiltered (_("Intel Memory Protection Extensions not "
8859 "supported on this target.\n"));
8860 return;
8861 }
8862
8863 if (args == NULL)
8864 {
8865 printf_unfiltered (_("Address of pointer variable expected.\n"));
8866 return;
8867 }
8868
8869 addr = parse_and_eval_address (args);
8870
8871 bd_base = i386_mpx_bd_base ();
8872 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8873
8874 memset (bt_entry, 0, sizeof (bt_entry));
8875
8876 for (i = 0; i < 4; i++)
8877 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8878 + i * TYPE_LENGTH (data_ptr_type),
8879 data_ptr_type);
8880
8881 i386_mpx_print_bounds (bt_entry);
8882 }
8883
8884 /* Implement the command "set mpx bound". */
8885
8886 static void
8887 i386_mpx_set_bounds (char *args, int from_tty)
8888 {
8889 CORE_ADDR bd_base = 0;
8890 CORE_ADDR addr, lower, upper;
8891 CORE_ADDR bt_entry_addr = 0;
8892 CORE_ADDR bt_entry[2];
8893 const char *input = args;
8894 int i;
8895 struct gdbarch *gdbarch = get_current_arch ();
8896 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8897 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8898
8899 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8900 || !i386_mpx_enabled ())
8901 error (_("Intel Memory Protection Extensions not supported\
8902 on this target."));
8903
8904 if (args == NULL)
8905 error (_("Pointer value expected."));
8906
8907 addr = value_as_address (parse_to_comma_and_eval (&input));
8908
8909 if (input[0] == ',')
8910 ++input;
8911 if (input[0] == '\0')
8912 error (_("wrong number of arguments: missing lower and upper bound."));
8913 lower = value_as_address (parse_to_comma_and_eval (&input));
8914
8915 if (input[0] == ',')
8916 ++input;
8917 if (input[0] == '\0')
8918 error (_("Wrong number of arguments; Missing upper bound."));
8919 upper = value_as_address (parse_to_comma_and_eval (&input));
8920
8921 bd_base = i386_mpx_bd_base ();
8922 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8923 for (i = 0; i < 2; i++)
8924 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8925 + i * TYPE_LENGTH (data_ptr_type),
8926 data_ptr_type);
8927 bt_entry[0] = (uint64_t) lower;
8928 bt_entry[1] = ~(uint64_t) upper;
8929
8930 for (i = 0; i < 2; i++)
8931 write_memory_unsigned_integer (bt_entry_addr
8932 + i * TYPE_LENGTH (data_ptr_type),
8933 TYPE_LENGTH (data_ptr_type), byte_order,
8934 bt_entry[i]);
8935 }
8936
8937 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
8938
8939 /* Helper function for the CLI commands. */
8940
8941 static void
8942 set_mpx_cmd (char *args, int from_tty)
8943 {
8944 help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout);
8945 }
8946
8947 /* Helper function for the CLI commands. */
8948
8949 static void
8950 show_mpx_cmd (char *args, int from_tty)
8951 {
8952 cmd_show_list (mpx_show_cmdlist, from_tty, "");
8953 }
8954
8955 /* Provide a prototype to silence -Wmissing-prototypes. */
8956 void _initialize_i386_tdep (void);
8957
8958 void
8959 _initialize_i386_tdep (void)
8960 {
8961 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8962
8963 /* Add the variable that controls the disassembly flavor. */
8964 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8965 &disassembly_flavor, _("\
8966 Set the disassembly flavor."), _("\
8967 Show the disassembly flavor."), _("\
8968 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8969 NULL,
8970 NULL, /* FIXME: i18n: */
8971 &setlist, &showlist);
8972
8973 /* Add the variable that controls the convention for returning
8974 structs. */
8975 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
8976 &struct_convention, _("\
8977 Set the convention for returning small structs."), _("\
8978 Show the convention for returning small structs."), _("\
8979 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
8980 is \"default\"."),
8981 NULL,
8982 NULL, /* FIXME: i18n: */
8983 &setlist, &showlist);
8984
8985 /* Add "mpx" prefix for the set commands. */
8986
8987 add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
8988 Set Intel Memory Protection Extensions specific variables."),
8989 &mpx_set_cmdlist, "set mpx ",
8990 0 /* allow-unknown */, &setlist);
8991
8992 /* Add "mpx" prefix for the show commands. */
8993
8994 add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
8995 Show Intel Memory Protection Extensions specific variables."),
8996 &mpx_show_cmdlist, "show mpx ",
8997 0 /* allow-unknown */, &showlist);
8998
8999 /* Add "bound" command for the show mpx commands list. */
9000
9001 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9002 "Show the memory bounds for a given array/pointer storage\
9003 in the bound table.",
9004 &mpx_show_cmdlist);
9005
9006 /* Add "bound" command for the set mpx commands list. */
9007
9008 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9009 "Set the memory bounds for a given array/pointer storage\
9010 in the bound table.",
9011 &mpx_set_cmdlist);
9012
9013 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
9014 i386_coff_osabi_sniffer);
9015
9016 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9017 i386_svr4_init_abi);
9018 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
9019 i386_go32_init_abi);
9020
9021 /* Initialize the i386-specific register groups. */
9022 i386_init_reggroups ();
9023
9024 /* Initialize the standard target descriptions. */
9025 initialize_tdesc_i386 ();
9026 initialize_tdesc_i386_mmx ();
9027 initialize_tdesc_i386_avx ();
9028 initialize_tdesc_i386_mpx ();
9029 initialize_tdesc_i386_avx_mpx ();
9030 initialize_tdesc_i386_avx512 ();
9031
9032 /* Tell remote stub that we support XML target description. */
9033 register_remote_support_xml ("i386");
9034 }
This page took 0.230967 seconds and 5 git commands to generate.